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Abstract—Contemporary process management systems sup-
port users during the execution of repetitive, predefined business
processes. However, when unforeseen situations occur, which are
not part of the process model serving as the template for process
execution, contemporary process management technology is often
unable to offer adequate user support. One solution to this
problem is to allow for ad-hoc changes to process models, i.e.,
changes that may be applied on the fly to a running process
instance. As opposed to the widespread activity-centric process
modeling paradigm, for which the support of instance-specific
ad-hoc changes is well researched, albeit not supported by most
commercial solutions, there is no corresponding support for ad-
hoc changes in other process support paradigms, such as artifact-
centric or object-aware process management. This paper presents
concepts for supporting such ad-hoc changes in object-aware
process management, and gives insights into the challenges we
tackled when implementing this kind of process flexibility in the
PHILharmonicFlows process execution engine. The development
of such advanced features is highly relevant for data-centric BPM,
as the research field is generally perceived as having low maturity
when compared to activity-centric BPM.

Index Terms—process flexibility, ad-hoc change, object-aware
process

I. INTRODUCTION

As one of the main advantages of using a process man-
agement system in enterprises, changes to real-world business
processes can often be incorporated into the flow of data
between users and IT systems by simply changing the process
models in the process management system [1]. This allows
processes to be updated and improved over time, supporting
more cases that were not thought of during their initial
modeling. However, process models are often not detailed
enough to adequately support each and every possible variant
of process execution. Furthermore, there are process variants
that occur so rarely, that incorporating them into the process
model would increase its complexity at a far too low benefit.
In these cases, ad-hoc changes to running process instances
become necessary, a topic that has been addressed many times
for traditional, activity-centric process management systems.
This paper offers a fundamental approach for introducing
the concept of ad-hoc process model changes to object-
aware process management, i.e, a data-driven and data-centric
process support paradigm. In particular, we detail how the
paradigm helps to ensure run-time correctness of changed
process instances as well as the replay-based method we use
to reconstruct the process state after ad-hoc changes.

The remainder of the paper is structured as follows. First,
Section II offers a discussion of fundamentals. Section III
presents the requirements for supporting ad-hoc changes in an
object-aware process execution engine. The main contribution
is provided by Section IV, which presents an original concept
for ad-hoc changes to object-aware processes. A discussion of
threats to validity, based on a sophisticated prototypical im-
plementation, can be found in Section V. Section VI discusses
related work. Finally, Section VII gives a short summary of
the contribution.

II. FUNDAMENTALS

As the conceptual foundations of object-aware process
management are crucial for understanding the contribution,
this section offers an overview thereof.

A. Object-aware Process Management

PHILharmonicFlows, the object-aware process management
framework we are using as a test-bed for the concepts
presented in this paper, has been under development for
many years at Ulm University [2]–[4]. This section gives
an overview on the concepts necessary to understand the
remainder of the paper. PHILharmonicFlows takes the idea
of a data-driven and data-centric process management system
and improves it by introducing the concept of objects. One
such object exists for each business object present in a real-
world business process. As can be seen in Fig. 1, an object
consists of data, in the form of attributes, and a state-based
process model describing the object lifecycle.

The attributes of the Transfer object (cf. Fig. 1) include
Amount, Date, and Approved. The lifecycle process, in turn,
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describes the different states (Initialized, Decision Pending,
Approved, and Rejected), an instance of a Transfer object
may enter during process execution. Each state contains one
or more steps, each referencing exactly one of the object
attributes, and enforcing the respective attribute is written
at run-time. The steps are connected by transitions, which
arrange them in a sequence. The state of the object changes
when all steps in a state are completed. Finally, alternative
paths are supported in the form of decision steps, an example
of which is the Approved decision step.

As PHILharmonicFlows is data-driven, the lifecycle process
for the Transfer object can be understood as follows: The
initial state of a Transfer object is Initialized. Once a Customer
has entered data for the Amount and Date attributes, the
state changes to Decision Pending, which allows an Account
Manager to input data for Approved. Based on the value for
Approved, the state of the Transfer object changes to Approved
or Rejected. Obviously, this fine-grained approach to modeling
a business process increases complexity when compared to
the activity-centric paradigm, where the minimum granularity
of a user action is one atomic activity or task, instead of an
individual data attribute.

