
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Databases and Information
Systems Department

Development of a generic concept to
process questionnaire result data in
different statistical applications
Bachelor’s thesis at Universität Ulm

Submitted by:
Sean Duft
sean.duft@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert

Supervisor:
Johannes Schobel

2018

Version from December 28, 2018

c© 2018 Sean Duft

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
CompositiDIe on: PDF-LATEX 2ε

Abstract

Up to this day, data collection in domains like medicine, psychology or education is

mostly carried out manually through questionnaires. These questionnaires are often

associated with a lot of effort, because each participant needs a physical copy of the

questionnaire. Furthermore, the results of the survey need to be evaluated manually

or have to be transferred to a statistical application by hand. This is not only time

consuming, but also an opportunity for potential errors. The QuestionsSys project tries

to solve these issues by providing a flexible framework, that can be used to create and

configure questionnaires, to deploy them on smart mobile devices and to store collected

data.

In order to analyze this digitally collected data, it needs to be imported into a statistical

tool where it can be analyzed further. The task of importing data requires a high amount

of programming knowledge, which makes it rather difficult and time consuming for

someone not familiar with programming. To compensate this, this thesis introduces a

generic concept to import questionnaire result data into statistical tools. Furthermore, the

QuestionSys project will be expanded with concrete implementations for the statistical

programming language R as well as for Microsoft Office Excel

iii

Acknowledgment

I want to thank everybody who helped me during the creation of this thesis, first and

foremost my family and friends for their constant support.

Particularly, I have to thank Johannes Schobel for his supervision of my work, helpful

advice and fast responses to any of my questions.

Thanks.

v

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Objective . 2

1.3 Structure of the Thesis . 3

2 Background 5

2.1 The QuestionSys Framework . 6

2.1.1 Components . 7

3 Analysis 9

3.1 Requirements . 9

3.1.1 Functional Requirements . 9

3.1.2 Non Functional Requirements . 11

3.2 Implementation Specific Requirements . 12

3.2.1 R . 12

3.2.2 Excel . 13

4 Structure 15

4.1 General Structure . 15

4.1.1 R . 16

4.1.2 Excel . 17

4.2 Request Specification . 18

4.2.1 R . 19

4.2.2 Excel . 20

4.3 Data Request . 23

4.3.1 R . 25

4.3.2 Excel . 27

4.4 Data Conversion . 28

4.4.1 R . 31

4.4.2 Excel . 32

vii

Contents

4.5 Save Data . 35

4.5.1 R . 36

4.5.2 Excel . 37

5 Related Works 39

6 Summary 41

6.1 Outlook . 41

A Sources 47

A.1 R . 47

A.2 Excel . 53

viii

1
Introduction

In the past, the task of collecting data was mainly performed by telephone surveys,

face-to-face interviews or mailing questionnaires to applicants. In contrast to these

manual forms of data collection, with the increasing advancement and distribution of

electronic devices, more and more surveys are performed digitally. These digital surveys

may be realized as video chat interviews, social media surveys or smart mobile device

surveys [1].

Each variant of data collection comes with its own set of advantages and disadvantages.

Data collection through digital questionnaires often have a higher response rate, lower

costs per answer, fewer missing or forgotten answers as well as a higher flexibility in

the design of questionnaires [2]. On the other hand, domain specific knowledge is

needed to design a valid and meaningful questionnaire and programming knowledge is

needed to actually create it. Because of this, it requires a close cooperation between

domain experts and application developers to create digital questionnaires, which is

often costly and creates room for misunderstandings and errors. The QuestionSys

projects aims to enable domain experts without programming knowledge to create and

maintain digital questionnaires by themselves. This is to be achieved by creating a

process driven framework for creating and editing questionnaires, an application on

smart mobile devices for executing questionnaires and a server that stores created

questionnaires as well as collected data [3].

1

1 Introduction

1.1 Problem statement

Downloading data from a server used for digital data collection is rather difficult for

someone without advanced programming knowledge. Resulting from this, any project

that aims to minimize the expenditure of creating digital data collection processes needs

to contain a component that encapsulates the technical aspect of requesting result

data from the server. Due to the fact that the server may use a data format not well

suited to analyze the data efficiently, it is necessary to convert the requested data. To

minimize effort and improve usability, this should be performed by the component that is

requesting the data, without the user noticing it. This thesis aims at developing a generic

structure that is supporting this issue, as well as providing an implementation of this

structure in the statistical programming language R as well as the development of a

plugin for Microsoft Excel.

1.2 Objective

The goal of this thesis is to develop a generic concept and implement a tool in the context

of the QuestionSys project, that makes it possible for users to import questionnaire

result data from the QuestionSys server into their preferred tool for statistical analysis,

such as Microsoft Excel or the statistical programming language R. This tool should

provide a simple and intuitive way for users that are not familiar with programming to

request and update the data obtained from their questionnaires, import it to their selected

statistical tool and display the obtained data. To ensure that every user is capable of

requesting data this way, the application should provide an appropriate user interface.

This interface should include options to set all required parameters such as the location

of the data as well as the amount of requested data. Additionally, the structure of the

application should be simple enough so that it can be easily extended with new features,

as the QuestionSys project is still in development and bound to change as the project

progresses.

2

1.3 Structure of the Thesis

1.3 Structure of the Thesis

This thesis begins by explaining the general motivation for the QuestionSys project in

chapter 2, as well as introducing the different components of this project. Chapter 5

compares the QuestionSys project to other approaches at digital data collection. After

that, Chapter 3 analyzes which requirements need to be fulfilled to meet the goal of

this thesis. Afterwards, Section 3.2 specifies what differences and particularities occur

between the implementations of the generic structure in R and Excel. Subsequently,

Chapter 4 introduces the general concept of the application. Each phase of this structure

will be described in detail, followed by an explanation of the implementations in R and

Excel. Finally, Chapter 6 summarizes this thesis and explains what changes likely will be

made to the application in the future.

3

2
Background

Data collection is an integral part in every domain of scientific research. Without raising

and collecting data, validating any scientific thesis is impossible. In economics, medicine

and psychology, surveys are the most common form of large scale data collection.

Following the technological progress, survey methods are getting more and more refined,

and even new survey methods develop, as the distribution of new technological devices

increases. In the 1960s, telephone surveys became more and more popular, internet

surveys started appearing in the 1990s. Finally, in this decade, mobile surveys are

increasingly used to collect data on a large scale [4].

Each existing form of survey comes with its own advantages, as well as with its own

disadvantages. Conventional forms of data collection, such as surveys, paper based

questionnaires or telephone surveys, are already proven valid, there is lots of experience

in the design of these types of surveys. Through this large amount of knowledge, domain

experts know what affects response rates of their surveys positively and whats affects

them negatively, as well as how to design a survey that achieves a high response rate.

There are standard procedures to perform a representative survey, like the method

of random number dialing in telephone surveys [5]. On the downside, in comparison,

manual data collection is expensive per data set. Raised data has to be gathered and

evaluated. In this process, it takes a lot of caution to digitalize this data without errors,

so that it can be digitally analyzed and evaluated. Also, depending on the extend of the

survey or questionnaire, a significant amount of time is taken up by this process [2].

On the other hand, digital data collection provides more freedom in the design and

structure of surveys. Question descriptions are not limited in length as they are in

traditional media. Multimedia files may be embedded in surveys, such as links to

5

2 Background

web pages, audio, image or video files [6]. The order of questions or even the text

of the questions may change based on answers to previous questions. Digital data

collection is much more efficient for receiving and evaluating data, furthermore, the

risk of errors while transcribing collected data to electronic worksheets is reduced to

a minimum. Manual and digital data collections both share similar response rates and

reliability, but digital data collection comes with the benefit of significantly lower number

of missing answers. Contrary to these benefits, digital data collection is in need of

more preparation time compared to manual data collections. The software for the digital

survey needs to be created and adapted to the special tasks for the specific situation, in

addition to the expenditure of creating the questions. Testing and correcting errors in

digital questionnaires is harder than in printed questionnaires, because a more complex

structure leads to more special cases that need to be considered [2]. To this day, creating

digital surveys often requires the cooperation of domain experts, providing the knowledge,

structure and questions of the survey, and programming experts, implementing the survey.

This is often times very expensive and missing communication and misunderstandings

are a huge cause for errors in the finished product as well as delays and even higher

costs [3].

2.1 The QuestionSys Framework

The QuestionSys projects aims to improve some of the disadvantages that data collection

through digital questionnaires on smart mobile devices face. The main goal is to enable

domain experts from domains like medicine and psychology to design, create and

modify digital questionnaires for smart mobile devices, without the need for experts in

programming. To achieve this, the projects aims to create a generic framework that is

able to support the entire lifecycle that questionnaires for smart mobile devices undergo.

This lifecycle can be divided into the following five distinct phases:

Design and Modeling In first phase, domain experts create the data collection model,

including navigation logic that determines what question is shown depending on

answers to previous questions.

6

2.1 The QuestionSys Framework

Deployment In the second phase, the created model is deployed to a mobile device

capable of executing the questionnaire.

Enactment and Execution In the third phase, different instances of the data collection

model are created and the individual questionnaires are executed to collect data.

Monitoring and Analysis This data is analyzed in the next phase, both on the mobile

device as well as on the back-end system.

Archiving and Versioning In this last phase, the collected data is stored as well as

versioned depending on the corresponding release cycle.

So far, if a questionnaire should be created and evaluated in digital form, a lot of technical

knowledge is needed. Programming skills are required in the design and modeling phase,

the deployment phase as well as in the archiving and versioning phase. This comes

with a lot of effort, because of which paper based questionnaires are often chosen over

digital questionnaires [7].

2.1.1 Components

To support all of these phases, the QuestionSys project consists of different components:

Questionnaire Configurator A program for creating questions and possible answers,

defining rules after which the questionnaire is executed and set other possible

options, such as possible languages for the questionnaire. Finished questionnaires

are identified with a process model that represents the execution rules of the

questionnaire.

Server The server is the key component of the QuestionSys application. Finished

questionnaires are deployed to the server where they are stored and versioned.

The results of executed questionnaires are stored on the server as well.

Mobile Client The mobile client is used to provide an easy way to execute ques-

tionnaires, collect data and upload it to the server. In the QuestionSys project,

the mobile client is realized as an application for smart mobile devices such as

smartphones and tablets.

7

2 Background

while the user creates and edits a questionnaire using the Questionnaire Configurator, a

process driven flow model is generated that represents the sequence of questions in the

questionnaire. In this process model, each question of the questionnaire is represented

as a data element, and the pages of the questionnaire correspond with process activities.

