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Abstract

It is well accepted that learnability is a crucial attribute of usability that should be

considered in almost every software system. A good learnability leads within a short time

and with minimal effort to a high level of proficiency of the user. Therefore, expensive

training time of complex systems is reduced. However, there is only few consensus on

how to define and evaluate learnability. In addition, gathering detailed information on

learnability is quite difficult. In todays books on usability evaluation, learnability gets

only few attention, research publications are spread to several other fields and the term

learnability is also used in other context.

The objective of this thesis is to give an structured overview of learnability and methods

for evaluation and additionally assist in the evaluator’s individual choice of an appropriate

method. First of all, several definitions of learnability are discussed. For a deeper

understanding psychological background knowledge is provided. Afterwards, methods

to asses learnability are presented. This comprises nine methods that seem particularly

appropriate to measure learnability. As this methods are very diverse, a framework

based on analytical hierarchy process is provided. This framework aims to classify

presented methods with respect to certain criteria and assess practitioners in selecting

an appropriate method to measure learnability.
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1
Introduction

The importance of an excellent user experience (UX) in human-computer interaction

(HCI) is well known [1, 2]. For systems where users can freely choose between several

alternatives (such as websites or mobile applications), a good user experience is a

matter of survival as users leave if usage is too difficult and intransparent. But also in

workplace, a well-designed system is crucial as it strongly influences the employees

productivity [3].

Note that the aim of UX is not only to provide positive emotions, such as enjoyment, the

all-encompassing fulfilment of desires and emotional attachment to the product. The

core of UX is usability and utility (see Figure 1.1). Therefore, the interface with its offered

functionality must be suitable for the user’s tasks and allows users to effectively and

efficiently achieving their goals. "In the best cases, the interface almost disappears,

enabling users to concentrate on their work, exploration, or pleasure" [2]. Therefore,

usability is not a ’nice to have’ exclusively influencing the user’s satisfaction. It extremely

affects the user’s productivity and error mades. In critical environments, such as in air

traffic, nuclear reactors and clinical care, a good usability might even be life saving. There

are several famous examples where unintentional errors led to serious consequences.

Just recently, an employee of the Hawaiian Emergency Management Agency (HEMA)

had caused panic in Hawaii after he accidentally sent an emergency alarm warning of an

incoming ballistic missile. The system suffered under a very obvious usability problem

[5, 6].

One important attribute of usability is learnability [2, 7, 8], which generally can be

described with how easy it is to learn the system. Some researchers even refer to

1



1 Introduction

Figure 1.1: Aspects of user experience (adapted from [1, 4])

learnability as the most fundamental attribute [8] and highly recommend to involve

explicit evaluation of learnability when evaluating usability [9].

Especially in industrial and commercial systems, where productivity and costs are crucial

and training time is expensive, learnability is important. However, also in most other

systems ease of learning is considerable. One example are social media applications,

where users try a competitive supplier if they cannot succeed quickly [2].

1.1 Problem statement

Although researchers highly recommend to involve explicit evaluation of learnability,

only few advise can be found in up-to-date known textbooks (e.g., [1, 2]). In research

publications, there is only few consensus on how to evaluate learnability and even on
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1.2 Objective

how to define learnability in first place [9]. Surprisingly, [8] supposed that learnability

might one of the easiest aspects of usability to measure.

Over the last 40 years, learnability is of interest in HCI [9]. Since then, several definitions

and evaluation methods have been conducted. Surprisingly, only one publication [9]

could be found that performed an extensive literature research on existing approaches.

This situation is aggravated by the fact that practitioners looking for information on

learnability are faced with the challenge of finding suitable literature. In todays books

about usability evaluation methods, such as [1, 10], learnability gets only few attention.

In research, the term learnability is applied to multitudinous other fields, such as artificial

intelligence [9, 11], language and notation learning [12, 13], instructional technology [14]

and psychological fundamental research [15]. Therefore, a relative lengthy literature

search might be necessary to identify the relevant publications spread across different

research fields.

Considering this information, it is not surprising that learnability is rarely explicit measured

in practice [16].

1.2 Objective

Therefore, the overall goal of this thesis is to give a structured overview of learnability

with its meaning and existing approaches to measure learnability.

In detail, the first sub-goal of this thesis is to provide an overview of the term learnability

with its definition and the underlying process of learning from a psychological perspective.

The second sub-goal is to present and discuss existing approaches to measure learnabil-

ity. As many different methods are applicable, all with their own strength and weaknesses,

the third sub-goal is to give assistance in finding the most appropriate method for oneself.

It is based on a decision process, the analytical hierarchy process (AHP), where personal

preferences are utilized to propose the best fitting alternative to measure learnability.
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1 Introduction

1.3 Structure of the thesis

The following chapter, Chapter 2, starts with defining learnability and continues with

a review of human learning from a psychological perspective in order to facilitate a

comprehensive understanding of the term learnability.

Afterwards, in Chapter 3, several existing approaches are presented in detail after

providing an overview. Finally, the existing methods are discussed.

The assistance in finding the most appropriate method regarding individual requirements

and preferences is provided in Chapter 4. At the beginning of this chapter, the funda-

mental process, AHP, is explained. Next, related work is presented. Afterwards, AHP is

applied for finding the most appropriate method. First, the general problem hierarchy is

presented. Then examples are given on how the criteria of the hierarchy could be rated

regarding different scenarios. Then, the presented approaches in this thesis to measure

learnability are rated consistent with AHP. The chapter concludes with a discussion on

the appliance on AHP to assist in finding the most appropriate method.

This thesis finish with a conclusion in Chapter 5.

4



2
Fundamentals

In order to understand how learnability can be measured, it is important to first compre-

hend what learnability actually means. Therefore, definitions of learnability are discussed

first. Additionally, to fully comprehend learnability and the possibilities of measuring

learnability, it is essential to understand basics of human learning processes. Hence,

learning from a psychological point of view is presented afterwards.

2.1 Learnability

Although learnability is standardized by the International Organization for Standardization

(ISO), there seems to be disagreement on how to define learnability, as many other

popular definitions exist. This impression is reinforced by [9], which reviewed all articles

mentioning the term learnability and published in the ACM conference series on Human

Factors in Computing Systems (CHI) and ACM Transactions on Computer-Human

Interaction (TOCHI). This led to a collection of 88 papers from the years 1982 to 2008.

Entire 45 article used learnability without any definition. The remaining articles used

various definitions, that [9] arranged in eight categories. For example, the definitions

range from "easy to learn" to "change in performance over time" and the "[a]bilty to

remember skills over time" [9]. In the following, only some of the definitions are presented,

trying to cover as many different approaches as possible.

The first step is the standardization by ISO. Maybe one reason why it is not widely used

when it comes to learnability is that the standard series by ISO are not accessible without

charges and also within the standard series more than one definition is provided for
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2 Fundamentals

learnability, such as the definitions in ISO 9241-110:2006 and ISO/IEC 25010:20. In

both standards learnability is regarded as a sub-characteristic of usability1.

The first one, ISO 9241-110:2006, describes dialogue principles (see Figure 2.1), which

are general goals that should be achieved in interactive systems to optimize usability.

These comprise seven principles including learnability, which is referred to as suitable

for learning in this standard. It is important to note that the individual principles are

not independent and can overlap semantically [17]. For instance, Conformity with

users expactions may affect learnability. Therefore, it is quite challenging to define and

measure each principle individually. Some principles are also competing, so one has to

weigh which principle is more important.

Dialogue 
principles 

Suitable for 
the task 

Self- 
descriptiveness 

Controllability 

Conformity 
with user 

expectations 

Error 
tolerance 

Suitability 
for learning 

Suitability for 
individualisation 

Figure 2.1: Dialogue principles of ISO 9241-110:2006 (own representation, based on
[17])

1The term Usability will not be explained any further in this thesis. For clarification or further interest on
this topic, reference is made to [8].
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2.1 Learnability

In this standard Learnability is simply described with:

"A dialogue is suitable for learning when it supports and guides the user in

learning to use the system" [17].

However, ISO/IEC 25010:2011 provides a more detailed definition:

"[Learnability is] the degree to which a product or system can be used by

specified users to achieve specified goals of learning to use the product or

system with effectiveness, efficiency, freedom from risk and satisfaction in a

specified context of use" [18].

The definition gets more concrete about what is meant by the user can use the system.

He uses the "system with effectiveness, efficiency, freedom from risk and satisfaction"

[18]. Additionally, the definition emphasizes that the specified user for whom the system

is intended, specified goals of learning and the specified context of use need to be taken

into account.

There are several other definitions that also emphasize the significance of characteristics

of the users for learnability. One example is the following definition, which is one of the

earliest definitions (from 1980), that could be found:

"[T]he system should be easy to learn by the class of users for whom it is

intended" [19].

However, this definition, as well as the definition by ISO 9241-110:2006, leaves unclear

what is meant by easy to learn or learn to use.

One quite popular definition, that gets more concrete about what is meant by easy to

learn, is by [8]:

"Ease of learning refers to the novice user’s experience on the initial part of

the learning curve[,] [...] allow[ing] users to reach a reasonable level of usage

proficiency within a short time".

For one thing, [8] refers exclusively to novice users focusing on their initial learning

experience. Furthermore, [8] relativizes the relationship between efficiency and learn-

ability (as given in the definition of ISO/IEC 25010:2011, for example). [8] states that
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2 Fundamentals

systems designed exclusively for high learnability will lead to an increase in efficiency,

but the efficiency will maybe remain below the maximum possible value. Other way

around it is the same: A system that will lead to high efficiency focussing on expert

users will probably not have minimal learnability. This interdependency of learnability

and efficiency will be described more detailed in Chapter 2.2.3.2. Therefore, [8] defines

learnability as an aspect of usability, in addition to efficiency, which is defined as a

separate aspect of usability (see Figure 2.2). Furthermore, he defines learnability not

with achieving efficiency, but with "reach[ing] a reasonable level of usage proficiency

within short time". However, [8] stays unclear on how to estimate a reasonable level of

usage proficiency. Moreover, nothing is said about the transition from a reasonable to an

expert performance.

Usability 

Learnability 

Efficiency 

Memorability 

Satisfaction 

Errors 

How pleasant 
is it to use the 

design?

How easy is it for users to 
accomplish basic tasks the first 
time they encounter the design?

Once users have 
learned the design, 

how quickly can 
they perform tasks?

When users return 
to the design after a 
period of not using 
it, how easily can 
they reestablish 

proficiency?

How many errors do 
users make, how 
severe are these 
errors, and how 
easily can they 

recover from the 
errors?

Figure 2.2: Usability attributes by [8] (own representation)
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2.1 Learnability

Similarly, [20] define learnability also with reaching a certain level of proficiency:

"[T]he effort required for a typical user to be able to perform a set of tasks

using an interactive system with a predefined level of proficiency".

As with [8], the focus is on initial learning, but at this definition effort is seen as an

indicator for learnability and not time.

[21] takes time as well as satisfaction into account and asserts that the goal is an efficient

and error-free interaction:

"[T]he word learnability signifies how quickly and comfortably a new user can

begin efficient and error-free interaction with the system, particularly when

he or she is starting to use the system".

As seen in the last examples, most definitions focus on initial learning, but there are also

definitions which explicit include long term learning such as:

"[T]he ease with which new users can begin effective interaction and achieve

maximal performance" [22].

Another example is by [23], which not only includes mastery of the basics, but also of

the "advanced system functions".

There are many more definitions [9]. Now, how should learnability defined? How is

learnability defined for this thesis? Which is ’the best’ definition? I think every definition

has its right to exist, each covering different aspects of learnability. Therefore, instead of

choosing one of the existing definitions for this thesis or providing an own definition, I

would like to give a small summary of important aspects that define learnability, based

on the definitions found.

First, learnability has something to do with learning to use the system. This involves the

ability to get some work done [8]. The user learn mainly how to use the basic functions,

but also advanced functions [23]. The result of learning to use the system is a change

in performance which can be observed over time [8]. This change results in a more

efficient, effective and error-free usage [18, 21]. Critical for learnability is to which degree

a change can be observed [8, 18], how quick this change takes place [8, 21], how much

effort is required [20] and how satisfied the user is [18, 21]. Essential for the assessment

9



2 Fundamentals

of learnability is always the consideration of the specified user and his concrete context

of use [8, 18].

Although there are discussions about the demarcation of learnability and usability, mostly

learnability is seen as an attribute of usability.

2.2 Learning and Memory

In the last chapter various definitions for learnability were presented. Often, learnability

is simply described with how easy it is to learn the system. But, what does easy to learn

really mean? What is learning in general?

Answering these questions is essential to fully understand learnability and especially

for the understanding of possibilities to measure learnability. Therefore the next chapter

takes a deeper look of the psychological understanding of human learning and memory.

There is a lot of research in this area. Presenting all aspects and theories of learning

and memory would be beyond the scope of this thesis, therefore, only basic theories

that have or may have implications for the understanding of how learnability could be

measured, will be introduced. This chapter tries to answer, amongst other things, the

following central questions:

• How do humans learn?

• What happens when skill is growing?

2.2.1 Defining Learning

In our daily life the term learning is used with the most matter of course in a vast variety

of topics, such as learning as a child how to speak, learning how to interact with the

environment, riding a bicycle and learning chemistry. Regarding this variety of usage,

it is not surprising that learning is a huge field in psychological research as well as in

educational science. Therefore, no generally valid definition could be found. There are

various of definitions existing, written from different point of views. In the following some

10



2.2 Learning and Memory

definitions are cited, so the reader can get a better understanding what exactly is meant

by the term learning.

"[L]earning [...] [is] the process by which changes in behavior arise as a

result of experience interacting with the world" [24].

This definition emphasizes on the goal of learning: a change in behaviour. The process of

learning itself, however, is not explained, besides the mentioning of the term experience.

This definition is criticized by [25] being to simple as not every experience will necessarily

result in a change of behaviour, which [25] would suggest as learning. According to

[25], experience that arises by storaging information in the brain is the result of learning.