However, the object-aware approach allows for automated
form generation at run-time. This is facilitated by the lifecycle
process of an object, which dictates the attributes to be filled
out before the object may switch to the next state, resulting
in a personalized and dynamically created form. An example
of such a form, derived from the lifecycle process in Fig. 1,
is shown in Fig. 2.

Note that a single object and its resulting form only con-
stitute one part of a complete PHILharmonicFlows process.
To allow for complex executable business processes, many
different objects and users may have to be involved [4]. It
is noteworthy that users are simply special objects in the
object-aware process management concept. The entire set of
objects and relations present in a PHILharmonicFlows process
is denoted as the data model, an example of which can be seen
in Fig. 3. In addition to the objects, the data model contains
information about the relations existing between them. A
relation constitutes a logical association between two objects,
e.g., a relation between a Transfer and a Checking Account.

At run-time, each of the objects can be instantiated many
times as so-called object instances. The lifecycle processes
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present in the various object instances may be executed
concurrently at run-time, thereby improving performance. Fur-
thermore, the relations can be instantiated at run-time, e.g.,
between an instance of a Transfer and a Checking Account,
thereby associating the two object instances with each other.
The resulting meta information, i.e., that the Transfer in
question belongs to the Checking Account, can be used to
coordinate the processing of the two object instances with
each other. Fig. 4 shows an example of a data model instance
executed at run-time.

Finally, complex object coordination, which becomes nec-
essary as most processes consist of numerous interacting
business objects, is possible as well [4]. As objects publicly
advertise their state information, the current state of an object
can be utilized as an abstraction to coordinate with other
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objects corresponding to the same business process through a
set of constraints, defined in a separate coordination process.
As an example, consider a constraint stating that a Transfer
may only change its state to Approved if there are less than 4
other Transfers already in the Approved state for one specific
Checking Account.

The various components of PHILharmonicFlows, i.e., ob-
jects, relations, and coordination processes, are implemented
as microservices, turning PHILharmonicFlows into a fully
distributed process management system for object-aware pro-
cesses. For each object instance, relation instance, or coordina-
tion process instance one microservice is present at run-time.
Each microservice only holds data representing the attributes
of its object. Furthermore, the microservice only executes the
lifecycle process of the object it is assigned to. The only
information visible outside the individual microservices is the
current “state” of the object, which, in turn, is used by the
microservice representing the coordination process to properly
coordinate the objects’ interactions with each other.

B. Process Model Evolution and Ad-hoc Changes

As motivated in Section I, business processes models are
subject to different types of changes. These can be categorized
into: deferred process model evolutions, immediate process
model evolutions, and ad-hoc changes [1].

Deferred process model evolutions are relatively simple
and supported by most process management systems as they
merely require the process model to be changed and rede-
ployed. As existing process model deployments and their
process instances remain untouched, this is a rather trivial task.
More information on typical change patterns to process models
can be found in [5].

Immediate process model evolutions on the other hand are
more challenging as they not only allow for the process model
to be updated, but also try to migrate already running process
model instances to the newer version. Such an immediate mi-
gration poses significant challenges to a process management
system, such migrating process instances that have already
executed past the point in the process model to which changes
were made [6]. Immediate process evolutions are required
for use cases where the running process instances must not
continue execution based on the old process model. As an
example, consider a faulty web-service call in the process
model that has to be fixed for all running instances as soon as
possible.

Finally, ad-hoc changes constitute a special case of im-
mediate process model evolution in which only one specific
running process model instance has to be changed. This allows
users to deviate from the predefined process in various ways,
e.g. to execute two activities in a different order as originally
intended. Enabling ad-hoc changes reduces the complexity
of the process model as not every single possible variant of
process execution has to be predefined.

In activity-centric process management, there is always
one central entity to which all these changes are applied,
the process model. While evolutionary changes might be
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applied directly to the process model all process instances are
derived from, ad-hoc changes are always applied to the process
instance itself. Each process instance has, at least conceptually,
its own copy of the process model, which can be changed
individually. These two change granularity levels possible in
activity-centric processes are depicted in Fig. 5.

Regarding object-aware process management, these two
change granularity levels exist as well. Specifically, evolu-
tionary changes may be made to the data model and its
objects, while ad-hoc changes may be applied to data model
instances and object instances, analogously to the activity-
centric case. However, considering that more object instances
may be created at any point during process execution, with
only two levels of granularity it is not quite clear what an
ad-hoc change to an object actually constitutes. To ensure
that users can express whether they wish to only change one
individual object instance or all existing and future instances of
an object in the data model instance, a third level of granularity
has to be defined: the object instance level. The resulting three
change granularity levels possible in object-aware processes
are depicted in Fig. 6.

