
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Databases and Information
Systems Department

Conception and Realization of a Chatbot-
System to support Psychological and
Medical Procedures
Master’s thesis at Universität Ulm

Submitted by:
Jens Winkler
jens.winkler@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Rüdiger Pryss

Supervisor:
Robin Kraft

2019

Version from January 23, 2019

c© 2019 Jens Winkler

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε

Abstract

As a result of long term researches of Artificial Intelligent, the influence as well as the

amount of possible use-cases of chatbots is growing constantly. As to health care,

chatbots can be used to simplify the interaction between experts and patients. For

example, chatbots can help people who are affected by depression, as the barrier to chat

with an application is less high than meeting a real person. While time flexibility can be a

benefit for patients, the response to frequently asked questions relieves experts so they

can focus on important issues. Consequently, the usage of chatbots in psychological

and medical sectors can be a step to improve the health care system.

The objective of this master’s thesis is to create a system concept involving a conver-

sational agent, a mobile application and a back-end application to built solutions for

the psychological and medical sectors. As all possible use-cases can not be clearly

restricted, the concept is designed to be adjustable. Referring to health care, the sys-

tems needs to be able to react to critical situations like medical emergencies. However,

handling life-threatening cases exceeds the capability of the system and always needs

human assistance. Therefore, the concept also includes human participants such as

experts. To test the approach, a mobile application was developed that includes a

simple conversation using the AI assistant IBM Watson Assistant. In addition, a generic

framework was developed to handle multiple third-party chatbots. Furthermore, the

mobile application reacts to critical situations, such as the detection of suicidal thoughts

or if the user enters an input that is unknown for the system. Moreover, the knowledge

base of the chatbot can be extended using a conversation formatted process.

iii

Acknowledgment

I would like to thank everyone who supported me during this master’s thesis.

Very special thanks to Dr. Rüdiger Pryss and Robin Kraft for the support and the

assistance during my master’s thesis.

I would also like to thank Eileen Bendig for providing me with a psychological interview

that is used as the content of the knowledge base of the chatbot.

Furthermore, I thank my proofreaders for their help to improve the writing and wording of

this master’s thesis.

v

Contents

1 Introduction 1

1.1 Purpose of this Thesis . 3

1.2 Structure of this Thesis . 3

2 Fundamentals 5

2.1 Definition of Chatbot . 5

2.2 Rule-Based vs. Artificial Intelligence . 6

2.3 The history of Chatbots . 7

2.4 IBM Watson . 10

2.5 IBM Watson Assistant . 12

3 Related Work 19

3.1 Woebot . 21

3.2 Babylon . 23

3.3 Discussion . 25

4 Requirements 27

4.1 Functional Requirements of the Mobile Application 27

4.2 Non-Functional Requirements of the Mobile Application 30

4.3 Functional Requirements of the Back-end Application 30

4.4 Non-Functional Requirements of the Back-end Application 31

4.5 User Requirements . 32

5 Concept and Architecture 33

5.1 Overall System . 33

5.2 Mobile Application . 38

5.3 Back-End Application . 58

6 Implementation Aspects 65

6.1 Conversation SDK . 65

6.2 TaskQueue . 68

vii

Contents

6.3 ConversationCase . 72

7 Future Prospect 77

7.1 Universal Chatbot . 77

7.2 Make it smarter . 78

8 Conclusion 83

A Sources 95

viii

1
Introduction

The influence and the spreading of chatbots in the society grows constantly. The size of

the worldwide chatbot market in 2016 was said to be worth 190.8 million U.S. dollars. In

2025, the value of this market is assessed to 1250 million U.S. dollars [1]. This indicates

an increase of about 600 percent. The expansion of this sector can be a solution of the

insufficient quality of health care in certain countries. According to Ipsos, 45 percent of

adults worldwide rated the quality of the health care in their country as good. 37 percent

said it was neither good nor poor and the remaining 23 percent rated the health care

they had access to as poor. While Great Britain scores well with 73 percent, Germany

reaches 56 percent and Poland only 14 percent [2].

Possible reasons for the dissatisfaction can be the long duration of getting a general

practitioner (GP) or a hospital appointment. Also the personell shortage in todays’

hospitals can be a possible cause for the bad ratings. Individuals of the United Kingdom

(UK) rated these two aspects with 52 percent and consequently as the highest reason of

their dissatisfaction with the National Health Service (NHS). Furthermore, 22 percent

of the study participants were not happy with the quality of provided NHS services

[3]. Besides, german inhabitants criticize that doctors do not have enough time for

their patients or that they are unhappy with the opening hours of medical surgeries.

Furthermore, they felt that they are not taken seriously by medical specialists [4].

The usage of chatbots could reduce the mentioned discontent. As machines do not

need a break like human beings, they could provide a 24 hour service for everyone

who has access to a smartphone or to a computer. Patients therefore do not need to

conform with the opening hours of medical facilities. Furthermore, chatbots are able

to reply instantly and avoid that patients need to wait for hours until they can meet a

1

1 Introduction

medical specialist. The instant response of a chatbot is also expected by 55 percent of

customers of the United States [5]. Due to the fact that the majority of our society has

access to a smartphone, virtual assistants can also increase the accessibility of medical

or psychological support. Inhabitants of small towns do not need to cross long distances

to visit a human expert. Instead they could simply chat with a virtual assistant. Another

benefit of using chatbots in health care is the scalability of chatbots as they can consult

multiple patients at the same time and can consequently reduce personnel costs.

Although it is technologically possible to create chatbots, the community still needs

to accept it. Especially in the psychological and medical sectors, users need to trust

chatbots to handle critical cases. In 2017 according to Pega, the worldwide customer

acceptance of the usage of chatbots in health care is 27 percent. Though that rating

does not seems to be high, the acceptance of chatbots in health care is valued as the

second highest. Only online retail services are higher rated by the respondents [6].

Figure 1.1: Acceptance of chatbots worldwide in 2017 (Own representation based on
[6])

2

1.1 Purpose of this Thesis

The available acceptance of chatbots and the current state of technology build the

foundation for the conceptualization and the realization of a chatbot that is especially

designed for health care services. Hence, the purpose of this master’s thesis is described

in the following section.

1.1 Purpose of this Thesis

The continuous availability, instant responses and increased quality of conversations

through the cooperation of multiple specialists can be a beneficial impact of the usage of

chatbots in health care. However, these assumptions describe the advantages from a

patients’ perspective. Another advantage from the medical or psychological specialists’

point of view can be the reduction of redundant questions that are asked by patients

over and over again. Consequently, professionals spend a lot of time on answering

redundant questions. Chatbots can reduce the amount of redundant answers directed at

the specialist.

The mentioned benefits and the hype about IBM Watson create the basic idea of a system

that can be used in health care. Examples could be the support of depressive people

or making possible diagnosis depending on the users’ symptoms. That system has to

be adaptable and expandable and should contain the following system components: a

mobile application, a back-end and a knowledge base. The mobile application should be

responsible for the conversation between a patient and the system and is implemented

by the usage of IBM Watson services. The back-end and the knowledge base can be

used to manage the required data. However, the whole system is not designed with the

objective of replacing specialists. Instead it should support professionals and patients.

1.2 Structure of this Thesis

The structure of this thesis is as follows: To improve the readers’ understanding about

chatbots, the second chapter defines the term chatbot and explains its history. Further-

more, it illustrates the reason why services of IBM Watson are used during this master’s

3

1 Introduction

thesis and the work-flow as well as the structure of IBM Watson Assistant. Chapter 3

discusses two applications that represent virtual assistants in the medical or psychologi-

cal sectors. These apps are used to create functional and non-functional requirements

for the overall system that are defined in chapter 4. Depending on the requirements, the

concept and the architecture of the system components were designed and partially

implemented. This is demonstrated in chapter 5. Chapter 6 describes important imple-

mentation aspects of the mobile application to improve the readers’ understanding of it.

Due to time constraints it was not possible to implement the back-end and the knowledge

base nor to use further services that can improve the chatbots’ interaction with the user.

However, the theoretical approach of possible improvements are discussed in Chapter 7.

The results of this master’s thesis are concluded in Chapter 8.

4

2
Fundamentals

This chapter explains the fundamentals, i.e. the definition and the history of chatbots. In

addition, IBM Watson and IBM Watson Assistant are described due to their main usage

as a chatbot service during this master’s thesis.

2.1 Definition of Chatbot

A chatbot is defined as a computer program which is able to process textual or aural

natural-language input from a user and to generate meaningful output. This output will

be created through the use of Rule-based Systems or Artificial Intelligence (AI) [7]. The

difference is shortly explained in Section. 2.2

To resolve a more accurate result of chatbots they can be combined with search engines

or thesauri [7]. As an independent program it can be plugged into multiple messaging

platforms, such as Facebook Messenger, Slack or Skype and replace repeated pro-

cesses [8]. Usually, textual conversation chatbots are combined with Graphical User

Interfaces (GUI). They can be represented by animated avatars or can be displayed as a

simple chat on a website [7]. However, because of the envolvement of voice technology,

companies like Google, Apple or Amazon developed chatbots with aural input which do

not need any GUIs. Hidden in a physical device, they are able to understand verbal input

from the user and speak the answer in a predefined language. Combined with further

functionalities, users can switch on or switch off the lights or play music just by talking to

the chatbots [8].

5

2 Fundamentals

2.2 Rule-Based vs. Artificial Intelligence

Rule-based Systems use rules as the representation of knowledge. That means instead

of using static knowledge they use a set of rules that describe what the systems have to

do. This kind of systems pertains to the simplest form of AI as it can be created as a

set of assertions and a set of rules that define how to act on the assertion set [9]. The

following example is shown to improve the readers understanding about the mentioned

term: Rule.

1 <category>

2 <pattern>How are you?</pattern>

3 <template>I’m fine.</template>

4 </category>

Listing 2.1: Example of a category written in the Artificial Intelligence Markup Language

The category that is shown in Listing 2.1 is a rule for matching an input and converting it

into an output. The input is represented by the pattern and the output is represented

by the template. The example is written in the Artificial Intelligence Markup Language

(AIML). AIML was developed by the Alicebot free software community during 1995 and

2000 and is a derivative of Extensible Markup Language (XML). This language should

enable people to add knowledge into chatbots based on the A.L.I.C.E free software

technology [10]. The chatbot A.L.I.C.E is described in Section 2.3.

In contrast to rule-based systems, AI chatbots are using methods that refer to artificial

intelligence such as neural networks. Neural networks applied to natural language

processing (NPL) has to transform each word into a numerical vector. Each word that

is represented by a vector can be learned by the neural network. The approach of

learning algorithms differentiates the concepts of rule-based and AI systems. That

means, instead of using predefined rules, neural networks that are trained with millions

of parameters can calculate the response to an input by using matrix multiplications and

non-linear functions [11].

6

2.3 The history of Chatbots

2.3 The history of Chatbots

The state of the art that is described in Section 2.1 above, is a result of years of research,

which is shown in Figure 2.1.

Figure 2.1: History of Chatbots [8]

In 1966, before the first personal computer was established, Joseph Weizenbaum

created the program ELIZA at the Massachusetts Institute of Technology (MIT). He

developed the first-ever chatbot, which was build to simulate a psychatrist [8]. According

to Joseph Weizenbaum the program analyzed input sentences based on decomposition

rules which were triggered by key words appearing in the input text. The answers were

generated by rules, which were related to the decomposition rules [12].

7

2 Fundamentals

After the development of ELIZA, Kenneth Colby developed a new chatbot, called Parry.

The psychatrist created a chatbot, which simulated a patient who suffered from paranoid

schizophrenia [8]. Parrys’ architecture was similar to its precursor ELIZA. However, it

contained a state of mind as well as the knowledge about the conversation. These two

aspects allow the program to generate responses which are not only influenced by the

input, but also by Parrys’ desires and beliefs. The developer collected records of the

conversations between psychiatrists, patients and Parry and presented them to another

group of psychiatrists. Afterwards he asked his colleagues if they could find out if the

answers came from the program or the patient but they could not [13].

About 20 years later in 1995 another well known chatbot was developed by Richard

Wallace. It was called Artificial Linguistic Internet Computer Entity or simply A.L.I.C.E. It

was still based on pattern matching, like ELIZA, but differs in that it tries to reflect more

human behaviour. The basic idea of this program was to talk as long as possible, so the

users would not realize that they were talking to a machine [13]. A.L.I.C.E was awarded

the Loebner Prize as one of the strongest chatbots in history [8].

The Loebner Prize was founded by Hugh Loebner and the Cambridge Centre for

Behavioural studies in 1991 and is one of the oldest Turing Test contest in the world

[14]. In 1950, the British mathematician Alan Turing investigated the question whether a

machine is able to think. This question was the foundation of the Turing Test. To evaluate

this issue, he designed a method to investigate if a machine can demonstrate human

intelligence. In order to test his hyptohesis, one participant had to communicate with two

other participants via a computer terminal. One participant was a human, the other one

was a machine. After the conversation ended, the participant had to identify who was a

human being and who was a machine, based on the quality of the dialog. In addition,

Hugh Loebner set the rule in place, that four judges had to communicate with a program

for 25 minutes. As soon as more than 30% of the jury members considered the machine

as being human, the test was passed [15]. After 27 years, the results of the competition

in 2018 shows that machines are not still able to act completely like a human being.

The machines received ratings between 23% and 33%. The rating demonstrated how

human-like the machines acted [14].

8

2.3 The history of Chatbots

In 2001, the company ActiveBuddy developed the chatbot SmarterChild. Because of the

usage of MSN Messenger and AOL Instant Messenger, whose user numbers had at

the time risen to 30 million, the program was extremly common. The difference of the

chatbot, compared to its precursor, was the provided information. It was not only built to

amuse the user, but rather to offer information about sports scores, movie quotes etc.

[8].

SmarterChild is the precursor of Siri. The Apple product Siri is a personal assistant

which is able to understand aural input and offers useful information or supports the user

in daily life [8]. For example, it allows the user to get the current weather forecast, play

music, or to translate text [16].

The continuous advances of scientific knowledge reduces technological limitations and

increases the interest in chatbots. Besides Apple, other corporations such as Google,

Amazon, Microsoft or Facebook are using chatbots as well [17]. Based on the grown

interest in the subject, the usage of chatbots has increased extremely in the last few

years. This can be shown by the following figure.

