
Ulm University | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Institute of Databases and
Information Systems

Conception and Realization of a
Mobile Crowdsensing Application for
Support and Empowerment of
Diabetes Patients
Master’s Thesis at Ulm University

Submitted by:
Emanuele Giannotta
emanuele.giannotta@uni-ulm.de

Reviewers:
Prof. Dr. Manfred Reichert
Dr. Rüdiger Pryss

Supervisor:
Dr. Rüdiger Pryss

2017

Version December 21, 2017

c© 2017 Emanuele Giannotta

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

Diabetes is an increasingly common chronic disease. Not only in the Western World

but across the globe. Statistics show, that 10.3% of men and 9.6% of women in the

European Union aged 25 or older are forced to live with this disease, and the numbers

are rising [1]. It is a chronic disorder of the metabolism, and a number of dangerous

complications can arise if the medical treatment is not supervised carefully. These

complications can be lethal, and severely reduce the quality of life of every individual

patient. Thoroughly following the medical advices requires considerable discipline of

the patient. This project aims to help the patients suffering diabetes, by providing a

healthcare application to support them in their daily self-care. The application is called

Track your Diabetes, and is designed to be a daily companion for the patient. Moreover,

it is a mobile crowdsensing application and the collected data can empower researchers

to improve the knowledge about the disease. Patient education, empowerment, and

practical self-management to help deal with symptoms, is achieved by tracking diabetes

related data such as the blood glucose level and weight. Depending on the data, the

users can receive automated feedbacks, in order to improve their self-management. The

application is questionnaire-based. This means, that the application only tracks data

based on the questionnaires published. Patients can then share their data with their

medical attendant who, in turn, can use it to improve their treatment methods.

Designing this application, and providing prove for its feasibility by implementing it, is

the central topic of this thesis. One major requirement was for the application to use

the interface of a given RESTful API backend. This backend is planned to be a central

database for the relevant data of all users. This work shows, how the application was

designed and implemented for the operating system Android.

iii

Acknowledgments

At this point, I would like to thank all those who supported me during this thesis.

I wish to express special thanks to Dr. Rüdiger Pryss for being my thesis supervi-

sor, for the valuable cooperation, and particularly for his active support which has been

a considerable contribution to my work.

Also, I would like to thank Prof. Dr. Manfred Reichert, director of the Institute of

Databases and Information Systems, for making this thesis possible.

Very special thanks are directed to my parents Teresa and Rocco Giannotta, who

made my studies possible and supported me during this period.

Moreover, I thank my proofreaders for their support, particularly Petra Fabry, for helping

me to improve my English skills.

Finally, I want to thank my friends and fellow students for a great time at the University of

Ulm.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 5

1.3 Thesis Structure . 6

2 Background Information 7

2.1 Diabetes Mellitus . 7

2.1.1 Causes . 9

2.1.2 Diagnosis . 10

2.1.3 Complications . 11

2.1.4 Therapy and Long-Term Prognosis 13

2.2 Mobile Crowdsensing . 15

2.3 Xamarin . 18

2.3.1 Mono for Android . 21

2.4 CHRODIS PLUS - Joint Action . 21

3 Related Work 23

3.1 Healthcare with Smartphones . 23

3.1.1 Track Your Tinnitus . 23

3.1.2 KINDEX-Application . 25

3.1.3 Insulin Dosage Prediction . 25

3.1.4 Comparison of Healthcare-Apps 27

3.1.5 Compliance Self-Monitoring . 28

3.1.6 Diabetes Digital Coach . 29

3.1.7 Big data . 29

3.2 Other Diabetes Apps . 29

4 Requirement Analysis 33

4.1 Functional . 33

4.2 Non-Functional . 35

vii

Contents

5 Architecture 37

5.1 Design Objectives . 37

5.2 Architectural Aspects . 38

5.3 Application Process . 44

5.4 Local Data Model . 49

5.5 Background Threads . 51

5.6 Restful-API Back End . 52

6 Selected Implementation Aspects 55

6.1 Notifications . 55

6.2 Threads . 58

6.3 Backend Communication . 62

6.4 Questionnaire Management . 65

6.5 Basic Functionality . 67

6.6 Used Technologies and Frameworks . 67

7 Introducing the Application 69

7.1 Login . 69

7.2 Main Page . 70

7.3 Studies . 72

7.4 Questionnaires . 74

7.5 Basic Diabetes Tracking Functions . 76

7.6 Settings . 77

8 Discussion 81

8.1 Requirements Check . 81

8.2 Shared Code . 83

9 Summary and Outlook 85

9.1 Summary . 85

9.2 Future Work . 87

viii

1
Introduction

1.1 Motivation

Diabetes is a serious chronic disorder that causes a blood glucose level above the

normal and healthy value. Once diagnosed it is a great burden on the patient. The

treatment takes up a significant part of his everyday life.

According to statistics of the World Health Organization, 60 million citizens of Europe

have diabetes. 10.3% of men and 9.6% of women, aged 25 or older, are affected [1].

The prevalence is still on the rising path [1].

The disease cannot be cured and might lead to several severe complications. These

complications can not only diminish the patient’s quality of life to a significant amount, but

they can also be lethal. However, if treated properly, the severity of the disease can be

reduced. This kind of treatment demands a lot of discipline and can be highly distressing.

One mayor part of the treatment is to measure the blood glucose level several times a

day. Living a healthy lifestyle is very important too. According to studies, overweight is

estimated to be responsible for 65-80% of type 2 diabetes cases [1]. Hence, one part of

living a healthy lifestyle is following a strict diet. This keeps the blood glucose level from

rising and leads to weight reduction if the patient is overweight. Another important part

of the treatment is doing physical activities more frequently, as sport activities also lower

blood glucose levels.

Patients need assistance and guidance for their treatment. As explained later, in chapter

2.1, a major part of a successful treatment for the patient is providing detailed infor-

1

1 Introduction

mation and medical advice by professionals. But also, the guidance of dieticians can

be important, since being mindful of food intake is crucial for a successful treatment.

However, medical appointments are associated with costs and so are appointments with

dieticians. Ultimately, it is up to the patient to adhere to the treatment. If the patients’

compliance is too low, more appointments with professionals are unlikely to help. Hence,

the patient needs to be motivated to take his self-care seriously.

The economic impact of diabetes is not to be underestimated either. Depending on the

health care system of the country it is either a burden, the patient needs to bare by

himself, one the entire society bares, or both. The articles [2] and [3] show that this is

a highly relevant issue. Since the percentage of the population being diagnosed with

diabetes is rising, it must be taken care of. If patients can be guided towards better

self-care and therefore need less medical attention, the financial impact could be lowered.

A competent coach constantly being at the patient’s side, ensuring his compliance

and supporting him with feedback, would be of considerable value for the treatment.

Since a personal coach is too expensive for most people, a different way must be found.

A smartphone could be used to fulfil this function. The capacity of smartphones in

terms of computation and memory has risen over the past years. It is now possible to

implement applications, which a few decades earlier would have been inconceivable.

With the right application smartphones are capable of helping people with their health

care. Much work has already been done in the fields of electronic health care. In [4] an

eHealth system was developed for type 2 diabetes patients to teach them about their

condition and develop their self-care abilities. In article [5] it was found that e-health

can be an evidence-based tool to empower the self-management of diabetes patients.

Article [6] demonstrates that e-health could even "provide equivalent diabetic control to

usual care" [6].

One major advantage of smartphones is that they are widely spread and can be used

for multiple purposes. In many cases it is not required to develop custom devices for

the personal healthcare. Such custom devices are expensive to develop and therefore

2

1.1 Motivation

expensive to buy also. It is much more cost efficient to use devices which are already

provided. This is not an unknown fact. Just by searching for the keyword "diabetes"

many applications can be found in Android’s Play Store for tracking relevant treatment

data.

This thesis aims to take advantage of the opportunities offered by smartphones. For

this reason, the health care application Track your Diabetes was designed to support

Diabetes patients. The application is based on questionnaires, in order to collect the pa-

tient’s data. These questionnaires are organized in one or more studies. The application

is extensible in terms of studies and questionnaires. This means that the head of the

study can add new questionnaires, if required. When a whole new study is needed it can

be added as well. For example, the treatment of type 1, type 2 and gestational diabetes

(a particular type of diabetes during pregnancy) could be organized in separate studies.

This way a type 2 patient will not be bothered with type 1 diabetes questions, concerning

the insulin dosage. Also type 1 and type 2 patients who are not pregnant, will not need

to lose time reading and skipping questions relating to gestational diabetes. Patients

should be able to choose their personal and appropriate study programs in which they

need to participate.

The main objectives of Track your Diabetes are the following:

• Improve Self-Care: The possibility of tracking blood glucose level and weight

straight from the smartphone can make the everyday routine of the diabetes

therapy easier for patients who would normally use pen and paper for tracking.

By using the feedback function patients can be motivated to improve their self-care.

For example, a questionnaire could ask the user how much physical activity he does.

The answers could then be evaluated, and a proper feedback can be generated.

If the patient has done well, he would be rewarded by being complimented. If

the contrary is the case, a feedback would motivate him by reminding him of the

advantages of physical activity.

The article [7] indicates, that such a feedback function can also be a motivating for

patients to use such an application, to begin with.

3

1 Introduction

• Patient Empowerment: As it was stated above, doctor’s appointments can be

expensive. The user of Track your Diabetes is able to export his data and share it

with his physician. The physician is then better informed and can decide better on

necessary therapies. If the right questionnaire exists, he is able to determine what

the patient might have done wrong and therefore give him better advises. By that,

the appointments can be made more effective.

• Research: One major advantage of this application is for researchers to be able

to create studies and gather valuable information. This can help their research to

find new treatments and improve old treatments. From this point of view Track your

Diabetes is a mobile crowdsensing application. These studies can be deployed in

large parts of society and have the possibility to reach far more people compared to

standard studies. This way more data can be gathered in a more cost-effective way.

The infrastructure needed, is a backend server which can cope with all requests,

the application, and mobile devices. As soon as the infrastructure is provided,

studies can be deployed with very little effort.

Studies can be protected by a password or the user can require an invitation for

subscription. By this, it is assured that only the authorized patient answers the

questionnaires.

This model can help patients in many ways. For example, a study for complication

prevention could be deployed. A questionnaire asking the right questions could find out

whether the patient shows symptoms of a secondary disease. If this is the case, via

feedback, he could be sent immediately to see his doctor.

With these questionnaires the personal risk for complications could also be calculated.

This is a big advantage, since the early identification of complications is of great impor-

tance for the treatment.

Also, side effects of the medication can be identified. The patient can then be notified

via feedback to consult his doctor.

Using mobile crowdsensing in this field can have many advantages. With crowdsensing

applications, neuropsychiatric symptoms of patients can be documented in real-time

instead of retrospectively [8]. In [8] the authors have compared real-time assessment

4

1.2 Objectives

data gathered by the crowdsensing platform Track your Tinnitus (TYT; see [9], [10],

[11]) with assessment data that was collected retrospectively. They have shown that

the results of these assessment types vary, and they see a chance for crowdsensing

systems to improve the treatment of diseases involving neuropsychiatric symptoms.

Another advantage of crowdsensing is that the data collected can be used for research.

This can contribute in expanding the knowledge of the respective disease. Data collected

by the TYT system has already been used for studies such as [12], [13] and [14]. In the

future, diabetes researchers could also be empowered by data collected by Track your

Diabetes.

In [15] it was investigated whether the crowdsensing platform TYT can make the tinnitus

symptoms worse for patients using the application. They showed that this is not the case.

For Track your Diabetes, this could also be a justified concern. Chapter 3.1.1 presents

the TYT project in more detail.

In short, there is a high potential of helping diabetes patients with a smartphone appli-

cation. Whether it is because the users can more comfortably track their data in their

everyday life, get valuable medical feedback or because their contribution to studies

improves the overall therapy possibilities.

1.2 Objectives

In context of the EU project CHRODIS PLUS (see section 2.4) and the research by the

Institute of Databases and Information Systems, it is the objective of this work to design

the above-mentioned application Track your Diabetes. A backend server is already

provided in form of a RESTful API. Hence, the application needs to be able to use its

interface and adapt to its conditions. The application should download all relevant data

from the server. Therefore, the questionnaires and feedbacks needed for this project

must be created, using the backend interface directly on the server. For the development

of the application a test study and test accounts are provided. Questionnaires can be

uploaded with the proper editor account and the app can be used with test accounts.

The application uses the backend server not only for downloading data. The server can

5

1 Introduction

also be used to upload the answers of the user to the questionnaires. This is done for

two reasons. One is, to store the data for the user. If he buys a new smartphone, he

can therefore synchronize his data. The second and more important reason is to enable

researchers to use his data for scientific purposes.

Finally, the application will be implemented to prove the practicability of the concept. The

targeted operating system is Android and the implementation will be done by using the

cross platform Xamarin (see section 2.3).

1.3 Thesis Structure

The rest of this work is structured into 8 more chapters. The second chapter introduces

the basic knowledge for this work. There, the disorder diabetes is explained, as well

as the framework Xamarin and the theoretic part of crowdsensing. Chapter tree gives

an overview of related work referring the topic of healthcare with smartphones. Then a

few applications for diabetes patients are presented, that can be found in the stores of

Android and Apple. The fourth chapter names the requirements for the application. The

fifth chapter presents the architectural design. Chapter six will show how some parts of

the design were implemented. In chapter seven the application is introduced with some

screen shots. Chapter eight shows whether the requirements were met. Finally, chapter

nine concludes this work with a summary and an outlook.

6

2
Background Information

This chapter introduces basic background information required for this work. The first

section provides an overview of the disease diabetes mellitus, the complications patients

can have, and current therapy methods. Crowdsensing will be introduced in the second

section. Finally, in the third section, the framework Xamarin, which was used for the

application, will be discussed.

2.1 Diabetes Mellitus

Diabetes mellitus identifies metabolic disorders which are accompanied by a reduced

production of the hormone insulin or by a reduced effectiveness of hormones. This

kind of metabolic disorders are followed by a blood sugar level too high for the human

body. If the before mentioned disorder is not treated properly, it might lead to severe

complications. This chapter gives an overview to this disease. The information presented

in this section was - if not cited otherwise - derived of [16].

First of all, it is essential to know that glucose plays an important role as energy supplier

for most of the cells in the human body. Digestion carbohydrates are metabolized mainly

into glucose, fructose and galactose. The percentage of glucose is about 80%. Fructose

and galactose are almost completely absorbed in the intestinal tract and transformed

into glucose in the liver. Finally, the blood sugar concentration value that circulates in

the blood consists of more than 95% of glucose. This makes glucose "the final common

pathway for the transport of almost all carbohydrates to the tissue cells" [17]. The amount

of sugar in the blood is called the blood sugar level. Usually it is kept from the body at a

7

2 Background Information

level of between 70 and 100mg/dl [16].

Since diabetes is a metabolic disorder that affects the blood sugar level, it is a se-

rious threat for the health and can be a life-threatening disease for the patient, if not

under control. In a healthy human body, the blood sugar level is regulated by various

hormones. There is only one hormone which can lower the blood sugar level. This

hormone is called insulin. To increase the blood sugar level there are also several

hormones:

• Glucagon

• Catecholamine

• Somatotropin (growth hormone)

• Cortisol

Not only a high blood sugar level can be dangerous. A low blood sugar level is called

hypoglycemia and can have serious consequences too. A patient suffers from hypo-

glycemia if either his blood sugar level reaches values below 40mg/dl or values below

50mg/dl whilst having symptoms of hypoglycemia [18]. Symptoms of hypoglycemia are

anxiety, shivering, paleness, sweating, nausea, hunger, weakness, fatigue, confusion

and cramps. In severe cases the patient can even enter a coma [19].

