
Compliance of Semantic Constraints –
A Requirements Analysis

for Process Management Systems?

Linh Thao Ly, Kevin Göser, Stefanie Rinderle-Ma, and Peter Dadam

Institute of Databases and Information Systems, University of Ulm, Germany
{thao.ly,kevin.goeser,stefanie.rinderle,peter.dadam}@uni-ulm.de}

Abstract. Key to the use of process management systems (PrMS) in
practice is their ability to facilitate the implementation, execution, and
adaptation of business processes while still being able to ensure error-free
process executions. Mechanisms have been developed to prevent errors
at the syntactic level such as deadlocks. In many application domains,
processes often have to comply with business level rules and policies (i.e.,
semantic constraints). Hence, in order to ensure error-free executions at
the semantic level, PrMS need certain control mechanisms for validating
and ensuring the compliance with semantic constraints throughout the
process lifecycle. In this paper, we discuss fundamental requirements for
a comprehensive support of semantic constraints in PrMS. Moreover,
we provide a survey on existing approaches and discuss to what extent
they meet the requirements and which challenges still have to be tackled.
Finally, we show how the challenge of life time compliance can be dealt
with by integrating design time and runtime process validation.
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mantic process verification, compliance validation and enforcement

1 Introduction

Due to continuously changing market conditions, companies are forced to fre-
quently adapt their business strategies in order to stay competitive [1–4]. Hence,
there is a strong demand for process-aware information systems facilitating fast
implementation and deployment of new business processes and allowing for flex-
ible adaptations of existing ones. Process management systems (PrMS) are sup-
posed to fulfill these demands and are therefore gaining increasing importance.
Key to the application of PrMS technology in practice is their ability to allow
for fast and flexible realisation of business processes on the one hand, while still
being able to ensure error-free process executions on the other hand.

Much research efforts have been spent on avoiding errors at the syntactic
level [5, 3, 6]. For example, by checking whether a process template (i.e., process
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model) contains deadlocks or incorrect data links, a PrMS can guarantee for the
absence of syntactic errors during process execution. Even if process instances
have to be adapted at runtime in order to handle exceptional situations (e.g.,
by inserting additional activities), these checks [5] can be used for ensuring the
syntactic correctness of process changes. These control mechanisms for process
modeling and execution make PrMS an appealing development and execution
environment for business processes.

Supporting solely checks at the syntactic level of processes, however, is not
sufficient to ensure an error-free execution. In many application domains, processes
are subject to business level rules and policies stemming from domain specific
requirements (e.g., standardisation, legal regulations) [7]. In the clinical domain,
for example, clinical guidelines and pathways [8, 9] can be considered as example
of such rules and policies. To clearly distinguish between syntactic constraints
and business level rules and policies, we refer to the latter as semantic con-
straints1. For a particular business process, semantic constraints may express
various dependencies such as ordering and temporal relations between activi-
ties, incompatibilities, and existence dependencies. For example, consider the
following semantic constraints in natural language:

– constraint c1: A patient should not be administered the drugs Aspirin and
Marcumar within 5 days due to possible unwanted interactions

– constraint c2: For patients older than 75, an additional tolerance test is
required due to an increased risk

– constraint c3: If an endoscopy and a gastroscopy are carried out for a patient
within one week, the endoscopy will have to take place first due to possible
interactions

– constraint c4: The approval of loan applications with a loan amount greater
than 60.000 e has to be checked by the manager of the loan department
before releasing

Obviously, such semantic constraints can be easily violated, in particular, if
dynamic process changes are allowed during process execution (e.g., by dynam-
ically inserting a gastroscopy before the endoscopy or by deleting the additional
tolerance test for a patient with increased risk). Hence, there is an evident de-
mand for control mechanisms which enable the PrMS to validate and to ensure
the compliance of processes with semantic constraints.

Compliance validation has been addressed from various perspectives (e.g.,
compliance of cross-organisational workflows with business contracts, compliance
of workflow transactions with predefined dependencies). Existing approaches ei-
ther follow the paradigm of compliance validation at process template level (de-
sign time) or compliance monitoring at process instance level (runtime). How-
ever, we believe that PrMS have to provide more comprehensive support of se-
mantic constraints. In particular, PrMS must be able to ensure the compliance
over the complete process lifecycle (life time compliance).