Figure 2.2: Number of chatbots in Facebook Messenger between June 2016 and Jan-
uary 2018 (Own representation based on [18])

According to Khari Johnson, the messaging application Facebook Messenger contained

about 200000 chatbots in January 2018 [18]. As a dominating player in messaging

services, Facebook invested enormously in communication bots. One important project

9

2 Fundamentals

for Facebook is M. The virtual assistant is not only an automatic tool but is also backed

up by humans. Hence, whenever it does not know the answer to a user input, it receives

assistance by a human [17].

Besides the mentioned companies, IBM is also a big player in reference to chatbots.

The corporation and the hype about IBM Watson will be described in the next section,

as it is used as the main conversation service during this master’s thesis.

2.4 IBM Watson

In February 2011, the big hype about IBM Watson started with its win in the television

game show Jeopardy! against the two biggest all-time champions. The game includes

three rounds with different categories. Each category has five answer, which are sorted

by difficulty and their amount of money, starting from 100$ until 500$. Each of the three

contestants, including the returning champion, needed to answer a choosen statement

in question form. The returning champion will start with the statement. After he had

choosen a statement, the fastest participant in pressing the buzzer afterwards was

allowed to present a question. If the given question was correct, the amount of the

answer will be added to his account. However, if the given question was wrong, the

amount will be substracted from his account [19]. As it is shown in Figure 2.3, the

team of IBM Research accepted the challenge, to compete against Ken Jennings and

Brad Rutter, "the two most successful players in the quiz show’s history" [20], with IBM

Watson.

IBM Watson is defined as a computer running software called DeepQA [21]. This stands

for "a software architecture for deep content analysis and evidence-based reasoning that

embodies that philosophy" [22]. The system has a power of 2880 processor cores and

runs on a cluster of 90 servers. The reason to build such a system was, besides winning

the competition, to create a new generation of technology which is capable of finding

answers in a huge amount of unstructured data. According to the principal investigator

for the DeepQA project David Ferrucci, the software Watson is however neither desgined

to model a human brain nor work like one. Rather, it should be a new technology which

10

2.4 IBM Watson

is more effective in understanding and interacting in natural language than common

technologies [21].

Figure 2.3: IBM Watson against Ken Jennings and Brad Rutter [23]

To prepare the system for the game show, the team fed it with millions of information.

It contained documents, encyclopedias, dictionaries, novels, taxonomies and religious

texts [24]. The whole learning process took years [21]. As a result of its ability to analyze

the input and give the correct answer faster than its rivals, IBM Watson was able to

compete in the game show successfully.

The whole process that makes Watson able to understand the input, spoken in a natural

language, and giving a meaningful answer is just simplified above. Actually, more than

one hundred algorithms analyze the input at the same time and in different ways. All of

these algorithms find possible and plausible answers for the question. For each answer

the system finds different evidence which can refute or support the potential answer.

Another set of hundreds of algorithms score the degree to which the found evidence

approves the answer. The system replies with the answer which has the highest ranking.

For Jeopardy!, IBM Watson was trained to buzz only if the highest rated rank is high

enough. This strategy made it possible to avoid that Watson loses money by telling the

wrong answer [21].

11

2 Fundamentals

As well as winning the game show and showing people how powerful AI based systems

can be, IBM has further goals. IBM Watson can be applied to different areas such as

healthcare, shopping or travelling. According to IBM, Watson could be established as

an online tool which is able to diagnose patients and help medical professionals. For

example, the system can help a doctor to establish a final diagnose by providing him

with different diagnoses depening on a set of symptoms or the medical history [24].

This statement was essential for using IBM Watson Assistant as a conversation service

during this thesis, which is described in the following section.

2.5 IBM Watson Assistant

IBM Watson Assistant is a single service of a big collection of services, provided by IBM.

It allows the user to create a chatbot for specific purposes in a simple way. According to

IBM, an assistant is a cognitive and customizable bot for business needs [25]. The use

of other services can help to make a chatbot more intelligent. These services and their

possible usages are discussed in Chapter 7.

IBMs conversation service can be integrated into custom applications, as it is shown in

Figure 2.4.

Figure 2.4: System architecture of a custom application using IBM Watsons Assistant
[26]

12

2.5 IBM Watson Assistant

The figure above shows that users can interact with a custom application via a predefined

or new designed GUI. The application itself contains the logic. It is connected with a

workspace of the conversation service or other Watson services [26].

Since the 9th of November 2018, the term workspace has changed to Skill. A skill can

be defined as a container, which holds the training data and the structure of the dialog

and allows the assistant to understand the natural language input and responses to it in

a useful way [27].

To be more precise, each skill contains three different types of components, also called

artifacts, which are described in the following sections.

2.5.1 Intent

An Intent can be compared with the purpose of the users’ input [28]. For example, the

user wants to know the weather forecast, which would be the Intent. In order to do so,

he might ask "What’s it like outside?" or "How’s the weather?". Different questions but

asked for the same reason, are defined as Examples. They cluster the possible user

inputs, which refer to the same topic. To make a chatbot more precise, it is relevant

to define Intents as accurately as possible. An Intent which is called "WEATHER" and

which contains Examples such as "How’s the weather going to be tomorrow?" and "Is it

a beautiful day for a walk?" make it impossible to respond in a meaningful way. Although

both questions refer to the same topic, they must be handled separately. To distinguish

between these questions, the developer can add multiple Intents to one single Skill.

2.5.2 Entity

Entities can be very helpful to improve the chatbot further. An Entity represents a term

which is relevant to an Intent [28]. A chatbot which should suggest local restaurants

to the user could be created by feeding the knowledge base with a lot of examples.

However, the data would be extremely scaled up because each possible case must be

covered with an example. This is demonstrated in the following:

13

2 Fundamentals

Possible Examples for Italian food:

• "I’d like to eat some pizza."

• "Tell me, where can I order Italian food."

• "I’d really love it, if I could eat pasta tonight!"

Possible Examples for Asian food:

• "I’d like to eat some Sushi."

• "Tell me, where can i order fried chicken with rice."

• "I’d really love it, if I could eat Chow Mein tonight!"

As demonstrated in the sample above, the Examples remain the same, but the context

changes. Determining the right context is necessary for a meaningful response. The

usage of Entities can be a solution for this issue as they are combined with Intents.

An Entity contains one or multiple Entity Values, which represent synonyms or patterns.

Using the following Entities with synonyms instead of creating a huge set of examples

could solve the issue above:

Entity Entity Value Synonyms

@Asia Dishes "Sushi", "Chow Mein", "Khao Man Gai Thai Chicken"

@Asia Chicken "fried chicken", "pullets", "crispy chicken"

@Italian Dishes "Pizza", "Pasta"

@Italian GeneralTerms "italian food", "Italian"

Table 2.1: Possible Entities to reduce the amount of Examples

Patterns can be used to detect e.g. e-mail addresses. After defining Intents and Entities,

they can be applied to a dialog, which is described in the following section.

14

2.5 IBM Watson Assistant

2.5.3 Dialog

IBM Watson Assistant offers the opportunity to create Intents, Entities and a completely

customized dialog via a graphical user interface.

Figure 2.5: Demo-Dialog created with IBM Watson Assistant

A dialog can be designed as a tree structure, as it is shown in Figure 2.5. Each dialog

node has a set of properties. The first property is the condition, that tells the system how

it should be evaluated. In the example above, the dialog node with the title "Food" will be

activated if the system recognizes an input that matches with one of the examples of the

Intent "#food". The prefix "#" indicates the word "food" as an Intent. Furthermore, IBM

Watson Assistant allows the developer to handle different recognition in one node by

defining multiple answers for multiple Entities. An example is shown in Figure 2.5.

Starting from the beginning, the first dialog node will give the predefined answer "Hello.

How can I help you?" whenever the user puts in a phrase which matches with an Example

of the Intent "Greetings". Now, asking for a restaurant the next child node is trying to

recognize any match with the given input. However, this can only happen if the dialog

has a context. A context maintains state information about a conversation. This kind of

data can be passed between an application and the Watson Assistant service. Without

maintaining the state information, the conversation would start from the beginning each

15

2 Fundamentals

time [29]. The conversation in Figure 2.6 has a context, that means it can go forward

after the greetings. The sample shows, that the Intent "food" is recognized for both

conversations. However, graphic (A) in figure 2.6 shows how the chatbot reacts after

asking for Sushi. The word "Sushi" is highlighted because it is recognized as a synonym

for the Entity Value "Asian dishes". In addition, in graphic (B) the Entity Value "Italian

dishes" is recognized. According to that, the predefined response changed as well.

(A) System recgonizes @Asian (B) System recgonizes @Italian

Figure 2.6: Comparison of different dialog instances

The sample above can also demonstrate that IBM Watson Assistant is able to allow

deviations between the defined Examples and the user input. The Intent "food" contains

the Examples "I’d like to eat" and "I’m hungry. I’d like to have" which departs from the

original input in Figure 2.6. However, if the user input can not be matched with any

condition in the current dialog node, the next node is going to be evaluated. In this case,

the next node represents an Anything Else case. This case is available by default, so

the developer does not need to create it first. The Intent "anything_else" is triggered if

no other condition is recognized. Figure 2.5 shows a dialog node with the title "Anything

Else" which represents a fallback. If the user input is completely unknown, this node is

evaluated. After a reply, which can be predefined as well, the node will reference to the

16

2.5 IBM Watson Assistant

dialog node above and waits for a new user input. This behavior is possible, because

IBM Watson Assistant allows the developer to control, how the dialog node should act

after its execution. After a DialogNode has been evaluated, three different predefined

options are presented.

• Wait for the user input

• Skip user input

• Jump to

Besides a gradual procedure, this allows the developer to create loops for keeping up

the conversation or skip parts of the dialog if they are not necessary. The described

components of IBM Watson Assistant allow the developer to create a chatbot service

without coding. As written above, it is used as the conversation service in this master’s

thesis.

As already mentioned, other companies besides IBM provides solutions for the conver-

sation between machines and humans as well. The skills of the services depend on

the content and structure of its knowledge base. That means that chatbots could assist

users in the travel industry as well as in the food industry. As this master’s thesis refers

to the psychological and medical sectors, the following chapter demonstrates the usage

of medical or psychological assistants.

17

3
Related Work

Based on long term research and the continuous advancement of chatbots, the amount

of different use-cases of chatbots is growing constantly. This refers to health care

as well. For example, the developed chatbot Smart Wireless Interactive Healthcare

System (SWTCHes) can be used to counteract obesity and overweight as these diseases

present the fifth leading risk for global deaths. A user can enter his goal weight as well

as his current weight and the system creates a feasible plan. Furthermore, during a

conversation with the chatbot the user can receive information about diets and exercise

plans [30]. Besides the mentioned use-case, chatbots can also be used to help people

with occupational stress. Therefore, conversational services can be used to learn an

indivudial’s stressor profile, to offer personalized peer support and to help people with

their individual stress [31]. Another approach of using chatbots in health care can be

to help people quit smoking. Members of the City University of Hong Kong showed

that the presence of conversational agents increased the participant engagement and

and enhanced them to quit smoking. Therefore the chatbot sent automatic reminders

or engaged in conversations. Users were able to share experienced flavorable effects

among each other and the chatbot also sent valuable health information related to

smoking to the users [32]. Besides diseases and bad habits, chatbots could also be

a solution for loneliness. As chatting with people is a basic requirement especially

for elderly people, a conversational service was developed in Taiwan that simulates a

conversation partner [33]. The following Figure 3.1 shows a dialogue between elder

women an the conversational agent that is represented as a human head.

In contrast to the use-cases above, the chatbot that is developed during this master’s

thesis is represented through a mobile application. Therefore, the two mobile applications

19

3 Related Work

Figure 3.1: Conversation between elder woman and a conversation agent [33]

Woebot and Babylon that represent conversation agents in the psychological or medical

sector are tested more accurately.

During discussions about this master’s thesis, Woebot was mentioned multiple times.

Hence, Woebot was investigated to get an impression of how chatbots relating to the

psychological sector work. As this thesis obtains to the medical sector as well, another

mobile application was needed to get an impression how chatbots can handle medical

issues. A web search led to the mobile application Babylon Health as it belongs to "The

Top 12 Health Chatbots" according to The Medical Futurist [34].

In general, the mentioned chatbots are designed to improve the mental health of the

user or to provide trial and health information to him. Both applications are illustrated in

the following sections. The last section discusses the similarities as well as the different

features of each application. The result of the investigation is used for the requirements

of the overall system.

20

3.1 Woebot

3.1 Woebot

Woebot! is a chatbot that is supposed to help people with their mental health by creating

a friendly and informative conversation [35]. Therefore it asks users about their feelings

and what is currently going on in their daily lives. The chatbot also sends videos or other

tools to the user depending on the patients’ mental state [36].

The application is the result of a combination of psychological expertise, sense of humor

and natural language processing. To test the benefit of the chatbot, the procuders

conducted a study at Stanford University [36]. Therefore 70 individuals aged between

18 and 28 years were recruited. Each participant received a self-help content derived

from Cognitive behavioral therapy (CBT) principles. The CBT principles were designed

either in a conversational format, that means as the conversational agent Woebot, or

as the ebook "Depression in College Students". While the control group occupied

themselves with the ebook, that contained frequently asked questions about depression

for two weeks, the participants of the experimental group communicated with Woebot.

The objective was to assess the acceptability, the efficiency and the feasibility of a

conversational agent that delivers a self-help program for college students who have

symptoms of anxiety and depression [37]. The result of this study was that the use

of Woebot led to a significant reduction of anxiety and depression compared to the

information-only control group [35].

The mobile application Woebot was used for several days during this master’s thesis

to get a personal impression about it. As a result of that, certain characteristics were

detected and are discussed more accurately in Section 3.3. However, to demonstrate

Woebot and improve the readers’ understanding of it, a small part of a conversation

with the chatbot is displayed in the following Figure 3.2. The whole exchange can be

described as a mix between a guided and a free conversation. Depending on the entered

question, the mobile application provides predefined answers. This is demonstrated

in graphic (A) of Figure 3.2. Furthermore, it gives the user the opportunity to enter

customized answers.