After the user finished the questionnaire in the Questionnaire Configurator, it is deployed

to a process management system, the QuestionSys server. The server allows it to

create instances of the questionnaire on the Mobile Client, which can be executed there

to collect data. After the questionnaire is finished, the collected questionnaire data is

stored locally until there exists an internet connection and the collected data is exported

to the QuestionSys server [8].

The component described in this thesis should be able to import this collected server

data into statistical tools to conduct further analysis on the data. It is not a part of any

of the listed components, but rather an independent R-library as well as an plugin for

Excel, but has to communicate with the server via the JSONAPI protocol to request and

update data.

8

3
Analysis

3.1 Requirements

As the goal of this thesis is to create an application that enables domain experts without

programming knowledge to import data into a tool for statistical analysis, there a certain

requirements that this application needs to support to fulfill its purpose. These include

both the functional requirements described in Section 3.1.1 as well as the non functional

requirements described in 3.1.2.

3.1.1 Functional Requirements

FR1 (Server Request)

The application should be able to create a HTTP connection to the QuestionSys

server and send GET request to receive resources from it. The URL address

required for the connection as well as the location of requested data should be

generated from a single URL address entered by the user, without the need to

make multiple requests by hand.

FR2 (Server Response)

The response of requesting data from the server as specified in FR1 should be

evaluated by the client. The included data should be decoded from the JSON-API

protocol response and parsed into an appropriate representation of the data.

FR3 (Content of Requests)

The client should request, parse and save data concerning the question structure,

9

3 Analysis

the set of responses, and possibly a collection of additional information about the

answers of the questionnaire.

FR4 (Pagination)

While requesting data from the QuestionSys server, the client should use the

pagination that is specified in the JSON-API standard. This should be hidden

from the user, meaning that the client will split and execute a request into multiple

requests for the different pages by itself, without the user noticing this process.

Afterwards, the client should add all requested data pages back to a single data

collection.

FR5 (Avoid Spam Protection)

If a request is split into multiple requests, for example through pagination, or

multiple different requests should be performed in a short amount of time, the client

has to ensure that the spam protection of the QuestionSys server is avoided. To

achieve this, the client should keep track of how many requests he sent in the last

period of time, and how many requests are still available. If the request limit per

time is to be exceeded, the client should wait until further requests are permitted

by the server, before any further requests are performed.

FR6 (Loading Bar)

When performing a request with a duration of over a second, the application should

display a loading bar, indicating the user that his request is still handled, and

displaying the current progress.

FR7 (Preview)

The user should be able to specify, how many data sets he wants to request at

maximum from the server with his request. This makes it possible to use the

request feature as a preview feature, as well as well as a more flexible way to

update data.

FR8 (Data Caching)

Downloaded data sets should be saved locally by the application. This includes

the question data, the result data as well as additional information such as the date

on which the data was last modified. When requesting data from the server, the

10

3.1 Requirements

application should check whether the data is already stored locally, and if this is

the case, limit the requested data to result sets that changed after the last update

to the old data. This process shall be hidden from the user.

FR9 (Interface)

To enable the user to use the component, the application should be equipped

with an suitable user interface. In R, this interface should be realized as an object

oriented console interface. In Excel, this interface should be realized as a plugin

integrated into the graphical user interface.

3.1.2 Non Functional Requirements

NFR1 (Installation)

It should be possible to install the component as a user that is familiar with R and

Excel. To allow this, the R program should be installable via the install_github func-

tion provided by the devtools library [9]. The Excel plugin should be installable

through the use of an installer, that opens a configuration wizard for the installation.

NFR2 (Maintainability)

To allow for the later updating of the software because of changes in the server,

protocol or data format, as well as fixing any found issues, the application should

follow the structure defined in this document.

NFR3 (Stability)

The application should not crash through any occurring error, such as the sudden

end of a connection to the QuestionsSys server or invalid user input. In case of

an error, the application should handle it as far as possible, such as saving all

obtained data, and display a meaningful and expressive error message to the user.

NFR4 (Usability)

A user familiar with either R or Excel should be able to use the application without

any further help other than the in-program help tools and descriptions, as well as a

written manual describing the functionality of the product.

11

3 Analysis

NFR5 (Expandability)

The components structure should be designed to allow a developer familiar with

the programming languages R and C# to expand the application by using this

document and the code comments and documentation provided in the component.

NFR6 (Security)

The application should not allow any way to execute custom code that may be

inserted through answers or questions. Any possible code should be escaped in a

way that it is not executed.

NFR7 (Testability)

To ensure that the application is working properly, every function should be covered

by automated tests that are verifying if the component is producing correct results

in regular operation as well as ensuring correct error handling in case of network

failure, wrong data formats or similar situations.

3.2 Implementation Specific Requirements

Because each of the implementations is written in another programming language as well

as dependent on the statistical tool it was written for, it is clear that some implementations

of the component may have other requirements, such as the installation process or the

user interface.

3.2.1 R

R1 (Installation via GitHub)

To make it as simple as possible to install this package, it should be possible to

install it with as little experience in R as possible. To ensure this, the source code

to this component should be placed in a GitHub repository, and installable by using

the existing install_github() function.

R2 (Object Orientation)

To simplify the usage of the component, the component should be developed

12

3.2 Implementation Specific Requirements

using the R6 classes framework. R6 is an implementation of the concept of

object oriented programming in R that is faster and simpler to use than the default

implementation of classes in R [10]. This should provide an intuitive and easy

approach to handle connection parameters as well as requested data and its

transformation.

R3 (Data Frame Conversion)

To ensure a generic and flexible approach, requested data should be stored in a

data frame.

3.2.2 Excel

E1 (Installer Program)

To simplify the installation process of the Excel plugin, the component should

provide an installation program. This installation program starts a wizard, requiring

as little user inputs as possible.

E2 (Local User Installation)

Because some users may not have the required rights to install software globally,

the installation wizard should offer the option to install the plugin locally, only for

the current user.

E3 (Graphic User Interface)

The user interface for the Excel plugin should be realized as a graphical user

interface integrated in the default Excel user interface. All methods required to

request or update data should be accessible through a new ribbon. This ribbon

should include buttons for all required functions, and function parameters for these

functions should be requested from the user in a popup dialog.

E4 (Data Conversion)

Requested data should be directly inserted into a worksheet. The user can choose

if he wants to include it in the currently selected worksheet or create a new

worksheet for the data. If the new data is to override existing values, the user is

notified and asked for a confirmation if he really wants to continue.

13

4
Structure

Any application that aims at providing domain experts with a tool to import questionnaire

result data from the QuestionSys server into any statistical tool to further analyze the

data, especially R and Microsoft Excel, needs to support two different operations. First,

the application should be able to open a connection to the QuestionSys server and

request the data that the user specified. Furthermore, the application should also be

able to handle the obtained data in a useful manner, enabling the user to further analyze

the results in a meaningful and efficient way.

4.1 General Structure

In the generic concept for the goals presented in this thesis, each of these two operations

is divided into two separate phases, as shown in Figure 4.1. Requesting data is divided

into the specification of all parameters for the request, such as the URL of the server,

as well as the location of the data on the server. Furthermore, the amount of data sets

to be requested needs to be specified. The second phase is to actually request the

data based on the specified parameters. This includes creating a connection to the

QuestionSys server, sending a request for the data and questions, as well as receiving

and processing the response. On the other hand, handling data is divided into data

conversion and data storage. The server uses the JsonAPI specification to communicate

with clients, which is a specification designed for client-server communication using the

JavaScript Object Notation (JSON) [11]. The data included in these messages needs to

be decoded, converted into a fitting data type and possibly put back together if multiple

requests were needed to import the data, and combined with existing data. Finally, in

15

4 Structure

the last phase, the data should be saved locally, to enable later usage of this data, even

without an internet connection.

Figure 4.1: The general phases of importing data from the QuestionSys server

4.1.1 R

The implementation in R is written in an object oriented manner. This is achieved

through the usage of the R6 library, providing a simple, intuitive and fast gateway to

object oriented programming in R [10]. The only public method that the QuestionSys

page provides is the questionSys_create() method. If called, this method creates

a new instance of the QuestionSys class, which provides further methods to specify

and execute the request.

The first phase is realized as different setter-methods provided by the QuestionSys

class, that allow the user define the request to his needs. After everything is defined, the

method requestData() needs to be called. This method signalizes the end of the user

input, and calls the three private methods specifyConnection(), sendRequests()

and convertData(). Each of these methods handle one of the phases in the generic

model. specifyConnection() specifies the request and connection parameter, as

well as handling user inputs. The method sendRequests() starts the HTTP connection

with the specified parameters, and executes the data requests. Finally, convertData()

converts the obtained result data into a data.frame and sets the public variable

questionSysData of the current QuestionSys object to this data.frame. The last

16

4.1 General Structure

phase, storing data, is only executed if the user calls the public method saveData()

and saves obtained result data as well as additional information into a file specified by

the user.

4.1.2 Excel

The Excel implementation is integrated into the graphical user interface of Excel. When

installed, it provides its own Ribbon, as seen in Figure 4.2. This menu contains a section

for importing data as well as a section for updating data. When the user clicks a button

in this menu, a dialog window is opened that provides a form for further required user

input, such as the URL address of the QuestionSys server. After all parameters are

Figure 4.2: A Screenshot of the QuestionSys Ribbon in the Excel plugin

set correctly, the application creates a new instance of the DataManager class. This

class serves as a controller for the different steps performed when requesting data

from the QuestionSys server. The second phase is handled by the NetworkHandler

class, that provides static methods to connect to a server and request questions and

answer data from it. The DataManager instance invokes these methods, and passes

these results on to the next phase. The third phase of converting data is handles by the

QuestionSysData class, as well as by the subordinate classes ResultData, Answer

and Question. These classes provide a constructor that accepts the results from the

second phase as input and convert it into a single QuestionSys object. Furthermore, it

is possible to include another already existing instance of a QuestionSys object when

17

4 Structure

creating a new QuestionSys object, which will be updated with the new data contained

in the request results. Saving data is realized by filling a range of the current worksheet

or a newly created worksheet with the result data. This is handled by an instance of

the DataSaveManager class, that takes a QuestionSysData object and a location

inside the Excel workbook, and stores the information of this QuestionSysData object

at the given location. Each answer to a question is stored in the same column, and

answers of the same set, sharing the same answerId, are stored in a row. Because it

is not possible in Excel to store multiple values inside a single cell, it may be required

to create multiple rows with the same answerId to display all result data. Additional

information, such as the timestamp of the last update and the questionnaire id are stored

as comments to a cell at the beginning of the cell range.