It is noteworthy that ad-hoc changes to objects on the data
model instance level are propagated to all existing and future
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object instances. For example, if an attribute is added to an
object on the data model instance level, all object instances in
the data model instance will have the new attribute. However,
if the same change is introduced at the object instance level,
only the specific object instance the change is applied to will
have the additional attribute.

Finally, the data model instance level has support for a
complete set of change operations. In addition to the changes
that are possible for object instances, i.e., adding attributes,
permissions, and editing the lifecycle process, one may also
introduce changes to the data model instance itself, such
as adding new objects or relations. More precisely, ad-hoc
changes to the data model instance level allow changing ev-
erything that is possible in the regular modeling environment,
i.e., completeness is ensured. The object instance level, on the
other hand, is limited to changes to the conceptual elements
local to any one object instance, e.g., adding a step. Both ad-
hoc changes to the data model instance level and the object
instance level are the focus of this paper.

III. REQUIREMENTS

This section presents major requirements we identified for
supporting ad-hoc changes in object-aware process manage-
ment. On the one hand, they were derived from the require-
ments for activity-centric processes and adapted as necessary.
On the other, we considered data model change operations in
a number of analyzed object-aware processes [7].

Requirement 1: (Change Atomicity) Existing object in-
stances should not reflect ad-hoc changes immediately, as indi-
vidual changes to an object instance may render it semantically
or syntactically incorrect until other changes are applied. An
example if this could be the insertion of a step into a lifecycle
process that has no incoming or outgoing transitions. Even
if the missing transitions were added shortly afterwards, there
would be a time span in which the individual change of adding
a step would constitute a syntactical error in an object-aware
lifecycle process. Therefore, if this change were introduced
to a running process instance would cause run-time failures.
Therefore, a capability must be developed that allows for
multiple changes to introduced to running process instances
in an atomic fashion. In the simple example of adding a step,
the entire atomic change would therefore consist of adding
the step and all transitions, ensuring that the running process
instances are never in an incorrect state.

Requirement 2: (Correctness) The changes that can be
applied to object instances should result in a correct process
model, i.e., the verification criteria that are applied prior to
process deployment must apply to ad-hoc changes as well.
Reiterating the previous example of adding a new step to
a lifecycle process, the entire atomic change (i.e. set of
individual changes) that should be introduced to the running
object instance must always result in a correct underlying
process model.

Requirement 3: (Run-time Consistency) An object instance
must never enter a lifecycle process state it could not be in
if it were re-executed in an identical fashion after an ad-hoc

change. For example, if a required step is added in a state
that the lifecycle process of the object instance in question has
already progressed past, it would be inconsistent for the object
instance to remain in the later state without having completed
the newly required step in the earlier state. This is due to the
fact that -newly- created object instances could never progress
past the new step without providing data for the associated
attribute, but the existing object instance would have already
progressed past this point.

Requirement 4: (Model Consistency) When combining ad-
hoc changes to the entire data model instance with prior ad-
hoc changes to individual object instances, conflicting changes
must be resolved. Consider an object instance that has an
additional transition between two steps, added as an ad-hoc
change on the object instance level at run-time. If a process
modeler were to introduce an additional ad-hoc change at the
data model instance level that, e.g., the deletion of one of
the steps that the additional transition is connected to, this
changes to a specific object instance would be in conflict with
the change that affects all existing object instances.

Requirement 5: (Concurrency) Change operations must
be executable while the process instance is running, without
hindering the execution of other object instances not con-
cerned by the changes. This is in contrast to activity-centric
process management, where a single process instance often
corresponds to a single business case. To be precise, we aim at
offering a solution that allows for ad-hoc changes to individual
object instances without affecting the performance of other
object instances. Explicitly excluded from this work, however,
is a broader discussion on concurrent ad-hoc changes the same
object instance, as this can be solved with trivial locking
mechanisms, i.e., simply disallowing multiple users to conduct
changes to the same object instance at the same time.