21

3 Related Work

(A) Predefined answers (B) Custom answer

Figure 3.2: Conversation with Woebot with different types of answers

To describe the scenario in image (B) a bit further, the chatbot asked the user what he is

currently doing. The answer "Just relaxing" led to the video that is displayed at the top of

graphic (B). So this demonstrates one of multiple videos that can be sent to the users to

brighten them up.

Besides Woebot, further applications that represent a virtual doctor or a psychotherapist

exist. Another example is demonstrated in the following section.

22

3.2 Babylon

3.2 Babylon

Babylon Health is a mobile application that provides health and triage information

depending on the patients symptoms [38]. A patient needs to enter a symptom and

must pass a guided conversation. During this conversation, the system tries to get more

precise information about the users’ state of health. After the procedure is finished, the

application lists possible causes to the entered symptoms.

To get a personal impression as well as the similarities and the differences to Woebot,

the application was tested for several days during this master’s thesis. The test was

conducted as follows: Before the application can provide health information, the patient

needs to enter a symptom. To test the system, the symptoms "headache", "cough" and

"feeling mournful" were chosen.

The following Figure 3.3 displays the beginning of a conversation by entering the phrase

"I have a headache". The answers "Myself", "OK", "Yes" are predefined as it is shown

in Figure 3.3. An answer can be chosen by selecting and confirming it. A progress

bar at the top of the view displays the amount of the open questions that can still be

asked by the system. Furthermore, the mobile application provides a functionality to take

back and adapt an answer as well as to rate a conversation. This feature is discussed

more precisely in the following section as it is necessary for the system that was created

during this master’s thesis.

After a conversation starts, the system explains the user that it does not provide a

medical diagnose neither it replaces the visit of a doctor. However, it allows a patient to

make a medical appointment. Therefore, the user can choose the date and time of the

appointment and can decide whether it should be a video or a phone call. To complete

the booking process, the patient needs to describe his symptoms.

Another feature that is provided by the app is the Healtcheck. The user can get a

health report or practical insights to stay healthy by answering questions about his or her

lifestyle and family history [39].

23

3 Related Work

(A) Start of a conversation about

headache using Babylon Health

(B) Isolating the symptoms with Babylon

Health

Figure 3.3: Conversation with Babylon Health about the symptom headache

According to the Babylon Health itself, the app is not made for emergency use and

mental health issues. However, to test how it handles the detection of suicidal thoughts,

a conversation was started with "I feel pretty sad". The conversation ended up with the

last speech bubble that is shown in Figure 3.4 graphic (B). The system advises the user

to call 999 or look for help at Samaritans and explains that this situation is beyond its

capability.

24

3.3 Discussion

(A) Babylon Health notes the user about
its limitation

(B) The end of a conversation containing
depressive symptoms

Figure 3.4: Conversation with Babylon Health about depression

Although this application does not handle medical emergencies directly, it demonstrates

that it is necessary to catch exceptions and provide help to the patient. This aspect is

discussed besides other relevant features in the following section.

3.3 Discussion

Both illustrated systems provide a conversation to help users with their mental health or

to inform patients about their physical condition. As one relates to mental health and

the other one to physical health, differences between both applications exist. Whereas

25

3 Related Work

Woebot tries to stay in a continuous dialog with the user, Babylon Health represents

a symptom checker that can be used to receive health information depending on the

users’ symptoms. However, both conversations are formatted as a, at least partially

guided conversation. That means that answers are not completely but mostly predefined.

Besides the similar structures of the dialogue, emergency cases are handled similarly,

too. Both apps provide information to the patient about institutes that can help the user

in the recognized emergency. As a result of that, the user still needs to become active

by e.g. calling a specialist. Significant distinctions can be recognized as well and refer

to the usability of the apps. As already mentioned, Babylon Health provides multiple

features such as rating a conversation or a single system response as well as to revoke

an answer. This functionality could not be found in Woebot.

The mentioned aspects are used to define requirements of the overall system. As the

system should cover the medical and the psychological sector, the concept has to be

generic. That means that the system should be able to handle different use-cases.

However, it should be kept in mind that the system can only be useful to the user if it

contains a large amount of knowledge. Without that, the system would not be able to

reply meaningfully.

26

4
Requirements

The following chapter describes the system requirements of the mobile application and

the back-end application. In addition, the requirements of all involved user-roles are

defined as well.

The first section describes the functional requirements of the mobile application. After-

wards, the non-functional requirements of the mobile application are defined. Although

the back-end application is not implemented during this master’s thesis, the requirements

are defined as they are necessary to create a theoretical concept of the knowledge base

and the back-end application. This is described in Section 4.3. Furthermore, human

experts are involved in the system and need to act in critical cases. Therefore, it is

necessary to define requirements for their action as well. This is described in the last

Section 4.5.

4.1 Functional Requirements of the Mobile Application

The user roles Expert and User have to be handled separately as their usage of the

mobile application is different. Therefore, the requirements need to be split as well. The

first section describes the general requirements which are the same for both roles. The

sections 4.1.2 and 4.1.3 describe the separated functional requirements.

4.1.1 General Functional Requirements of the Mobile Application

FR_01 - Registration: The application must provide the functionality to allow the users

or experts to create an account. Therefore the following credentials are required:

27

4 Requirements

• Gender

• E-Mail

• First name

• Last name

• Password

FR_02 - log-in: The application must provide a functionality to allow the users or experts

to log-in. The user should be only able to log-in after creating an account.

FR_03 - log-out: The application must provide a functionality to allow the users or

experts to log-out. After a log-out, the application must provide a functionality to let the

user sign in again.

FR_04 - Differ different roles: The application needs to differentiate between the two

roles USER and EXPERT. This includes different views and system interactions. The

named roles are explained more detailed in chapter 5.

FR_05 - Multilingualism: The application must support multilingualism. This require-

ment includes the language of the mobile application and the output of the chatbot.

FR_06 - Adapt wrong system output: The user input can be classified incorrectly by

the underlying chatbot system like IBM Watson Assistant. To handle this issue, the user

needs to be able to mark wrong output as unclassified.

FR_07 - Rating the system output: The contextual precision and the error rate de-

pends on the content, structure and the scope of the knowledge base of a chatbot service.

To counteract a big error rate, the mobile application needs to provide a functionality to

rate any system output. If a system output has an average assessment below e.g. 70%

it is sent to an expert, who can adjust the predefined answer. This requirement could not

be implemented completely because of time conditions.

4.1.2 Functional Requirements of the Mobile Application for the User

FR_08 - Textual interaction with the system: The system must provide a view to allow

communication between the user and the system. It must provide the functionality that

28

4.1 Functional Requirements of the Mobile Application

allows the user to write and send a question to the system. The system needs to display

the answers to the user as well.

FR_09 - Send Push-Notifications: The application must be able to send push notifi-

cations to the experts. Notifications can be sent whenever a special case occurs. A

special case can be an escalation which represents a critical case such as the detection

of suicidal thoughts, a medical emergency or if the system needs human assistance

because it does not understand the users’ input.

FR_10 - Multiple topics: The application must be able to provide multiple topics to the

user. After selecting one, the user can ask specific questions about the topic to the

system.

FR_11 - Handle unknown user input: The system must be able to detect and handle

an unknown user input. An input is defined as unknown if the chatbots algorithm can not

find a predefined answer to the question.

FR_12 - Detect escalations: The system must be able to detect escalation cases. An

escalation case can occur if e.g. the user talks about suicide or depression.

4.1.3 Functional Requirements of the Mobile Application for the Expert

FR_13 - Registration: Experts are responsible for the content of the knowledge base.

Consequently, unlike the users’ registration process this registration is only completely

finished if the provider approved the experts application. The whole procedure is

described more precisely in Section 5.2.

FR_14 - Receive Push-Notifications: The application needs to receive notifications,

sent by the users phone after a special case has been detected. A special case can be

the detection of suicidal thoughts or if the user input is unknown to the system. After the

expert received and opened a notification, the expert can see the chat history between

the user and the system.

FR_15 - Handle escalations: The escalation triggers a notification which is sent to the

expert. Afterwards, a new communication channel between the users’ mobile application

29

4 Requirements

and the experts’ mobile application should be opened. Then the expert can communicate

with the user directly.

FR_16 - Extend knowledge base: Whenever the user receives and opens a notification,

referring to an unknown input case (FR_11), the application asks the expert about the

necessary data to extend the knowledge base. After the experts run through this process

successfully, the chatbot is able to answer the previously unknown user input.

4.2 Non-Functional Requirements of the Mobile Application

NFR_01 - Stability: Being an efficient application the mobile application needs to be

as stable as possible. Especially in relation to escalation cases, push notification must

be sent successfully to an expert. If it is not possible, e.g. if the device does not have

an internet connection, the notification must be sent as soon as the issue has been

fixed. Crashes during a chat must be intercepted, too. Due to time conditions, this

non-functional requirement could not be implemented completely.

NFR_02 - Usability: It should be easy for the user or the expert to handle the mobile

application. The system responses should be predefined in a user-friendly way to simplify

the conversation between a human and the chatbot.

NFR_03 - Generic: Services like the IBM Watson Assistant are still evolving. The

application should be able to adapt to this enhancements. Therefore it is necessary to

keep the system concept and architecture generic.

4.3 Functional Requirements of the Back-end Application

The back-end application is only necessary for the expert. Therefore, the requirements

do not need to be separated for different user roles.

FR_17 - Provider-Notification: The expert can only adjust or extend the knowledge of

the system if he is successfully proven by a provider. Consequently, providers need to

30

4.4 Non-Functional Requirements of the Back-end Application

be informed by the system after an expert started a registration process. This procedure

is explained more precisely in Section 5.2.

FR_18 - log-in: The application must provide a functionality to allow experts to sign in

via a graphical user interface. The expert should only be able to log-in after becoming a

part of the expert-team.

FR_19 - log-out: The application must provide a functionality to allow the experts to

log-out. After a log-out, the application must provide a functionality so the user can sign

in again.

FR_20 - Get data: The application needs to provide a functionality to request data from

the back-end. This data relates to the knowledge of the chatbot, user credentials and

chat histories. Furthermore it is necessary to handle the situations that are described in

FR_11 and FR_12.

FR_21 - Update data: The application needs to provide a functionality to update data

on the server. The definition of data is equal to the definition in FR_20.

FR_22 - Delete data: The application needs to provide a functionality to delete data

from the server. The definition of data is equal to the definition in FR_20.

FR_23 - Access Rights: The application must be able to assign access rights per user

and per topic.

4.4 Non-Functional Requirements of the Back-end

Application

NFR_05 - Graphical user interface: The back-end application should provide a graphi-

cal user interface to allow the expert to get, update or delete data of the knowledge base

in a simple way.

NFR_06 - Usability: The graphical user interface that is described in NFR_05 has to

be user-friendly so the expert can easily add, update and delete data to the knowledge

bases.

31

4 Requirements

NFR_07 - Modularity: The back-end application needs to be implemented through

the use of smaller single modules. This approach leads to more flexibility and less

redundancy.

NFR_08 - Stability: The back-end application needs to guarantee that data can not be

lost even if system errors occurs.

4.5 User Requirements

UR_01 - Expert qualifications: The expert needs to establish specific qualifications.

An expert can only be responsible for a specific topic if he has special competences.

These qualifications need to be proved by a provider. The single user roles are explained

more precisely in the following Chapter 5.

UR_01 - Expert behavior during escalation: The expert needs to react in a predefined

time limit after he received a Push-Notification. This time limit must be definable per

notification as different situations have different priorities.

All described requirements build the foundation of the concepts and system architectures,

which are described in the following chapter.

32

5
Concept and Architecture

In critical situations like the detection of cancer, patients can ask questions repeatedly to

a specialist to reassure themselves. However, the time of the experts is usually limited

and valuable. Answering redundant questions leads to less time for important issues.

The usage of chatbots could be a possible solution for this matter.

This chapter introduces a system with the goal to assist professionals as well as patients

in medical or psychological sectors. As a conclusion, instead of visiting a doctor or a

psychologist a patient can talk to a virtual assistant.

This chapter exemplifies the concepts and architectures of such a system. The first

section describes an overview of the complete system and the interaction between

the participants and system components, which is shown in Figure 5.1. The single

components of the mobile application and the server application are explained more

accurately in Section 5.2 and 5.3.

5.1 Overall System

As mentioned in Chapter 2, the usage of chatbots can be useful in completely different

sectors. The following concept refers to the medical or psychological area and must deal

with critical aspects like medical emergencies.

To handle such cases, the system needs different types of participants. Besides common

users, it is necessary that experts and providers are included. A user is defined as a

human being, who is using the application without any expert knowledge. As an example,

the user Steve can be a person, who is affected by depression. He feels weak and

33

5 Concept and Architecture

sluggish but he does not know that he is sick. Before he goes to a psychologist, he wants

to ask the digital assistant and starts the mobile application. After the mobile application

appears on his smartphone, it asks him to create an account. Afterwards, the app shows

him multiple topics. Choosing a topic forwards Steve to a chatbot which has knowledge

about a specific subject. He selects "Depression" and is immediately greeted by the

chatbot. The chatbot asks how it can help Steve and he writes down his symptoms. The

system responses with a possible diagnose and keeps talking for a while.

A few days later, Steve communicates again with the chatbot because he recently

became really sad. He tells the chatbot that he thinks about his own suicide. The system

recognizes this input as an escalation case and sends a notification to an expert. In this

context, an expert is defined as a human being who has a high level expertise regarding

to a specific topic. As soon as he receives the notification, the system creates a separate

communication channel between the expert and Steve. Now, the expert can talk directly

to Steve and can try to help him with his problems. The advice was helpful and after the

conversation with a human expert, Steve knows how to handle his issues in the future.

The described scenario relates to one possible case where patients can be supported

by the system. Besides the example above, another possible use-case of this system in

health care can be the support of overweight people in daily life. Therefore, the chatbot

can provide information about workout techniques, recipes of healthy food to the user or

encourage him by sending daily messages. The experts can be represented by nutritional

advisers or fitness trainers who can extend the knowledge base constantly. Another

approach can be the usage of the system as a symptom checker of physical complaints.