4.2 Request Specification

Specifying requests consists out of different steps, as shown in Figure 4.3. First of all,

the user needs to specify the URL address of the questionnaire on the QuestionSys

server. This URL, as shown in Listing 4.1, is generated by the server and available for a

user that created or edited this questionnaire. It is the base address and the location of

both the questions and the answers to this questionnaire can be generated out of this

address. It consist out of the IP address of the questionSys server, the protocol version

that is used by the server, the identifying number of the selected questionnaire as well as

an authentication token that ensures that the user has access to his own questionnaires.

1 h t t p : / / [quest ionSys server IP] / [ve rs ion] / ques t ionna i res /

2 [ques t ionna i re ID]? a u t h e n t i c a t i o n =[Au then t i ca t i on ID]

Listing 4.1: Format of the server generated URL address

Next, the user selects if he wants to import all data sets in the corresponding question-

naire result data set, or if he wants to limit the maximum amount of data sets to be

downloaded from the server, for example as a method to preview the data. After this,

18

4.2 Request Specification

the application needs to determine if there already exists local data that needs to be

completed with new data entries, or updated with changed data sets, and determine

when the local data was last changed. Finally, the request has to be generated out of

the URL given by the user, and modified depending on the stated conditions to match

the users settings.

Figure 4.3: The steps of specifying request parameters

4.2.1 R

The specification of user input in the R application is realized through the public methods

setUrl(), setAmount() and setInputFile() (see Listing A.1). setUrl() stores

the given URL in the private variable serverUrl of the current QuestionSys object.

setAmount() sets the private variable amount to the given value. If the parameter

all of this method is set to true, the function resets the amount back to all possible data

sets. setInputFile() sets the private variable inputFile of the current object to

the given file. If the given file is not a path to a file containing the data but null, the

application opens a graphical file chooser where the user can select a file to input data

from. All three methods return the current questionSys object, so that it is possible to

chain calls to these methods behind each other, to allow setting all parameters in one

line and a faster workflow.

After the user called the requestData() function, the specifyConnection() func-

tion separates the important parts of the URL. The helping methods for this are stored in

19

4 Structure

the specifyRequest file, providing a better testability for these supporting methods. If

the user decided to load existing data from a file, the method .loadData() (see A.2)

uses the built in load function to load existing data, a list of questionIds, the time

when the data was last updated, as well as the id of the questionnaire belonging to this

data. If the old questionnaireId does not match the questionnaireId extracted

from the URL address, loading old data is canceled. Also, if the selected file is not a

valid QuestionSys save, the user gets an error message, and nothing is returned.

4.2.2 Excel

User input in the Excel implementation is handled through two different dialog windows,

one for specifying a request of new data, and one for updating existing data. The dialog

for requesting data from a URL, as seen in figure 4.4, is shown after the user presses

either the Import from URL button or the Import preview from URL button. It

contains a textfield for the URL address, as well as a button that copies the last entry

from the clipboard to this textfield. Furthermore, a radio button indicates whether the

user wants to import the data at the currently selected cell, or if the data should be

imported into a newly created worksheet. If creating a new worksheet is selected, a

textfield is enabled where the user can enter a name for the new worksheet. If no name

is entered, a name containing the current unix timestamp is generated. Additionally, the

user can decide through another radio button, if he wants to import all relevant data

sets, or limit the result sets to a certain amount, for example as a preview. If this menu

was accessed through the Import preview from URL button, the preview option

is selected per default. If this preview radio button is selected, a field is enabled that

contains the number of data sets that should be requested. The user can either input a

number between zero and the maximum integer value directly, or use the small arrow

buttons on the side of this input field to increase or decrease this count by one. Finally,

the Cancel button allows to cancel this process, and the Ok button checks if all inputs

are valid and starts the request as specified.

The dialog for updating data, as seen in Figure 4.5, is shown after the user clicks the

Update from URL button in the Update Data section. This dialog also contains a

20

4.2 Request Specification

textfield to input the URL address of the QuestionSys server, as well as a button to paste

the last entry from the clipboard into this textfield. In addition, a radio button lets the

user select if he wants to update data at the currently selected position, or in another

worksheet. If this radio button is enabled, a dropdown list of all existing worksheets is

enabled, allowing the user to select one. If the current selection is chosen, the application

tries to locate questionnaire data with the top left cell of the selection as the top left cell

of the questionnaire data. If the user wants to update data in another worksheet, the top

left cell of this worksheet is selected as the top left cell of the questionnaire data.

To ensure that all data specified in the Import data dialog by the user is valid, the

Figure 4.4: A Screenshot of the import data
dialog in the Excel plugin

Figure 4.5: A Screenshot of the update
data dialog in the Excel plugin

application checks all inputs when the Ok button is pressed (see Figure 4.6). If the

user presses the Cancel button, the dialog is closed and no data is imported. If the Ok

button is pressed, the application checks if the user specified a URL address. If no URL

address was specified, a warning is shown that informs the user that a URL address

is required to request data, and the dialog stays open. If a URL address was specified,

the application checks if the user wants to import the data into a new worksheet or if he

wants to include it at the current selection. If the current selection was chosen, a warning

is displayed that informs the user that importing data into an existing worksheet may

override existing data. If he accepts this warning through the Ok button of this message

box, the data is imported and the dialog closed. If he rejects it through the Cancel button

21

4 Structure

of the message box, the application returns to the import data dialog. If the user decided

to import the data into a new worksheet, the application tries to create a new worksheet

with the given name, or an automatically generated name if the user did not specify a

name by himself. If this fails because there already exists a worksheet with the selected

name, a warning is shown that informs the user that the creation of a new worksheet

failed, and the dialog is closed. If a worksheet could be successfully created, the data

is imported into it and the dialog is closed. Validation in the Update data dialog is

Figure 4.6: The steps performed by the Excel application to validate user input

fairly similar to the validation of the Import data dialog, as shown in Figure 4.7. With

the Cancel button, the user can close die dialog without updating data. After the Ok

button was pressed, the application checks if a URL was specified, if there is none, a

warning is displayed and the application returns to the dialog. If a URL was specified,

the application checks if the data should be inserted at the current location. If this is the

case, a warning message is displayed informing the user that the process might override

existing data. If he accepts this warning with the Ok button of the displayed message

box, the data is updated and the dialog closed. If the user presses the Cancel button

instead, the application returns to the Update data dialog. If the user wants to update

data in an existing worksheet instead, the application checks if an existing worksheet

was selected. If none was selected, a warning is displayed that the user is required to

select a worksheet, and after this message box is closed, the application returns to the

22

4.3 Data Request

dialog. If a worksheet was selected, the data is updated in this worksheet and the dialog

is closed.

Figure 4.7: The steps performed by the Excel application to validate user input

4.3 Data Request

The process of sending a data request, as shown in Figure 4.8, takes multiple steps.

First, a HTTP connection to the QuestionSys server is established and a GET request

for the questions of the questionnaire data is sent. This request follows the schema as

seen in Listing 4.2. The parameter [questionnaireId] needs to be replaced with

the id of the questionnaire of which the result data should to be imported. Additionally,

the [authenticationID] token is included in the Authorization header field in

the HTTP request, ensuring that the user requesting data is granted access to the data

he wants to import.

The response from the server is read from the network connection and stored, so that

it can be decoded in the next phase. Next, a second HTTP request is sent to get

the questionnaires answer data, using the request that was generated in the request

specification phase. If the server uses pagination, and not all requested data is included

23

4 Structure

Figure 4.8: The steps of sending a data request to the QuestionSys server

1 GET ques t ionna i res / [questionnaireID] / quest ions
2 HTTP/ 1 . 1
3 Accept : a p p l i c a t i o n / vnd . ap i+ json
4 A u t h o r i z a t i o n : [Au then t i ca t i on ID]

Listing 4.2: HTTP Request for fetching questions

in the page returned to the request, a new request is posted until all demanded data

is obtained. A request to fetch questionnaire result data from the QuestionSys server

follows the scheme shown in Listing 4.3. Again, the authenticationID token is

included in the Authorization header field. The parameter questionnaireID is

handled in the same way as in requesting the questions. Furthermore, pageNumber

indicates the number of the page that is requested in the current step. If the user decided

to limit the amount of results that he wants to request, the parameter pageSize is used

to set the result page size to the amount of requested data. Else, this line is not included

in the request and the default page size defined by the server is used. The filter

query parameter is optional too, and only included if there already is questionnaire result

24

4.3 Data Request

1 GET ques t ionna i res / [ques t ionna i re ID] / r e s u l t s ?
2 f i l t e r = [l a s t M o d i f i e d] &
3 page [number]= [pageNumber] &
4 page [s ize]= [pageSize]
5 HTTP/ 1 . 1
6 Accept : a p p l i c a t i o n / vnd . ap i+ json
7 A u t h o r i z a t i o n : [Au then t i ca t i on ID]

Listing 4.3: HTTP Request for fetching a page of questionnaire result data

data stored locally. The parameter lastModified is set to the timestamp when the

local data was last updated, enabling the QuestionSys server to limit the response to

new data sets or result sets, that changed since the last update.

Each request response is read from the network and stored in a list, so that the data can

be decoded in the next phase as well as added back together. After each request, the

client needs to check if the maximum amount of allowed requests per time unit, that the

spam protection of the server allows, has been reached. This limit is transmitted to the

client via the HTTP response header field X-RateLimit-Limit. This field contains the

maximum allowed requests. The field X-RateLimit-Remaining contains the amount

of allowed requests left for the current user, and X-RateLimit-Reset contains a unix

timestamp of the moment, when the request limit will be set back to the default request

limit. If this limit has been reached, the application needs to wait until this reset moment

has passed and the request is valid again, then continue with requesting data. Else, the

next request is executed right away.

4.3.1 R

The R implementation utilizes the library crul to handle the HTTP connection to the

QuestionSys server. Although there already exists rjsonapi, a library dedicated to

handling JsonAPI connections in R, crul was selected because it provides a better

flexibility when sending requests to the server that may not be JsonAPI compliant.

Furthermore, it provides an easier access to request and response header fields, such

as Authorization or X-RateLimit-Limit.

Requesting data is handled in the method sendRequests() (see Listing A.5). In

25

4 Structure

the first line, a new connection to the QuestionSys server is established, using the

method .startConnection() (see Listing A.3). This methods establishes a new

HTTP connection to the given URL address. If the parameter authenticationToken

is used, this token is included as the value of the Authorization header field. Next, in

line five, the questions of the questionnaire are requested using the .getResource()

method (see Listing A.4). This method sends a HTTP-GET request to the resource

specified in the path parameter, using the connection in the connection parameter.