Whether this experience will lead to a change in behaviour does not matter. Likewise,

[26] refers to a definition where learning is defined as a relatively permanent change in

behavioural disposition, and not necessarily in behaviour.

The following definition describes learning from a more insight view:

"Acquiring knowledge and skills and having them readily available from

memory so you can make sense of future problems and opportunities" [27].

An important aspect of this definition is the mentioning of what someone can learn:

knowledge and skills. Furthermore, according to this definition, learning is the process of

the acquisition of knowledge and skills. But knowledge and skill can only be considered

as learned, if there is the possibility of retrieving this knowledge and skill form memory

in order to use it for further problems and opportunities. Therefore, memory seems to

play an important role in terms of learning.

"Learning and memory are intimately, perhaps inextricably, intertwined. The

term learning emphasizes the acquisition of information, whereas the term

memory emphasizes its retention, but both are facets of a single system

for storing information about our experiences. You cannot remember an

experience unless you first create a record of it (learning), and you cannot

learn from this experience unless you retain this record (memory)" [25].

11



2 Fundamentals

This definition indicates how closely interdependent learning and memory are. Learning

includes memory and "memory depends on learning" [25]. Therefore, the next chapter

focuses on human memory.

2.2.2 Human Memory

For a better understanding on how learning works, the comprehension of human memory

is essential. Thus, a short overview of functionality of memory is provided. As a summary

of all aspects of the human memory would be clearly beyond the scope of this thesis,

only essential theories that are important for answering the central question of this thesis,

how to measure learnability, are presented.

In general, learning and memory include the following three stages: encoding, storage

and retrieval. The first stage, encoding, occurs during the presentation of information

and is responsible for the transfer of information, which can be visual, auditory, semantic,

a taste or smell, into a code that can be stored in memory. The result of the encoding

stage is the second stage: storage in memory system (the brain). The third stage,

retrieval, describes the process of recovering stored information on demand [28].

Many theories exist trying to explain the functionality and structure of memory. However,

most psychologists share the opinion that the memory system can be discriminate in

(at least) short-term memory and long-term memory. Both are types of memory, which

differs in capacity and how long information can be stored [28].

2.2.2.1 Multi-Store Model

The probably best-known model is the multi-store model, presented in [29], as it had an

enormous influence on psychology [10]. Nowadays, only few researchers still accept

this model in detail, nevertheless, the basic idea of the distinction of memory in different

components as described below is still widely hypothesized and its concept is the basis

for some modern theories [30]. Therefore, the basic concepts are described in the

following. Additionally, Figure 2.3 presents the model visually.

12



2.2 Learning and Memory

According to the model, human memory splits into three structural components: the

sensory register, the short-term store and the long-term store. First of all, incoming

sensor information enters the sensory register, which is characterized through the model

by a high capacity but very low duration keeping. The sensory register can be subdivided

in components for the different senses. Only few information, those who get attention,

get transferred to the next component of memory, the short-term store. This selective

function protects humans from stimulus satiation. Other information is lost, besides few

information that can be kept as long as desired through a process called rehearsal. In

simple terms it means the repetition of information over and over again [10].

Figure 2.3: Multi-store model (adapted from [28, 30])

The short-term store gets selected input both from sensory register and from long-term

store, thus new information can be compared to existing ones from long-term store.

This enables a meaningful structure of the new incoming information. Therefore, the

short-term store is described as the subject’s working memory. It has a limited capacity

and keeping duration of information. The duration is approximately between 15 and 30

seconds [10, 30]. Furthermore, the capacity is limited to approximately seven units, so-

called chunks [31]. Through this chunking, individual information units can be combined

in greater units of meaning and, therefore, the capacity of short-term store can be

increased [10]. For instance, four single numbers can be combined to one date. More

detailed information on chunking is provided in Chapter 2.2.3.3.

13



2 Fundamentals

Finally, information can be transferred to the long-term store, which is characterized

through a fairly endless capacity and an unlimited duration keeping. However, from time

to time, humans forget information. Actually the information is still in long-term store, but

the subject has a lack of access facilities [10]. The long-term store can be considered

as a huge library with books instead of information. The book is still somewhere in a

shelve, but was probably not arranged systematically, resulting in no incident to regain

the information, or the book was not used for quite a while. Therefore, a meaningful

structure and integration of new information is essential for knowledge retrieving [26]. In

this model learning means the retention of processed information in long-term store [10].

The multi-store model has its strength, like the separation of memory in two systems,

the short-term and long-term memory, with different capacity and keeping duration of

information. There is evidence that these assumptions are correct [28]. Nevertheless,

the multi-store model is criticized for being too simple about the structure of short-term

and long-term memory. [29] assumed one single system for each, but as we see in the

following chapters, other theories hypothesize several stores for short-term and long-

term memory [28]. Furthermore, the multi-store model is criticized for the assumption

that information get transferred from short-term to long-term store by rehearsal as in

daily life people store many new informations without spending much time on active

rehearsal [28].

Therefore, some alternative or complementary theories are presented in the following

chapters.

2.2.2.2 Levels-Of-Processing Theory

On crucial disagreement of different theories is the assumption of how information

transfers from short-term to long-term store. Whereas the multi-store model [29] assume

that the probability of getting information transferred to long-term store increases with

the amount of rehearsal, [32] assume that the depth of processing is crucial. According

to them, rehearsal does not or only poorly improves memory, as long as the information

is not repeated in a deep meaningful way [30] – independent of how long it is repeated

[10].
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2.2 Learning and Memory

2.2.2.3 Working Memory Model

Two decades after the publication of the multi-store model, [33] proposed a new theory

of working memory as the short-term store of the multi-store model is far too simple.

[33] assumes that the working memory consists of two independent systems for auditory

information (phonological loop) and visual information (visuospatial sketchpad) as well

as a central executive controlling them [10].

2.2.2.4 Theories of Long-Term Memory

The multi-store model [29] hypothesize only one single store for long-term memory.

But considering the diversity of information that need to be stored, several researchers

assume multiple stores for long-term memory [28].

[34] assumes two types of knowledge, declarative and procedural knowledge, which are

interacting with each other. The declarative knowledge, corresponds to factual knowl-

edge, like Berlin is the capital of Germany. A characteristic of declarative knowledge

is that it is consciously accessible. [34] describes it as “things that we are aware we

know and can usually describe to others”. Furthermore the knowledge is represented in

chunks [34].

However, procedural knowledge is organized in so-called production rules. One example

for a production rule is if you want to turn right with your vehicle, you must signal your

intention. Another example is if you want to add two numbers you must first of all add

the last digit of each number and then the previous digit of each number including the

calculating transfer and so on until you have the sum of both numbers. In contrast

to declarative knowledge, a person is not aware of its procedural knowledge. He or

she is able to do something like riding a bicycle but can not verbalize how to do it [34].

Therefore, some theorists refer to declarative knowledge as explicit memory, whereas

procedural knowledge is called implicit memory [24].

[35, 36] further subdivide declarative knowledge in episodic and semantic memory.

Episodic memory covers things that someone remember, whereas things someone

knows belongs to semantic memory. Therefore, autobiographical events, such as how
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the day of your graduation ceremony was, what you were wearing on that day and

how you were feeling, is episodic memory according to [35, 36]. Information about the

context of the event is also included: where and when the ceremony was held and,

therefore, where and when the event was stored in memory. Furthermore episodic

memory is characterized by an acquisition in a single exposure, the event itself. Unlike

episodic memory, semantic memory composes of things we know, such as facts like

the president’s name of the United States. The memory is not necessarily attached to a

context: Someone knows the president’s name, but has no clue where he knows it from

or since when he knows it [24].

Figure 2.4 visualize this division of long-term memory into different types of knowledge.
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Figure 2.4: Hypothesized structure of long-term memory (adapted from [28])

16



2.2 Learning and Memory

Due to research on brain damaged patients (e.g., [37, 38]), it seems to be widely

accepted that long-term memory is differentiated between declarative (with episodic and

semantic memory) and procedural knowledge. However, recently an increasing number

of theorist argue that the distinction between declarative and procedural knowledge

is oversimplified [39]. One reason for this assumption is that there are tasks intend

to address one type of knowledge (declarative or procedural), but in reality also the

other type of knowledge gets involved. For example, in order to address the declarative

knowledge, people get confronted with hints expected to recall their personal memory

corresponding with the given hint. As the person is supposed to actively recall her or his

memory, it is seen as a memory task testing the declarative respectively explicit memory.

However, most of the memories produced are not explicit, but rather spontaneously and

unintended [39].

2.2.3 Expertise

Earlier, a short overview regarding some basic theories on how the human memory

works were provided. The reader should have by now some idea of the hypothesized

functionality and structure of memory, such as how new memory is stored and of which

components memory might be composed of.

As discussed in Chapter 2.2.2, theorist differentiate between skills (procedural knowl-

edge) and knowledge (declarative knowledge). In the context of learning, skill and

knowledge are inspected individually, since the acquisition of skill and knowledge also

differs. Since good learnability is aimed at proficient system usage, the focus is on

procedural knowledge. In the following, therefore, the main focus is on skill acquisition.

Mainly the following question will be answered: What happens when skill is growing?

2.2.3.1 Stages of Skill Acquisition

According to [30], skill acquisition can be divided into three phases: cognitive, associative

and autonomous stage.
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In the first phase, the cognitive stage, a declarative encoding of the skill is developed,

which consists of facts significant to the skill. During the first performance of the skill,

learners normally rehearse theses facts. For instance, when learning how to use the

gear lever in a car, first of all the location of the individual gears is memorized [30].

In the second phase, called associative stage, a procedure for executing the skill is

produced. The learner "relays less on actively recalled memories", as he begins to use

stereotyped actions. Furthermore, mistakes in initial understanding are discovered and

removed by degrees [30].

With the last phase, the autonomous stage, the procedure becomes increasingly auto-

mated and fast. Also, fewer processing resources are required. Therefore, resources

can also be spent on other tasks. The driver could be engaged in a conversation during

driving even with no memory for the traffic he has driven through [30]. By this time "it

may be impossible to verbalize in any detail the specific movements being performed,

and performance may have become much less dependent on verbalizable memories for

events and facts” [24].

In summary, "[t]he degree on which participants rely on declarative versus procedural

knowledge changes dramatically as expertise develops". This "process by which people

switch from explicit use of declarative knowledge [over] to direct application of procedural

knowledge, which enables them do things such as riding a bike without thinking about

it", is called proceduralization [30].

2.2.3.2 Learning Curves

The previous chapter explained why the performance of skill becomes more efficient

and faster as it develops. Surprisingly, the amount of time required to conduct a skill

decreases in a regular and predictable manner, independent of the skill [24, 40]. Thus,

this relationship of practice and performance can be described mathematically. However,

there is a dispute about the best function to describe it.

Widely accepted is the so-called power law of practice introduced by [41], which describes

the relationship between response time and number of practice trials in a power function
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[24, 30, 40]. [41] compared the power with an exponential and a hyperbolic function.

However, their results pointed towards the power function. Likewise, other theorists

reject the exponential function in favour of the power law of practice, e.g. [40]. A detailed

discussion about the cognitive causes pointing towards a power function is given by [40].

However, other researchers are pleading for an exponential function (e.g., [42]), a

sigmoid curve (e.g., [43]) or a mixture of power and exponential function [42].

Power Law of Practice

As already mentioned the power law of practice, which was introduced by [41], is widely

accepted and quite a gold standard [42]. Generally, the power law of practice describes

the relationship between performance and amount of practice, whereby performance

can be measured by any variable that decrease with practice, such as response time,

execution time or amount of errors [41]. However, [41] focused their research primarily

on time measurements.

Typically, the power the law of practice refers to skill acquisition including cognitive as

well as perceptual-motor skills, but also knowledge acquisition can be described with a

power function. Therefore, sometimes it is also referred to as the power law of learning

[24, 30].

The power law of practice can be mathematically described as followed (Equation 2.1)

with T as the performance time, P is the amount of practice, a the speed on the first trial

and b the slope of the function [30, 40]. The amount of practice, P, is typically measured

in trails, which can be one execution of a task [41].

T = aP−b (2.1)

Assuming this function, there would be no limit in performance. After enough practice,

the task could be executed in arbitrarily small time. In reality, however, there are many

situations where the performance speed is unable to fall below a certain level. In

addition, there is another issue this function is oversimplifying: It assumes that the first

trial measured is the beginning of learning. Due to this two assumptions the power
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function was further developed to Equation 2.2 to observe prior learning as well as to

introduce a lower limit of performance speed [40].

T = c+ a(P + d)−b (2.2)

c is the asymptotic level for performance speed and d is the estimated amount of practice

trails that occurred before the first measured trail [40].

Another way of analysing the performance time in relation to the amount of practice is to

transform the power law in a linear function by using log-log transformation [30, 44].

lnT = ln(a) − b · lnP (2.3)

Visualising the measured data, a linear function in log-log coordinates should be seen if

the relationship of time and practice in normal coordinates fit to the power function (see

Figure 2.5) [30].

Figure 2.5: Visualisation of measured data. In the left plot the typical curve of the power
be seen. In the right plot the data is presented in log-log coordinates [44]

As already mentioned, the power law of practice could be observed in many cognitive

tasks. Also in HCI, researchers observed such a relationship between performance and

practice [40, 45, 46]. For instance, [45] analysed mean time on task of 12 participants

over 20 trials using an e-commerce data management tool to update product information.

Learning curves were analysed for two different update tasks. Just one learning curve
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fits to a power function. Nevertheless, they find the power law of learning useful in

helping to analyse tool efficiency.

Research on evidence for the power law of practice has conducted mainly on average

data. For instance, [41], who plead for the power law, used data averaged over subjects,

conditions, or practice blocks for all tasks they had examined, except for one [42].

However, it was assumed that the power law of practice also holds for individual data

[41, 42], even though it is known that the curve of individual data composing average

curves do not need to be the same as the curve of the average data [42]. This is one

main reason for emerging discussion about the correctness of the power law.