1 Semantic constraints can be considered a subset of business rules [10].



In previous work, we introduced a basic set of semantic constraints (i.e.,
binary exclusion and dependency constraints) expressing interdependencies be-
tween process activities [11]. Furthermore, we introduced an approach for vali-
dating processes and process changes against such constraints. In [12], this ap-
proach was extended in order to cope with concurrent changes. This approach
provides mechanisms for ensuring compliance not only at design time, but also at
runtime. In the course of further studies, however, we noticed that many appli-
cation scenarios require even more expressive (i.e., context-related) constraints.
This poses additional requirements on their integrated support in PrMS.

In this paper, we discuss the challenge of supporting semantic constraints in
PrMS from a holistic point of view. For this purpose, we first provide a detailed
discussion on fundamental requirements for supporting semantic constraints in
PrMS in a comprehensive manner. Furthermore, we discuss to what extent ex-
isting approaches are able to meet these requirements and show which challenges
still have to be tackled. In addition, we address the challenge of life time compli-
ance in more detail. We advocate that life time compliance can only be achieved
by providing an overall framework with adequate mechanisms for compliance
and validation support in each phase of the process lifecycle.

This paper is structured as follows. Fundamental requirements are introduced
in Sect. 2. In Sect. 3, state of the art is discussed. Our vision of an overall
framework for life time compliance is presented in Sect. 4. Finally, a summary
and an outlook on future research are provided in Sect. 5.

2 Fundamental Requirements for the Integrated Support
of Semantic Constraints

Basically, for supporting semantic constraints in PrMS, existing PrMS concepts
have to be supplemented by mechanisms for specifying semantic constraints and
for assigning them to processes. Furthermore, mechanisms for validating and
ensuring the compliance of processes with these semantic constraints have to be
provided. From case studies (particularly of clinical processes, e.g. [13]) we de-
rived fundamental requirements which have to be considered by a comprehensive
approach. These fundamental requirements are discussed in the following.

2.1 Specifying and Integrating Constraints

Req. 1: A Formal Language for Constraint Specification On the one
hand, a constraint specification language has to provide the expressiveness nec-
essary to model real world semantic constraints. On the other hand, the expres-
siveness must not be achieved at the expense of validation and analysis costs.
Especially large constraint sets demand for mechanisms for formal analysis (e.g.,
to find out whether a constraint set is consistent, i.e., does not contain contradict-
ing constraints). This, in turn, demands for a constraint specification language
which has a formal foundation. In addition, the complexity of the specification
language must not become an obstacle for constraint specification and for the



validation of processes against constraints. Thus, the main challenge is to find
an appropriate balance between expressiveness, formal foundation, and potential
analysis methods.

Req. 2: Constraint Organisation Although there are semantic constraints
only relevant for one particular process (i.e., process specific), many semantic
constraints (e.g., drug and therapy interactions) have a more global validity.
An example of such a constraint with global validity is the ordering relation
between the examinations endoscopy and gastroscopy. Hence, an appropriate
way of organising semantic constraints (e.g., in a constraint repository [11] or
a directory [7]) has to be provided in order to support the process-spanning
specification and (re)use of semantic constraints.

Similar to processes, semantic constraints may change and, thus, are subject
to an evolution process. This is particularly true for third party constraints.
Clinical guidelines, for example, may change due to new evidences in health-
care [8]. Since the lifecycle of constraints and the lifecycle of processes do not
necessarily coincide, adequate mechanisms for versioning and propagating con-
straint changes to relevant processes have to be provided in order to support
constraint evolution.