If the parameter absolutPath is true, the application uses the path as given, after

removing the URL address in front of it. If absolutePath is false, the requested path

is combined out of the JsonAPI version, the questionnaireID and the amount of

data sets that should be requested. The HTTP response obtained from this request is

stored, and a list is returned, containing the response text and the content of the header

fields X-RateLimit-Remaining and X-RateLimit-Reset. The content is parsed

to an UTF-8 string, and then decoded to a R6 object, using the method fromJSON()of

the rjson library.

After the question data has been requested, the application requests the first page of

answer result data in line nine, and the result list is split into its separate values. In line

16, the application checks if the server is using pagination, and if the first page contains

all required data, by comparing the link to the last page with the link of the current page.

Additionally, if the user specified a limit for the total data amount, it is not necessary to

request more pages, because the page size was overwritten to request all data sets

at once. Otherwise, the next page needs to be requested, too. Furthermore, in line

20, it is checked whether a request to the server would exceed the servers request

limit. If it does not, the next page is requested in line 21. The location of this page is

taken from the links object of the last request. In line 26, the result of this request

is added to the answerResult list. The number of allowed requests left is stored in

the requestsLeft attribute, as well as the timestamp when the request limit resets

is stored in requestLimitExpires. If no valid request would have been possible, in

lines 28-30, the application waits until the moment specified in requestLimitExpires

passed. After this, the request counter is reset, and the requests are continued. After

each request, it is checked, if the last requested page is the last page of the data set, by

26

4.3 Data Request

comparing their links in line 35. If it is, the loop is ended, the current time is stored in line

40 in the private attribute lastUpdate, and a list containing the question results as well

as the answer results is returned in line 41.

4.3.2 Excel

Creating a HTTP connection to the QuestionSys server as well as requesting data

from it is handled by the NetworkHandler class. It provides a static method SetUp()

(see Listing A.9). This method takes the URL address of the server as well as an

authorizationToken as input. First, it creates a new HttpClient object in line

three, sets its base address to the given address in line four, changes the accepted

response media type to JsonApi in line six, and in line eight, the Authorization

request header is added and set to the given authorizationToken.

Requesting the question data is handled by the method RequestQuestions() (see

Listing A.10), that takes the JsonApi version and the questionnaireID as its input.

It sends a GET request to the server, and returnes the content of the response as a

string.

Requesting the answer result data is a bit more complicated, and handled by the method

RequestAnswers() in the ConnectionHandler class (see Listing A.11). As input, it

requires the JsonApi version used by the server, the questionnaireID of the data

to be requested, as well as optionally, the amount of data sets that should be requested,

and the timestamp of the last update, if there already exists local data. First, the correct

path to the required results needs to be created, depending if the user specified an

amount and local data exists. Line seven requests the data, if the user specified such

amount, line 14 requests this data if no data was specified. In line 17, the content of

the response content is extracted and stored in the variable Content. Furthermore,

the application checks in line 21 and line 25, if the response to this request contains

the response header values X-RateLimit-Remaining and X-RateLimit-Reset.

If they do, their corresponding values are stored in the variables requestLeft and

requestReset. To check whether it is required to request further pages, the Content

string needs to be partially decoded using the Json.NET library [12]. Therefore, a

27

4 Structure

JToken object lastPageToken is generated, representing the last attribute in the

links object of the response. If this object does not exist, because the server does not

use pagination, the already obtained response is all there is to request, and the current

Result list is returned in line 35. If a request limit was specified, or the first page is

already the last page of data, as checked in line 40, the first result already contains all

relevant data sets. If this is not the case, then the next page needs to be requested. The

next page is requested in line 48, with the requested path taken from the next link in the

links object of the previous response. Next, the requestsLeft and requestReset

values are updated in line 55 and line 59. In line 63, the content of the last response is

added to the Result list. Afterwards, in line 67, the application checks if this page is

the last page that should be requested, and if it is, the loop is terminated. Before every

request, the application checks in line 45, if the server uses a spam protection, and if the

next request is allowed. If it is not, the application waits in lines 74-78 until the moment

in requestReset is reached, and then resets the requestsLeft count. Finally, the

list of results is returned in line 83.

Because these methods are written asynchronously, the return type of these methods is

Task<String> and Task<List<String>>, these Tasks need to properly executed

by the DataManager class, as seen in Listing 4.4:

1 NetworkHandler . SetUp (new System . Ur i (BaseUrl) , Token) ;

2 QuestionResponse = NetworkHandler . RequestQuestions (Version ,

3 Quest ionna i re Id) . GetAwaiter () . GetResult () ;

4 AnswerResponseList = NetworkHandler . RequestAnswers (Version , Quest ionnai re Id ,

5 Amount , LastUpdate) . GetAwaiter () . GetResult () ;

Listing 4.4: Requesting data in the Excel application

4.4 Data Conversion

When converting data, as shown in Figure 4.9, the application first needs to convert the

response the application received in the second phase.

28

4.4 Data Conversion

Figure 4.9: The steps of converting the response of the QuestionSys server

1 {
2 " data " : [
3 {
4 " type " : " quest ions " ,
5 " i d " : S t r i n g
6 " a t t r i b u t e s " : {
7 " quest ionText " : S t r i n g
8 }
9 } , . . .

10] ,
11 " l i n k s " : {
12 " s e l f " : (S t r i n g) L ink to these quest ions
13 " r e l a t e d " : (S t r i n g) L ink to the ques t ionna i re
14 }
15 }

Listing 4.5: Response format for questions returned by the QuestionSys server

The body of a response may look similar as shown in Listing 4.5. The data array

contains a list of objects that contains information about the individual questions. The

field id is a string used to uniquely identify all questions in the questionnaire. The

important and for the client relevant information is stored in the attributes object.

Here, the questionText attribute contains the text of the question. This text needs to

be extracted and stored together with the respective id.

After that, the client needs to decode the set of answers. As the server may use

pagination, the application first needs to decode the first page of the result data, and

if there are more than one page of result data, the other pages of results need to be

29

4 Structure

1 {
2 " data " : [
3 {
4 " type " : " answers " ,
5 " i d " : S t r i n g
6 " a t t r i b u t e s " : {
7 " answers " : [
8 {
9 " quest ionID " : S t r i n g

10 " answerText " : [S t r ing , . . .]
11 } , . . .
12]
13 }
14 } , . . .
15] ,
16 " l i n k s " : {
17 " r e l a t e d " : (S t r i n g) L ink to the ques t ionna i re
18 " s e l f " : (S t r i n g) L ink to t h i s page
19 " f i r s t " : (S t r i n g) L ink to f i r s t page
20 " prev " : (S t r i n g) L ink to prev ious page
21 " next " : (S t r i n g) L ink to next page
22 " l a s t " : (S t r i n g) L ink to l a s t page
23 }
24 }

Listing 4.6: Response format for answers returned by the QuestionSys server

decoded as well. Each page of results may look similar to the schema shown in Listing

4.6. The JSON-array data includes a list of JSON objects that each represent one

set of answers. The field id is a server wide unique identifier of this answer set. The

attributes object contains a list of answers, each containing a questionID, identifying

the answer with the corresponding question. The attribute answerText contains the

given answer of the current user for this question. It is a list, so it is possible to support

multiple answers per question. The application can traverse all pages, beginning with

the first page, using the next link in the links object.

After all data sets have been decoded, the application needs to combine the different

data sets to a single object, containing all the data. Next, the application needs to check

whether there already exists local data. If this is the case, the data needs to be loaded,

and it needs to be checked, what part of the new data is a newer version of already

existing local data, by matching the id fields of the answer result data. These data sets

are then replaced with the new data sets. After this, all new data needs to be added to

the already existing and updated data into a single set.

30

4.4 Data Conversion

4.4.1 R

The process of converting data in the R implementation of this concept is managed in the

convertData() method (see Listing A.6). It takes the questionResultData and

answerResultData received in the previous phase as input, as well as an optional

parameter replaceQuestionIds which is set to true per default, and indicates if

in the final data.frame the column titles should be named after the questionIds

or instead be replaced with the text of these questions. First, in line ten, the ap-

plication determines how many sets of result data there are in total, and creates

a list containing the id of all answers in line twelve. The variable questionIds

is created as an environment to match all questionIds to their corresponding

questionText. Here, an environment is used as a HashMap, because R lacks a

default implementation of HashMaps. For each question, the questionId is stored

in the list questionIdList in line 24, and every questionText is stored in the list

questionList in line 25. Next, a matrix is created in line 31, where each row is a set

of result data, and each column is all answers to one question. In line 33, the method

dimnames() sets the names of each column and row of the given matrix to the values

contained in the assigned lists, which makes it possible to address a cell directly using

the respective questionId and answerId. After this, the answerResultData is

traversed and the list of answers for each question is inserted into the matrix in line 42.

If replaceQuestionIds has been set to true, in line 51, the name of each column is

replaced with the actual text of this question, using the questionList created earlier.

Finally, the public attribute questionSysData is set to a new data.frame generated

out of this matrix, and the attribute questions is set to the list of questions.

After that, the method insertOldData() is called (see Listing A.7), to combine the

existing data with the new data obtained in the last phase. First, the application checks in

line twelve for all data sets in the old data set, if they are already part of the new data set.

If a result set is not, a new row with empty values is added to new data.frame in line

15. Because it is possible that the questionnaire was updated between this request and

the last time the data was requested, there may be more questions in the current data

than in the old data. Hence, the application checks at what position all questions in the

31

4 Structure

oldData are in the new data.frame, and place them at the right position. Therefore,

the position textttcurrentQuestionId, where the data is inserted into the data.frame,

is determined by finding the index of the element in the questionIdList, that equals

the current old question id, as seen in line 18. Then, the element of the new question

list with this index is selected as the new index for this response. Finally, the public

questionSysData attribute is set to this modified data.frame.

4.4.2 Excel

Converting data in the Excel application is handled in an object oriented manner. More

precisely, the conversion from a JsonApi compliant string into a useful data structure is

handled by the class QuestionSysData. This class provides a constructor, as seen in

Listing A.12, that takes the result from the question request as well as a list of results

from requesting answers as well as the questionnaireId as input. On top of that, it

is possible to include another QuestionSysData object that represents local existing

data. To represent all data related to a questionnaire, the class QuestionSysData con-

tains an attribute questionnaireId, a list of Question objects, a list of ResultSet

objects and a Dictionary used to map questionIds to the number of this question.

When the constructor is called, first a list of JToken is generated from the question

response, each representing one element of the data object in this response. In line 17,

from each of these tokens, a Question object is generated using the constructor as

seen in Listing 4.7, and added to the Questions list. This constructor takes a JToken,

and sets the variable Id according to the id value in the token, as well as the field

QuestionText to the questionText value of the attributes object in the token.