Exponential Function

[42] is one of the persons that criticize the evidence for a power law being faulty due

to the fact that it is based in averaged data. He analysed datasets of 475 subjects

in 24 experiments and came to the result that an exponential function fits better in all

unaveraged data sets. The exponential function is presented in Equation 2.4. Instead

of b, the slope of the function is called α, besides that the naming of the parameters is

analogous to the power function.

T = c+ ae−α·P (2.4)

Learning Curves by Nielsen

The previous learning curves attempt to provide mathematical functions that fit to learning

process in most of cognitive skills, including human-computer-interfaces. [8], in turn,

concentrates only on learning curves for human-computer-interfaces. He provides only

a general shape and not an exact mathematical function. Furthermore, he presents two

learning curves depending on the context of use of the system.

[8] differentiate between systems focusing on novice users and systems focusing on

expert users. Systems with focus on novice users have usually a high demand on ease

of learning. Therefore, such systems have a strong increase in usage proficiency and
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efficiency for the first part of the learning curve. The user can reach within short time a

suitable level or proficiency [8]. The resulting shape of the curve, which is presented in

Figure 2.6, reminds of an exponential or power function.

Figure 2.6: Learning curves by Nielsen [8]

Systems developed for expert users have usually a high demand on efficiency. Thus, the

system may be hard to learn at the beginning [8]. An example is the usage of shortcuts,

which can be very helpful for experts to get work done faster, but are difficult to memorize

at first. Regarding the learning curve of such a system, the user makes only small

progress at first, but then proficiency is rapidly increasing and outstrips the possible level

of proficiency and efficiency of systems for novice users [8]. The learning curve has the

shape of an sigmoid curve, which is also presented in Figure 2.6.

[8] differentiated between two extreme hypothetical systems, one only focussing on

novice users and one only on experts. In practice, it is seldom necessary to decide

whether a system is either easy to learn or allows reaching high efficiency. Often it is

possible to develop a system that is easy to learn in the beginning and yet achieves a

high level of proficiency. This can be reached by proving an interaction style easy to

use at the beginning and than give the user the possibility to switch to a more efficient

interaction style, for instance. The shape of the learning curve would be the same as the

learning curve for systems only for novice users at the first part, but it raises up at the

level of a system for expert users [8].
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Summary

Independently of how a learning curve can mathematically described (for example as a

power or an exponential function), it has the following characteristics in common:

• If something is easy to learn, the learning curve has a steep decrease in perfor-

mance time and, therefore, a steep increase in proficiency at first.

• Then the decrease respectively increase lessens and slowly gets closer to a level

of performance time which can not be undercut.

• The learning curve follows a predictable pattern.

• The exact curve varies for different tasks and subjects, but the tendency stays the

same.

2.2.3.3 Impact of Expertise on Chunking

Chapter 2.2.2 mentioned the concept of chunking, which sorts information to greater

units, so-called chunks, and hold them in short-term memory. In this type of memory only

a certain amount of chunks, around seven chunks, can be hold [26]. As the research

from, for example [47, 48, 49], shows, experts form larger as well as more complex

chunks than novices [49]. This means that more information can be stored within one

chunk and, therefore, much more information can be hold in memory. [20, 50] showed in

their studies with 24 and 28 participants that this phenomenon can also be observed in

the context of HCI. Furthermore, [20] observed that the chunks size gets more regular.

2.2.3.4 Mental Models

Another aspect that is important when considering learning progress, especially with

regard to HCI, are mental models [1, 51]. With respect to HCI, a mental model is defined

by [51] as:

"Knowledge that the user has about how a system works, its component

parts, the processes, their interrelations, and how one component influences

another".
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In general, the purpose of mental models is to help people to learn and understand

complex situations [51]. Note that mental models are based on user’s believes, built on

previous experience, knowledge and current observations, rather than on facts. They

are incomplete and change over time, for example, if new experience and knowledge

are gained [52, 53]. Hence, when expertise is growing, the mental model changes.

This thesis is supported by several researchers, who observed in the field of HCI a

discrepancy between mental models of novice and expert users, e.g. [51, 54]. The

mental model of expert users were significantly closer to the intended model of the

system [54].
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Existing Methods for Measuring

Learnability

The last chapter dealt with learnability and learning in general, whereas this chapter

evaluates possibilities to measure learnability in human-computer interaction.

Although learnability is rarely explicit measured in practice [16], despite its widely rec-

ognized importance in research [9], several methods to measure learnability could be

found that seem to be either appropriate or promising. This includes methods that have

either proved to be valuable in an evaluation or are still under development, but appear

promising enough to be worth mentioning.

3.1 Overview

In general, methods for usability can be subdivided into two categories: empirical and

analytical methods. In empirical methods, a system is assessed by studying the actual

users (respectively representatives of actual users), whereas analytical methods are

performed without user involvement. Analytical methods are either conducted by experts,

who put themselves in the position of a user, or are based on models [10].

A characteristic of evaluation methods is the time and purpose of their execution: One

distinguishes between formative and summative evaluations. Formative evaluations

are performed during the development process with the aim of detecting problems

and correcting them afterwards. In contrast, summative evaluations pursue the goal to

evaluate the overall quality, for example, to decide between two alternatives. Simply
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said, summative evaluations try to answer Which one is better? and/or How good is it?,

whereas formative evaluations try to answer the question Why is it bad? [10, 55].

The collected data can be either objective or subjective and quantitative or qualitative

[55]:

• Objective data: Can be directly measured or observed.

• Subjective data: Opinions, usually expressed by the user. But also methods that

strongly relay on the expertise of the evaluator produces subjective data [22].

• Quantitative data: Numerical data, such as scores.

• Qualitative data: Non-numerical data, such as lists of issues.

These two characteristics occur in every combination. For instance, survey data is

subjective and quantitative, whereas performance measurements are objective and

quantitative. Data, which is qualitative as well as objective, for example, is a record of

sequence of steps taken by a user. Noticed feelings during an observation are subjective

and qualitative.

Important to notice is that these characteristics are referring to the collected data and

not to the method itself. For instance, a questionnaire results in subjective data, the

method itself is usually highly objective [10].

Some researchers additionally distinguish between attitudinal and behavioural dimen-

sions [56]. The purpose of attitudinal research is the measurement or understanding of

the user’s opinion, whereas the purpose of the second one focusses on the behaviour of

the user [57].

These categorization seems also be applicable for learnability, since learnability is widely

seen as an aspect of usability and found methods can be classified according to these

characteristics.

Before discussing the methods to assess learnability in detail, Figure 3.1 gives an

overview of all the methods that will be presented in this thesis. There is no uniformly

accepted classification of evaluation methods in HCI, so an own categorization has been

made based on [1, 10, 58].
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Figure 3.1: Overview of methods to assess learnability (general classification inspired
by [1, 10, 58])

In this classification empirical methods are further differentiated in:

• Testing Methods: These refer to usability testing, which is described by [59] with

"three key components: representative participants, representative tasks, and

representative environments, with participants’ activities monitored by one or more

observers" [59]. Typically these methods are conducted in a usability laboratory,

but also remote-usability-tests, respectively remote-learnability-tests, and field

studies are possible [1].

• Analytics: User behaviour is analysed via tracking, such as logging of events or

web-analytics-data [1]. The advantage of these methods is that there is no need to

involve a moderator or observer. Participants can freely use the system in their

natural environment. Note that these methods can also be used within testing

methods [1].
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• Inquiry Methods: The focus of these methods is on getting an overall subjective

impression (such as preferences and opinions) of the user [58]. Diaries, one

inquiry method, are normally exclusively performed within longitudinal studies

during natural system usage, whereas questionnaires are often conducted within a

testing method.

Analytical methods are further subdivided into:

• Formal-Analytical Methods: User interfaces are analysed and described using

established formalisms. The process takes place without the involvement of users

or user representatives [10].

• Inspection Methods: Experts go through the application identifying learnability

issues based on either tasks or principles [1]. The application does not need to be

implemented yet. However, it rely solely on the judgement of the evaluator [58].

During the research, the focus was set on methods that are exclusively tailored to

learnability. Nearly all methods found particularly for learnability are presented in this

thesis. One exception, for example, is the research by [60], who hypothesised that learn-

ability can be assessed by observing brainwave patterns with electroencephalography.

Although a dependency could be observed, study results did not fully comply with their

hypothesis. Therefore, further research is necessary in this field.

In addition, since most researchers agree that learnability is an aspect of usability,

typical usability methods were examined to evaluate if they are particularly well-suited

for assessing learnability. The methods that appear suitable are presented in the

following. It is important to note that other methods, which are not mentioned, may

also be appropriate, such as observations or thinking-aloud protocols. However, during

research, other methods have emerged that seem more appropriate. These methods

are questionnaires, which include parts solely for learnability, and diaries and cognitive

walkthroughs, which are explicit recommended for assessing learnability [10, 61, 62].

In the following, methods are presented in detail and discussed afterwards. If a very

specific method is presented, I will also refer to enhancement and related work.

28



3.2 Testing Methods

3.2 Testing Methods

This chapter presents testing methods suitable for learnability measurement.

3.2.1 Mental Model Interviews

One option to evaluate learnability with user involvement in very early stages of software

development, when not even a prototype exists, are mental model interviews. As

discussed in Chapter 2.2.3.4, mental models of expert users are significantly closer to

the intended model of the system than mental models of novices. According to [54],

systematic deviations between the user’s mental model and the system model can

indicate usability issues. Especially the comparison of novice and system models can

highlight potential learnability difficulties [54].

Therefore, mental model interviews seem valuable as they can be used to uncover po-

tential learnability issues very early in design when changes can be easily implemented.

However, only one publication [63] could be found using mental model interviews for

assessing learnability without evaluating the method itself. Nevertheless, mental model

interviews are applied in other areas such as usability (e.g., [64]) and play a relatively

large role in fundamental research in HCI. Therefore, the approach by [63] is presented

below.

Presentation of Method

Mental model interviews are generally conducted with the purpose to gain informations

about the user’s mental model. [63] used these interviews to get an impression of the

user’s metal model even before users interact with the system. In a 45-minute interview

(per participant), the participant was shown an interface. For individual elements, such

as icons, the participant was asked questions, such as "Which icons seem familiar to

you? What do you think the other icons represent?" and "What do you expect the items

that you see to be?". Afterwards, participants were asked how they would perform

certain basic tasks. As [63] provided a clickable prototype, participants were allowed
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to try the suggestion they had proposed. In terms of failure, the correct operation was

shown.

[63] audio recorded the interview to analyse comments in detail afterwards. Special

attention was paid to situations where the participant’s mental model did not map to the

system structure.

[63] judges mental model interviews a good opportunity to identify either where system

functions should be changed towards users’ expectations or where functionality should

be more obvious to the users.

Related Work and Enhancement

As already mentioned, this publication [63] was the only one found that explicit uses the

users’ mental models in the context of learnability. In addition, no other publication of the

author could be found that further evaluated or enhanced the approach.

However, investigating the users’ mental models is a common method in HCI. There

are different purposes and approaches on doing so. In addition to a system evaluation,

mental models can generally be used to analyse opinions and desires of users to refine

personas and scenarios, or to gain a better understanding of customers, for example,

in sales and customer service. Besides interview techniques, mental models may also

be gained, for example, through diaries or field observations. However, the deepest

understanding of user’s mental model is usually obtained in interviews [65].

One example is presented in [64]. The authors conducted interviews to gain qualitative

insights into how novice and expert users perceive and respond to different computer

security warnings. Based on the resulting mental models, the authors provide general

advise on how to communicate security information.

3.2.2 Question-Suggestion Protocol

The question-suggestion protocol is a method specially designed to analyse learnability.

It was developed by [9] after reviewing existing approaches. It is based on the question-

asking protocol [66], which was presented in 1986 as an alternative to the thinking-aloud

30



3.2 Testing Methods

protocol. The main idea of the question-asking protocol [66] is that instead of letting

the participant constantly talk about his or her thinking, while using the system, a tutor

sits next to the participant whom the participant can ask if something is unclear. Only

concrete questions should be ask and not vague ones like What should I do next?. The

tutor should not bring the participant to ask any specific questions. Furthermore, when

answering a question, the tutor "should not give the participant any more information than

what is really needed to solve the current problem". [66] argues that asking questions

is far more natural to the participants than constantly talking about thinkings as in the

thinking-aloud protocol.

The question-asking as well as the thinking-aloud protocol seem to be especially ap-

propriate to evaluate learnability as both protocols provide insights to the cognitive

processes of the participants [9]. However, these two methods were designed to evalu-

ate usability and, unfortunately, it stays unclear whether these approaches are proper

to evaluate learnability. [9] agreed with this assessment. Nevertheless, [9] considered

the question-asking protocol very promising and underestimated. Therefore, he de-

signed the question-suggestion protocol as an adaptation of the question-asking protocol

allowing the evaluation of initial as well as extended learning.

Presentation of Method

The question-suggestion protocol is similar to the question-asking protocol, but aug-

mented with the possibility of the tutor to suggest something to the participant [9].

As a remember: the question-asking protocol does not allow the tutor to give any

more information than necessary to solve the current problem. This rule prevents the

participant to be able to solve other task without asking questions, which he otherwise

could not have. Next to inviting the participant to explain his or her behaviour when the

behaviour of the participant appears illogical, the tutor is only allowed to take the initiative

if the participant should be led "to use a [specific] [...] function that would otherwise

remain unknown to him/her" [66].
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[9] criticized this approach as it only focusses on initial learning. [9] thought that "[t]o

truly understand extended learnability, we must also understand what causes users to

not just acquire new abilities, but what causes them to improve their usage behaviors

by finding more efficient strategies". Therefore, at the question-suggestion protocol

the tutor is encouraged to propose better strategies of usage to the participant. [9]

compared this situation to a scenario where a colleague is sitting next to the participant

and notices that a certain behaviour can be improved. This scenario has proven to

be a conventional way for users to learn. Due to this "suggestion", it is possible to

evaluate initial as well es extended learning as it helps participants to make progress

and, therefore, learnability issues that emerge later at the learning curve can be detected.

