
Ulm University | 89069 Ulm | Germany Faculty of Engineering,
Computer Science and
Psychology
Institute of Databases and
Information Systems

Design and Implementation of a
Dynamic Web-based User Interface
for the proCollab System Supporting
Knowledge-intensive
Business Processes
Master’s Thesis at Ulm University

Submitted by:
Matthias Gerber
matthias.gerber@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Rüdiger Pryss

Supervisor:
Nicolas Mundbrod

2017

Version October 10, 2017

c© 2017 Matthias Gerber

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

Globalization and the change to post-industrial societies have led to an increased value

of knowledge-intensive processes. Areas creating and utilizing new knowledge, such

as research and development are of high importance for today’s companies. In these

areas, knowledge workers drive the creation of value in knowledge-intensive processes.

However, there is still no established process-based support due to the dynamic nature

of these processes. The latter requires a high level of communication and cooperation

between all involved workers. The proCollab research project, hosted at Ulm University,

aims to holistically support knowledge workers and knowledge-intensive processes. The

concept of proCollab relies on the lifecycle-based task management in the context of

processes. In particular, knowledge workers may use digital task lists to synchronize

and coordinate their work more effectively. To demonstrate the capabilities of proCollab,

a sophisticated proof-of-concept prototype has been developed. This work presents

the design and implementation of the dynamic, web-based user interface of the current

version of the proCollab prototype.

iii

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contribution . 2

1.3 Outline . 3

2 Fundamentals 5

2.1 Knowledge-Intensive Processes . 5

2.2 Application Case . 6

2.3 proCollab . 7

2.3.1 KiP Lifecycle . 8

2.3.2 proCollab Components . 9

2.3.3 Workspaces . 12

2.3.4 Template Repository . 13

2.3.5 Configuration Management . 13

2.3.6 State Management . 14

2.3.7 Specialization Types . 17

2.3.8 Object-specific Role-based Access Control 18

3 Requirements 21

3.1 Functional Requirements . 21

3.2 Non-Functional Requirements . 27

3.3 Current State . 29

3.3.1 Current State Analysis . 29

3.3.2 Results of the Current State Analysis 33

3.4 Comparable Tools and Systems . 34

3.4.1 Basecamp . 34

3.4.2 active.collab . 35

3.4.3 Flow . 38

v

Contents

4 Concept 41

4.1 Navigation Structure . 42

4.2 Workspace . 42

4.2.1 Breadcrumbs Trail . 44

4.2.2 Process Overview . 45

4.2.3 Process Assessment . 48

4.2.4 Management of Task Trees . 50

4.2.5 Task Tree Configuration . 54

4.2.6 Task Tree Overview . 57

4.2.7 Management of Organizational Units 57

4.3 Template Repository . 59

4.4 System Settings . 59

4.4.1 Management of Roles and Privileges 59

4.4.2 User Applicants . 61

4.4.3 State Model Graph . 62

4.5 Account Management . 65

4.5.1 Password Recovery . 65

4.5.2 Registration . 65

4.6 Cross-Cutting Components . 68

4.6.1 Confirmation Modal Dialog for Destructive Actions 68

4.6.2 Role Selection . 68

4.6.3 Caching . 70

5 Implementation 71

5.1 Technologies . 71

5.1.1 Representational State Transfer (REST) 71

5.1.2 WebSocket . 72

5.1.3 JavaScript Object Notation . 72

5.1.4 Angular 4 . 72

5.1.5 RxJS . 73

5.1.6 Typescript . 74

5.1.7 SASS . 74

vi

Contents

5.1.8 Cytoscape.js . 74

5.2 Implementation Excerpts . 75

5.2.1 Deployment Configurability . 75

5.2.2 Caching and Updating . 76

5.2.3 Navigation Structure . 79

5.2.4 Confirmation Modal Dialog for Destructive Actions 82

5.2.5 Process Overview . 84

5.2.6 Task Tree . 85

5.2.7 Management of Task Trees . 90

5.2.8 Task Tree Configuration . 90

5.2.9 Process Assessment . 95

5.2.10 Task Tree View . 95

5.2.11 Assign Privileges . 96

5.2.12 State Model Graph . 97

5.2.13 Role Selection . 100

5.2.14 Role Based User Interface . 101

5.2.15 Registration . 102

5.2.16 Password Reset . 102

6 Conclusion 103

6.1 Summary . 103

6.2 Future Work . 104

vii

1
Introduction

As a consequence of the rapidly growing globalization, highly developed countries

experience a shift away from producing goods and offering services to knowledge-based

economies [Kow11]. In such economies, the support of knowledge-intensive processes

(KiPs) and knowledge workers is of high importance. In areas like healthcare, research,

or engineering, knowledge workers tightly collaborate to reach a common goal, e.g. the

treatment of a patient or the production of a new car. This collaborative work, which

takes place in KiPs, is difficult to support with traditional information systems, as KiPs are

emerging and unpredictable. In particular, traditional approaches with rigid structures are

of little value in supporting KiPs, as they have not been designed to adapt to changing

processes.

1.1 Problem Statement

Dynamic knowledge-intensive processes are hardly supported systematically as they

are influenced by multiple factors and strongly depend on the knowledge of the involved

knowledge workers [Tie10]. Furthermore, most of the time, knowledge workers from

different domains are involved and work together to reach a common goal. For an

effective cooperation, knowledge workers need to always be aware of the current state,

potential changes, and completed milestones of the KiPs they are working on. This

requires much effort for both communication and organizing in order to ensure a smooth

and productive process. As of today, knowledge workers widely rely on task lists (e.g.,

to-do lists or checklists) for organizing and distributing their work tasks. Traditionally,

those task lists are paper-based, not synchronized and managed decentralized. These

1

1 Introduction

issues clearly impede the effective collaboration of knowledge workers. In particular, the

lack of systematic support currently results in oversights, redundant work, and undesired

work results. Due to these problems, there is a prevalent demand for an information

system that supports knowledge workers in the context of KiPs in a systematic and

sustainable way [MKR12]. Furthermore, such a system may allow knowledge workers,

in particular, to manage formerly paper-based processes and tasks digitally. This way,

tasks are synchronized and media disruptions can be avoided to increase knowledge

worker’s productivity.

1.2 Contribution

As part of the proCollab research project, a sophisticated proof-of-concept prototype has

been developed, demonstrating the feasibility and potential of the proCollab approach.

The proCollab approach aims to support knowledge workers by enabling them to

cooperate using digital task lists, such as checklists and to-do lists. In the context of KiPs,

furthermore, proCollab incorporates templates for the creation of such task lists. Thereby,

it enables knowledge workers to easily create and maintain task lists, which increase

productivity and follow best practices. The current proCollab prototype is separated

into a scalable server application and a lightweight web-based client interacting with

the server. The aim of this master thesis is to enhance and improve the web-based

client, to further increase the user acceptance. Therefore, detailed requirements are

compiled and analyzed first. The result of this analysis is used to discuss the conceived

enhancements and their specific implementation. In particular, the performance of

the application must be improved through reducing calls to the server. In this context,

data received from the server should be cached and kept up to date using information

provided by a WebSocket connection. This approach minimizes time consuming calls

to the server, while also avoiding stale data in the cache. Besides caching, this work

also includes new concepts for displaying task list to knowledge workers. Due to the

emergent nature of KiPs, different, but valuable user interfaces presenting task lists

and tasks are crucial to let knowledge workers assess the current progress efficiently.

Hence, current user interfaces, presenting task lists are reevaluated to provide as much

2

1.3 Outline

information as possible without sacrificing usability. Additionally, the ability to configure

the instantiation of task lists based on pre-defined contextual situations is implemented.

The latter are used to include task lists and tasks making task lists more adaptable

to different situations. Furthermore, advanced functionality to manage task and task

lists is incorporated to enable knowledge workers to adapt task lists to changes in the

underlying KiP. In particular, this includes, moving tasks and even entire embedded task

lists through drag and drop. Moreover, roles are assigned to users to provide enhanced

access control. Thus, support to switch to different roles is implemented. Because the

different roles may have varying permissions, the user interface should adapt to the role

of the user, displaying only relevant content.

1.3 Outline

This thesis is organized as follows. Chapter 2 introduces the fundamental concepts this

thesis is based on. Chapter 3 provides a requirements analysis as well as an overview of

the current state of the web-based client and comparable tools. Subsequently, Chapter 4

discusses different solutions for realizing the required new features and enhancements

discovered in Chapter 3. Chapter 5 provides selected excerpts of their implementation.

Finally, Chapter 6 concludes this thesis with a summary and an outlook on future work.

3

2
Fundamentals

In this chapter, fundamentals that are required in the following chapters are introduced

and a terminology is given. Section 2.1 introduces the term knowledge-intensive

processes. Whereas, Section 2.2 provides an application case to ease the understanding

of KiPs. Finally, Section 2.3 describes the proCollab research project and its approach

for supporting KiPs.

2.1 Knowledge-Intensive Processes

To ensure a common and consistent understanding of knowledge-intensive processes,

the definition of [Vac+11] is used in this work.

Knowledge-intensive processes (KiPs) are processes whose conduct and execution

are heavily dependent on knowledge workers performing various interconnected knowledge

intensive decision making tasks. KiPs are genuinely knowledge, information and data

centric and require substantial flexibility at design- and run-time.

KiPs are still not widely supported, as they are unpredictable, emergent, goal-oriented

and accompanied by an ever-growing knowledge base [MKR12]. These properties make

KiPs hard to support with tools used in traditional business processes. The latter typically

comprise routine work that can be standardized well. By contrast, KiPs require constant

adjustments due to their emergent nature. Furthermore, KiPs do not always have a

fixed outcome, but are characterized through a common goal. This goal can be divided

into smaller sub-goals. As soon as these sub-goals are completed, the main goal is

completed as well. To achieve their goals, knowledge workers constantly define tasks

5

2 Fundamentals

that need to be accomplished. These tasks can often not be completed by a single

knowledge worker, instead they require the collaboration of multiple knowledge workers.

This is another important aspect as one KiP may require many knowledge workers,

maybe even from different domains, to work together to achieve a common goal.

2.2 Application Case

To ease the understanding of KiPs, the process of creating a website is used as

application case for this work. This application case was chosen because it reveals

many of the difficulties knowledge workers face, while working on KiPs.

The development of a new website starts with an evaluation of the old website, if there is

any. Then, the requirements for the new website have to be discussed with the customer.

These requirements and technical details have to be documented as well. Next, it has to

be checked whether the old website can be updated or whether a migration is necessary.

It also has to be checked whether the requirements are consistent and completely

documented. Subsequently the server credentials have to be provided and the customer

has to select content from the old website that should be migrated later. After reviewing

the technical requirements and presettings, a first draft of the new website can be

created. This first draft then needs to be compared with the documented requirements.

Furthermore, the draft is discussed with the customers and updated according to their

wishes. After checking that the draft has been updated, the customers shall approve the

changes. Furthermore, the content of the old website, which was selected previously, is

migrated to the new one. After assuring that all transferable content has been migrated

successfully, the current state of the new website is discussed with the customers.

Thereby, the website is presented to the customers and updated based on their feedback.

Afterwards the spelling of the contents is checked and issues, such as missing content

or low quality images, are identified and fixed. Finally, the website release needs to be

approved by the customers. If everything is to their satisfaction, the website is made

accessible to the public.

6

2.3 proCollab

The application case shows many of the characteristics of KiPs. The knowledge workers

have to adapt to the customers wishes and incorporate new knowledge into their work at

all stages of the process. There is also a strong need for communication between the

different actors (i.e. the developers and customers).

2.3 proCollab

This work is part of the proCollab research project started at Ulm University in the

summer of 2012 [Pro17]. The goal of this project is to holistically support knowledge

workers and their KiPs. To achieve this, proCollab takes into consideration that the tasks

comprised in a KiP, often have to perform the stages of planning work, performing work,

studying work and optimizing plans. These stages can generally be abstracted by the

generic Plan-Do-Study-Act (PDSA) cycle [DJB95][MR17c] (see Figure 2.1).

Figure 2.1: PDSA Cycle

Knowledge workers often use tools like task lists (e.g., to-do lists or checklists) to keep

track of their tasks while trying to achieve a common goal. Task lists are historically paper-

based—this fact obviously entails many disadvantages. It is, for example, impossible

for multiple knowledge workers to work on the same task list at once. Another problem

7

2 Fundamentals

arises when multiple task lists are used, as they cannot easily be synchronized. This

can lead to consistency and coordination problems. Therefore, the proCollab approach

provides digital task lists that all involved knowledge workers may access in the context

of processes.

2.3.1 KiP Lifecycle

In [MKR12], the KiP lifecycle was introduced (see Figure 2.2) as an essential foundation

for every approach supporting KiPs. This lifecycle consists of four different phases that

are being discussed in the following, building on the definitions provided in [MR14].

Figure 2.2: KiP Lifecycle [MR14]

Orientation Phase: First, the context and goal of the KiP are defined. Subsequently,

information is collected to provide an overview on how the knowledge workers collaborate.

For this purpose, these knowledge workers are interviewed and expert knowledge and

literature is evaluated. In addition, the different tasks, which have to be completed in

order to achieve the goal of the KiP, are documented and integrated. Furthermore, it has

to be analyzed and documented how the different knowledge workers communicate with

each other.

8

2.3 proCollab

Template Design Phase: Based on the collected information, a process template (PT)

may be defined for the corresponding KiP (see Section 2.3.2). A PT comprises the

coordination artifacts likely used by knowledge workers during KiP enactment. Since

the main goal of templates is reusability they should be designed as generic as possible

and as specific as required. The created PTs can then be instantiated by the knowledge

workers at collaboration run time.

Collaboration Run Time Phase: To initiate KiP guidance, knowledge workers may

create a process instance (PI). Such a PI may be created using a suitable PT or it

is created without any template. The PI then determines the guidance offered by the

approach to the knowledge workers involved in a specific KiP instance. Because KiPs

are emerging and dynamic, knowledge workers may continuously adjust PIs to achieve

their goal and to synchronize each other more effectively according to the given situation.

Records Evaluation Phase: Completed PIs can be seen as a valuable resource of

knowledge. On the one hand, knowledge workers involved in a PI may make use of

insights gained from comparable process records (i.e., archived PIs). On the other

hand, process records can be used to systematically examine how knowledge workers

collaborate in the context of KiPs and how they accomplish their task. The results of

such examinations can then be used to optimize existing PTs to better support future

KiPs.

2.3.2 proCollab Components

The proCollab approach uses a meta-model comprising processes, task trees, and

tasks (see Figure 2.3). Task trees are used to support the task lists commonly used

by knowledge workers. Each process may contain multiple task trees containing the

tasks required to achieve the goal of the process. In addition, each task tree may

contain sub-task trees to refine parts of the task tree. The processes, in turn, may also

contain subordinated processes in order to address sub-goals or to structure complex

KiPs. To enable lifecycle-based task management processes, processes, task trees and

tasks are refined by process instances, task tree instances and task instances. The

instances may be generally created from scratch or they are derived from templates,

9

2 Fundamentals

i.e., process templates, task tree templates and task templates. The use of templates

allows knowledge workers to better optimize processes as the process templates can be

periodically updated with the knowledge gained in previous KiPs. To support domain-

specific requirements, all proCollab key components expose a current state based on

a flexible state management concept. This enables these key components to be as

specific as needed [MR17c].