Requirement 6: (Coordination) As object instances can be
coordinated with each other based on their current state [4],
state changes due to ad-hoc changes must be handled correctly.
Such state changed may arise when required steps are inserted
at earlier points in an object instance lifecycle process, as
the example in Requirement 3 portrays. Furthermore, through
the removal of individual steps from a lifecycle process, the
lifecycle process may also advance to a later state as the result
of an ad-hoc change as well. Both cases must be handled
correctly by the coordination process to ensure that other
object instances react to the changes correctly.

Requirement 7: (Completeness) The set of possible op-
erations for ad-hoc changes must be complete in the sense
that all aspects of the process model editable at design-time
must also be editable at run-time. Note that this work does not
contain a discussion on which ad-hoc change operations make
“sense” from a user perspective as we are of the opinion that
the concept we develop for ad-hoc changes should support any
operation required to create or alter a process model. Keeping
the user side of the concept from being too overwhelming or
powerful is a user interface concern as long as the concept and
implementation of the ad-hoc change operations is complete
enough to support any change operation deemed important.
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IV. AD-HOC CHANGES IN OBJECT-AWARE PROCESSES

This section presents the fundamental concepts we devel-
oped for enabling ad-hoc changes to instances of object-
aware processes, all of which are fully implemented in the
PHILharmonicFlows execution engine.

A. Object Instance Level Changes
An ad-hoc change to an object instance can be required by

users for many reasons. As objects consist of various attributes,
permissions, and a lifecycle process, a simple ad-hoc change
could be adding a new attribute and a corresponding lifecycle
step to the object. An example is given in Fig. 7 by the
additional attribute Comment, and the corresponding step in
the Decision Pending state. The Transfer object this instance
was created from can be viewed in Fig. 1.

Note that this change affects the single object instance
depicted in Fig. 7, not any other existing or future instances of
Transfer. This is due to the fact that changing the template for
creating new Transfer object instances, the Transfer object (cf.
Fig. 1), remains untouched as the ad-hoc change is introduced
on the object instance level and not on the data model instance
level. Such changes to all existing and future instances of an
object are discussed in Section IV-B.

From a user perspective, the introduction of this change
would alter the form generated from this object at run-time.
While an unmodified Transfer object instance would display
the Form depicted in Fig. 2 to a Checking Account Manager
when the object enters the Decision Pending state, after the
ad-hoc, the instance displays a slightly different form to
the Checking Account Manager. This altered form, which
can be viewed in Fig. 8, displays an input field for the
Comment attribute and sets it as mandatory, as required by the
corresponding step inserted into the Decision Pending state of
the Transfer lifecycle process.
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Supporting ad-hoc changes on the object instance level
is accompanied by a number of challenges, which must be
solved to lay the foundation for data model instance level
changes. Our concept solves these challenges in line with the
requirements from Section III.

To help understand our concept, we introduce the notion of
a change log entry. A change log entry is a historical change
operation that was applied to some element being part of a
data model M.

Definition 1. (Change Log Entry)
A tuple L=(S,A,P,T) is called change log entry if the following
holds:
• S, the source of the log entry, corresponds to any object-

aware construct (e.g. object, relation, state, etc.) with S ∈
M

• A is a modeling action that can be applied to S
• P is a set of parameters with which A was applied to S
• T is the logical timestamp of the modeling action

One such log entry is created for each modeling action
a user completes when creating or changing data model M,
thereby constituting the change log of M. Example 1 shows
a concrete change log entry for the creation of a new string
attribute, Comment, in the Transfer object.

Example 1. (Change Log Entry)

l14 =


S object : Transfer

A AddAttribute

P [name : ”Comment”, type : String]

T 14

The logical timestamp T of l14 holds the value 14, signifying
that it is the 14th change to the data model. Specifically,
tracking the logical timestamp of modeling actions across the
entire data model becomes necessary to allow sorting them in
the original order, across the various objects they are attached
to, which becomes necessary when reconstructing data models
from their change logs. Reconstruction can be used for fairly
trivial tasks, such as creating an identical copy of a data model
by replaying its change log, i.e, repeating each modeling action
step by step, but also more complex use cases, such as defining
a delta of change log entries that constitutes a data model
variant [8].

The availability of such change logs allows viewing an
object-aware data model and the therein contained objects
from a new perspective: as the result of the application of
all modeling actions logged in the change log. Furthermore,
this perspective can be applied to data model instances and
object instances, as the individual instances are all based on
their models which then can be recreated by repeating the
modeling actions contained in the change log entries.