Since both, a high and a low blood sugar level are dangerous, the body uses the

above-mentioned hormones to keep it on a healthy level. By that it takes care of the

energy supply of the central nervous system which depends on glucose. After a short

fasting period, when the blood sugar level becomes too low, the antagonistic hormones

of insulin mobilize the saved glycogen in the liver and muscles. If a longer fasting period

is detained, glucose is formed within the liver and the kidneys using amino acids that can

be transformed. When the blood sugar level becomes too high, insulin is produced by

the body to lower it again. The hormone stimulates the absorption of glucose in muscle

and fat cells. Hence insulin has anabolic properties, while the absence of insulin leads

to a catabolic situation in which the body metabolizes proteins, fat and glycogen [16].

8

2.1 Diabetes Mellitus

2.1.1 Causes

In Germany about 8% of the population is estimated to suffer of diabetes with alarmingly

rising tendency. About 90% of the diabetes patients have type 2 diabetes.

Type 1

Type 1 diabetes is characterized by a lack of beta cells in the pancreas. These cells

are responsible for producing insulin and are destroyed by an autoimmune attack. Only

when 80 to 90% of the beta cells are destroyed type 1 diabetes manifests. Predominantly

the manifestation happens in the adolescent age of 15 to 25 years.

Patients with type 1 diabetes have a genetic predisposition. However, the concordance in

identical twins is only 30 to 50%. Hence, there still has to be an exogenous factor - which

is not yet identified - that activates an autoimmune attack at the beta cells. Possible

exogenous factors like virus infections (mumps and rubella) are hereby discussed as

well as toxins and chemicals.

Symptoms of type 1 diabetes are increased production and passage of urine, excessive

thirst, weight loss and fatigue. If the disease remains undetected for a longer period,

symptoms like itching, skin infections, and pains in feet and lower legs can come along.

Even falling in coma is possible [16].

Type 2

A person who suffers from type 2 diabetes has developed a resistance to insulin. The

hormone has a reduced capability or is no longer able to lower the blood sugar level.

Genetic predisposition has a higher influence on type 2 diabetes. The concordance in

identical twins is higher than 50%, and therefore higher than the concordance in identical

twins for type 1 diabetes. The two main factors that cause type 2 diabetes are genetic

predisposition and lifestyle of the patient. Malnutrition with obesity is observed in most

cases when type 2 diabetes emerges. The constantly heightened food supply raises

9

2 Background Information

the insulin production and generates a peripheral resistance to the, glucose regulating,

hormone. Hence, more insulin is needed, as its efficiency is decreased.

Usually type 2 patients are older than 40 and almost all are overweight. It is likely

that the insulin resistance already existed before the diabetes manifested. The patients

rarely suffer from symptoms of insulin shortage. Still, sometimes they have symptoms

such as itching, balanitis, decrease of the libido, and pain in the legs. Often the disorder

is diagnosed by coincidence during a routine checkup when the blood sugar level is

measured. At this point the patient can already have complications characteristic for

type 2 diabetes. [16]

Gestational diabetes

During pregnancy a gestational diabetes can manifest because of a peripheral resistance

to insulin provoked by hormones. This form of diabetes passes off after pregnancy.

2.1.2 Diagnosis

The first step to a diagnosis is always an in-depth health history interview with the patient,

whereby the family physician speaks in detail with his patient and asks relevant questions.

After the interview the physician decides if there is a reasonable suspicion, that the

patient might have diabetes. Usually a fasting blood glucose test is done to confirm

the indication. If the blood sugar level then repeatedly exceeds 126mg/dl on empty

stomach, the diagnosis of diabetes mellitus is confirmed. With the help of an electrical

glucose meter one is capable to measure his blood sugar level within 5 to 30 seconds.

This glucose meter is an indispensable assistant for the patient’s daily management of

diabetes, however is not suitable for diagnostic purposes [16].

10

2.1 Diabetes Mellitus

2.1.3 Complications

If not treated properly, all forms of diabetes can be followed by several diseases, most

of which have a serious impact on the quality of life of the patient. In cases of absolute

emergency, a patient can enter a so-called diabetic coma. It rarely results into an actual

coma, but it makes intensive monitoring and treatment necessary. It has to be treated as

quickly as possible.

There are two different kinds of diabetic comas:

• Diabetic ketoacidosis: By this mostly type 1 diabetes patients are affected. It is

triggered by hyperglycemia which is the medical term for a blood sugar level that

exceeds normal values. In order to get this kind of diabetic coma the blood sugar

level is 300mg/dl or higher. In comparison, a blood sugar level between 70 and

100mg/dl is considered to be normal.

• Hyperosmolar nonketotic coma: This diabetic coma affects mostly type 2 pa-

tients. In this case the blood sugar level of the patient is by 1000mg/dl or higher.

The diabetic coma is also a consequence of hyperglycemia. Causes for this are

dietetic mistakes or derailment of medication.

Patients suffering from a diabetic coma can have different states of awareness. Only 10%

are unconscious, 20% are completely clear. The remaining 70% have an awareness

state in between [16]. After a few days most patients enter a real coma. Symptoms of

diabetic comas are among others an increased production and passage of urine, thirst,

fatigue, sickness and vomiting. The general practitioner makes the diagnosis by finding

out the symptoms. The diagnosis will then be checked in the laboratory.

Other than diabetic coma, which is a case of absolute emergency, diabetes can cause

plenty of complications and secondary diseases. Only one percent of diabetes patients

die of coma, but 70% to 80% die of vascular diseases, caused by diabetes. Hence,

mainly the vascular complications [16] lead in fact to a shortened life expectancy and

a reduced quality of life. In theory, the chronic hyperglycemia plays an important role

11

2 Background Information

for the development of these diseases and some changes can even be reversed with a

lower blood sugar level. In the following a few of them will be presented [16]:

• Diabetic retinopathy and maculopathy: This disease is characterized by dam-

ages of the eye’s retina. If it is not treated, it can result into serious sight disorders

and ultimately into blindness. Blindness of people between 30 and 60 years in

developed nations is mostly caused by diabetes. After 20 years of diabetes up to

95% of the patients are affected by this disease. Type 1 patients are affected less

than type 2 patients. This may be the case, because many type 2 patients live

with the disorder for a longer period of time without knowing and hence without

an appropriate therapy. Diabetic retinopathy and maculopathy can be treated by a

timely laser therapy. It is important for diabetes patients to get their eyes checked

regularly once or twice a year.

• Diabetic nephropathy: A diabetic nephropathy ranges from damaged kidneys

up to a terminal kidney disease, that makes regular dialysis necessary. It affects

type 1 patients as well as type 2, and 40% of the diabetes patients develop this

disease. The life expectancy of a diabetes patient is determined by the emergence

of nephropathy. After 20 years with diabetes, 25% of the patients are affected,

and after 40 years 40% will be affected. For the treatment an early diagnose is

important, since only in the early states something can be done. The therapy is

based upon normalizing the blood sugar level and keeping it on a healthy level.

• Diabetic neuropathy: A patient has a diabetic neuropathy if he has damaged

motor nerves, that have a restrained functionality and structure. After 10 years

with diabetes about 50% of the patients suffer from such a disease. Especially feet

and lower legs are concerned. Affected people have symptoms like numbness,

prickle, sensation of cold or burning pain. Even cerebral nerves can be affected.

The possibilities for therapy are unsatisfactory. It is important to normalize the

blood sugar level.

• Diabetic foot: A diabetic foot can be triggered by minor local traumas such as

inadequate nail care, or shoes that are too small. It can also be triggered by

infections like the athlete’s foot. Very often a diabetic foot does not cause any

12

2.1 Diabetes Mellitus

symptoms, which is why an adequate prophylaxis is advised. The prophylaxis for

example consists of keeping a healthy blood sugar level, rigorous foot care and

the right shoes. It is important to detect a diabetic foot early, which is why regular

examination is required. The therapy of a diabetic foot can require months of time

and hence very much patience. The patient needs to relieve the foot completely. If

not treated adequately, an amputation can become necessary.

• Diabetic macroangiopathy (atherosclerosis): This is the most common com-

plication of diabetes patients. Not only diabetes patients can have this disease,

but it is worse for them and it starts sooner. Risk factors are hypertonia, smoking

and hyperinsulinism. It manifests as coronary heart disease, myocardial infarction,

stroke, and peripheral artery disease. Around 65% of diabetes patients die of a

macroangiopathy, and 75% of all deaths are caused by coronary heart disease.

For diabetes patients a silent heart attack happens more often which is why a

stress EKG should be done every one to two years.

2.1.4 Therapy and Long-Term Prognosis

If the patient complies strictly with the rules of the therapy, there is a good chance for

him, not to have major restrictions of his quality of life. The resume is therefore, not

to avoid or delay medical check-ups and treatments, some of which are mentioned in

the section before (2.1.3). The overall goal is to keep the blood sugar level at a state

between 80 to 120mg/dl and have regular check-ups. [16]

There are five fundamentals of the treatment:

• Patient education: The patient should be trained to be independent. They should

make regular doctor’s appointments for checkups. Furthermore, they should be

motivated to take their diabetes care seriously in order to live as long a high-quality

life as possible.

• Self-management of the blood sugar level: The patient needs to control his

blood sugar level regularly.

13

2 Background Information

• Diet: It is crucial for the treatment to know what to eat and comply with it. A

treatment without the according diet is pointless. Hence, a nutrition counseling is

essential. For example, a patient should know, that alcohol has a lowering effect

on the blood sugar level, which can result into a hypoglycemia. Moreover, if the

patient is overweight, a weight reduction should be aimed. For type 2 diabetics it is

even possible to have their metabolism normalized, once they have lost their extra

weight.

• Life style: Regular exercise should be part of the patient’s life style as well as to

quit smoking.

• Medication: The medication should be taken carefully and punctually. Type 1

diabetes patients need to take their insulin regularly and type 2 patients may need

to take antidiabetics. Furthermore, the patient should be informed of side effects.

Type 1 diabetes patients can use an insulin pump instead of a pen. With that they

can program the needed insulin and change the programming any time. They get a

basal rate of insulin every hour, and they can give themselves a bolus by the push

of a button, if needed. This spares them the four to six daily injections. However, to

measure the blood sugar level regularly, will still be needed. The advantage here

is that the pump can be customized to the individual insulin need over the day.

Whether the patient will get late damages as mentioned in section 2.1.3 or not and

how severe they will become, depends on his personal diabetes care. Apart from that,

genetic factors can contribute to how grave the vascular complications can become and

how fast they manifest [16].

The total mortality of type 1 diabetes patients is at a rate of 50% after 40 years with the

disease. Type 2 diabetes patients have a reduced life expectancy of about six to ten

years [16].

14

2.2 Mobile Crowdsensing

2.2 Mobile Crowdsensing

Mobile crowdsensing is the expression for collecting and sharing data via mobile devices,

such as smartphones and tablets with various types of sensors. With these sensors a

vast amount of useful data can be collected [20]. Not only smartphones can be used

for crowdsensing. All consumer-centric devices, able to gather potentially important

information for any purpose can be used. For example, in the area of transportation

the users might be interested in roads with high traffic congestion and alternative roads.

Data for this application can be gathered from smartphones as well as in-vehicle sensing

devices. Also, many other internet-of-things sharing devices, like music players, can be

used for crowdsensing.

One important aspect that makes smartphones so valuable for crowdsensing, is the fact

that it has plenty of built-in sensors. Sensors like Accelerometer, Gyroscope, Magne-

tometer, GPS and ambient light sensors are only a few examples of current sensors

of smartphones. In the future, smartphones could even have sensors for measuring

the air quality [21]. Often sensors of internet of things devices are connected with the

smartphone. Even a coffee machine connected to a smartphone might have potentially

interesting data to share with the community about the surrounding environment.

Another advantage for the use of smartphones as a device for crowdsensing is the fact,

that it already is widespread and versatile. People do not need to buy extra devices only

for the sake of one crowdsensing application.

Furthermore, the data collected can easily be transmitted to the backend server through

the internet.

The resourcefulness of today’s smartphones in terms of computing power is undoubtedly

one more advantage. It expands the possibilities of applications, compared to what

was possible in the past. In addition, being a widespread device, it is possible to make

large-scale case studies in a cost-efficient way. In many cases the buying of extra

hardware will not be required.

Another advantage is that people can be leveraged to collect more complex data that

15

2 Background Information

could otherwise not be collected by a sensor. [21]

Many applications can be supported by crowdsensing. One example was already

mentioned in the paragraph above. Another possibility could be to show and foresee

traffic jams by using the data of smartphone maps and constantly update them. Drivers

could then be lead through alternative roads to relieve the traffic situation. In the past,

drivers had to listen to the radio news if they needed traffic information. Some of these

news were even collected by people in traffic helicopters. In the future, all the information

about traffic could be collected by one’s smartphone, then shared with other users.

Another trend is to use crowdsensing in order to improve the health care sector. As

will be explained in chapter 3, there are already many different approaches only in the

sector of diabetes. Sometimes the aim is to improve the life quality of people with chronic

diseases or to collect data in order to learn more about a disease for improving progno-

sis of therapy. One example is the Track Your Tinnitus Project, introduced in section 3.1.1.

In [21] the crowdsensing applications are divided into two categories:

• Personal sensing: This category includes applications collecting data of an

individual person, e.g., for health care.

• Community sensing: Here something is measured by a collective which would

be difficult to measure by one person alone. Detecting traffic congestion is an

example for this category. Community sensing can also be referenced to as one of

the following:

– Participatory sensing: The user is required to actively contribute data.

– Opportunistic sensing: The collection of data is done more autonomously

without the user taking action.

The advantages of using smartphones for crowdsensing have already been discussed.

Challenges will be discussed in the following.

Although it is a great advantage that smartphones are already wide spread through

16

2.2 Mobile Crowdsensing

the population, a challenge is, that a very large variety of devices exist. Not only many

old devices are still in use, they are produced from different companies. Therefore, the

resources and sensors can also vary. As a result, the collected data could have different

quality features. For some applications it might be necessary to determine the right set

of devices first. [21]

The computing power of smartphones may have risen constantly in the last years.

Still, the devices have limitations, not only in respect to computation but also in terms

of energy and bandwidth. Various crowdsensing applications run independently of one

another, however sometimes even collect the same information from the same sensor.

There is a lack of communication between applications - and the result is, that the

limitations of the smartphone are reached more quickly. In order to make it more efficient,

developers need to address those limitations while designing their application. [21]

Another point is the users’ motivation to use the application in the first place. If users

are not motivated to use or even install the application, data cannot be collected at all.

Hence, a developer of a crowdsensing application needs to offer incentives in order to

recruit and engage users [21].

The authors of [22], for example, considered to pay the users for their involvement.

Among other things they compared the following three schemes:

• Uniform scheme: Everyone gets paid 4 cents per task.

• Variable scheme: Users are paid 2 to 12 cents per task judged by their perfor-

mance.

• Hidden scheme: The users can win a prize if they participate.

The authors found, that the variable scheme is 50% more cost effective in terms of

completion rate, and performance compared to the uniform scheme. The hidden scheme

on the other hand was the least effective.

One crucial point is the privacy concerns of the users. Different users have differ-

ent views of what is too private for them to share. Some may have no problem constantly

17

2 Background Information

sharing their current location, others do. The main point is to ensure privacy and security

on the one hand while, on the other, keeping the data useful for analysis. In [21] the

following three techniques are mentioned:

• Anonymization: Remove all identifying characteristics.

• Multiparty computation: Use cryptography to preserve privacy.