In addition, the suggestion allow the participant to further edit a task, which, in turn,

reveal a greater number of learnability issues [9].

As [9] found no studies comparing the question-asking protocol or a similar approach with

the thinking-aloud protocol, he conducted a study with ten participants using AutoCAD (a

software for technical drawings and 3D constructions) comparing his question-suggestion

protocol with the thinking-aloud protocol. As AutoCAD is a quite complex software, the

participants had domain knowledge as well as experience between 2 months and 5

years in AutoCAD. In addition to the tutor, which was an AutoCAD expert, there was also

an experimenter, who was a HCI expert and ensured that the rules of the protocols were

met. The two protocols were used as a within subject variable, counterbalanced in their

order. Each participant had to perform four tasks, two tasks per protocol [9].

The study concentrated mainly on the number of detected learnability issues. As

hypothesized, with the question-suggestion protocol more learnability issues could be

found than with thinking-aloud. For the question-suggestion protocol an average of 7.55

learnability issues were reported, whereas with thinking-aloud only 2.8 issues were

reported. Besides the significant effect for the protocol, a significant effect for the level of

experience could be observed. But no significant dependence between protocol and

experience could be observed. The results are presented in Figure 3.2 [9].

Additionally, categories of learnability issues were analysed (see Figure 3.3). In the loca-

tion category the thinking-aloud protocol found a higher proportion of issues compared
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Figure 3.2: Comparison of the number of learnability issues averaged over all tasks
identified by the question-suggestion and the thinking-aloud protocol. Results
are grouped by the level of experience of the participants [9]

to the question-suggestion protocol. In all the other categories, the question-suggestion

protocol founded a higher proportion of issues. Issues concerning transition were found

exclusively by question-suggestion protocol.

Even though the question-suggestion protocol showed clear benefits, this protocol is not

intended to replace the thinking-aloud protocol, as the latter have its own strength, such

as the possibility to observe "how well users can recover from errors, and how long it

takes them to figure things out on their own" [9].

Related Work and Enhancement

The paper [9] was cited over 200 times in 2018 according to Google Scholar. However,

only 15 of these 200 papers pay attention to the question-suggestion protocol. None of

them, however, evaluated or enhanced the question-suggestion protocol. Some of the

papers, such as [67], applied the protocol in practice.
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Figure 3.3: Categories of observed learnability issues [9]

3.2.3 Performance Based Measurements

As discussed in Chapter 2.1, several authors define learnability through reaching a

certain level of efficiency. Besides the time required to reach that level, error-free usage

is explicit mentioned. Therefore, it seems obvious to measure learnability via efficiency

with performance metrics, such as execution time or errors made.

Indeed it is proposed to asses learnability via efficiency by researchers (e.g., [8]). Due to

the simplicity of this method, [8] supposed that learnability is one of the easiest usability

attributes to measure. In practice, this procedure is widespread (e.g., [9, 46, 68, 69]).

The basis for analysing the measured performance data is often the power law of practice

(discussed in Chapter 2.2.3.2).

First, approaches assessing learnability via performance metrics over all participants

are presented. Afterwards an outstanding method is presented, as it only analyses the

worst and the best performing participant.

3.2.3.1 Performance Measurement Based on Learning Curves

According to [70], nearly every performance metric over time can be used. Indeed a

wide range of proposed metrics can be found in literature [9]. However, the best-known
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metrics are aimed at "efficiency, such as time on task, errors, number of steps, or task[s]

[successfully executed] [...] per minute" [70]. But note that there is a possible trade-off

between speed and error made as systems that are extremely low in the likelihood of

failure may suffer in performance speed [2].

After choosing a metric, the measurement interval must be specified, as the metric

should be observed over time. Ideally, it is based on the usage behaviour of the target

users. However, it may be the case that the system is only used every few weeks,

months or even years. A study that takes so long is usually not practical. [70] suggests

the following options:

1. Several trials within one session

2. Several trials within one session but with pauses in between

3. Several trials "over multiple sessions, with at least one day in between"

[70] defines the term trial as each instance of capturing data. Within a trial, the participant

has to conduct one or several tasks. From the first option to the third one, effort for the

conductor and participants increases. Likewise, the study gets more realistic as memory

losses are taken into account. In General, [70] recommends at least three or four trials.

When visualizing the measured metric for each trial, a learning curve should be observ-

able (e.g., Figure 3.4). The shape of the curve can be compared with the shape of an

ideal learning curve, such as a power function. For instance, if the task is to solve a

problem with a user interface, like ordering a product via an online store, deviations

from the ideal curve may indicate issues with the interface [45]. Another way to use

the knowledge about the power law of learning is the prediction of future performance.

Having the data of the first trials, the unknown variables from Equation 2.1 a and b can

be calculated and, therefore, future performance may be predicted [45]. This second

opportunity is interesting if someone want to know when the user will reach maximum

performance.

Although the idea of performance measurement is based on learning curves, practitioners

are seldom trying to compare the outcome with a mathematical function, such as the

power function. Instead, the curves of different systems, alternatives or study conditions
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are compared. For example, [68] assessed the effect of different training conditions

to learnability by measuring task completion time in two sessions with one week in

between. The authors evaluated a deformable smartphone case that acts as an input

device through bend gestures. The results are presented in Figure 3.4. Additionally,

memorability was evaluated separately by comparing the performance of Trial 3 of

Session 1 to Trial 1 of Session 2.

Figure 3.4: Completion time in seconds for different training conditions [68]

[69] conducted their study of learnability of a complex business application in three ses-

sions on one day. According to [69], memorability is an aspect of learnability. Therefore,

in order to take memory loss into account, participants had breaks together between

the sessions outside the testing room where they were encouraged to talk about other

subjects. Additionally, a "distraction task" was given before the final session [69]. They

also measured task completion time as a performance indicator. Results were visualized

per participant as well as per task. For analysing the learnability per task, [69] calculated

the improvement from Round 1 to Round 2 in percentage, averaged over all participants.

Thereby, it is clearly recognizable within which task learnability issues exist. The results

for each task are visualized in Figure 3.5.

Another example is described in [46], where visit duration of websites are used as an

indicator for learnability. One example of their results are presented in Figure 3.6.
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Figure 3.5: Percentage improvement in completion time for each task [69]

Figure 3.6: Visit duration observed over number of visits of various travel websites [46]
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One outstanding approach is discussed in [7], where a score is calculated based on

performance measurements for better comparable results. Overall learnability is defined

by c̄ as an average over all sessions (see Equation 3.1).

c̄ = 1
N

N∑
j=1

cj (3.1)

cj , in turn, is based on "the total number of tests within a session" (n), the efficiency for

a task (ei) and the completion time of the task (ti) (see Equation 3.2).

c = n
∑n
i=1 eiln(ti) −

∑n
i=1 ei

∑n
i=1 ln(ti)

n
∑n
i=1 ln(ti)2 − (

∑n
i=1 ln(ti))2 (3.2)

Note that the approach can only be applied if a standard learning curve can be observed.

[7] assume a learning curve of novice users by Nielson [8] (see Chapter 2.2.3.2), which

they formalized as a logarithmic function. The authors successfully validated their

method within a study with 101 participants, which had to perform ten different tasks on

an wrist watch that tracks sport activities.

3.2.3.2 Analysing Trials-to-Criterion by Means of Range Statistic

Another approach of quantifying learnability via performance measurements is from

[71], using the amount of trials participants need to reach a predefined criterion. Two

non-standard characteristics of their metric are the fast track evaluation of learnability

and the preservation of the variability of different individuals [71].

Presentation of Method

To quantify learnability, [71] proposed to evaluate the number of trails needed to reach a

defined criterion either during early practice or after a while when trying to re-achieve

the criterion. Measurements during early practice evaluate initial learning whereas

re-achievement focusses on the ability to retain information.

To estimate the degree of learnability, only the best and worst performing participant is

analysed. Their performance is added and the inverse of the mid-range is calculated,
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which is denoted with ī. This calculation is presented in Equation 3.3, with B as the

number of trials-to-criterion of the best performing participant and W as the number of

trials-to-criterion of the worst performing participant.

i = 2/(B +W ) (3.3)

As already mentioned, [71] had the intention to preserve the variability of performance

of the participants instead of restricting them by manipulation or control. Restriction of

real-world variables is a common practice in standard hypothesis testing. In software

evaluation, many variables would have to be taken into account, like the experience,

motivation, intelligence and alertness of the participants. However, in real-life these

factors significantly influence learning and performance. Therefore, [71] could not see

the point in restricting these factors during evaluation. According to the authors, the

goal should be that the software is "so good that the cognitive work (human-system

integration, etc.) will be measurably superior despite the daunting variability of the world"

[72]. Hence, a mid-range, in this case the inverse of the mid-range (cf., Equation 3.3), is

used to preserve the performance span.

The result of the inverse mid-range ī is an absolute value between 0 and 1. According

to [71], this enables an evaluation of new technology without the need to compare it to

a reference system, like a legacy system. However in this context, the interpretation is

rather challenging as it can be seen as a conjoint measurement scale evaluating the

appropriateness of the defined criterion as well as learnability. If ī is pretty close to 1, the

best as well as the worst performing participants reached the criterion within few trials.

This indicates that "[e]ither the cognitive work is trivial or the criterion was set too low"

[72]. The other way round, if ī is close to 0, the cognitive work might be "very difficult

or the criterion was set too high" [72]. Therefore, "the i scale can serve as a tool for

fine-tuning the criterion, or guiding the selection of the learning trials cases (or problem

tasks) of an appropriate degree of difficulty" [72].

If one assumes the criterion is adequate, ī can be interpreted as a scale for learnability.

A high value of ī indicates a good learnability, whereas a low value may be an evidence

for required improvement. The threshold of interpreting learnability as good or worse is
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domain-specific. The same also applies to the interpretation of cognitive work and the

criterion in the first place. One possible interpretation of ī scale is provided by [71], which

is mostly based on their own experience in laboratory. Their approach is presented in

Table 3.1. Nevertheless the authors supposed that measurement the of ī could be widely

applied.

Table 3.1: Illustrative interpretation of the ī scale by [71, 72]

Quite low values (cf., Table 3.1, values below 0.20) could have different causes. It

indicates that "the cognitive work might be extremely difficult", a low learnability, a too

high defined criterion or a combination of the latter. If the cognitive work is extremely

difficult, like during aviation trainings on a flight simulator, where trainees need hours of

practice before reaching a certain criterion, finest differentiation is desired as variations

in second decimal place of ī might be meaningful [72].

As far as it can be assumed from [71, 72] the method has not been evaluated within an

experiment or study with participants. The authors emphasize that their solution is not
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a closed-end one. "Rather, it is a first step or a prospectus". So far their research was

rather of mathematical interest as their main focus is on providing a more suitable statis-

tical analysis for non-Gaussian distributions in human-computer interaction evaluation

software-supported cognitive work [71, 72].

Related Work and Enhancement

Several publications were found in which learnability was evaluated via trials-to-criterion.

For example, [73] assessed learnability of two alternative designs of a control panel in

aviation with a criterion of two consecutive accurate executions of a scenario. However,

the measurement was only applied and not critically scrutinized. Additionally, no score,

such as ī, was calculated.

No publication could be found applying the metric presented in [72] or evaluating it

towards the measurement of learnability.

3.3 Analytics

Another type of methods to assess learnability are analytics. The term analytics is

almost exclusively used in the context of web usage, estimating for example event flows

to follow the users’ navigation paths or metrics, such as page visits and download rates

[1].

Likewise, it is possible to automatically estimate such data of non-web-based applications.

With the help of log-files, events can be tracked during natural system usage. Therefore,

such automated tracing in non-web-based applications are also classified to the analytics

methods in this thesis.

3.3.1 Analysis of Log-files

During research two different methods of learnability assessment could be found that

are explicit developed to analyse log-files. Thereby, participants can stay in their nat-

ural environment. There is no need for any laboratory studies or need for presence
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of evaluators or instructors, such as in observations, where participants are in their

natural environment, but getting observed, which may have an effect on the participant’s

behaviour [74].

3.3.1.1 Learnability Evaluation based on Chunk Detection

As discussed in Chapter 2.2.3, the size of each chunk increases and becomes more

regular with expertise. Expertise, in turn, is a result of learning. Therefore, it seems

reasonable to use chunk size and its variation as an indicator for learnability.

[20, 50] introduced a method to detect chunks for evaluating learnability in HCI.

Presentation of Method

[20, 50] developed a chunking detection algorithm, which can be used to measure

learnability. In an experiment with 24 participants they validated "the use of chunk

size as an indicator of learnability". The participants were divided into two groups,

one with assisted learning and the other one with limited tutoring. To control learning

strategies, all participants received at least basic tutoring of problem solving strategies.

The experiment was conducted over twelve sessions with nine tasks to solve per session

[20].

Previously, the algorithm itself was validated in an experiment with 28 participants,

resulting in a significant number of detected chunks [50].

The algorithm for chunking detection is based on user actions. While using the system to

be evaluated, all user actions need to get logged (automatically) and then get analysed

by the algorithm.

First, in order to explain the functioning of the algorithm, the users’ behaviour while

interacting with a computer interface is demonstrated. Given a huge task that has

to be conducted, like ordering a product, the user typically subdivides it into smaller,

cognitively manageable, self-contained tasks. To solve these smaller tasks, users

typically act according to a cycle with two phases:
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• Acquisition phase: During this phase the user thinks of the goal of this task and

how to reach it. He derives a strategy to reach that goal and is mentally planning

how to execute this strategy. Typically, there is no physically interaction with the

system in this phase.

• Execution phase: Then the user executes the plan by physically interacting with

the system. A burst of activity can be observed. As soon as the goal is reached

(or failed to reach it), the cycle is repeated.