Req. 3: Support of Implementation independent and Implementation
specific Constraints We identified two contradictory requirements regarding
the abstraction level of constraint specification (cf. Fig. 1). On the one hand, a
high level view on semantic constraints abstracting from implementation details
has to be provided. The use of a non-technical level would allow for semantic
constraints to be understood, managed, and specified by domain experts. Fur-
ther, constraints (or what they refer to) may be implemented in various ways in a
particular process. Thus, specifying semantic constraints at implementation level
would restrict the possible (re)use of the constraints. This will be particularly
important if process implementations may be replaced or changed over time.
In this case, a constraint not abstracting from process implementation details
would have to be revised and adapted to fit to the new process implementation
even though its semantics has not changed. As example, consider again the con-
straints c1 and c2 from Sect. 1. Constraint c1 describes a drug interaction. For
its semantics, it is irrelevant whether the drugs Aspirin and Marcumar are given
to a patient within one process instance or within two separate process instances
(e.g., when diagnostic procedures are mapped to different process models). For
the semantics of constraint c2, it is irrelevant how the age of a patient will be fi-
nally determined in a particular process implementation; i.e., whether there will
be a data element in the process corresponding to the patient’s age or whether
the latter will have to be computed from the patient’s date of birth.

The aforementioned examples show the demand for a high level view on
semantic constraints. On the other hand, however, implementation level con-
straints are indispensable for process validation. For validating whether or not
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Fig. 1. Support of two abstraction levels for semantic constraints

an additional tolerance test for a patient is required in a particular process (ac-
cording to c2), for example, the PrMS has to know exactly how to determine
the patient’s age in this process (cf. Fig 1).

In summary, an approach for supporting semantic constraints in PrMS has
to support a high level (i.e., conceptual) view on constraints focussing on their
semantics as well as an implementation level view for constraint evaluation.

2.2 Ensuring Compliance

Req. 4: Support of Life Time Compliance Taking the lifecycle of processes
in a PrMS into account, we identified four scenarios for semantic process valida-
tion:

◦ Req. 4.1: Compliance Validation at Design Time
It is desirable to ensure the compliance with semantic constraints already at
process template level (compliance by design [7]). A process template is de-
scribed as compliant with a set of semantic constraints, if it only allows for the
execution of process instances not violating these constraints. Thus, by ensuring
compliance at template level, it is ensured that corresponding process instances
are compliant as well. Consider process template P1 in Fig. 2. P1 only allows for
process instances which are compliant with constraint c2 (i.e., P1 is compliant
with c2). For enforcing compliance at process template level, mechanisms have
to be provided in order to validate process templates.

◦ Req. 4.2: Compliance Validation at Runtime
Although being very essential, compliance by design is not always feasible for
several reasons. As an example, consider a process which has to comply with
a huge set of clinical guidelines with normative statements on what to do in
exceptional cases (e.g., actions to take in case of a particular allergy). Enforcing
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Tolerance test

ExaminationAdmit 
patient

Age ≤ 75
Age > 75

Process template P1 Possible execution sequences of P1:

< Admit patient, [Age  ≤ 75 ], Examination, … >

< Admit patient, [Age  > 75 ], Tolerance test, Examination, …>

S1:

S2:

Fig. 2. A compliant process template
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Fig. 3. A process instance change leading to semantic inconsistencies

the compliance with all these constraints at the process template level may lead
to an overcomplex process template since each possible case described in a con-
straint has to be accounted for in the process structure of the template (e.g., by
inserting corresponding conditional branches into the process template). Hence,
depending on the nature of the constraints (e.g., how often an allergy occurs),
it may be more feasible to postpone the enforcement of compliance with these
constraints to runtime.
Semantic constraints involving unexpected events (e.g., if a patient’s leukocyte
count suddenly falls below a threshold, a drug for raising the leukocyte count
will have to be administered within the same day) also require adequate mecha-
nisms for runtime monitoring and validation. Such events cannot be anticipated
and, thus, the constraint cannot be enforced properly at process template level
without overcomplicating the process template.

◦ Req. 4.3: Validation of Process Changes
Compliance validation also becomes necessary when process instances have to be
modified during runtime in order to deal with exceptional situations [12]. In par-
ticular, if a process instance is frequently modified in an ad hoc manner by vari-
ous agents with restricted view on the process, conflicts between process changes
and semantic constraints may occur. An example of how a process change can
lead to a semantic inconsistency is given in Fig. 3. Instance I1 is modified by
deleting the tolerance test (e.g., due to lack of time). This deletion, however,
violates constraint c2 since no tolerance test is carried out though the patient is
older than 75. To allow for flexible process execution and to avoid that flexibility
leads to semantic inconsistencies in processes, an adaptive PrMS has to provide
mechanisms to validate the compliance of process changes. Moreover, mecha-
nisms to enforce compliance, for example, by refusing conflicting changes (e.g.,
refusing the deletion in Fig. 3) become essential as well. Since runtime validation
often involves interaction with end users, efficient runtime checks are needed.