• Data perturbation: Randomly modify the collected data. When the arithmetic

average of all data is computed, the random modifier can be removed, and an

accurate result is gained. An example would be the measuring of the average

population weight. A random number of 100 to 200 can be added to the individual

measurement. If every number between 100 and 200 has the same probability to

be chosen, then the average of 150 is added. After computing the average, 150

has to be subtracted. The result is accurate, if the data set is big enough.

In [22] the authors found out that privacy awareness can enhance the performance of

crowdsensing applications by eliminating the privacy concerns of potential users. If

successful eliminated, more users may contribute. The authors explained the coali-

tion strategy by which the users share their information within a group. This adds a

k-anonymity privacy protection.

In the article [23] a state of the art analysis of various privacy techniques is made. They

found an "orthogonal relationship between data quality, privacy and resource consump-

tion". That is the case, because effective privacy mechanisms consume more resources.

Another challenge of mobile crowdsensing is the possibility to test the application

within a crowd before releasing the application to the public. For that Fiandrino et al.

introduced a simulation platform, called CrowdSenSim [24]. The platform has been

designed especially for simulations of crowdsensing in realistic urban environments.

2.3 Xamarin

Xamarin is a cross-platform programming framework for mobile apps. It supports the

three platforms Android, iOS and Windows Phone. With this, framework developers

18

2.3 Xamarin

are able to write native applications for the various operating systems in .NET, all us-

ing C#. APIs for each platform are provided and also wrappers for functions, so that

they can use the platform-specific components such as the user interface, notifications,

animations, and can access sensors with the proper access rights. Developers are

able to program applications without knowing every detail of the respective operating

system since Xamarin takes care of the aspects, which are not important for develop-

ment [25]. In addition, since it is a cross-platform, if someone wants to program an

application for two or all three of the supported operating systems, there is a section

of code, which can be shared among all platforms. This code is called shared code.

How big it can become, depends on the application type and on the developer, him-

self. If OS specific libraries are used in a code section, this section cannot be shared. [25]

Development environments which can be used for Xamarin, are Xamarin Studio for

Windows and Mac and Visual Studio for Windows.

A distinction is made between Xamarin.Android, Xamarin.iOS and Xamarin.Forms.

Xamarin.Android and Xamarin.iOS are "C# bindings to the native Android and iOS APIs

for development on mobile and tablet devices" [25]. For each new release of Android or

iOS a release of Xamarin follows to include the new APIs. At the same time developers

can use .NET features like data types, garbage collection and many more.

Xamarin.Forms on the other hand is an additional "layer on top of the other user interface

bindings and the Windows Phone API" [25]. Figure 2.1 shows these layers. While

the User Interfaces (UI) in Xamarin.Android and Xamarin.iOS can only be used for

the respective operating system, Xamarin.Forms has a cross-platform UI library. The

set of UI controls provided by Xamarin.Forms is then mapped to the native bindings

of Xamarin.Android and Xamarin.iOS. By this the developer can create one UI for all

three operating systems. Thereby, the developer only needs little knowledge of Android

and iOS if he just wants to create basic UIs. Furthermore, this obviously increases

the quantity of shared code. However, developers can use UI controls of the native

bindings in Xamarin.Forms by using custom renderers. For example, this can be used,

19

2 Background Information

if something is missing. Figure 2.2 shows the application architecture, when custom

renderers are used. [25]

Xamarin

Xamarin.Forms

Xamarin.AndroidXamarin.iOS

iOS UIKit Android SDK
Windows Phone

SDK

Figure 2.1: "Xamarin libraries bind to native OS libraries"’ [25].

Xamarin.Forms
Shared Code

Xamarin.iOS
Code

Xamarin.Android
Code

Windows Phone
SDK

Code

Shared Code

UI-Layer

Custom
Renderers

UI

Core Library

Figure 2.2: "Xamarin.Forms architecture with custom renderers" [25].

One major advantage of the native Xamarin bindings is, that they are better established

since they are existing for a longer time and still provide more of the features provided by

20

2.4 CHRODIS PLUS - Joint Action

the original platforms [25]. Furthermore, the access to native UIs is closer to the original

UIs.

In [25] it is recommended to use Xamarin.Forms, if the developer is getting started

with development in C#, for basic business apps, and for apps with basic design. The

author advises to use the native Xamarin frameworks for complex screens, apps with

complex visual design and for single platform apps. By using custom renderers in

Xamarin.Forms, "virtually everything" is possible that can also be done with the native

Xamarin frameworks. [25]

2.3.1 Mono for Android

Xamarin.Android uses Mono for Android to run the applications natively "without a major

performance trade-off" [26]. While Android apps usually run within the Dalvik VM or its

successor, the Android Runtime, Xamarin.Android uses the Mono CLR in cooperation

with the Dalvik VM or Android Runtime. Mono CLR classes allow the developer to access

the OS features that cannot be accessed by .NET itself.

2.4 CHRODIS PLUS - Joint Action

Joint Actions are designed and financed by the EU member states and aim to improve

health. CHRODIS PLUS Joint Action ([27]) is a three-year EU initiative against chronic

diseases, such as diabetes, cardiovascular disease, cancer, and mental disorders. It

was started 2017 and runs until 2020.

In [27] it is stated, that chronic diseases cost EU economies about 115.000.000.000e.

Worldwide it takes up to 70%-80% of healthcare budgets [27]. Thus, the Joint Action (JA)

CHRODIS PLUS was started as successor of JA-CHRODIS (2013-2016). The objective

of CHRODIS was to promote health and prevention. Also, diabetes management and

multi-morbid chronic conditions were a priority.

21

2 Background Information

CHRODIS PLUS aims to make use of the "wealth of knowledge" ([27]) on ways to

prevent and manage chronic diseases. It should empower patients and improve their

quality of life. By that, costs can be reduced, and health systems can be made "sustain-

able and responsive" to the demographic change of an aging population.

22

3
Related Work

This chapter gives an overview to work done in the field of smartphone supported

health-care. The focus is on mobile crowdsensing and diabetes.

3.1 Healthcare with Smartphones

In this section, some articles how health-care can be improved by computers and

smartphones, will be introduced.

3.1.1 Track Your Tinnitus

An important project by the Institute of Databases and Information Systems is Track your

Tinnitus (TYT). Pryss, Reichert, and others present this project in their articles [9] and

[10]. They developed a concept for a crowdsensing system, to help people suffering

from tinnitus and, at the same time, collect relevant data for better understanding of the

symptom. This is highly relevant to people who are affected because, due to the variety

of tinnitus forms, the symptom is very difficult to treat. It can only be measured subjec-

tively, and the awareness of it changes in different situations. The aim is to collect "large

and qualitative longitudinal data sets" [10], not only concerning the symptoms, but also

the treatment and its effectiveness. This data can then be evaluated by professionals to

improve treatment possibilities. To reach these goals, the authors chose the approach of

using mobile crowdsensing. Mobile devices collect the data needed by an application

while the backend server stores it. Since smartphones are wide spread, the authors can

reach many participants, and the desired large-scale data can be collected.

23

3 Related Work

When the user starts interacting with the application, he fills out three questionnaires

regarding the "stable tinnitus characteristics" [10]. Then, the regular tinnitus measure-

ment starts. Since perception of tinnitus is subjective, it is measured by a questionnaire

also. The user is notified to fill in the questionnaire at random points in time. Moreover,

the environment sound is recorded by a microphone, while the user is filling out his

questionnaire. The user’s privacy is secured by using pseudonyms.

Users of TYT can receive feedback from the application. This feedback function was

presented in [7]. Feedback is generated automatically by using the patients’ data that

was captured in real time and by considering his inputs in the past. His feedback can

be sent to the respective physician, also. Such a feedback function seems to motivate

patients to use the application [7].

This way, a global tinnitus study can be conducted to help affected people. Compared to

regular studies, this approach collects larger amounts of data in a more cost-efficient way.

The study [14] compared three data sets, collected differently of people with tinni-

tus. One data set was gathered by an outpatient tinnitus clinic, one from a self-help

web platform and one from TYT. The study showed, that crowdsensing applications like

TYT have the potential to recruit groups of users that would be harder to recruit by an

outpatient tinnitus clinic.

Recruiting as many people as possible is important. This way, more data can be

collected, and researchers empowered. TYT data has already been used for various

studies.

In [12] the authors researched, whether the patients’ emotional state influences their

tinnitus distress. Among others, they examined the association of tinnitus loudness and

tinnitus distress and how they relate to stress. They found, that stress "significantly

mediates the association" between loudness and distress [12].

24

3.1 Healthcare with Smartphones

The study [13] used TYT data to find out, when the tinnitus is loudest and most distressing.

Their results show, that this is the case between 12 a.m. and 8 a.m. The authors propose

to take circadian rhythm into account to improve the therapy.

3.1.2 KINDEX-Application

This application is presented in [28]. The objective is to help pregnant women, gynecolo-

gists, and midwives to assess psychological risks for the unborn child. For that, it uses

the "Konstanzer Index" (KINDEX), which is an interview developed for this purpose.

It has been empirically proven, that the development of children can be negatively

influenced because of psychosocial factors concerning the mother, before her child is

born [28]. With the KINDEX, such factors can be found. However, in daily practice the

medical experts often do not have enough time to conduct and evaluate the interview.

That is why, an application for tablets was developed. Pregnant women can now fill in

this questionnaire by themselves, using a tablet. Later it is evaluated automatically, and

the gynecologist or midwife can access the results directly.

3.1.3 Insulin Dosage Prediction

In their article [29], Preuveneers and Berbers present a model to support type 1 diabetes

patients by choosing the right medication dosage. The idea was to collect data about

the user by the smartphone and then, based on this data, estimate the dosage of insulin

he may need. Afterwards, the user would be informed about the estimated dosage.

The authors aimed to investigate how useful the smartphone can be for diabetes patients.

The application was designed to not need any further hardware other than smartphones

and items, diabetes patients already have, e.g., a blood glucose meter. They wanted to

give diabetes patients the chance, to replace paper on the one hand, and supply them

with "similarity measurements with previous situations" [29] on the other. Furthermore,

they wanted to examine the overall suitability of smartphones for personalized health

25

3 Related Work

care assistance.

Some of the users’ data collected for the experiment was the following:

• Blood glucose level: The user saves his blood glucose level into the application,

which he needs to measure anyway.

• Nutrition: The user saves information about his eating habits into the application.

• Location: The application constantly tracks the location of the user via GSM.

• Activity: The user names his daily activities, which can influence the blood glucose

level, such as nutrition or sports.

By evaluating this data, a trend can be created for each individual user. The users’

location can be assigned to activities. By using information from the past, the application

is able to predict which location the user enters next. Also, depending on his location, the

user’s activity can be determined. Based on these predictions, the application forewarns

the user if his blood sugar level might change considerably. This kind of predictions can

only be made, if the living habits of the user are consistent to some degree.

This is a highly valuable feature, since both hyper- and hypoglycemia, are threats

to the patients’ health and are likely to happen with diabetes (see 2.1).

The authors found, that a short training phase for the application can suffice, to find

relevant habit patterns, that let the users blood glucose level vary too much. Since it

is of central importance to constantly have access to the users’ location, a survey was

conducted to find out when smartphone users they take their smartphones along with

them. Indeed, judging by their habits, it is feasible to have access to their location often

enough. GPS would be a much more precise indicator for the location. However, the

authors decided to determine the location using GSM since it is more resource saving

than GPS. Besides, the application does not need the exact location. It is more important

to determine the users’ actual activity. However, after the application’s training phase,

the location could be determined with sufficient accuracy. The application was able to

calculate the current activity of the user and the next place he will visit with a "certain

26

3.1 Healthcare with Smartphones

accuracy" [29] of 55% to 85% on average. However, the prediction of the users’ next

activity was even more accurate.

The authors demonstrated the feasibility and practicability to support decisions of type

1 diabetes patients concerning the insulin dosage. This was achieved by gathering

information with the users’ smartphones. Surveyed volunteers stated, that they would be

ready to use their smartphone more frequently, if they had the prospect of gaining an

improved live quality.

3.1.4 Comparison of Healthcare-Apps

In [30], existing healthcare apps were explored and evaluated. Moreover, the authors

show possibilities of smartphones to become a medical toolkit for the private individual.

They state, that smartphones could in the future be used as a medical equipment, due to

their sensors. The device can become a "multipurpose mobile medical equipment" [30],

which can be utilized by both, private users and medically trained staff. For example, with

the proper application, the microphone could be used as a heart rate monitor. Therefore,

costs of medical care could be reduced, since smartphones would be able to replace

medical equipment. People could get professional advice without visiting the doctor.

This can also be improved by the aid of artificial intelligence. By empowering patients,

physicians would have more time for those patients, who need their attention more

urgently.

While analyzing healthcare applications, the authors considered aspects like: efficiency,

cost, simplicity and effectiveness. They found, that most of the applications are "glos-

saries of clinical information", containing profound or basic knowledge. Consequently,

apps for real "clinical data management and monitoring health" are a minority, and

"evidence-based or professional-informed apps" are very rare [30].

The authors addressed the need of peripheral devices in many diagnostic procedures as

a cause for the shortage of the above-mentioned health care applications. Also, medical

27

3 Related Work

applications need certification. Moreover, the process for application certification can

vary from country to country. Another problem is, that many different smartphones are

in use. Their sensors vary in quality, which makes the certification process even more

difficult. The authors think, that for future cases, where smartphones may really be used

as medical equipment, applications can only gain certification for being used by trained

staff. Still, these applications could be useful in societies with little medical regulation.

3.1.5 Compliance Self-Monitoring

Paper [31] introduces a system for supporting decisions of diabetes patients and measur-

ing their compliance. When the compliance index of patients is known, their care-needs

can be prioritized. The system tracks data such as the blood sugar level, a patient’s

lifestyle, his mood, and complication prevention attributes. The system evaluates this

input and helps the patient, if required. For example, depression can be a serious

problem for diabetes patients. If, after data evaluation, the application finds that the

patient might be suffering from depression, the system can notify his medical expert. As

a result, the medical expert can take care of the depression.

The system is divided into two parts:

• Patient’s hub: The patient’s hub is accessed via smartphone. Medical sensors,

for collecting the required data, are linked with Bluetooth. Also, the patient can

interact with the management hub by using the patient’s hub.

• Web-based disease management hub: This is the core of the system. The data

collected is stored, evaluated, and monitored here. In addition, the management

hub contacts the devices as well as human actors such as patients, physicians, and

others. Decisions the management hub makes, consider the patient’s individual

treatment.

28

3.2 Other Diabetes Apps

3.1.6 Diabetes Digital Coach

In [32], a so-called test bed is described, where the authors combined several healthcare

technologies for diabetes. Before, they identified the problem, that innovations on this

sector are often made in isolation to others. Also, new applications do not offer anything

new in many cases. Furthermore, they state, that the utility of many applications is not

really proven since most data is collected experimentally. This lack of evidence prevents

investors of supporting the development of such applications.

The authors aim to help diabetes patients to make the right decisions by implementing

an application that combines other healthcare technologies. In addition, they want to

solve the problem of missing evidence, mentioned above, by enrolling 12000 people in

this test bed, and thereby close the gap.

3.1.7 Big data

In the sector of psychology, Monteith, Glenn, Geddes, Whybrow, and Bauer examined,

whether and how big-data can help to treat people suffering from bipolar disorder. In

short, the aim is to collect data from patients and thereby achieve better understanding

of the disease. The collected data comes from electronic medical records, smartphone

applications, sensors and internet activities. In summary, they wanted to identify the

challenges and opportunities of using big data in the medical field. [33]

3.2 Other Diabetes Apps

In this section applications will be shortly introduced, which can be found in the stores

of Android and Apple. There is a vast amount of diabetes related applications. Most of

them are diary apps for tracking diabetes related data or for educating patients.