However, in object-aware process management an object
instance is not merely defined by the attributes and lifecycle
process model of the object it was instantiated from, but also
by the data values present for each attribute at a given point
in time during the processing of the object instance, i.e., the



execution of its lifecycle process. This is due to the fact that
object-aware processes are inherently data-driven (cf. Section
II), meaning that the execution progress (i.e., the state) of each
object is defined by its attribute values, and, furthermore, that
the current states of the individual objects are used by the
coordination process to determine the execution progress of
the entire data model instance.

Taking these facts into account, we can offer an alternate
definition of an object instance, which deviates from the one
found in literature on object-aware process management [3].
The previous definition focused on the actual object-aware
constructs that comprise the object, such as attributes, attribute
values, permissions and all elements of the object lifecycle
process.

Definition 2. (Log-defined Object Instance)
A tuple O=(log, data) is called log-defined object instance if
the following holds:
• log is a set of change log entries L (cf. Definition 1)
• data is a mapping of values to object attributes

As O.log contains a set of change log entries with logical
timestamps, recreating the sequence of actions (with accompa-
nying parameters) necessary to create O in its current state is
trivial. Furthermore, once the object has been created from
the logs, it becomes possible to assign to each attribute a
the value O.data[a]. In essence this entire procedure allows
us to serialize an object instance in a running data model
instance to its equivalent log-defined object instance, and then
to recreate an identical copy of the original instance. However,
this makes little sense, as the point of ad-hoc changes to object
instances is not to create identical object instance copies, but
change existing object instances. Still, several reasons exist
why serializing and deserializing objects to and from logs
constitutes a fundamental building block for our concept.

When viewing an object instance as a log-defined object in-
stance, i.e., under the premise that the object instance is merely
the result of the sequence of modeling actions necessary to
create the object it was instantiated from, as well as the data
values for its attributes, it becomes clear that any additional
log entry not present in the log entries of the original Transfer
object would indicate that the object instance was changed in
an ad-hoc fashion.

Therefore, combining the fact that we can create copies of
object instances using their log-defined form with the ad-hoc
addition of new log entries, we can create ad-hoc changed
copies of objects instead of identical ones. An abstract view
of the procedure, related to our running example, i.e., adding a
Comment attribute to a Transfer instance, Transfer#77#TEMP,
is shown in Fig. 9.

Note that there are some extra steps involving the temporary
Transfer#77#TEMP object. These steps become necessary
to support some of the requirements stated in Section III.
Requirement 1, for example, states that atomicity of multi-
ple changes has to be ensured, as individual changes might
render an already running object instance in an incorrect state
according to the syntactic and semantic correctness criteria of

object-aware process management. This means that changes
belonging together must be completed in an atomic fashion
assuming that these changes result in a semantically correct
object (cf. Requirement 2). Both these requirements necessi-
tate the creation of a temporary copy of the object instance,
(cf. Fig. 9, Marking (1)).

The temporary object instance copy is editable. For exam-
ple, in our current implementation of object-aware process
management, PHILharmonicFlows, we allow editing the un-
derlying lifecycle process model in the modeling environment.
After the temporary object instance is edited and verified for
correctness, the changes applied to it can be propagated to
the original, “live” object instance in an atomic fashion. To
be precise, the change log entries created while editing (cf.
Fig. 9, Marking (2)) constitute the delta of the ad-hoc change,
i.e, the differences between the original object instance and an
ad-hoc changed object instance. To express this formally, we
introduce the log delta ∆ between two instances of the same
object.

Definition 3. (Log Delta ∆)
A set 〈ln, . . . , lm〉 is called the log delta ∆ between O#i and
O#j if the following holds:

• li is a change log entry ∀i ∈ 〈n, . . . ,m〉
• O#i and O#j are log-defined object instances of the

