
Ulm University | 89069 Ulm | Germany Faculty of
Engineering Sciences,
Computer Science and
Psychology
Institute of Databases and
Informationsystems

Developing an Extendable Process
Engine using Cross-Platform
Technologies
Bachelor Thesis at Ulm University

Submitted by:
Dimitrios Kamargiannis
dimitrios.kamargiannis@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert

Supervisor:
Johannes Schobel

2018

Version February 26, 2018

c© 2018 Dimitrios Kamargiannis

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

Despite the increasing digitization in everyday work and industry, data collection is still

often based on paper-based questionnaires. One of the areas of application where

the disadvantages come to bear are large-scale studies, such as clinical trials. In such

studies, an enormous amount of paper and staff is needed for transcription, which leads

to logistical problems as well as error susceptibility. The reasons why paper-based

questionnaires are still used are often a lack of IT knowledge of the involved, difficult

to use existing software, as well as high costs for the development of new customized

software. The QuestionSys framework aims to solve these problems. It supports all

steps of data collection from the creation of a questionnaire, through its execution on

mobile devices, to the analysis of the collected data. In order to ensure a high degree of

flexibility when creating questionnaires, questionnaires are mapped to process models

which can then be executed by mobile devices.

In the context of this thesis, a lightweight mobile process engine has been developed

that allows to execute the process models of the QuestionSys framework. The focus was

on process execution, support for several operating systems and easy extensibility. For

this purpose, this thesis discusses related work, before the architecture of the engine is

presented on the basis of defined requirements. In the following chapter, parts of the

implementation are explained, which ultimately leads to an outlook.

iii

Acknowledgement

At this point, I would like to thank all those who supported and motivated me during the

preparation of this thesis.

First of all I would like to thank my parents who made it possible for me to study at all.

In addition to my friends and my girlfriend, I would like to thank my two fellow students

Philipp and Robin, who have spent the entire course of their studies with me.

Special thanks also go to my supervisor Johannes Schobel, who was always there to

help me with questions during the project as well as this thesis.

v

Contents

1 Introduction 1

1.1 Objective . 2

1.2 Outline . 2

2 Fundamentals 5

2.1 QuestionSys Framework . 5

2.2 Process Model . 7

3 Related Work 11

3.1 jBPM . 11

3.2 MARPLE . 13

3.3 WOtAN . 14

3.4 Discussion . 15

4 Requirements 17

4.1 Functional Requirement . 17

4.2 Nonfunctional Requirements . 18

5 Concept & Architecture 21

5.1 Overall Concept . 21

5.2 Main Unit . 24

5.3 Runtime Manager . 25

5.4 Gateway Components . 25

5.5 Executable Components . 26

5.6 Logging . 26

5.7 Results . 27

6 Implementation 29

6.1 Ionic 2 Framework . 29

6.2 Implementation of Selected Components 31

vii

Contents

7 Summary 51

7.1 Outlook . 52

viii

1
Introduction

Mobile devices such as smartphones or tablets are increasingly represented in society

and indispensable for many [1]. These products are in fact so popular that even com-

panies like Amazon have begun to sell their own products, even though this was not

part of their market. According to a survey, 48% of internet usage in Germany in 2016

is made up of smartphones and tablets [2]. In 2013, the same devices accounted for

only 18% of internet usage in Germany [2]. Considering these huge increases, it is no

surprise that more and more companies are beginning to integrate mobile devices into

their daily work. Many companies even have their own application and more than half of

the employees surveyed in [3] work at least partially on mobile devices.

Companies often use mobile devices to collect required data directly from the customer

and then initiate immediate business processes. A very common example is, waiters in

restaurants or coffee shops, who use their smartphone to take orders. This allows the

responsible staff to process the order immediately, without having to wait for the return

of the waiter. The collection of data is an important activity for many companies from

various fields and is even relevant within a company (job satisfaction surveys, etc.).

Although mobile applications already support a number of business activities, paper-

based questionnaires are often used in areas where more complex data collections

methods are required (e.g., clinical trials) [4]. In this type of questionnaire, a quick

evaluation as well as the correct completion of the questionnaire is of great importance

[5]. Futhermore, such questionnaires are frequently changed and must therefore remain

adaptable [4]. However, paper-based questionnaires can seldom meet these criteria,

and may even lead to further disadvantages. This kind of questionnaires can require

enormous resources and space, especially in large-scale studies [6]. The collected

1

1 Introduction

data must then often be transferred to a computer for analysis [7], which can lead to

transcription errors and, in the worst case, jeopardizes the validity of the results of a

study.

Alternatively, there are some questionnaire systems on the market, that often do not

support complex execution logic or require experts to make appropriate adjustments.

To solve this and the problems mentioned above, the University of Ulm is currently

developing the QuestionSys framework. This framework should make it possible to

create, deploy, execute, evaluate, and archive questionnaires. The peculiarity of it is that

questionnaires are mapped to process models. Therefore, a process engine is needed

to execute them. The questionnaires should mainly be executed on mobile devices.

Additionally, because operating systems of mobile devices differ [8], a cross-platform

solution is desirable.

1.1 Objective

The goal of this bachelor thesis is the planning and development of a lightweight process

engine using cross-platform technologies, so that the engine can be embedded in an

application designed for mobile devices. The developed engine should be able to execute

every well-formed process model created by the QuestionSys framework. In addition,

questionnaires with complex execution rules are to be supported, with which the further

course can be treated individually, based on the previous answers of the user. The

collected data during runtime should be organized and communicated to the rest of

the application via an API (Application Programming Interface) upon completion of a

questionnaire. Additionally, as the QuestionSys framework is constantly evolving, certain

parts of the developed engine should be easily extendable and exchangeable.

1.2 Outline

Since this thesis is about the development of the process engine, it primarily deals with

the conception, implementation and challenging aspects of the process engine.

2

1.2 Outline

First, Chapter 2 covers the basics of understanding this thesis. The QuestionSys

framework is explained in more detail in Section 2.1, before discussing process models

in Section 2.2. In Chapter 3, related work is presented and discussed. Subsequently,

Chapter 4 defines the requirements for the engine to be developed, which are divided into

functional (Section 4.1) and non-functional (Section 4.2) requirements. Next,

the developed concept and architecture are presented in Chapter 5, beginning with the

overall concept of the developed engine (Section 5.1). Then, Section 5.6 discusses the

concept of logging and Section 5.7 the results, that reflect the data collected at runtime.

In the following Chapter 6, the used framework is discussed and essential parts of the

implementation are presented. Finally, the findings of this thesis are briefly summarized,

followed by an outlook on future meaningful extensions of the engine developed (Chapter

7).

3

2
Fundamentals

2.1 QuestionSys Framework

The QuestionSys project was launched in 2013 at Ulm University [9]. The aim of this

project is to eliminate the problems mentioned in Chapter 1, and to allow experts from

different fields (e.g., medicine, psychology), without programming skills, to create com-

plex digital questionnaires. The QuestionSys framework is designed to support the entire

lifecycle of a digital questionnaire, seen in Figure 2.1 [10].

Questionnaire
Lifecycle

Creation

Deployment

Execution/Data Collection

Evaluation & Analysis

Archiving & Versioning

Figure 2.1: Lifecycle of a Digital Questionnaire

A questionnaire must first be created, before it can be deployed to different devices

(e.g., mobile devices). There, the questionnaire can then be instantiated and executed.

Subsequently, the data collected by the questionnaire can be evaluated and analyzed.

Finally, the collected data can be versioned and archived [10].

The QuestionSys framework uses a process-oriented approach , which maps a question-

5

2 Fundamentals

naire to a process model [11]. This allows the questionnaires to be executed on different

devices by a process engine. Using a lightweight mobile engine, like the one developed

in this thesis, questionnaires can also be executed on mobile devices.

The different phases that a questionnaire goes trough, are supported by the Question-

Sys framework through three different components (Configurator, Server, Client). How

these components work together is shown in Figure 2.2. The individual components are

explained in more detail below.

Con�gurator

Server
Clients

Creation Deployment

Execution/
Data Collection

Archiving &
VersioningEvaluation &

Analysis

Figure 2.2: Overview of the QuestionSys framework

2.1.1 Configurator

The configurator is responsible for the creation of the questionnaires. Questionnaires

can be created by linking available elements via drag and drop. The way they are linked,

defines the way the questionnaire is executed.

So far, questionnaires typically consist of several pages, containing different types of

questions as well as headlines and texts. Certain elements (gateways) can be used to

alter the execution logic, depending on already given answers.

6

2.2 Process Model

The questionnaires created with the configurator, can then be exported as a process

model and sent to the server.

2.1.2 Server

The server stores the questionnaires created by the configurator. These questionnaires

can then be downloaded by clients. Additionally, the collected data can be uploaded

from the clients to the server for archiving and further analysis.