The following is an overview to some applications found:

29

3 Related Work

• mySugr: The users can track their blood glucose level, medication and nutrition.

This data is depicted clearly for the user. They can also get medical advice from

the application. It can be installed on Android and iOS. For iOS mySugr offers two

additional applications, called mySugr Scanner to connect one’s glucose meter,

and mySugr Academy, that offers information for type 2 diabetes users. [34]

• Social Diabetes: This application is a diary for diabetes patients of both types.

Other features are customized notifications and connect a personal glucose monitor.

Interestingly, patients can connect themselves to their medical expert. Thereby, the

expert can view his patient’s progress and, if necessary, adjust his treatment. [35]

• mapmydiabetes: This software is used as an education platform. Target groups

are not only patients, but also clinicians and commissioners. Patients can use it

to learn about their health condition and what to eat. They can also share their

information with their doctor. Doctors, on the other hand, can use their patient’s

data to motivate them for better self-management and improve their quality of life.

By that, doctors can save time. However, a mobile application is not yet available.

[36]

• OVIVA: OVIVA is an application for Android and Apple. This application is mostly

specialized on "diet-related health conditions". The application generally targets

people who should maintain a diet for some reason. This makes it useful for

diabetes patients, too. Physicians and dieticians can participate, also. With this

application, dieticians can coach their clients, wherever they are and save time.

Patients can track their food by taking photos. This way, they do not have to write

down every single ingredient. They can also track their daily activities and weight.

[37]

• Diabetes Forum: This mobile application is a diabetes forum in the UK [38]. It

is listed here, because it can be used by diabetics and their relatives for reading

about this topic and helping each other. They can access the forum anytime, if

they have a smartphone and an internet connection.

• Gadge Diabetes Care: Gadge Diabetes Care Center is a clinic for treating dia-

betes in India. With this application users can be consulted virtually or by video,

30

3.2 Other Diabetes Apps

from the doctors of the clinic. They can also use the application to set appointments.

[39]

• Diabetes Self-Management: This app is a kind of magazine. Here, diabetes

related articles and recipes, which are safe for diabetics, are posted. Hence, it is

an educational platform. The application is financed by a membership fee, however

one month of free trial is offered. [40]

• Diary apps: There is a whole section of applications, designed to store the user’s

diabetes related information, such as the blood glucose level and body-weight.

Some of them also track activities and the users’ mood. Most of them present the

data, using diagrams to give a clear overview and they also make the user’s data

available on other hardware. Examples for such applications are:

– Sugar Diary [41]

– Diabetes:M [42]

– Diabetes PA (Diabetes Manager) [43]

– Diaguard [44]

– Diabetes Connect [45]

– Sugar Sense [46]

Many more applications could be listed here. Particularly the Play Store offers a big

selection.

31

4
Requirement Analysis

In this chapter the requirements for the application will be introduced.

4.1 Functional

Functional requirements for the application are:

1. Registration within the application: The application cannot be used without

user account. Therefore, it should be possible to create such an account directly

on the device.

2. The application can be used without internet connection: Users do not need

to have internet connectivity to use the application, as they might have poor

connectivity or none at all. Therefore, relevant data needs to be saved, until

internet is available to send it to the backend.

3. Participation at multiple studies is possible: Users should be able to subscribe

to multiple studies and fill in the respective questionnaires. Furthermore, users

should have the possibility of unsubscribing at any time.

4. Studies can have different states: Studies can be public or private. Subscription

to public studies has no restrictions. For private studies authorization is required to

subscribe. Persons entitled can change the status of studies, making them public

or private.

5. Invitations to studies are possible: The head of the study should be able to

invite users to his private study. The user receives a notification via e-mail.

33

4 Requirement Analysis

6. Invitations can be accepted: Users can view their invitations in the application

and accept them.

7. Participation in private studies: If users know the respective password, they can

subscribe to a private study.

8. Statistical questionnaires can be filled in within a study: The head of the study

can publish arbitrary questionnaires to fulfill the purpose of his study. Subscribers

can view these questionnaires in the application.

9. Statistical questionnaires can be extended or changed: The head of the study

can change existing questionnaires and add new ones.

10. Questionnaires can be deactivated: A questionnaire that has been deactivated

cannot be filled in.

11. The questionnaire state can be changed: The configuration of questionnaires

determines, whether they must be filled in once or multiple times. If a one-time

questionnaire has already been filled in, it must not be shown to the user again.

12. Statistical questionnaires can be filled in within the application: Question-

naires can be filled in on the website and in the application.

13. Synchronizing of the results: Data gathered by the application should be sent

to the backend server for research.

14. No initial values: Initial values should be avoided, since users could be influenced

by them.

15. Notifications for questionnaires: Questionnaires can have schedules. Users

should be notified by the application, if a questionnaire must be filled in, according

to its schedule.

16. Notification schedules can be changed: Heads of studies can set questionnaire

schedules to be fixed or variable. If the schedule is variable, the user should be

able to change it.

17. Show results in the application: Users should be able to view their blood glucose

level and weight in the application.

34

4.2 Non-Functional

18. Export data: The users should be able to export their data, in order to share it

with their physicians.

19. In-app language settings: The application should be designed to be multilingual.

Users should be able to change the language within the application.

20. Standard studies: The application should have a standard study to track blood

glucose level, weight and physical activity.

4.2 Non-Functional

• Splash Screen: When users open the application, a splash screen should be

shown. This prevents a white screen, while the application is loading.

• RESTful Backend API: The application needs to cooperate with the given RESTful

Backend API ([47]).

• Questionnaires: The application should be delivered with questionnaires. These

questionnaires should be extracted from [48], [49] and [50].

35

5
Architecture

This chapter introduces the architecture of the Track your Diabetes application. First,

some design objectives will be presented, then architectural aspects such as UML

excerpts. Afterwards, the application process, the database model used, and finally the

backend server, will be introduced.

5.1 Design Objectives

While the concept of the application was designed, some design objectives were consid-

ered. These objectives were:

• Intuitiveness and Simplicity: The head of a study might be interested in having

as many participants as possible. For that, it is important to recruit many users.

Thus, the design of the application should be kept simple. It should be possible

to understand the application without reading a manual, and people with little

smartphone experience should be able to use it.

• Extensibility: The application should be extensible. If new features are needed, it

should be possible to extend the user interface (UI) rather than reinvent it.

• Modularity: The application design should be modular. For example, if the head

of a study needs new question-types, the developer should only need to change

the part of the application which handles questionnaires. He should not need to

change the database or the backend communication.

37

5 Architecture

• Model-View-Controller Pattern: The application architecture should be designed

following the Model-View-Controller pattern ([51]) to separate data, logic, and user

interface.

5.2 Architectural Aspects

This section will introduce the activities and fragments of the application, and how they

work together.

One objective for the application’s design was to cover the whole functionality using as

little activities as possible. The application has nine activities. One of these activities is

used for the splash screen, which appears when the application is opened. This splash

screen bridges the time between starting the application and showing the actual user

interface, e.g., the MainActivity or LoginActivity. Thereby, it is avoided that the user

stares at a blank display when he opens the application. Hence, the splash screen is not

part of the actual functionality but rather a design issue. Therefore, the functionality of

the application is covered by eight activities in total, two of which were already mentioned

before. Here is a short introduction of these activities:

• MainActivity: In Android, one activity must be referenced as the entry point of the

application [52]. This is done in the Manifest file. In Xamarin.Android this class

becomes the MainLauncher [53]. Originally, it was planned for the MainActivity

to be the entry point of the application. However, the implementation of the splash

screen required the SplashActivity to be defined as entry point. Otherwise, it

would not have been possible to show the splash screen after the application was

opened.

However, the MainActivity is the central class of the application. It contains the

home screen and navigation menu. From here the user can access the whole

functionality of the application. If the user is logged in, this is the first activity he

sees after the splash screen appears.

38

5.2 Architectural Aspects

• LoginActivity: If the user is not logged in, this activity is the first being called after

the splash screen. With this, users can register, log in, and reset their passwords.

• MyAccountActivity: With this activity, the user can view his personal data and

change it. Also, he can change his password.

• StudiesActivity: Here all studies are listed whether they are public, private, sub-

scribed, or unsubscribed. Invitations can be viewed as well. Normally, studies

have descriptions and other information. This information is shown when the user

selects one of the listed studies. Then, he can subscribe, unsubscribe, or request

an invitation.

• BloodSugarActivity: This activity provides standard functionality of diabetes

applications. Hereby, the blood glucose level can be tracked. Also, users can set

their preferred unit and view a diagram of their past blood glucose levels.

• WeightCaptureActivity: This is the counterpart to BloodSugarActivity for tracking

body-weight.

• QuestionnaireActivity: Hereby, users can list their questionnaires, view its infor-

mation, and answer the questions.

• SettingsActivity: This activity lists the settings of the application. Among other,

users can modify their notifications and export their data.

The user interface of the activities listed above will be introduced in chapter 7. Most

activity-layouts are only designed to display fragments. In these cases, the whole user

interface is implemented within those fragments. This approach is used when the

user interface (UI) needs to be changed frequently [54]. Only MyAccountActivity and

SplashActivity are not designed this way. Figures 5.2 and 5.3 are two parts of one

simplified UML. They show all activities and the fragments they use.

Fragments are also used to provide modularity and extensibility. For example, fig-

ure 5.2 shows that BloosSugarActivity and WeightCaptureActivity are attached to one

fragment only. This could have been done without using any fragments which would

save the expenses of extra variables used for fragment management. However, the two

39

5 Architecture

activities are more extensible this way. If future developing requires a second UI in one

of those activities, it can easily be extended by providing a new fragment.

Figure 5.1 shows how fragments are used. Most activities use the approach in fig-

ure 5.1a. They have a slot for fragments, called FrameLayout. Fragments are switched

within the FrameLayout based on which UI is required. The answer sheets follow another

design, which is depicted in figure 5.1b. Here, the AnswersheetFragment is always used

to display the question. The third fragment is chosen depending on the question type,

e.g., multiple-choice or single-choice. If the head of the study needs a new question type,

the developer can design a new fragment with the proper UI. Then, he can embed it into

the AnswersheetFragment. This makes the questionnaire function more extensible. In

figure 5.3 the relation between answer sheet and question type is shown. Answersheet-

Fragment points to several other fragments. These fragments provide one question type

each.

Depending on how big the questionnaire is, the QuestionnaireActivity must manage

more or less fragments. For each question another fragment is added. This design

allows to use one activity for the entire questionnaire.

40

5.2 Architectural Aspects

Activity

Fragment

Activity

AnswersheetFragment

Questiontype-
MultipleChoice

Fragment

a) Most activities b) Answer sheets

Figure 5.1: Fragments within Activities: This figure introduces how fragments are
used within activities. In most activities one fragment is shown at any point
in time (a). However, when answering questionnaires, an additional fragment
is used to display the answers (b).

41

5 Architecture

AppCompatActivityAppCompatActivity

LoginActivityLoginActivity

RegisterEntryFragmentRegisterEntryFragment

AGBFragmentAGBFragment

FragmentFragment

LoginFragmentLoginFragment

MainActivityMainActivity

StudiesActivityStudiesActivity

TaskListFragmentTaskListFragment

MainOverviewFragmentMainOverviewFragment

MainStatisticsFragmentMainStatisticsFragment

StudyListFragmentStudyListFragment

StudyOverviewFragmentStudyOverviewFragment

MyAccountActivityMyAccountActivity

Figure 5.2: Activities and Fragments: This picture shows the application’s activities
and the associated fragments. This is the first part of a simplified UML. For
the second part see 5.3

42

5.2 Architectural Aspects

AppCompatActivityAppCompatActivity FragmentFragment

QuestionnaireActivityQuestionnaireActivity

BloodSugarActivityBloodSugarActivity

WeightCaptureActivityWeightCaptureActivity

SettingsActivitySettingsActivity

AnswersheetFragmentAnswersheetFragment

QuestionnaireOverviewF.QuestionnaireOverviewF.

QuestionnaireListF.QuestionnaireListF.

BloodSugarFragmentBloodSugarFragment

WeightFragmentWeightFragment

SettingsListFragmentSettingsListFragment

NotificationDisplayNotificationDisplay

QuestiointypeSingleChoiceQuestiointypeSingleChoiceQuestiontypeTextDateQuestiontypeTextDateQuestiontypeTextStringQuestiontypeTextStringQuestiontypeTextAreaQuestiontypeTextAreaQuestiontypeSliderQuestiontypeSliderQuestiontypeActivityQuestiontypeActivity

SplashActivitySplashActivity

QuestiontypeMultipleChoiceQuestiontypeMultipleChoice

Figure 5.3: Activities and Fragments: This picture shows the activities and their frag-
ments. This is the second part of a simplified UML. For the first part see
5.2

43

5 Architecture

5.3 Application Process

One of the requirements presented in chapter 4 is that users need an account to use the

application. Therefore, the user will be prompted to log in when he opens the application

for the first time. If he does not have an account yet, he needs to create one. Even

though it is a requirement for the application to work without an active internet connection,

the log in screen will inevitably need one. Be it logging in, resetting the password, or

creating a new account - all of these actions require contacting the backend server. If

the device is not connected, the user will be informed. Then, he can retry at any time.

The user can also choose a language before logging in. This function was integrated into

the login screen because, at this point of the process, no data has yet been downloaded.

If the language could be changed after logging in, two scenarios would be possible:

• The device saves only one translation at any time. In this case, all data needs to be

downloaded again. This requires internet connectivity. Each time the user switches

the language, all data is downloaded anew. Hereby, resources of smartphone and

backend server are not used efficiently.

• The language can easily be switched without needing internet connectivity. This is

the case because all translations are already saved on the local device. For this to

be possible, the application needs to make each request several times for each

language. Moreover, each translation means additional data to be saved on the

device.

Since both scenarios are not resource efficient, users can change the language only

before logging in. This does not require additional memory or backend requests. After

users click to sign in, only one language package will be downloaded. This might be

best solution since, in daily use, it is unlikely for users to require switching the language.

However, choosing a language at all should not be required in most cases. The default

language will be the one set by the operating system. If the application does not have

the respective language, the standard language is English. Hence, for most people the

right language will be already preset. Therefore, users will not be prompted to choose

44

5.3 Application Process

a language before logging in, but they can still change it, for example, if their mother

language is not provided and they prefer rather German then English.

The general procedure, while using the application, is shown in figure 5.4. When

the application is opened it first checks whether the user is logged in or not. If he is, he

will be forwarded to the main screen where he can access the whole functionality of the

application. In this case an internet connection is not required anymore. After login, the

application remembers the user. This only changes when he explicitly signs off, or his

data will be deleted for other reasons, e.g., when the user uninstalls and re-installs the

application.

The user needs a working e-mail address to register. After his registration, he will

be prompted to verify his address by following a link. He also needs this address if he

forgets his password and needs to reset it.

The main screen is provided by the MainActivity class. As shown in figure 5.5 the main

screen provides a navigation, for the user to access most of the functionality. Some of

the functions presented in figure 5.5 are introduced shortly in the following:

• View Statistics and Feedback: The main screen has three tabs. On the first

tab users can view their feedback. This functionality is important. Therefore, it is

located on the main UI where it is difficult to overlook. One the third tab, he can

view statistics about his tracked data on one page.

• View Tasks: The second tab of the main screen contains the user’s tasks. He

may need to track his blood sugar level or answer a questionnaire. These and all

other tasks, he should complete over the day, are listed here. If he selects a task,

he will be forwarded to the activity where he can complete it. After completion the

task disappears from the list. However, if the user, for example, needs to track his

blood glucose level three times a day, the task is not shown three times. A counter

indicates how often a task needs to be completed. This counter is then decreased

until it reaches zero. Then, the task disappears from the list.