same object O
• O#i.log and O#j.log are the change log entries of O#i

and O#j, respectively
• 〈ln, . . . , lm〉 = O#i∆O#j = O#i.log \O#j.log

In the example from Fig. 9,
Transfer#21∆Transfer#77 = 〈l14, l15, l16〉 holds,
i.e., the structural difference between the unchanged instance
and the ad-hoc changed instance is determined by the actions
logged in l14, l15, and l16. As previously stated, editing the
temporary copy allows support for Requirement 1, as the
original object instance stays untouched until the ad-hoc
change is completed. Furthermore, before completing the
second copy operation (cf. Fig. 9, Marking (3)), the entire
set of applied changes can be verified using static model
verification before the ad-hoc changes go “live”, thereby
supporting Requirement 2. Finally, after completing this
second copy operation, two Transfer#77 object instances
exist, the original, unchanged instance, and the instance
copied from the temporary instance Transfer#77#TEMP. In
fact, this temporary instance also still exists. As shown in
Fig. 9, Marking (4), these extra copies must be deleted,
which causes the ad-hoc changed instance to become part of
the running process, replacing the unchanged instance in one
atomic operation. The algorithm underlying the concept is
shown in Algorithm 1.
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Algorithm 1 Creating Ad-hoc Changed Object Instance
Require: O.log,O.data . log entries and data of log-defined object instance O
Otemp ← new
for all l in O.log do . copy O by change log replay

Otemp.replayChangeLog(l)
end for
allowediting(Otemp) . log(Otemp) altered via changes in modeling tool
if modelV erificationErrors(Otemp) = 0 then . ensure change is valid

Oadhoc ← new
for all l in log(Otemp) do . copy Otemp by change log replay

Oadhoc.replayChangeLog(l)
end for
for all d in O.data do . insert attribute values from O

Oadhoc.changeAttributeV alue(d) . each value advances the lifecycle
end for
delete(Otemp)
delete(O)
O ← Oadhoc

end if

It is important to mention that the lifecycle process of
all object instances is data-driven. Thus, it gets re-executed
instantly after copying, based on the lifecycle process itself and
the current data values. This becomes necessary when aiming
to support Requirement 3. As the latter states, all processes
must be run-time consistent at all times. For object instances
that have progressed to a particular state, this would usually
mean that inserting required data input steps in earlier states
would not be possible as the object instance could not have
reached its current state after the change. However, by forcing
re-execution, our concept ensures that object instances always
have a consistent run-time state. To be more precise, if changes
were introduced which require data input in states prior to the
one the original object is currently in, the ad-hoc changed
object simply executes to the step which requires data and

stops execution until a user has entered the newly required data
value. Once this is done, the rest of the data imported from
the original object instance is used to complete the lifecycle
process to the point it was at before the ad-hoc changes were
incorporated.

An example can be seen when comparing the forms dis-
played in Figs. 2 and 8. While the form in Fig. 2 is generated
from an unchanged Transfer object instance, Fig. 8 shows the
updated form immediately after applying the ad-hoc changes
introducing the new attribute Comment and the corresponding
lifecycle step. As the Comment attribute is required before
setting the Approved attribute, in line with the ad-hoc changes
to the lifecycle process, the form generated for the Decision
Pending state updates accordingly.

The scope of changes possible with this initial concept is
limited to modeling elements that are directly attached to
individual object instances, i.e., steps, states and transitions
in the object’s lifecycle process, as well as attributes and
permissions. However, expanding upon the presented concept
by enabling ad-hoc changes at the data model instance level
removes this restriction. Finally, due to the large number of
possible object instances in one single data model instance
at run-time, performing ad-hoc changes on individual object
instances might be too time consuming for users to be a
feasible approach.

B. Data Model Instance Level Changes

After presenting the concept for introducing ad-hoc changes
to individual object instances, we move on to the more



challenging task of applying ad-hoc changes at the data model
instance level. Note, that allows performing ad-hoc change
operations on any part of a data model instance, i.e., the rela-
tions, the coordination processes, and the objects themselves.
As explained in Section II, changes applied at the data model
instance level do not propagate to the deployed data model. In
consequence, the changes applied to one data model instance
do not affect other data model instances created from the same
deployed data model. However, ad-hoc changes on the data
model instance level do constitute an evolutionary change,
as they propagate to all existing and future object instances
present in the data model instance (cf. Fig. 6).

To facilitate ad-hoc changes to data model instances, two
core aspects are necessary. First, the data model instance
has to be ad-hoc editable and must be changeable without
affecting the deployed data model it was instantiated from.
Second, modeling changes made to objects must propagate
to all corresponding object instances, which poses additional
challenges if some of the object instances have prior individual
ad-hoc changes applied (cf. Requirement 4).