2.1.3 Client

The client is responsible for the execution of the questionnaires generated by the

configurator, and thus for the data collection. Questionnaires can be obtained from

the server, and collected data can be uploaded to the server using an API. A mobile

application has been developed, which uses the engine developed in the context of this

thesis, to execute the obtained questionnaires. The presentation of the questionnaires

as well as the interpretation of the execution logic is done completely by the engine. The

collected data can then be transferred from the application to the server.

2.2 Process Model

Every service from the preparation of a meal, to knowledge-intensive tasks such as the

treatment of a patient can be a business process. A business process can consist of pure

online or real services or, as usually, a combination of both [12]. Business processes

can be defined in a modeling language (e.g., BPMN 2.0) and implemented, so that they

can be executed by a business process engine [12]. Modeling languages usually allow a

variety of ways to design a business process. Since it is not necessary to know every

design possibility of such a model, only necessary parts are discussed below.

A process model is a graph-based representation of a business process. The Ques-

tionSys framework is using a block structured approach to map the questionnaires on

7

2 Fundamentals

(cf. Figure 2.3). The presented process model has not been designed with a particular

modeling language and contains only elements that are relevant in the context of this

thesis, except for the cigarettes and alcohol elements that represent collected data.

Page Intro Page Drugs

Page
Cigarettes

Page
Alcohol

Page Outro

Start Node Activity

AND-Split

XOR-Split XOR-Join

AND-Join

Cigarettes Alcohol

yes

yes

no

no

Block

End Node

Figure 2.3: Questionnaire as a Process Model after [4]

Block Structured:

Every process model of the QuestionSys framework is block structured. This means that

every process model has exactly one starting and one ending node. In addition, each

block must be free of overlaps. That means, a block that begins, for example, with a

XOR-split must also end with a XOR-join (i.e., well-formed).

Nodes:

There are three different types of nodes. Start nodes that designate the beginning

of every process model and End nodes that describe the end accordingly. Every other

node represents some kind of activity that needs execution. In the context of this thesis,

this nodes contain data representing a question that has to be answered or a text to be

presented. Start nodes have always only one outgoing edge, while End nodes have

only one incoming edge. Nodes representing activities have one outgoing as well as

one incoming edge.

Edges:

In addition to nodes, there are edges that are responsible for the control flow. Edges are

directed and always connect two elements together. This way, an execution order can

be set. This also means that if an edge connects node A to node B, node B can not be

8

2.2 Process Model

executed until node A has finished.

Gateways:

Gateways are elements of the process model that influence the execution logic, by

making the further course dependent on certain conditions. Three different types of

gateways are used in the context of this thesis (AND, XOR and LOOP). Every gateway

consists of two parts, the split element and the corresponding join element. Every

split element starts a new block while every join element closes the last started

block, as seen in Figure 2.3.

The above elements define a tool kit, that makes it possible to design an infinite number

of different process models. In the context of this thesis the different process models

represent different questionnaires. Using this paradigm when creating a questionnaire

allows a process engine to execute it.

9

3
Related Work

In this chapter related work is presented, which also deals with mobile process execution.

Section 3.1 deals with a process engine implemented in Java, with which various

Process Model Notations can be integrated. MARPLE (Section 3.2) provides a Process

Management System that enables the execution of process models on mobile devices.

Finally, in Section 3.3 WOtAN is presented, which is able to execute and analyze

ADEPT-based process models.

3.1 jBPM

jBPM is a flexible Business Process Management Suite designed to bridge the gap

between business analysts and developers [13]. jBPM’s core is a lightweight, extendable

workflow engine written in pure Java, which allows execution of process models using

the latest BPMN 2.0 specification [13]. In this case, extendable means that the engine

provides a generic Process Execution component that enables other Process Model

Notations (e.g., BPEL) to be integrated [14]. On top of the engine, this suite offers support

for graphical creation of business processes, as well as monitoring and management of

the process models and instances.

To interact with the process engine, it is necessary to set up a session as shown in

Figure 3.1. Sessions need a reference to a Knowledge Base, which contains all the

relevant process definitions. Therefore, a Knowledge Base has to be created first, before

setting up a session. This session can then be used to start executing processes,

creating a new process instance each time a process is started.

11

3 Related Work

Figure 3.1: Overview of jBPM’s Core Engine API [15]

In addition, it is possible to create several sessions as well as different sessions that

share the same Knowledge Base [15].

12

3.2 MARPLE

3.2 MARPLE

The MARPLE [16] project has been developed since 2009 at the Ulm University. The

goal of this project is the development of a lightweight process engine that allows the

mobile execution of centrally stored process models, by using a client-server architecture.

MARPLE consists of two main components, the MARPLE Mediation Center and the

MARPLE Mobile Engine, shown in Figure 3.2.

Figure 3.2: MARPLE Architecture [16]

The MARPLE Mediation Center itself, consist of four different components. These

components are responsible for the administration of process models and the deployment

of the MARPLE Mobile Engine on mobile devices. It is possible to create, configure, and

test process models using the Mediation Center, as well as executing a process model.

It is also possible to make Ad-hoc changes to the ongoing process.

The MARPLE Mobile Engine consists also of four components. The Mobile Process

Engine is responsible for the execution of the processes, while the Deviation Service is

used to manage dynamic customizations of a running process instance. Furthermore,

the Core Communication Service is used to communicate with the MARPLE Mediation

Center and the XML Persistence Manager manages the downloaded process and

activity models.

13

3 Related Work

3.3 WOtAN

The framework WOtAN [17] (Workflows on Android) was developed in 2016 as part of a

master’s thesis. The focus in the development of WOtAN was on process execution and

process analysis. WOtAN is able to run process models designed with ADEPT.

Figure 3.3: WOtAN Modules Integrated in BPM Lifecycle [17]

WOtAN consists of 5 modules connected by one common core, as seen in Figure 3.3.

All modules can be used individually or in any combination as long as the core is in-

cluded, although some combinations may not be useful. The different modules have

different functionalities. Accordingly, WOtANDiscovery is used for finding existing pro-

cess models in companies. WOtANModeling, another module, is not only responsible

for the creation of new process models, Ad-hoc changes can also be made to existing

ones. As the name implies, WOtanExecution is responsible for the process execution,

while WOtANMonitoring is able to live monitor running process instances. Finally, the

WOtANanalysis can be used to analyze executed process models.

14

3.4 Discussion

3.4 Discussion

In this chapter, three process engines were presented, which are discussed in this

section. First, jBPM was introduced, a powerful lightweight engine that can execute

process models based on BPMN 2.0. It is even possible to integrate further Process

Model Notations. Furthermore, it allows to create process models via drag & drop. But

jBPM also has its disadvantages. Since this engine is implemented entirely in Java, it

can only operate on devices that support Java. In addition, although the engine can be

operated on mobile devices, it is not optimized for it.

MARPLE was next introduced, and unlike jBPM, it was designed for mobile devices.

Another difference is that MARPLE is based on ADEPT. MARPLE is a project that

has been continuously evolving for almost 20 years but is based on a client-server

architecture.

Last but not least, WOtAN was presented, which concentrates on process execution and

analysis, but also offers further possibilities (e.g., modeling). Just like MARPLE, WOtAN

is also based on ADEPT.

In conclusion, all the featured engines have their own advantages and disadvantages,

but none of them has been designed with cross-platform technologies. This means that

new implementation will be needed to support more mobile operating systems.

15

4
Requirements

This chapter outlines the requirements for the engine developed in this work. These

requirements are divided into functional and non-functional requirements. The

former describe what the system should be capable of. Non-functional requirements

describe how a system is meant to be.

4.1 Functional Requirement

In this section the functional requirements are introduced.

FR1 (Execute a Process Model): The lightweight engine to be developed,

should be able to process the process model defined by the configurator

of the QuestionSys framework. The engine should be able to execute

tasks that are manual and require the user’s participation, as well as

tasks that are automated.

FR2 (Pause and Resume/Continue Session): Every running instance of

a process model should be able to be paused. Of course, that also

implies the procedure of loading and continuing interrupted instances.

This, in turn, allows the user to process just a part of the model at a time,

or start another instance before completing the running one.

17

4 Requirements

FR3 (Control Flow): The predefined process model of the QuestionSys

framework is using gateways in order to control the flow of an instance.

The engine has to process them correctly. Additionally, as the process

model is constantly evolving, the engine should provide an interface that

allows the implemented gateways to be exchanged or expanded.

FR4 (Collect Data): Data collected during runtime should be stored and

returned. In the context of this thesis, every given answer should be

recorded. The recorded answers should be clearly assigned to a ques-

tion and contain additional information like a timestamp or an iteration

counter.

FR5 (Logging): The engine to be developed should support extensive

logging. Different levels of logging as well as different logs should be

possible. At least one log should cover the procedures inside the core

part of the engine. In addition, exchangeable components of the engine,

should be able to use a different log. In the context of this thesis, the

process of answering a question should also be logged. The format

used to log should allow process mining,hence a format that does not

require much transformation to be used by such an algorithm.