45

5 Architecture

Have
Account?

Login

Create Account

Accept Terms of
Use

Enter
Credentials
and accept

Forgot
Password?

Request new
Password

Login
successful?

Use
Main Screen

no

yes

no

no

Registration complete.
The user will receive an e-mail

with a verification link.

App opened by User

The User will receive an e-mail
to reset his password.

Enter Username
and Password

yes

yes

Already
Logged in?

Login screen opened

no

Main Screen
opened

yes

Figure 5.4: Application Process: This process shows, how the application is used.
First the user needs to authenticate. Afterwards, he will be forwarded to
the main screen where the whole functionality of the application can be
accessed.

46

5.3 Application Process

• Manage Studies: This includes viewing information of a study, subscribing, un-

subscribing, viewing one’s invitations, and accepting them. To subscribe to a new

study, the device requires a connection to the internet. This is the case, because

additional data needs to be downloaded from the backend server. Also, the user

sometimes needs to authenticate by providing the subscription password. This

also requires a connection to the backend.

• Answer Questionnaires: To answer a questionnaire the user can navigate to

the questionnaire view, where all his questionnaires are shown. When selecting

one, a description will be shown as well as its schedule. By clicking a button, the

user can start answering the questions. He can also answer a questionnaire by

selecting the respective task, as mentioned above.

• Enter Weight and Blood Sugar Level: For these functions two separate screens

are provided. One for tracking the user’s weight and one for his blood sugar level.

On both screens a diagram of the past days will be shown to the user where he

can see his progress.

• Track Activities: For tracking activities, a standard questionnaire is offered. It

is not listed in the questionnaire section. The user can access this function via

navigation menu.

47

5 Architecture

Use Main Screen

Use
Navigation

Manage
Studies

OR

Answer
Question-

naires

Open
Settings

Open
MyAccount

Enter
Weight

Enter Blood
Sugar Level

Track
Activities

OR

Close
Application

Sign Off

View
Statistics and

Feedback

View
Tasks

Back to
Main Screen

Entered
Main Screen

Figure 5.5: Main Screen Process: This is a sub process of figure 5.4. It shows how
the user can access the functionality of the application. It is a simplified
diagram since most of the functionality is presented as a sub process.

48

5.4 Local Data Model

5.4 Local Data Model

Data downloaded from the server must be stored on the device. This is necessary, for

the application must work without internet connection. Also, a local database enhances

the speed of the application immensely and saves resources such as bandwidth and

computation. Hence, a local storage model has been designed for the application.

Data is stored on the device using SQLite [55]. It is downloaded from the backend

server after the user successfully logs in. This can take some time, but it is important for

the application to download the data all at once. Otherwise, it cannot be guaranteed that

the application works without internet. Hence, once the user logs in and is forwarded to

the main screen, all necessary data is already stored on the device.

Figure 5.6 shows a part of the data model used. The tables were all realized us-

ing C# objects. These objects can be stored in the local database by SQLite. Most

object attributes are named after their counterparts at the backend server (see section

5.6).

The table Task is not a backend entity. For each task the user has, a new task ob-

ject is created. Afterwards, these objects are instantly saved in the database. As a

result, they only need to be computed once. The questionnaire’s schedule is decisive

for the computation of tasks. Sometimes, this schedule can also be set by the user

himself. When the user closes and opens the application, the tasks are fetched from the

database, instead of being computed again.

Figure 5.7 shows another part of the data model. The two tables BloodSugarMeasure-

ment and WeightMeasurement are data structures, in which the application saves the

blood sugar level and the weight, submitted by the user. Data of the table Invitations,

on the other hand, is retrieved from the backend server. For each invitation the user

has, one entry is added. These entries are fetched when the user wants to view his

invitations. A separate class provides all required methods to fetch the data and return it

in the form of C# objects.

49

5 Architecture

QuestionnaireQuestionnaire

id : intid : intPSPS

name : stringname : string

title : stringtitle : string

origin : stringorigin : string

is_active : boolis_active : bool

can_use : List<Sensor>can_use : List<Sensor>

is_onetime : boolis_onetime : bool

is_multiple : boolis_multiple : bool

is_filled_out : boolis_filled_out : bool

is_schedule_changeable : boolis_schedule_changeable : bool

introtext : stringintrotext : string

description : stringdescription : string

outrotext : stringoutrotext : string

schedule :
List<QuestionnaireSchedule>
schedule :
List<QuestionnaireSchedule>

StudyStudy

id : intid : intPSPS

title : stringtitle : string

description : stringdescription : string

studyID : intstudyID : int

name : stringname : string

title : stringtitle : string

starts_at : longstarts_at : long

accesstype : stringaccesstype : string

ends_at : longends_at : long

is_running : boolis_running : bool

is_private : boolis_private : bool

relation : intrelation : int

AnswersheetInternalAnswersheetInternal

id : intid : intPSPS

collected_at : longcollected_at : long

sensordata :
List<Sensordata>
sensordata :
List<Sensordata>

questionnaire_id : intquestionnaire_id : int

answers : List<Answer>answers : List<Answer>

locale : stringlocale : string

client : MyClientclient : MyClient

QuestionnaireElementQuestionnaireElement

id : intid : intPSPS

associatedQuestionnaireID :
int
associatedQuestionnaireID :
int

content : ElementContentcontent : ElementContent

name : stringname : string

elementtype : stringelementtype : string

actuality : DateTimeactuality : DateTime

QuestionnaireFeedbacksQuestionnaireFeedbacks

questionnaire_id : intquestionnaire_id : intPSPS

answersheet_id : longanswersheet_id : long

collected_at : intcollected_at : int

feedbacks : List<Feedback>feedbacks : List<Feedback>

TaskTask

id : longid : longPSPS

img : intimg : int

title : stringtitle : string

taskType : enumtaskType : enum

questionnaireID : intquestionnaireID : int

amount : intamount : int

dueToStart : DateTimedueToStart : DateTime

dueToEnd : DateTimedueToEnd : DateTime

Figure 5.6: Data model (part 1): This is one section of the tables used to store the
relevant data on the device. Task is a local object. Except for Task, all other
tables in this figure are modeled after the objects the backend server sends.

50

5.5 Background Threads

BloodsugarMeasurementBloodsugarMeasurement

collected_at : longcollected_at : longPSPS

value : doublevalue : double

InvitationInvitation

id : intid : intPSPS

email : stringemail : string

model_type : stringmodel_type : string

expires_at : longexpires_at : long

model_id : intmodel_id : int

uri : stringuri : string

custom : Customcustom : Custom

WeightMeasurementWeightMeasurement

collected_at : longcollected_at : longPSPS

value : doublevalue : double

Figure 5.7: Data model (part 2): This is another part of the tables used to store the
relevant data. Here Invitation is modeled after the data received from the
backend. The two remaining tables are only available on the local device.

5.5 Background Threads

While the application is used, a thread runs in the background. After login, this thread is

responsible for most communication between the device and the backend server.

It positively affects the usability of the application if the backend communication is

done in the background. This way, the user does not have to wait for data exchange nor

be bothered by messages concerning the internet connection either. If, at the present

time, no internet connectivity is available, the background thread queues the request

and retries later. The thread has two queues:

• Retrieve queue: This queue contains tasks for updating data stored on the device,

e.g., studies, invitations, and questionnaires. These tasks keep the database up to

date and are completed once a day.

• Deliver queue: Here, requests are queued for uploading the user’s data. For

example, if the user fills out a questionnaire, the answers need to be submitted to

the backend. Since the application must work without internet, a task is produced

51

5 Architecture

and queued here. As soon as the device has internet connectivity, the queued

data will be sent to the server.

All of these tasks are also stored in the database. After a task is completed, the database-

entry is deleted. These database-entries are important since the user can forcefully

close the application at any time. By that, the application context is deleted together with

outstanding tasks. For these cases, the outstanding tasks need to be backed up. Hence,

when the application is opened again the outstanding tasks can be fetched from the

database and enqueued again. This way, data does not get lost.

The background thread is designed to prioritize deliver tasks higher than retrieve tasks.

This is the case since retrieve tasks request data that changes rarely and cannot get lost.

Those tasks are mainly used to keep the database up to date. Delivery tasks, on the

other hand, contain user data that could get lost. Hence, it should be sent to the backend

as soon as possible. An example is if the user forcefully signs off while he does not have

a working internet connection. Then, his delivery data, queued in the background thread,

will be deleted. The answers of a questionnaire could be a part of this data. Afterwards,

when the user logs in again, he would have to fill out this questionnaire once more. The

aim of prioritizing the delivery queue is to make such cases as unlikely as possible.

5.6 Restful-API Back End

The backend server delivers all important data and stores the users’ input. It is a

RESTful-API programmed and maintained by Johannes Schobel. It is written in PHP

and uses a MySQL database. In the following, the interface of the backend server, used

by the application, will be introduced.

To contact the backend server, an HTTPS request is sent by the application to the

respective URL. Depending on which function is requested the proper HTTP request

method needs to be used, e.g., GET or POST. Additional data must be sent to the server

within the request body formatted in JSON. The server sends its data formatted in JSON,

52

5.6 Restful-API Back End

also.

The API documentation provides information about the various methods and how to

invoke them. It lists all methods and delivers the following information:

• URI path: Each method has a unique combination of a URI path and an HTTP

request method. For example, the URI path for registering is: "/api/v1/auth/register"

[47].

• HTTP method: Various HTTP methods are used, e.g., GET, POST, DELETE

and PATCH. GET is used for requests without request body such as "Get a

Questionnaire" [47]. For others, a request body is required since they either want

to send data to the backend (POST) or change existing data (PATCH).

• Authentication: Mostly, backend methods can only be invoked when authenti-

cation is provided. An authentication token (xyz) can be requested by using the

login method. Then, this token must be added to the request URI by adding

"?token=xyz". When the backend receives this request, first, the token is checked.

If the check succeeds, the client receives the requested data. If not, he receives

an exception.

• Request Body: As mentioned before, some requests contain a request body

formatted in JSON. The documentation informs how the respective JSON object is

structured.

• HTTP Status: If something goes wrong, e.g., when the URI is wrong, the authen-

tication fails, or the request body is wrongly formatted, a negative HTTP status

message will be sent to the client. If everything went well, the client receives a

positive HTTP status message.

53

6
Selected Implementation Aspects

This chapter presents the implementation of some parts of the application. First, it is

shown how notifications are implemented. Afterwards, it is introduced how threads are

used in this application. Next, the backend communication is presented with an example.

Finally, the implementation for both, questionnaire management and basic functionality,

is introduced.

6.1 Notifications

Questionnaires can have schedules, and notifications are used to enforce these sched-

ules. This way, the user does not have to worry about forgetting to fill out a questionnaire

in time. If the user is logged in, he does not even have to open the application to check

whether he needs to fill out questionnaires. He can rely on the notification function to

remind him. That is why it is advised to the heads of studies to determine a schedule

for their questionnaires. When a notification appears, and the user clicks it, he will be

forwarded to the respective questionnaire or activity.

Notifications are local and are computed directly after login. For that, the schedule

of each questionnaire is evaluated, and a proper notification set up.

To schedule a notification, first, a NotificationTask object is created for each. Figure 6.1

shows the attributes of the said object. These attributes stand for the following:

• schedule: This variable determines the exact date and time.

55

6 Selected Implementation Aspects

NotificationTaskNotificationTask

id : intid : intPSPS

cycleInTicks : longcycleInTicks : long

scheduleChangeable : boolscheduleChangeable : bool

additionalInformation : intadditionalInformation : int

type : enumtype : enum

title : stringtitle : string

message : stringmessage : string

icon : inticon : int

isNotificationActive : boolisNotificationActive : bool

schedule : DateTimeschedule : DateTime

Figure 6.1: NotificationTask: This picture shows the data structure for a notification
task. It is a database table and used to handle all notifications.

• scheduleChangeable: If the study director allows for the schedule to be changed

by the user, this variable is set to true.

• cycleInTicks: Some questionnaires need to be answered regularly. For example, if

a questionnaire needs to be filled out every week, a seven-day cycle is determined

by this variable.

• type, additionalInformation: There are different types of notifications. For exam-

ple, a notification can remember the user to track his blood sugar level or to fill out

a questionnaire. With the attribute Type the program can differentiate between all

different notification types, and the NotificationTask object can therefore be used for

all notifications. Thereby, the notification model is more extensible. If another kind

of notification is needed in the future, a new type can be declared. If the notification

references a questionnaire, this information is saved in additionalInformation.

• title, message, icon: These variables contain the text and the reference to the

image shown by the notification in the UI.

56

6.1 Notifications

• isNotificationActive: If the notification is already active, this variable is set to

true.

This information will be saved in the database for further handling of all notifications,

e.g., if the user wants to view the notifications of a questionnaire. In most cases, if a

NotificationTask needs to be fetched from the database, it is searched by providing the

attributes type and additionalInformation.

Finally, the NotificationTask objects can be used to schedule the respective notifications.

Listing 6.1 shows a code excerpt of the scheduling process. First, an intent is created

(myIntent). This intent receives all information needed, such as the notification title,

message, and icon. The type of the intent is NotificationScheduler, which inherits from

Android’s BroadcastReceiver. This is the class that will ultimately build the notification.

Then a PendingIntent [56] is initialized that is later used to schedule the notification.

Considering, that more than one notification might be scheduled, the ability it is required

to distinguish between several PendingIntents. This is important for various reasons. For

example, if the user wants to deactivate a notification. In this case, the PendingIntent

needs to be found first. For this reason, the request code of the PendingIntent is set to

be the id of the NotificationTask (see figure 6.1). This id is assigned by the database, is

auto incremental, and unique.

The AlarmManager [57] is used to schedule notifications at a specific point in time.

To determine the correct time, the method SystemClock.ElapsedRealtime() is used,

which returns "the time since the system was booted" [58]. Then, a previously calculated

number of milliseconds is added, and thereby the correct time for the notification is set.

1 int requestcode = task.id;

2 Intent myIntent = new Intent(context, typeof(NotificationScheduler));

3 myIntent.PutExtra("TITLE", task.title); (...)

4 PendingIntent pendingIntent = PendingIntent.GetBroadcast(context,

requestcode, myIntent, 0);

57

6 Selected Implementation Aspects

5 DateTime time = task.schedule;

6 long time_difference = (time.Ticks - DateTime.Now.Ticks) /

TimeSpan.TicksPerMillisecond;

7 AlarmManager manager =

(AlarmManager)context.GetSystemService(Context.AlarmService);

8 if (task.cycleInTicks == -1)

9 {

10 manager.Set(AlarmType.ElapsedRealtimeWakeup,

SystemClock.ElapsedRealtime() + time_difference,

pendingIntent);

11 }

12 else

13 {

14 manager.SetRepeating(AlarmType.ElapsedRealtimeWakeup,

SystemClock.ElapsedRealtime() + time_difference,

task.cycleInTicks, pendingIntent);

15 }

Listing 6.1: This is a code excerpt of the method that schedules notifications.

Notifications are represented by a NotificationTask object (here called task).

6.2 Threads

In chapter 5.5 one use of background threads in this application was introduced. In the

following an insight into the implementation will be given.

Background threads are used all over the application. This is done every time something

should be processed in the background, so that the user interface can still be used. An

example for that is the login process. While logging in the user interface should not

freeze since it would seem like the application could have crashed. In this case, it is more

appropriate to show a progress bar. The user sees that it is moving, and a message tells

him that the login process is still being executed. Once the login process is done, the

thread downloading data in the background is merged with the main thread again.