As explained in Definition 1, all modeling actions performed
on a data model are logged in the change log. Change log
entries can, however, not only be used to create a log-defined
view on an object instance (cf. Definition 2), but also of an
entire data model instance. There is, however, a fundamental
difference between the log-defined view of an object instance
and the log-defined view of a data model instance. As the
data model instance itself does not hold any data, its execution
state is defined by the data in its object instances, as well as
the execution state of the coordination process. This, in turn,
depends solely on the relations that exist between the object
instances, as well as their current states [4]. The log-defined
view of a data model instance is defined as follows.

Definition 4. Log-defined Data Model Instance
A tuple M=(log, objs, rels) is called log-defined data model
instance if the following holds:
• log is a sequence of change log entries L (cf. Definition

1)
• objs is a set of log-defined object instances O (cf.

Definition 2)
• rels ⊆ objs× objs is a set of relations between objects

The log-defined view of the data model instance allows for
creating a temporary copy. Analogously to ad-hoc changes at
the object instance level, this is used to meet Requirement 1,
as incomplete ad-hoc changes are not applied to the “live”
data model instance the users are working on. Additionally, it
allows for full scale static model verification, a prerequisite of
Requirement 2.

The following re-uses parts of the running example, the
addition of a Comment attribute and corresponding step to
the Transfer object. However, the change is now applied to
the entire Transfer object and, in consequence, all associated
Transfer object instances. Furthermore, we extend the example
with the ad-hoc addition of a new object, Foreclosure, to the
data model instance. Adding a new object is possible on the

data model instance level as all changes that are possible at
design-time may be incorporated into a data model instance at
run-time (cf. Requirement 7). The entire process of applying
these ad-hoc changes to a data model instance is shown in
Fig. 10.

The basic idea for incorporating ad-hoc changes to the data
model instance level is the same as for the object instance
level. However, there is a fundamental difference, as the
data model itself is not “executed” like the lifecycle process
of an object instance. This means that the re-execution
does not apply to the data model instance, i.e., there is no
need to recreate the entire data model instance (however,
one must still re-execute all contained and changed object
instances). Instead, we determine the log delta between
the original and the temporary data model instance. Clearly,
DataModelInstance#1∆DataModelInstance#1#TEMP
= 〈l14, l15, l16, l17〉, i.e., exactly the log entries created by the
user when editing the temporary data model instance (cf. Fig.
10, Marking (2)).

Due to the editing of a copy of the data model instance,
which includes all object instances, the concept further meets
Requirement 4. To be more precise, during editing a user can
be warned by the modeling user interface, that the change he
wants to apply to an object is in conflict with a previously
applied ad-hoc change on one of the existing object instances.
Once a user has finished editing the temporary data model
instance, the changes described in the log entries are applied
to the original data model instance (cf. Fig. 10, Marking (3)).

Finally, the existing object instances have to be migrated
to their updated objects, i.e., in the modified example, both
Transfer instances must have the Comment attribute added.
This process, depicted in Fig. 10, Markings (4), (5), and (6),
is almost analogous to the process of incorporating ad-hoc
changes to individual object instances (cf. Section IV-A). In
fact, the ad-hoc changes that are applied to the object instances
in this case are the evolutionary changes propagated from the
objects present in the data model instance.

In summary, the presented concept allows for ad-hoc
changes to running object-aware process instances. While our
examples are focused on ad-hoc changes to objects and indi-
vidual object instances, the concepts can actually be adapted
to relations and coordination processes as well.

V. EVALUATION

For Requirements 1-4, we laid out our solutions in Sec-
tion IV. This Section evaluates the remaining requirements.
Requirement 5 states that the migration of multiple object
instances in response to an ad-hoc change to a data model
instance should occur in parallel and independent of the
execution of other objects. To facilitate this we chose a fully
distributed microservice-based implementation architecture for
the PHILharmonicFlows process execution engine. In this
architecture, which mirrors the conceptual elements of object-
aware process management, each object and object instance is
a separate microservice. This allows us to complete copy and
change operations as displayed in Fig. 10 in parallel, as they
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are actually being executed on separate microservices. Further-
more, we solve the minor issue mentioned in Requirement
5, involving multiple users concurrently conducting ad-hoc
changes to the same object instance, by utilizing the the actor
concurrency model for our microservices. [9]. In essence, the
actor model forces each microservice to behave as if it had
only one conceptual thread, i.e., each microservice can only
complete one action at a time, solving many concurrency prob-
lems, including concurrent ad-hoc changes. Scalability still
ensured through the use of a large number of microservices
for data model instance, one for each object instance.