◦ Req. 4.4: Compliance Validation for Template Evolution
When a process template is adapted (e.g., due to process optimization) it is often
desirable that instances being executed according to the old template version
also benefit from the changes at the template level [5] (change propagation).
Since process instances may be individually modified, changes at the template
level may be conflicting with changes at the instance level (e.g., administering
two incompatible drugs at template and instance level) [12]. Hence, compliance
checks for the propagation of template changes to process instances are essential
to ensure life time compliance.
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Req. 5: Support of Inter-Process Constraints Semantic constraints often
affect more than only one process in a PrMS. As example, consider again con-
straint c1. The incompatible drugs (Aspirin and Marcumar) may be given to a
patient within two process instances (e.g., because the patient is undergoing two
different treatments) (cf. Fig. 4). Hence, the support of semantic constraints must
not be restricted to one process but has to be able to cross process boundaries.

Req. 6: Intelligible Feedback Semantic constraints are supposed to govern
the process execution to ensure a semantically consistent procedure. Thus, many
interactions with users may occur (e.g., in case of constraint violations). There-
fore, intelligible feedback is highly important for user acceptance. Especially in
case of (potential) constraint violations, helpful feedback is required (e.g., rea-
sons for the violation). In addition, feedback to help the user in finding adequate
conflict avoidance (e.g., abstaining from a process change) and compensation
strategies (e.g., inserting a compensation activity) is also essential (cf. 3.5).

Req. 7: Overrideable Constraints Semantic constraints are often not strin-
gent. Many constraints are rather of recommendation nature [9] (i.e., soft con-
straints). Thus, constraint violations need not necessarily be an error. Therefore,
it must be possible to override semantic constraints during process execution
depending on the constraint’s rigidity. Consider again constraint example c1. A
physician might still consider to administer both drugs. Prohibiting constraint
overriding in such cases would annoy users and might even cause them to bypass
the system.

Req. 8: Support of Traceability Since traceability is highly important in
general, the results of semantic process checks have to be documented. Then,
it becomes possible to reconstruct past compliance checks and corresponding
results. This is particularly necessary when it comes to constraint violations or
constraint overriding. In this case, it has to be recorded who initiated the overrid-
ing and for what reasons. In the clinical domain, for example, such information
is needed to establish interdependencies between the adherence to guidelines and
the process outcome [14].

3 State of the Art

In PrMS research, the main focus of approaches on process validation is to ensure
the syntactic correctness of processes ([3–6]). Few approaches address constraints



other than of syntactic nature. In the following, a survey on existing approaches
from PrMS research as well as related research areas which focus on ensuring the
compliance of processes with constraints in a broader sense is provided. Existing
approaches are first discussed with regard to the validation scenario they focus
on (cf. Req. 4). A discussion with regard to the other requirements follows in
Sect. 3.5.

3.1 A Priori Compliance – Design Time Validation

Common to approaches in this category is the basic idea to achieve compliance
by validating a process specification (i.e., a process template) against certain
constraints (cf. Req. 4.1). Existing approaches vary in constraint specification
language, validation technique, and backgrounds.

In [15], an approach for achieving flexible processes is described which allows
for the late modeling of subprocesses. Constraints expressing dependencies be-
tween activities are introduced for restricting composition possibilities. Before
a subprocess is executed, it is validated against the constraints. In [16], an ap-
proach for compliance validation based on Concurrent Transaction Logic (CTR)
is introduced. For validating a process (i.e., workflow graph) against constraints
specified in CTR, the workflow graph is transformed into a CTR formula. This
allows for the application of reasoning techniques for identifying semantic con-
flicts. Lu et al. [17] introduce an approach for measuring the compliance dis-
tance between a process template and a set of control objectives (comparable to
constraints). The latter are specified in Formal Contract Language (FCL) [18].
Compliance is measured by comparing possible execution traces of the process
model against ideal and sub-ideal execution traces.