Task Tree Templates
with Task Templates

0-n

0-1

0-1

0-n

0-n

1-n 1-n

1-n

0-n 0-n

0-n

1-n

0-n

0-n 0-n

0-n

Subordinated
Process Templates

Subordinated
Process Instances

Process
Templates

B

Sub-Task Tree
Templates with
Task Templates

2

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

1 B

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Task Tree Instances
with Task Instances

Process
Instances

Sub-Task Tree
Instances with
Task Instances

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task TreeTask Tree

Root

B1 B2

Root

A B

A1 A2 B1 B2

Task TreeTask Tree
Root

A B

A1 A2 Root

B1 B2

Instantiation

Optimization

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Process

Plan

Do

Study

Act

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree
Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Root

A B

A1 A2 B1 B2

Task Tree

Figure 2.3: proCollab Key Components [MR17c]

In the following, the proCollab key components are presented in more detail to establish

a framework for entities, representing KiPs.

Processes

Processes represent the collaboration in projects, cases or temporary endeavors.

Processes can be arbitrarily nested but are always aimed at achieving one goal.

Processes contain conditions, linked resources, and organizational assignments (e.g.

roles and corresponding rights) which are needed to achieve the pre-defined goal of the

process. Every process may link to an arbitrary number of task trees.

10

2.3 proCollab

Task Trees

To provide task list support, proCollab uses tasks and task trees, in the following called

task tree elements. Task trees are generic data structures that can be used to constitute

any task list, such as checklists (e.g., for quality assurance) or to-do lists (e.g., to expedite

a process). Task trees have a recommended order in which they should be processed.

This order, however, is not set in stone and can be altered if need be. Moreover, task

trees allow knowledge workers to iteratively specialize tasks by defining more detailed

sub-tasks. These sub-tasks are supposed to be accomplished in order to finally complete

the parental task.

Tasks

Tasks always feature a work description and a current state. Each task can additionally

reference necessary resources for its completion.

Templates

proCollab templates may be used to accelerate the planning and coordination of new or

changed processes. Templates can be instantiated to create a new instance with all the

linked task trees, tasks and sub-processes defined in the template. In general, proCollab

features process, task tree and task templates.

Process Template (PT): When starting a new process, knowledge workers may look

for pre-defined process templates that fit their current goal. A PT comprises pre-defined

roles with corresponding rights, conditions (e.g. relative due dates), linked resources

and linked task tree templates. Using PTs enables knowledge workers to save time,

when creating a new process instance.

Task Tree Template (TTT): Task tree templates consist of task templates and subordinated

task tree templates. They constitute best practices for planning or quality assurance.

If a PT contains TTTs, they will be automatically instantiated as soon as the PT is

11

2 Fundamentals

instantiated. Alternatively, a TTT can also be instantiated in the context of an existing

process instance.

Task Template (TT): TTs are used in one or more TTTs. They may comprise several

predefined conditions (e.g., duration, assignments, or connected resources).

Instances

In proCollab, knowledge workers shall collaborate based on instances. proCollab

provides process instances, task tree instances and task instances. They can either be

created from scratch or instantiated using an existing template.

Process Instance (PI): Process instances represent running projects, cases or loose

collaborations. They may contain several subordinate process instances. They can be

created by instantiating a process template or from scratch. If the process instance

is instantiated the linked task tree templates, task templates and subordinate process

instances will also be instantiated. A process instance comprises a start date, an end

date, assigned goals and linked resources.

Task Tree Instance (TTI): Task tree instances represent task trees, e.g., to-do lists or

checklists. They can be created through the instantiation of a template or from scratch.

Task tree instances comprise task instances and subordinate task tree instances. Every

task tree instance is either linked to a process instance or embedded in another task

tree instance.

Task Instance (TI) Task instances may be added to task tree instances. They can be

created through the instantiation of a task template or from scratch. After creation, they

expose a state that can be changed depending on the progress of the associated work

task.

2.3.3 Workspaces

The different proCollab components are linked to either a workspace or a template

repository (see Section 2.3.4). Thereby, allowing different workspaces to be used to

12

2.3 proCollab

separate different domain form one another. This allows for proCollab to be used in

different domains at once. For example in a healthcare setting, one workspace could be

used for patient care, while another one is used for research projects.

2.3.4 Template Repository

proCollab provides a template repository, enabling knowledge workers to share templates

across multiple workspaces, in order to provide templates that follow best practices. The

templates provided by the template repository may be imported into a workspace to

apply changes and to share it with other knowledge workers.

2.3.5 Configuration Management

To make task tree templates reusable in different contexts and to decrease the effort

required to build up a task tree template, configuration support is needed. A configuration

support enables knowledge workers to use generic TTTs that more fine-grained TTTs can

be integrated into, in order to create the overall TTT matching the present requirements.

Thereby, TTTs can be designed in a reusable and modular way, minimizing the efforts

needed for creating a TTT for a specific situation, significantly [MR17a]. This approach

is implemented in proCollab using configuration parameters, contextual situations and

configuration specifications, which are described in the following.

Configuration Parameters: A configuration parameter consists of a name, a type (e.g.,

string or Boolean) and a default value. Configuration parameters are used in regular

expressions that are part of contextual situations (see below).

Contextual Situations: Contextual situations can be used to adjust process templates

to specific situations, for example, a process template supporting a surgery can be

adjusted to support an emergency surgery by providing additional tasks or omitting

them. Contextual situations are triggered by regular expressions using configuration

parameters (see Section 2.3.5). These regular expressions are applied to parameters,

which are provided when a PT containing a contextual situation is being instantiated.

13

2 Fundamentals

Configuration Specifications: A configuration Specification contains a map data

structure that lists all the TTTs and TTs belonging to a contextual situation. This

map also provides information regarding into which task tree and at what position each

TTT and TT should be injected.

2.3.6 State Management

proCollab aims to support a wide range of KiPs along with their individual methodologies

(see Section 2.3.2). For this purpose, proCollab incorporates a generic and flexible state

management concept that is able to support different, specialized states. In particular,

the proCollab state management employs reference state models, state models, and

state model instances (see Figure 2.4). The stateful key components comprise PTs, PIs,

TTTs, TTIs, TTs, and TIs (see Section 2.3.2).

Stateful proCollab
Component

State Model Instance

Task Tree
Template

Process
Instance

Process
Template

Task
Template

Reference State Model
Task Tree
Instance

Task
Instance

State 1 State 2

State 3

State 1 State 2

State 3

State Model
State 2 State 2.1

State 2.2

State 2.1

State 2.2

State 2.1

State 2.2

State 2 State 2.1

State 2.2

11

1

0..n

1

0..n

1

0..n

0..n

0..n

0..n

0..n

Currently Active States: <State 2.1, State 2>

Figure 2.4: proCollab State Management Entities [MR17c]

Reference state models declare the states and state transitions that entities of a

particular type share. For example, all PTs share the states "Deposited", "Available", and

"Archived". In turn, state models may refine any given reference state model to meet

domain-specific requirements. For example, the knowledge workers of the application

case (see Section 2.2, may want to employ the Scrum procedure [Sch04], to develop the

website. The sprints of Scrum are a variation of the PDSA cycle [Bus12] and, therefore,

14

2.3 proCollab

the key phases of this PDSA cycle may be refined to match the specific requirements.

Finally, every proCollab component references a state model instance that is relying on

a pre-selected state model [MR17c].

Reference State Models

A reference state model contains a state transition graph, a set of refinable states and a

scope. The reference state models for the proCollab components introduced in Section

2.3.2 can be seen in Figure 2.5. In general, every state transition graph consists of

states and transitions. The latter define the states that can be reached from any given

state. The state transition graph also denotes a start state, one or more final states as

well as a scope to define for which proCollab components it may be used. For example,

a reference state model with the scope "Process Instance" constitutes the basis for

all state models of process instances. To support domain-specific requirements, the

reference state model may expose states that can be further refined using state models.

State Models

ProCollab provides state models enabling users to map the different work phases to

different states. State models are linked to reference state models and inherit the scope

of the corresponding reference state model. Figure 2.6 shows an example of a state

model that refines the refinable state "Running" of the reference state model discussed

in Section 2.3.6.

State Model Instances

State model instances are used to make proCollab components stateful. Every state

model instance references a state model and contains a sequence of currently active

states and a constraint named strict. The strict constraint determines whether all refined

states have to be in the completed state before the next outgoing transition can be called.

15

2 Fundamentals

Figure 2.5: Reference State Models [MR17c]

16

2.3 proCollab

Figure 2.6: Individual State Model for proCollab Process Instance [MR17c]

2.3.7 Specialization Types

To enhance the generic data structures of processes, task trees and tasks proCollab

employs specialization types (see Figure 2.7). Consequently, the most common types

are process types, task tree types and task types. For example, the application case

is using the process type project to specialize the process templates and instances.

Projects contain to-do lists and checklists, which both are specialized task tree types.

To-do items and check items in turn are the specialized task types.

Stateful proCollab Component

Task Tree Template

Process InstanceProcess Template

Task Template

Task Tree Instance

Task Instance

Specialization Type

Process Type Task Type

Task Tree Type

0..n

1

Domain Specialization Type
0..n 0..1

State ModelState Model Instance
1

1

10..n
1..n

0..n

1

0..n

1

1..n

0..n

0..n

1

0..n

Figure 2.7: Specialization Entities [MR17c]

17

2 Fundamentals

To support a wide variety of use cases, every specialization type may reference a set of

state models that can be used when creating templates and instances.

Furthermore, every specialization type exposes a temporal perspective to support

knowledge workers according to the PDSA cycle (see Section 2.3.2). The temporal

perspective determines whether a proCollab component is supposed to be used for

planning (prospective temporal perspective), checking (retrospective temporal perspective)

or if it is a hybrid for both planning and checking (hybrid temporal perspective). For

example, in the application case the to-do lists expose the prospective temporal perspective

as they are used for planning whereas the checklists expose the retrospective temporal

perspective as they are used for quality assurance.

2.3.8 Object-specific Role-based Access Control

To provide access control, proCollab incorporates a powerful role and permissions model,

based on the concept of object-specific role-based access control (ORAC) [MR17d].

ORAC enables the close integration of access control with the given object model as

well as the support of roles in a fine-grained, object-specific way. It comprises the

components guarded objects, privileges, object-aware roles, organizational entities,

agents and object aware role assignments (see Figure 2.8). Guarded objects are objects

that are protected by ORAC, i.e., an agent can only manipulate data if he was granted

access to this action by ORAC. Organizational entities allow to model the organizational

context of agents, i.e. they are made up of organizational units (e.g., HR department),

organizational roles (e.g., director), and abilities (e.g., office skills). These organizational

units can be nested to model the structure of an organization. The organizational role

may then be used to indirectly assign privileges the users with that role.

Object-aware role assignments are used to tie together the different components

comprising ORAC, namely agents, object-aware roles and guarded objects. Every object-

aware role contains a key scope and optionally a number of additional scopes. The

scopes are used to assign privileges regarding different object types to the object roles

and allow the creation of object-aware role assignments. These privileges determine

which actions can be performed on a guarded object and in which context the privileges

18

2.3 proCollab

are applicable. To allow for a hierarchical application of privileges an object-aware

role may reference a set of hierarchical privileges for every scope. Furthermore, a

set of entity-related privileges may be referenced to provide a rich modeling of object-

aware roles. In the application case ORAC can also be applied to provide role-based

Object-aware
Role

Object-aware
Role

AgentsAgents

Organizational Units

Organizational Roles

Abilities

Object-aware
Role Assignment

Object-aware
Role

Guarded
Object Instance

AbilitiesAbility

Organizational RolesOrganizational Role

Organizational UnitsOrganizational Unit

Object-aware
Role Assignment
Object-aware

Role Assignment

keyScope addScopeaddScope

PermissionPermissionPrivilegePermissionPermissionPrivilege PermissionPermissionPrivilege

Guarded
Object Instance

Guarded
Object Instance

Guarded
Object Instance

Guarded Object
(of Type B)

Guarded
Object Instance

Guarded
Object Instance

Guarded Object
(of Type C)

...

... ...

keyScope
Guarded Object

(of Type A)

addScope

addScope

Regarding Guarded
Object Type A

Regarding Guarded
Object Type B

Regarding Guarded
Object Type C

Regarding Guarded
Object Type N

Agent

...

Figure 2.8: Overview of Object-Specific Role-Based Access Control [MR17d]

access control. First, the key scope of the object-aware role Website Developer would

target the process instance Website Development Process. The key scope is linked

to the various privileges needed to update the development process as well as to the

hierarchical privileges to manage child (guarded) objects (i.e., to-do lists, checklists and

sub-processes). As a result, an agent, who is assigned to the object-aware role Website

Developer and a Website Development Process guarded object, may manage all child

Website Development Process objects, needed to accomplish the goal.

19

3
Requirements

This chapter discusses the different requirements that the proCollab client needs to fulfill

in order to holistically support knowledge workers and their KiPs. Previously conducted

research, at Ulm University, included several case studies, primarily in healthcare

(e.g., ward rounds and patient treatment) and in the automotive domain (e.g., E/E

engineering) [LR07] [MKR12][Pry+14][TRH13]. As a result, a set of key requirements,

for the systematically support KiPs was derived [MR14]. Based on these requirements

and the guiding principles for web usability (see [Kru14]) a set of requirements has

been derived for the web client. Furthermore, the current state of the proCollab proof-

of-concept prototype is discussed to assess which requirements can already be met

with the proCollab client in its current state. Finally, comparable tools and systems are

discussed to gain information how others have addressed similar challenges.

3.1 Functional Requirements

Functional requirements are defined as statements of services the system should provide,

how the system should react to particular inputs, and how the system should behave in

particular situations [Som10]. The following sections discuss the functional requirements

that apply to the proCollab client.

FR1: Support of Processes

proCollab uses processes to holistically support knowledge workers and their KiPs (see

Section 2.3.2). Therefore, the client needs to enable knowledge workers to browse,

21

3 Requirements

update, and delete existing processes. Furthermore, functionality to create or instantiate

new processes is needed.

FR2: Support of the Task-centric proCollab Approach

Knowledge workers rely on task lists as central entities for planning and performing their

work (see Section 2.3). Since, KiPs are unpredictable and emergent (see Section 2.1),

knowledge workers must be able to create and continuously update tasks tree elements.

Therefore, functionality is needed to create, edit, update, and delete them.

FR3: Advanced Task Tree Management

In addition to FR2, knowledge workers should also be able to move task tree elements

within a task tree and even between different task trees.