As an ad-hoc change to a data model instance might
trigger changes to a large number of object instances, this
also causes a large number of copies of the changed object
instances to be re-executed based on their updated lifecycle
processes or attributes. While Requirement 5 still holds, as the
microservice-based architecture is inherently scalable, there
is also a bottleneck. When the lifecycles of the affected
object instances are re-executed, they continuously change
their states. In turn, because of this, the coordination process
instance they are assigned to determines the overall execution
state of the data model instance. As set out by Requirement

6, this is essential to ensure that changed object instances are
coordinated properly and do not leave the data model instance
in an inconsistent state. While we have not yet measured the
time ad-hoc changes take in very large data model instances,
we have ensured that we can improve the speed through hor-
izontal scalability utilizing the aforementioned microservice
architecture. While this is still a threat to validity, we find that
it is more important to favor correct coordination over speed.
Furthermore, we assume that under real-world conditions, ad-
hoc changes to data model instances will not occur frequently.
This assumption is based on the fact that frequent ad-hoc
changes indicate a shortcoming in the process model, which
could instead be alleviated by deploying an updated version
of the model instead of conducting ad-hoc changes on each
instance.

VI. RELATED WORK

As the maturity of the data-centric BPM field is generally
considered low compared to activity-centric approaches, exe-
cution concepts and engines are rare. Directly related work,
i.e., data-centric approaches offering flexibility in the form of



ad-hoc changes to running process instances, is virtually non-
existent to the best of our knowledge.

However, note that related data-centric BPM approaches
already a offer high level of flexibility in their process ex-
ecution, as is the case in artifact-centric business processes
[10] or case handling [11], which is be expected due to the
largely declarative modeling nature [12]. The tooling support
for case handling (i.e. FLOWer [11]), for instance, offers
ad-hoc flexibility in the form of skip or redo capabilities.
However, this flexibility is restricted to control-flow aspects.

The DEZ-Flow engine [13], built upon the artifact-centric
approach, allows for the definition of declarative rules which
allow for ad-hoc changes to running instances at predefined
points. While these rules are editable at run-time, the approach
does not cover every possible deviation from the standard
process as the process model remains unchanged.

A declarative process support approach, which also enables
ad-hoc changes, is presented in [14]. Thereby, a change is
defined by adding, deleting or updating the constraint set of a
particular process instance or process type.

COREPRO [15] supports the assembly of products from
product components, as it is commonplace in the automotive
industry. This requires the adaptation and coordination of
large process structures, represented by individual data objects.
Adaptation is done directly to running instances, and changes
that lead to an inconsistent process state are prevented.

In-depth research into model changes in Adaptive Case
Management (ACM) is conducted in [16]. Specifically, the
conduction of change operations is examined to determine the
impact they have on a given GSM model. However, the paper
is limited in respect to run-time aspects for the adaptation of
existing process instances.

Finally, there are many approaches to process flexibility
in activity-centric BPM, but their ad-hoc change support is
limited to moving, skipping, etc. entire activities in contrast
to the fine-grained support PHILharmonicFlows offers. Addi-
tionally, activity-centric ad-hoc change concepts do not allow
for the migration of all existing process instances, as they can
not be re-executed in the integrated fashion presented in this
work. This frequently leads to scenarios where running process
instances are simply not migratable for certain changes [1] [17]
[18] [19].

VII. SUMMARY AND OUTLOOK

The concepts presented in this paper allow for a multitude
of ad-hoc changes to object-aware process instances, both to
individual object instances and entire data model instances.
The concepts are designed in a way that allows for their
use in a microservice-based process engine, PHILharmon-
icFlows, utilized by us as a proof-of-concept demonstration
of the presented concepts. Furthermore, as object-aware pro-
cess management has an inherently tight integration between
process logic and data, our proof-of-concept has capabilities
that extend beyond those of existing, activity-centric ad-hoc
change solutions.

We intend to address the threats to validity revolving around
the performance of the developed solution (cf. Section V) in a
future paper, once we have determined an adequate test setup
for change scalability. This will be done in conjunction with
the further research on the topic of full data model evolution,
including all attached data model instances and their object
instances, as this is where performance might become an issue.

While the presented solution might not be evaluated for
usability in real-world, it is important to note that the actual
implementation of such advanced concepts is crucial as a proof
of concept for the entire field of data-centric BPM, as the
availability of tooling is central to increasing maturity.
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