4.2 Nonfunctional Requirements

This section introduces the non-functional requirements.

NFR1 (Lightweight): The engine to be developed is designed for mobile

devices, and should ,therefore, be particularly resource-efficient.

NFR2 (Maintainability): Besides a good documentation, the engine to be

developed must be easy to maintain. This also means that changes in

the execution logic of certain parts should only affect specific classes.

To accomplish this, different functionalities have to be divided into inde-

pendent components.

18

4.2 Nonfunctional Requirements

NFR3 (Extendable): The engine should consist of a core part and some ex-

changeable parts. As the QuestionSys framework is constantly evolving,

new requirements can emerge or old ones can change. To account for

these changes, parts of the engine should be exchangeable without

having to change the core part. This is also important as the engine to

be developed might also be used for other scenarios beyond the scope

of this thesis.

NFR4 (Stability): A stable operation of the engine should be ensured. To

achieve this, two things are needed. First, sources of error must be

minimized by examining and preventing potential errors. Secondly unex-

pected errors must be catched and treated respectively. The engine

should never fail in a way that requires a restart of the entire application.

NFR5 (Multiple Instances): The engine should be able to allow for process-

ing several different process models simultaneously.

Based on the defined requirements, the architecture of the engine was developed.

Subsequently, the implementation could take place, with which then the requirements

could be fulfilled. The resulting engine was then used in the application that was created

in the context of this thesis.

19

5
Concept & Architecture

Taking the requirements defined in Chapter 4 into account, a lightweight engine was

developed. This chapter, in turn, explains the developed process model that is used by

the engine. Next, the architecture of the engine and all its components are presented,

before discussing each one in more detail. Finally, the concept of logging and the

generated results is described.

5.1 Overall Concept

The overall concept consists of two parts. First, what the nodes of the engine’s process

model look like, and secondly, the architecture of the engine.

The process model the engine uses is influenced by the process model the configurator

of the QuestionSys framework is generating. The process model of the configurator

consists of two arrays. One of the arrays contains the nodes that are identified with a

unique key, along with some other individual properties. The other array contains edges

that define, which nodes are connected, by using keys of the nodes respectively.

Using this format directly requires frequent and recurring searches of both arrays to

process the model. But since the developed engine is required to be resource-efficient

(NFR1), the described model is transformed. The newly developed process model is

designed similar to the model of a linked list. Every node contains some data, and a

pointer to the next element of the list, as shown in Figure 5.1. In contrast to an array, it is

more time-consuming to find individual nodes at certain positions, but at the same time

easier to go through the process model in one direction. Since the process model of the

configurator contains gateways that are connected to more than one node, the property

21

5 Concept & Architecture

Data

44 44

Pointer

Head Tail

Figure 5.1: How a linked list is connected

containing the pointer to the next node, is an array that can contain multiple pointers.

To use this model, the configurator’s process model must be transformed into this new

process model, which adds additional computation. However, since the transformed

process model can be stored, this procedure must be performed only once.

JavaScript Object Notation (JSON) was chosen as the format of the process model’s

nodes, as it is a format that can be parsed by many programming languages and can

also be read by humans. The format consists of key/value-pairs, which are grouped

to an object. Values can contain any common data type (e.g., string, boolean,

array, etc.) as well as other JSON objects [18].

The model consists of two different types, so-called Node and Gateway. Type Node

represents a node containing one or more activities (e.g., a question or an information

message to be presented), while a Gateway contains data responsible for control flow.

Thus, a Gateway type node determines, which node will be processed next, depending

on given answers or other conditions. For this reason, the properties of the two node

types differ as shown in Figure 5.2.

“Type“: “Node“

“executableComponent“: string

“content“: [object]

“category“: string
“groupId“: number

“nextNode“: [Node]

“Type“: “Gateway“

“executableComponent“: string

“element“: object

“category“: “Split“ | “Join“
“groupId“: number

“nextNode“: [Node]

“correspondingNode“: number

Figure 5.2: The two Node Types the Process Model Consists of

22

5.1 Overall Concept

Both types have the properties shown in the white box in common. The reason for

this is that this properties are needed in the core part of the engine that was designed

according to NFR3. The properties shown in the red box and ,especially, their values

can differ according to the context the engine is used in. For example, in the context of

this thesis, the content property contains several objects, each of them representing

an activity, like a question or a headline (cf. Figure 5.3).

Considering the resulting process model, the concept of the engine was developed.

Meta Data

Properties

Content

Element

Element

Name

Question

QuestionType

Items

Item

Item
Key

de

en

Figure 5.3: Example of a Multiple Choice Question

The engine itself, however, is divided into two main parts: the core and the exchangeable

part. Each of them, in turn, consists of several components. The architecture is shown

in Figure 5.4. The Main Unit is the only component that communicates with other

applications or external components. Therefore, every process model that needs execu-

tion gets passed to it. Furthermore, it is responsible for deciding, whether the currently

processed node is a Gateway or a Node, by using the type property. Depending on this,

either the node is passed to the Runtime Manager (RTM) or a GatewayComponent

(GWC) is generated, based on the executableComponent property, and the node is

passed to it. The GWC will then decide, which node to continue with and return it to the

Main Unit, restarting the same procedure on the returned node.

When the node is forwarded to the RTM, the RTM generates the responsible

ExecutableComponent (EXC), based on the data the node contains. The node is

then forwarded to the generated EXC.

Depending on the EXC’s implementation several scenarios are possible. The EXC could

23

5 Concept & Architecture

Runtime Manager Main Unit

Core part

Output Input

generates, forwards, destroyes

noti�es

ExecutableComponentDealer

Implements

ExecutableComponent

ExecutableComponent

ExecutableComponent

Generates

ProcessingComponent

GatewayComponent

GatewayComponent

GatewayComponent

Processing
Component
Dealer

GatewayComponentDealer

Implements Generates NotifyNotify

Processing
Component
Dealer

ProcessingComponent

ProcessingComponent

ProcessingComponent

Implement

Generate

Notify

Figure 5.4: Architecture of the developed engine

either use the information inside the node to do the intended task, or create as many

ProcessingComponent (PCC) as needed to split the task. Either way, when the EXC

has finished, it will notify the RTM about it. The RTM will then destroy the generated EXC

and notify the Main Unit about completion. The Main Unit will then proceed to the

next node in the process model by using the nextNode property. The whole procedure

will continue until the model is completely processed or the engine is interrupted.

5.2 Main Unit

The primary goal of the Main Unit is to decide where to pass the momentary processed

node, using the type property mentioned in Section 5.1. But since it is necessary to

generate GWCs in case of a gateway node, GWCs need to be integrated somehow

into the Main Unit. To achieve this, the GatewayComponentDealer was introduced,

24

5.3 Runtime Manager

which is a class with a list containing references to available GatewayComponents.

This class is imported by the Main Unit, allowing to add and remove custom GWCs,

by listing the components there, without altering the core part. The previously mentioned

executableComponent property of the node determines, which GWC needs to be

created.

Since the Main Unit is the only component communicating with external components,

it initiates every procedure. As a result, all components have a reference to the Main

Unit. Therefore, all globally relevant data (e.g., results or logs) is stored there. The

results collected during runtime are broadcast app-wide, at each completion or pause

by the Main Unit. This way collected results can be stored by other parts of the

application.

5.3 Runtime Manager

The RTM manages everything about the EXCs. The manager generates, executes, and

destroys the required EXCs. To accomplish this, the RTM imports the ExecutableCom-

ponentDealer that works like the GatewayComponentDealer, but contains EXCs

instead. The RTM is generating EXCs the same way, the Main Unit is generating

GWC. In addition, the view (if any) of the EXCs is displayed in a container offered by the

RTM. Upon completion, the RTM will notify the Main Unit about it.

5.4 Gateway Components

Every GWC needs to implement an interface that is not very restricting. It just defines

two methods, which will be called by the Main Unit. The concept is intended to allow

as much freedom as possible in the implementation of GWCs. Consequently, a variety

of gateways can be implemented, as well as different versions of one and the same.

25

5 Concept & Architecture

5.5 Executable Components

In order to process the activities within the nodes, EXCs are needed. They belong to

the exchangeable part of the engine. Every EXC must implement an interface, just

like the GWCs, which is also not very restrictive. This interface is needed to ensure

the communication between RTM and EXC. Any task required to complete the current

activity can be performed here. If tasks have to be split, an EXC can perform a similar

function as the RTM and manage PCCs. This can be accomplished by importing custom

ProcessingComponentDealers that contain PCCs. These components can then

be used as desired. There are no restrictions for them, although it is recommended to

define some kind of interface.

5.6 Logging

Logging is an essential part of the whole engine, especially of the core part. Supporting

different levels of logging is an important requirement (FR5). By comparing logging tech-

niques of other applications, four logging levels were defined (info, debug, error,

warn). In addition, three different logger classes are set, to allow different parts of the

application to write their own logs. Every part of the application has access to the loggers

and is able to use them. This allows easy integration of logging into custom components.