Patients can tell their self identified symptoms and receive possible causes. Experts can

be represented through medical specialists who need to extend the knowledge base of

the system or to talk directly to the patients. During a direct conversation, the previous

received information during a symptom check can be told to the medical specialist.

Furthermore, experts need to be available to react immediately to medical emergencies

like a possible diagnose of cancer. However, regarding all possible use-cases real

emergencies can not be dealt with this system itself. As soon as critical cases are

identified by the system, human assistance is always needed.

34

5.1 Overall System

The mentioned use-cases present a subset of all possible use-cases of this system. As

the specific usage of the system can vary, it is not possible to define all uses of this

system. Furthermore, a concrete use-case depends on the content of the knowledge

base, the participants and the special cases. That means that the knowledge base

needs to contain specific knowledge about the range of the application, special cases

must be defined precisely, i.e. the condition that defines if the case has occurred and the

action that is triggered afterwards. Both aspects depend on the participants: the expert

and the provider. As already mentioned, the expert has a high level expertise. However,

the qualification of the expert still needs to be verified before he is able to give advice

to a user. In the ideal case above that describes Steves interaction with the chatbot, it

is assumed that the expert can handle Steves’ problems competently without passing

any verification process of his qualification before. To avoid that, the concept needs

another human participant: the provider. A provider is the person who provides a topic

to the users and is consequently responsible for it. Furthermore the provider has the

functionality to validate the competences of an expert. After an expert registers himself

in the mobile application, the system notifies a provider over the back-end application.

Now, he can verify the experts qualifications.

Professional skills are not only necessary for emergency cases. Based on the assump-

tion that the knowledge base of each chatbot is not encompassing, experts need to be

able to feed the system with new knowledge. This can be done in two different ways

which are described as follows:

• Adding knowledge via mobile application:

Similar to an escalation case, the expert is notified by the system as soon as

the chatbot can not handle the user input or rather does not know the answer.

Afterwards, the professional needs to pass an automatic procedure to add the

answer to the currently existing knowledge base. To add the knowledge to an Al

based conversation service like IBM Watson Assistant or Google Dialogflow, it

is necessary to obtain access to further information other than its question and

its answer. In addition, the amount of the relevant data may vary depending

on the used service. Therefore it is necessary to keep the procedure generic.

Furthermore, the mentioned process can be executed in different ways. For

35

5 Concept and Architecture

example, it can be presented as a chat, or as a form. Different presentations are

also discussed in Chapter 7 and serve as a motivation for further scientific works.

• Adding knowledge via back-end application: Besides the fact that the knowl-

edge base should be enlarged whenever the system needs human assistance,

the chatbot should be able to be extended manually. Via a server application, a

professional can add, update or remove data whenever he or she has the neces-

sary access rights. As described in FR_23, the access rights can be assigned

per expert and per topic. Besides adapting data, the systems needs to provide

features to import or export knowledge. The precise functioning is described in

Section 5.3.

As Figure 5.1 shows, the data which can be edited via the server application is

stored in a database. However, the database does not only store the knowledge

base but also the user and expert credentials, the possible special cases which can

occur, the provided topics and the chat histories per conversation. A chat history

is used to offer the experts all relevant data. Due to time constraints, the back-end

application could not be developed during this master’s thesis and needs to get

verified in further scientific work. As a temporary solution for the implementation of

the back-end application, Google Firestore was used to store the necessary data.

As described above, different cases can be handled in different ways. Therefore, it is

required to develop a generic solution to handle multiple cases. Section 5.2 describes

this in a more accurate way. In general, the concept differs between two types of cases.

A default case and special cases. The second type is already explained above. The first

case always occurs, when the system is able to respond properly. In other words, after

the user inserts a sentence or question, this input is sent to a conversation service. As

shown in Figure 5.1 the system could be connected with services of different third-party

providers. As a result of that, the strength of all services can be used. This is also

explained more precisely in Chapter 7.

After a registered third-party conversation service, such as IBM Watson Assistant,

receives the users’ input, it replies with a predefined response. However, based on the

used algorithms and the size of the knowledge base, the reply can be wrong although it

36

5.1 Overall System

User

Provider

Expert

handle special case ask

Watson Assistant Dialogflow

ask

adapt data

Insert / update data

add data

reply

notifies
reply

rate answer

register /
login

register / login user

register /
login

verify expert

Expert

adapt data

Figure 5.1: Overview of the system process

37

5 Concept and Architecture

is categorized correctly by the conversation service. Therefore the user can rate and

mark answers as incorrect. The rating feature should be used to improve the accuracy

of the responses. Whenever the rating of a system response is below a given limit, it is

sent to the experts to get customized. The limit itself can be modified for each topic. The

server application is a necessary requirement for this feature. Therefore it could not be

implemented completely during this master’s thesis.

Another misbehavior can occur, if the conversation service falsely categorizes an un-

known input as a known question. For example, IBM Watson Assistant returns the

answer with the best ranking even if the user input should not be known by the system.

Therefore, it can happen that a predefined answer will be returned although the user

enters a question without any contextual sense. To counteract this behavior, the user

can mark a system response as false. Afterwards the input is unknown for the system

and sends a notification to an expert.

To conclude this section it can be said that the concept of the overall system represents

a generic approach to support patients and experts in health care but needs to be

configured and adjusted first. Without the knowledge about a specific topic, the definition

of possible cases that can occur and the support by experts, it can not be able to support

the patients. To improve the readers understanding about the single components of the

overall system which is represented in Figure 5.1, the following two sections describe

the concepts and the architectures of the mobile application and back-end application

more precisely.

5.2 Mobile Application

According to Section 5.1, the usage of the mobile application should help people to get a

psychological or medical advice. Therefore, each participant needs to create an account

first. Section 5.2.1 describes that the registration process of experts and common users

needs to be handled in different ways. Furthermore, the same section explains the

concept and the graphical sequence of the mobile application.

38

5.2 Mobile Application

After giving an overview of the application, Section 5.2.2 illustrates how the interaction

between a chatbot service and a user is designed. In addition, it describes the necessary

functionality of this process.

The last section clarifies the behavior of the mobile application whenever the chatbot

needs human assistance. To support the chatbot optimally, the concept involves both

user roles as a human backup.

5.2.1 Concept

The functionality of the mobile application can be summarized by the three following

headings:

• User Management

• Topic Management

• Textual interaction with the virtual assistant

The User Management includes the user log-in and the user registration for the two roles:

expert and user. However, the registration process needs to be handled differently for

the two participant types. To simplify the usability of the app, the graphical user interface

of the structure of the log-in and the registration layout is designed equally. Using the

same layout for different usages avoids the development of a second application for the

expert but provides the ability to handle the registration separately. The following Figure

5.2 shows the implemented GUI for the user log-in.

To log-in, it is relevant to enter the necessary credentials, E-Mail and Password. Both

need to be specified during the registration process. Once a user or expert is signed

in, he is logged in automatically after the app starts until the user signs out manually.

Keeping in mind the registration process between the user roles differs, it becomes

clear that a division is needed. Whereas a common user does not need any specific

qualifications to use the application, it is required that an expert has the necessary

qualification in his or her area. Without being a professional in a particular and relevant

subject, he or she should neither be able to consult the user nor to extend the knowledge

39

5 Concept and Architecture

base of the chatbot. As a countermeasure, the following concept shown in Figure

5.3, illustrates a procedure to avoid this issue. Due to time constraints the process of

registering a person as an expert had only been developed theoretically and should be

proven in further scientific works.

(A) log-in as user (B) log-in as expert

Figure 5.2: Comparison of log-in screens

As mentioned above, the way how a person should register himself or herself should be

consistent. However, as soon as an expert finished the registration process on his or her

smartphone, the application notifies the server application about the situation. In addition,

the mobile application needs to forward information about the subjects which are covered

by the expert. For example, the applicant defines the topics which he can support with.

After the server received all necessary data, the responsible providers will be notified.

One or multiple providers can start validating the experts qualifications. This can be

done by requesting and checking the application documents or by doing an interview.

Afterwards, the provider needs to inform the applicant about the application status. The

40

5.2 Mobile Application

Figure 5.3: Register process of an expert

candidate becomes an expert as soon as he receives an assurance. Professionals

can be motivated to apply themselves as an expert by using the collected data. As

Section 5.2.3 describes, human assistance can be necessary for e.g. adapting system

answers or talking to users directly. Each user has the ability to rate the response of his

conversation partner. This rating data can be prepared and used as a reference for the

experts.

After the registration process is successfully finished, the user and the expert are signed

in and have access to a topic list. As long as a provider has not approved the experts

qualification, the expert can only see an empty list. Afterwards, a list is shown to the

subjects corresponding their official skills.

Figure 5.4 displays the different views. The comparison highlights the similarity between

the two graphical layouts. However, the functionality is a different one. Showing a topic

to an expert with an open request means that the system needs a human backup. This

happens e.g. if a user sends a question to the chatbot that can not be handled or an

escalation case has occurred. The number of the open cases are displayed next to the

red or green highlighted question mark. The whole process is explained more precisely

in Section 5.2.3.

41

5 Concept and Architecture

(A) Topic-List-View for user (B) Topic-List-View for expert

Figure 5.4: Comparison of Topic-List-View screens

In contrast to the experts’ view, if a common user chooses a topic he is forwarded to the

virtual assistant. The following Figure 5.5 shows a scenario based on the assumption

that a user who is possibly affected by depression clicks on the first list item. After the

chat view is shown, a greeting is automatically sent to the chatbot. In this case, the

conversation service was configured to respond with a greeting as well. After the first

step, the user can talk to the chatbot by entering textual input and clicking the send

button. For the communication with a conversation service, the Android based framework

Conversation SDK was developed during this master’s thesis. This framework is more

accurately explained in Section 5.2.2.

42

5.2 Mobile Application

(A) First part of a demo chat. (B) Second part of a demo chat.

Figure 5.5: Chat history of a demo chat.

5.2.2 Conversation SDK

A simple conversation, as it is shown in Figure 5.5, can be realized by the following

steps:

1. Configure a conversation service

2. Authorize for the service

3. Send requests and handle the responses

Before a conversation service can be configured, a specific service must be chosen. In

terms of the overall system it can be done by the provider as he or she is responsible for

the provided topic. However, the conversation service which is used during this master’s

thesis corresponds to IBM Watson Assistant. Section 2.5 explains the configuration of

this service.

43

5 Concept and Architecture

Unlike the first step, the authorization needs to be handled by the application itself. As

shown in Figure 5.6 the Conversation SDK contains a configuration class which can be

used to pass the credentials to a conversation service. However, the structure of the

access data can vary per service. To solve this issue the configuration is designed as

a JSON Array. In this way, the configuration can be adapted as needed. The following

code snippet demonstrates a configuration structure, which is used for IBM Watson

Assistant.

1 [

2 {"username": "my_username"},

3 {"password": "my_password"},

4 {"versionDate": "yyyy-MM-dd"},

5 {"api_endpoint": "https://my.endpoint.com"},

6 {"workspace_id": "my_workspace_id"}

7]

Listing 5.1: JSON Example of the IBM Watson Assistant configuration

The username and password are generated per service. This means that the usage of

multiple services would lead to multiple usernames and passwords. As the configuration

is JSON formatted, an adjustment like adding another username with a different identifier

can be performed simply. The versionDate, api_endpoint and the workspace_id are

defined per Skill as it cannot be ruled out that different Skills can be accessed. The

same procedure as mentioned above can be used to extend the configuration about e.g.

multiple workspace_ids.

After a configuration is defined for a given conversation service, the mobile application

can send requests via an API and handle the received responses. This can be performed

by using the Conversation SDK.

The Android based framework is designed to unify various third-party chatbot services

allowing a certain flexibility. Furthermore, this approach enables to make usage of the

specific strength of each service. The fact that multiple third-party Software Development

Kits (SDK) can differ from each other must be handled by the framework.

44

5.2 Mobile Application

Figure 5.6: System architecture of Conversation SDK

The general approach is that each third-party service can be wrapped by a Conversa-

tionModule. To make use of a module, it can be registered in the ConversationManager.

This class can be used to perform the specific functionality of the registered modules.

As many third-party conversation services provide REST APIs, the scope of the Conver-

sationManager can be reduced to the followings functions:

• CREATE - Create a new data element in the knowledge base of the service.

• GET - Get a single or multiple data elements from the service.

• UPDATE - Update one or multiple data elements.

• DELETE - Remove one or multiple data elements.

• ASK - Send an input to the service and receive a response.

45

5 Concept and Architecture

The reason of creating the ConversationManager was to keep the single API calls simple.

As an example, if a user input should be sent to a conversation service, it is sufficient to

call the function, shown in Listing 5.2.

Executing this function means to execute a task with the given data for each registered

ConversationModule. The type of the operation is defined by passing the constant

TYPE_OPERATION_ASK. The usage of types per functionality keeps the framework

generic. That means, each module can contain specific methods but can be handled in

the same way by calling execute.

1 /**

2 * Sends the given {@link ConversationData} to all

3 * registered {@link ConversationModule}s and

4 * waits for its result.

5 *

6 * @param data The specific data must contain all

7 * necessary information for the execution.

8 * @param callback returns the response.

9 */

10 public void ask(ConversationData data, TaskCallback callback) {

11 for(ConversationModule module :

12 this.registeredModules.values()){

13 module.execute(Constants.TYPE_OPERATION_ASK, data

14 ,callback);

15 }

16 }

Listing 5.2: Function ask of the ConversationManager

However, a ConversationModule is only able to execute an operation, if it contains

tasks. Due to time constraints, a module can only execute AsyncTasks. An AsyncTask

represents a functionality which can be executed asynchronously. Synchronous tasks

46

5.2 Mobile Application

are currently not supported using the base methods listed above. To make a task work,

it must be implemented first. This approach allows to expand the Conversation SDK by

adding and implementing new tasks and modules and is explained more accurately in

Section 6.1.

To register a task to a ConversationModule it must be assigned with a ConversationType.

This class represents a combination of an OPERATION_TYPE and a DATA_TYPE. An

OPERATION_TYPE represents a unique identifier which refers to a specific operation.