FR4: Support of Stateful proCollab Components

To support the stateful components provided by proCollab (see Section 2.3.6), a user

should always be aware of the current state of stateful components. Furthermore, the

user should know what states the stateful entity can obtain and how he gets to a desired

state. For this purpose, the proCollab client needs to provide a way to display the

different states and state transitions.

FR5: Dedicated Task Tree Views

To allow knowledge workers to focus on specific task trees dedicated views are needed

to manage the different task tree types (e.g., to-do lists and checklists). These views

should enable the user to assess and to update task trees of any kind (see FR2, FR3).

22

3.1 Functional Requirements

FR6: Template Support

To better support knowledge workers while creating new processes or task tree elements,

an appropriate template support is needed (see Section 2.3.2). This includes dedicated

views to manage existing templates (i.e., to browse, update, and delete them) as well

as a view to create new ones. Finally, knowledge workers need the ability to instantiate

templates (see also FR9).

FR7: Template Repository

Knowledge workers should be able to share templates, following best practices, across

workspaces (see Section 2.3.4). Therefore, a template repository should be provided, to

host such templates. In addition, the client should allow importing the templates, from

the template repository, into the different workspaces.

FR8: Situation-Specific Task Tree Configuration

In specific situations (e.g., a case of emergency) only selected parts of a task tree may

be needed or additional task tree elements shall be included. To avoid having to create

a template for every situation, situation-specific task trees should be implemented (see

Section 2.3.5), thereby increasing efficiency and usefulness.

FR9: Configuration Management

To fully support FR8, knowledge workers must be also able to manage existing task

tree configurations. Therefore, a view is needed to enable users to browse, update and

delete existing task tree configurations. Furthermore, users must be able to create new

task tree configurations.

23

3 Requirements

FR10: Configuration Simulation

Knowledge workers should be able to preview situation-specific task trees before they

are instantiated (see FR11). As a result, a view is needed to simulate situation-specific

task trees. This view should display the task tree elements that an instantiated situation-

specific task tree will comprise.

FR11: Configuration Instantiation

In order to instantiate situation-specific task trees a view is needed, enabling knowledge

workers to select which task tree configuration they want to instantiate. This view may

be used to enter applicable parameters to select the appropriate task tree configuration.

FR12: Adaptive, Role-Based User Interfaces

Knowledge workers using the proCollab client may obtain different roles with varying

permissions and duties (see Section 2.3.8). Hence, the user interface should adapt to

the current role and its permissions. As a result, the navigation structure and other views

should be adjusted to only display accessible features. Thereby, errors due to insufficient

permissions can be avoided.

FR13: Adaptive Navigation

To increase learnability and efficiency of the navigation menu, it is important not to

overwhelm the user with information. This can be done through changing the content of

the navigation menu according to the context in which it is displayed. For example, a

view displaying a workspace overview should provide a different navigation menu, than

a view displaying a process. Thus, enabling access to context specific views.

24

3.1 Functional Requirements

FR14: Navigation Awareness

A user should always know where in the client he is and what he can do there. In

particular, this includes, informing the user about what view he is currently looking at

and the path from the initial view of the client to this view. Thereby, the context of the

current page can be quickly established. Additionally, the displayed path should enable

him to easily switch to previously viewed pages.

FR15: Support the Sharing of URLs

To improve collaboration, knowledge workers should be able to easily share URLs

pointing to specific views of the proCollab client. Thus, a link should include all essential

information needed to display any given view. For example, the information needed for

navigation awareness or context-specific views.

FR16: Switching Roles (Manually/Automatically)

By default, in proCollab, the user should always operate with the least privileged role

possible. Switching to the least privileged role should be performed automatically. This

ensures that knowledge workers can focus on the task at hand. To perform administrative

duties, users should be able to switch their roles manually. This helps to separate

administrative actions from normal use as well as improve the data quality of process

records.

FR:17 Role Management

To support the role-based proCollab approach (see FR16), privileged users have to be

able to manage and to assign the different roles. This requires a user interface that

presents the different roles and allows users to create new roles. Moreover, views are

needed to update and delete existing roles. Finally, users need the ability to assign

privileges to the different roles (see FR19).

25

3 Requirements

FR18: Privilege Management

To manage the many different privileges assignable to a role, a view is needed, that

allows filtering the privileges according to their context. This view should also enable

the user to see at once, which privileges are available and which have been already

assigned.

FR19: Adding Role Assignments

To make use of the available roles, it has to be possible to assign these roles to different

users. Therefore, a user interface is needed, that allows assigning existing roles to the

users based on ORAC (see Section 2.3.8).

FR20: Organizational Model Support

To allow proCollab to model organizational structures, a view is needed that displays the

organizational structure. Additionally, functionality to update the organizational structure

as well as to add and remove organizational roles is needed.

FR21: Authorization

To ensure privacy and accountability, only authorized users should have access to the

proCollab client. To achieve this, knowledge workers can be assigned to different roles

with varying permissions. Based on these roles the access to different entities (e.g., of

PTs and PIs) can be defined.

FR22: User Registration

In order to properly implement authorization (see FR21), a new user should be able to

create new accounts through filling out a respective application. System administrators,

in turn, should be able to accept or reject those applications.

26

3.2 Non-Functional Requirements

FR23: User Management

If, for example, a user is unable to register himself with the system (see FR22),

administrators should be able to manually create new accounts, to ensure access

to the system.

FR24: Password Recovery

If a user has lost his password, he should be able to recover his account. In particular,

without the need to involve an administrator, thus supporting scalability. Therefore, a

view providing a simple account recovery is needed.

FR25: Mobility

To increase user commitment, mobile access is needed, as knowledge workers may

work from different locations, and on different devices.

FR26: Events

To increase awareness of knowledge workers, the proCollab server emits information

about occurring events (e.g., the arrival of work results). The client view should use

these events to keep the user interface always up to date.

3.2 Non-Functional Requirements

Non-functional requirements are defined as constraints on the services or functions

offered by the system. They include timing constraints, constraints on the development

process, and constraints imposed by standards [Som10].

This section discusses the non-functional requirements that apply to the proCollab client.

27

3 Requirements

NFR1: Maintainability

The code should be, well organized and documented to enable easy maintenance. For

example, this means to adhere to common best practices. For example, the style guides

set forth by the angular team [Ang17c]. Furthermore, the project should be organized in

a modular way, allowing for easy reuse and replacement of the different components.

NFR2: Performance

It is crucial for user acceptance that waiting times are kept at a minimum. Thus, powerful

caching needs to be incorporated in the proCollab web client used to avoid duplicate

requests or stale data.

NFR3: Robustness

The program should be able to recover from errors, including invalid data and unexpected

operating conditions, without inconveniencing the user. This helps to increase the user

acceptance and productivity [CL05].

NFR4: Learnability

To improve learnability, the different menus and inputs of the client should follow

consistent principles and use a consistent layout. In particular, confirmation modal

dialogs and forms should always be designed in the same way.

NFR5: Efficiency

To avoid unnecessary work, changes to the proCollab entities should be visible to the

user instantly. This especially includes updating the view without reloading the client.

Thereby, user acceptance is improved through avoiding unnecessary reloads and errors

when users inadvertently work on data that is not up to date.

28

3.3 Current State

NFR6: Memorability

Memorability can be a big factor in whether people adopt an application for regular use

[Kru14]. Therefore, it is important to create a pleasant user experience, to ensure that

users will continue to use the client.

NFR7: Error Handling

To minimize the negative effects errors may cause, knowledge workers should always

receive clear and succinct messages when an error occurs. The message should include

the reason for the error, how it can be fixed, and what can be done to avoid it in the

future.

3.3 Current State

This section examines which of the requirements discussed in Section 3.1 are already

addressed by the proCollab web client in its current state and which require additional

functionality. To achieve this, the current state of the proCollab web client is analyzed

with the discovered functional and non-functional requirements in mind (see below).

Subsequently, the result of this analysis is discussed (see Section 3.3.2).

3.3.1 Current State Analysis

The proCollab client is a web-based application providing platform independence and

mobile access (see FR25). In its current state the client allows knowledge workers to log

into the system (see FR21). After logging in, a user can view and edit his profile using

a drop-down menu in the upper right corner (see Figure 3.1). The navigation sidebar

always displays the same items regardless of the context in which it is shown.

29

3 Requirements

Workspaces

The topmost entry of the sidebar menu displays the name of the current workspace (see

Section 2.3.3). A click on it leads to a new view displaying all available workspaces. In

this view, the user may select the workspace within which he wants to work. Additionally,

new workspaces can be created and existing ones can be updated or deleted.

Process Assessment

Next, the sidebar menu lists the entries for the different process types (i.e., "Project"

and "Case"). Clicking on these entries leads to a view displaying all available process

instances with the corresponding process type. This view also allows knowledge workers

to create new PIs. Furthermore, existing PIs can be updated and deleted (see FR1). If a

PI is selected using a "Select" button, a new view is shown, presenting all the task trees

and sub-projects the process comprises (see Figure 3.1).

Figure 3.1: Process Instance Overview

In this view new task trees and sub-projects can be added to the PI and existing ones

can be updated or deleted. The task trees are shown in containers, providing more

30

3.3 Current State

information (e.g., its current state and its creator) and the number of tasks each task tree

comprises. To view the task tree, it has to be selected by the user. Then another view is

shown that presents the task tree and its tasks as a hierarchical list (see Figure 3.2).

Figure 3.2: Checklist Overview

This view allows knowledge workers to assess the progress of the task tree (see FR5).

Using the plus button in the upper right corner, new tasks and task trees may be added

to the selected task tree element (denoted with a blue border). Additionally, this view

allows a user to change the states of the different tasks and task trees as well as deleting

and updating them (see FR2, FR4).

After clicking the icon with a blue cogwheel on the right hand side, a modal dialog is

opened showing a graphical representation of the different states and state transitions

(see Figure 3.3).

Working with Templates

The next entries in the sidebar menu (i.e., "Project Templates" and "Case Templates")

allow a user to browse the process templates of the corresponding type (see FR6).

The workflow for working with templates is analogous to working with instances. First

all process templates of the selected type are listed, allowing a user to browse and

31

3 Requirements

Figure 3.3: View of the States and Transitions of a Stateful Entity

manage them. PTs featuring the available state have an "Instantiate" button, enabling

their instantiation. Clicking the "Select" button of a PT leads to a new view, listing all the

task tree templates and sub-process templates the PT comprises. In this view, the user

can manage existing TTTs and PTs as well as create new ones. After the user selected

a task tree template using the "Select" button, another view is displayed. This view

presents the task tree template and its task templates as a hierarchical list. Additionally,

this view may be used by the user to manage the task tree template.

Additional Views

The "Users" entry of the sidebar menu leads to a view listing all the users of the system

in a simple table. This view also allows adding new users to proCollab.

The roles view lists all the available roles and allows the creation of new ones. The

organizational model enables users to represent organizational structures in a hierarchical

tree (see FR26).

Finally, the system settings allow users to create new process, task tree and task types

(see Section 2.3.7), as well as to update and delete existing ones.

32

3.3 Current State

3.3.2 Results of the Current State Analysis

This section provides an overview of the results, discovered in the current state analysis

(see Section 3.3.1).

Functional Requirements

Section 3.3.1, provided an analysis of the current state of the proCollab client. Table 3.2

was created based on this analysis. It shows an overview of the functional requirements

(see Section 3.1) that are already fulfilled (+) or partly fulfilled (-).

Table 3.1

Functional Requirement Fulfilled
FR1 +
FR2 +
FR3
FR4 -
FR5 -
FR6 -
FR7
FR8
FR9

FR10
FR11
FR12
FR13

Functional Requirement Fulfilled
FR14
FR15 -
FR16
FR17 +
FR18
FR19
FR20 -
FR21 +
FR22
FR23 +
FR24
FR25 +
FR26

Table 3.1: Fulfilled Functional Requirements

Non-Functional Requirements

The proCollab web client was developed in a modular way, and with common best

practices in mind. Therefore, it provides good maintainability (see NFR1). Furthermore,

it uses a consistent design across different components, improving learnability (see

NFR4). During the analysis of the current state, it was established that the client already

33

3 Requirements

provides a good overall performance (see NFR2). However, the performance suffered

noticeably when large task trees were loaded. As the proCollab web client is still in

an early development stage, multiple errors occurred. The client recovered from these

errors without problems (see NFR3). However, the errors were not always displayed

using a clear error message, if any at all (see NFR6). Additionally, the memorability of

the client was negatively affected by these errors (see NFR6). The overall efficiency of

the client is acceptable but it still misses some vital features, such as a compact overview

of a process (see NFR5).

Table 3.2 shows an overview of the non-functional requirements (see Section 3.2) that

are already fulfilled (+) or partly fulfilled (-).

Non-Functional Requirement Fulfilled
NFR1 +
NFR2 -
NFR3 +
NFR4 -
NFR5 -
NFR6
NFR7

Table 3.2: Fulfilled Non-Functional Requirements

3.4 Comparable Tools and Systems

There are many tools that strive to support knowledge workers on the base of a task list.

In this section, three of these tools will be more closely examined and discussed.

3.4.1 Basecamp

The first tool that is being examined is Basecamp [Bas17]. Basecamp aims to support

KiPs by providing a centralized platform to manage task lists, data, and documents. KiPs

are organized in projects which comprise a group chat (called campfire), a message

board, to-do lists associated with the project, a calendar for scheduling, and linked

34

3.4 Comparable Tools and Systems

documents and files. A circular progress bar shows the progress of the project, which

is tracked by using to-do lists. The individual to-do list entries have a state (open or

checked off) and optionally a start and finish date. Furthermore, it is also possible to

assign to-do list entries to specific users and attach associated files to the to-do list

entries (see Figure 3.4). Knowledge workers may cooperate in teams, however there

is no support for a role based approach similar to the one discussed in Section 2.3.8.

Basecamp also does not offer the ability to create templates for different use cases.

Figure 3.4: Basecamp To-do List Overview

To keep its users up to date, Basecamp offers a dedicated view that shows all conducted

changes. Additionally, Basecamp offers to send a daily e-mail, containing the latest

activities, to the user (see Figure 3.5).

3.4.2 active.collab

The next tool that was examined is active.collab [Act17]. KiPs are organized in projects

which comprise task lists, discussions related to the KiP, linked files and notes. Task

35

3 Requirements

Figure 3.5: Basecamp Latest Activities

lists are used to track progress and guide projects. Tasks feature the states open and

completed and can be assigned to specific users. A progress bar shows the current

state of the project by tracking how many tasks have been completed and how many are

still open. It is also possible to provide further information such as labels, due dates and,

priority (see Figure 3.6).

Users of active.collab can have one of the three roles: leader, member or client. Leaders

have the ability to manage projects, members can create add and manage task lists in a

project and clients can only view task lists and comment on them. To allow for an easier

creation of recurring tasks, active.collab provides the ability to create templates that can

be used to create new projects with predefined task-lists and files.

The activity view can be used to get an overview of the last activities in the project to

retrieve a quick impression of its current state (see Figure 3.7).