The first logger, called ProcessLogger, is documenting all procedures in the core

part. Therefore, this logger can not be altered without making changes in the specific

classes. The other two loggers can be altered and differ according to the context. In the

context of this thesis, the second logger (ComponentsLogger) is used to document

all procedures in the EXCs and PCCs, while the DataHistoryLogger, which is the

third one, is used by the PCCs to log every action taken by the user while answering a

question.

Each logger class implements a predefined interface to ensure they can always be used

the same way. The difference between the logs is the data stored each time, otherwise

they are the same. The format in which is logged should allow process mining but also

26

5.7 Results

be readable by humans. Additionally, basic operations, like sorting or filtering, should be

easy to perform. For this reason, JSON was chosen as the logging format, organized in

a list where every entry is a single JSON object. This provides readability while retaining

the benefits that objects offer.

5.7 Results

The overall intention of the developed lightweight engine is to collect data or produce

some kind of results, depending on the context in which the engine is used in. Since the

desired results may differ, the generation of results must take place in the exchangeable

part of the engine.

Considering that every component has access to the Main Unit, which stores the

results, the procedure of generating results has been moved to the EXCs and PCCs.

Both component categories can read and write results depending on the implementation.

The only limitation to the results is that they must be stored as a JSON object. Otherwise

the results can be of any structure and are exclusively generated by the mentioned,

exchangeable components. Consequently, the structure of the results can be arbitrarily

changed to suit many different scenarios.

In the QuestionSys application the engine is used in, only the PCCs generate and

store results, although it is possible to add EXCs that do. In this context, results are

representing answers given to certain questions. The final result structure is seen

in Figure 5.5. Every question has a unique id, identifying the question. The easiest

way to store them is using this id as the key and the answer to this question as the

corresponding value. However, since meta data (such as timestamp, iteration) should

also be stored, the answers to the questions are wrapped in an object that contains the

meta data, called resultObject. This object has a property called payload, which

contains the given answer.

The next important thing is, there are two types of questions in this context. There are

questions that have one specific answer (e.g., name, age), and questions that allow

multiple answer options (Multiple Choice). Therefore, the payload can either contain

27

5 Concept & Architecture

46

64

Keys (question id)

ResultObject with single answer

Meta Data

„MyName“Payload

ResultObject with multiple possible answers

Meta Data

Payload

13

(Possible) answer ids

73

true

false

Element 1

Meta Data

Payload

Element 2

Element 1
Lists

Figure 5.5: Structure of the generated results

one value (e.g., string) or an object containing further keys (the possible answers). The

id of each possible answer is used as key and true or false as value, depending

on the user’s answer. There are a few exceptions that use values other than true or

false, but do not affect the structure of the results.

The last adaptation that had to be made was due to possible LOOPS. A LOOP is a

possible gateway, which can be used to cycle trough specific paths of the process

model, processing the same questions (with same id) multiple times. To make this

possible, the resultObject that contains the answer (or answers) to a question is

inside a list. Each time a question is answered, a new resultObject is added to

the end of the list. This last adjustment leads to the final structure and meets all the

requirements of the process model.

28

6
Implementation

This chapter first introduces the Ionic 2 Framework as the lightweight mobile engine,

developed as a part of this thesis, is embedded in an application created with this frame-

work. It further introduces fundamental parts of the implementation that demonstrate

how the framework was used.

6.1 Ionic 2 Framework

The Ionic 2 framework is a open-source project for creating mobile web-based hybrid

applications [19]. For graphical representation, the web technologies HTML5 and SASS

(a superset of CSS syntax [20]), are used. TypeScript, which is a “typed superset of

JavaScript that compiles to plain JavaScript” [21] is used for developing the application

logic. Ionic 2 builds on top of two additional frameworks called Angular 4 and Apache

Cordova .The overall setup is shown in Figure 6.1

Ionic 2 focuses on the front-end of a mobile application, especially on the appearance

and interaction of the user interface. For example, it provides pre-build and partially

adjustable, user interface components like lists or buttons. This allows for a quick and

easy implementation of frequently used components. These components, in turn, have

a different appearance depending on the underlying platform (e.g., Android or iOS),

offering a native look and feel. Ionic Native, an enhancement of the framework itself, is a

set of TypeScript wrappers for Cordova plugins, allowing access to native functionality

(e.g., camera, file system) in Ionic applications. It additionally wraps plugin callbacks in a

way that allows Angular 4 to react properly to them [22]

29

6 Implementation

Ionic 2

Angular 4

Apache Cordova

ngCordova

UI

Architecture

Hardware

Figure 6.1: Stucture of the Ionic 2 framework

Apache Cordova is an open-source mobile development framework using standard

web technologies (HTML5, CSS3 and JavaScript). Applications run within wrappers

that target every platform, relying on standards-compliant API bindings to access the

capabilities of each device, such as sensors and network status [23]. For each device

function, a separate plugin must be added to the project to use its API. However, this also

has the advantage that no unnecessary code inflates the project. Since this framework

offers completely different functionalities than the Ionic 2 framework, it complements it

particularly well.

The last framework contained is Angular 4. “Angular is a framework for building client

applications in HTML and either JavaScript or a language like TypeScript that compiles

to JavaScript” [24]. It is, therefore, a set of several libraries with some of them core

and some optional. Angular applications consist of HTML templates with angularized

markup, that allow advanced features such as property binding. These templates, in

turn, can then be managed by component classes, written in TypeScript. One can add

application logic by implementing services, and bundle components and services to

modules. According to the official documentation, “a service is typically a class with a

narrow, well-defined purpose” [24]. Services typically provide specific functions that are

30

6.2 Implementation of Selected Components

used by various components in the application. As services can be implemented as

singleton, meaning every component using this service will work on the same instance,

it is a great way to exchange information across different components [24].

Figure 6.2: Structure of Angular 4 [24]

Another feature that needs to be mentioned, as it has been used frequently in this thesis,

are lifecycle hooks. Every component has a lifecycle managed by Angular. The latter

creates, renders and destroys every component and offers lifecycle hooks that provide

the ability to respond to specific key life moments. Developers can implement this hooks

to tap into these key moments. The implemented hook methods are then automatically

called for the respective key moment [24].

6.2 Implementation of Selected Components

This section introduces selected components of the implementation, especially covering

the engine. It explains core functions, how they work and the reasons why they were

implemented like this using the Ionic 2 framework.

6.2.1 Main Unit

The Main Unit is implemented as a service, which allows easy integration into other

components, while still being able to provide multiple instances, as required by NFR5

[24]. In addition, great importance was attached to ensuring good error handling and

31

6 Implementation

catching unexpected errors as required in NFR4. First, the relevant properties of the

Main Unit are discussed.

_history: Completed nodes are pushed on this array.

results: An empty JSON object. Can be used to store results/col-

lected data.

_currentNode: A reference to the currently processed node.

_splitStack: This is an array containing the split elements. Every time

a gateway is processed, which is a split, the gateway

is pushed on the top of this array. This way, whenever a

join is processed, it can be assigned to the corresponding

split element, which is then dropped from the stack. This

is possible because of the block structure mentioned in

Section 2.2.

When the Main Unit is instantiated several things happen. First, the logger classes

are set up. In addition, the Main Unit is subscribing to the app-wide Event channel

called “interrupt”. Events can be used to publish data on a specific channel across

the whole application. Each component of the application can subscribe to such a

channel. A subscription enables the component to react individually and immediately,

as soon as something is published on this channel. The „interrupt“ channel is used by

the RTM. In case the user manually pauses the execution of a process model, the RTM

publishes an object on this channel, containing information about the corresponding

Main Unit. This Main Unit then publishes (on another channel) an object with which

the interrupted instance can be continued later, and shuts down.

32

6.2 Implementation of Selected Components

Initialize:

The engine must first be initialized, before it can be started. To start a new instance of a

process model, the initialize method is used, which takes the following parameters.

navCtrl: The NavigationController on which the RTM will later be pushed by the

Main Unit.

model: The process model to be executed.

options: An array that gets passed down to the PCCs, which can differ, depending

on the use case (e.g., selecting a specific language).

logOptions: (Optional) Can be used to log only on a specific level (e.g., only info).

This method initializes the Main Unit and sets default values. Additionally, it sets the

_currentNode to the passed model and the other parameters to their respective prop-

erties. In case logOptions are not passed, they will be an empty object. If everything

worked properly, the property _isInitialized is set to true and the method will

return true. Else this method will return false.

LoadInstance:

If a paused instance is to be continued, the loadInstance method must be called

instead. The parameters of this function are also explained below.

navCtrl: The NavigationController on which the RTM will later be pushed by

the Main Unit.

engineData: The object the Main Unit published when it was interrupted.

instanceId: (Optional) Can be used to identify the instance again. Has not type re-

strictions and is null by default. Is contained in the resultObject.