During the execution phase, the plan is stored in short-term memory and can be referred

to as a chunk. Regarding an interaction log, these cycles can be recognized. There are

typically sequences of activity, occurring in execution phases, interrupted by pauses,

corresponding to acquisition phase. In Figure 3.7 user actions are symbolized by vertical

stripes. Groups of actions, separated by a quite long pause, can be classified as chunks

(see Figure 3.7, second timeline).

Figure 3.7: Classification of user actions to chunks [20]

The algorithm described in [20, 50] detect theses chunk boundaries and count the size of

each chunk. For identifying these boundaries [20, 50] used a variation of the keystroke-

level model [75], but emphasized that also other predictive models may be applicable. In

detail the algorithm proceeds following steps: For each user event estimate the predicted

execution time with the predictive model of the previous user event. Then compare this

predicted execution time with the actual execution time of this event. If the actual time

between two events is clearly longer than estimated, a chunk boundary is assumed. [50]
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predict the execution time with this equation:

t(Ei, Ei+1) = tK + tP + tH + tR + tS (3.4)

• tK is the time needed to press a key or mouse button. It depends on factors like

user’s typing skill. As an average, 400ms can be used.

• tP is the time needed "to move the pointer from current position to the target

position." This value is estimated by Fitts’ law [76].

• tH is the time to switch from mouse to keyboard or vice-versa, a value that needs

to be included when using desktop systems. [50] use 400ms as an approximation.

• tR is the response time of the system. It can be estimate by logged events, such

as key press and the screen change with timestamps.

• tS is the time the user needs to locate information on the screen after the response

of the system. It can be directly measured through eye-tracking. But as eye-

tracking was not easily accessible at the time the model was developed, this

variable was left out.

The predicted execution time t(Ei, Ei+1) is then compared with the actual execution time

Ti+1 - Ti [50]:

Ti+1 − Ti > t(Ei, Ei+1) + ε (3.5)

Additionally to the predicted execution time, a tolerance factor (ε) is added to compensate

imprecision in timing and slight variations in the parameters. One could say that it

indicates how long the user can pause between two actions within execution phase,

without detecting this pause as a chunk boundary. This tolerance factor is a positive

number and can either be constant or individually calculated for each chunk by analysing

previous chunk behaviour. Although [50] considered the second option more powerful,

they used a constant value in their experiment and recommend a value between 200

and 800 ms.
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Regarding Equation 3.5, a chunk boundary is recorded if the actual execution time is

higher than the predicted time plus the tolerance factor. After executing the algorithm,

learnability can be evaluated by analysing the variance of chunk size over time [20].

[20] promoted their method to evaluate learnability as a discount method because its

cost is minimal. Their algorithm is running in an external program in background, while

the user interacts with the system to be evaluated. According to [20], the external

program only needs little configuration to setup and ensures confidentiality of user data.

The result of the algorithm is numerical data, which can be easily plotted and compared.

Therefore, it seems like no integration and no adjustment of the system to evaluate is

necessary, if this system delivers an appropriate interaction log.

Related Work and Enhancement

Although change of chunk size with expertise is a well accepted phenomenon, no other

research on measuring learnability of a system based on chunking could be found.

Though the paper was published over 20 years ago, it got only few attention and no

enhancement of further evaluation of the method could be found.

3.3.1.2 Petri Net Based Approach

An other approach to measure learnability of interactive systems is based on the deviation

from the expected way of executing certain tasks. The deviation is quantified in so-called

fitness values, which indicate how much the observed way of interacting with the system

adheres to the intended way. The hypothesis is that the rate of fitness values measured

in repeated executions of the system over time indicates the learnability of the system.

This method was presented by [77]. The goal was to develop a highly objective method

to automatically quantify "(extended) learnability of interactive systems during their daily

use" [78].
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Presentation of Method

According to [77], "[a] highly learnable system should allow a user to know how to

perform correctly any relevant task of the system after having executed it a few times in

the past." Therefore, [77] propose to measure learnability by comparing the intended

way of executing the system to the observed behaviour of real users over time.

To allow this comparison, the user’s behaviour needs to be recorded. [77] uses au-

tomated interaction logging by the system to assess itself, which allows to evaluate

learnability during the daily use of the system instead of using it in a controlled lab

environment.

In order to describe the expected way of executing the system, [77] developed interaction

models with one model per relevant task. The models were realized with petri nets

[79]. The transitions of a petri net represent the user actions, like button clicked or text

entered, required to achieve a certain task. Only one token is used, initially marking the

first place, which represents the start. Figure 3.8 provides an example with a, b, c, d,

and e as user actions.

Figure 3.8: Petri net used to represent an interaction model [77]

To enable a comparison of the interaction model with the actual behaviour of the user,

the actions in the user log must be able to be mapped to the transitions in the interaction

model and vice versa. "[O]nly those fragments of a user log (called traces) that are

related to the execution of the relevant task" gets extracted. As a task can be executed

several times, multiple traces can be extracted from the user log.
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Now having an interaction model and several traces from the user log for each relevant

task, the deviation of intended and actual behaviour can be identified. To this end, the

extracted traces get replayed over the interaction model: For each step an algorithm

checks pair-by-pair if the action in the trace corresponds to the transition of the interaction

model. If the action does not corresponds to the transition or vice versa, a deviation is

recognized. These deviations can be caused by either mistakes made by the user or

a different task execution strategy. To estimate the severity of a deviation the authors

applied a cost function that allows favouring one type of deviation over another. However,

the exact proceeding is not explained. The outcome are fitness values between 0 and

1, indicating "the extent to which the traces of a user log can be associated with valid

execution paths specified by the interaction model."

The hypothesis described in [77] is that the rate of fitness values measured in repeated

executions of the system over time indicates the learnability of the system. They

suppose that their approach leads to an increased precise measurement of learnability.

Furthermore, the authors argue that the strength of their approach imply an evaluation

in real user settings, the possibility to weight different deviations and the opportunity

to represent different strategies of use, like for novices and experts, through diverse

interaction models for one task. One disadvantage is the necessity of suitable user logs.

The presented approach was still in progress when the paper [77] was published,

therefore, the hypothesis was not either proven or refuted.

Related Work and Enhancement

Recently, the authors of [77] published a paper [78] where the approach is discussed

in more detail and, in addition, results of a conducted experiment are presented. They

performed a longitudinal study over four weeks with 23 participants. The participants got

homework with growing complexity for each week. After each completed homework, the

minimal optimal solution to complete the homework was presented. From homework

to homework an increase in the fitness values could be observed. However, it is not

mentioned whether the increase was significant. They double-check and confirm the

validity of their results by a focus group involving six of the participants in a controlled
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environment. The participants were ask to replicate the homework. Although [78]

discussed some limitations of the approach, such as the requirement of a structured

interaction log or that some aspects can not be modelled by petri nets, they argue that

the automated quantification of learnability through petri nets is relevant for task-based

software.

In general, research based on petri nets in the context of HCI exists [80, 81]. For

example, petri nets have indeed be demonstrated to be convenient for modelling human-

computer dialogues [82]. However, only one similar approach [83], published over 20

years ago, could be found. [83] formalized the user’s behaviour through a petri net

based on a log-file and estimated, based on the petri net, different parameters, such as

behavioural complexity, system complexity and cognitive structure. In a user study, [83]

showed that behavioural complexity, which is the complexity of the observed behaviour,

correlates negatively with learning. Additionally, [83] observed that task solving time

further decreases after minimal behavioural complexity is reached.

3.4 Inquiry Methods

Two appropriate inquiry methods were found to assess learnability: questionnaires and

diaries.

3.4.1 Questionnaires

Questionnaires are a popular instrument in HCI, but also in other fields of research.

The strength of questionnaires is the possibility to quickly and easily get an overview of

the users’ perception of the system. With low effort a large number of users, who are

geographically dispersed, can be questioned [84]. As the user’s effort and satisfaction

plays a role for learnability (see Chapter 2.1), questionnaires may be a cheap method to

evaluate learnability.

However, not a single questionnaire exclusive for evaluating learnability could be found.

There are, in turn, many questionnaires for assessing usability, which also include

questions about learnability. Some of them even have an own sub-scale for learnability.
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Sub-scales have the advantage that the construct that is measured, in this case, learn-

ability, definitely has a reasonable reliability and content variability [85]. Table 3.2 shows

some of the most popular questionnaires that have a sub-scale for learnability, including

information about whether a licence implying fees is required, the number of learnability

questions and a citation for the separate sub-scale for learnability.

Questionnaire Licence

fees

Number of learn-

ability questions

Separate sub-

scale

Isometrics Usability Inventory (IUI) [85] No 8 [86, 85] Yes [85]

ISONORM 9241/10 [87] No 3 (short version),

5 (long version)

[88]

Yes [87]

Purdue Usability Testing Questionnaire (PUTQ)

[89]

No 7 [89] Yes [89]

Questionnaire for User Interaction Satisfaction

(QUIS) [90]

Yes ? Yes [91]

Software Usability Measurement Inventory (SUMI)

[92]

Yes ? Yes [92]

System Usability Scale (SUS) [93] No 2 [94] Yes [94]

Table 3.2: Popular usability questionnaires with a sub-scale for learnability

All questionnaires in the table were specially designed with a sub-scale for learnability,

except for the System Usability Scale (SUS). Although [93] had not provided a sub-scale

for learnability, [94] found out that two learnability-related items can be combined to a

sub-scale, scoring learnability with reasonable reliability and high correlation with the

overall SUS score.

There exist other questionnaires, such as the Post-Study System Usability Questionnaire

(PSSUQ) [95] that may be appropriate to measure learnability as they include questions

like "It was easy to learn to use this system" and "I believe I could become productive

quickly using this system". However, no sub-scale for learnability is provided. Therefore,

in order to obtain a reliable and valid result, further research on which elements best

measure learnability is required.
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For the Questionnaire for User Interaction Satisfaction (QUIS) and the Software Usability

Measurement Inventory (SUMI) it was not possible to find a reliable indication of how

many questions the sub-scale for learnability has.

All presented questionnaires in Table 3.2 collect quantitative data, except the Isomet-

rics Usability Inventory (IUI), which provide two versions: The second version (called

IsoMetricsL) contains the same items as the first version, but additionally provides a

second rating for each item. This additional rating asks for the importance of that item

and offers the participant the opportunity to freely write down examples that illustrate the

previous rating [85]. An example of an item in IsoMetricsL is given in Figure 3.9.

Figure 3.9: Third item of the learnability sub-scale of IsoMetricsL [86]

3.4.2 Diaries

For usability, diary studies are well established [96, 97] as they offer the possibility to

assess a system during the daily work of the users in their natural environment without

relying on log-files. Nevertheless, only one work could be found that developed a diary
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focussing on learning process [61]. This happens to be one of the first published diary

approach in HCI research [74]. The main concept is presented in the following chapter.

Presentation of Method

[61] proposed a diary study consisting of a daily activity log, reports about learning

progress (see Figure 3.10) and interviews.

Figure 3.10: Reports participants are supposed to fill out whenever they make progress
or fail [61]

In the daily log the participant was supposed to briefly describe her/his activity in half-

hour intervals. After each day a short interview was planned in which the researcher

met with the participant. This enabled the researcher to determine, if the activity log and

reports have been filled out with adequate accuracy to reduce biased data. Further, the

researcher had the opportunity to detect learning episodes throughout the discussion.
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At the end of the one-week study, [61] conducted an one-hour interview covering the

participant’s learning experience with the system. Essential for learnability were the

reports about the learning progress. The participant had to fill a report whenever he or

she had learned something, solved a problem or unsuccessfully tried to solve a problem

(cf., Figure 3.10).

[61] conducted the study with ten participants. According to [61], "the sampling was

too small and inhomogeneous to support strong projections to a larger population".

Nevertheless, the results were promising.

Related Work and Enhancement

Although the sampling of the study was insufficient, [61] was published over 20 years

ago and received some attention and usability diaries are well established, no evaluation

or enhancement towards learnability could be found. In general, however, there are

several diary methods in HCI research. For example, [74] gave an overview of some

diary methods.

3.5 Formal-Analytical Methods

Formal-analytical methods include all approaches that analyse and describe a user

interface based on established formalisms without the involvement of users or user

representatives [10].

3.5.1 Attributes Models

Some researchers, such as [98, 99], propose to evaluate learnability by breaking down

the term into smaller ones and evaluate these low level terms.

During this thesis, one approach [99] could be found that solely deals with learnability.

Therefore, the next section will discuss this approach more closely. Other approaches,

which partly deal with learnability, will be introduced afterwards.

52



3.5 Formal-Analytical Methods

3.5.1.1 A Learnability Attributes Model

According to [99], learnability is a quite complex concept. Therefore, an evaluation and

hence, improvement of learnability postulates an understanding of factors influencing

learnability. Furthermore, [99] claims that there is a need for objective measurements,

which are, on the one hand, reproducible and not prone to interplay of various factors

like characteristics of the user, the environment or sample size. On the other hand, the

measurement should not only assess learnability, but also identify weak areas of the

interaction system. [99] did not found any existing methods with this characteristics. For

this reason they developed their own method: a model of learnability, which is based on

quantification of lower level attributes.

The model breaks down learnability into six main characteristics, such as Interface Un-

derstandability and Task Match (cf., 3.11). These characteristics are further subdivided

hierarchically up to seven level. So there are eight level in total. Figure 3.11 presents

the top three levels of the model. The attributes of the lowest level are quantified by

metrics, which does not require the involvement of users. Instead, the system needs to

be analysed.

For instance, Interface Understandability is further subdivided in Global Organization

Scheme and Representational Adequacy. The former is further subdivided, in addition

to an other sub-characteristic, in Information Grouping Cohesivness, which, in turn, is

further subdivided. One of these lowest level attributes is Information Grouping Visual

Cohesivness (cf., Figure 3.12). In order to estimate the Information Grouping Visual

Cohesivness, all semantically cohesive groups (elements that are optically grouped by

e.g. colours, spacing or similar means) need to be counted and divided by the total

number of identified groups (this includes also, for example, semantic groups). [99]

claims that the closer the value is to 1, the better is the result.