36

3.4 Comparable Tools and Systems

Figure 3.6: active.collab Task List View

Figure 3.7: active.collab Latest Activities

37

3 Requirements

3.4.3 Flow

The last tool that was examined is Flow [Flo17]. Flow uses projects to organize KiPs

and progress is tracked and guided using task lists. Tasks comprise a name and a state

(open or checked). Optionally tasks can have attached files, sub-tasks and a due date.

Users also can comment on the tasks (see Figure 3.8). Teams are used by Flow to keep

different types of work separate and to group teams together. Flow does not support

the use of templates to create projects with predefined tasks, although it is possible to

duplicate existing projects.

Figure 3.8: Project Overview in Flow

Flow offers a so called Catch Up view to keep users up to date on projects by showing

them recent changes and suggesting tasks that can be worked on next (see Figure 3.9).

38

3.4 Comparable Tools and Systems

Figure 3.9: Catch Up View of Flow

39

4
Concept

In this chapter, different concepts addressing the requirements specified in Chapter 3

are discussed. The subsequent Chapter 5 focuses on how selected concepts have been

implemented. Flow charts are used to illustrate selected procedures using the notation

introduced in Figure 4.1.

Processing
Step

Conditional
Branch

Icon

Conditional
Branch

Processing Step

Actor

End

Start

Marks a
Branching in the
Control Flow Due

to a Decision

Determins the
Processing Order

A User Interacting
With the System

Ends a Process

Starts a Process

Label Description

Figure 4.1: Notation Used in the Flow Charts

41

4 Concept

4.1 Navigation Structure

To provide an adaptive navigation for the proCollab web client (see FR13), a concept

comprising different navigation menus has to be developed. Based on a thorough

analysis, a concept for an adaptive navigation structure was created. Figure 4.2 provides

an overview of its different navigation menus and when they are displayed. The different

arrows show which menu item has to be selected to reach the subsequent navigation

menus. In the following, each menu item is discussed to provide an overview of the

navigation structure. For the discussion, the numbers to the right of the items in Figure

4.2 are used.

Figure 4.2: Overview of the Navigation Menus and their Interrelationship

4.2 Workspace

1. At the top of the navigation, there is always a label informing the user about the

context, in which he is currently working.

2. The overview can be used to let knowledge workers know about the latest activities

of their co-workers as well as the progress of the different processes.

42

4.2 Workspace

3. In the view for process instances or process templates view, all the different

process instances or templates are listed, allowing knowledge workers to browse

and manage them (see Section 4.2.2).

4. The task tree view provides an easy way to manage the different task trees (see

Section 4.2.4).

5. In the role view, all the available roles are listed. Knowledge workers may update

or delete them as well as they may add new ones (see Section 4.4.1).

6. The organizational model view provides an overview of the organizations and the

different organizational roles (see Section 4.2.7).

7. The process properties view allows knowledge workers to get a quick overview of

the different properties of a process as well as the ability to update them.

8. The sub-processes view lists all the sub-processes of a process (see Section

4.2.2).

9. The data and documents view presents all the data and documents related to the

currently selected process.

10. The users view provides a list of all the users assigned to the selected process.

11. The state models view provides an overview of all the state models connected to

the selected process.

12. The workspaces view lists all the available workspaces.

13. View applicants displays all the applicants (i.e., users who submitted a registration

form) to the proCollab system, and allows for approving or rejecting their applications

(see Section 4.4.2).

14. The specialization types view allows knowledge workers to create new process,

task tree and task types.

The menu entries at the bottom of the navigation are used to let knowledge workers

change into the template repository or system settings view, or to return to the current

workspace.

43

4 Concept

(a)

(b)

(c)

Figure 4.3: Breadcrumbs and Alternative Approaches to Deal with Insufficient Space

4.2.1 Breadcrumbs Trail

To provide the user with a clear sense of where he is in the client and to allow him to

quickly jump back to previously visited views, a breadcrumbs trail can be used (see

Figure 4.3a). However, as more breadcrumbs are added to the breadcrumbs trail, the

available space become insufficient (shown as the red dotted line). One way to solve this

problem is to replace the labels of the breadcrumbs with ellipsis in order to save space

(see Figure 4.3b). If the user hovers over a breadcrumb, with an ellipsis the content will

be displayed using a tool-tip providing the information hidden. An alternative way to deal

with the problem of insufficient space would be to make it possible for the breadcrumbs

trail to span multiple lines (see Figure 4.3c). This yields the advantage that the entries

information is always visible. However, to display breadcrumbs spanning multiple lines

additional vertical space is needed.

To provide an adaptive navigation (see FR13) breadcrumbs using ellipsis to save space

were chosen. This approach was chosen, because it provides a consistent user interface,

taking up little space.

The workspace navigation menu (see Figure 4.4) allows knowledge workers to quickly

select a process they want to use. Furthermore, it offers access to the process templates

44

4.2 Workspace

and allows for the management of the different roles and organizational models linked to

the workspace.

Workspace Overview

Process Instances

Process Templates

Workspace Task Tree
Templates

Process Instance
Overview Task Tree Instance

Process Template
Overview Task Tree Template

-

Organizational Units
Overview Organizational Unit

Workspace Roles Privileges

Figure 4.4: Overview of the Views Linked to the Workspace Navigation Menu

4.2.2 Process Overview

The process overview will be used for both process instances and process templates.

This reuse ensures a uniform look and feel to the client as well as it promotes learnability.

The goal of the process overview is to give knowledge workers a quick overview of all

the processes linked to the current workspace (see FR1). One way to achieve this is

given by a simple table. Tables have the advantage that information can be presented in

a very condensed form, allowing a large number of processes to be shown at once (see

Figure 4.5).

Alternatively, separate containers could be used for each process. This prevents the

application from appearing too cluttered and helps knowledge workers to gain a quick

45

4 Concept

Figure 4.5: Overview of the Different Processes in a Workspace Using a Table

overview. However, this approach needs more space to display the individual processes.

Therefore, compared to the first approach, only a fraction of the processes can be

displayed at once (see Figure 4.6).

The process overview should also allow knowledge workers to update the different

processes and add new ones (see FR1). This can be achieved by enabling inline

editing after the update button was pressed (see Figure 4.7). This approach increases

learnability by providing a preview of the end result while the user updates the form.

An alternative way would be to open a modal window, which covers the current page

and allows the user to update the selected process.

As KiPs can be found in many different domains, the requirements for the user interface

may differ from one KiP to another. Therefore, an adaptable user interface is needed.

Thus, both approaches for displaying processes should be implemented allowing

knowledge workers to switch views as needed. Because this approach makes inline

editing impractical, updating processes should be done using a modal window.

46

4.2 Workspace

Figure 4.6: Overview of the Different Processes in a Workspace Using Containers

Figure 4.7: Inline Editing of a Process

47

4 Concept

4.2.3 Process Assessment

After a knowledge worker has chosen the process, he wants to work with (see Section

4.2.2), an overview of this process should be presented to him. The overview should

contain all available information regarding the process in a compact and clear way (see

FR2). In particular, this information should include available sub-processes, the task

trees linked to the process, relevant data and documents, and a feed of recent changes.

To save space, the different task tree types could be displayed using different tabs (see

Figure 4.8).

Figure 4.8: One Option for the Process Overview

The proposed approach grants the task trees to take more space and, thereby, makes

it possible to display more information regarding the different tasks at once. However,

switching between different task tree types could become cumbersome, especially if work

has to be done on more than one task tree type at once. For example, if a to-do list is

used to expedite a process, while a checklist has to be used to provide quality assurance.

In general, this problem could be solved with an approach that presents all the different

task tree types at once. Obviously, this means each task tree has to be displayed using

less space. Nevertheless, it could provide a clearer overview of the current state with

48

4.2 Workspace

all the different task trees involved (see Figure 4.9). In this approach, prospective task

Figure 4.9: Another Option for the Process Overview

trees (e.g. to-do lists) are displayed in the left-hand side column whereas retrospective

tasks (e.g. checklists) are displayed in the right-hand side column. The middle column

is used to display the other relevant data (e.g., the process properties, an event feed,

sub-projects, linked data and documents) using containers with a caption describing

the content. A minus or, respectively, plus button next to the caption allows knowledge

workers to show or hide the containers content.

In addition, the process overview should provide an easy way to add new task trees and

sub-processes to the process. To achieve this, buttons could be added to the bottom of

the respective containers (see Figure 4.8). However, placing the buttons at the bottom

would lead to the need for scrolling to the bottom of the container, each time a new task

tree or sub-process is to be added. To avoid this scrolling, the button could alternatively

be placed next to the caption of the respective containers (see Figure 4.9). After clicking

one of these buttons, a modal window may be presented to the user, containing a form

that allows him to create a new task tree or sub-process, accordingly.

49

4 Concept

The second approach was chosen for implementation (see Figure 4.9), as it allows

knowledge workers to work with multiple task trees of different types concurrently. This

approach yields the additional advantage that the buttons to add new sub-processes

and task trees are always visible, increasing learnability and efficiency.

4.2.4 Management of Task Trees

As shown in Section 4.2.3 proCollab heavily relies on the use of task trees in the shape

of, e.g., to-do lists, to support knowledge workers. Thus, it is crucial to provide a clean

way of displaying all their information, such as their name and current state as well as

the subordinate task trees and tasks they comprise. Furthermore, adding new tasks and

task trees as well as editing them must be possible to support emergent KiPs and to

react to changes (see FR2, FR3).

Displaying Task Trees

As task trees can be used to replace the prevalent task tree lists, a hierarchical list is an

intuitive choice to display the task trees. Figure 4.10 shows three possibilities that were

considered closely in this work. In Figure 4.10a the icons, to the left denotes what type

of entity the user is viewing. For example, it is denoted whether the user is viewing a

to-do list or a to-do list task. On the right-hand side is a context menu, represented by

vertical ellipsis (
...), which offers functionality, such as updating and deleting task tree

elements. Next to the context menu is the state selection that allows the user to quickly

change the state of the task tree element. An icon on the left side exposes the current

state whereas the icon on the right denotes a following state. By clicking the icon on

the right side, a user can switch to the corresponding state. After clicking on the arrow

between the two state icons, the user is presented with a drop-down menu, allowing

him to select states other than the suggested one. The described approach has the

disadvantage that a suggested state is needed for each transition, requiring additional

adjustments for each new state model.

50

4.2 Workspace

(a) (b) (c)

Figure 4.10: Different Task Tree Designs and Approaches for Changing the State of Task
Tree Elements

In Figures 4.10b and 4.10c, in turn, only one icon is used to indicate both the entity type

and the current state. This approach saves space and makes the user interface less

cluttered. Through clicking on the icon, a drop-down menu of all the states, which he

may select next, is presented to the user. The state selection drop-down menu in Figure

4.10b is less cluttered than the one shown in Figure 4.10c, but reaches its limits if a

refined state (see Section 2.3.6) has to be displayed. Then it is not clear whether the

transition is part of the refining state model or not. The drop-down menu shown in Figure

4.10c seeks to eliminate this problem by providing a clearer indication of the current state

and its context. Figure 4.10c also introduces the concept of collapsible task trees and

tasks to help knowledge workers focus on specific tasks. As a consequence of these

considerations, the last approach (see Figure 4.10c) was chosen for implementation.

The chosen approach offers knowledge workers the best overview of a task tree element,

and does not require the presence of a suggested next state.

Adding a New Task Tree or Task

Knowledge workers need the ability to easily and quickly add new task tree elements

to an existing task tree. Buttons can be used to indicate the position at which the new

element shall be inserted (see Figure 4.11). A knowledge worker also has to select what

type of element he wants to add e.g., a to-do list or a to-do list item.

51

4 Concept

(a) (b) (c)

Figure 4.11: Different Approaches to Choosing the New Position of a Task or Task Tree
with the Help of Buttons

This could be done by either providing two radio buttons, allowing knowledge workers to

select the desired type (see Figure 4.11c) or, as an alternative, in a modal window (see

Figure 4.12). Displaying buttons next to the task tree elements has the advantage that a

visual preview of where the new element will be added is provided to the user. However,

a drawback of this approach is that every time an element is selected the whole task tree

has to move to make room to display the relevant buttons. This problem could be solved

through the usage of a context menu on the right side. The latter may then also be used,

to add new task tree elements (see Figure 4.12). Three vertically stacked radio buttons

could be used to represent the different positions at which the new task tree element will

be added. In particular, whether it should be added above, below or inserted into the

selected task tree element.

Figure 4.12: Choosing the Position of a New Task Tree Element Using a Modal

52

4.2 Workspace

(a)
(b)

Figure 4.13: Different Ways to Move a Task

The approach, using a context menu combined with a modal window was chosen to be

implemented, as it provides a more uniform user interface, supporting efficiency and

learnability.

Moving Task Trees or Tasks

Knowledge workers should be able to move task tree elements (see FR3). To accomplish

this, a drag and drop approach could be used (see Figure 4.13a). The latter has the

advantage of instant visual feedback as to where the element is being moved. There is

however the drawback that elements could easily be moved by accident. An alternative

approach would be to use a context menu to provide cut and paste functionality (see

Figure 4.13b). Based on this approach the visual feedback is missing but it is easier to

move tasks and task trees between different task trees, since the source and target task

tree do not have to be on screen at the same time.

The first approach was chosen for implementation because the visual feedback it

provides. However cut and paste functionality would still be useful and may be part of

further implementations in the future.

53

4 Concept

4.2.5 Task Tree Configuration

In specific situations (e.g., a case of emergency) only selected parts of a task tree may

be needed or additional task tree elements shall be included (see FR8, FR11). The

proCollab prototype provides the ability to create and manage task tree configurations

(see Section 2.3.5) to support the configuration of task tree templates before their

instantiation.

To enable knowledge workers to add configuration parameters, a corresponding form

must be provided allowing them to enter the parameters’ name and type. Configuration

parameters are then used in an additional form that allows the user to create a new

contextual situation (see FR9). In this form, the user may enter a name for the contextual

situation and define a regular expression, using the configuration parameters (see Figure

4.14). This regular expression is used when the task tree template is instantiated to

determine which contextual situations to use. An intuitive way to display the individual

configuration parameters would be a list of check boxes, that showing all available

configuration parameters (See Figure 4.15).

A configuration simulation is needed to provide knowledge workers with a preview of

a task tree after a contextual situation has been triggered (see FR10). This preview

can be provided by showing the additional tasks and task trees which were, created by

configuration specifications, grayed out and with a dashed border (see Figure 4.16a).

However, this has the disadvantage that the resulting task tree significantly expands and

thereby, it may become distracting. An alternative option would be to display contextual

situations only if the knowledge worker selected it in the context menu of a task tree (see

Figure 4.16b). Furthermore, the name of the currently shown contextual situation is then

displayed next to the name of the task tree. Additionally, an icon is added, allowing the

knowledge worker to cancel the preview of the contextual situation again. The advantage

of this approach would be that contextual situations are only displayed as a knowledge

worker explicitly requests it. As a result, space can be saved and the user interface is

kept clean. Therefore, the second approach was chosen for the implementation.