As shown in Listing 5.2, using the type TYPE_OPERATION_ASK means to send a

request to a conversation service. The DATA_TYPE reflects the type of a data element

which is supported by the conversation service. Referring to IBM Watson Assistant, a

possible data type can be an Intent, Example or Entity. The ConversationType combines

both mentioned types allowing software developers to create and to adapt a module in the

way they like. The table below demonstrates possible examples of ConversationTypes

and what they can be used for.

Operation

Data
INTENT EXAMPLE ENTITY

CREATE Create Intent Create Example Create Entity

GET Get Intent Get Example Get Entity

DELETE Delete Intent Delete Example Delete Entity

Table 5.1: ConversationTypes as a result of the combination of DATA_TYPEs &OPERA-

TION_TYPEs

As already mentioned, the structure of third-party conversation services can vary. That

means, to unify multiple third-party libraries the framework needs to allow the definition

of data elements and operations per service. This issue can be solved by using the

ConversationType.

47

5 Concept and Architecture

After a module contains tasks, they can be executed. As Listing 5.3 shows, the method

expects besides an operationType, a ConversationData and a TaskCallback. The passed

data element contains all necessary information which is used by the registered task. Be-

sides, it contains the DATA_TYPE which is combined with the given OPERATION_TYPE

to find the registered AsyncTask.

1 public void execute(String operationType, ConversationData data,

2 TaskCallback callback){

3 ConversationType ct = new ConversationType(operationType,

4 data.getType());

5 AsyncTask task = this.registeredTasks.get(conversationType);

6 task.execute(this, data, callback);

7 }

Listing 5.3: Function execute of the ConversationModule

As soon as the task with the ConversationType is found, the ConversationModule

executes the task. Whenever an operation was executed successfully, the TaskCallback

which is included in the Conversation SDK can be used to receive a calculated response.

The responses of different tasks in different ConversationModules are returned by the

same TaskCallback. To catch errors, the developer can make use of the ErrorListener.

The presented framework is demonstrated with precise examples in Chapter 6. In

addition to the mentioned functionality, the Conversation SDK also contains features to

run multiple tasks sequentially. This is explained in the following section.

5.2.3 Human Backup

Chatbots still need human assistance due to the fact that they are not omniscient. In fact,

the quality of a chatbots’ response depends on the used algorithms and the knowledge

base. Like human beings, the system can only understand a question and reply to it,

if it has already heard it before. Otherwise the chatbot needs to learn, i.e. it needs to

implement new knowledge.

48

5.2 Mobile Application

As the application is divided into two different user roles, it seems reasonable to use both

groups to support the chatbot whenever it needs assistance. This support is explained

in the following sections.

Human Backup by Users

Figure 5.7: Speech Bubble of the chatbot

Although it is not required that a user needs specific qualifications, he can still help to

improve the system. Therefore, each speech bubble displayed to the user provides a

functionality to rate system responses from 0 to 100 percent. To rate a reply, the user

can slide over the Rating Bar which is shown in Figure 5.7. If none of the stars are

highlighted it means that the user totally disagrees with the response. If all of the stars

are highlighted, the user agrees to this answer to 100 percent. However, the rating view

needs to be touched once, to rate the response at all. This should avoid to distort the

assessment by ignoring the rating system. As soon as an output is rated, the average

rate is updated. Whenever this value gets below a predefined limit, the output is sent to

the experts. Afterwards, they can adjust the response and update the knowledge base.

This procedure can be done in multiple cycles.

Due to time constraint, this feature could not be implemented completely during this

master’s thesis. The reason for that is the need of the back-end application. Therefore,

the theoretical aspect should to be proven in further scientific work.

49

5 Concept and Architecture

Besides the rating system, the user can correct the system whenever it gives a response

that does not reflect the input. As a side effect of a probability calculation, a chatbot

can recognize an input that is not yet defined in the knowledge base. To counteract this

behavior, the user can mark the response as unknown. Afterwards the system would

reply with a fallback answer if the same question appears again.

Human Backup by Experts

In contrast to common users, experts are responsible for the knowledge of the chatbot.

The experts need to teach the chatbot everything about a specific topic, otherwise the

system would not be able to give useful responses. Additionally, experts are also needed

to handle critical cases. Such cases can occur if the system recognizes a medical

emergency or the user talks about suicide. As it is not possible to cover all possible

situations, the system provides functions to add, remove or modify cases. To be more

precise, the usage of inheritance allows the developer to create custom cases which can

be registered to the ConversationManager. This is shown in Figure 5.8.

The class ConversationCaseManager is responsible to manage all existing cases. This

includes storing the predefined ConversationCases temporarily in a list and getting

them back to check if a special case occurred. Before the verification of a case is

explained, it is relevant to understand the meaning of a ConversationCase. The class

ConversationCase represents a random situation that can occur. This includes a special

case such as the detection of suicidal thoughts, as well as the input of a normal question

from the user. Each possible situation must be predefined and can be loaded from the

server. This will be explained more precisely in Section 6.3. However, because each

case can vary, they need to be handled separately. That means that a normal exchange

between the user and the chatbot is dealt in a different way than a medical emergency.

As shown in Figure 5.8 the system, which was developed during this master’s thesis can

manage the following cases: DefaultCase, SuicideEscalation and UnknownInputCase.

A DefaultCase presents the situation where the system is able to understand the users’

input and answers properly. The case SuicideEscalation occurs if suicidal thoughts

are detected by the system after the user inserts an input. The last listed case, the

50

5.2 Mobile Application

UnknownInputCase, represents a situation where the user entered an input that is

unknown to the chatbot.

Figure 5.8: ConversationCase architecture used in this master’s thesis

As already mentioned, to create further concrete special cases, the developer must

extend the class ConversationCase and implement the methods getIdentifier, compareTo

and handleCase. These functions are necessary to verify which case has occurred and

how it should be handled. The whole procedure describing how the mentioned cases

are handled is shown in the following Figure 5.9.

51

5 Concept and Architecture

Figure 5.9: Procedure of handling different cases

52

5.2 Mobile Application

The whole procedure starts with a users’ input. As soon as the user enters an input

(Step 1, Figure 5.9) and sends it to the chatbot (Step 2, Figure 5.9), he receives a

response (Step 3, Figure 5.9). This response is used to determine the current case

(Step U.1, Figure 5.9). To check the current case, the ConversationCaseManager runs

through all registered ConversationCases and calls their compareTo method. This

function determines if the response of the chatbot can be associated with a case. As an

example, the function compareTo of the ConversationCase SuicideEscalation verifies

if the users’ input contains possible statements that can be associated with suicidal

thoughts. Therefore, the function checks whether the response of the chatbot includes

the Entity "suicide". This Entity contains possible statements like "kill myself" or "I

want to die". Whenever the mentioned Entity is detected, the current occurred case is

identified as a SuicideEscalation. Section 6.3 demonstrates a sample to further improve

the readers’ understanding of a possible implementation.

As each case has its own implementation of the function compareTo, different cases

can be distinguished. This is necessary to handle situations differently. Figure 5.9

shows that the system distinguishes between a DefaultCase and special cases (Step

U.2, Figure 5.9). When the DefaultCase occurs, the mobile application displays the

chatbots response to the user. However, if a special case is found the application creates

a CaseInstance (Step U.3, Figure 5.9). This class represents the occurrence of a special

situation and contains all necessary information that is needed to manage the case.

At Step U.3, the system found a special case that needs to be handled. Therefore

the handleCase function that is part of the class ConversationCase is called. The

implementation of this method reflects the action that is executed to handle the case.

As the SuicideEscalation or UnknownInputCase inherit from PushCase, the situation

is handled by sending a Push Notification to all experts who are responsible for the

topic (Step U.4, Figure 5.9). That means that a clickable notification appears on devices

of all experts responsible for the certain topic. If an expert clicks on the notification,

the mobile application starts (Step E.1, Figure 5.9). The received Push Notification

contains the identifier of the created CaseInstance. Consequently, the mobile application

on expert side can load the CaseInstance from the back-end (Step E.2, Figure 5.9).

This data element is used to determine the type of the occurred case. Depending on

53

5 Concept and Architecture

the Case-Type, the application decides how the situation should be handled (Step E.3,

Figure 5.9). While the detection of suicidal thoughts leads to a direct communication

channel (Step E.4, Figure 5.9) between the expert and the user, the detection of an

unknown user input creates a process that needs to be passed through the expert and

aims to the addition of the unknown input into the knowledge base (Step E.5, Figure

5.9). However, before the expert can step in, the application always displays the chat

history to the expert after the app started (Step 4, Figure 5.9). This is necessary to get

an impression of what happened.

As already mentioned, the first case creates a communication channel between the user

and the expert. Afterwards the expert can offer his assistance (Step 5.2, Figure 5.9). A

textual conversation between the expert and the patient presents only one possibility of

handling a critical case like the detection of suicidal thoughts. Further approaches can

be the call of a psychologist or making an appointment in a medical center. Therefore,

the implementation of the function handleCase needs to be changed.

The second case (Step E.5, Figure 5.9) leads the expert into an automatic procedure.

During this process, the expert is asked about the necessary data, so the unknown input

can be successfully added to the chatbots knowledge base (Step 5.1, Figure 5.9). This

procedure is shown in Figure 5.10 and demonstrates a possibility how knowledge can

be added to a chatbot using a dialog. To test the process it was implemented during this

master’s thesis using IBM Watson Assistant. However, it should kept in mind, that the

process can vary depending on the used chatbot service. Accordingly, the process can

differ in its content and its presentation form. As a result of that, it is necessary that the

procedure can be modified and adapted to its requirements. To realize this requirement,

a Taskqueue was developed during this master’s thesis. This system component allows

the application developer to build a customized process that includes multiple steps.

In contrast to the ConversationManager that calls its functions asynchronously, the

TaskQueue calls each task synchronously. A reason for this behavior is the fact that

single tasks may depend on other tasks. As an example, the tasks Add Example to

Intent and Create new Intent in Figure 5.10 need the result of their previous task Wait

for user input before it can be executed. To simplify the usage of the TaskQueue, it can

be executed by the ConversationManager. However, the TaskQueue represents only an

54

5.2 Mobile Application

abstract component that does not contain any tasks in the beginning. Therefore, new

tasks must be implemented and added to the TaskQueue before it can be executed. The

usage of this component and its tasks is explained more precisely in Section 6.2.

As mentioned, the presentation form of the procedure which was implemented during

this master’s thesis is a chat view. During a guided conversation, the expert can interact

with the system by entering his answers. The goal of the whole process is to integrate

the unknown user input, so the chatbot can reply to it afterwards. To make the chatbot

able to reply, the users question must be added to the knowledge base. Referring to

IBM Watson Assistant, adding knowledge means to add an Example to an Intent. If the

Intent does not already exist (Step S3, Figure 5.10), it must be created first. Therefore

the expert is asked to categorize the unknown user input and the already existing Intents

are displayed to the expert (Step S1, Figure 5.10). If he or she inserts the name (Step

S2, Figure 5.10) of an existing Intent, the unknown input is added to it as an Example

(Step S5, Figure 5.10). Otherwise a new Intent with a new Example is created (Step S4,

Figure 5.10).

Afterwards, the expert can add a new Entity. Therefore, the application displays, similar

to the Intents, the existing Entities with their Synonyms to the expert (Step S6, Figure

5.10). Afterwards, the expert can create (Step S8, Figure 5.10) or extend (Step S9,

Figure 5.10) an Entity. However, adding an Entity is optional. That means the expert

can skip this step by entering a keyword, such as "Skip" (Step S7, Figure 5.10).

The last part of this procedure is to add an answer to the user input. Therefore, the mobile

application shows an instruction text to the expert (Step S10, Figure 5.10). Afterwards

he can insert the answer that refers to the unknown user input (Step S11, Figure 5.10).

To complete the process, the app still needs to know what should be done after the

validation of the new inserted node. Therefore, the expert can insert the name of a

displayed neighboring node (Step S12, Figure 5.10). After that, the new node will behave

in the same way the neighboring node does.

If the expert finishes the process successfully, new knowledge is added to the chatbots’

knowledge base (Step S13, Figure 5.10). To avoid adding the same question and answer

55

5 Concept and Architecture

for multiple services, it is necessary to manage the data in a central knowledge base.

The following section illustrates the theoretical aspects of this approach.

56

5.2 Mobile Application

Figure 5.10: Adding new knowlege to IBM Watson Assistant

57

5 Concept and Architecture

5.3 Back-End Application

As already mentioned, the back-end application can be used to manage and edit the

knowledge of a chatbot. As the overall system should be able to support multiple chatbot

services, it is required to have a central knowledge base that stores all data elements

for all topics. The following Figure 5.11 demonstrates this approach and the interaction

between the knowledge base and multiple chatbots.

Figure 5.11: Interaction between chatbot services and the central knowledge base

To summarize the procedure, the back-end application should be able to synchronize

the data of the central knowledge base with all connected chatbots. As soon as the

knowledge base changed, the synchronization is triggered by the Knowledge Base -

Manager. This program gets the data from the database, converts it and updates the

individual chatbots. The conversion of the data elements is required as each chatbot

can contain its own data structure.

To keep the process generic, the Knowledge Base - Builder should be expandable by

adding Converters. A Converter represents a program which expects the data structure

of the knowledge base and converts it into a specific data structure for a chatbot. The

58

5.3 Back-End Application

conclusion of the definition is that each chatbot in use needs a specific Converter to be

adapted or extended.

After the Knowledge Base - Builder gets the customized data from the Converter, the

external knowledge base can be created or updated. Creating a knowledge base is

necessary whenever a new conversation service is used. As it can not be assumed

that a new chatbot already contains knowledge, the overall system must provide a

functionality to pass the data elements of the central knowledge base into the chatbots

knowledge base. Afterwards it can be updated, as soon as the knowledge changed. The

use of one knowledge base of multiple chatbots and their different data structure could

lead to functional limitations. To avoid that, the central knowledge base as well as the

synchronization process needs to be adaptable. This theoretical approach is described

in the following sections.