This method also starts by initializing the Main Unit and sets default values. After

that, the Main Unit’s properties are overwritten with the values contained in the

engineData object. This way, the engine is reset to the state it had when it was inter-

rupted. This is possible, because the engineData object is a serialized1 copy of the

engine at the time of interruption.

However, this creates a problem. The splitStack property contains objects (the

split GWCs), which have their own methods. The drawback of serialization is that only

properties but no methods can be saved. Keeping the restored GWCs like this, would

1A text representation of a JSON object. Often used to store an object permanently

33

6 Implementation

result in an error, as soon as a method of it is called. This would eventually render the

whole procedure of loading an instance useless.

To solve this, every previously generated GWC stores an identifier, called gatewayCo-

mpName, with which it was created during runtime. This identifier is used by the Main

Unit to create the correct GWC during execution. The property can then be used to

create the same component, which was created during runtime, again and pass it the

data of the serialized one. This procedure can be seen in Listing 6.1. When loading an

instance, the method loops through a temporary stored array called tmpSplitStack,

containing the serialized GWCs. For every element inside this array, a new GWC is

created, depending on the identifier. This newly generated GWC contains the necessary

methods. Subsequently, this newly created GWC is then set to the state it had at the

time of interruption, by transferring the properties of the serialized GWC to the new one.

Finally, the object is pushed on the splitStack.

1 l oadIns tance (navCtr l , engineData , i ns tance Id ?) : boolean {

2 for (l e t comp of tmpSpl i tS tack) {

3 l e t gatewayComponent ;

4 . . .

5 }

6 / / Generate new GatewayComponent depending on gatewayCompName

7 } else {

8 gatewayComponent = new GatewayComponentDealer . comps [comp . gatewayCompName] ;

9 }

10 / / Now pass a l l r e l evan t data to the newly generated GatewayComponent

11 for (var key i n comp) {

12 i f (comp . hasOwnProperty (key)) {

13 gatewayComponent [key] = comp [key] ;

14 }

15 }

16 / / Add engine re ference a f t e r loop

17 gatewayComponent . engine = th is ;

18 / / F i n a l l y push element on S p l i t S t a c k

19 th is . _ s p l i t S t a c k . push (gatewayComponent) ;

20 }

Listing 6.1: Excerpt of the loadInstance method from the Main Unit

34

6.2 Implementation of Selected Components

Several catch-blocks were used to be able to distinguish between an error of the

engineData object, and a missing GWC that is not accessible or installed right now,

but was used in this instance. In both of these cases the method will return false. If no

errors occured the _isInitialized property is set to true and the method returns

true as well.

Start

To start the processing of an instance and generate the corresponding view via the RTM,

the start method needs to be called.

1 s t a r t (opt ionalParams ?) {

2 / / Can be done wi th l o g i c a l OR as only ob jec ts or n u l l i s v a l i d

3 opt ionalParams = opt ionalParams | | nul l ;

4 / / Sets loggers depending on the logOpt ions

5 . . .

6 i f (th is . _ i s I n i t i a l i z e d == true) {

7 th is . _navCt r l . push (RuntimeManager , { engine : this , op t ions : th is . _opt ions ,

o p t i o n a l : optionalParams , procLogger : th is . log })

8 . then (() =>{

9 th is . _ r tmViewCont ro l le r = th is . _navCt r l . l a s t () ;

10 th is . _rtmComponent = th is . _ r tmViewCont ro l le r . _cmp . ins tance ;

11 th is . _process () ;

12 })

13 . . .

14 }

15 }

Listing 6.2: Excerpt of the start method of the Main Unit

optionalParams: (Optional) This is a JSON object that can be used to alter the

appearance of the RTM. But as this contributes only to the visual

appearance this will not be discussed further in this thesis.

As shown in Listing 6.2 this method just stores some necessary properties to start

processing. It sets the loggers depending on the previously passed logOptions, before

generating the RTM and pushing it onto the previously passed NavigationController.

Storing the _rtmViewController is necessary to be able to close the page later. The

_rtmComponent is the direct reference to the codebase of the RTM and allows access

35

6 Implementation

to it. Finally the method _process is called.

Process

The following information is shown in Figure 6.3.

The _process method is the main method of the Main Unit. It is responsible for the

forwarding, mentioned in Section 5.1. The method first checks the _isTerminated

property. If it is true it will call the method _populateResults which will then

generate and publish the results. After that, the _shutDown method is called that will

remove the RTM from the NavigationController by using the previously set property

_rtmViewController. Finally the Main Unit’s state is set to default. Further

explanation to the _populateResults and shutDown methods can be found later on.

1 _process () {

2 i f (th is . _ isTerminated === true) {

3 / / Doing some logg ing s t u f f here

4 . . .

5 th is . _populateResul ts (true , fa lse) ;

6 th is . _shutDown () ;

Listing 6.3: Excerpt of the process method of the Main Unit

Next is a similar check to the one in Listing 6.3. This time, however, the _currentNode

property is checked. In case it is null or undefined, the same happens as in List-

ing 6.3, except that the _populateResults method is called with different parameters.

This is done to determine later that an error occured during execution of this instance.

Nothing happens if the _currentNode property contains an object. This and different

behaviour of the loggers in both cases led to separating this checks from each other.

The next step is also the main functionality of this method. Depending on the type

property of the _currentNode, there are different possible behaviours. There are only

two valid types, Gateways and Nodes, all other types are ignored and treated as invalid.

In case of a Gateway the procedure is simple. The method tries to generate a GWC,

relative to the information of the executableComponent property contained in the

_currentNode object. The generated GWC has, according to the defined interface

36

6.2 Implementation of Selected Components

(cf. Section 5.4), a method called evalNode. This method is called after creation.

The _currentNode reference, as well as some additional information is passed to

the GWC this way. The generated GWC then asynchronously returns the next node

to proceed. This has been done to give developers of new GWCs the freedom to do

asynchronous operations, although this was not needed in the context of this thesis.

The _currentNode is then set to the node returned by the GWC, as it can be seen in

Listing 6.4, Line 10. Finally, the method is called recursively.

1 _process () {

2 . . .

3 case " Gateway " :

4 l e t sp l i tS tackLeng th = th is . _ s p l i t S t a c k . leng th ;

5 t ry {

6 / / Code re l evan t f o r logg ing i s l e f t out

7 l e t comp = new GatewayComponentDealer . comps [th is . _currentNode .

executableComponent] ;

8 comp . evalNode (th is . _currentNode , this , th is . _currentNode .

executableComponent , th is . _opt ions)

9 . then (nextNode =>{

10 th is . currentNode = nextNode ;

11 th is . _process () ;

12 }

13 . . .

14 }

Listing 6.4: Excerpt of the process method of the Main Unit

Special attention was paid to error management. In case of an error, various actions are

carried out. First, it must be determined if the error occurred while trying to generate

the GWC or during the method call. To do this the _splitStack array length has been

stored temporarily as seen in Listing 6.4, Line 4. Since the GWCs push themselves on

the _splitStack array upon creation, it is possible to check the momentary length of

the array and compare it to the previously stored one. If the length has increased, the

error, therefore, occured during the method call. The generated GWC is then removed

from the array, to prevent further errors later on.

The next step is to try to replace the failed component. This can result in process models

37

6 Implementation

being executed correctly despite an error. Nevertheless, every error is logged and can

be viewed later. First it must be determined whether the failed GWC is a split or a

join. This is done by some logical checks, for example by checking if there is any

element on the _splitStack. If not, due to the process model’s block structure, it can

be assumed that the failed GWC was a split. These checks are arranged in such a

way, that either a split GWC or a join GWC is assumed at the end.

If a join is assumed, a default join GWC is created and executed, just like any other

GWC, which will return a node to proceed, using the corresponding split GWC on the

_splitStack. However, if a split is assumed, a corresponding default split GWC

is created and pushed on the _splitStack. This is done to avoid errors that would

occur if later on the associated join GWC is created and executed. In this case the

node to proceed with, is the first object of the _currentNode’s nextNode array (cf.

Figure 5.2), hereafter referred to as skipping the node. In case that additional errors

occur during the replacement, the previously mentioned methods _populateResults

and shutDown will be called and this method terminates.

The other possibility of a valid node type is the Node. In this case the method checks

if the content of this is empty. This content, thereby, is the array that contains the

objects that have to be processed by custom EXCs. In case the content array is empty,

the _currentNode is skipped. Otherwise the objects inside the content array need

to be processed. In order to do this, the _currentNode has to be passed to the RTM.

This can be done by simply calling the correct method called execute of the previously

saved reference _rtmComponent to the RTM. After calling the RTM’s method execute,

this method of the Main Unit is finished and will get called again as soon as the RTM

terminates.

In case the _currentNode type is neither Gateway nor Node, this method will try to

skip the _currentNode or shut down if this is not possible.