54

4.2 Workspace

Add task tree
configuration

parameter

Choose existing
task tree

configuration
parameter

Enter a name and
an expression

Are all fields
valid?

No

Create contextual
situation

Yes

Figure 4.14: Flow Chart for Adding a Contextual Situation

55

4 Concept

Figure 4.15: Adding a New Contextual Situation

(a) (b)

Figure 4.16: Different Ways of Displaying Contextual Situations

56

4.2 Workspace

4.2.6 Task Tree Overview

A dedicated view is required to, allow knowledge workers to work on a specific task tree

(see FR6). A first approach would be to display the selected task tree, together with a

container, to allow updating the selected task tree element (see Figure 4.17). As a result,

task trees can be updated more quickly.

Figure 4.17: One Option for the Task Tree Overview

A second approach would be to display two columns. The first column only displays

task trees and the number of tasks they contain. The second column, displays all the

task tree elements of the currently selected task tree (see Figure 4.18). This approach

allows users to quickly jump from one task tree to another, providing a more efficient

user interface. Consequently, the second approach was chosen for the implementation.

4.2.7 Management of Organizational Units

Organizational units are, like task trees hierarchical. For example, an organization may

be headed by a dean, presiding over multiple departments. These departments, in turn,

57

4 Concept

Figure 4.18: Task Tree Overview Using Two Columns

have department heads, presiding over them. As a result, organizational units can be

displayed in a similar manner as the task trees discussed in Section 4.2.3 (see Figure

4.19). The reuse of design principles aims to establish a coherent user experience and

to improve maintainability. Besides the design, knowledge workers need to be able to

add, edit, and delete organizational units as well as organizational roles (see FR26).

Figure 4.19: Organizational Model Overview

58

4.3 Template Repository

4.3 Template Repository

The template repository navigation menu (see Figure 4.20 enables knowledge workers

to browse the templates available in the template repository (see Section 2.3.4). The

Template Repository Process Template

Task Tree Templates

Process Template
Overview Task Tree Template

-

Figure 4.20: Overview of the Views Linked to the Template Repository Navigation Menu

template repository allows sharing of templates across multiple workspaces in order to

provide templates that follow best practices (see FR7). It should comprise a process

templates overview (see Section 4.2.2), a view to assess process templates (see Section

4.2.3) and a task tree view (see Section 4.2.6). However, the template repository has not

been in the focus of this thesis and, therefore, only basic functionality has been added.

4.4 System Settings

The system settings menu (see Figure 4.21) enables a user to reach various pages to

perform administrative tasks, such as creating and updating state models as well as

managing users and user applicants.

4.4.1 Management of Roles and Privileges

To take advantage of the ORAC approach discussed in Section 2.3.8, a respective user

interface should provide a clear and easy way to add new roles and to link them to the

appropriate privileges to pre-selected roles (see FR17, FR18, FR19).

59

4 Concept

System Settings

-

Workspaces

System Users

User Applicants

System Roles

Reference State Models

Reference State Models

Specialization Types

Privileges

Figure 4.21: Overview of the Views Linked to the System Settings Navigation Menu

60

4.4 System Settings

Therefore, a user interface is required that lists all of the available roles and allows

the creation of new ones. To increase learnability, this user interface can be designed

in a similar fashion to the process overview discussed in section 4.2.2. The current

proCollab web client already supports adding new roles (see Section 3.3). However, it is

not possible to assign any privileges to them. As a consequence, a new user interface is

needed displaying all the existing privileges in a clear and concise way. Therefore, a user

interface with multiple columns was designed, which allows a user to select privileges

based on their properties. The properties are in particular defined by the context, target

type, action type as well as the name of the action protected by ORAC (see Figure 4.22).

Figure 4.22: Assign Privileges to a Pre-Selected Role

4.4.2 User Applicants

Users, who have filled out the registration form to apply for access to proCollab are listed

as user applicants. To allow administrators to accept or reject the user applicants, a user

interface is needed.

One approach would be, to display the user applicants using containers, similar to the

ones used for the process overview (see Section 4.2.2). A accept or reject button can

be used to accept or reject a user application.

A second approach would be to simply list user applicants in a table with an accept and

reject button. This provides system administrators with a simple way to decide whether

a user should have access to proCollab or not.

61

4 Concept

As a table needs less space, than a separate container for each individual user application,

a higher information density can be provided. Consequently, the second approach was

chosen for implementation.

4.4.3 State Model Graph

To better visualize the states and transitions of a state model graph, a graphical

representation is required. To better denote the properties of a state (e.g., whether

it is the initial state or a final state), different styles can be used to display it. As a

Figure 4.23: Displaying a Reference State Model as Graph

consequence, initial states will be displayed using dashed lines, final states will be

displayed using a bold border, and refinable states will be displayed cross-striped. If

a refinable state has been refined, a [+] behind its name indicates the possibility of

viewing the refined state model in a new graph.

States

In order to allow knowledge workers to update state models according to their needs

(see FR5) corresponding, new functionality in the client is needed. To add a new state

to a state model, the user has to provide a name as well as an icon. This could be

accomplished by a simple modal window (see Figure 4.24). To help a user to select a

suitable icon, an icon picker can be provided giving preview of all available icons. As

62

4.4 System Settings

(a) (b)

Figure 4.24: Adding a New State

there are many possible icons, it would help the user to be able to filter them, e.g., using

their names. The user should also be enabled to decide in what color the icon should

be displayed. Since the color, represented by a hex code, is not immediately obvious, a

color picker should allow the user to easily select his desired color. Such an icon and

color picker can be displayed either inline (see Figure 4.24a) or in a pop-up after the user

clicked on the icon he wants to change (see Figure 4.24b). Displaying it inline has the

advantage of being easier to discover. However, the modal window will need more space,

to fit all the elements required for the icon and color picker. Nevertheless, an inline icon

and color picker was chosen as discoverability is an important factor. Furthermore, as

the states are displayed in a graph form, existing states can be deleted through adding

a "Delete State" button as soon as the user selects a state. After confirming his action

based on a confirmation modal dialog (see Section 4.6.1), the state will be deleted.

Adding New Transitions

A user needs the ability to add new transitions and delete old ones from a state transition

graph. Such functionality is not only needed to connect new states to the graph, but also

to edit existing states. A text-based approach, listing all the existing transitions can be

used to accomplish this (see Figure 4.25). Next to each transition, a trashcan can be

displayed to delete the transition. Two select drop-downs can be utilized to select the

63

4 Concept

source and target of a new transition. After clicking the plus button next to the select

drop-downs, the new transition should be added. If a graphical approach was chosen,

new transitions could be added by simply drawing a line between two states (see Figure

4.26). Thereby, providing the user with instant feedback where the transition will be

inserted. Additionally, the existing states and transitions can be displayed to provide an

overview of the state model. Therefore, the graphical approach was selected for the

implementation.

Figure 4.25: Text-Based Approach for Adding and Removing State Transitions

Figure 4.26: Graphical approach for Adding and Removing State Transitions

64

4.5 Account Management

4.5 Account Management

The proCollab web client already allows users to log in and update their profiles. However,

there is no way for a new user to register himself with the system. A password recovery

mechanism should also be provided.

4.5.1 Password Recovery

If a user has forgotten his password, he will need an easy way to recover his account,

without involving any administrator (see FR24). The proCollab server already provides

functionality to send a password recovery e-mail to the e-mail address provided by the

user. This functionality should be used, through the provision of a simple password

recovery form in the web client. This form can be displayed in a modal window, requesting

him to enter his e-mail address. Ensuing an e-mail is sent to him containing a link with

a unique key. The latter enables a user to create a new password for his account (see

Figure 4.27).

4.5.2 Registration

To enable users to request an account for proCollab, a registration process is needed

(see FR22). To register a new account, the user shall be able to enter his data into a form

first. After submitting this form, he should be included in the list of user applicants shown

in the system settings (see Section 4.4.2). Furthermore, he should be informed that his

account will be enabled as soon as his application has been successfully reviewed and

approved (see Figure 4.28). After the successful activation of an account, a user will be

informed with an e-mail about the activation.

65

4 Concept

Request password
reset

Send password
reset e-mail

Confirm password
reset e-mail

Enter new password

Redirect user to the
login view

Figure 4.27: Flow Chart for the Password Recovery Procedure

66

4.5 Account Management

Display registration
form

Enter user data

Are all required
fields valid?

No

Save user data and
redirect to welcome

page

Yes

Figure 4.28: Flow Chart for the Registration Procedure

67

4 Concept

4.6 Cross-Cutting Components

To provide a uniform look and feel for the web client, shared components should have a

consistent layout. The following sections discuss different approaches to display these

cross-cutting components.

4.6.1 Confirmation Modal Dialog for Destructive Actions

As most destructive actions cannot easily be undone, an additional confirmation is

required to avoid their accidental execution. A possibility is the use of a modal dialog

that requests a confirmation, before a destructive action is performed (see Figure 4.29).

Figure 4.29: Confirmation Modal Dialog for Destructive Actions

A second approach would be, to additionally require the user to enter a string (e.g.,

"delete") before the destructive action can be performed (see Figure 4.30). As a result,

the user needs to perform an additional step, giving him more time to reflect on his action.

The first approach was chosen for the implementation, as it provides sufficient protection

from the accidental execution of destructive actions, without causing much inconvenience

to the user.

4.6.2 Role Selection

An important part for the support of process optimization is to know in which role a

knowledge worker wants to perform a specific action. It makes for example, a significant

68

4.6 Cross-Cutting Components

Figure 4.30: Confirmation Modal Dialog for Destructive Actions Requiring Additional
Input

difference when a worker changes the state of a task tree as part of his "normal work"

or if he changes it as part of an administrative duty. By default, knowledge workers

should always operate with the default role for a certain context. For example, the default

role linked to the workspace should be selected, when a knowledge worker adds a new

process template to the workspace. Only after explicitly switching roles, knowledge

workers may perform administrative duties. As a consequence, a place in the user

interface is needed where knowledge workers may view the current role and, if needed,

switch their current role.

A first approach to address this issue would be to include a radio button for each role (see

Figure 4.31) in the navigation bar. This way the knowledge workers are able to quickly

perceive all available roles as well as switch to another role. However, this approach

becomes impractical, for a large number of available roles. As an alternative, a role

Figure 4.31: Displaying the Available Role Using Radio Buttons

selection drop-down menu could be included in the navigation bar. Another approach

would be to include the role select drop-down menu in the navigation bar. This approach

enables knowledge workers to quickly perceive, in which role they are currently acting.

Furthermore, they may switch quickly between different roles without leaving the current

page. The second approach, can display a large number of roles, without problems,

69

4 Concept

while also providing a clean user interface. Therefore, the second approach was selected

for implementation.

Figure 4.32

4.6.3 Caching

The introduction and usage of caching causes additional complexity in the architecture

and logic of an application, but it also provides a much smoother and faster user

experience. In general, some applications omit caching to avoid complexity and increase

maintainability. However, this has the drawback that calls to the servers API may take a

comparable long time if the user is accessing the application, while using a slow internet

connection. A first simple solution is to cache the result of each API call in a map, using

the called function and its parameters as key. The cache can be marked as stale after a

pre-defined time period and the next call of the function will consequently refresh the

cache. This solution has the advantage that it is easy to implement and does not add

much complexity. A more sophisticated approach would be to cache the different entities

using their unique ids. This adds additional complexity, but enhances the performance

as only changed entities are updated. A big disadvantage, however, is that the user may

see stale data, if the data on the server has changed since his cache was updated. To

address this problem as well, a WebSocket can be used to inform the client of changes

on the server (). This information can then be used to mark the pertaining entities in

the cache as stale and to get the latest version from the server. Despite any additional

complexity and implementation effort, this approach was chosen to guarantee fast and

smooth user experience.

70

5
Implementation

This chapter presents selected aspects from the implementation of the previously

discussed concepts in Chapter 4. In Section 5.1, the technologies used by the proCollab

web client are described to provide a general overview. Section 5.2 discusses selected

excerpts from the implementation.

5.1 Technologies

The proCollab web client was developed, based on the Angular 4 framework (see Section

5.1.4) and the typescript programming language (see Section 5.1.6). The proCollab web

client communicates with the proCollab server on the base of a Representational State

Transfer (REST) interface. Furthermore, a WebSocket connection is used to receive

notifications from the server.

5.1.1 Representational State Transfer (REST)

The REST programming paradigm is used for the communication between client and

server in distributed systems [Fie00]. Methods of the Hypertext Transfer Protocol (HTTP)

(e.g., GET and POST) are used by the client to manipulate resources on the server

side. REST supports create, read, update, and delete (CRUD) operations. An important

advantage of REST is that it provides a lightweight solution compared to competing

standards such as Simple Object Access Protocol (SOAP).

71

5 Implementation

5.1.2 WebSocket

The WebSocket protocol provides bidirectional communication between a client and a

server [FM11]. To establish such a connection, only a single TCP connection is needed,

this avoids the overhead of other solutions like HTTP polling [FM11]. WebSockets are

supported by all state of-the-art browsers.

5.1.3 JavaScript Object Notation

JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent

data interchange format. It can represent four primitive types (strings, numbers, Booleans,

and null) and two structured types (objects and arrays) [Cro06]. JSON is human readable

and produces, in comparison to alternative data interchange formats such as XML, a

low overhead.

5.1.4 Angular 4

Angular 4 is a framework for building client applications in HTML and a programming

language, compiled to JavaScript [Ang17a]. Its aim is to provide scalable web applications

that offer good performance. Figure 5.1 shows an overview of the different components

Angular 4 comprises. Angular 4 applications are written by composing HTML templates

with Angular-specific markup. HTML templates are managed by component classes.

The application logic for the component classes is provided by services. Services and

components are organized, in modules. In the following the Angular 4 architecture is

discussed in more detail.

Angular 4 Architecture

Angular 4 uses modules to organize an application into cohesive blocks of functionality

[Ang17b]. Components are used to control the different views through an API of

properties and methods. Angular 4 creates, updates and destroys components as

72

5.1 Technologies

Figure 5.1: Angular 4 Overview [Ang17a]

the user moves through the application. The component’s view is defined using its

companion template. Templates are used by Angular to render the component. The

templates use regular HTML syntax with some Angular specific additions. These

additions are used to transform the Document Object Model (DOM) according to

instructions, provided by directives. Finally, the application logic is realized by services.

The services category encompasses any value, function or feature that an application

needs. This modularity greatly improves the maintainability of Angular 4 applications

because it provides a clear separation of the views and the application logic.

5.1.5 RxJS

Angular 4 includes RxJS, which enables the usage of asynchronous data streams. In

RxJS, asynchronous data streams are represented using observables. Observers can

subscribe to these observables and react to an item or a sequence of items emitted by

the Observable [Rea17].

73

5 Implementation

5.1.6 Typescript

Despite its prevalence, JavaScript remains a rather poor language for developing

and maintaining large applications. This is partly caused by the untyped nature of

JavaScritpt. The primary goal of TypeScript is to give a statically typed experience to

JavaScript development improving development and maintainability [BAT14]. Statically

typed languages, for example, allow a large number of errors to be detected, early in

the development process. In particular, state-of-the-art development tools can check

typescript code for type mismatches.