5.3.1 Knowledge Base

Due to time constraint, the structure of a central knowledge base could only be designed

theoretically. The goal of this general approach is to avoid limitations of the specific

chatbots. As an example, IBM Watson Assistant contains Intents, Entities and Dialog-

Nodes as dialog components, whereas Google Dialogflow contents only Intents and

Entities. Besides the different number of dialog components, the data structures of an

Intent and Entity vary although they have the same name. That shows that data elements

of different chatbots could be similar but not equal. Furthermore it should be assumed

that dialog components can bex totally different. This fact makes it difficult to generalize

them. The approach of generalizing the components would bring the advantage of

storing all data in one single database, which represents the central knowledge base.

Consequently, it would be easier to manage the data. However, the predefined attributes

must cover all possible properties of the existing third-party knowledge base components.

Otherwise adding a new conversation service could lead to a total refactoring process

as the present data structure does not fit with the central knowledge base. Without an

adaption, it could lead to a lack of information and the limitation of functionality.

59

5 Concept and Architecture

To avoid the discussed issue, the central knowledge base is split into two different

sections which are shown in Figure 5.12.

Figure 5.12: Structure of the central knowledge base

According to the definition of a chatbot in Section 2.1, each chatbot has the same

work-flow. A system expects a natural language input and responds with a meaningful

answer. Considering the principle in a superficial way can lead to the conclusion that a

chatbot only needs two different data type for its knowledge base: input and output.

The mentioned data types are located in the first section which is represented by the

General Knowledge Base. An input generalizes all user requests. It represents a

60

5.3 Back-End Application

question as well as a statement. The output can be considered as the system response.

As the General Knowledge Base only contains these two data types, the second section

is responsible for the specific chatbot components.

Figure 5.12 shows the IBM Watson Assistant - KB and the Google Dialogflow - KB. Both

databases can be defined as a Specific Knowledge Base. A Specific Knowledge Base

can be used to map the structure of a chatbots’ knowledge base. Because chatbot

services are constantly being developed, managing the structure of each knowledge base

can bring a benefit. Whenever a chatbot is evolving, the associated Specific Knowledge

Base can be adapted easily. On the other side, a negative aspect of this concept is the

possible redundancy of data elements. As an example, an Intent must exist for IBM

Watson Assistant as well as Google Dialogflow if both services are supposed to be

usable. The input and the output form the foundation of the knowledge and are stored in

the General Knowledge Base. Redundancy only exists in specific knowledge bases due

to similar processes in the different chatbots.

As the two mentioned sections need to work together, so it can be combined as a single

knowledge base, the data elements can be connected. Figure 5.12 shows the general

principle. Database entries of a Specific Knowledge Base can refer to an input or an

output. That means, that e.g. an Intent of IBM Watson Assistant has an Example which

corresponds to the input with id = 1, whereas the Intent of Google Dialogflow has the

same input but as a User Expression.

This connection is necessary to create the complete specific data structure, which is re-

quired to synchronize the chatbots’ knowledge base. The process of the synchronization

is described in the following section.

5.3.2 Synchronization

Considering the synchronization, the two following aspects should be regarded:

• Synchronization between the General Knowledge Base and a Specific Knowledge

Base

• Synchronization between different Specific Knowledge Bases

61

5 Concept and Architecture

Whenever the content of the central knowledge base changes, the General Knowledge

Base, the Specific Knowledge Base or both databases must be edited. If the expert

e.g. adapts an answer, it is not absolutely necessary to edit a Specific Knowledge Base.

The reason of the revision could be an inaccurate wording or spelling. Therefore, the

structure of the dialog can be kept the same and it is sufficient to edit only the value of

the associated output. Similar to this case, the adaption of that data element would be

enough if an Intent in the specific knowledge base contains a wrong input. It could be

deleted and the General Knowledge Base does not need to be reworked. However, as

soon as the General Knowledge Base is extended, both parts must be adapted. It could

be possible to simply adapt the references which are shown in Figure 5.12 or to add new

specific data elements to the Specific Knowledge Bases. The described approaches

refer to the first aspect which is listed above.

As all components of the central knowledge base should behave like one single knowl-

edge base, it is also necessary that the Specific Knowledge Bases synchronize to

another. That behavior can be illustrated by the following scenario.

A user enters a question and sends it to a chatbot, which was created by the usage

of IBM Watson Assistant. The interaction with the chatbot is performed via a mobile

application. The chatbot does not know the input and asks for human assistance. The

expert passes the process which is described in 5.2.3 and the input, an output and a

new Intent is added to knowledge base. In addition, the Example of the Intent stored in

a Specific Knowledge Base corresponds to the new input. A few minutes later, another

user want to know the answer of the question which was recently added to the knowledge

base. However, she asks the chatbot by talking to Google Home which has enabled

the mentioned skill. Without a synchronization between the different data structures the

virtual assistant can not reply properly because his knowledge base was not updated.

Under the conceptualized approach to synchronize the two Specific Knowledge Bases,

the mentioned issue can be avoided. However, it is necessary to have information about

the mapping between both structures. Therefore it is required to create a mapping

scheme for all structure dependencies. An example of a possible mapping scheme is

shown in Figure 5.13.

62

5.3 Back-End Application

Figure 5.13: Example of a possible mapping scheme for IBM Watson Assistant and

Google Dialogflow

It should be kept in mind that the explained concept of the server application and its

knowledge base could not be proven during this master’s thesis due to time constraints.

Therefore it represents a theoretical approach for further scientific works. In the contrary,

the explained components of the mobile application were implemented during this thesis.

The precise use of selected aspects are illustrated in following Chapter 6.

63

6
Implementation Aspects

This chapter demonstrates three important system components of the mobile application

which are explained in Chapter 5. To be more specific, it contains the Conversation SDK,

the TaskQueue and the ConversationCase. The aim of this chapter is to improve the

readers’ understanding of their usage as an application developer. This is necessary to

extend or adjust the system components and is explained through the presentation of

code snippets of implemented classes in the following sections.

6.1 Conversation SDK

Section 5.2.2 already described the main reason and the use of the Conversation SDK.

However, this section illustrates how it can be extended by a new module. Therefore a

ConversationModule must be created and new tasks have to be implemented and added

to the module.

1 class IbmWatsonModule extends ConversationModule<Conversation>

Listing 6.1: IBMWatsonModule

Creating a new module means to extend the ConversationModule. The generic type of

the ConversationModule describes the type of its Util. The module which is shown in

Listing 6.1, wraps the Watson APIs Java SDK and its Util corresponds to a Conversation-

Object. This object can be passed to the implemented tasks as it is required to execute

65

6 Implementation Aspects

the API call. What kind of API call will be executed depends on the task. An example is

demonstrated in Listing A.1.

Before a specific AsyncTask is created, the IBMWatsonModule needs to be configured.

That means that the Configuration of the module must be loaded. The necessary

information can be requested from the Server Application to keep the overall system

flexible. After the application received the Configuration, it can be used to initialize the

Util.

1 @Override

2 public void init(Context context) {

3 configure();

4 initUtil();

5 registerTasks();

6 }

Listing 6.2: Initialization of the IBMWatsonModule

The initialization itself depends on the used third-party library. Using the Watson API

Java SDK requires a versionDate, an endpoint and the user credentials. The single

attributes are already explained in Section 5.2.2.

1 private void initUtil() {

2 service = new Conversation(configuration.attributes.get

("versionDate"));

3 service.setEndPoint(configuration.attributes.get("

api_endpoint"));

4 service.setUsernameAndPassword(configuration.attributes

.get("username"), configuration

5 .attributes.get("password"));

6 }

Listing 6.3: Initialization of the IBMWatsonModule-Util

66

6.1 Conversation SDK

The mentioned functionality can be defined in the init method, which is shown in Listing

6.2. To call this function, the module should be registered in the ConversationMan-

ager first. This class contains the method initRegisteredModules which loops over all

registered ConversationModules and calls their init function. This procedure is shown

below.

1 public void initRegisteredModules(Context context) {

2 for(ConversationModule module :

registeredModules.values()){

3 module.init(context);

4 }

5 }

Listing 6.4: method initRegisteredModules of ConversationManager

Creating a new module only makes sense if it contains a required functionality. Therefore,

it is necessary to add tasks to a module before the initialization is triggered. This part

explains the creation of a specific task as the general principle is already explained in

Section 5.2.2. To illustrate the procedure, a DeleteIntentTask that is shown in Listing

A.1 is used. This task can be used to delete an Intent of a IBM Watson Assistant

chatbot. To execute the procedure successfully, the Util and the relevant information are

required. For accessing the Util, the execute-function expects the IbmWatsonModule

as a parameter. The specific type of the module can be defined as a bounded type

parameter. Before deleting an Intent from the chatbot, it is necessary to pass the affected

workspace and the Intent. To solve this issue, the Watson API Java SDK provides a

DeleteIntentOptions-Object. However, this object needs to be filled with information.

Using the Conversation SDK it is required to pass this data wrapped as a Conversa-

tionData-Object, when calling a tasks execute-function. To access the specific values,

predefined identifiers can be used. More accurately said, to access the Workspace-ID,

the identifier KEY_WORKSPACE_ID can be used. After all necessary data is passed

to the Util, the API request can be sent to the chatbot. The response can be returned

by using a TaskCallback. Therefore it is necessary to call the onCallback-function as

67

6 Implementation Aspects

soon as the response is returned. Similar to the respsonse, the IbmWatsonModules’

ErrorListener should be triggered after an error is catched.

As described in Section 5.2.2, a ConversationModule can only handle AsyncTasks. How-

ever, the usage of a TaskQueue allows the ConversationManager to execute SyncTasks

as well. This approach is illustrated in the following section.

6.2 TaskQueue

Figure 5.10 in Chapter 5 describes a gradual procedure to add new data to a knowledge

base. Due to the possible modifications of this process structure, it is necessary to

adjust it without an adaption of the system architecture. Therefore, the TaskQueue

was developed during this master’s thesis. This class can store single tasks which are

called TaskQueueItem and executes them step by step. This generic approach offers

the advantage that it is possible to create a completely new procedure by combining

multiple tasks which can be implemented individually.

Combining multiple tasks means to create an execution order and to build dependencies

between the single tasks. Registering one SyncTask before a second one causes the

first task to be executed before, too. Therefore, the execution order can be determined

by registering SyncTasks one by one in the TaskQueue. To create dependencies, the

following predefined flags can be used.

1 public static final int NONE = 995;

2 public static final int PREVIOUS_ITEM_SINGLE = 997;

3 public static final int PREVIOUS_ITEM_MULTIPLE = 996;

4 public static final int EXTERN_DELAYED = 998;

5 public static final int EXTERN_CURRENT = 999;

Listing 6.5: Possible input modes of a TaskQueueItem

Building a TaskQueueItem without any configuration means to build a single independent

unit. To be more specific, the attribute NONE is defined as the default input mode of each

68

6.2 TaskQueue

TaskQueueItem as it is not always necessary that a task requires any input. However, it

can be extremely helpful to create dependencies between single tasks or to pass data to

an SyncTask before it is executed. A dependency between two tasks means that the

output of a previous task is passed as the input to the following task. This can be realized

by using the functions setInput(TaskQueueItem item) or addInput(TaskQueueItem item).

The necessity for both methods is that a TaskQueueItem can contain a single input

as well as multiples ones. However, it is ensured that a task receives the result of a

previous item as all tasks are executed synchronously before. Besides the dependency

between TaskQueueItems, an item can also expect an external input that is not currently

available. Therefore the flag EXTERN_DELAYED can be used. Whenever the input

mode of a TaskQueueItem is set to this flag, it will wait until the input is received. This

concept could be useful if the overall procedure needs information from a user. The

last flag shown in Listing 6.5, is set whenever information can be passed directly to the

TaskQueueItem. An example is shown in the following Listing 6.6.

1 new TaskQueueItem.Builder()

2 .setTask(new ListIntentTask())

3 .setInput(new IntentData(workspaceId))

4 .setOutputDataConverter(new TaskQueueItem.

OutputDataConverter<IntentCollection,List<String>>() {

5

6 @Override

7 public List<String> parseData(IntentCollection input) {

8 List<String> result = new ArrayList<>();

9 for (IntentExport i : input.getIntents())

10 result.add(i.getIntentName());

11 return result;

12 }

13 })

14 .build();

Listing 6.6: Sample of creating a TaskQueueItem

69

6 Implementation Aspects

To create a TaskQueueItem it is necessary to set a SyncTask or otherwise the task

would not have any functionality. In the sample above, the task lists all existing Intents of

Workspace with the given workspace id. The use of the setInput(D data) method sets

the input mode automatically to EXTERN_CURRENT. Therefore, the TaskQueueItem

knows, that it can directly access the passed data and does not have to wait for it.

However, the TaskQueueItem will transmit its results to its successors as soon as it

was executed successfully. This leads to the conclusion that the result must be suitable

for the following task. Therefore the data structure must be adapted. This can be

realized by the use of the OutputDataConverter. The interface allows the conversion of

an incoming data element into a useful structure. As the sample above illustrates, the

TaskQueueItem expects an IntentCollection and transforms it into a list that contains all

names of the found Intent. This list is used to display the already existing Intents to the

expert. Afterwards, the second task is waiting for the Intent name which is entered by

the expert.

Due to the fact that procedures could include decisions, it is possible to add an Execu-

tionCondition. As the name suggests, it can be used to define whether the task should

be executed or not. In the procedure of Figure 5.10, it is used to decide whether a new

Intent has to be created or if it must be only extended by an Example. The condition can

also be implemented during the definition of a TaskQueueItem, as it is shown in Listing

6.6.

After all tasks of a process are defined and registered to a TaskQueue, they can be

executed gradually by calling the function executeTaskQueue of the ConversationMan-

ager. This is shown in Listing 6.7. The TaskQueueCallback that is passed to the

mentioned function can be used to perform actions during the process. Therefore each

TaskQueueItem, as well as its index, can be accessed before and after its execution.

This could be used to pass data to the tasks or react to the intermediate results. During

the process of extending the knowledge base, the onPreExecution and the onPostExec-

tution functions are used to display introductions to the user. Depending on the result

of a single TaskQueueItem, the displayed text must be assembled first or it could be

displayed without any modification.

70

6.2 TaskQueue

The result of the overall procedure is returned via the onResult method. The type of the

result can be defined by declaring the bounded type parameter of the TaskqueueCallback.

This function is only triggered if the process is completed successfully. Afterwards the

TaskQueue is finished but can be restarted if necessary.