The results of all metrics can be converted to percentage. Since the values have a

consistently unit of measure, they can be transferred to higher levels by calculating

the average. Thus, one single learnability score can be calculated. By virtue of this

procedure, one not only has a value that predicts overall learnability, but also a value
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Figure 3.11: Top three levels of the learnability attributes model [99]

for each attribute at every level that provides the opportunity to identify weak areas.

According to [99], special attention should be paid on scores below 70 %.

As mentioned earlier, all attributes of the lowest level are quantified by predictive metrics,

making a total of over 200 metrics defined by the model.

To prove the adequacy of the model, [99] conducted a study. First of all, they predict

learnability of two different radio WebApps through applying their model. However, they

only concentrated on the two (out of six) characteristics Interface Understandability and

Task Match. Figure 3.12 shows the results, with one column for each WebApp (DB and

XM). Very weak areas are highlighted, which are elements with a score below 70 %.

Afterwards, they questioned 33 participants in an online survey with four questions
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Figure 3.12: Results of the evaluation of Interface Understandability and Task Match
[99]
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focusing on these two characteristics (one question was formulated by [99] itself, the

others were derived from the Software Usability Measurement Inventory (SUMI) [92]

and Isometrics Usability Inventory (IUI) [85]), to compare the results with the outcome

of the model. The results matched well, as participants preferred the same App as the

attributes model for both characteristics. [99] points to the advantage of using the model

to have the ability to identify weak areas, thereby enabling targeted improvement of the

system.

Related Work and Enhancement

Since the paper was published in 2012, it was only cited nine times (according to

Google Scholar). Most of them mention the paper only briefly, it is mainly used to define

learnability and its attributes and not as a measurement of learnability. [100] criticize

that the approach focuses more on the definition of attributes of a learnable system than

on the process of measurement of learnability. Nonetheless, this method was presented

in this thesis because it has a different approach than the other methods and could help

to select appropriate metrics for measuring learnability.

During the research similar approaches could be found, which, however, have the main

focus on usability (e.g., [98, 101, 102, 103, 104]). Since they treat learnability as a

component of usability, these models also contain attributes for learnability. One model,

called Quality in Use Integrated Measurement (QUIM), has a relatively high degree of

development.

Over years members of the Concordia University in Montreal have initially developed

and enhanced the model [98, 105, 106]. The last release gets quite a lot of attention, as

it was cited over 570 times in 2018 according to Google Scholar. QUIM is mainly based

on the standard series by ISO.

Like the previous presented model, QUIM is hierarchically structured. It includes ten

factors, which are decomposed into 26 measurable criteria, which, in turn, are divided

into 127 specific metrics. Some criteria can be measured by more than one metric. One

of these factors is learnability, which is decomposed into the following criteria [98]:
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• Minimal action

• Minimal memory load

• User guidance

• Consistency

• Self-descriptiveness

• Simplicity

• Familiarity

As the name of the model already suggests, the main purpose of the model is the

definition and measurement of quality in use, which is defined as the quality, while

the system is being used. Therefore, in contrast to the previous presented model

that contains exclusively predictive metrics, QUIM contains also metrics that must be

computed with user involvement. Hence, empirical studies are necessary, such as

log-file based analysis, video observations or surveys. These metrics are, for example,

"the percentage of a task completed" or "the time spent dealing with program errors"

[98].

An important aspect of the model is that it is dynamic. It is intended as a conceptual

framework serving consistent definitions and guidance in planning for usability measure-

ments. An individual measurement plan can be created depending on aspects such as

the class of users for whom the system to evaluate is intended for or the context of use.

Furthermore, the model was developed for both novice and expert evaluators [98].

One real-life example of QUIM is reported by [107], who created a questionnaire based

on the proposed factors and criteria of QUIM.

3.6 Inspection Methods

Considering the possibilities for expert-based evaluation of usability, two popular methods

exist: the heuristic evaluation (HE) and the cognitive walkthrough (CW).
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During a heuristic evaluation, experts assess the user interface with regard to its con-

formity with well-known principles, such as DIN EN ISO 9241 and established usability

heuristics [1].

In contrast, a cognitive walkthrough is a task-oriented method in which evaluators put

themselves in the position of the user and perform typical user tasks [1]. The focus of

CWs is on the cognitive activities of the user [108], concentrating on the evaluation of

learnability [10, 109, 110]. Indeed, [111] have shown that by evaluating the usability

of a healthcare information system with both HE and CW, the problems concerning

learnability detected with the help of CW were significantly higher.

Although CW is a traditional usability methods, it is explicit recommended by researchers

(e.g., [10, 62]) for evaluating learnability. Therefore, in the following the cognitive walk-

through is presented.

3.6.1 Cognitive Walkthroughs

First, a short summary of the CW method is given. Afterwords, several variations of the

original CW method are mentioned.

Presentation of Method

"A cognitive walkthrough evaluates the ease with which a typical user can successfully

perform a task using a given interface" [109]. The focus is on a task that the user must

learn by exploring. That is, for example, by using hints provided by the system, rather

than "knowing how to use the system" [109].

The advantage of using CWs is that the method can be applied in the early design

process, as early system suggestions in the form of written system descriptions or

mock-ups are sufficient [10].

During a CW, the evaluators put themselves in the position of the user and perform

typical user tasks [1]. They evaluate the actions and responses of the system according

to the goals and knowledge of a typical user. Therefore, differences between user’s
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expectations and reality can be detected. The focus of CWs is "on the cognitive activities

of users, especially on their goals and knowledge when performing a specific task" [112].

A CW consists of two phases: preparation and evaluation [10]. During the preparation

phase, the evaluators collect information about the users for whom the system to be

evaluated is intended by creating user profiles. Moreover, a set of typical user tasks

must be selected, as the system is evaluated in great detail based on specific individual

tasks rather than as a whole. It is seldom possible to analyse all tasks that can be

conducted with a system. Therefore, the selection of tasks has a significant influence on

the evaluation results. The selected tasks should be central for daily work and frequently

executed in the users’ routine. For each task the evaluators describe in detail how users

will likely understand and evaluate this task. One could also say the evaluators try to

predict the user’s mental model. Thereafter, all necessary actions to accomplish the task

are defined and described in detail [10].

Figure 3.13 gives an overview of the results recorded in the preparation phase.

During the second phase, the evaluation phase, all actions of each task are worked

through in the previously defined order. Each action is assessed by the evaluators in

terms of the background and the knowledge of the user. In doing so the evaluators must

answer the following 4 questions [112]:

1. Will the user try to achieve the right effect?

2. Will the user notice that the correct action is available?

3. Will the user associate the correct action with the effect the user is trying to

achieve?

4. If the correct action is performed, will the user see progress is being made towards

solving the task?

All points that could hinder exploratory learning are considered and documented in detail

[10]. In this phase the evaluators should evaluate only and not already try to discuss

possible solutions. The search for solutions is done after the CW has been performed.
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Figure 3.13: Proposed form to record results of the preparation phase of a CW [109]

Related Work and Enhancement

The CW is a well-accepted method explained in many todays books about usability

evaluation methods, such as [1, 10]. However, many researcher criticize CWs as being

too tedious [112]. Therefore, many extensions of the method exists. [112], for example,

reviewed eleven different extensions. There are variants where end users are involved

or where the questions that evaluators need to answer are either extended, reduced or

completely revised.

One enhancement is the streamlined cognitive walkthrough described in [113]. The au-

thor of [113] thinks that a CW is hard to apply in large software development companies.

He discusses three reasons that hinder the effectiveness of a CW [113]:

• Time pressure: When developing a software product, involved parties, such

as managers, developers and designers, are often under a huge time pressure,
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and, therefore, want to use their time wisely. Following the proposed procedure

by [108, 109], a lot of obvious observations have to be written down. Likewise,

answering all four questions for each step is considered very time consuming, and

especially for very obvious problems, not effective.

• Lengthy design discussions: When a problem is identified by a group of design-

ers, [113] often observes discussions on how to solve this issue instead of using

the time on evaluation.

• Design Defensiveness: Designers and specification writers tend to defend their

work, as their team have already put much effort in their work and, in the short

term, identified problems lead to more work for persons that may be already under

time pressure.

To overcome these problems, [113] propose the streamlined cognitive walkthrough,

which is divided into five phases. The first phase is similar to the preparation phase

of the classic CW. In the second phase the evaluators are getting prepared: The

goal of the walkthrough is described as well as an instruction how the walkthrough is

conducted, what the evaluators should do and what they should avoid (e.g., lengthy

design discussions or design defensiveness). Also certain roles may be assigned to

evaluators. In any case, a usability specialist should be empowered as a session leader.

The third phase is similar to the evaluation phase of the original CW. However, instead

of four questions, only the following two questions are answered [113]:

1. "Can you tell a credible story that the user will know what to do?"

2. "If the user does the step correctly, and <describe system response>, is there a

credible story to explain that they knew they did the right thing?"

In the next phase only critical information is recorded and get fixed in the last phase

[113].

In using the streamlined cognitive walkthrough, some compromises have to be made.

Perhaps the biggest one is that the causes of a usability problem are not as well under-

stood as in the CW, as the more detailed questions of the CW will help to understand
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the problem. However, [113] recommends the streamlined cognitive walkthroughs in

large software development companies, as he sees this method as more practical [113].

3.7 Discussion

In the last chapters various methods for assessing learnability have been presented. As

shown in Figure 3.1, these include a wide variety of evaluation methods. As diverse as

the definitions for learnability are, so diverse are the methods that were found. As well

as the disagreement over the definition, there seems to be disagreement about how to

measure the learnability. This statement is supported by several publications, such as

[9].

The presented methods cover different goals (see Figure 3.14). The petri net based

approach, performance measurements and chunk detection quantify the behaviour of the

users, whereas questionnaires assess attitudes of the users. The main purpose of diaries

is the collection of attitudinal data, but behaviours could also be self-reported. Mental

model interviews highly aim at attitudinal data. However, if interviews are supported by

clickable prototypes, evaluators have the opportunity to ask participants how they would

perform a certain task. The question-suggestion protocol can be used to analyse both

attitudinal and behavioural data. Cognitive walkthroughs try to predict the behaviour of

potential users. As evaluators try to empathise with the user’s situation, also attitudes

may be predicted.

All presented methods collect either qualitative or quantitative data with three exceptions

(cf., Figure 3.14). IsoMetricsL, which is the formative version of IUI, contains also

free text fields for qualitative data collection. The petri net based approach quantifies

the deviation of user’s behaviour in fitness values. However, deviations can be further

analysed as interactions and navigation path are modelled in petri nets. The last

exception are diaries since they can include free text fields for qualitative data collection

as well as quantitative elements, such as rating scales.

Additionally, Figure 3.14 shows whether the approaches are usually conducted in labora-

tory or field or if both conditions are possible. Specific to the petri net based approach,
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Figure 3.14: Classification of the presented methods to assess learnability with regard
to common characteristics (based on [22, 57])

the chunk detection, diaries and questionnaires is that these methods can be carried

out in the user’s natural environment without having participants directly observed by

evaluators. This reduces biased data caused by the effect that participants may behave

differently when getting observed [74].

The learnability attributes model could not be categorized according to the behavioural-

attitudinal dimension, since it is a formal method. However, it can be classified within

the other categories: the predicted data is quantitative and objective, as it is based on

measurable metrics, and is conducted in laboratory.

63



3 Existing Methods for Measuring Learnability

Looking more closely at the individual methods, it can be noticed that not only different

goals (such as collecting subjective data) are persuaded, but also the way learnability is

measured is quite different: For example, performance based measurements attempt

to measure learnability based on the outcome of the learning process, while chunk

detection tries to estimate learnability in a more direct way. This phenomena is, amongst

other things, due to the manifold aspects of learnability definitions.

As discussed in Chapter 2.1, learnability is defined by aspects such as the increase in

efficiency, error-freeness, satisfaction and the amount of required effort. It is conspicuous

that the first three aspects are covered very well with presented methods, cognitive

effort, however, is not considered in detail. There seems to be even disagreement as, for

instance, according to QUIM (see Chapter 3.5.1), minimal action and minimal memory

load are highly influencing learnability and should therefore considered when evaluation

learnability [98]. In contrast, the PUTQ contains items that relate to these two aspects,

but these form their own sub-scale and are not taken into account in the learnability

score.

Generally, it was quite surprising that only few publications considered to observe the

user’s cognitive effort over time, although there are prominent and well established

methods in HCI based on the cognitive load theory [114]. For example, to conduct

the overall user-perceived workload the NASA task load index can be used [115]. For

an objective estimation of the user’s workload secondary task techniques are well

established [116]. Measuring workload is widely applied in different fields of research,

such as on educational systems (e.g., [117]) or autonomous driving (e.g., [22]).

Furthermore, as discussed in Chapter 2.2, learning and memory are closely interde-

pendent. However, in the definition of usability and learnability by ISO 9241-110:2006

[10, 17] memorability is not mentioned. On the contrary, [8] defines memorability as a

separate aspect of usability next to learnability and describes it with how easy users can

re-establish proficiency after not using the system for a certain period. Likewise, it is

striking that there are differences in the methods presented with regard to the inclusion

of memorability. For instance, with regard to performance based measurements, [68]

considers memorability in addition to learnability, whereas [69] explicit includes pauses
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and distraction tasks to take memory losses into account when assessing learnability.

Another example is the IUI, which in its learnability sub-scale contains an item that asks

for the ease of re-learning a system after a long break [86]. The PUTQ, however, does

not ask for memorability and memory losses at all [89].

No fundamental research on the relationship between usability, especially learnability,

and memorability could be found. Hence, several questions remain unanswered, such

as How does memorability correlates with learnability and other aspects of usability,

such as self-descriptiveness?, Is it worth the effort to include memory losses when

evaluating learnability? and When conducting a study using, for example, a performance

measurement to assess learnability, is there a significant difference in outcome between

a 30-minute simulated distraction task to trigger memory losses (cf., [69]) and a pause

of several days between each task execution?.