5.1.7 SASS

Cascading Style Sheets (CSS) are the prevalent way to style web-based applications.

Sass is an extension of CSS that adds useful features to CSS while maintaining full

CSS-compatible syntax [Sas17]. It allows, for example, for the usage of variables, nested

rules, and inline imports. The ability to use variables makes it possible to define the color

scheme for the proCollab web client (see Figure 5.2) centrally thereby, a uniform look

and feel of the application can be well maintained.

Figure 5.2: Color Scheme

5.1.8 Cytoscape.js

Cytosacpe.js provides a fully featured graph library written in pure JavaScript [Cyt17].

Cytoscape.js provides layouts to automatically place the nodes of graphs. Furthermore,

it supports stylesheets to separate presentation from data. It is highly optimized and

compatible with all modern browsers.

74

5.2 Implementation Excerpts

5.2 Implementation Excerpts

This section discusses selected excerpts of the implementation of the concepts introduced

in Chapter 4. For illustrative purposes, screenshots and code excerpts are used to

underline important aspects of the implementation.

5.2.1 Deployment Configurability

Variables, which are used to configure the proCollab web client, are stored in configuration

files. The latter make it easier to change and maintain these variables. Overall, there

are multiple configuration files: one for the base configuration and additional ones to

override variables set in the base configuration. When deploying a new instance of

the proCollab web client, parameters can be provided to select one of the additional

configuration files. This enables the deployment of the application without the need to

make any changes i.e., a client deployed on a server may use a different server address

than a client running locally for development purposes. The base variables are defined

in the base.ts file shown in Listing 5.1.

1 const BaseConfig: EnvConfig = {

2 API: ’http://localhost:8080/procollab/rest/’,

3 SOCKET: ’ws://localhost:8080/procollab/websocket/’,

4 DATE_FORMAT: ’short’, // MM/dd/yyyy HH:mm

5 ICONS: {

6 WORKSPACE: ’fa-th-large’,

7 ...

8 CONFIRM: ’fa-check’,

9 PRIORITY: {

10 HIGH: ’fa-angle-double-up’,

11 MEDIUM: ’’,

12 LOW: ’fa-angle-down’,

13 },

14 TASK_DUE: ’fa-clock-o’

15 },

16 // Time until Task is due (SOON, NOW, OVERDUE) in milliseconds

17 TASK_DUE: {

75

5 Implementation

18 SOON: 259200000,

19 NOW: 86400000,

20 OVERDUE: 0

21 }

22 };

Listing 5.1: Base Variables of the Client Configuration

The base.ts file provides the addresses of the REST API and the WebSocket. Furthermore,

it allows configuring different aspects of the proCollab web client, such as the format

used for displaying dates and the different icons used throughout the client. Additionally,

it is used to determine the intervals any icons are displayed, before a task reaches its

due date.

If the client is built for deployment, the prod.ts configuration file (see Listing 5.2) is used

to override variables defined in the base.ts file to support the servers’ environment for

example, the addresses of the REST API and WebSocket have to be changed.

1 const ProdConfig: EnvConfig = {

2 API: ’https://dev.procollab.dbis.info/api/’,

3 SOCKET: ’wss://dev.procollab.dbis.info/api/websocket/’

4 };

Listing 5.2: Adjusting the Variables for Deployment on a Server

5.2.2 Caching and Updating

To provide a good workflow and increase user acceptance, it is important that the user

is always aware of latest data from the server without long loading times (see Section

4.6.3). To achieve this, services for storing and updating objects from the server have

been implemented. Any component may use these services to get data from the server.

The services, in turn, return RxJS (see Section 5.1.5) observable objects, to which the

components may then subscribe. Once the call to the server has been completed, or

if the result of the call has been already cached, the observable emits the requested

data and the components may process it. To avoid stale data in the cache, a WebSocket

76

5.2 Implementation Excerpts

provided by the server is used. This WebSocket informs the web clients of changes to

objects, through providing their id, information about the kind of change (e.g., whether

the object has been deleted or updated) and contextual entities of the object (e.g., the

process to which a task tree is linked to). The cache service then checks whether the

object is used in any previously created view (i.e., whether its parent object has already

been cached). If that is the case, the service requests the object from the server and

updates the corresponding observable. After the update, all the components that are

subscribed to the observable responsible for the object are informed about the change

and may react accordingly.

The caching implementation makes collaboration easier because all knowledge workers

may instantly see changes to objects, which they are working with. Thereby, the problems

associated with a stale cache can be avoided.

Listing 5.3 shows an example of data emitted by the WebSocket after the state of a

task tree instance has been changed. This data includes the information that the state

model instance with the id 942 has been updated. Furthermore, it contains information

pertaining the context of this update. According to this data, the task tree instance with

the id 842, which is part of a process instance with the id 840 in the workspace with the

id 803, has to be updated. Based on this information, the caching service makes the

appropriate REST calls to update the task tree instance. Subsequently, all subscribers

are provided with the latest version of the task tree instance, which contains the updated

state model instance.

1 guardedEntityClazz:

2 "info.dbis.procollab.system.datamodel.statemgmt.StateModelInstance",

3 guardedEntityId: 942,

4 persistenceLogEventType: "UPDATED",

5 contextualGuardedEntities: [

6 0: [

7 {

8 guardedEntityId: 842,

9 guardedEntityClazz:

10 "class info.dbis.procollab.system.datamodel.TaskTreeInstance"

11 },

12 {

77

5 Implementation

13 guardedEntityId: 840,

14 guardedEntityClazz:

15 "class info.dbis.procollab.system.datamodel.ProcessInstance"

16 },

17 {

18 guardedEntityId: 803,

19 guardedEntityClazz:

20 "class info.dbis.procollab.system.datamodel.Workspace"

21 },

22 {

23 guardedEntityId: 102,

24 guardedEntityClazz:

25 "class info.dbis.procollab.system.datamodel.ProCollabSystem"

26 }

27]

28]

Listing 5.3: An Example of Data Emitted by the WebSocket

Listing 5.4 shows the function that is used to add or update a task tree element in the

cache, using the data provided by a REST call. This function uses a ReplaySubject as

observable. The function takes one variable called item. This variable contains the

updated object that should be added to the cache. The statefulEntityObservables

object contains all the observables used for caching stateful entities. The ids of the

individual entities are used as keys. In Line 2, it is first checked whether an observable

for this id is already defined. If that is not the case, a new observable ReplaySubject

is created for this id. Subsequently, the obsevable emits the updated object using its

next() function. In doing so, all the observers are provided with the updated object.

1 set(item:TaskTreeTemplate | TaskTreeInstance | TaskInstance | TaskTemplate) {

2 if(!this.statefulEntityObservables[item.id]) {

3 this.statefulEntityObservables[item.id] = new ReplaySubject(1);

4 }

5 this.statefulEntityObservables[item.id].next(item);

6 }

7 }

Listing 5.4: Add an Item in the Cache

78

5.2 Implementation Excerpts

To observe an observable provided by the cache, its subscribe() function is used.

Listing 5.5 shows a simplified example for this, where the observable emits a task

instance.

1 taskObservable.subscribe((task: TaskInstance) => {

2 doSomething(task);

3 }

Listing 5.5: Observing an Observable

Each time the taskObservable emits a new value using its next() function, the

doSomething() function is called with the new task object as argument. This can be

used, for example, to keep the view up to date.

5.2.3 Navigation Structure

As discussed in Section 4.1, a dynamic sidebar approach combined with a breadcrumbs

trail was selected as preferred navigation structure. As a result, the user can quickly

perceive where he is looking at in the proCollab web client any given time. The different

views of the sidebar can be seen in Figure 5.3 and follow the structure proposed in

Section 4.1. To provide this functionality, a location service was implemented generating

Figure 5.3: Overview of the Different Navigation Menus

79

5 Implementation

the sidebar and breadcrumbs trail according to the parameters provided by the URL.

Breadcrumbs Trail

Figure 5.4 shows an example of a breadcrumbs trail used in proCollab. This example
uses the URL:

.../workspace/803/templates/processType/202/template/805;process=804

This URL can be read as:

• Workspace: 803 (Main Workspace)

• Process type: 202 (Project Template)

• Process template: 805 (Requirements Engineering)

• Process template: 804 (Website Development)

It has to be noted that the parent processes and parent task trees are added to the end

of the URL using matrix parameters. If there is more than one parent, a - (dash) will be

used as delimiter.

Based on this information, a breadcrumbs trail can be built enabling the user to quickly

jump to any of the views he has likely visited previously. He can also easily share the

URL with his co-workers and they will see the same breadcrumb trail, providing a quick

overview and all parental views.

Figure 5.4: Breadcrumbs Trail

80

5.2 Implementation Excerpts

Adding Ellipsis to the Breadcrumbs Trail

The breadcrumbs trail seen in Figure 5.4 shows the usage of ellipsis to save space.

Listing 5.6 shows the code to determine how many ellipses have to be used in the

breadcrumbs trail.

1 // calculate space left for breadcrumbs

2 let crumbsContainer = all - navLeft - navRight;

3 // get size of each breadcrumb

4 let crumbsSizes:number[] = [];

5 for (let i = 0; i < document.querySelectorAll(’.crumb’).length; i++) {

6 crumbsSizes.push(document.querySelectorAll(’.crumb’)[i].clientWidth);

7 }

8 // size of all breadcrumbs

9 let allCrumbsSize = crumbsSizes.reduce((a, b) => a + b, 0);

10

11 // add ellipsis if needed

12 if(crumbsContainer < allCrumbsSize) {

13 for (let i = 0; i < crumbsSizes.length

14 && crumbsContainer < allCrumbsSize; i++) {

15 this.ellipsisIndex++;

16 allCrumbsSize = (allCrumbsSize - crumbsSizes[i]) + 55;

17 }

18 }

Listing 5.6: Adding Ellipsis to the Breadcrumbs Trail

First, the space available for the breadcrumbs trail is calculated. Subsequently, the

for-loop in Line 5 adds the individual sizes of all the breadcrumbs to an array. Next, all

the values of this array are accumulated, to determine the size of all breadcrumbs in

total. If this size is smaller than the available space, no special procedure is needed. If

the space is insufficient, a for-loop is executed. The size of a breadcrumb containing

an icon and ellipsis is 55px. In the for-loop, this value is used to calculate how many

ellipses have to be added to fit the breadcrumbs trail into the available space. For

this purpose, the length of the breadcrumb at the current index is subtracted from

the combined size of the breadcrumbs trail and 55px are added. Additionally, the

81

5 Implementation

ellipsisIndex is incremented. The ellipsisIndex is then used in the template to

render the breadcrumbs trail with the corresponding number of ellipsis.

5.2.4 Confirmation Modal Dialog for Destructive Actions

Angular 4 fosters the reuse of a component in different views (see Section 5.1.4). An

example for such a reusable component is the confirmation modal dialog, as it is used

in various contexts to make sure a user really wants to perform a given action (e.g.,

deleting a process instance). For better maintainability and a uniform appearance,

this component is used for all confirmation modal dialogs. Listing 5.7 shows how the

confirmation modal dialog can be applied to any view.

1 ...

2

3 <confirmation-modal *ngIf="showConfirmationModal" [modalData]="modalData"

4 (modalClosed)="modalClosed($event)"></confirmation-modal>

5

6 ...

Listing 5.7: Integration of a Confirmation Modal Dialog Into a View

In this example, the showConfirmationModal variable is just a Boolean that is set to

true when the modal dialog should be displayed. Further, modalClosed is an event

emitter that triggers the modalClosed function of the confirmation modal component

as soon as the modal dialog shall be closed. The modalClosed function then sets

showConfirmationModal to false, thus hiding the confirmation modal dialog again.

Finally, modalData comprises the actual data used by the modal component. This data

is provided using a model built for this purpose. The different variables, which this model

contains, are shown in Listing 5.8.

1 /**

2 * color: ’success’ | ’warning’ | ’danger’ | ’info’ | ’primary’ | ’default’;

3 * The color of the modal header and confirmation button

4 * title:string; Title of the modal

5 * text:string; Text of the modal

6 * cancelBtn:string; Text of the cancel button

82

5.2 Implementation Excerpts

7 * confirmBtn:string; Text of the confirmation button

8 * fnc:Funtion; function to be called if confirmBtn is clicked

9 */

10

11 export class ConfirmationModalData {

12 color: ’success’ | ’warning’ | ’danger’ | ’info’ | ’primary’ | ’default’;

13 title:string;

14 text:string;

15 cancelBtn:string;

16 confirmBtn:string;

17 fnc:Function;

18

19 ...

Listing 5.8: Model of the Confirmation Modal Dialog

The color variable controls the color of the modal header and of the confirmation

button. Using typescript (see Section 5.1.6), it can be ensured that only valid strings are

accepted (i.e., success, warning, danger, info, primary or default). The title contains

a string used as the title of the modal dialog. Furthermore, text contains the text, which

the modal dialog shall display. Next, cancelBtn and confirmBtn contain the strings

used as label for the cancel and confirm button, respectively. Finally, fnc contains the

function that shall be called after the user clicks the accept button. Figure 5.5 shows an

example of the confirmation modal dialog asking the user whether he really wants to

delete a process instance.

Figure 5.5: A Confirmation Modal Dialog for Destructive or Important Actions

83

5 Implementation

5.2.5 Process Overview

To give the user an overview of all the PTs and PIs available to him, a process overview

was implemented. As discussed in Section 4.2.2, two different views have been

implemented. One relying on containers (see Figure 5.6) and a second one using

a table to provide an overview of the processes (see Figure 5.7). The view can be

switched by clicking the button in the bottom right corner.

Figure 5.6: Overview of Available Process Instances Using Containers

Figure 5.7: Overview of Available Process Instances Using a Table

84

5.2 Implementation Excerpts

The processes shown in the respective views are updated without the need to reload

the view. This is accomplished by using observables provided by the caching service

(see Section 5.2.2). The process overview also allows knowledge workers to create

new process templates or instances, depending on whether he views process templates

or process instances, respectively. When creating a process instance, it can also be

chosen whether a blank PI should be created or if a PT should be instantiated to speed

up the process creation. It the user chooses the latter, he is redirected to the process

templates overview. The new process instance and template dialogue is realized based

on modal windows for fast and easy access. Updating the processes is also done using

a modal window in which a knowledge worker may make updates and view the state

model graph of the selected process (see Section 5.2.12). If a knowledge worker wants

to work with a process or just view its content, he may press the open button referring

him to the process overview view (see Section 5.2.9).

5.2.6 Task Tree

To provide as much information as possible on the screen, the design of the individual

task tree element views provided by the proCollab web client were made more compact.

Figure 5.8 shows a comparison between the previously used design of task tree elements

(see Figure 5.8a) and the new design (see Figure 5.8b).