In the context of web service composition, the question arises whether or not
a choreography complies with certain constraints. In [19], Yu et al. introduce an
approach for the specification of properties (i.e., constraints) and for validating
BPEL processes against these properties. The properties are based on property
patterns [20]. For process validation, a model checking approach is employed.
Model checking has also been applied to process validation by several other
approaches ([21, 22]). Foster et al. [23] introduce an approach for validating the
interactions of web service compositions against obligation policies specified in
the form of Message Sequence Charts. For validation, an approach based on
Labeled Transition Systems is employed.

In [18], a priori compliance validation is addressed from the business contract
perspective using FCL for specifying contracts. The compliance of a BPMN
process with a given contract is validated by transforming the BPMN process
model into a form similar to the contract notation. This allows for the detection
of contract violations in the process model by applying reasoning techniques.

As discussed in Sect. 2.2, a priori validation is necessary for achieving com-
pliance by design but also has its limitations. Since these approaches basically
analyze the control flow (i.e., possible execution sequences), most dependencies
involving abstraction levels more fine-grained than of process activities are not



within their scope. Though being suitable for certain scenarios, this level of ab-
straction is not appropriate for constraints involving context information (e.g.,
a patient’s allergies or a customer’s insurance sum) not expressed via activities.

3.2 Runtime Compliance Validation

The basic idea is to validate compliance by monitoring process-related events
during runtime. Early approaches stem from rule-based transactions (e.g., [24,
25]). Their main focus is on scheduling upcoming process-related requests (e.g., a
commit request) such that predefined constraints (e.g., commit dependencies) are
not violated. For specifying and enforcing constraints logic-based formalisms and
techniques (e.g., Event Algebra, Concurrent Temporal Logic) are used. In [26], an
approach for specifying declarative process models using Linear Temporal Logic
(LTL) is presented. For process enactment, the LTL formulas are synthesized
into state automatons. In [27], an approach for synchronizing concurrent process
instances is introduced. Constraints are specified using an extension of regular
expressions. For scheduling process instances according to the constraints an
FSM-based instance coordinator is used.

Monitoring runtime compliance has been addressed from the business con-
tract perspective (e.g., [28–31]). In [29], process events are monitored to detect
contract violations. In [30], contract clauses (constraints) are specified in a rule-
based form using the notion of happened, expected, and not-expected events.
At runtime, events are recorded in a knowledge-base which allows for reasoning
about contract compliance. In [32], a similar approach is employed for monitoring
the compliance of web service executions with choreographies.

In [33], a semantic mirror (i.e., a knowledge base of process events) is contin-
uously updated according to the current execution status of a process instance.
This allows for monitoring the compliance of the instance with constraints spec-
ified in form of ECA rules. Agrawal et al. [34] also advocate the use of process
monitoring for detecting non-compliance. In [35, 36], an approach for rule-based
automatic instance adaptation is proposed. The rules are specified as ECA rules
using Active Temporal Frame Logic (an extension of Frame Logic by temporal
notions such as durations). At runtime, upon occurrence of certain events and
conditions (such as high blood pressure), the process is automatically adapted
according to the action part of the rule.

Runtime compliance validation is particularly important for constraints in-
volving runtime context information (cf. Req. 4.2). However, a limitation of most
monitoring approaches is, that they do not allow for “look aheads”. In partic-
ular, possible future process behavior is unknown. Decisions (e.g., enforcement
decisions such as to reject a commit request) can only be made based on ex-
ecution history so far. This leads to problems when constraints involve future
behavior. In the scope of BPM, the information encoded in the process model
(i.e., process structure) can be exploited at runtime in order to detect and avoid
non-compliance in advance. We believe that a combination of both runtime and
design time compliance checks is necessary for supporting life time compliance.



3.3 Check Point Metaphor

Business rule management systems (e.g., ILOG JRules [37]) allow for managing
and evaluating business rules in a Business Rule Engine (BRE) by employing
techniques from knowledge-based systems. In the context of PrMS, a BRE is
primarily used for decision making. For this purpose, decision making points
have to be predefined. Upon reaching the decision point at runtime, the rule
service is invoked. In IBM Websphere, hard coded rules and checks are assigned
to enforcement points where the rule service is invoked at runtime [38]. The
check point paradigm is a complement to other validation scenarios. However,
these approaches obviously cannot account for situations where more flexible
checks are required (e.g., when processes are adapted).