Likewise, it was surprising that, although new approaches to measure learnability were

developed over the last 40 years, only [9] conducted an extensive literature research on

existing approaches. This publication was also the only one which compared at least two

methods to find out if a certain method is particularly well-suited for assessing learnability

compared to similar approaches (in this case, the question-suggestion protocol was

compared with thinking-aloud [9]). Other publications used only, if any, other methods

(usually questionnaires) to confirm the validity of their own approach (e.g., [99]).

However, considering advantages and disadvantages of the individual methods, no

outstanding approach can be identified since all methods are diverse and have their

own strength and weaknesses. To provide an overview, Table 3.4 summarises several

strength and weaknesses for each approach. Additionally, the establishment of an

approach is rated, which is a subjective assessment based on the extend to which a

method has been recognized and how many examples of utilisation have been found.

Methods Estab. Strength Weakness

Mental Model Inter-

views

+ • No functioning prototype re-

quired → applicable early in

design process

• Deviations in the user’s men-

tal model do not have to lead

to learnability issues
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Methods Estab. Strength Weakness

• Involves users early in design

process

Question-Suggestion

Protocol

+ • Enables measurement of ex-

tended learning [9]

• Has the potential to eradicate

causes of learnability issues

• Specific questions, based on

concrete situation, can be

asked

• No retrospective bias

• Not possible to observe how

participants recover from er-

rors and independently figure

things out [9]

• Possibility of biased data

caused by leading participant

through suggestions

• Possibility of biased data

caused by formulation of the

questions

Performance Based

Measurements

+++ • Quantify learnability

• Simple in conduction

• No causes for learnability is-

sues are analysed

• Outcome may be hard to in-

terpret without a reference

measurement

Chunk Detection ++ • Quantify learnability

• Allows further analysis of de-

viations: At which steps occur

deviations?

• Natural environment

• Extended learning can be

measured

• No causes for learnability is-

sues are analysed

• Detailed log-file needed

• Outcome may be hard to in-

terpret without a reference

measurement

Petri Net Based + • Quantify learnability

• Natural environment

• Extended learning can be

measured

• Appropriate log-file needed

• Some "aspects of the interac-

tion that can not be formal-

ized through Petri nets" [78]
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Methods Estab. Strength Weakness

• Although mainly quantitative:

further data (such as were

deviations from expected be-

haviour occur) can be anal-

ysed

• By now, the approach is only

suitable for wizard-based and

structured tasks [78]

• Outcome may be hard to in-

terpret without a reference

measurement

Questionnaires +++ • Low time expenditure for par-

ticipants and evaluator

• Relatively low cost [84]

• Participants can be geograph-

ically dispersed [84]

• High level of validity if survey

is well-designed and correctly

conducted [84]

• Often, score interpretable

without comparative value

(e.g., [118])

• No possibility to ask following

up questions [84]

• More overview than detailed

information [84]

• Possibility of biased data

(e.g., social desirability, ques-

tions related to mood) [84]

• Creation and application of

questionnaires may seem

quite simple, but need to be

well-designed to be generaliz-

able [84]

Diaries ++ • Events can be recorded when

they occur [96] → reduce ret-

rospective bias [74]

• Natural environment

• Ideal for longitudinal studies

[74] → extended learning can

be observed

• It can be investigate how par-

ticipants freely explore the

system [74]

• High effort for participants

[74]

• High effort for evaluator (free

text fields have to be anal-

ysed)

• Reduced compliance may oc-

cur [74]

• Due to habituation, little

changes in a daily question-

naire might be overseen [74]

• Increasing chance of partici-

pants drop-outs [74]
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Methods Estab. Strength Weakness

Attributes Models + • Possible to predict how much

effect an in increase in one

metric has on overall learn-

ability [106]

• Helps to assess all aspects

influencing learnability

• Many individual values have

to be collected to be able to

assess learnability as a whole

• Mainly without involvement of

users

Cognitive Walk-

throughs

+++ • No functioning prototype re-

quired [62] → applicable

early in design process

• Helps designers to take the

perspective of a user [62]

• Can "help to define user’s

goals and assumptions" [62]

• Detect relatively many severe

problems [111]

• Eradicate causes of learnabil-

ity issues

• Quite lengthy [62, 113]

• Depend on proper task selec-

tion: Only those issues are

identified that potentially af-

fect the course of the selected

task [62, 111].

• Dependence on expertise of

evaluator [111]

• Without involvement of users

[62]

Table 3.4: Establishment, strength and weaknesses of the presented approaches to

measure respectively predict learnability

First, not only the specific strength and weaknesses of a method have to be taken into

account, but also the advantages and disadvantages of different evaluation styles have

to be considered. Field studies are great as users are in their natural environment with,

for example, natural interruptions and ambient noise. However, these factors influence

the study and internal validity may suffer. Unlike field studies, laboratories provide a

controlled environment in a well-equipped room, but results are less generalizable [1, 22].

Also the choice of whether quantitative or qualitative data should be collected, depends

on the goals and purpose of the evaluation. Shall it be formative or summative? Are

details on how to further improve a system or facts needed, for example, to calculate a

return on investment (ROI) to make restructuring of a system to my company’s manage-

68



3.7 Discussion

ment appealing? Qualitative methods are to be preferred if causes and possibilities for

improvement are to be analysed. But, if someone just aims of getting a first impression of

how users work with a system in order to estimate, whether efforts to improve learnability

are necessary or to check whether predefined goals have been reached, quantitative

data is preferable.

Now considering the special advantages and disadvantages of individual methods, these

also depend heavily on the specific goals of the evaluation and the circumstances. For

instance, the huge disadvantage of chunk detection and the petri net based approach

is that an appropriate and very detailed interaction log is needed. If learnability of a

complex system without an interaction log shall be evaluated, these methods would be

practically unusable. However, if a system is to be evaluated, which anyway has a very

detailed logging, the disadvantage is obsolete. Another example are diaries, which have

many disadvantages. However, they are ideal if environmental influences occurring in

longitudinal studies are to be taken into account.

All in all, no general recommendation for a specific method can be given. The choice

of an ideal method depends heavily on the requirements and goal of the system being

evaluated, its context of application and the objective of the evaluation.

However, one aspect is recommended in literature when evaluating usability in quan-

titative studies: consider performance as well as satisfaction since there is not always

a perfect positive correlation [119, 120, 121]. However, no research could be found

analysing the correlation between performance and satisfaction on learnability.
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As discussed in the last chapter, there are a lot of different methods, all having their

own advantages and disadvantages. Hence, no general advise which method should be

used when measuring learnability can be given. Instead, the choice of method strongly

depends on the requirements and goals of the system being evaluated, its context of

use and the goals of the evaluation. In order to assist in the individual choice of the

most appropriate method among the multitude of possibilities, this chapter presents a

framework with which a sound decision can be made based on individual rankings of

certain criteria. The proposed decision process is based on the analytical hierarchy

process (AHP) [122].

4.1 AHP Method

"The lack of a coherent procedure to make decisions is especially trouble-

some when our intuition alone cannot help us to determine which of several

options is the most desirable, or the least objectionable, and neither logic nor

intuition are of help" [122].

AHP is a multi-criteria decision-making process, that help to decide between several

alternatives based on weighting of decision criteria. The goal of AHP is that decisions

can be made in a more organized and rational way without needing much expertise

[122].

AHP is based on the human capability to make informed judgements about slight

problems. Therefore, using AHP, the problem is decomposed into smaller ones, resulting
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in a hierarchical structure. With a pairwise comparisons within each level a decision for

the overall problem can be made [122].

First of all, the decision problem needs to be defined. For instance, "to determine what

kind of job would be best for him/her after getting his/her PhD" [123]. Afterwards, the

problem is structured hierarchically. [123] recommends to define sub-goals of the overall

goal and divide them into criteria that must be satisfied to reach the sub-goals. The

criteria can be further decomposed [123]. Figure 4.1 shows the hierarchy of the problem

to find the best fitting job. Additionally, the possible alternatives are presented (below in

Figure 4.1): Job in a domestic or international company, in college or in state university.

Figure 4.1: Decision hierarchy to find the best fitting job to a certain person [123]

Next, the criteria are compared in pairs, comparing all the direct child elements for

each element at a higher level. In the presented example (cf., Figure 4.1), flexibility,

opportunity, security, reputation and salary are compared with each other. Afterwards,

the child elements of flexibility are compared with each other, then the comparison of

the child elements of opportunity follows.

On a nine-step scale (1 = "equal important", 3 = "moderate importance", 5 = "strong im-

portance", 7 = "very strong or demonstrated importance" and 9 = "extreme importance")
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the decision maker’s subjective importance of one criteria is determined in comparison.

In each case, it is stated which importance each criterion has in comparison to another

one [88, 123]. Figure 4.2 gives an example for a comparison matrix. For instance,

opportunities is a little more than moderate important compared to flexibility regarding

the parent element, in this case the overall goal. However, opportunities is less important

than security.

Figure 4.2: Example for a pairwise comparison matrix [123]

Based on this matrix, the overall importance of each criteria regarding the parent (cf.,

Figure 4.2, Priorities) is conducted for each row by adding all ratios of the entry of that

row divided by the sum of all entries of that column [122].

In addition, a consistency ratio (CR) of the importance judgement can be calculated,

with CR = 0% for a perfectly consistent pairwise comparison matrix. Depending on the

size of matrix, the CR should be maximal between 5% to 10% [122].

In the last step all alternatives are ranked. Likewise, this happens in pairwise comparison.

For each element of the lowest level, all alternatives need to be compared regarding this

element in a pairwise comparison matrix. In the example there are nine matrices: for

"flexibility of location, time and work", entrepreneurial, salary potential, "top-level position,

job security, reputation and salary" [123]. Figure 4.3 shows the matrix for the comparison

of the alternatives regarding salary. Based on these priorities and on the ranking for

each criterion respectively sub-criterion, the best alternative can be calculated [123].
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Figure 4.3: Example for a pairwise comparison matrix for the alternatives regarding
salary [123]

4.2 Related Work

AHP is widely applied to a variety of decision-making problems. Also approaches using

AHP in HCI can be found (e.g., [124]). One publication [125] discusses the usage of

AHP for the choice of a usability evaluation method. However, the focus is on interactive

adaptive systems. The proposed hierarchical structure is, therefore, not suitable for

the choice of learnability measurement methods as it contains criteria such as type of

adaptation or adaptation layers.

Another approach, described by [126], has a quite similar goal to this thesis: "to support

the selection of the most appropriate methods depending on project and organizational

constraints". Therefore, [126] developed a tool called Usability Planner. This tool aim to

support in the choice of a method to evaluate usability over all project stages. Based on

the individual selection of certain constraints, methods to evaluate usability are proposed.

The tool is accessible under [127]. However, it is unclear how methods are proposed

in the background. Obviously, the selection is not based on AHP. Therefore, it is not

possible to express preferences such as one constraint is more important to oneself as

another one. Furthermore, [126] only concentrated on project, user, task and product

constraints. Constraints with respect to the evaluation goal were not considered.

4.3 AHP for Selecting Methods to Measure Learnability

In this thesis, support for finding the most appropriate method to measure learnability

based on AHP is given. This has the advantage that the decision can be made in
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an organized and rational way quite easily. Additionally, AHP allows a fine granular

prioritization of criteria, which leads to a more proper decision based on individual

requirements. Finally, several tools to support in the decision process based on AHP

already exist, such as [128]. This chapter provides a hierarchical structure of the problem

to find an evaluation method. Additionally, the previously presented methods are ranked

with respect to this structure. Therefore, the idea is that a practitioner, searching for a

method to evaluate learnability of an individual system within an individual project can

transfer these rankings to an existing tool for AHP. Afterwards, the practitioner only needs

to rank the importance of different criteria to him and gets the best method proposed for

him.

4.3.1 Problem Hierarchy

The problem that needs to get solved, and, therefore, the goal that should be reached, is

to find the most appropriate method for an individual project to evaluate learnability.

The aim is to provide universal criteria, so it can be widely applied. Unfortunately, no

consistent advise could be found which criteria should be considered when selecting

an evaluation method. Therefore, an own hierarchy was conducted in this thesis, that

takes study conditions as well as study goals, participant requirements and effort for

evaluators into account.

The hierarchical structure of the goal to find an appropriate method to evaluate learnability

is presented in Figure 4.4.

The first criteria formalise whether there is a preference in the study conditions: How

important is the involvement of participants? Are there any preferences for a certain

type of study? How important is that the effort for participants (e.g., time expenditure) is

minimal? Is it so important that an evaluation without participants would be acceptable

even if user involvement would be favoured? Is it important how many participants are

minimal required? The latter plays a role when representatives of users are hard to

recruit, for example, if target users are persons with seldom diseases.
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Goal
Most appropriate 

method for my project 
to evaluate learnability

Study conditions

Effort for single 
participant

Number of required 
participants

Study with participant 
involvement

Field study without 
obvious observation

Field study with 
evaluator on site

Laboratory study
Conduction without 

participants

Cost for evaluator

Time expenditure

Required qualification

Material effort

Degree of support for 
finding the cause of 
learnability issues

Data

Quantitative

Single score as 
outcome (absolute)

Single score as 
outcome (relative)

Multiple dataQualitative

Subjective

Objective

Figure 4.4: Decision hierarchy for finding the most appropriate method for my project to
evaluate learnability
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The second criterion takes the costs for the evaluator into account. It is further subdi-

vided in the importance of time expenditure, which includes the required time for study

preparation, conduction and evaluation, the required qualification of the evaluator and

the material effort such as licence fees or equipment. Rating a high importance of one

of these elements means that this element should be minimal.

The third criteria is the extend to which the method to measure learnability should assist

in finding the cause of issues. A high rating expresses that the method should help as

much as possible in finding causes.