(a) (b)

Figure 5.8: Comparison of the Old Task Design and the New One

The current state and type of task tree element is now denoted by an icon only saving

much of space. The due date is no longer displayed directly in the task tree element.

Instead, the user has to hover over the blue information icon to see any details regarding

the task tree element. To warn knowledge workers of task tree elements that are due

any time soon, a clock icon in different colors is displayed. The different times before the

85

5 Implementation

due date at which the icon appears and changes its color, can be configured using the

configuration file discussed in Section 5.2.1. Finally, the priority of a process can also be

displayed using an icon defined in the configuration file.

Figure 5.9 show the different components a task tree comprises:

Figure 5.9: Different Components a TaskTreeViewComponent Comprises

1. TaskTreeViewComponent

2. TaskViewComponent

3. SetStateComponent

4. EditDropdownComponent

5. InformationDropdownComponent

The TaskTreeViewComponent can contain further TaskTreeViewComponents to

display subordinate task trees as well as TaskViewComponents to display tasks. The

TaskViewComponent, in turn, can also contain further TaskViewComponents to

display subordinate tasks. To improve maintainability, TaskTreeViewComponents and

TaskViewComponents share all components they comprise (i.e., SetStateComponent,

EditDropdownComponent, and InformationDropdownComponent). The SetStateComponent

is used to display the current state as well as to change the state. Furthermore, the

InformationDropdownComponent is used to display information regarding the task

tree element (e.g., its due date, priority, or current state). Finally, the EditDropdownComponent

is used to manage the task tree element (see Section 5.2.7).

Listing 5.9 shows an example of a task tree instance object represented in JSON. The

JSON object contains basic information, such as the name of the creator and the name

of the task tree instance. Additionally, the name and the id of the template that the task

86

5.2 Implementation Excerpts

tree instance was derived from, is provided. Furthermore, it contains the two arrays

subTaskTreeIds and taskIds. The subTaskTreeIds array contains the ids of the

subordinate task trees, whereas taskIds contains all the ids of the tasks, which the

task tree comprises. However, these arrays do not provide any information regarding the

order in which the task tree elements need to be displayed. The order is provided by the

individual objects comprised by the taskTreeLists object. More specifically, each of

the individual objects contains an elements array, containing all the ids of the task tree

elements in the order that they shall be displayed. The keys for the individual objects in

the taskTreeLists object are the ids of their parent task tree elements.

1 {

2 "id":842,

3 "version":1,

4 "dateCreated":1506350141000,

5 "dateUpdated":1506350142000,

6 "creatorId":2,

7 "creatorName":"Matthias Gerber",

8 "grantedPrivileges":[...],

9 "name":"Website Development To-Do List",

10 "description":"",

11 "taskTreeTypeId":204,

12 "parentTaskTreeIds":[],

13 "subTaskTreeIds":[],

14 "taskIds":[

15 845,865,848,860,861,844,858,854,864,850,853,856,859,843,852,863,849,

16 846,855,847,862,857,851

17],

18 "taskTreeLists":{

19 "842":{

20 "id":2706,

21 "version":0,

22 "dateCreated":1506350142000,

23 "dateUpdated":1506350142000,

24 "elements":[843,847,863,850,853,846,865,860,852,844,859,856,849,845]

25 },

26 ...

27 },

87

5 Implementation

28 "parentOfTaskTreeLists":{

29 "2706":842,

30 "2707":846,

31 "2708":844

32 },

33 "processInstancesIds":[840],

34 "taskTreeTemplateId":806,

35 "taskTreeTemplateName":"Website Development To-Do List"

36 }

Listing 5.9: JSON Representation of a Task Tree Instance

Listing 5.10 shows an example how different components are used in the TaskTreeViewComponent

template. Additionally, this example shows the use of two core Angular 4 functionalities,

*ngFor and *ngIf. *ngFor allows to iterate over any iterable object (i.e., an array),

while *ngIf can be used for conditional statements. The taskTree variable contains a

TTI (see Listing 5.9) or TTT. The different components are added to the template of the

view through selectors. The SetStateComponent, for example, is included by using

<set-state ...></set-state> in the template.

1 <div>

2 <!-- Expand/Collapse Button -->

3 <div class="btn-toggle" (click)="toggleTree()">

4 ...

5 </div>

6 <div class="set-state-btn">

7 <set-state [item]="taskTree" ...></set-state>

8 </div>

9 <!-- Task Tree Content -->

10 <div class="item-content">

11 <a ...>

12 {{ taskTree?.name }}

13

14 ...

15 <information-dropdown ... ></information-dropdown>

16 <edit-dropdown ...></edit-dropdown>

17 </div>

18 </div>

88

5.2 Implementation Excerpts

19

20 <!-- Insert taks -->

21

22 <task-view [task]="tasks[itemId]" ...></task-view>

23

24 <!-- Insert subTaskTrees -->

25

26 <task-tree-view [taskTree]="taskTrees[itemId]" ...></task-tree-view>

27

28

Listing 5.10: Excerpt of the TaskTreeView Implementation

Context menu

The context menu of each task tree element can be triggered by clicking the vertical

ellipsis on its right-hand side. This opens a drop-down menu with the different actions

available to the knowledge worker to manage the task tree element (see Figure 5.10).

Figure 5.10: Context Menu of a Task Tree Template

In particular, the individual entries allow knowledge workers to:

• Add new tasks or task trees (see Section 5.2.7).

• Edit the task tree element using a modal window.

89

5 Implementation

• Delete the task tree element after confirming the action in a confirmation modal

dialog (see Section 5.2.4).

If a TTT is selected, task tree configurations are additionally managed and displayed

(see Section 5.2.4).

• Contextual Situations: Management of configuration parameters and contextual

situations.

• Configuration Specifications: Listing of all the available configuration specifications.

• Show Configuration: Preview, of different configurations.

5.2.7 Management of Task Trees

To support the task-centric proCollab approach, basic task tree management functionality

such as adding, deleting and updating task tree elements is needed. Additionally, more

advanced features such as the movement of task tree elements are needed to increase

efficiency.

Figure 5.11 shows the modal window used for adding new task tree elements. This

modal window allows knowledge workers to select what type of task tree element they

want to add and provide a name and a description. Furthermore, they may select the

state model that the task tree element should be based on, as well as the position at

which the task tree element should be inserted into the task tree.

Additionally, the functionalities to smoothly move task tree elements was implemented

based on the drag and drop approach discussed in Section 4.2.4. Figure 5.12 shows

an example of a task being moved from one position to another. The task that is to be

moved is shown with less opacity to provide a preview of the final task tree.

5.2.8 Task Tree Configuration

Task Tree Configurations were implemented according to the approach suggested in

Section 4.2.5, enabling knowledge workers to manage, use and preview task tree

configurations.

90

5.2 Implementation Excerpts

Figure 5.11: Adding a New Task Tree or Task

Figure 5.12: Moving a Task Tree Element

91

5 Implementation

Configuration Parameters

Figure 5.13 shows the modal window that was realized to display and manage configuration

parameters and contextual situations. A pencil and trashcan icon next to the individual

entries enables users to update and delete them, respectively.

Figure 5.13: Configuration Parameters and Contextual Situations Modal Window

Through the buttons on the bottom of the modal window, new configuration parameters

and contextual situations can be added. A new contextual situation is created by using a

modal window implemented according to the concept discussed in Section 4.2.5 (see

Figure 5.14). With the modal window, users can define a name, the desired position and

the expression that will trigger the contextual situation.

Configuration Specifications

The configuration specifications modal window (see Figure 5.15) lists all the available task

tree configurations including the name of the task tree elements, which are inserted by

the configuration specifications. Furthermore, this table provides additional information

to the user such as at which position and into which task tree the task tree element will

92

5.2 Implementation Excerpts

Figure 5.14: Adding a Contextual Situation

be inserted. Finally, the modal window also enables the user to remove individual task

tree elements from the configuration specifications.

Show Configuration

Section 4.2.6 discussed the need of previews for the configurations based on contextual

situations. Figure 5.16 shows the workflow for previewing task tree configurations. First,

the menu item "Show Configuration" has to be selected. This opens a modal window

containing a selection element, with all the available contextual situations. After the user

has selected the contextual situation, he wants to preview, the modal window is closed

again and the task tree is updated to display the task tree for the selected contextual

situation. The name of the contextual situation is displayed next to the name of the

task tree. In addition, an icon that allows the user to end the preview of the contextual

situation is shown.

93

5 Implementation

Figure 5.15: Configuration Specification Modal Window

Figure 5.16: Displaying a Contextual Situation

94

5.2 Implementation Excerpts

5.2.9 Process Assessment

The process overview view aims to provide knowledge workers a quick overview of

the current state of a process. Thus, the approach featuring separate columns for

prospective and retrospective tasks was chosen as discussed in Section 4.2.3 (see

Figure 5.17). The column in the middle provides information regarding the process.

At the top of the two task tree columns, buttons allow knowledge workers to add new

task trees to the process. In the middle column, one button is located to let knowledge

workers update the information regarding the current process. Moreover, an additional

button enables the adding of sub-processes. The middle column also contains an

overview of all sub-processes of the selected process.

Figure 5.17: Overview of a Process Instance

5.2.10 Task Tree View

The concept for the task tree view was discussed in Section 4.2.6. The task tree view

first provides knowledge worker a list of all task trees in the left column. A label informs

the user, how many tasks a task tree comprises. The task tree elements of the selected

task tree are shown in the right column in full detail. Additionally, new tasks can be

added by clicking the button at the top, opening the appropriate modal window.

95

5 Implementation

The task tree view allows knowledge workers to focus on a specific task tree as well

as to quickly jump between task trees. Figure 5.18 shows an example of the task tree

view. It was implemented using two TaskTreeViewComponents (see 5.2.6) placed

next to each other. Variables passed to the TaskTreeViewComponents are used to

configure their appearance (i.e., to not display tasks).

Figure 5.18: Task Tree Templates Overview

5.2.11 Assign Privileges

The proColallab web client already allowed the creation of roles in its previous version.

It was, however, not possible to assign privileges to them. In Section 4.4.1, a view

to select and assign privileges was presented and discussed. Figure 5.19 shows the

implementation of this view. The user first has to narrow down the privileges by selecting

the desired context type, target type and action type. He can then select the privileges

using checkboxes and assign them by clicking the green button to the right. An input at

the top of each column allows the user to filter the entries. The filter enables him to find

the desired items more quickly.

96

5.2 Implementation Excerpts

Figure 5.19: Assign Privileges to a Role

5.2.12 State Model Graph

This section discusses the implementation of the concepts for displaying and managing

state models, discussed in Section 4.4.3. All the following state model functionality was

implemented for reference state models as well as refining state models.

Displaying Refined State Models

The proCollab web client already enabled users to view state models using graphs in

the previous version (see Section 5.1.8). However, it lacked the ability to display refined

states. To address this issue, functionality was added allowing users to view the refining

state model by double clicking on the refinable state (see Figure 5.20). Additionally, the

design of the state model graph was changed providing a better way to distinguish the

different properties of a state. For example to denote whether a state is the initial state or

a final state and if the state is refinable. The new design follows the notation introduced

in [MR17c].

Updating a State Model

The state model graph may also be used to update a reference state model (see Figure

5.21). An input at the top of the modal window allows users to change the name of

a state model. Furthermore, an "Add State" button allows users to add a new state

97

5 Implementation

Figure 5.20: Displaying a Refined State Model

(see Section 5.2.12). After a state has been selected, an "Edit State" and a ’Remove

State’ button are displayed, enabling the user to update or delete the selected state. If a

transition is selected these two buttons will be replaced by a single "Delete Transition"

button allowing the user to remove the selected transition. New transitions can be added

by drawing a line between two states. The line is shown as a light green arrow. To save

the changes applied to the state model, the "Update" button in the bottom right needs to

be clicked by the user.

Adding a State

A modal window containing a graph can be used to add a state to a state model (see

Figure 5.22). The user may enter a name for the state as well as select a state type and

an icon. The icon is used to represent the state and can be selected, using a container,

listing all the available icons. An input field on top of the container allows users to filter

the icons based on their names. Additionally, a color picker at the right of the container

may be used to select the desired color for the icon. Three checkboxes can be used to

select whether the state is an initial state, final state or refinable state.

98

5.2 Implementation Excerpts

Figure 5.21: Updating a Reference State Model

Figure 5.22: Adding a New State

99

5 Implementation

5.2.13 Role Selection

In Section 4.6.2, the need for automatic and manual role selection was discussed. The

automatic role selection is implemented using the grantedPrivileges array (see

Listing 5.11). The latter is provided by every guarded object, for example, a workspace

or process instance. The grantedPrivileges array contains objects providing all

applicable roleAssignmentIds. Using these roleAssignmentIds, the corresponding roles

are ascertained. Finally, these roles are compared, to find the role with the least

privileges, which is then automatically selected.

1 grantedPrivileges: [

2 0: {

3 privilegesContextRestrictions:{}

4 privilegesIds: [1024, 1033, ...]

5 privilegesSpecializationRestrictions:{}

6 privilegesStateRestrictions:{}

7 roleAssignmentId:2114

8 roleAssignmentVersion:0

9 },

10 1: { ... },

11 2: { ... }

12]

Listing 5.11: GrantedPrivileges Array

To also provide manual role selection, the available roles are ascertained the same way

as for the automatic role selection. The available roles are then presented to the user via

a drop-down menu (see Figure 5.23). The user may manually switch his role by selecting

one of them. If a role is selected manually, it is denoted by a blue dot next to the currently

selected role. This role stays selected until a guarded entity is selected to which the role

is not assigned. The user can also manually switch back to the automatically selected

role by clicking on the blue dot.

100

5.2 Implementation Excerpts

Figure 5.23: Switching Roles Manually

5.2.14 Role Based User Interface

An entire role-based user interface was implemented for the sidebar navigation. Listing

5.12 shows an example of an entry being added to the sidebar navigation of a workspace.

First, it is checked whether the user has the required privilege to perform the required

action. For example if he wants to view the workspace overview, he needs the privilege

required to get the workspace object from the server. To check whether the user has

the needed privileges the check() function is called with the name of the action (i.e.,

getWorkspace) and the grantedPrivileges array of the current workspace as

parameters (see Listing 5.11).

1 if(this.check(’getWorkspace’, workspace.grantedPrivileges)) {

2 this.addNavItem(’Overview’, ’/dashboard/workspace/’+ workspace.id, ...);

3 }

Listing 5.12: Permission Check

The check() function then evaluates whether the user—in his current role—has the

permission to perform the action and returns true or false, respectively. When the

check() function returned true, the entry is added to the sidebar and when not, it is

omitted. Currently, this approach is only implemented for the sidebar, but the function

can be easily used on comparable views or navigation structures as well.

101

5 Implementation

5.2.15 Registration

To allow the registration of new account the solution discussed in Section 4.5.2 was

implemented.

Administrators may accept or decline applications in the "View Applicants" view. In

this view, all applicants are listed using a table with a button, allowing administrators to

accept or reject the individual applications.