58

6.2 Threads

Listing 6.2 shows the method called after the login button is clicked.

1 private void bLoginClick(object sender, System.EventArgs e)

2 {

3 progress = new ProgressDialog(thisActivity);

4 progress.Indeterminate = true;

5 progress.SetProgressStyle(ProgressDialogStyle.Spinner);

6 progress.SetMessage("Contacting server. Please wait...");

7 progress.SetCancelable(false);

8 progress.Show();

9

10 ThreadPool.QueueUserWorkItem(o => doLogin());

11 }

Listing 6.2: An example for outsourcing code into a background thread.

First, the progress bar is set up and started. Then the method doLogin() is called

as a background thread. Listing 6.3 shows how the method doLogin() lets the thread

return to the main thread. For that, it calls startMainActivity() by using Android’s method

RunOnUiThread(). Then, startMainActivity() deactivates the progress bar and fulfills its

purpose. For this to work, the progress bar object needs to either be global or passed

on from method to method. In this case, it is a global object within the class.

1 public void doLogin(){

2 ...

3 this.Activity.RunOnUiThread(() => startMainActivity());

4 ...

5 }

6 public void startMainActivity()

7 {

8 if (progress.IsShowing) progress.Dismiss();

9 thisActivity.startMainActivity();

10 }

Listing 6.3: A code excerpt that merges the background thread with the main thread.

59

6 Selected Implementation Aspects

Mostly, this kind of threads are used for a short period of time. The thread introduced

in chapter 5.5, which handles the backend communication, on the other hand, runs as

long as the user is logged in. However, it only runs while the application also is running.

This thread sends backend requests or saves them until the device is connected to

the internet. It is initialized every time the MainActivity is, e.g., when the application is

started, and the user is logged in. Listing 6.4 shows the code excerpt to start this thread.

First, a cancellation token is initialized. With this token the thread can be stopped by

the MainActivity. This needs to be done in the sign-off process, for example. Then, the

respective thread class is initialized, and finally the thread is queued. Starting this thread

is done in a similar way to the threads in the example before. Except that the method

Work() will only run if the cancellation token allows it.

1 cts = new CancellationTokenSource();

2 Threadded.InitializeThreadded(this);

3 ThreadPool.QueueUserWorkItem(tok =>

4 {

5 CancellationToken cancelToken = (CancellationToken)tok;

6 while (!cancelToken.IsCancellationRequested)

7 {

8 Threadded.Work(cts.Token, this);

9 }

10 }, cts.Token);

Listing 6.4: This code excerpt starts the thread for the backend communication.

The thread checks whether a new delivery or retrieve task is waiting in the queues to

be executed. When accessing these queues, mutual exclusion is used to prevent data

inconsistency. This is necessary since the user interface and the background thread run

at the same time. When the user completes a questionnaire the creation of a delivery

task is triggered. Therefore, the delivery queue must be accessed. If, at the same time,

this queue is accessed by the background thread, data inconsistency can happen, due

to concurrent access. In listing 6.5 it is shown how mutual exclusion works in Xamarin.

The object deliverQueueLocker, used for the mutual exclusion, needs to be global so it

60

6.2 Threads

can be accessed from everywhere.

1 lock (deliverQueueLocker)

2 {

3 if (deliverQueue.Count > 0)

4 task = deliverQueue.Dequeue();

5 }

Listing 6.5: Code excerpt for accessing a queue with mutual exclusion.

As already mentioned before, delivery queue tasks aim to send data to the backend

server, e.g., the answers of questionnaires. These tasks are stored in a uniform data

structure called DeliveryTask. Listing 6.6 shows this data structure.

1 public class DeliveryTask

2 {

3 [PrimaryKey, AutoIncrement]

4 public long id { get; set; }

5 public string path { get; set; }

6 public string input { get; set; }

7 public BackendMethods method { get; set; }

8 public bool needAuthentification { get; set; }

9 public DeliveryItem type { get; set; }

10 public int additionalInformation { get; set; }

11 }

Listing 6.6: This is an excerpt of the DeliveryTask class which is used to uniformly store

delivery tasks.

The attributes of DeliveryTask are used for the following:

• id: Delivery tasks are stored in the database until they are processed. For that a

unique identifier is required. The two keywords PrimaryKey and AutoIncrement

are SQLite references.

• path: This is the path for the backend request.

61

6 Selected Implementation Aspects

• input: Here the JSON data body is saved.

• method: This attribute defines which HTTP method needs to be used.

• type: With this the delivery task type is set, e.g., answer sheet.

• additionalInformation: If needed, this variable can be used for additional infor-

mation, e.g., the questionnaire id. This can vary for different delivery task types.

The data structure for retrieve tasks is implemented similarly. This design aims to provide

a clearer structure and to make the implementation extensible so that new task types

can be added in the future.

6.3 Backend Communication

The backend communication is done on two layers. On the first layer, the request path is

chosen, and the data is formatted to meet backend requirements. Mainly, this layer is

represented by the DataRetreive class. The second layer handles HTTP requests. It is

represented by the class BackendCommunication. This class initiates HTTP requests

and returns the responses.

In the following the said backend communication is introduced. It will be shown, how

the studies are retrieved from the server. First, the backend path for downloading all

available studies needs to be determined. The API documentation [47] provides this

information: /api/v1/studies.

The documentation also specifies, that this request requires authentication. In this

application, the token is saved using SharedPreferences [59]. In Xamarin this class

is called ISharedPreferences [60], and has - with few changes - basically the same

functionality. First, the token (xyz) is retrieved. Then, the URL path is completed by

adding ?token=xyz.

After the complete request path is available, the data body needs to be prepared.

62

6.3 Backend Communication

It needs to be sent to the backend server as an object formatted in JSON.

In this implementation Json.NET, a Newtonsoft library, is used [61]. With this library it

is possible to serialize a C# object into the JSON notation and de-serialize it back into

a C# object. Listing 6.7 shows how the serialization is done. In this case, settings are

used for the serialization. This is an optional step. Here, they are used because the

object contains attributes, which are unknown to the backend server. They should not be

sent, and to suppress them they are set to null. These serialization settings make sure

those attributes are ignored. If this is not done, the backend server returns an exception,

saying that the request body is not processable.

1 JsonSerializerSettings settings = new JsonSerializerSettings();

2 settings.NullValueHandling = NullValueHandling.Ignore;

3 string jsonData = JsonConvert.SerializeObject(bObj, settings);

Listing 6.7: Json.NET serialization: This is an example for serializing a C# object

(bObj) into a JSON formatted string.

To request all studies the HTTP method GET is used. Hence, a request body is not

needed and is therefore an empty string. When the request path and body are available

the request can be executed by the second layer. For this purpose, the proper method

in the BackendCommunication class is used. Listing 6.8 shows the required code for

sending an HTTP-GET request.

1 client.DefaultRequestHeaders.AcceptLanguage.Add(new

StringWithQualityHeaderValue(LANGUAGE_SET));

2 Uri requestUrl = new Uri(mUrl + path);

3 HttpResponseMessage response = client.GetAsync(requestUrl).Result;

Listing 6.8: HTTP request: This is a code snippet taken from the GET() method of the

BackendCommunication class. First, the language is set. Then, the URI is

created and finally the request is sent by using the method GetAsync(URI)

from the HttpClient library.

63

6 Selected Implementation Aspects

The server reply is retrieved by client.GetAsync(requestUrl).Result (see list-

ing 6.8). Now, the response-object contains the required data, from which the status

message and the response body are extracted. The BackendCommunication class only

handles server-side exceptions and exceptions that happen while attempting to connect.

All client errors are handled by the DataRetreive class. This is done for two reasons.

The first is to strictly separate the HTTP requests and the application logic. Secondly,

because error codes can have different causes in different cases. For example, the

status code 400 can say that the authentication token is expired in one case, while in the

other that no user can be found [47].

A de-serialization method converts the JSON objects, received from the server, into C#

objects. For that, a class must be provided, which is structured the same way the JSON

object is. Listing 6.9 shows a code example for de-serializing a JSON string into an

object. The object bObj is consists of several generic objects nested in one another.

This structure is somewhat complicated, but it has to fit the object structure of the JSON

string received by the backend.

1 public class DeliveryTask

2 List<DataBody<Study>> dataBody = new List<DataBody<Study>>();

3 BackendObject<List<DataBody<Study>>> bObj = new

BackendObject<List<DataBody<Study>>>(dataBody);

4 bObj = JsonConvert.

5 DeserializeObject<BackendObject<List<DataBody<Study>>>>(response.data);

Listing 6.9: Json.NET de-serialization: This is an example for de-serializing a JSON

formatted string into a C# object.

Now, the studies can be extracted from the data structure (bObj) and saved into the

database.

64

6.4 Questionnaire Management

6.4 Questionnaire Management

The class QuestionnaireActivity is used to organize questionnaires. The layout file for

this activity is composed of a Toolbar and a FrameLayout within a LinearLayout. in this

activity the user interface needs to be changed constantly. Therefore, it is managed by

fragments occupying the whole screen. Three fragment types are used:

• QuestionnaireListFragment: This fragment lists all questionnaires the user has.

• QuestionnaireOverviewFragment: Here the information of one questionnaire is

shown, e.g., the description, the schedule, and whether it is a one-time question-

naire or not.

• QuestionnaireAnswersheetFragment: This fragment shows questions and gives

users the possibility to answer them.

The layout of QuestionnaireListFragment is composed of a ListView within a LinearLayout.

This means, the whole fragment is a single listing of items. To fill such a list with content,

an Adapter is needed. Here, the adapter class is called QuestionnaireListAdapter and

it inherits from Android’s BaseAdapter class. It expects a list of questionnaires as

argument. For each entry of this list a new row is created. These rows also need a layout

file to specify the user interface. Figure 6.2 shows how these rows are structured.

Questionnaire Name
Description Line 1
Description Line 2

Figure 6.2: List row: This image shows the layout of list rows in the QuestionnaireList-
Fragment. On the left, a picture is shown. To the right of the picture, the
name and description of the questionnaire are presented by TextViews.

If users click on one of these items, the QuestionnaireListFragment gets covered by the

QuestionnaireOverviewFragment. However, the old fragment still exists since the user

can access it again with the back button. The fragment could also be destroyed and

65

6 Selected Implementation Aspects

recomputed if it is needed again, but it would be less efficient. Instead all fragments are

saved and ordered by sequence. In addition, the fragment currently displayed is saved

in a global variable within the activity.

The activity acts as a communication channel between these fragments. For example,

if a questionnaire is clicked in QuestionnaireListFragment, a global variable, within the

activity, points to this questionnaire. If the user decides to answer the questionnaire,

QuestionnaireAnswersheetFragments need to be created to show the questions. The

QuestionnaireOverviewFragment retrieves the questionnaire id from the global variable

where the clicked questionnaire was saved. Hence, the activity provides shared memory

for the fragments so, they can communicate with each other.

To answer the questionnaire, the questions are retrieved from the database, first. For

each question, a new fragment is created. The questionnaire activity has a counter to

point to the question currently displayed. After the user has answered the question, he

clicks on a button to show the next one. For that, the fragment uses a method called

nextQuestion(), provided by the QuestionnaireActivity. Listing 6.10 shows how this

method can change the user interface.

1 internal void nextQuestion(V4Fragment caller)

2 {

3 Fragment nextFragment = questions[questionNo++];

4 var transaction = FragmentManager.BeginTransaction();

5 transaction.Add(Resource.Id.fragment_container,

nextFragment, "Question" + questionNo);

6 transaction.Hide(caller);

7 transaction.Commit();

8 }

Listing 6.10: Show another fragment: This method shows how to hide the current

fragment and show another one. For this, a FragmentTransaction is

initialized which provides all methods required.

66

6.5 Basic Functionality

When the user is done answering the questions an answer sheet object is created.

Also, a DeliveryTask is created, so the background thread can send the answers to the

backend server (see chapter 6.2).

6.5 Basic Functionality

Tracking blood glucose levels and weight is basic for diabetes therapy. For this rea-

son, these functions were implemented independently from studies and questionnaires.

The objective was, to be able to track this data even if a questionnaire is not provided.

Furthermore, the user should be able to access this functions without searching for

the respective questionnaire first. For those reasons, separate activities were built for

tracking the blood glucose level and weight.

Therefore, if a questionnaire does not exist, the patients may still track this information

and view it in a diagram. In this case, however, the data will not be saved by the backend

server. Nonetheless, a standard study was created on the server for this purpose. It

contains a questionnaire for the blood sugar level, the weight and physical activity. If the

user tracks his blood sugar level, the application tests whether a proper questionnaire

exists. If it does, the data is sent to the backend. If not, it is only saved locally.

6.6 Used Technologies and Frameworks

The application was implemented using Microsoft Visual Studio Enterprise 2017. The

.NET Framework’s version was 4.7.02046. The version of Xamarin that was used was

4.5.0.486 with the Xamarin.Android SDK 7.3.1.2.

67

7
Introducing the Application

This chapter will introduce the application by showing screenshots and explaining how

the user interface works.

7.1 Login

Users can only access the application with a valid user account. After opening the

application for the first time, the screen in 7.1a will be shown to the user. There, he can

decide whether he wants to log in, create a new account or change his password.

By clicking the menu icon in the toolbar, a language can be chosen. Figure 7.1b

shows the languages available. The default language is the one set by the Android OS.

If the respective language is not provided, English is the default.

To register, the user needs a valid e-mail address. After he clicks on Create Account, he

receives an e-mail with a verification link. Only when his e-mail address is verified, he

can use it to log in. Also, a username and password need to be specified for registration.

Figure 7.1c shows a screenshot of the registration process.

69

7 Introducing the Application

(a) First View (b) Change Language (c) Create Account

Figure 7.1: Login and Register: These screenshots show the user interfaces for logging
in, changing the language and registering.

7.2 Main Page

After logging in, the main screen is shown. This screen is depicted in figure 7.2a. The

main screen is composed of three tabs. The overview tab lists information that can be

interesting to the user. The first in the list is a notification for an incoming invitation.

If no invitations are available, this item does not show up. The second one is feed-

back for the user. In this case, it informs him that his blood glucose level is too high.

This feedback is based on his last measurement, which can also be seen below in the list.

The listing also shows how many of tasks the user has. These tasks can be viewed

in detail in the second tab (see 7.2b). There, all tasks are listed, and their schedule is

shown. The first task, for example, is for tracking the physical activity. If the user clicks it,

he will be lead to the respective questionnaire. The number in each task is a counter. It

varies depending on how often a task needs to be completed. In this case, for example,

the blood sugar level needs to be tracked three times. When it is tracked, the counter is

reduced by one until it reaches zero. Then, the task disappears.

70

7.2 Main Page

(a) Overview Page (b) Tasks (c) Statistics

Figure 7.2: Main Screen: These screenshots show the three tabs of the main screen.

Finally, in the third tab, the user can see statistics of his treatment process. The

screenshot 7.2c shows two diagrams. The first one shows the course of the blood

glucose level. The other two lines indicate the range that should not be overstepped. In

the future, additional information can be listed here. This way, the user has a summary

about his treatment.

On the main screen the whole functionality can be accessed. This is achieved by a

navigation menu. This menu is shown in figure 7.3.

71

7 Introducing the Application

(a) Navigation Menu (part 1) (b) Navigation Menu (part 2

Figure 7.3: Navigation Menu: These figures present the navigation menu by which
nearly all features of the app can be accessed.

7.3 Studies

Figure 7.4a shows a screenshot of the frame "All Studies". There, all running studies

are shown to the user. This includes those the user already subscribed to. Studies

marked with a green checkmark are subscribed. When marked with a red lock, they

are unsubscribed and require either a password or an invite to subscribe. All unmarked

studies are free to subscribed to without restrictions. In 7.4b a view is shown where only

subscribed studies are listed. Figure 7.4c lists all invitations.