1 conversationManager.executeTaskQueue

2 (taskQueue, new TaskQueueCallback<String>() {

3

4 @Override

5 public void onPreExecution(TaskQueueItem

queueItem, int index) {

6 //handle queueItem before execuction

7 }

8

9 @Override

10 public void onPostExecution(TaskQueueItem

queueItem, int index) {

11 //handle queueItem after execuction

12 }

13

14 @Override

15 public void onResult(String result) {

16 //handle result

17 }

18 });

Listing 6.7: Code snippet to demonstrate the TaskQueueCallback and the

executeTaskQueue-function

71

6 Implementation Aspects

6.3 ConversationCase

The broad process regarding to ConversationCases is already explained in 5.2.3. To

summarize it, different types of cases can be identified and handled individually as soon

as a situation arises. However, the system can only determine the current existing case

if it is predefined. This section demonstrates how cases can be defined and managed,

so they can be matched with the occurring situation.

The general approach of managing a case requires the definition of a concrete situation.

This indicates that before the system can figure out if a situation occurred, it must be

defined first. The sample in Listing 6.8 defines a SuicideCase. That occurs if a user

enters words or phrases which can be associated with suicide.

1 {

2 "id" : "a56381fc-93e1-11e8-9eb6-529269fb1459",

3 "title" : "Warning",

4 "description" : "Possible escalation detected",

5 "type" : 0,

6 "keyWords" : ["Suicide"]

7 }

Listing 6.8: Definition of the SuicideCase that can be requested from the server

As such a case is handled by sending a Push Notification to the experts, its data structure

contains a title and description that is shown to the expert as soon as the notification is

received. Whereas the mentioned attributes are only required to improve the usability of

the system, the keyWords-attribute is necessary to identify the case as a SuicideCase.

72

6.3 ConversationCase

1 public int compareTo(@NonNull MessageResponse response) {

2 List<RuntimeEntity> entities = response.getEntities();

3 for (RuntimeEntity entity : entities) {

4 for (String keyWord : getKeyWords()) {

5 if (entity.getEntity().equals(keyWord)) return 0;

6 }

7 }

8 return -1;

9 }

Listing 6.9: Function to decide if it the case occured

However, the defined keywords are not referring to a word that is included in an entered

phrase, but rather refer to an Entity. This is shown by the the code snippet in Listing 6.9.

As soon as the mobile application receives a response from IBM Watson Assistant,

it needs to get the associated ConversationCase. Therefore the function getCase(T

compareObject) of the class ConversationCaseManager can be used. This method

loops over all registered cases and calls its compareTo function. As it can be seen in

Listing 6.9, the function of this specific case expects a MessageResponse from the

chatbot, gets the detected Entities and compares it with the keywords. If one Entity name

matches with the keyword "Suicide", the current situation is identified as a SuicideCase.

Afterwards the handleCase(I input) function is called.

1 @Override

2 public void handleCase(MessageResponse input) {

3 final CaseInstance caseInst = createCaseInstance();

4

5 FirestoreCaseHandler.getInstance().createCaseInstance(

caseInstance, new OnSuccessListener<Void>() {

6 @Override

7 public void onSuccess(Void aVoid) {

73

6 Implementation Aspects

8 sendPushNotification(caseInstance);

9 }

10 }, new OnFailureListener() {

11 @Override

12 public void onFailure(@NonNull Exception e) {

13 Log.e(TAG, e.getMessage());

14 }

15 });

16 }

Listing 6.10: Function handleCase of class PushCase

The code snippet in Listing 6.10 represents the handleCase function of the class Push-

Case. The name suggests that the case is handled by sending a Push Notification.

However, before that can be done, it is necessary to create a CaseInstance. Its structure

is illustrated by Listing 6.11, as it has not yet been presented in Section 5.2.3.

1 {

2 "id" : "a56381fc-93e1-11e8-9eb6-529269fb1459",

3 "caseId" : "d23eb99d-d689-4653-b15f-2015579235aa",

4 "topicId" : "4d918109-66da-4700-b6f6-a161c95dcf2e",

5 "chatHistoryId" : "d23eb99d-d689-4653-b15f-2015579235aa",

6 "participant" : {...}

7 }

Listing 6.11: Structure of a CaseInstance

The CaseInstance contains all necessary data that is required to associate the occurred

case with a topic, the conversation itself and its participants. Each CaseInstance is

stored in a database. Therefore Cloud Firestore is used. Besides the CaseInstance, the

NoSQL cloud database is used to store the predefined ConversationCases, ChatHistory,

Topics and Users.

74

6.3 ConversationCase

Afterwards a Push Notification is sent to the experts containing the identifier of the

CaseInstance. As soon as the expert touches the notification, the mobile application on

the side of the expert requests the CaseInstance to get all necessary data about the

case and to handle it.

To keep the overall system flexible, all mentioned system components were designed as

generic as possible. This is necessary as the technology could evolve and change in

the future. This affects the already used service during this master’s thesis as well as

the temporary inspected services, that are provided by enterprises like Google or IBM.

However, the use of this services can help to improve the interaction between systems

and human beings. Due to time constraints, it was not possible to put these approaches

into practice. The possible improvements of a system which are described in this thesis,

are explained in the next chapter.

75

7
Future Prospect

To improve the mentioned system could mean to increase its usability, extend its knowl-

edge base or develop it to become more human-like. As the general approach of this

thesis has the aim of implementing a virtual assistant that can cover different scenarios in

the medical or psychological areas but does not want to replace specialists, this chapter

discusses the first two of the listed aspects.

7.1 Universal Chatbot

The mobile chatbot application that was developed during this master’s thesis can

connect to multiple third-party services. As each chatbot has its own knowledge base,

they are handled differently. Referring to IBM Watson Assistant each topic is represented

by an own Skill. However, creating a universal chatbot that is associated with multiple

Skills could be a new approach to improve the usability of the mobile application. That

means that one chatbot contains knowledge about all topics. Special cases, such as

differentiate phrases which relate to different topics, can complicate the creation of an

accurate system. A second approach would be to choose topics via chat. Instead of

picking a topic from a list, a guided dialog between a user and the system could help to

choose the topic. This conversation could be performed by one chatbot that contains

information about all existing subjects. After a topic is chosen by the user, the system

connects with the associated workspace.

77

7 Future Prospect

7.2 Make it smarter

The generalized title of this section relates to the extension of knowledge. This does

not only include extending the knowledge base as it is defined in Section 5.3, but also

using other information from medical or psychological areas, for example the usage of

emotional input. Another approach is to simplify the process of how knowledge is added

to the knowledge base. Therefore IBM and Google provide different functionality. Due to

time constraints, it was not possible to inspect all possible third-party services that can

be used to improve the overall system. Therefore, the amount of possible extra features

is reduced to IBM Watson Tone Analyzer, extending the knowledge base by using IBM

Watson Natural Language Understanding and creating user profiles with IBM Watson

Personal Insights.

7.2.1 IBM Watson Tone Analyzer

IBM Watson Tone Analyzer can be used to detect emotional and language tone in text.

As IBM says, the service can be used to understand how a written communication

is perceived [40]. In the context of this master’s thesis it could be used to analyze

written input from the user to create information about his or her current feelings. In the

psychological sector, such data could help to adapt the system responses depending on

the users emotional state. As an example, a user enters the phrase "I’m fine, thanks"

but the IBM Watson Tone Analyzer detected Anger in the previous conversation, so the

system could response with "Are you sure?" instead of "Great!". However, the amount of

different tones is restricted. The following sample demonstrates the different types and a

possible result that is created by the IBM Watson Tone Analyzer.

"I’m glad that I can talk to you. I had a fight with my wife yesterday and i feel so sad right

now."

As IBM provides a graphical user interface to test single services, the phrases above

could be simply analyzed by IBM Watson Tone Analyzer. The service analyzes the

following tones on Document-level and Sentence-level: Anger, Fear, Joy, Analytical,

78

7.2 Make it smarter

Confident and Tentative. The validation of the sample phrase above leads to the

detection of Sadness and Tentative which can be equalized with sad and doubtful [41].

As already mentioned, such data can be used to create user profiles or to specify the

system responses. However, as tones can change per user and per conversation, the

data should not be stored in the knowledge base.

7.2.2 Complement the knowledge base

In contrast to emotional information, knowledge about a specific topic should be stored

in the knowledge base. However, the procedure about how data can be added to

the knowledge base should be improved as the manual approach can be very time-

consuming.

Enterprises like IBM and Google already provide beta or released services that could

be used to extend the knowledge base. As Google introduces the Knowledge Connec-

tor, IBM offers the Natural Language Understanding that can be combined with the

Knowledge Studio.

The beta version of Knowledge Connector allows to complement already defined Intents.

Therefore, multiple knowledge bases representing collections of documents, can be

created. Each document can be parsed to find responses. At the moment of this

research, Google supports the analysis of FAQ and Knowledge Base Articles [42]. The

figure below shows a result of the parsing process of the Google Privacy & Terms FAQ.

Figure 7.1: Question and Answer as a result of the parsing process of Knowledge
Connector

79

7 Future Prospect

Furthermore, the result can be converted into a defined Intent. That means that questions

are added as training phrases and answers as responses [42].

As already mentioned, IBM provides services that can be used to complement the

knowledge base as well. Using IBM Watson Natural Language Understanding allows

to analyze semantic features of text input. This indicates that it can determine cate-

gories, concepts, emotions, entities, keywords, metadata, relations, semantic roles, and

sentiment from plain text or webpages [43]. Similar to Section 7.2.2, IBM provides a

demonstration of this service. Analyzing the Wikipedia entry about "test anxiety" results

into the following output that is shown in figure 7.2.

Figure 7.2: Found entities after analyzing Wikipedia entry about "test anxiety"

These results can be used to complement the knowledge base. As an example, different

phrases that relate to HealthCondition could be added as synonyms. However, the

result also depends on the associated machine learning model. IBM Watson Knowledge

Studio can be used to create such models and integrate them to the IBM Watson Natural

Language Understanding service [44]. Consequently, machine learning models can

be created for custom topics and for analyzing documents to find important segments.

This theoretical aspect leads to the approach to use a combination of both services to

complement a knowledge base.

80

7.2 Make it smarter

7.2.3 User Profiles

Besides helping the system by simplifying the complement of the knowledge base,

collecting user data could also help the expert. The access to additional user data could

be realized by using the IBM Watson Personality Insights. The service can determine

insights about personality characteristics from social media, enterprise data, or other

digital communications [45]. As an example, the mobile application could provide a

functionality that allows the user to sign in via Facebook. Afterwards, his profile could be

used to determine data that could be important for specific topics. The following Figure

7.3 illustrates what kind of data could be derived.

Figure 7.3: Personality characteristics after analyzing the Twitter -Account of @Oprah
(EN)

81

8
Conclusion

The objective of this master’s thesis was to create a generic system that supports

patients and professionals in the medical or psychological sector. The overall system is

split into three system components: mobile chatbot application, back-end application and

central knowledge base. Due to time constraints, it was only possible to implement the

mobile application that is used to test the developed frameworks which are explained in

5.2. However, theoretical concepts of the knowledge base and the back-end application

are introduced and may be proven in further scientific work.

The back-end application and the central knowledge base became part of the overall

system after it turned out that IBM Watson and its knowledge base that is trained for the

game show Jeopardy! is not accessible. Instead, IBM provides individual services to

build or to improve a chatbot. As each instance of a chatbot is connected with its own

knowledge base but the separation of multiple knowledge bases leads to redundancy of

data elements, the approach of a central knowledge base became relevant. Furthermore,

one huge knowledge base can improve the chatbots’ usability by avoiding the separation

of multiple topics. However, each chatbot is only useful if it contains knowledge. The

quality of the chatbot is directly reflected by the quality and quantity of the deposited data.

In short, if the chatbot does not contain the knowledge about depression, a depressive

patient who asks for help may find the system meaningless. As the knowledge base is

an important aspect of the overall system, the back-end application is required to provide

experts with the functionality to add knowledge. Furthermore, it can be used to manage

user roles or as an interface that communicates with different chatbot services in the

future.

83

8 Conclusion

Besides the theoretical concepts, the concept and the architecture of the mobile appli-

cation were developed and implemented. It represents the virtual assistant that can be

used by patients and experts. This application allows the user to interact with it by asking

questions about a specific topic. Furthermore, the mobile application detects situations

that depart from a default conversation. Within the scope of this master’s thesis, phrases

that relate to suicidal thoughts or unknown user input represent special situations and

are used to test the implemented concept. To improve the readers understanding about

the precise result of this master’s thesis, the figures below demonstrate a possible

conversation between a user and the chatbot. However, the content of the dialog was

created by Eileen Bendig, a doctoral student at the Department of Clinical Psychology

and Psychotherapy, Ulm University. The dialog was written in German and it is based

on the literature ACT-Training: Acceptance & Commitment Therapie of Jason Luoma,

Steven C. Hayes and Robin D. Walser [46].

All in all it can be said that the future-oriented topic of this thesis builds an approach

of improving the health care by using AI based algorithms and concepts of handling

emergencies. However, there is still a lot to be done to make the system ready for

use. Therefore, it needs to be further developed and the knowledge base needs to be

extended by the support of medical and psychological professionals and one day it will

hopefully support them, too.

84

Figure 8.1: Possible conversation between patient and chatbot (A)

Figure 8.2: Possible conversation between patient and chatbot (B)

85

8 Conclusion

Figure 8.3: Possible conversation between patient and chatbot (C)

Figure 8.4: Possible conversation between patient and chatbot (D)

86

Figure 8.5: Possible conversation between patient and chatbot (E)

Figure 8.6: Possible conversation between patient and chatbot (F)

87

8 Conclusion

Figure 8.7: Possible conversation between patient and chatbot (G)

88

Bibliography

[1] Chatbot Market Size To Reach $1.25 Billion By 2025. August 2017. URL: https:

//www.grandviewresearch.com/press-release/global-chatbot-

market (visited on 01/03/2019).

[2] Global Views on Healthcare - 2018. September 2018. URL: https://www.

ipsos.com/sites/default/files/ct/news/documents/2018-07/

global_views_on_healthcare_2018_-_graphic_report_0.pdf (vis-

ited on 01/03/2019).