38

6.2 Implementation of Selected Components

Start

isTerminated? currentNode?

nodeType

content empty?
Pass node to

RTM

End

Generate and execute
GWC

error?Error Management

No

Not unde�ned

Gateway

Node

No

Set currentNode
to passed node

Yes

No

Skip Node

sucess?

Yes

Set hasError to true

Generate resultObject

publisch results

shutdown()

End

No

Yes

unde�ned

Figure 6.3: Flow Chart of the _process method

39

6 Implementation

RtmFinished:

In order to get notified when the RTM finished, and continue processing the model

with the process method, the _rtmFinished method is called by the RTM upon

completion.

1 _r tmFin ished (r tmStatus) {

2 / / r tm s ta tus =

3 / / { f i n i s h e d : boolean , processedNodeType : s t r i n g }

4 . . .

5 / / l ogg ing i s l e f t out as always

6 i f (r tmStatus . processedNodeType == "End") {

7 th is . _ isTerminated = true ;

8 }

9 i f (th is . _currentNode . type == "Node" && ! (th is . _currentNode . category == "

dontAddToHistory ")) {

10 th is . _h i s to ry , push (th is . _currentNode) ;

11 }

12 . . .

13 }

Listing 6.5: Excerpt of the _rtmFinished method of the Main Unit

The method starts of, by checking if the last processed node type was an “End”. If

this is the case the property _isTerminated is set to true. The next thing it does is

to check if the processed node should be added to the history. This needs to be done

because it is possible to use pseudo elements that are generated by GWCs. Of course,

these do not belong to the actual original model and, therefore, should not be added to

the history. This for example is used on the AND GWC, where the user needs a graphical

interface to decide, which path he wants to run through next. So in order to allow this,

a pseudo node is generated and returned by the component to the Main Unit. This

newly generated node’s category is marked as „dontAddToHistory“.

After both checks are completed the _currentNode is skipped and this method calls

_process again.

40

6.2 Implementation of Selected Components

Shutdown:

This method sets every property of the Main Unit to default values and destroys the

RTM.

1 _shutDown () {

2 t ry {

3 th is . _rtmComponent . k i l l edByEng ine = true ;

4 th is . _navCt r l . removeView (th is . _ r tmViewCont ro l le r) ;

5 th is . c l ea r ()

6 } catch (e r r o r)

7 . . .

8 }

Listing 6.6: Excerpt of the _shutDown method of the Main Unit

The RTM has a closure prevention that is explained further in Subsection 6.2.2. In

order to close the RTM in a controlled manner, without bothering the user, the RTM’s

killedByEngine property has to be set to true first. After that the RTM can be

destroyed by using the build-in method removeView.

PopulateResults

This method is used to create an object, which contains the results and additional infor-

mation about the processed instance of the model (e.g., logs, history). The parameters

of this function are briefly explained below.

finished: A boolean that indicates whether the executed instance has been finished

or interrupted.

hasError: A boolean indicating whether the interruption occured due to an error.

This method behaves differently depending on the finished parameter, storing dif-

ferent information inside the resultObject. In case finished is set to true, only

information relevant to the results are stored, omitting runtime information.

This starts by setting the nextNode property of every entry in the _history to null

in order to lower the required memory space as this information is superfluous (cf. List-

ing 6.7, Line 4). This is achieved by using the forEach method, a build-in method of

TypeScript, that calls the passed callback function one time for each element present in

the array, in ascending index order. The forEach method does not directly modify the

41

6 Implementation

array, but in this case the callback function does [25]. Subsequently, the resultObject

is generated, containing the actual payload (e.g., logs, results). The resultObject is

then wrapped in a parent object with metadata (cf. Figure 6.4). The parent object is then

published with the Event service, explained in the beginning of this section. In this case,

the "engineClosed" channel is used. This allows any service or part of the application

to subscribe to this channel and receive the published information. In this case the

SqlStorage-Service subscribed to this channel and stores these objects automatically,

depending on the information contained.

1 _populateResul ts (f i n i shed , hasError) {

2 i f (f i n i s h e d === true) {

3 l e t f i n i s h e d H i s t o r y = JSON. parse (JSON. s t r i n g i f y (th is . _ h i s t o r y)) ;

4 f i n i s h e d H i s t o r y . forEach (en t ry => en t ry . nextNode = nul l) ;

5 l e t r e s u l t O b j e c t = {

6 processLog : th is . _processLog ,

7 componentsLog : th is . _componentsLog ,

8 . . .

9 }

10 th is . events . pub l i sh (" engineClosed " , {

11 i sF in i shed : true ,

12 hasError : hasError ,

13 i ns tance Id : th is . ins tanceId ,

14 payload : r e s u l t O b j e c t

15 }

16 . . .

17 }

18 }

Listing 6.7: Excerpt of the _populateResults method of the Main Unit

The second option is executed when finished is set to false. This procedure is

very similar to the first one, but with some exceptions. First of all, the generated

resultObject contains all the previously mentioned informations, but in addition also

runtime informations. This is necessary in order to be able to load and execute the

saved instance later. The problem that occurs here is that components contained in

the _splitStack have a reference to the Main Unit. This prevents this objects

from getting stringified, causing a Circular Structure error. In order to avoid this error,

42

6.2 Implementation of Selected Components

the references to the Main Unit are set to null. This object is then wrapped and

published in the same parent object as before.

isFinished

hasError

instanceId

resultObject

logs

results

options

runtimeInfo

Parent Object

�nished = true

�nished = false

resultObject

Figure 6.4: Structure of a Published Object

6.2.2 Runtime Manager

The Runtime Manager (RTM) is configured as a Page2 component. The reason for

this is that a view is required, to show the user information. First, the relevant properties

of the RTM are discussed. The properties that will be set with values coming from the

Main Unit are marked as passed.

processing: A boolean property. If there is no content to be displayed,

this property is set to true and thus a graphical element is

shown to the user, indicating that background processes are

running.

engine: (Passed) The reference to the Main Unit. Needed for

communication.

options: (Passed) An array that gets passed down to the PCCs,

which can differ, depending on the use case (e.g., selecting

a specific language).

2A Page component is a component that has its own view.

43

6 Implementation

factories: A key/value map. The keys are the identifiers of EXCs,

while the value is the corresponding ComponentFactory that

allows to dynamically generate this component.

compRefHolder: Is an array that contains references to the dynamically gen-

erated components.

killedByEngine: A boolean value that determines if the attempt to close this

page is being performed by the Main Unit or by the user.

log: (Passed) The passed logger class from the Main Unit to

allow logging.

componentContainer: This is the ViewContainerRef. This allows to display the

dynamically generated EXCs to the user. It works much like

an array that contains different view elements.

When the RTM is created, it will create a ComponentFactory for every key/value pair

found in the ExecutableComponentDealer, and store it in the factories map. A

ComponentFactory is an object provided by Angular that allows to create components

dinamically, just like classes. However, each ComponentFactory can only create one

type of component. Therefore, a separate ComponentFactory must be created for

each EXC contained in the ExecutableComponentDealer. Additionally, the passed

properties from the Main Unit will be set during the IonViewDidLoad cycle. This is a

lifecycle provided by Ionic that runs when the page is loaded for the first time [26]. The

componentFactoryResolver, seen in Listing 6.8, is a build-in service, which allows the

creation of ComponentFactories.

1 th is . f a c t o r i e s = { } ;

2 for (l e t key i n ExecutableComponentDealer . comps) {

3 i f (ExecutableComponentDealer . comps . hasOwnProperty (key)) {

4 th is . f a c t o r i e s [key] = th is . componentFactoryResolver .

resolveComponentFactory (ExecutableComponentDealer . comps [key]) ;

5 }

Listing 6.8: Excerpt of the constructor method from the RTM

44

6.2 Implementation of Selected Components

Execute:

The execute method is the only method called by the Main Unit. The method expects

a node as parameter. This node than has a property called executableComponent,

which contains the identifier of the EXC that can process the information of this particular

node. The identifier is than used as key, to find the corresponding ComponentFactory

inside the factories map and generate a new instance of this component, pushing it

on the compRefHolder. In case the EXC has a user interface, processing is set to

false. By doing this, the EXC’s view will be rendered inside the RTM’s view.

According to the implemented interface (cf. Section 5.5), every EXC has to implement a

method called execute. After the corresponding EXC has been created, this method is

called. Among other information, the currently processed node is passed to the EXC, as

it can be seen in Listing 6.9, Line 8.

After this method has been called, the RTM’s execute method is finished. The RTM’s

exeCompfinished method will be called when the EXC has finished.

1 execute (groupNode) {

2 / / l ogg ing l e f t out as always

3 t ry {

4 l e t cu r ren t Index = th is . compRefHolder . push (th is . componentContainer .

createComponent (th is . f a c t o r i e s [groupNode . executableComponent])) −1;

5 i f (th is . compRefHolder [cu r ren t Index] . ins tance . hasUI) {

6 th is . processing = fa lse ;

7 }

8 th is . comprefHolder [cu r ren t Index] . ins tance . execute (groupNode , th is . engine ,

this , th is . op t ions) ;

9 }

10 . . .