After clicking a study in figure 7.4 an overview screen is presented (see figure 7.5). This

screen shows information about the study, such as the description, the status, or the

accessibility. When a study is password protected, the user will be prompted to insert it

if he clicks "Subscribe" (figure 7.5c).

72

7.3 Studies

(a) All Studies (b) My Studies (c) Invitations

Figure 7.4: List of Studies: These images show how studies are listed. These studies
are fictional and are only used for testing.

(a) Study Overview (b) Protected by Password (c) Password required

Figure 7.5: Study overview: These screenshots show the overview to studies. To reach
these screens the respective study must be clicked in the user interfaces
shown in figure 7.4

73

7 Introducing the Application

7.4 Questionnaires

Questionnaires are listed similarly to studies (figure 7.6). My Questionnaires (figure

7.6a) lists only those the user can fill out. It is a requirement not to show one-time ques-

tionnaires when they are already filled out. In figure 7.6b the overview of a questionnaire

is depicted. It presents information, such as the description or the schedule. The user

can start answering the questionnaire by clicking the button "Fill Out".

If he does, the questions will be displayed individually. Figure 7.7 shows some questions.

74

7.4 Questionnaires

(a) My Questionnaires (b) Overview

Figure 7.6: Questionnaire listing: These images show how the user’s questionnaires
are listed and how information is displayed.

(a) Question 1 (b) Question 2 (c) Last Question

Figure 7.7: Answer sheets: These screens illustrate single questions and their possible
answers. If the last question is reached, the "Next Question" button becomes
a "Submit" button.

75

7 Introducing the Application

7.5 Basic Diabetes Tracking Functions

Figure 7.8 shows how the user can track his blood sugar level and weight. The past

entries can be viewed within a diagram. Next to the field, in which the user can enter the

current value, he can also choose the unit. This will set the unit globally.

Apart of the blood sugar level and weight, the user can also track his physical activities.

However, this is done by a questionnaire and is similar to figure 7.7.

76

7.6 Settings

(a) Blood Sugar tracking (b) Track Weight (c) New Weight Diagram

Figure 7.8: Blood Sugar Level and Weight: The screenshots (a), (b) and (c) show how
the user can track his blood sugar level and weight.

7.6 Settings

Figure 7.9a shows the settings screen. Users can set their notifications, export their data

and delete their account. In Licenses some links are listed, such as the website where

some of the icons, used in the application, originate [62].

When Export Data is clicked, and the application has the proper permissions, users can

export their data. Figure 7.9b shows that multiple channels can be used to share this

data. A patient can send it via e-mail to his doctor. Figure 7.9c shows how this is done

with Gmail. The user only needs to type in the respective e-mail address. Figure 7.10b

shows an example of how a questionnaire is exported to PDF.

If the application does not have the permission to access the device memory, the user

will be prompted to grant it (see figure 7.10a). When clicking on OK the user is forwarded

to the Android settings.

77

7 Introducing the Application

(a) All Settings (b) Export Data (c) Send via E-Mail

Figure 7.9: Settings: Screenshot (a) shows all settings. The other two show how users
can export their data.

(a) Permission for Export (b) Exported Data

Figure 7.10: Data Export: When the user attempts to export his data, the application
needs memory access (a). Screenshot (b) shows a questionnaire exported
to PDF.

78

7.6 Settings

(a) Notification Schedule (b) Choose a Day

Figure 7.11: Notifications: These screenshots shows the notifications for tracking the
blood sugar level. In (b) a new notification is being added. First, a date for
the notification needs to be chosen. For the continuation see 7.12

Figure 7.11 shows the notifications of a questionnaire. Also, the process of adding a

new notification is shown in the following figures (7.11b, 7.12a, 7.12b). Notifications can

also be altered with a long click. However, some questionnaires have fixed schedules.

The notifications of such cannot be changed.

79

7 Introducing the Application

(a) Choose the Time (b) Choose a Cycle (c) Notification added

Figure 7.12: Notifications: Here the process of adding a new notification, started in
figure 7.11b, is continued. After having chosen a date for the notification, a
time (a) and a day cycle (b) needs to be chosen. A day cycle of 1 means
the notification will be scheduled daily. Screenshot (c) shows that the new
notification is now added.

80

8
Discussion

In this chapter, it is shown whether the requirements were met. Afterward, it is discussed,

what part of the implementation code can be reused for an iOS application.

8.1 Requirements Check

1. Registration within the application: This requirement has been fulfilled. First,

users need to register. Then, they confirm their e-mail address by following the link

they receive after registration. Now, a login is possible, and the application can be

used.

2. The application can be used without internet connection: The application

can be used without internet connectivity with some limitations. First, and most

obvious, the user cannot log in without contacting the backend. Authenticating

and downloading the relevant data can only be done over the internet. After the

login is done the application can mainly be used without connectivity. However,

to subscribe to a new study, the application also needs a working connection.

Moreover, the user cannot change his personal data, like his password, without

internet. In these few cases, the user will be notified that internet is required.

3. Participation at multiple studies is possible: The user can view all active stud-

ies. He can subscribe and unsubscribe if he wants to. After he successfully

subscribed, all questionnaires of the respective study will be downloaded.

4. Studies can have different states: Studies, downloaded from the server, have

a flag for this requirement. The application considers that a study can be private

81

8 Discussion

or public. If it is private, the user is prompted to insert a password if he wants to

subscribe (see chapter 7.3).

5. Invitations to studies are possible: This requirement needs to be met by the

backend. As for the application, the invitations are realized similarly to an e-mail

inbox. The user will be notified on the main screen if he has been invited (see

chapter 7.3).

6. Invitations can be accepted: Invitations can be viewed on an extra screen. By

clicking an invitation, the information of the respective study will be shown, and the

user can accept it. This process is similar to subscribing.

7. Participation in private studies: When attempting to subscribe to a private study,

the user is prompted to insert the respective password. If he does, the subscription

succeeds and the questionnaires are downloaded from the server.

8. Statistical questionnaires can be filled out within a study: With an editor

account, the head of the study can publish new questionnaires. The application

will show these questionnaires to the user, once they are activated.

9. Statistical questionnaires can be extended or changed: This requirement

needs to be met by the backend server. The application can show all questionnaires

provided by the backend.

10. Questionnaires can be deactivated: The application only shows active question-

naires. Hence, deactivated questionnaires cannot be filled out.

11. The questionnaire state can be changed: This requirement has been met. A

one-time questionnaire cannot be filled out more than once.

12. Statistical questionnaires can be filled out in the app: This requirement has

been met (see section 6.4).

13. Synchronization of the results: Data provided by the user is sent to the backend,

as soon as a working internet connection is available (see section 6.2).

14. No initial values: No initial values are shown to the user.

82

8.2 Shared Code

15. Notifications for questionnaires: This requirement has been fulfilled. See chap-

ter 6.1.

16. Notification schedules can be changed: The user can view all schedules and

change them if they are not fixed (see chapter 7.6).

17. Show results in the app: A diagram is plotted to show the history of the blood

glucose level and weight of the user (see chapter 7.2).

18. Export data: The export function creates a PDF containing the relevant data. This

PDF can be shared via e-mail, WhatsApp, and other programs suitable for sharing

PDFs (see chapter 7.6).

19. In-app language settings: Before the user logs in, he can change the language

of the application (see chapter 7.1).

20. Standard studies: This requirement has been fulfilled. A standard study for

tracking the blood glucose level, weight and the activities, is provided (see chapter

6.5).

8.2 Shared Code

Code metrics of the Track Your Diabetes project can be calculated by Visual Studio ([63]).

Figure 8.1 shows the output. At this point, the project has around 6000 lines of code.

As already mentioned in chapter 2.3, Xamarin is a cross platform for application develop-

ment. When implementing the same application for the various operating systems, there

is a section of code that can be shared. How big it is, depends on the requirements of

the application and how they are implemented.

By reviewing the code metrics in detail, the total amount of shared code can be estimated:

• Already shareable: Around 28% (1644 lines) of the code can be shared right

away. This code mainly consists of database objects and database methods.

83

8 Discussion

Figure 8.1: Code Metrics: This shows a small part of the code metrics which are
calculated by Visual Studio.

• Some changes needed: Additional 19.35% (1133 lines) can be shared with

some changes. Some of these methods use the Android context to access Shared-

Preferences. If these few methods are changed to use the iOS or Windows Phone

equivalent, this part of the code can largely be reused, also.

84

9
Summary and Outlook

9.1 Summary

The objective of this master’s thesis was to enhance the quality of life of diabetes patients

by designing an appropriate application, able to improve and support self-health-care

and treatment methods of the diabetes patients.

In short, the application Track Your Diabetes is designed on the one hand to act as a

daily companion for the patients. On the other hand, it can be a valuable help for future

treatments of diabetes patients, as the application is able to collect valuable data by

using mobile crowdsensing.

By collecting data from the patients, who are already working with the application,

researchers can gather large amounts of information about the disease. The so gathered

information can be integrated in their research. There are many benefits in this for

the patients. It could for example improve treatments or give the physicians a better

understanding, how secondary diseases emerge and how they can be prevented.

As an introduction, background information to diabetes was collected and analyzed,

stating the different types of diabetes in medical terms and explaining, what it means

for the patient to suffer diabetes, and what potential difficulties and secondary diseases

might emerge for the patient. Then a summary of mobile crowdsensing was presented,

explaining its advantages and how it allows the patients and the medical researchers

to take advantage of it. Finally, Xamarin, the framework used for implementation, was

85

9 Summary and Outlook

introduced.

The next step was to introduce the related work in this field. The focus was set on

projects, able to support diabetes patients, and such designed for mobile crowdsensing

in healthcare. Many interesting projects were found and introduced in this thesis. One

was Track Your Tinnitus ([10], [11]), a project of the Institute of Databases and Infor-

mation Systems. Track Your Tinnitus uses questionnaires for crowdsensing, collecting

information about tinnitus.

The requirements for this application were elaborated in cooperation with Dr. Rüdiger

Pryss, the supervisor of this work. This requirements specification is presented in this

thesis. One requirement was, that the application needed to work in cooperation with an

existing backend server, therefore had to be accordingly designed and adjusted. The

actual usability of the application had to be considered, also how the data needs to be

stored on the device and last, how to integrate all requirements, while coping with the

Android SDK. Although it was not a formal requirement, it was important, to make the

application extensible for future features or new issues, arising during the process. To

achieve this, the application had to be built in a modular way. The questionnaire sheets

can be viewed as an example. The answer format within the question-view can easily be

replaced by using other fragments.

Finally, the design was implemented. The application was then introduced by showing

screen shots. The last step was to review the requirements specification of the applica-

tion and to check, if everything fits. As the review showed that in fact all requirements

were fulfilled, a prove of the concept was given. Therefore, the feasibility of the idea

behind Track your Diabetes was shown. The Xamarin code was then analyzed, to find

out, how much of it could be re-used for the iOS application.

So far, Track your Diabetes can serve many purposes by publishing the appropriate ques-

tionnaire, then in the future, physicians may be able to deploy their own questionnaires

and send automated competent medical advice to the patient by using the feedback

86

9.2 Future Work

function. The patient could for example be alerted, when his blood sugar level reaches

a critical level, in order to make an appointment with his doctor. This way secondary

diseases could be recognized quite a lot earlier, and therapies for treating these could

be more promising. Patients can use the application on a regular basis to track their

blood glucose level, weight and physical activity. Those who forget to check regularly, will

be notified and urged to do so without delay. At the same time, data about the disease

can be collected in a large-scale manner, if enough people make use of the application.

This is also of considerable value for the doctor as he then can rely on an extensive

documentation of his patients. For this, various studies can be deployed. Also, there

is always the possibility to add new questionnaires, if desired. All data can be used to

assist the work of researchers. Overall, it can to be expected that Track your Diabetes

has the potential to enhance the chances for a better life quality of diabetes patients.

However, further research will be necessary to prove this.

9.2 Future Work

In order to deploy Track your Diabetes, a website should be designed and implemented.

The website is important for the research managers, enabling them to deploy ques-

tionnaires and feedbacks quickly and easily. At present, it is only possible to deploy

such a questionnaire by manually sending the respective requests to the server. For

that the questionnaires must be formatted in JSON, which can become very confusing.

Hence, a web interface with higher usability would be desirable. Another step would

be to implement the application for iOS also. By that, many more users could be reached.

As mentioned in the last section, further research and tests must be done, to check,

whether this kind of diabetes healthcare application can improve the lifestyle and the

health of diabetes patients. Also, a field experiment will have to be done, to see, if the

crowdsensing approach of the application works by testing the quality of the collected

data.

More features can be implemented into the application to make it more complete. If

87

9 Summary and Outlook

diabetes patients have all features they need in one application, it is more likely for them

to use it. And the more users the application has, the more data can be collected for

research. Additional features could be:

• Calorie meter: Proper nutrition is an important part of the diabetes treatment. If the

application would be able to track, what their users eat, the doctors and dieticians

could more easily point out, which habits the patients can improve. Constantly

improving the diet of a diabetes patient can lead to less complications. This function

could already be implemented by providing an appropriate questionnaire.

• Patient education: In the future, the application could have a section, where the

user can educate himself about his disorder, or look something up, if he has further

questions. For this FAQs (frequently asked questions) could be provided.

• Blood glucose meter: A feature could be implemented to connect a blood glucose

meter to the application. Preferably the application would then be able to track the

measured value without further interaction of the user. This would enhance the

usability of the application and is also a good argument for the patient to use it.

• Motivation: A system could be designed for motivating the users to enhance their

diabetes self-care. Users could receive positive feedback, when their self-care

behaviors have improved. If their self-care behaviors have not improved, these

could be motivated by enlighten and advise them of the benefits of good self-care

behavior.

All in all, this is an interesting topic, and it will be exciting, how Track Your Diabetes will

evolve in the future.

88

Bibliography

[1] World Health Organization: Data and statistics. http://www.euro.who.

int/en/health-topics/noncommunicable-diseases/diabetes/

data-and-statistics. (Online, visited 2017-12-08)

[2] Fézer, Z., Kovács, L.: The economic impact of diabetes. In: 2017 IEEE 15th

International Symposium on Intelligent Systems and Informatics (SISY). (2017)

000077–000082

[3] Seuring, T., Archangelidi, O., Suhrcke, M.: "The Economic Costs of Type 2 Diabetes:

A Global Systematic Review". PharmacoEconomics 33 (2015) 811–831

[4] Kelley, H., Chiasson, M., Downey, A., Pacaud, D.: "The clinical impact of ehealth on

the self-management of diabetes: the double adoption of IT and health change".

Journal of the Association for Information Systems 12 (2011) 208–234

[5] Ekroos, N., Jalonen, K.: E-health and diabetes care. Journal of Telemedicine and

Telecare 13 (2007) 22–23

[6] Harno, K., Kauppinen-Mäkelin, R., Syrjäläinen, J.: Managing diabetes care using

an integated regional e-health approach. 12 Suppl 1 (2006) 13–5

[7] Pryss, R., Schlee, W., Langguth, B., Reichert, M.:

Mobile Crowdsensing Services for Tinnitus Assessment and Patient Feedback.