1 p u b l i c s t r i n g Id ;

2 p u b l i c s t r i n g Quest ionText ;

3

4 p u b l i c Question (JToken jsonToken)

5 {

6 Id = jsonToken [" i d "] . ToStr ing () ;

7 Quest ionText = jsonToken [" a t t r i b u t e s "] [" quest ionText "] . ToStr ing () ;

8 }

32

4.4 Data Conversion

Listing 4.7: A constructor of the Question class to convert data in the Excel application

After this, from each answer response in the AnswerResponse list, a list of JToken

object is generated out of the data objects in this list. In line 27, from each token in this

list, a new ResultSet object is generated, using the constructor seen in Listing 4.8.

This constructor takes a JToken object, and sets the variable Id to the value in the id

field of the token. A list of JToken objects is created out of all objects contained in the

answers list of the attributes object. Out of each of these tokens, a Answer object

is created and added to the answer list.

1 p u b l i c s t r i n g Id ;

2 p u b l i c L i s t <Answer> Answers ;

3

4 p u b l i c Resul tSet (JToken jsonToken)

5 {

6 Answers = new L i s t <Answer > () ;

7 Id = jsonToken [" i d "] . ToStr ing () ;

8 L i s t <JToken> AnswerToken = jsonToken [" a t t r i b u t e s "] [" answers "]

9 . Ch i ld ren () . ToL is t () ;

10 foreach (JToken answerToken i n AnswerToken)

11 {

12 Answers . Add (new Answer (answerToken)) ;

13 }

14 }

Listing 4.8: A constructor of the ResultSet class to convert data in the excel application

The constructor for an Answer object, as seen in Listing 4.9, takes a JToken object as

its input. The value of the variable QuestionId is set to the value of the questionId

field, and in line 10, the list AnswerText is filled with each entry in the answerText

list of the token.

1 p u b l i c s t r i n g Quest ionId ;

2 p u b l i c L i s t < s t r i n g > AnswerText ;

33

4 Structure

3

4 p u b l i c Answer (JToken answerToken)

5 {

6 AnswerText = new L i s t < s t r i n g > () ;

7 Quest ionId = answerToken [" quest ionID "] . ToStr ing () ;

8 foreach (JToken answerStringToken i n answerToken [" answerText "]

9 . Ch i ld ren () . ToL is t ())

10 {

11 AnswerText . Add (answerStringToken . ToStr ing ()) ;

12 }

13 }

Listing 4.9: A constructor of the Answer class to convert data in the excel application

After all ResultSets are generated in Listing A.12, the QuestionNumbers dictio-

nary is created in line 32, and each question id is added. Finally, if the variable

oldData was specified, this QuestionSysData object needs to be merged with

the new QuestionSysData object. To accomplish this, for each ResultSet in the

oldData object it is checked if the resultId of this ResultSet is already contained

in the list of ResultSets in the new object. If it is not, this resultSet is added to the

Answers list.

In order to update data, it is necessary to generate a QuestionSysData object from

existing values in an Excel file. To allow this, the QuestionSysData class contains a

second constructor, as seen in Listing A.13. This constructor takes a cell in the current

Excel worksheet as its input, and tries to read the questionnaire data from this position.

First, in line eight, the application extracts the QuestionnaireId from the comment at

the given StartPosition. Next, the application needs to determine the questions of

the given questionnaire. Therefore, each cell right to the starting cell is read in line 13,

until an empty cell is reached. Out of each non empty cell read, in line 17 a Question

object is created, with the read value as the QuestionText and the value of the cell

below as the QuestionId. After this, the answers need to be read. Thus, in line 25

every cell below the starting cell is read, until an empty cell is reached. If the cell value is

not empty, the entire row is read and out of each cell, that is not empty, an Answer object

is created in line 34, and added to the ResultSet created out of each row. Finally, all

34

4.5 Save Data

ResultSets need to be combined into a single list, while answers to the same ques-

tions in different ResultSet objects with the same answerId need to be combined

into a single ResultSet. To achieve this, the method AddResultSet() (see Listing

4.10) is used. This method checks in line five for each ResultSet in the Answers list,

if their answerId is identical to the Id value of the given ResultSet. If no match is

found, the resultSet is added to the Answers list in line 16. If a match is found, in

line nine, each AnswerText of the given resultSet is added to the AnswerText list

of the correct Answer, using the dictionary to find the right answer index.

1 p u b l i c vo id AddResultSet (Resul tSet resu l tSe t , D ic t i ona ry < s t r i n g , i n t > d i c)

2 {

3 foreach (Resul tSet r e s u l t s i n Answers)

4 {

5 i f (r e s u l t s . Id == r e s u l t S e t . Id)

6 {

7 / / Add r e s u l t S e t answers to r e s u l t s

8 foreach (Answer answer i n r e s u l t S e t . Answers)

9 {

10 r e s u l t s . Answers [d i c [answer . Quest ionId] − 1]

11 . AnswerText . AddRange (answer . AnswerText) ;

12 }

13 r e t u r n ;

14 }

15 }

16 Answers . Add (r e s u l t S e t) ;

17 }

Listing 4.10: Method to add a result set to a QuestionSysData object in the Excel appli-

cation

4.5 Save Data

The last step, that the application needs to perform, is to save the data to the file, as

shown in Figure 4.10. For this, the user first needs to decide where the data should

35

4 Structure

be saved. This is either a newly created file or an already existing file selected by the

user. If the user already selected a file to load data from, the application can offer this

file as the default location for the user, enabling a more efficient workflow. After this, the

program needs to store additional information of the questionnaire, such as the time

when the data was last updated. After this, the application needs to save the questions

and answers in a meaningful and efficient format, depending on the platform of the

application.

Figure 4.10: The steps of saving questionnaire result data

4.5.1 R

For the R implementation of this application, saving data is handled through the de-

fault data storage function save(). Although there are functions dedicated to storing

data.frames, these methods are only working with data frames of singular values. But

because it is possible to answer multiple distinguished answers to a single question, for

example to a multiple choice question, the final result data.frame is a data.frame

where every value is a list of different length on its own. The possibility of converting

every list of answers to a single answer before saving the data would arise a lot of

problems, like escaping any delimiter character in the actual results to allow for a definite

representation of the list as a single string as well as decoding of these strings when

reading the data. Instead, the default R object storage is used. Therefore, the method

storeData() (see Listing A.8), that is responsible for handling data, uses this save()

function to save the questionSysData, questionIdList to identify the questions if

the questionIds in the data.frame were replaced with the actual question text, the

lastUpdate timestamp as well as the questionnaireId, so that save files can be

matched to the respective questionnaires. In this method, each variable is stored in a

local variable instead of the normal storage location as an attribute of the questionSys

object, enabling it to directly address these attributes after loading the file.

36

4.5 Save Data

4.5.2 Excel

Saving data in the Excel implementation is realized through writing the data into an open

worksheet. After this, the user may work with this data as it fits his needs, and actually

saving this worksheet is left to the user trough the default Excel means. Writing the

questionnaire data to a worksheet is handled by the class DataSaveManager. This

class provides a static method InsertData() (see Listing A.14), that takes a cell in

an Excel worksheet and a QuestionSysData object as input and writes the content of

this newData object to the appropriate file.

The method starts by writing additional information to the file in line four. The method

WriteMetaInformation() adds a comment containing the questionnaireId to

the given cell, as well as the timestamp of the last update to the cell right next to it.

In line eleven, the QuestionText of each Question object in the Questions list is

written to its own cell to the right of the start position. In line twelve, the respective

QuestionId is written in the cell below each QuestionText. After this, the answers

need to be written to the worksheet. Because it is not possible to store multiple values

in a single cell in Excel, it is necessary to split results with multiple answers to a single

question into multiple lines. Each line belonging to the same ResultSet is marked

with the same AnswerId. For each Answer object in a ResultSet, line 23 stores the

number of answers of the Answer object with the most elements in its AnswerText list

into the variable maxLength. Line 26 writes each answer text into the column belonging

to the QuestionId of this Answer object, and if there are more than one answer, the

other elements of the AnswerText list are written below the first answer in the same

column. After all AnswerText elements are written to the worksheet, line 34 writes

the AnswerId into the first column of all rows that contain answers of this ResultSet,

namely the number stored in maxLength. After this, some formatting is executed, to

improve the readability of the imported data, such as auto adjusting the width of all

columns with questionnaire data in line 43, and creating a border around the questions

and the answers to distinguish them from each other and surrounding data.

37

5
Related Works

As digital data collection offers advantages to data collection compared to manual data

collection, there are already a number of tools dedicated to creating digital surveys.

Most existing tools, such as SurveyMonkey [13] or LimeSurvey [14] focus on creating

web surveys, but lack the advantage of mobile execution of the created questionnaires

and are reliant on web browsers to gather data. Exporting data to statistical tools in

SurveyMonkey enables the user to export the results to either a format optimized for

Microsoft Excel or a SAV file for SPSS [15]. Exporting data in LimeSurvey allows a

wider range of options, such as exporting data to a CSV file, an Excel file. Further there

are dedicated tools to export data to R, SPSS, Stata [16].

CheckMarket [17] and QuestionPro [18] are a frameworks that support the creation of

mobile data surveys, and support the export of collected data to SPSS, to Excel and to

a CSV file.

In contrast to the approach presented in this thesis, these export tools completely rely

on a server sided export of the data, resulting in a file that the corresponding software

needs to import. This concept provides the advantage of an easier extension of the

export process, as only the conversion to the new data format needs to created to add

an export functionality. On top of that, the process of exporting data is simplified by the

fact that the phase of specifying and creating a connection to the server is not necessary

in this format. On the downside, this server sided approach does not provide the full

range of possibilities that the client sided approach presented in this thesis provides,

such as updating existing data in a worksheet. These data exports can not adapt to

existing local data and it is necessary to export all data sets at once.

In this context, the QuestionSys project follows a rather unique concept to provide tools

39

5 Related Works

to import data into the statistical tool instead of exporting it through the server to a fixed

data format and enabling the user to download this file.

40

6
Summary

In this thesis, collecting questionnaire data through digital means was compared to

traditional data collection techniques. The QuestionSys project was introduced as a

solution to the costly creation and execution of digital questionnaires. The difficulties for

domain experts to import collected questionnaire result data from the central Question-

Sys server dedicated to the storage of questionnaire result data into a tool dedicated

to statistical analysis were discussed. To improve this situation, a generic concept to

import this data was introduced. Four distinct phases of this process were identified as

specifying the request, sending data requests to the server, converting the response and

storing the data. Each of these phases was described in detail, and a list of steps for

each phase that an implementation of this generic concept would need to perform was

given. Furthermore, the requirements needed to be fulfilled by an implementation of this

generic concept were described. Finally, an instance of this concept was implemented

in the statistical programming language R, as well as an plugin for the Microsoft Office

Excel program that fulfills these requirements. For each phase of this concept, the

implementation was described for both of these implementations, and differences to the

generic concept were pointed out.