3.4 A Posteriori Compliance Analysis

In [39], an approach for a posteriori validating processes against constraints
is presented. Constraints specified in Linear Temporal Logic are verified over
process logs. This approach is not applicable in scenarios where non-compliance
may affect the outcome of a process. However, we consider a posteriori compli-
ance validation an appealing complement to other validation paradigms.

3.5 Discussion and Summary

Though the expressiveness varies, common to most approaches is a certain degree
of formal foundation of the specification language (cf. Req. 1). The requirement
of high level and implementation level constraints (Req. 3) has been addressed
in [33]. However, it is not quite clear to what extent it is possible to abstract from
implementation details when specifying semantic constraints with this approach.

Monitoring approaches are potentially able to deal with inter-process con-
straints (Req. 5) by nature. To evaluate to what extent existing approaches are
suitable for dealing with semantic constraints, however, a more detailed analysis
is required. Many of the other requirements are not within the scope of existing
approaches (due to their various backgrounds) and, thus, are not directly ad-
dressed (e.g., Req. 2 changes to semantic constraints, Req. 4.3, Req. 4.4). In [33],
recovery strategies for control violations are proposed (e.g., rollback or ignoring
the violation). This is an interesting approach which treats constraint violations
like process exceptions in general. However, these recovery strategies are applied
after a constraint is already violated. In our opinion, strategies for avoiding a
violation are required as well. In [40], an approach for auditing (BPMN) process
models for compliance by annotating activities with effects is introduced. For
compliance resolution compliance patterns are proposed.

As discussed, existing approaches either focus on validating process templates
at design time or on compliance monitoring at runtime. The validation of process
changes has not been addressed (Req. 4.3 and Req. 4.4). Although many related
approaches offer inspiring solutions for particular facets, to our best knowledge,
there is no approach which covers all validation scenarios and allows for ensuring



compliance over the complete process lifecycle. Our objective in the SeaFlows
project is to provide a fundamental framework which allows for comprehensive
support of semantic constraints in adaptive PrMS. In this context, mechanisms
for ensuring life time compliance are essential.

4 Towards Life Time Compliance – A Vision

As discussed, many challenges still have to be tackled in order to achieve com-
prehensive support of semantic constraints in PrMS. In the following, we address
the particular challenge of ensuring life time compliance (Req. 4).

For achieving compliance throughout the complete process lifecycle, adequate
mechanisms for supporting and ensuring compliance in each phase of the process
lifecycle are required. Our vision of the key mechanisms is sketched in Fig. 5. In
the following, we explain the particular compliance support envisaged for each
phase. Due to space limitations, we abstain from presenting our ideas on change
propagation (Req. 4.4).
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Fig. 5. Key mechanisms for life time compliance

4.1 Design Time: Process Modeling and Composition

Constraint Specification To support a high level view on semantic constraints
as well as an implementation level view for automatic validation (Req. 3), an



overall framework has to provide two layers (cf. Fig. 5 (A)). We envisage a
constraint specification layer providing mechanisms for constraint specification,
analysis, and management at an implementation independent level. Many ap-
proaches for constraint specification have been proposed in literature (e.g., LTL,
FCL, or the SBVR standard [41]). To evaluate them and to find a suitable con-
straint language, a detailed analysis of semantic constraints is vital.

To obtain implementation level constraints (constraint implementation
layer), concepts used in semantic constraints (i.e., constraint artifacts) are
mapped to corresponding implementation artifacts (e.g., process activities, sub-
processes, or process data) by a process engineer (cf. Fig. 5 (A)). The decoupling
of constraint semantics and constraint implementation allows for changes at the
implementation level as well as changes at the specification level without affect-
ing each other (Req. 3).

Semantic constraints may be stored in a constraint repository and assigned
to categories for facilitating constraint reuse. To assign semantic constraints to
a process, the constraint repository may be browsed for existing constraint sets
(e.g., drug interactions) or new ones may be created (cf. Fig. 5).