In: 6th IEEE International Conference on AI & Mobile Services (IEEE AIMS 2017),

IEEE Computer Society Press (2017)

[8] Pryss, R., Probst, T., Schlee, W., Schobel, J., Langguth, B., Neff, P., Spiliopoulou, M.,

Reichert, M.: Mobile Crowdsensing for the Juxtaposition of Realtime Assessments

and Retrospective Reporting for Neuropsychiatric Symptoms. In: 30th IEEE

International Symposium on Computer-Based Medical Systems (CBMS 2017),

IEEE Computer Society Press (2017)

89

Bibliography

[9] Pryss, R., Reichert, M., Herrmann, J., Langguth, B., Schlee, W.: Mobile Crowd

Sensing in Clinical and Psychological Trials - A Case Study. In: 28th IEEE Int’l

Symposium on Computer-Based Medical Systems, IEEE Computer Society Press

(2015) 23–24

[10] Pryss, R., Reichert, M., Langguth, B., Schlee, W.: Mobile Crowd Sensing Services

for Tinnitus Assessment, Therapy and Research. In: IEEE 4th International

Conference on Mobile Services (MS 2015), IEEE Computer Society Press (2015)

352–359

[11] Jochen Herrmann: Track your Tinnitus. https://www.trackyourtinnitus.

org/home. (Online, visited 2017-12-10)

[12] Probst, T., Pryss, R., Langguth, B., Schlee, W.: Emotional states as mediators

between tinnitus loudness and tinnitus distress in daily life: Results from the

"TrackYourTinnitus" application. Scientific Reports 6 (2016)

[13] Probst, T., Pryss, R., Langguth, B., Rauschecker, J., Schobel, J., Reichert,

M., Spiliopoulou, M., Schlee, W., Zimmermann, J.: Does tinnitus

depend on time-of-day? An ecological momentary assessment study with the

"TrackYourTinnitus" application. Frontiers in Aging Neuroscience 9 (2017) 253–

253

[14] Probst, T., Pryss, R., Langguth, B., Spiliopoulou, M., Landgrebe, M., Vesala, M.,

Harrison, S., Schobel, J., Reichert, M., Stach, M., Schlee, W.: Outpatient Tinnitus

Clinic, Self-Help Web Platform, or Mobile Application to Recruit Tinnitus Study

Samples? Frontiers in Aging Neuroscience 9 (2017) 113–113

[15] Schlee, W., Pryss, R., Probst, T., Schobel, J., Bachmeier, A., Reichert, M., Langguth,

B.: Measuring the Moment-to-Moment Variability of Tinnitus: The TrackYourTinnitus

Smart Phone App. Frontiers in Aging Neuroscience 8 (2016) 294–294

[16] Arastéh, K.e.a.: Duale Reihe: Innere Medizin. Thieme (2013)

[17] Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology. Saunders (2006)

[18] Howorka, K.e.a.: Funktionelle Insulintherapie:. Springer (1996)

90

Bibliography

[19] Van den Berghe, M.G.: Acute Endocrinology: From Cause to Consequence.

Humana Press (2008)

[20] Jian, A., Xiaolin, G., Jianwei, Y., Yu, S., Xin, H.: Mobile Crowd Sensing for Internet

of Things: A Credible Crowdsourcing Model in Mobile-Sense Service. In: 2015

IEEE International Conference on Multimedia Big Data. (2015) 92–99

[21] Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges.

IEEE Communications Magazine 49 (2011) 32–39

[22] Alsheikh, M.A., Jiao, Y., Niyato, D., Wang, P., Leong, D., Han, Z.: The

Accuracy-Privacy Trade-off of Mobile Crowdsensing. IEEE Communications

Magazine 55 (2017) 132–139

[23] Vergara-Laurens, I.J., Jaimes, L.G., Labrador, M.A.: Privacy-Preserving

Mechanisms for Crowdsensing: Survey and Research Challenges. IEEE Internet

of Things Journal 4 (2017) 855–869

[24] Fiandrino, C., Capponi, A., Cacciatore, G., Kliazovich, D., Sorger, U., Bouvry, P.,

Kantarci, B., Granelli, F., Giordano, S.: CrowdSenSim: a Simulation Platform for

Mobile Crowdsensing in Realistic Urban Environments. IEEE Access 5 (2017)

3490–3503

[25] Hermes, D.: Xamarin mobile application development: cross-platform C# and

Xamarin.Forms fundamentals. Apress (2015)

[26] Panigrahy, N.: Xamarin mobile application development for Android: develop, test,

and deliver fully featured Android applications using Xamarin. Packt Publishing

(2015)

[27] CHRODIS: ABOUT US. http://chrodis.eu/about-us/.

(Online, visited 2017-12-10)

[28] Ruf-Leuschner, M., Brunnemann, N., Schauer, M., Pryss, R., Barnewitz, E.,

Liebrecht, M., Reichert, M., Elbert, T.: Die KINDEX-App - ein Instrument zur

Erfassung und unmittelbaren Auswertung von psychosozialen Belastungen bei

Schwangeren in der täglichen Praxis bei Gynäkologinnen, Hebammen und in

Frauenkliniken. Verhaltenstherapie (2016)

91

Bibliography

[29] Preuveneers, D., Berbers, Y.: Mobile Phones Assisting with Health Self-care: A

Diabetes Case Study. In: Proceedings of the 10th International Conference on

Human Computer Interaction with Mobile Devices and Services. MobileHCI ’08,

New York, NY, USA, ACM (2008) 177–186

[30] Gan, S.K.E., Koshy, C., Nguyen, P.V., Haw, Y.X.: "An overview of clinically and

healthcare related apps in Google and Apple app stores: connecting patients, drugs,

and clinicians". Scientific Phone Apps and Mobile Devices 2 (2016) 8

[31] Al-Taee, A., Al-Taee, A., Muhsin, Z., Al-Taee, M., Al-Nuaimy, W.: Towards

Developing Online Compliance Index for Self-Monitoring of Blood Glucose in

Diabetes Management. In: 2016 9th International Conference on Developments in

eSystems Engineering (DeSE). (2016) 45–50

[32] Winterlich, A., Stevenson, I., Waldren, A., Dawson, T.: Diabetes Digital Coach:

Developing an Infrastructure for e-Health Self-Management Tools. In: 2016 9th

International Conference on Developments in eSystems Engineering (DeSE). (2016)

68–73

[33] Monteith, S., Glenn, T., Geddes, J., Whybrow, P.C., Bauer, M.: "Big data for bipolar

disorder". International Journal of Bipolar Disorders 4 (2016) 10

[34] mySugr GmbH: mySugr. https://mysugr.com/. (Online, visited 2017-11-27)

[35] SocialDiabetes: SocialDiabetes. https://www.socialdiabetes.com/.

(Online, visited 2017-11-27)

[36] mapmydiabetes: mapmydiabetes. http://www.mapmyhealth.co.uk.

(Online, visited 2017-11-28)

[37] OVIVA: OVIVA. https://oviva.com/de/. (Online, visited 2017-11-28)

[38] Diabetes Digital Media: Diabetes Forum. http://www.diabetes.co.uk/.

(Online, visited 2017-11-28)

[39] Gadge, P.: Gadge Diabetes Care. https://play.google.com/store/apps/

details?id=com.gadgesdiabetescare. (Online, visited 2017-11-29)

92

Bibliography

[40] MAZ Digital Inc.: Diabetes Self-Management. https://play.google.com/

store/apps/details?id=com.maz.dsmmag. (Online, visited 2017-11-29)

[41] mEL Studio: My Sugar Diary. https://play.google.com/store/apps/

details?id=com.aiims.mysugardiary&hl=de. (Online, visited 2017-11-28)

[42] Sirma Medical Systems: Diabetes:M. https://www.diabetes-m.com/.

(Online, visited 2017-11-28)

[43] Diabetes Digital Media: Diabetes PA (Diabetes Manager). https:

//play.google.com/store/apps/details?id=com.diabetes.android.

(Online, visited 2017-11-28)

[44] Fahlteich, P.: Diaguard: Diabetes Tagebuch. https://play.

google.com/store/apps/details?id=com.faltenreich.diaguard.

(Online, visited 2017-11-28)

[45] SquareMed Software GmbH: Diabetes Connect. http://www.

diabetesconnect.de/. (Online, visited 2017-11-28)

[46] MedHelp: Sugar Sense. https://itunes.apple.com/us/app/

sugar-sense-diabetes-app-blood-glucose-mgmt/id880725347?

mt=8. (Online, visited 2017-11-29)

[47] Johannes Schobel: API Documentation v1. https://tyt.johannesschobel.

com/dingodocs/v1.html. (Online, visited 2017-12-02)

[48] L Craig, C., Marshall, A., Sjostrom, M., Bauman, A., L Booth, M., Ainsworth, B.,

Pratt, M., Ekelund, U., Yngve, A., F Sallis, J., Oja, P.: International Physical Activity

Questionnaire: 12-Country Reliability and Validity. 35 (2003) 1381–95

[49] Fisher, L., Glasgow, R.E., Mullan, J.T., Skaff, M.M., Polonsky, W.H.: Development

of a Brief Diabetes Distress Screening Instrument. 6.3 (2008) 246–252

[50] Schmitt, A., Gahr, A., Hermanns, N., Kulzer, B., Huber, J., Haak, T.: The

Diabetes Self-Management Questionnaire (DSMQ): development and evaluation

of an instrument to assess diabetes self-care activities associated with glycaemic

control. 11 (2013) 138

93

Bibliography

[51] : Pro ASP.NET MVC 5 platform. Online-ausg. edn. APress, New York (2014)

[52] Google Inc.: App Manifest. https://developer.android.com/guide/

topics/manifest/manifest-intro.html/. (Online, visited 2017-11-29)

[53] Xamarin Inc.: Android.App.ActivityAttribute.MainLauncher Property.

https://developer.xamarin.com/api/property/Android.App.

ActivityAttribute.MainLauncher/. (Online, visited 2017-11-29)

[54] Google Inc.: Fragments. https://developer.android.com/guide/

components/fragments.html. (Online, visited 2017-11-30)

[55] SQLite: SQLite. https://www.sqlite.org/. (Online, visited 2017-12-01)

[56] Google Inc.: PendingIntent. https://developer.android.com/reference/

android/app/PendingIntent.html. (Online, visited 2017-12-03)

[57] Google Inc.: AlarmManager. https://developer.android.com/

reference/android/app/AlarmManager.html. (Online, visited 2017-12-03)

[58] Google Inc.: SystemClock. https://developer.android.com/reference/

android/os/SystemClock.html. (Online, visited 2017-12-03)

[59] Google Inc.: Saving Key-Value Sets. https://developer.

android.com/training/data-storage/shared-preferences.html.

(Online, visited 2017-12-07)

[60] Xamarin Inc.: Android.Content.ISharedPreferences. https://developer.

xamarin.com/api/type/Android.Content.ISharedPreferences/.

(Online, visited 2017-12-07)

[61] Newtonsoft: Json.NET. https://www.newtonsoft.com/json.

(Online, visited 2017-12-05)

[62] Icons8: All the Icons You Need. Guaranteed. https://icons8.com/.

(Online, visited 2017-12-11)

[63] Microsoft: Visual Studio. https://www.visualstudio.com/de/?rr=https%

3A%2F%2Fwww.google.de%2F. (Online, visited 2017-12-08)

94

List of Figures

2.1 "Xamarin libraries bind to native OS libraries"’ [25]. 20

2.2 "Xamarin.Forms architecture with custom renderers" [25]. 20

5.1 Fragments within Activities: This figure introduces how fragments are

used within activities. In most activities one fragment is shown at any

point in time (a). However, when answering questionnaires, an additional

fragment is used to display the answers (b). 41

5.2 Activities and Fragments: This picture shows the application’s activities

and the associated fragments. This is the first part of a simplified UML.

For the second part see 5.3 . 42

5.3 Activities and Fragments: This picture shows the activities and their

fragments. This is the second part of a simplified UML. For the first part

see 5.2 . 43

5.4 Application Process: This process shows, how the application is used.

First the user needs to authenticate. Afterwards, he will be forwarded to

the main screen where the whole functionality of the application can be

accessed. 46

5.5 Main Screen Process: This is a sub process of figure 5.4. It shows how

the user can access the functionality of the application. It is a simplified

diagram since most of the functionality is presented as a sub process. . . 48

5.6 Data model (part 1): This is one section of the tables used to store the

relevant data on the device. Task is a local object. Except for Task, all

other tables in this figure are modeled after the objects the backend server

sends. 50

5.7 Data model (part 2): This is another part of the tables used to store the

relevant data. Here Invitation is modeled after the data received from the

backend. The two remaining tables are only available on the local device. 51

95

List of Figures

6.1 NotificationTask: This picture shows the data structure for a notification

task. It is a database table and used to handle all notifications. 56

6.2 List row: This image shows the layout of list rows in the Question-

naireListFragment. On the left, a picture is shown. To the right of the

picture, the name and description of the questionnaire are presented by

TextViews. 65

7.1 Login and Register: These screenshots show the user interfaces for

logging in, changing the language and registering. 70

7.2 Main Screen: These screenshots show the three tabs of the main screen. 71

7.3 Navigation Menu: These figures present the navigation menu by which

nearly all features of the app can be accessed. 72

7.4 List of Studies: These images show how studies are listed. These

studies are fictional and are only used for testing. 73

7.5 Study overview: These screenshots show the overview to studies. To

reach these screens the respective study must be clicked in the user

interfaces shown in figure 7.4 . 73

7.6 Questionnaire listing: These images show how the user’s question-

naires are listed and how information is displayed. 75

7.7 Answer sheets: These screens illustrate single questions and their pos-

sible answers. If the last question is reached, the "Next Question" button

becomes a "Submit" button. 75

7.8 Blood Sugar Level and Weight: The screenshots (a), (b) and (c) show

how the user can track his blood sugar level and weight. 77

7.9 Settings: Screenshot (a) shows all settings. The other two show how

users can export their data. 78

7.10 Data Export: When the user attempts to export his data, the applica-

tion needs memory access (a). Screenshot (b) shows a questionnaire

exported to PDF. 78

7.11 Notifications: These screenshots shows the notifications for tracking the

blood sugar level. In (b) a new notification is being added. First, a date for

the notification needs to be chosen. For the continuation see 7.12 79

96

List of Figures

7.12 Notifications: Here the process of adding a new notification, started in

figure 7.11b, is continued. After having chosen a date for the notification,

a time (a) and a day cycle (b) needs to be chosen. A day cycle of 1 means

the notification will be scheduled daily. Screenshot (c) shows that the new

notification is now added. 80

8.1 Code Metrics: This shows a small part of the code metrics which are

calculated by Visual Studio. 84

97

Name: Emanuele Giannotta Matrikelnummer: 750755

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Emanuele Giannotta

	Introduction
	Motivation
	Objectives
	Thesis Structure

	Background Information
	Diabetes Mellitus
	Causes
	Diagnosis
	Complications
	Therapy and Long-Term Prognosis

	Mobile Crowdsensing
	Xamarin
	Mono for Android

	CHRODIS PLUS - Joint Action

	Related Work
	Healthcare with Smartphones
	Track Your Tinnitus
	KINDEX-Application
	Insulin Dosage Prediction
	Comparison of Healthcare-Apps
	Compliance Self-Monitoring
	Diabetes Digital Coach
	Big data

	Other Diabetes Apps

	Requirement Analysis
	Functional
	Non-Functional

	Architecture
	Design Objectives
	Architectural Aspects
	Application Process
	Local Data Model
	Background Threads
	Restful-API Back End

	Selected Implementation Aspects
	Notifications
	Threads
	Backend Communication
	Questionnaire Management
	Basic Functionality
	Used Technologies and Frameworks

	Introducing the Application
	Login
	Main Page
	Studies
	Questionnaires
	Basic Diabetes Tracking Functions
	Settings

	Discussion
	Requirements Check
	Shared Code

	Summary and Outlook
	Summary
	Future Work