Through last criteria, practitioners can express whether they have requirements on

the resulting data. Is objective or subjective data desired? Is there any preference of

quantitative or qualitative data? For quantitative data, is a single score favoured? For

a single score, a distinction is made between those that can be interpreted by novice

without having a reference system or an alternative design to compare the value with

and those that can only be correctly interpreted by highly experienced evaluators or in

comparison of two measurements (e.g., A/B testing). An example for such an ’absolute

score’ is the SUS. Because of the widespread appliance of the SUS, researchers can

give advise on how to interpreted individual scores (e.g., [118]).

A fundamental precondition in choosing a method is the development stage and whether

a detailed log-file exist. An either-or decision has to be made rather than weighting

between several sub-criteria, such as early development stage versus end of develop-

ment. Therefore, the development stage and the existence of a detailed log-file are not

formalised as criteria in the decision hierarchy. Instead, these two factors have to be

considered in the selection of the alternatives.

In Listing A.1 in the appendix, the hierarchical structure is provided in comma-separated

values (CSV) in order to afford the opportunity to import the decision hierarchy into tools

for AHP, such as [128].
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4.3.2 Examples for Ratings of Criteria

To give an idea of how the criteria could be rated, some examples are given in the

following.

Scenario 1

Starting point is a software manufacturer of a comprehensive, relatively complex expert

system, which has been on the market for years and is regularly updated through

releases. So far, system improvements have been based on general, unstructured

customer feedback via a service hotline and the intuition of developers. However, the

importance of targeted user involvement and evaluation of usability to improve product

quality and attractiveness was recognized.

Since the system requires considerable familiarization period, which is partly accom-

panied by training classes, learnability has been identified as an important aspect. An

evaluation of the system regarding learnability (and usability) has never been performed.

For this reason, an initial overview of how good the learnability of the system actually is,

to decide whether further efforts are necessary, is requested. Therefore, the effort for

evaluators and participants should be low. This includes, for example, the avoidance of

license fees. Perfect for the evaluators would be a score with which they can see at a

glance how good the learnability is.

The ranking of the criteria that may arise under these circumstances is shown in Figure

4.5.

Scenario 2

Another scenario might appear in early design phase where only ideas, general workflows

and possibly some mock-ups exist. A relatively quick and easy answer on how good

the learnability of the system might be and what needs to be improved is required.

Expensive user studies should be avoided at this stage. Usability experts are available

and a comprehensive study with user representatives is planned later, when functional
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Figure 4.5: Example weighting of the criteria for scenario 1 (conducted with [128])
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prototypes exist. The main purpose is to evaluate the design ideas quickly and get the

possibility to repair fundamental learnability issues at early stages of development.

The ranking of the criteria that may arise under these circumstances is shown in Figure

4.6.

Figure 4.6: Example weighting of the criteria for scenario 2 (conducted with [128])

Scenario 3

The last scenario is relatively at the end of the development process. All important

functionalities are implemented and a beta version can be released. The manufacturer

has some exclusive beta test costumers. Therefore, the number of required participants
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should be relatively low. Employees have expertise in evaluation. The system has a high

demand on learnability as it has a long familiarization period. Additionally, not all system

functions are in daily use. Therefore, a longitudinal study is desired. Furthermore, the

context of use of the system is strongly influenced by the environment: there are often

interruptions, for example, by incoming phone calls or situations in which more urgent

tasks have to be done spontaneously. Until then, only laboratory studies have been

conducted where such influences are difficult to reproduce. Therefore, the evaluators

thought that a field study would be helpful.

The ranking of the criteria that may arise under these circumstances is shown in Figure

4.7.

Figure 4.7: Example weighting of the criteria for scenario 3 (conducted with [128])
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4.3.3 Ratings of Alternatives

Next, alternatives must be ranked with respect to each lowest level criteria of the decision

hierarchy. The result is proposed in Table 4.1.

MMI QSP PBM CD PNB Ques Diary LAM CWs

Possibility to find cause

of issue

0.184 0.184 0.017 0.024 0.026 0.075 0.121 0.184 0.184

Effort for single partici-

pant

0.045 0.045 0.045 0.171 0.171 0.105 0.017 0.200 0.200

Number of required par-

ticipants

0.141 0.141 0.032 0.032 0.032 0.032 0.141 0.226 0.226

Conduction without par-

ticipants

0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.360 0.360

Field study without obvi-

ous observation

0.027 0.027 0.027 0.321 0.321 0.111 0.111 0.027 0.027

Field study with evalua-

tor on site

0.168 0.331 0.076 0.073 0.073 0.0731 0.073 0.065 0.065

Laboratory study 0.122 0.122 0.122 0.122 0.122 0.122 0.020 0.122 0.122

Time expenditure 0.075 0.075 0.075 0.288 0.075 0.217 0.012 0.041 0.135

Required qualification 0.068 0.042 0.190 0.111 0.040 0.305 0.098 0.130 0.018

Material effort 0.031 0.035 0.070 0.183 0.183 0.070 0.063 0.183 0.183

Qualitative 0.215 0.215 0.022 0.033 0.039 0.022 0.215 0.022 0.215

Subjective 0.184 0.184 0.020 0.020 0.020 0.184 0.184 0.020 0.184

Objective 0.024 0.024 0.220 0.220 0.220 0.024 0.024 0.220 0.024

Single score as out-

come (absolute)

0.031 0.031 0.080 0.080 0.080 0.432 0.032 0.202 0.032

Single score as out-

come (relative)

0.024 0.024 0.117 0.117 0.223 0.223 0.024 0.223 0.024

Multiple data 0.020 0.020 0.217 0.217 0.116 0.153 0.017 0.205 0.034

Table 4.1: Proposed preferences for methods to measure learnability with respect to each

criterion (with MMI = mental model interviews, QSP = question-suggestion

protocol, PBM = performance based measurement, CD = chunk detection,

PNB = petri net based approach, Ques = questionnaires, LAM = learnability

attributes model and CWs = cognitive walkthroughs)
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4.3 AHP for Selecting Methods to Measure Learnability

Each row in Table 4.1 is the outcome of one pairwise decision matrix. The matrix of the

first row is shown in Figure 4.8.

Figure 4.8: Left, resulting priorities with respect to the possibility to find the cause of
learnability issues are shown. Right, the individual judgements in a decision
matrix are shown (conducted with [128])

The higher a value, the better the alternative is appropriate with respect to that criteria.

For example, with respect to possibility to find the cause of learnability issues mental

model interviews, question-suggestion protocol, learnability attributes model and cogni-

tive walkthroughs are most appropriate. With respect to the effort for a single participant

learnability attributes model and cognitive walkthroughs are most appropriate followed

by petri net based approach and chunk detection. Participants have the highest effort at

mental model interviews and the question-suggestion protocol.

Regarding scenario 1 (see Chapter 4.3.2), questionnaires are proposed to be the most

appropriate method based on the suggested rating of the alternatives (cf., Table 4.1).

The result is presented in Figure 4.9.

Note that the ranking of the alternatives (cf., Table 4.1) is a subjective weighting, which,

furthermore, strongly depends on concrete circumstances such as the concrete utilisation

of an evaluation method and the participant’s system usage. For instance, the weighting

of diaries with respect to quantitative data collection depends on whether the diary

involve elements like rating scales. Another example is the rating of chunk detection with
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Figure 4.9: Weights of alternatives for scenario 1

respect to the required effort for a single participant. If the system to evaluate is already

in-use by the participant or new users become participants, there is no extra effort for

the participants as they are using the system anyway. But, if participants have to start

using a system they would not have under other circumstances, effort would be ranked

higher. A further example is the estimation of performance based measurements with

respect to the effort for a single participant. The rating strongly depends on how much

trials are planned.

For this ranking (cf., Table 4.1), it was assumed that performance based measurements

are conducted over several trials, so the participants have a time expenditure of around

90 minutes. Furthermore, it was assumed that the petri net based approach and

chunk detection are applied with regular users as participants. Moreover, regarding

questionnaires this thesis only took the effort required to carry them out into account

without a potentially required laboratory study. With respect to diaries a high compliance

of the participant was assumed.
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4.4 Discussion

Note that the development phase and whether a detailed log-file exists are not formalised

in the decision hierarchy. Therefore, practitioners have to eventually adapt the choice

of alternatives. In early design phase, in order to evaluate ideas and non-functional

mock-ups, only mental model interviews and cognitive walkthroughs are appropriate.

Furthermore, if there is no possibility for a detailed log-file, chunk detection and the petri

net based approach have to be excluded.

4.4 Discussion

In this thesis, an approach based on AHP to assist practitioners in selecting the most

appropriate method to measure learnability was proposed. The proposed criteria of the

decision hierarchy (cf., Figure 4.4) are kept very general. This allows to include diverse

alternatives such as analytical next to empirical methods. Therefore, practitioners are

invited to add further alternatives.

Additionally, the proposed weighting of the alternatives may need to be modified based on

circumstances of the project and planned evaluation. However, the proposed weighting

is intended on the one hand to provide a template for an individual ranking and on the

other hand to provide a structured overview of the characteristics of existing alternatives.

In the future, a validation of the proposed hierarchy and the weightings of the alternatives

towards their appropriateness in finding the most suitable method to measure learnability

is necessary.

All in all, the approach is considered to be valuable in assisting to find the most appro-

priate method. However, no AHP tool free of charges could be found where existing

weightings can be easily imported. [128] supports the specification of the decision

hierarchy in CSV. Therefore, the proposed hierarchy can be easily transferred. But,

despite the possibility to export data in CSV, no possibility could be found importing data,

such as the weightings of alternatives.

Hence, for an improved assistance on finding possibilities to measure learnability, an

easily accessible tool, comparable to the Usability Planner [127], but that is based on

AHP and provides templates on alternatives, would be desirable.
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5
Conclusions

This thesis gave a structured overview of the definitions and psychological background of

learnability as well as of existing methods to measure learnability. Although, learnability

has been of interest in HCI for the last 40 years, there is still no consensus on how to

define and evaluate learnability.

Therefore, several different definitions exist, which describe learnability with diverse

aspects, such as the increase in efficiency, satisfaction or the amount of required effort.

Furthermore, there is discrepancy about whether the term learnability should be limited

to initial learning.

Of course there are also different methods to measure learnability, since in general,

diverse goals shall be attainable. Competing goals are, for example, finding learnability

issues versus getting a single score or preferences of objective data versus subjective

data. In addition, there are several methods in respond to available resources of

evaluators, such as existing interaction logs, equipment or the evaluators’ experience

in usability evaluation. However, taking a detailed look to the methods, disunity can be

observed. This includes, for example, the evaluation of cognitive effort or of memorability.

Furthermore, it was very surprising that although new approaches to measure learnability

were developed over the last 40 years, only one publication could be found that conducted

an extensive literature research on existing approaches. Likewise, this was the only

publication that compared at least two similar methods for its value to measure learnability

in a study. Several of the methods proposed in this thesis to measure learnability got

only few attention.
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Considering these aspects, it seems that there is a lack of fundamental research. Es-

pecially with respect to factors that should be considered or are not needed to be

considered as well as the effectiveness of certain methods in measuring learnability and

in uncovering learnability issues. Only for two aspects there is fundamental research in

the area of learnability: mental models and chunking. Several approaches to evaluate

usability are based on mental models. For learnability, cognitive walkthroughs, which are

based on the theory of mental models, and mental model interviews were conducted.

However, chunking mainly aim to design principles rather than on measurement tech-

niques. Only one approach with respect to chunking was found and this have got only

few attention. Apart from this publication, no research was found on whether chunking

could be generally suitable for measuring learnability or not.

A practical problem, caused by the variety of methods in combination with the lack of

juxtaposition, is the selection of the most appropriate method for one’s own project.

To assist practitioners in their choice, a framework based on AHP was conducted in

this thesis. A hierarchy was proposed (cf., Figure 4.4) with general decision criteria.

Additionally, the methods to measure learnability presented in this thesis were weighted

with respect to that hierarchy. This hierarchy and the weighting of alternatives are

intended to be used by practitioners as a template to find the most appropriate method

for them. In addition, through the weighting of the alternatives with respect to the criteria,

a structured overview of methods to asses learnability is provided. In summary, it can

be said that the framework based on AHP is intended to propose the most appropriate

alternative as well as give a structured overview of existing alternatives. For the future,

however, a validation of the proposed hierarchy and the weightings of the alternatives in

terms of their appropriateness in finding the most suitable method to measure learnability

is required.

All in all, there are various possibilities to measure learnability. Nevertheless, because

of several reasons, which were discussed in this thesis, practitioners are faced with the

challenge of finding methods to measure learning as well as selecting a suitable one.

This thesis is intended to provide an overview and assist in the choice of method. For the

future, further research and an easily accessible tool providing informations on different

methods and assisting in the choice of method based on AHP are desirable.
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A
Appendix

Measure L e a r n a b i l i t y : Study cond i t i ons , Cost f o r eva luator , P o s s i b i l i t y to

f i n d cause of issue , Data ;

Study cond i t i ons : E f f o r t f o r s i n g l e p a r t i c i p a n t , Number o f requ i red

p a r t i c i p a n t s , Study wi th p a r t i c i p a n t involvement , Conduction w i thou t

p a r t i c i p a n t s ;

Study wi th p a r t i c i p a n t involvement : F i e l d study w i thou t obvious observat ion ,

F i e l d study wi th eva lua to r on s i t e , Laboratory study ;

Cost f o r eva lua to r : Time expendi ture , Required q u a l i f i c a t i o n , Ma te r i a l

e f f o r t ;

Data : Quan t i t a t i ve , Q u a l i t a t i v e , Sub jec t ive , Ob jec t i ve ;

Q u a n t i t a t i v e : S ing le score as outcome ( abso lu te ) , S ing le score as outcome

( r e l a t i v e ) , M u l t i p l e data ;

Listing A.1: Decision hierarchy in CSV for finding the most appropriate method for my

project to evaluate learnability
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