6.1 Outlook

Because the QuestionSys project is still in development and bound to change as the

project is developed further, it is very likely that changes need to be made to the

application in the future. The concept of the server is likely to undergo a rework as the

development progresses. Because of this, the response format for requests as shown in

41

6 Summary

Section 4.4 is likely to change. Thus, the step of converting the response from the JSON

response needs to be adapted. Furthermore, it is planned to extend the functionality of

the application. First of all, the exported data by the server can be extended to support

further information, such as meta data that was collected when the user answered the

questionnaire, such as changed or corrected answers, or data collected by the mobile

device, such as through a pulse sensor. Furthermore, it is possible that not all answers

are answered by a user, and the current format does not include information whether not

answered questions were not answered because the answer did not appear to the user

because of answers to previous questions, or because of the users choice. Furthermore,

the question result does not include any information concerning the type of questions

or the possible answers to this question, meaning it is not possible to see from the

results alone if one existing answer was not picked at all. The current implementation

allows for the addition of new data sets and new data questions, as well as changing

the questionText while keeping the same questionId, but does not support the

removal of either result sets or even entire questions. In future versions of this application,

it is planned to support these operations, too. All these changes affect the phases of

data conversion and storage, which possibly leads to further adaptions in these phases.

Furthermore, it is planned to create more implementations of the generic concept

presented in this thesis, to cover the most widely used statistical tools. This possibly

includes the programming language Python and tools such as SPSS, SAS and Stata

[19]. Another feature that may be included is an uniform data save format making it

possible to load existing local data with any implementation of the generic concept

presented in this thesis. On top of that, a further very important change that needs to be

implemented in the future is the usage of the HTTPS protocol on top of the already used

HTTP protocol. Data security and encryption is a crucial aspect of data collection in

fields such as medicine and psychology, as these fields deal with sensitive information

[3]. The HTTPS protocol ensures that this information is encrypted and can’t be read by

someone who is not authorized to do so.

As the QuestionSys project is bound to change and evolve, and more and more features

are integrated into the application, it is possible that new steps need to be added to a

42

6.1 Outlook

phase, however the general structure of the four phases presented in this thesis will

likely stay the same.

43

Bibliography

[1] Szolnoki, G., Hoffmann, D.: Online, face-to-face and telephone sur-

veys—Comparing different sampling methods in wine consumer research. Wine

Economics and Policy 2 (2013) 57 – 66

[2] Boyer, K., Olson, J., Calantone, R., Jackson, E.: Print versus electronic sur-

veys: a comparison of two data collection methodologies. Journal of Operations

Management 20 (2002) 357 – 373

[3] Schobel, J., Schickler, M., Pryss, R., Reichert, M.: Process-Driven Data Collection

with Smart Mobile Devices. In: 10th International Conference on Web Information

Systems and Technologies (Revised Selected Papers). Number 226 in LNBIP.

Springer (2015) 347–362

[4] Vehovar, V., Lozar Manfreda, K.: Overview: Online Surveys. In Fielding, N., Lee,

R., Blank, G., eds.: The SAGE Handbook of Online Research Methods. Sage

reference. SAGE Publications (2016) 143–161

[5] Dillman, D.: Mail and Internet Surveys: The Tailored Design Method – 2007 Update

with New Internet, Visual, and Mixed-Mode Guide. Wiley (2011)

[6] Boyer, K., Olson, J., Jackson, E.: Electronic Surveys: Advantages and Disadvan-

tages Over Traditional Print Surveys. Decision Line 32 (2001) 4–7

[7] Schobel, J., Pryss, R., Schickler, M., Ruf-Leuschner, M., Elbert, T., Reichert,

M.: End-User Programming of Mobile Services: Empowering Domain Experts

to Implement Mobile Data Collection Applications. In: 5th IEEE International

Conference on Mobile Services (MS 2016), IEEE Computer Society Press (2016)

1–8

[8] Schobel, J., Schickler, M., Pryss, R., Maier, F., Reichert, M.: Towards Process-

Driven Mobile Data Collection Applications: Requirements, Challenges, Lessons

Learned. In: 10th Int’l Conference on Web Information Systems and Technologies

(WEBIST 2014), Special Session on Business Apps. (2014) 371–382

45

Bibliography

[9] Wickham, H., Hester, J., Chang, W.: devtools. https://devtools.r-lib.org/

(2018) [Online; accessed 26-December-2018].

[10] Chang, W.: R6: Encapsulated object-oriented programming for R. https://r6.

r-lib.org/ (2018) [Online; accessed 6-December-2018].

[11] Klabnik, S., Katz, Y., Gebhardt, D., Tyler, K., Resnick, E.: {jspon:api} A SPECIFICA-

TION FOR BUILDING APIS IN JSON. https://jsonapi.org/ (2018) [Online;

accessed 7-December-2018].

[12] Newtonsoft: Json.NET Popular high-performance JSON framework for .NET. (2018)

[Online; accessed 25-December-2018].

[13] SurveyMonkey: The World’s Most Popular Free Online Survey Tool. https:

//www.surveymonkey.com/ (2018) [Online; accessed 28-December-2018].

[14] LimeSurvey: Professional online surveys with LimeSurvey. https://www.

limesurvey.org/ (2018) [Online; accessed 28-December-2018].

[15] SurveyMonkey: Exporting Survey Results. https://help.surveymonkey.

com/articles/en_US/kb/Exports (2018) [Online; accessed 28-December-

2018].

[16] LimeSurvey: Exporting results. https://manual.limesurvey.org/

Exporting_results (2018) [Online; accessed 28-December-2018].

[17] CheckMarket: Create fully responsive mobile surveys. https://www.

checkmarket.com/mobile-surveys/ (2018) [Online; accessed 28-December-

2018].

[18] QuestionPro: Exports. https://www.questionpro.com/features/

reports/ (2018) [Online; accessed 28-December-2018].

[19] Muenchen, R.: The Popularity of Data Science Software. http://r4stats.com/

articles/popularity/ (2017) [Online; accessed 26-December-2018].

46

https://devtools.r-lib.org/
https://r6.r-lib.org/
https://r6.r-lib.org/
https://jsonapi.org/
https://www.surveymonkey.com/
https://www.surveymonkey.com/
https://www.limesurvey.org/
https://www.limesurvey.org/
https://help.surveymonkey.com/articles/en_US/kb/Exports
https://help.surveymonkey.com/articles/en_US/kb/Exports
https://manual.limesurvey.org/Exporting_results
https://manual.limesurvey.org/Exporting_results
https://www.checkmarket.com/mobile-surveys/
https://www.checkmarket.com/mobile-surveys/
https://www.questionpro.com/features/reports/
https://www.questionpro.com/features/reports/
http://r4stats.com/articles/popularity/
http://r4stats.com/articles/popularity/

A
Sources

A.1 R

This appendix contains important source code snippets from the R implementation.

1 setURL = f u n c t i o n (u r l , . . .) {

2 p r i v a t e $ s e r v e r U r l <− u r l

3 i n v i s i b l e (s e l f)

4 }

5

6 setAmount = f u n c t i o n (amount , a l l = FALSE, . . .) {

7 i f (a l l) {

8 pr ivate$amount <− NULL

9 } e lse {

10 pr ivate$amount <− amount

11 }

12 i n v i s i b l e (s e l f)

13 }

14

15 s e t I n p u t F i l e = f u n c t i o n (f i l e = f i l e . choose () , . . .) {

16 p r i v a t e $ i n p u t F i l e <− f i l e

17 i n v i s i b l e (s e l f)

18 }

Listing A.1: Input specification methods of the R application

1 . l o a d F i l e <− f u n c t i o n (f i l e , . . .) {

47

A Sources

2 i f (! i s . n u l l (f i l e)) {

3 t ryCatch ({

4 load (f i l e)

5 r e t u r n (l i s t (data , q ues t i on I dL i s t , lastUpdate , ques t ionna i re ID))

6 } , e r r o r = f u n c t i o n (e) {

7 p r i n t (" Not a v a l i d quest ionSys f i l e ")

8 r e t u r n (NULL)

9 })

10 }

11 }

Listing A.2: Loading existing data in the R application

1 . s ta r tConnect ion <− f u n c t i o n (u r l , au thent ica t ionToken = NULL, . . .) {

2 i f (i s . n u l l (au thent ica t ionToken)) {

3 HttpCl ient$new (u r l)

4 } e lse {

5 HttpCl ient$new (u r l , headers = l i s t (

6 A u t h o r i z a t i o n = authent ica t ionToken

7)) }

8 }

Listing A.3: Starting a url connection in the R application

1 . getResource <− f u n c t i o n (connect ion , path , ques t ionna i re ID = NULL,

2 vers ion = " v1 " , absolutePath = FALSE, amount = NULL, lastUpdate = NULL) {

3 i f (absolutePath) {

4 r e s u l t <− connect ion$get (. removeURL (path))

5 } e lse {

6 r e s u l t <− connect ion$get (

7 . generateRequest (vers ion , quest ionna i re ID , path , amount , las tUpdate))

8 }

9 r e t u r n (l i s t (fromJSON (resu l t$pa rse ("UTF−8")) ,

10 resul t$response_headers$ ‘ X−RateLimi t−Remaining ‘ ,

11 resul t$response_headers$ ‘ X−RateLimi t−Reset ‘))

12 }

48

A.1 R

Listing A.4: Requesting a resource in the R application

1 sendRequests = f u n c t i o n () {

2 connect ion <− . s ta r tConnec t ion (private$baseURL ,

3 vers ion = pr iva te$ jsonAp iVers ion , p r i va te$au tho r i za t i onToken)

4 # request quest ions

5 quest ionResu l t <− . getResource (connect ion , vers ion = pr iva te$ jsonAp iVers ion ,

6 path = " quest ions " , ques t ionna i re ID = p r i va te$ques t i onna i re ID) [[1]]

7

8 # Request f i r s t page

9 r e s u l t L i s t <− . getResource (connect ion , vers ion = pr iva te$ jsonAp iVers ion ,

10 path = " r e s u l t s " , ques t ionna i re ID = p r i va te$ques t i onna i re ID)

11 currentAnswerResul t <− r e s u l t L i s t [[1]]