[3] Ruth Robertson, John Appleby, and Harry Evans. Public satisfaction with the

NHS and social care in 2017. February 2018. URL: https://www.kingsfund.

org.uk/publications/public-satisfaction-nhs-2017 (visited on

01/03/2019).

[4] Healthcare-Barometer. March 2018. URL: https://www.pwc.de/de/gesundheitswesen-

und-pharma/pwc-ergebnisse-healthcare-barometer-2018-final.

pdf (visited on 01/03/2019).

[5] The 2018 State of Chatbots Report. January 2018. URL: https://www.drift.

com/wp- content/uploads/2018/01/2018- state- of- chatbots-

report.pdf (visited on 01/03/2019).

[6] What Consumers Really Think About AI: A Global Study. April 2017. URL: https:

//www.pega.com/sites/pega.com/files/docs/2017/Apr/what-

consumers-really-think-about-ai.pdf (visited on 01/03/2019).

[7] Prof. Dr. Oliver Bendel. Revision von Chatbot. 2018. URL: https://wirtschaftslexikon.

gabler.de/definition/chatbot-54248/version-277297 (visited on

12/05/2018).

[8] Rashid Khan and Anik Das. Build better chatbots: A complete guide to get-

ting started with chatbots. New York, New York: Apress, 2018. ISBN: 978-1-

4842-3111-1. URL: http://proquest.tech.safaribooksonline.de/

9781484231111.

89

Bibliography

[9] Crina Grosan and Ajith Abraham. Intelligent Systems: A Modern Approach. Vol. 17.

Intelligent Systems Reference Library. Berlin, Heidelberg: Springer-Verlag Berlin

Heidelberg, 2011. ISBN: 9783642210037. DOI: 10.1007/978-3-642-21004-4.

URL: http://www.eblib.com/patron/FullRecord.aspx?p=769965.

[10] Bayan AbuShawar and Eric Atwell. “ALICE Chatbot: Trials and Outputs”. In: Com-

putación y Sistemas 19.4 (2015). ISSN: 1405-5546. DOI: 10.13053/cys-19-4-

2326.

[11] Richárd Krisztián Csáky. Deep Learning Based Chatbot Models. 2017. DOI: 10.

13140/RG.2.2.21857.40801.

[12] Joseph Weizenbaum. “Computational Linguistics: ELIZA - A Computer Program

for the Stufy of Natural Language Communication Between Man And Machine”.

In: (1966). URL: https://cse.buffalo.edu/~rapaport/572/S02/

weizenbaum.eliza.1966.pdf (visited on 12/05/2018).

[13] Maria João Pereira et al. Chatbots’ Greetings to Human-Computer Communication.

2016. URL: http://arxiv.org/pdf/1609.06479v1.

[14] Mohammad Majid Al-Rifaie. AISB - The Society for the Study of Artificial Intel-

ligence and Simulation of Behaviour - Loebner Prize. n.y. URL: https://www.

aisb.org.uk/events/loebner-prize (visited on 12/09/2018).

[15] Jake Frankenfield. Turing Test. n.y. URL: https://www.investopedia.com/

terms/t/turing-test.asp (visited on 12/09/2018).

[16] Apple. n.y. URL: https://www.apple.com/siri/ (visited on 12/07/2018).

[17] Jon Walker. Chatbot Comparison – Facebook, Microsoft, Amazon, and Google

- Artificial Intelligence Companies, Insights, Research. 2017. URL: https://

emerj.com/ai-sector-overviews/chatbot-comparison-facebook-

microsoft-amazon-google/ (visited on 12/07/2018).

[18] KHARI JOHNSON. Facebook promises to ‘massively’ simplify Messenger in 2018.

January 2018. URL: https://venturebeat.com/2018/01/16/facebook-

promises-to-massively-simplify-messenger-in-2018/ (visited on

12/10/2018).

90

Bibliography

[19] Brian Rathjen and Jwelch742. Jeopardy! (TV Series 1984–) - Plot Summary -

IMDb. n.y. URL: https://www.imdb.com/title/tt0159881/plotsummary

(visited on 12/11/2018).

[20] IBM100 - A Computer Called Watson: Technical Breakthroughs. n.y. URL: https:

//www.ibm.com/ibm/history/ibm100/us/en/icons/watson/breakthroughs/

(visited on 12/11/2018).

[21] IBM100 - A Computer Called Watson: Overview. n.y. URL: https:// www.

ibm.com/ibm/history/ibm100/us/en/icons/watson/ (visited on

12/07/2018).

[22] The DeepQA Research Team - IBM. n.y. URL: https://researcher.watson.

ibm.com/researcher/view_group_subpage.php?id=2159 (visited on

12/11/2018).

[23] Chris Higgins. "What is IBM Watson?" 7 Videos from the Jeopardy! Era. n.y.

URL: http://mentalfloss.com/article/51543/what-ibm-watson-7-

videos-jeopardy-era (visited on 12/11/2018).

[24] IBM100 - A Computer Called Watson: Transforming the World. n.y. URL: https://

www.ibm.com/ibm/history/ibm100/us/en/icons/watson/transform/

(visited on 01/13/2019).

[25] IBM. About. n.y. URL: https://console.bluemix.net/docs/services/

assistant/index.html?locale=en#about (visited on 12/12/2018).

[26] IBM. Informationen. n.y. URL: https://console.bluemix.net/docs/

services/assistant/index.html#informationen (visited on 12/12/2018).

[27] IBM. Release notes. n.y. URL: https://console.bluemix.net/docs/

services/assistant/release-notes.html?locale=en#releaseinformationen

(visited on 12/12/2018).

[28] IBM. Skills. n.y. URL: https://console.bluemix.net/docs/services/

assistant/skills.html#skills (visited on 12/12/2018).

91

Bibliography

[29] IBM. Building a client application. n.y. URL: https://console.bluemix.

net/docs/services/conversation/develop- app.html (visited on

12/13/2018).

[30] Chin-Yuan Huang et al. “A Chatbot-supported Smart Wireless Interactive Health-

care System for Weight Control and Health Promotion”. In: 2018 IEEE Interna-

tional Conference on Industrial Engineering and Engineering Management (IEEM).

IEEE, 12/16/2018 - 12/19/2018, pp. 1791–1795. ISBN: 978-1-5386-6786-6. DOI:

10.1109/IEEM.2018.8607399.

[31] Akihiro Yorita et al. “A Robot Assisted Stress Management Framework: Using

Conversation to Measure Occupational Stress”. In: 2018 IEEE International Con-

ference on Systems, Man, and Cybernetics (SMC). IEEE, 10/7/2018 - 10/10/2018,

pp. 3761–3767. ISBN: 978-1-5386-6650-0. DOI: 10.1109/SMC.2018.00637.

[32] Haolin Wang et al. “Social Media–based Conversational Agents for Health Manage-

ment and Interventions”. In: Computer 51.8 (2018), pp. 26–33. ISSN: 0018-9162.

DOI: 10.1109/MC.2018.3191249.

[33] Wei-De Liu, Kai-Yuan Chuang, and Kuo-Yi Chen. “The Design and Implementation

of a Chatbot’s Character for Elderly Care”. In: 2018 International Conference on

System Science and Engineering (ICSSE). IEEE, 6/28/2018 - 6/30/2018, pp. 1–5.

ISBN: 978-1-5386-6285-4. DOI: 10.1109/ICSSE.2018.8520008.

[34] The Top 12 Health Chatbots - The Medical Futurist. 2018. URL: https://

medicalfuturist.com/top-12-health-chatbots (visited on 01/05/2019).

[35] Woebot - Your charming robot friend who is here for you, 24/7. n.y. URL: https:

//woebot.io/the-science (visited on 12/30/2018).

[36] Woebot - Your charming robot friend who is here for you, 24/7. n.y. URL: https:

//woebot.io/faqs/ (visited on 12/05/2018).

[37] Kathleen Kara Fitzpatrick, Alison Darcy, and Molly Vierhile. “Delivering Cogni-

tive Behavior Therapy to Young Adults With Symptoms of Depression and Anx-

iety Using a Fully Automated Conversational Agent (Woebot): A Randomized

Controlled Trial”. In: JMIR mental health 4.2 (2017), e19. ISSN: 2368-7959. DOI:

10.2196/mental.7785.

92

Bibliography

[38] Salman Razzaki et al. A comparative study of artificial intelligence and human

doctors for the purpose of triage and diagnosis. 27.06.2018. URL: http://arxiv.

org/pdf/1806.10698v1 (visited on 01/02/2019).

[39] | Babylon Health. n.y. URL: https://www.babylonhealth.com/product/

healthcheck (visited on 01/02/2019).

[40] IBM. About. n.y. URL: https://console.bluemix.net/docs/services/

tone-analyzer/index.html#about (visited on 12/28/2018).

[41] IBM. IBM Watson Tone Analyzer. n.y. URL: https://tone-analyzer-demo.

ng.bluemix.net/ (visited on 01/02/2019).

[42] Knowledge Connectors | Dialogflow Enterprise Edition Documentation | Google

Cloud. n.y. URL: https://cloud.google.com/dialogflow-enterprise/

docs/knowledge-connectors (visited on 12/29/2018).

[43] About. n.y. URL: https : / / console . bluemix . net / docs / services /

natural - language - understanding / index . html # about (visited on

12/29/2018).

[44] About. n.y. URL: https : / / console . bluemix . net / docs / services /

watson-knowledge-studio/index.html#wks_overview_full (visited

on 12/29/2018).

[45] Getting started tutorial. n.y. URL: https://console.bluemix.net/docs/

services/personality-insights/getting-started.html#gettingStarted

(visited on 12/29/2018).

[46] Jason Luoma et al. ACT-Training: Handbuch der Acceptance & Commitment

Therapie ; ein Lernprogramm in 10 Schritten. Reihe Fachbuch ACT für die klinische

Praxis. Paderborn: Junfermann, 2009. ISBN: 9783873877009. URL: http://

deposit.d-nb.de/cgi-bin/dokserv?id=3090530&prov=M&dok_var=

1&dok_ext=htm.

93

A
Sources

1 class DeleteIntentTask implements AsyncTask<IbmWatsonModule,

ConversationData<String>> {

2

3 @Override

4 public void execute(final IbmWatsonModule module,

ConversationData<String> data, final

5 TaskCallback callback) {

6

7 DeleteIntentOptions options = new DeleteIntentOptions.

Builder(data.get(IntentData .

KEY_WORKSPACE_ID),

8 data.get(IntentData.KEY_NAME)).build();

9

10 module.getUtil().deleteIntent(options).enqueue(new

ServiceCallback<Void>() {

11 @Override

12 public void onResponse(Void response) {

13 callback.onCallback(response);

14 }

15

16 @Override

17 public void onFailure(Exception e) {

95

A Sources

18 module.getErrorListener().onError(e.getMessage

());

19 }

20 });

21 }

22 }

Listing A.1: DeleteIntentTask as part of IbmWatsonModule configuration

96

List of Figures

1.1 Acceptance of chatbots worldwide in 2017 (Own representation based on

[6]) . 2

2.1 History of Chatbots [8] . 7

2.2 Number of chatbots in Facebook Messenger between June 2016 and

January 2018 (Own representation based on [18]) 9

2.3 IBM Watson against Ken Jennings and Brad Rutter [23] 11

2.4 System architecture of a custom application using IBM Watsons Assistant

[26] . 12

2.5 Demo-Dialog created with IBM Watson Assistant 15

2.6 Comparison of different dialog instances 16

3.1 Conversation between elder woman and a conversation agent [33] 20

3.2 Conversation with Woebot with different types of answers 22

3.3 Conversation with Babylon Health about the symptom headache 24

3.4 Conversation with Babylon Health about depression 25

5.1 Overview of the system process . 37

5.2 Comparison of log-in screens . 40

5.3 Register process of an expert . 41

5.4 Comparison of Topic-List-View screens 42

5.5 Chat history of a demo chat. 43

5.6 System architecture of Conversation SDK 45

5.7 Speech Bubble of the chatbot . 49

5.8 ConversationCase architecture used in this master’s thesis 51

5.9 Procedure of handling different cases . 52

5.10 Adding new knowlege to IBM Watson Assistant 57

5.11 Interaction between chatbot services and the central knowledge base . . 58

5.12 Structure of the central knowledge base 60

97

List of Figures

5.13 Example of a possible mapping scheme for IBM Watson Assistant and

Google Dialogflow . 63

7.1 Question and Answer as a result of the parsing process of Knowledge

Connector . 79

7.2 Found entities after analyzing Wikipedia entry about "test anxiety" 80

7.3 Personality characteristics after analyzing the Twitter -Account of @Oprah

(EN) . 81

8.1 Possible conversation between patient and chatbot (A) 85

8.2 Possible conversation between patient and chatbot (B) 85

8.3 Possible conversation between patient and chatbot (C) 86

8.4 Possible conversation between patient and chatbot (D) 86

8.5 Possible conversation between patient and chatbot (E) 87

8.6 Possible conversation between patient and chatbot (F) 87

8.7 Possible conversation between patient and chatbot (G) 88

98

List of Tables

2.1 Possible Entities to reduce the amount of Examples 14

5.1 ConversationTypes as a result of the combination of DATA_TYPEs &OP-

ERATION_TYPEs . 47

99

Name: Jens Winkler Matriculation number: 937219

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other

sources or tools than the ones specified.

Ulm, .

Jens Winkler

	Introduction
	Purpose of this Thesis
	Structure of this Thesis

	Fundamentals
	Definition of Chatbot
	Rule-Based vs. Artificial Intelligence
	The history of Chatbots
	IBM Watson
	IBM Watson Assistant

	Related Work
	Woebot
	Babylon
	Discussion

	Requirements
	Functional Requirements of the Mobile Application
	Non-Functional Requirements of the Mobile Application
	Functional Requirements of the Back-end Application
	Non-Functional Requirements of the Back-end Application
	User Requirements

	Concept and Architecture
	Overall System
	Mobile Application
	Back-End Application

	Implementation Aspects
	Conversation SDK
	TaskQueue
	ConversationCase

	Future Prospect
	Universal Chatbot
	Make it smarter

	Conclusion
	Sources