Process Template Validation Following Req. 4.1, mechanisms for template
validation already during design time are envisaged (cf. Fig. 5 (B)). At this
stage, only the process structure may serve as input for compliance validation.
However, many semantic constraints involve runtime information (e.g., data con-
ditions) which are not available at design time. Hence, in order to provide the
process engineer with helpful validation results we envisage fine-grained notions
of constraint violations (e.g., whether a constraint will be violated in all possi-
ble process instances of the template, or whether it will only be violated in a
process instance under particular conditions, cf. Fig. 5 (C)). Such fine-grained
notions of constraint violations would allow for more fine-grained validation re-
sults and feedback, which, in turn, can help the process engineer to evaluate and
to enhance the process template.

4.2 Runtime: Process Execution and Process Instance Adaptation

It is not always feasible to enforce all semantic constraints at the process template
level (cf. Req. 4.2). Hence, it must be possible to instantiate process instances
from a process template which does not enforce all semantic constraints at the
structural level. This, in turn, demands for adequate runtime monitoring and
validation mechanisms in order to ensure compliance with the constraints not
yet enforced. For this purpose, relevant events of the process execution have
to be monitored (e.g., availability of relevant data values). The evaluation and
validation of corresponding constraints based on the runtime information has
to be carried out during process execution (cf. Fig. 5 (D)). Our objective is to
identify potential conflicts (i.e., violations) as early as possible in order to allow
for timely application of strategies for averting conflicts. Hence, not only the
current execution history of the process instance has to be accounted for but



also the possible future behavior of the instance (i.e., no mere monitoring). How
this can be tackled is part of ongoing research.

Compliance checks at design time are less costly than corresponding checks
at runtime. Hence, to reduce validation costs, design time and runtime checks
should not be performed in an isolated manner. In fact, their interplay has to
be supported. For this purpose, it is vital to determine which constraints still
have to be monitored and evaluated during execution and which constraints have
already been enforced at process template level and thus, do not require costly
compliance checks at runtime. To further optimize the interplay between design
time and runtime validation and particularly to exploit the synergy effects, a
detailed analysis of the problem space is required.

Following the requirement for mechanisms for validating process changes
(Req. 4.3), corresponding compliance checks have to be integrated into exist-
ing process adaptation mechanisms of PrMS (cf. Fig. 5 (E)). Note that a process
change may require the reevaluation of semantic constraints which have already
been enforced before the change. In order to reduce validation costs, the seman-
tics of the process change to be carried out can be exploited. In [12], we developed
an approach for evaluating only semantic constraints which might be violated by
the particular process change. So far, this approach is restricted to activity-level
constraints and is to be extended to handle more expressive constraints.

4.3 Process Evaluation and Mining

Following the requirement for traceability (Req. 8), runtime compliance checks
have to be tied with logging mechanisms. This is particularly important when
constraints can be overridden during execution (Req. 7). Then, the validation
logs may provide meaningful input for process mining (cf. Fig. 5 (F)).

In the context of continuous process learning, a log analysis can help to evalu-
ate and enhance existing semantic constraints (e.g., constraint refinement based
on insights on frequently occurring constraint overriding due to a particular rea-
son). This may serve as input to constraint evolution (cf. Req. 2). In addition, a
log analysis may also contribute to evaluate the quality of the process by relating
process outcome and constraint adherence.

5 Summary and Outlook

The demand for process compliance with rules and policies leads to new require-
ments on PrMS technology. The support of semantic constraints would leverage
the applicability of PrMS technology in practice since not only the syntactic level
of processes can be supported by PrMS. Processes may also be enriched with
semantic constraints for ensuring semantically consistent process executions. In
this paper, we identified fundamental requirements for supporting semantic con-
straints in PrMS. Furthermore, we provided a survey on existing approaches and
discussed to what extent they are able to meet the requirements. We showed that
there is an demand for an approach which allows for supporting the compliance



over the complete process lifecycle. In addition, we presented our vision of the
key mechanisms of a framework for realising life time compliance.

As we also pointed out in this paper, there are many open questions to be
analyzed in more detail in order to develop a truly comprehensive approach.
Part of ongoing work in the SeaFlows project is a detailed analysis of semantic
constraints. This would allow for an evaluation of existing constraint specifica-
tion languages. Furthermore, a closer look at the relations between constraint
types and appropriate validation scenarios is necessary for further optimizing
the interplay between design time and runtime validation mechanisms.
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