11 }

Listing 6.9: Excerpt of the constructor method from the RTM

Two possible errors can occur during this method, one during the creation of the EXC

and the other one when calling its execute method. This can be differentiated, but only

affects the logging. In both cases the RTM’s exeCompfinished method will be called.

45

6 Implementation

ExeCompfinished:

This method clears the view, sets all relevant properties to their default values, and

notifies the Main Unit of completion, by calling the Main Unit’s _rtmFinished

method. The exeCompfinished method is usually called by the previously generated

EXC.

1 exeCompfinished (nodeType) {

2 / / l ogg ing l e f t out as always

3 th is . processing = true ;

4 th is . compRefHolder = [] ;

5 th is . componentContainer . c l ea r () ;

6 th is . engine . _r tmFin ished ({

7 f i n i s h e d : true ,

8 processedNodeType : nodeType }) ;

9 }

Listing 6.10: exeCompfinished method of the RTM

nodeType: A string value that defines the type of the node. Is used currently used

to recognize the End node.

ionViewCanLeave:

This method is a so called Guard that can be used to check permissions before a page

can leave [26]. This method is called automatically and must return a boolean value. In

this case, the property killedByEngine is checked. If it is true, the page will close

with no further actions. This is the case when the RTM is closed by the Main Unit. If

the value is set to false, however, the user must confirm that he wants to leave the

page. If the user rejects, the page will not leave. Upon proceeding, an object notifying the

Main Unit about interruption, is published, using the previously mentioned, “interrupt”

channel. Additionally, the RTM resets to its default state and killedByEngine is set

to true to not trigger the ngOnDestroy check.

ngOnDestroy:

This is a “ lifecycle hook that is called when a directive, pipe or service is destroyed”

[27]. Here the RTM is set to its default state, but additionally the killedByEngine

46

6.2 Implementation of Selected Components

property is checked and if it’s false, the Event notifying the Main Unit about closing,

is published. This is done to avoid unpredictable errors and the loss of progress of this

instance when the RTM is closed by something that can bypass the ionViewCanLeave

guard (e.g., a crash).

6.2.3 Executable Component (PaperPage)

Executable Components (EXCs) are generated by the RTM. Their view (if existent)

is rendered inside the RTM’s view. Each EXC can be implemented according to the use

case, but must meet the requirements of the defined interface (cf. Section 5.5). In the

context of this thesis, the specific EXC called “PaperPage” is introduced, which happens

to be very similar to the RTM.

The contructor method will generate factories in the same way the RTM does, but

using the ComponentDealer instead of the ExecutableComponentDealer.

Execute:

The RTM just calls one method of every EXC, which is execute. The node to process

is passed on this method, as well as a reference to the RTM, the Main Unit, and the

options array that can be used for various things as previously mentioned.

Like the RTM, this method generates and embeds components in his own component-

Container, the same way the RTM does. It will generate a PCC for every element inside

the node’s content array. Every element possesses a property named questionType,

determining which PCC is created. The PCCs used in the context of this thesis, have

also implemented an interface. According to this interface, every created PCC has the

render method, which gets called after creation. PCCs, which encounter errors during

the method call or upon creation, are either removed or skipped. If no components could

be generated, the next method of “PaperPage” is called, otherwise this method ends

immediately.

Next:

This method will usually be triggered by a button click. The first thing it does is call the

method validatePage, checking if every generated component is finished and ready

to be closed (cf. Listing 6.11).

47

6 Implementation

1 val idatePage () {

2 / / l ogg ing l e f t out as always

3 l e t v a l i d = true ;

4 for (l e t component o f th is . compRefHolder) {

5 v a l i d = component . ins tance . i sF in i shed () && v a l i d ;

6 }

7 return v a l i d ;

8 }

Listing 6.11: validatePage method of the PaperPage

If this is the case, it will remove all generated components and clear its properties in the

same way the RTM does. After that, the RTM’s exeCompfinished method is called,

notifying the RTM about completion.

6.2.4 Logging

Logging is an important part of the engine, especially of the core part. It is also

strongly integrated in the implemented EXCs and PCCs, but this may vary due to the

interchangeability of these.

There are three logger classes, each with its own log. But since they all implement the

same interface and are implemented very similarly, in this case just the “ProcessLogger”

class is introduced.

The class has two properties. One is the array to log, called logArray, and the other is

the logOptions object, which allows for different levels of logging. Both are set with

the setLogObject method. Besides that, the logger offers four logging methods that

also define the level to log on (debug, warn, error, info). All four methods offer the

same functionality and are nearly identical. The methods can be summarized, but this

way it allows the developer a better overview while working with this class.

So, as seen in Listing 6.12 the methods are very simplistic. The if-clause , checks if

logging is wanted at this level. Otherwise the emitLogObject method is called in all

four methods.

48

6.2 Implementation of Selected Components

1 debug (source , msg, id , ac t i on) {

2 i f (th is . logOpt ions . debug === fa lse) return ;

3 th is . emitLogObject ("DEBUG" , source , msg, id , ac t i on) ;

4 }

Listing 6.12: debug method of the ProcessLogger

The emitLogObject method will than create an object. The object contains all the

passed information as well as newly added ones like the time stamp. This object is then

pushed onto the logArray and the method terminates.

49

7
Summary

The goal of this thesis was to develop an extendable lightweight process engine using

cross-platform technologies. The main goal of the engine was to support the process

model generated by the QuestionSys framework so that the engine could be used in the

client-side application. During development, it was important that executing components

are extendable and exchangeable, in order to be able to support further developments

of the QuestionSys framework. This feature also allows the use of this engine for other

use cases besides the QuestionSys framework. Ultimately, due to the technology used,

the developed engine can be used on all major mobile operating systems (Android, iOS,

Windows) without a reimplementation.

To achieve this, the requirements for the engine were first defined in Chapter 4. In the

foreground was the execution of process models with complex flow logic, as well as the

logging of these. The collected data should also be organized and secured. Furthermore,

the engine should be extendable and able to respond to unexpected errors.

Based on the requirements of the engine, a concept could be developed in Chapter

5. For this purpose, a process model specially developed for the engine was first

designed, so that questionnaire models of the QuestionSys framework could be mapped

on. The engine itself was split into two parts, the core part and the exchangeable

part. In addition, interfaces have been defined to allow the core part to interact with

exchangeable components. Finally, a concept for logging and the collected data was

defined.

After the architecture of the engine was developed, the engine could be implemented.

Implementation took place with Ionic 2, Angular 4 and Cordova, all of which are very

current, popular and constantly evolving cross-platform technologies. For this purpose,

51

7 Summary

Chapter 6 presented the most important aspects of the technologies used, as well as

the main points of implementation.

7.1 Outlook

Up to now, the engine developed could not be tested and further developed long enough

to make solid statements about necessary changes. Especially since other possible

questions and node types can be added to the QuestionSys framework, such as ques-

tions that require pairing to external devices via bluetooth (e.g., blood glucose meter).

Nevertheless, some points can be recognized on which further work can be done.

Currently three different gateways are implemented, AND, XOR and LOOP, where the

AND gateway is not an AND in the conventional sense, i. e. all paths are executed

in parallel. The implemented variant only allows a sequential execution of all paths,

where the sequence is determined by the user. An implementation of a conventional AND

gateway would be the next logical step and could also make sense in the QuestionSys

context.

Furthermore, it is currently not possible to jump to a previous node unless it is in a LOOP.

However, this could be useful in the context of QuestionSys, for example, to change a

previous answer or to read a question again.

Finally, it is possible to add further modules or functions similar to the work presented in

Chapter 3. A library or a module that transforms different process models (e.g., BPMN

2.0) to that of the engine would be conceivable. So far this is only available for the Ques-

tionSys models. It would also be possible to add a component for analyzing collected

data. This component could be based on previously defined rules and evaluate certain

data on the basis of these. A module of this kind could, for example, quickly suggest or

prohibit drugs or treatment methods based on the collected data of questionnaire that is

used in a hospital.

The best way to further develop the engine, however, is to use the application in which

the engine is embedded in real scenarios. This way, the users can work with the applica-

52

7.1 Outlook

tion and the engine for a longer period of time and can give better feedback for further

development.

53

Bibliography

[1] Boulos, M.N.K., Wheeler, S., Tavares, C., Jones, R.: How smartphones are

changing the face of mobile and participatory healthcare: an overview, with example

from eCAALYX. Biomedical engineering online 10 (2011) 24

[2] Monitor, T.C.: Anteile der einzelnen Gerätetypen an der Internet-

nutzungsdauer in Deutschland in den Jahren 2013 bis 2016. https:

//de.statista.com/statistik/daten/studie/455003/umfrage/

anteile-der-geraetetypen-an-der-internetnutzungsdauer/ (2016)

Accessed: 2018-02-20.