12 reques tsLe f t <− r e s u l t L i s t [[2]]

13 reques tL im i tExp i res <− r e s u l t L i s t [[3]]

14 answerResults <− l i s t (currentAnswerResul t)

15 # Check i f there are more pages and request these too

16 i f (! i s . n u l l (cu r ren tAnswerResu l t$ l i nks$ las t) && i s . n u l l (pr ivate$amount)

17 && cur ren tAnswerResu l t$ l i nks$ las t != cu r ren tAnswerResu l t$ l i nks$se l f) {

18 whi le (TRUE) {

19 # check i f request l i m i t exp i red

20 i f (i s . n u l l (reques tsLe f t) | | reques tsLef t >0) {

21 r e s u l t L i s t <− . getResource (connect ion ,

22 path = cur ren tAnswerResu l t$ l inks$ " next " , absolutePath = TRUE)

23 currentAnswerResul t <− r e s u l t L i s t [[1]]

24 reques tsLe f t <− r e s u l t L i s t [[2]]

25 reques tL im i tExp i res <− r e s u l t L i s t [[3]]

26 answerResults <− c (answerResults , l i s t (currentAnswerResul t))

27 } e lse {

28 whi le (as . numeric (Sys . t ime ()) <= reques tL im i tExp i res) {

29 # wa i t a second

30 Sys . s leep (1)

31 }

32 # there should be at l e a s t one request now ^^

33 reques tsLe f t <− 1

34 }

49

A Sources

35 i f (cu r ren tAnswerResu l t$ l i nks$se l f == cu r ren tAnswerResu l t$ l i nks$ las t) {

36 break ;

37 }

38 }

39 }

40 pr i va te$ las tUpda te <− as . numeric (Sys . t ime ())

41 r e t u r n (l i s t (quest ionResul t , answerResults))

42 }

Listing A.5: Requesting question and result data in the R application

1 convertData = f u n c t i o n (quest ionResul tData ,

2 answerResultData , rep laceQuest ionIds = TRUE) {

3 # determine t o t a l number o f answer sets

4 totalResponses <− 0

5 self$answerData <− answerResultData

6 answer IdL is t <− l i s t ()

7 q u e s t i o n I d L i s t <− l i s t ()

8 q u e s t i o n L i s t <− l i s t ()

9 f o r (page i n 1 : leng th (answerResultData)) {

10 totalResponses <− totalResponses + leng th (answerResultData [[page]] $data)

11 f o r (i i n 1 : leng th (answerResultData [[page]] $data)) {

12 answer IdL is t <− c (answer IdL is t , answerResultData [[page]] $data [[i]] $ id)

13 }

14 }

15 t o ta lQues t i ons <− l eng th (quest ionResul tData$data)

16

17 # create tab le to match ids and names

18 ques t ion Ids <− new . env ()

19 f o r (i i n 1 : t o ta lQues t i ons) {

20 quest ionID <− quest ionResul tData$data [[i]] $ id

21 i f (! i s . n u l l (quest ionID)) { assign (quest ionID ,

22 value = quest ionResul tData$data [[i]] $a t t r i bu tes$ques t i onTex t ,

23 env i r = ques t ion Ids)

24 q u e s t i o n I d L i s t <− c (q ues t i on I dL i s t , quest ionID)

25 q u e s t i o n L i s t <− c (ques t i onL i s t ,

26 quest ionResul tData$data [[i]] $a t t r i bu tes$ques t i onTex t)

27 }

50

A.1 R

28 }

29

30 #Create new mat r i x f o r data

31 dataMat r i x <− mat r i x (rep (l i s t () , t o ta lQues t i ons ∗ totalResponses) ,

32 ncol = to ta lQues t ions , nrow = totalResponses)

33 dimnames (dataMat r i x) <− l i s t (answer IdL is t , q u e s t i o n I d L i s t)

34 f o r (page i n 1 : leng th (answerResultData)) {

35 f o r (dataSet i n 1 : leng th (answerResultData [[page]] $data)) {

36 currentDataSet <− answerResultData [[page]] $data [[dataSet]]

37 i f (! i s . n u l l (currentDataSet)) {

38 c u r r e n t I d <− cur ren tDataSet$ id

39 f o r (i i n 1 : leng th (cur ren tDataSet$a t t r ibu tes$answers)) {

40 currentAnswer <− cur ren tDataSet$a t t r ibu tes$answers [[i]]

41 i f (! i s . n u l l (currentAnswer)) {

42 dataMat r i x [[cu r ren t Id , currentAnswer$quest ionID]]

43 <− u n l i s t (currentAnswer$answerText)

44 }

45 }

46 }

47 }

48 }

49 # rename the col lums to the ac tua l quest ions

50 i f (rep laceQuest ionIds) {

51 dimnames (da taMat r i x) <− l i s t (answer IdL is t , q u e s t i o n L i s t)

52 }

53 se l f $ques t i ons <− q u e s t i o n L i s t

54 sel f$quest ionSysData <− data . frame (da taMat r i x)

55 p r i v a t e $ q u e s t i o n I d L i s t <− q u e s t i o n I d L i s t

56 pr i va te$ inse r tO ldDa ta ()

57 }

Listing A.6: Converting data in the R application

1 i nser tO ldData = f u n c t i o n () {

2 i f (! i s . n u l l (p r i va te$o ldData)) {

3 data <− sel f$quest ionSysData

4 oldData <− pr iva te$o ldData

5 q u e s t i o n I d L i s t <− p r i v a t e $ q u e s t i o n I d L i s t

51

A Sources

6 oldQuest ionIds <− p r i v a t e $ o l d Q u e s t i o n I d L i s t

7 oldAnswerIds <− row . names(oldData)

8 # A l l data sets from the o ld data

9 f o r (i i n 1 : leng th (oldAnswerIds)) {

10 currentAnswerId <− oldAnswerIds [[i]]

11 #check i f t h i s data set i s re l evan t

12 i f (! currentAnswerId %i n% row . names(data)) {

13 #add t h i s data set

14 #add a new row

15 data [currentAnswerId ,]<− rep (l i s t () , l eng th (q u e s t i o n I d L i s t))

16 #add a l l answers

17 f o r (j i n 1 : leng th (o ldQuest ionIds)) {

18 cur ren tQues t ion Id

19 <− q u e s t i o n I d L i s t [[q u e s t i o n I d L i s t ==o ldQuest ionIds [j]]]

20 data [currentAnswerId , cu r ren tQues t ion Id] <− oldData [i , j]

21 }

22 }

23 }

24 sel f$quest ionSysData <− data

25 }

26 }

Listing A.7: Merging old and new data in the R application

1 saveData = f u n c t i o n (f i l e = f i l e . choose () , . . .) {

2 i f (! i s . n u l l (f i l e)) {

3 ques t ionna i re ID <− p r i va te$ques t i onna i re ID

4 las tUpdate <− pr i va te$ las tUpda te

5 q u e s t i o n I d L i s t <− p r i v a t e $ q u e s t i o n I d L i s t

6 data <− sel f$quest ionSysData

7 save (quest ionna i re ID , lastUpdate , ques t i onL i s t , data , f i l e = f i l e)

8 }

9 }

Listing A.8: Saving data in the R application

52

A.2 Excel

A.2 Excel

This appendix contains important source code snippets from the Excel implementation.

1 p u b l i c s t a t i c vo id SetUp (Ur i baseAddress , S t r i n g author iza t ionToken)

2 {

3 c l i e n t = new H t t p C l i e n t () ;

4 c l i e n t . BaseAddress = baseAddress ;

5 c l i e n t . DefaultRequestHeaders . Accept . Clear () ;

6 c l i e n t . DefaultRequestHeaders . Accept . Add (

7 new MediaTypeWithQualityHeaderValue (" a p p l i c a t i o n / vnd . ap i+ json ")) ;

8 c l i e n t . DefaultRequestHeaders . A u t h o r i z a t i o n =

9 new Authent icat ionHeaderValue (au thor iza t ionToken) ;

10 }

Listing A.9: Configuring a connection in the Excel application

1 p u b l i c s t a t i c async Task<St r ing > RequestQuestions (

2 S t r i n g vers ion , S t r i n g ques t ionna i re ID)

3 {

4 HttpResponseMessage Response = awai t c l i e n t . GetAsync (" / "

5 + vers ion + " / ques t ionna i res / " + ques t ionna i re ID + " / quest ions ") ;

6 r e t u r n awai t Response . Content . ReadAsStringAsync () ;

7 }

Listing A.10: Requesting the question data of a questionnaire in the Excel application

1 p u b l i c s t a t i c async Task< L i s t <St r ing >> RequestAnswers (S t r i n g vers ion ,

2 S t r i n g quest ionna i re ID , S t r i n g amount , S t r i n g lastUpdate)

3 {

4 HttpResponseMessage Response ;

5 i f (amount != n u l l)

6 {

7 Response = awai t c l i e n t . GetAsync (" / " + vers ion + " / ques t ionna i res / "

8 + ques t ionna i re ID + " / r e s u l t s ?page [Size]= " + amount

53

A Sources

9 + (lastUpdate == n u l l ? " " : " , f i l t e r = " + lastUpdate)) ;

10 }

11 else

12 {

13 Response = awai t c l i e n t . GetAsync (" / " + vers ion + " / ques t ionna i res / "

14 + ques t ionna i re ID + " / r e s u l t s "

15 + (lastUpdate == n u l l ? " " : " ? f i l t e r = " + lastUpdate)) ;

16 }

17 s t r i n g Content = awai t Response . Content . ReadAsStringAsync () ;

18 i n t reques tsLe f t = −1;

19 long requestReset = 0 ;

20 IEnumerable < s t r i n g > values ;

21 i f (Response . Headers . TryGetValues ("X−RateLimi t−Remaining " , out values))

22 {

23 reques tsLe f t = In t32 . Parse (values . F i r s t ()) ;

24 }

25 i f (Response . Headers . TryGetValues ("X−RateLimi t−Reset " , out values))

26 {

27 requestReset = long . Parse (values . F i r s t ()) ;

28 }

29

30 L i s t < s t r i n g > Resul ts = new L i s t < s t r i n g > () { Content } ;

31 JObject Page = JObject . Parse (Content) ;

32 JToken lastPageToken = Page [" l i n k s "] [" l a s t "] ;

33 i f (lastPageToken == n u l l)

34 {

35 r e t u r n Resul ts ;

36 }

37 s t r i n g LastPageLink = lastPageToken . ToStr ing () ;

38

39 / / Check i f there i s more than one page of data

40 i f (amount == n u l l

41 && ! LastPageLink . Equals (Page [" l i n k s "] [" s e l f "] . ToStr ing ()))