5.2.16 Password Reset

The password reset was realized by using a form in which the user has to enter his e-mail

address. After submitting this form, an e-mail is dispatched from the proCollab server to

this e-mail address containing a URL with an authorization token. This URL points to a

view, enabling him to enter a new password. After he entered a new password, he is

redirected to the login view, where he can log in to the proCollab web client using his

new password.

102

6
Conclusion

Chapter 6 concludes, with a short summary in Section 6.1 and a prospect of future work

in Section 6.2.

6.1 Summary

The focus of this thesis was to study the existing proCollab client and then to systematically

improve it. To accomplish this, the fundamental concepts of the proCollab prototype were

introduced in Chapter 2 and exemplified using an application case. This elucidated the

necessity for a task list-based, collaborative approach to holistically support knowledge

workers and their KiPs.

Subsequently, the requirements for the proCollab web client were collected and discussed

in Chapter 3. Next, the current state of the proCollab web client was analyzed. The

results were used to determine the requirements not yet met by the proCollab web client.

Finally, comparable tools were analyzed to compare and evaluate concepts proposed by

the individual tools.

Chapter 4 provided a discussion of different concepts to implement the requirements

gathered in the previous chapter. The concepts were in particular enriched using

mockups to give a clear picture of possible implementations. While doing so, the

advantages and disadvantages of the different concepts were discussed and the

concepts destined for implementation were selected.

103

6 Conclusion

Chapter 5 first introduced the technologies used for the implementation of the proCollab

client. Subsequently, the implementation of the concepts, selected in the previous

chapter, were described in part using screenshots and code excerpts.

Overall, the implementation, which was conducted in the scope of this work, covers a

wide range of concepts developed for proCollab. In particular, this range comprises, for

example, the sophisticated caching mechanisms, the dynamic, role-based navigation

structures, the advanced task tree as well as the state management. For all these

concepts, comprehensive implementations have been realized and closely integrated

with each other. For illustrative purposes, however, only excerpts of these detailed

implementations could be discussed in this work.

As of today, the proCollab web client now even more provides a feature-rich foundation

for future enhancements and research conducted in the proCollab research project

[MR17b].

6.2 Future Work

In the course of this work, the proCollab web client was enhanced with numerous

important features to improve the support provided to knowledge workers and KiPs.

However, there are still some features missing. For example, it is not yet possible to

link data and documents to the different KiPs. This feature would further enhance the

support provided for KiPs.

It is currently not possible to move task tree elements between processes. This could

be accomplished by providing some sort of cut and paste functionality in addition to the

implemented drag and drop approach.

Another possible enhancement would be the ability to assign tasks to a specific knowledge

worker. This way knowledge workers would be able to better plan out their responsibilities,

thus avoiding duplication of effort.

To support KiPs on an international scale, more languages should be supported. Thus,

the proCollab web client could also be localized to reach a wider audience.

104

6.2 Future Work

To keep knowledge workers better informed, an event feed could be implemented. This

feed could be used to inform them about upcoming deadlines, work done by their

co-workers and other information pertaining their KiPs.

Further, a workspace overview could be implemented showing open processes and their

progress and pending tasks. This could be accomplished by using graphs and diagrams

to provide a pleasant user experience.

The thus enhanced proCollab client could provide another step towards a more complete

support for knowledge workers and KiPs. The future of this research project will show

how well suited the proCollab approach is, to holistically support knowledge workers and

their KiPs.

105

List of Figures

2.1 PDSA Cycle . 7

2.2 KiP Lifecycle [MR14] . 8

2.3 proCollab Key Components [MR17c] . 10

2.4 proCollab State Management Entities [MR17c] 14

2.5 Reference State Models [MR17c] . 16

2.6 Individual State Model for proCollab Process Instance [MR17c] 17

2.7 Specialization Entities [MR17c] . 17

2.8 Overview of Object-Specific Role-Based Access Control [MR17d] 19

3.1 Process Instance Overview . 30

3.2 Checklist Overview . 31

3.3 View of the States and Transitions of a Stateful Entity 32

3.4 Basecamp To-do List Overview . 35

3.5 Basecamp Latest Activities . 36

3.6 active.collab Task List View . 37

3.7 active.collab Latest Activities . 37

3.8 Project Overview in Flow . 38

3.9 Catch Up View of Flow . 39

4.1 Notation Used in the Flow Charts . 41

4.2 Overview of the Navigation Menus and their Interrelationship 42

4.3 Breadcrumbs and Alternative Approaches to Deal with Insufficient Space 44

4.4 Overview of the Views Linked to the Workspace Navigation Menu 45

4.5 Overview of the Different Processes in a Workspace Using a Table 46

4.6 Overview of the Different Processes in a Workspace Using Containers . . 47

4.7 Inline Editing of a Process . 47

4.8 One Option for the Process Overview . 48

4.9 Another Option for the Process Overview 49

107

List of Figures

4.10 Different Task Tree Designs and Approaches for Changing the State of

Task Tree Elements . 51

4.11 Different Approaches to Choosing the New Position of a Task or Task Tree

with the Help of Buttons . 52

4.12 Choosing the Position of a New Task Tree Element Using a Modal 52

4.13 Different Ways to Move a Task . 53

4.14 Flow Chart for Adding a Contextual Situation 55

4.15 Adding a New Contextual Situation . 56

4.16 Different Ways of Displaying Contextual Situations 56

4.17 One Option for the Task Tree Overview . 57

4.18 Task Tree Overview Using Two Columns 58

4.19 Organizational Model Overview . 58

4.20 Overview of the Views Linked to the Template Repository Navigation Menu 59

4.21 Overview of the Views Linked to the System Settings Navigation Menu . . 60

4.22 Assign Privileges to a Pre-Selected Role 61

4.23 Displaying a Reference State Model as Graph 62

4.24 Adding a New State . 63

4.25 Text-Based Approach for Adding and Removing State Transitions 64

4.26 Graphical approach for Adding and Removing State Transitions 64

4.27 Flow Chart for the Password Recovery Procedure 66

4.28 Flow Chart for the Registration Procedure 67

4.29 Confirmation Modal Dialog for Destructive Actions 68

4.30 Confirmation Modal Dialog for Destructive Actions Requiring Additional

Input . 69

4.31 Displaying the Available Role Using Radio Buttons 69

4.32 . 70

5.1 Angular 4 Overview [Ang17a] . 73

5.2 Color Scheme . 74

5.3 Overview of the Different Navigation Menus 79

5.4 Breadcrumbs Trail . 80

5.5 A Confirmation Modal Dialog for Destructive or Important Actions 83

108

List of Figures

5.6 Overview of Available Process Instances Using Containers 84

5.7 Overview of Available Process Instances Using a Table 84

5.8 Comparison of the Old Task Design and the New One 85

5.9 Different Components a TaskTreeViewComponent Comprises 86

5.10 Context Menu of a Task Tree Template . 89

5.11 Adding a New Task Tree or Task . 91

5.12 Moving a Task Tree Element . 91

5.13 Configuration Parameters and Contextual Situations Modal Window . . . 92

5.14 Adding a Contextual Situation . 93

5.15 Configuration Specification Modal Window 94

5.16 Displaying a Contextual Situation . 94

5.17 Overview of a Process Instance . 95

5.18 Task Tree Templates Overview . 96

5.19 Assign Privileges to a Role . 97

5.20 Displaying a Refined State Model . 98

5.21 Updating a Reference State Model . 99

5.22 Adding a New State . 99

5.23 Switching Roles Manually . 101

109

Bibliography

[Act17] Active Collab. Active Collab. 2017. URL: https://activecollab.com/

(last visited July 9, 2017).

[Ang17a] Angular Contributors. Angular - Architecture Overview. 2017. URL:

https://angular.io/guide/architecture (last visited Oct. 1,

2017).

[Ang17b] Angular Contributors. Angular - NgModules. 2017. URL:

https://angular.io/guide/ngmodule (last visited Oct. 1, 2017).

[Ang17c] Angular Contributors. Angular - Style Guide. 2017. URL:

https://angular.io/guide/styleguide (last visited Oct. 1, 2017).

[Bas17] Basecamp. Basecamp. 2017. URL: https://basecamp.com (last visited

July 6, 2017).

[BAT14] Gavin Bierman, Martín Abadi, and Mads Torgersen. “Understanding

TypeScript”. In: Object-Oriented Programming: 28th European Conference

(ECOOP 2014). 2014.

[Bus12] David Bustard. “Beyond mainstream adoption: From agile software

development to agile organizational change”. In: 19th IEEE Int’l Conference

and Workshops on Engineering of Computer Based Systems (ECBS 2012).

2012, pp. 90–97.

[CL05] Christy Cheung and Matthew Lee. “The Asymmetric Effect of Website

Attribute Performance on Satisfaction: An Empirical Study”. In: Proceedings

of the 38th Annual Hawaii International Conference on System Sciences C

(2005), pp. 1–10.

[Cro06] Douglas Crockford. RFC 4627 - The application/json media type for

JavaScript Object Notation. 2006. URL:

https://tools.ietf.org/html/rfc4627 (last visited Oct. 2, 2017).

[Cyt17] Cytosacape Contributors. Cytoscape.js. 2017. URL:

http://js.cytoscape.org/ (last visited Aug. 15, 2017).

111

Bibliography

[DJB95] Kevin Dooley, Timothy Johnson, and David Bush. “TQM, chaos and

complexity”. In: Human systems management 14.4 (1995), pp. 287–302.

[Fie00] Roy Fielding. “Architectural styles and the design of network-based software

architectures”. PhD thesis. University of California, Irvine, 2000.

[Flo17] Flow. Flow. 2017. URL: https://www.getflow.com (last visited July 16,

2017).

[FM11] Ian Fette and Alexey Melnikov. “RFC 6455 - The WebSockets Protocol”. In:

(2011). URL: https://tools.ietf.org/html/rfc6455 (last visited

Oct. 2, 2017).

[Kow11] Julia Kowalewski. “Specialization and employment development in Germany:

An analysis at the regional level”. In: Papers in Regional Science 90.4

(2011), pp. 789–811.

[Kru14] Steve Krug. Don’t make me think!: a common sense approach to Web

usability. New Riders Publishing, Indianapolis, 2014.

[LR07] Richard Lenz and Manfred Reichert. “IT support for healthcare processes -

premises, challenges, perspectives”. In: Data and Knowledge Engineering

61.1 (2007), pp. 39–58.

[MKR12] Nicolas Mundbrod, Jens Kolb, and Manfred Reichert. “Towards a System

Support of Collaborative Knowledge Work”. In: 1st Int’l Workshop on

Adaptive Case Management (ACM’12), BPM’12 Workshops. LNBIP 132.

Springer, 2012, pp. 31–42.

[MR14] Nicolas Mundbrod and Manfred Reichert. “Process-Aware Task

Management Support for Knowledge-Intensive Business Processes:

Findings, Challenges, Requirements”. In: 18th IEEE Int’l Distributed Object

Computing Conference - Workshops and Demonstrations (EDOCW 2014).

2014, pp. 116–125.

[MR17a] Nicolas Mundbrod and Manfred Reichert. “Configurable and Executable

Task Structures Supporting Knowledge-intensive Processes”. In: 36th

International Conference on Conceptual Modelling (ER 2017). 2017.

112

Bibliography

[MR17b] Nicolas Mundbrod and Manfred Reichert. “Demonstrating Flexible Support

for Knowledge-Intensive Processes with proCollab”. In: Demo Track of the

15th International Conference on Business Process Management (BPM

2017). 2017.

[MR17c] Nicolas Mundbrod and Manfred Reichert. “Flexible Task Management

Support for Knowledge-Intensive Processes”. In: 19th IEEE Int’l Enterprise

Distributed Object Computing Conference (EDOC 2015). 2017.

[MR17d] Nicolas Mundbrod and Manfred Reichert. “Object-Specific Role-Based

Access Control”. (Internal Paper in Review). Ulm University. 2017.

[Pro17] ProCollab Team. proCollab. 2017. URL: http://procollab.de (last

visited Sept. 23, 2017).

[Pry+14] Rüdiger Pryss et al. “Supporting medical ward rounds through mobile task

and process management”. In: Information Systems and e-Business

Management 13.1 (2014), pp. 107–146.

[Rea17] ReactiveX Contributors. ReactiveX - Observable. 2017. URL:

http://reactivex.io/documentation/observable.html (last

visited Oct. 1, 2017).

[Sas17] Sass Contributors. Sass Documentation. 2017. URL:

http://sass-lang.com/documentation/ (last visited Sept. 10,

2017).

[Sch04] Ken Schwaber. Agile project management with Scrum. Microsoft press,

2004.

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley Publishing

Company, USA, 2010.

[Tie10] Michael Tiemann. “Wissensintensive Berufe”. In: Wissenschaftliche

Diskussionspapiere des Bundesinstitut für Berufsbildung 114 (2010),

pp. 1–70.

113

Bibliography

[TRH13] Julian Tiedeken, Manfred Reichert, and Joachim Herbst. “On the Integration

of Electrical/Electronic Product Data in the Automotive Domain”. In:

Datenbank Spektrum 13.3 (2013), pp. 189–199.

[Vac+11] Roman Vaculín et al. “Declarative business artifact centric modeling of

decision and knowledge intensive business processes”. In: 15th IEEE Int’l

Enterprise Distributed Object Computing Conference (EDOC 2011). 2011,

pp. 151–160.

114

Name: Matthias Gerber Matrikelnummer: 726161

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Matthias Gerber

	Introduction
	Problem Statement
	Contribution
	Outline

	Fundamentals
	Knowledge-Intensive Processes
	Application Case
	proCollab
	KiP Lifecycle
	proCollab Components
	Workspaces
	Template Repository
	Configuration Management
	State Management
	Specialization Types
	Object-specific Role-based Access Control

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Current State
	Current State Analysis
	Results of the Current State Analysis

	Comparable Tools and Systems
	Basecamp
	active.collab
	Flow

	Concept
	Navigation Structure
	Workspace
	Breadcrumbs Trail
	Process Overview
	Process Assessment
	Management of Task Trees
	Task Tree Configuration
	Task Tree Overview
	Management of Organizational Units

	Template Repository
	System Settings
	Management of Roles and Privileges
	User Applicants
	State Model Graph

	Account Management
	Password Recovery
	Registration

	Cross-Cutting Components
	Confirmation Modal Dialog for Destructive Actions
	Role Selection
	Caching

	Implementation
	Technologies
	Representational State Transfer (REST)
	WebSocket
	JavaScript Object Notation
	Angular 4
	RxJS
	Typescript
	SASS
	Cytoscape.js

	Implementation Excerpts
	Deployment Configurability
	Caching and Updating
	Navigation Structure
	Confirmation Modal Dialog for Destructive Actions
	Process Overview
	Task Tree
	Management of Task Trees
	Task Tree Configuration
	Process Assessment
	Task Tree View
	Assign Privileges
	State Model Graph
	Role Selection
	Role Based User Interface
	Registration
	Password Reset

	Conclusion
	Summary
	Future Work