[3] Schmalen, K.: IDC-Studie: Deutsche Unternehmen setzten auf mobile Apps

zur Verbesserung ihrer Geschäftsprozesse. http://idc.de/de/ueber-idc/

press-center/56517-idc-studie-deutsche-unternehmen-setzen-

auf-mobile-apps-zur-verbesserung-ihrer-geschaftsprozesse

(2013) Accessed: 2018-02-20.

[4] Schobel, J., Schickler, M., Pryss, R., Maier, F., Reichert, M.: Towards Process-

Driven Mobile Data Collection Applications: Requirements, Challenges, Lessons

Learned. 10th Int'l Conference on Web Information Systems and Technologies (WEBIST

2014), Special Session on Business Apps, Barcelona, Spain, April 3-5, 2014, pp. 371-382.

[5] Fritz, F., Balhorn, S., Riek, M., Breil, B., Dugas, M.: Qualitative and quantitative

evaluation of EHR-integrated mobile patient questionnaires regarding usability and

cost-efficiency. International Journal of Medical Informatics 81 (2012) 303–313

[6] Schobel, J., Pryss, R., Reichert, M.: Using Smart Mobile Devices for Collecting

Structured Data in Clinical Trials: Results from a Large-Scale Case Study. In:

Computer-Based Medical Systems (CBMS), 2015 IEEE 28th International Sympo-

sium on, IEEE (2015) 13–18

[7] Schobel, J., Schickler, M., Pryss, R., Reichert, M.: Process-Driven Data Collection

with Smart Mobile Devices. In: International Conference on Web Information

Systems and Technologies, Springer (2014) 347–362

55

https://de.statista.com/statistik/daten/studie/455003/umfrage/anteile-der-geraetetypen-an-der-internetnutzungsdauer/
https://de.statista.com/statistik/daten/studie/455003/umfrage/anteile-der-geraetetypen-an-der-internetnutzungsdauer/
https://de.statista.com/statistik/daten/studie/455003/umfrage/anteile-der-geraetetypen-an-der-internetnutzungsdauer/
http://idc.de/de/ueber-idc/press-center/56517-idc-studie-deutsche-unternehmen-setzen-auf-mobile-apps-zur-verbesserung-ihrer-geschaftsprozesse
http://idc.de/de/ueber-idc/press-center/56517-idc-studie-deutsche-unternehmen-setzen-auf-mobile-apps-zur-verbesserung-ihrer-geschaftsprozesse
http://idc.de/de/ueber-idc/press-center/56517-idc-studie-deutsche-unternehmen-setzen-auf-mobile-apps-zur-verbesserung-ihrer-geschaftsprozesse

Bibliography

[8] statista.com: Global mobile OS market share in sales to end users from 1st

quarter 2009 to 2nd quarter 2017. https://www.statista.com/statistics/

266136/global-market-share-held-by-smartphone-operating-

systems/ (2017) Accessed: 2018-02-20.

[9] Institute of Databases and Information Systems, University of Ulm: Question-

Sys - A Generic and Flexible Questionnaire System Enabling Process-Driven Mo-

bile Data Collection. (https://www.uni-ulm.de/in/iui-dbis/forschung/

laufende-projekte/questionsys/) Accessed: 2018-02-20.

[10] Schobel, J., Pryss, R., Schickler, M., Ruf-Leuschner, M., Elbert, T., Reichert,

M.: End-User Programming of Mobile Services: Empowering Domain Experts to

Implement Mobile Data Collection Applications. In: Mobile Services (MS), 2016

IEEE International Conference on, IEEE (2016) 1–8

[11] Schobel, J., Pryss, R., Schickler, M., Reichert, M.: A Lightweight Process Engine

for Enabling Advanced Mobile Applications. In: OTM Confederated International

Conferences" On the Move to Meaningful Internet Systems", Springer (2016) 552–

569

[12] Tiemuer, A., et al.: Mobile Business Processes: Challenges, Opportunities and

Effect. (2017)

[13] RedHat: jBPM. (http://www.jbpm.org) Accessed: 2018-02-20.

[14] RedHat: jBPM Overview. (https://docs.jboss.org/jbpm/v6.0/

userguide/jBPMOverview.html) Accessed: 2018-02-20.

[15] RedHat: jBPM Core Engine API. (https://docs.jboss.org/jbpm/v6.0/

userguide/jBPMCoreEngine.html) Accessed: 2018-02-20.

[16] Pryss, R., Tiedeken, J., Kreher, U., Reichert, M.: Towards Flexible Process Support

on Mobile Devices. In: Forum at the Conference on Advanced Information Systems

Engineering (CAiSE), Springer (2010) 150–165

[17] Wipp, W.: Workflows on Android: A Framework Supporting Business Process

Execution and Rule-Based Analysis. PhD thesis, Ulm University (2016)

56

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys/
https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys/
http://www.jbpm.org
https://docs.jboss.org/jbpm/v6.0/userguide/jBPMOverview.html
https://docs.jboss.org/jbpm/v6.0/userguide/jBPMOverview.html
https://docs.jboss.org/jbpm/v6.0/userguide/jBPMCoreEngine.html
https://docs.jboss.org/jbpm/v6.0/userguide/jBPMCoreEngine.html

Bibliography

[18] International, E.: ECMA-404 The JSON Data Interchange Standard. (http:

//www.json.org/) Accessed: 2018-02-20.

[19] ionicframework.com: Build Amazing Native Apps and Progressive Web Apps with

Ionic Framework and Angular. (https://ionicframework.com/framework)

Accessed: 2018-02-20.

[20] Sass: Sass Documentation. (http://sass-lang.com/documentation/

#sass_gem_version_inline_docs) Accessed: 2018-02-20.

[21] Microsoft: Typescript - Javascript that scales. (https://

www.typescriptlang.org) Accessed: 2018-02-20.

[22] ionicframework.com: Ionic Native. (https://ionicframework.com/docs/

native) Accessed: 2018-02-20.

[23] Apache Software Foundation: Architectural Overview of Cordova Platform -

Apache Cordova. (http://cordova.apache.org/docs/en/latest/guide/

overview/index.html) Accessed: 2018-02-20.

[24] Google: Angular Docs. (https://angular.io/guide) Accessed: 2018-02-20.

[25] Microsoft: Microsoft Docs. (https://docs.microsoft.com/en-

us/scripting/javascript/reference/foreach-method-array-

javascript) Accessed: 2018-02-20.

[26] ionicframework.com: Ionic API Docs. (https://ionicframework.com/docs/

api) Accessed: 2018-02-20.

[27] Google: Angular Docs API. (https://angular.io/api) Accessed: 2018-02-20.

57

http://www.json.org/
http://www.json.org/
https://ionicframework.com/framework
http://sass-lang.com/documentation/#sass_gem_version_inline_docs
http://sass-lang.com/documentation/#sass_gem_version_inline_docs
https://www.typescriptlang.org
https://www.typescriptlang.org
https://ionicframework.com/docs/native
https://ionicframework.com/docs/native
http://cordova.apache.org/docs/en/latest/guide/overview/index.html
http://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://angular.io/guide
https://docs.microsoft.com/en-us/scripting/javascript/reference/foreach-method-array-javascript
https://docs.microsoft.com/en-us/scripting/javascript/reference/foreach-method-array-javascript
https://docs.microsoft.com/en-us/scripting/javascript/reference/foreach-method-array-javascript
https://ionicframework.com/docs/api
https://ionicframework.com/docs/api
https://angular.io/api

List of Figures

2.1 Lifecycle of a Digital Questionnaire . 5

2.2 Overview of the QuestionSys framework 6

2.3 Questionnaire as a Process Model after [4] 8

3.1 Overview of jBPM’s Core Engine API [15] 12

3.2 MARPLE Architecture [16] . 13

3.3 WOtAN Modules Integrated in BPM Lifecycle [17] 14

5.1 How a linked list is connected . 22

5.2 The two Node Types the Process Model Consists of 22

5.3 Example of a Multiple Choice Question 23

5.4 Architecture of the developed engine . 24

5.5 Structure of the generated results . 28

6.1 Stucture of the Ionic 2 framework . 30

6.2 Structure of Angular 4 [24] . 31

6.3 Flow Chart of the _process method . 39

6.4 Structure of a Published Object . 43

59

Name: Dimitrios Kamargiannis Matrikelnummer: 861700

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Dimitrios Kamargiannis

	Introduction
	Objective
	Outline

	Fundamentals
	QuestionSys Framework
	Process Model

	Related Work
	jBPM
	MARPLE
	WOtAN
	Discussion

	Requirements
	Functional Requirement
	Nonfunctional Requirements

	Concept & Architecture
	Overall Concept
	Main Unit
	Runtime Manager
	Gateway Components
	Executable Components
	Logging
	Results

	Implementation
	Ionic 2 Framework
	Implementation of Selected Components

	Summary
	Outlook