42 {

43 whi le (t r ue)

44 {

45 i f (r eques tsLe f t > 0 | | reques tsLe f t == −1)

46 {

54

A.2 Excel

47 / / request the other pages

48 Response = awai t

49 c l i e n t . GetAsync (RemoveURL(Page [" l i n k s "] [" next "] . ToStr ing ())) ;

50

51 / / update rese t t imer

52 i f (Response . Headers . TryGetValues ("X−RateLimi t−Remaining " ,

53 out values))

54 {

55 reques tsLe f t = In t32 . Parse (values . F i r s t ()) ;

56 }

57 i f (Response . Headers . TryGetValues ("X−RateLimi t−Reset " , out values))

58 {

59 requestReset = long . Parse (values . F i r s t ()) ;

60 }

61

62 Content = awai t Response . Content . ReadAsStringAsync () ;

63 Resul ts . Add (Content) ;

64 Page = JObject . Parse (Content) ;

65

66 / / Breaking c o n d i t i o n

67 i f (LastPageLink . Equals (Page [" l i n k s "] [" s e l f "] . ToStr ing ()))

68 {

69 break ;

70 }

71 }

72 else

73 {

74 / / Wait u n t i l the request i s v a l i d again

75 whi le ((new DateTimeOffset (DateTime .Now) . ToUnixTimeMi l l iseconds ())

76 < requestReset) {

77 System . Threading . Thread . Sleep (1000) ;

78 }

79 reques tsLe f t = 1 ;

80 }

81 }

82 }

83 r e t u r n Resul ts ;

84 }

55

A Sources

Listing A.11: Requesting answer result data of a questionnaire in the Excel application

1 p u b l i c s t r i n g Quest ionna i re Id ;

2 p u b l i c L i s t <Question > Questions ;

3 p u b l i c L i s t <ResultSet > Answers ;

4 p u b l i c D ic t i ona ry < s t r i n g , i n t > QuestionNumbers { get ; }

5

6 p u b l i c QuestionSysData (s t r i n g questionResponse , L i s t < s t r i n g > AnswerResponse ,

7 s t r i n g id , QuestionSysData oldData)

8 {

9 Quest ionna i re Id = i d ;

10 Questions = new L i s t <Question > () ;

11 Answers = new L i s t <ResultSet > () ;

12 / / c rea te quest ions

13 L i s t <JToken> Quest ionTokenList = JObject . Parse

14 (questionResponse) [" data "] . Ch i ld ren () . ToL is t () ;

15 foreach (JToken Token i n Quest ionTokenList)

16 {

17 Questions . Add (new Question (Token)) ;

18 }

19

20 / / se t up answers

21 foreach (s t r i n g AnswerResponseString i n AnswerResponse)

22 {

23 L i s t <JToken> AnswerTokenList = JObject . Parse

24 (AnswerResponseString) [" data "] . Ch i ld ren () . ToL is t () ;

25 foreach (JToken Token i n AnswerTokenList)

26 {

27 Answers . Add (new Resul tSet (Token)) ;

28 }

29 }

30

31 / / Set up d i c t i o n a r y

32 QuestionNumbers = new Dic t i ona ry < s t r i n g , i n t > () ;

33 f o r (i n t i = 1 ; i <= Questions . Count ; i ++)

34 {

56

A.2 Excel

35 QuestionNumbers . Add (Questions [i − 1] . Id , i) ;

36 }

37

38 / / I n s e r t o ld data here

39 i f (oldData != n u l l && oldData . Quest ionna i re Id == Quest ionna i re Id)

40 {

41 L i s t < s t r i n g > answer IdL is t = getAnswer IdL is t () ;

42 foreach (Resul tSet r e s u l t i n oldData . Answers)

43 {

44 i f (! answer IdL is t . Contains (r e s u l t . Id))

45 {

46 Answers . Add (r e s u l t) ;

47 }

48 }

49 }

50 }

Listing A.12: A constructor of the QuestionSysData class to convert data in the Excel

application

1 p u b l i c QuestionSysData (Excel . Range S t a r t P o s i t i o n)

2 {

3 / / i n i t a l i z e l i s t s

4 Answers = new L i s t <ResultSet > () ;

5 Questions = new L i s t <Question > () ;

6 QuestionNumbers = new Dic t i ona ry < s t r i n g , i n t > () ;

7

8 Quest ionna i re Id = S t a r t P o s i t i o n . Comment . Text () . Subst r ing (1 8) ;

9 / / read quest ions

10 i n t quest ionCount = 1 ;

11 whi le (t r ue)

12 {

13 s t r i n g Cel lVa lue = S t a r t P o s i t i o n

14 . O f f se t [0 , quest ionCount] . Value ? . ToStr ing () ;

15 i f (n u l l == Cel lVa lue) break ;

16 s t r i n g C e l l I d = S t a r t P o s i t i o n . O f f se t [1 , quest ionCount] . Value ? . ToStr ing () ;

17 Questions . Add (new Question (Ce l l I d , Cel lVa lue)) ;

57

A Sources

18 QuestionNumbers . Add (Ce l l I d , quest ionCount) ;

19 quest ionCount ++;

20 }

21 / / read answers

22 i n t answerNumber = 2;

23 whi le (t r ue)

24 {

25 s t r i n g AnswerId = S t a r t P o s i t i o n . O f f se t [answerNumber , 0] . Value ? . ToStr ing () ;

26 i f (n u l l == AnswerId) break ;

27 Resul tSet CurrentResul tSet = new Resul tSet (AnswerId) ;

28 f o r (i n t i = 1 ; i < quest ionCount ; i ++)

29 {

30 s t r i n g AnswerText = S t a r t P o s i t i o n

31 . O f f se t [answerNumber , i] . Value ? . ToStr ing () ;

32 i f (AnswerText == n u l l) cont inue ;

33 CurrentResul tSet . Answers

34 . Add (new Answer (Questions [i − 1] . Id , AnswerText)) ;

35 }

36 AddResultSet (CurrentResul tSet , QuestionNumbers) ;

37 answerNumber++;

38 }

39 }

Listing A.13: A constructor of the QuestionSysData class from existing data in the Excel

application

1 p u b l i c s t a t i c vo id Inser tDa ta (Excel . Range S t a r t P o s i t i o n ,

2 QuestionSysData newData)

3 {

4 / / s t o r i n g meta i n fo rma t i on

5 Wri teMeta In format ion (S t a r t P o s i t i o n , newData . Ques t ionna i re Id) ;

6

7 / / conver t ingQuest ions

8 / / I npu t quest ions

9 S t a r t P o s i t i o n . Value = " AnswerID " ;

10 f o r (i n t i = 1 ; i <= newData . Questions . Count ; i ++)

11 {

58

A.2 Excel

12 S t a r t P o s i t i o n . O f f se t [0 , i] . Value = newData . Questions [i − 1] . Quest ionText ;

13 S t a r t P o s i t i o n . O f f se t [1 , i] . Value = newData . Questions [i − 1] . Id ;

14 }

15

16 i n t Cur rentYOf fset = 2 ;

17 / / I npu t answers

18 foreach (Resul tSet r e s u l t S e t i n newData . Answers)

19 {

20 i n t maxLength = 1;

21 / / w r i t e a l l answers

22 foreach (Answer answer i n r e s u l t S e t . Answers)

23 {

24 i f (answer . AnswerText . Count > maxLength) maxLength

25 = answer . AnswerText . Count ;

26 f o r (i n t answerNumber = 0; answerNumber

27 < answer . AnswerText . Count ; answerNumber++)

28 {

29 S t a r t P o s i t i o n . O f f se t [Cur rentYOf fset + answerNumber ,

30 newData . QuestionNumbers [answer . Quest ionId]] . Value

31 = answer . AnswerText [answerNumber] ;

32 }

33 }

34 / / w r i t e answer ids

35 whi le (maxLength > 0)

36 {

37 S t a r t P o s i t i o n . O f f se t [CurrentYOffset , 0] . Value = r e s u l t S e t . Id ;

38 maxLength−−;

39 CurrentYOf fset ++;

40 }

41 }

42

43 / / Formating s t u f f (op t iona l , looks f i n e r)

44 f o r (i n t i = 0 ; i <= newData . Questions . Count ; i ++)

45 {

46 S t a r t P o s i t i o n . O f f se t [0 , i] . Columns . Au toF i t () ;

47 }

48 / / Remove Borders i n s i d e the data

49 S t a r t P o s i t i o n . Ce l l s . Range [S t a r t P o s i t i o n , S t a r t P o s i t i o n . O f f se t

59

A Sources

50 [Cur rentYOf fset − 1 , newData . Questions . Count]] . Borders . L ineSty le

51 = Excel . X lL ineS ty le . x lL ineSty leNone ;

52 / / Border around every th ing

53 S t a r t P o s i t i o n . Ce l l s . Range [S t a r t P o s i t i o n , S t a r t P o s i t i o n . O f f se t

54 [Cur rentYOf fset − 1 , newData . Questions . Count]] . BorderAround2 () ;

55 / / Border around quest ions and ques t ion Ids

56 S t a r t P o s i t i o n . Ce l l s . Range [S t a r t P o s i t i o n , S t a r t P o s i t i o n . O f f se t

57 [1 , newData . Questions . Count]] . BorderAround2 () ;

58 }

Listing A.14: Saving data in the Excel application

60

List of Figures

4.1 The general phases of importing data from the QuestionSys server 16

4.2 A Screenshot of the QuestionSys Ribbon in the Excel plugin 17

4.3 The steps of specifying request parameters 19

4.4 A Screenshot of the import data dialog in the Excel plugin 21

4.5 A Screenshot of the update data dialog in the Excel plugin 21

4.6 The steps performed by the Excel application to validate user input 22

4.7 The steps performed by the Excel application to validate user input 23

4.8 The steps of sending a data request to the QuestionSys server 24

4.9 The steps of converting the response of the QuestionSys server 29

4.10 The steps of saving questionnaire result data 36

61

Name: Sean Duft Matriculation number: 905163

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other

sources or tools than the ones specified.

Ulm, .

Sean Duft

	Introduction
	Problem statement
	Objective
	Structure of the Thesis

	Background
	The QuestionSys Framework
	Components

	Analysis
	Requirements
	Functional Requirements
	Non Functional Requirements

	Implementation Specific Requirements
	R
	Excel

	Structure
	General Structure
	R
	Excel

	Request Specification
	R
	Excel

	Data Request
	R
	Excel

	Data Conversion
	R
	Excel

	Save Data
	R
	Excel

	Related Works
	Summary
	Outlook

	Sources
	R
	Excel

