Ulm University | 89069 Ulm | Germany Faculty of Engineering
and Computer Science
Institute of Databases and
Information Systems

Discovery and Evaluation of Coordina-
tion Patterns for Business Processes in
many-to-many Relationships

Master’'s Thesis at Ulm University

Submitted By:
Marisol Schwarz Rosado
marisol.schwarz-rosado@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Rudiger Pryss

Supervisor:
Sebastian Steinau

2019

Version March 24, 2019

© 2019 Marisol Schwarz Rosado

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/

or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.

Satz: PDF-ISTEX 2¢

Abstract

Today, organisations use process-oriented systems to manage and automate the enact-
ment of their business processes. The cornerstone artifact is the process model, which
at design-time is used to describe the steps that need to be fulfilled in order to reach a
business goal. At run-time, the process model is executed and process instances are
created. The existing modelling approaches are based on three main paradigms: the
more traditional activity-centric paradigm, the case handling paradigm and the more
recent data-centric paradigm.

Process models can be classified into monolithic and interacting process models. Mono-
lithic process models are predominantly created in the activity-centric and case-handling
paradigm. In a monolithic process model, all the involved resources and activities are
contained in one vast model. In monolithic process models, interactions occur between
the different partners involved in a cross-organisational setting which exchange mes-
sages with one another. Interacting process models are prevalent in the data-centric
paradigm. In interacting process models, interdependent processes interact with one an-
other such that on a meta-level a composite business process is achieved. In both types
of models, interactions between interrelated processes need to be properly coordinated
such that a common business objective can be reached.

Handling the complexity generated by highly interconnected scenarios, involving hun-
dreds of processes, is a challenge in business process management. Process manage-
ment systems for such collaborations must be capable of handling both synchronous
and asynchronous process interactions. In the context of process management systems,
different pattern catalogues such as the Service Interaction Pattern or Correlation Pat-
tern have been used for describing fundamental types of interactions that repeatedly
arise during business process modelling. Yet, until now, none of the existing pattern
catalogues has explicitly tackled the interactions of heterogeneous business processes
in a many-to-many relationship setting. Furthermore, the existing pattern catalogues
for the interaction-perspective are not paradigm independent, but mainly focus on the
activity-centric paradigm.

For modelling multiple interacting processes with different dependency constraints, a
collection of patterns that explicitly describes interactions among processes in different
types of relationships, in a paradigm-independent manner, is required. This thesis
proposes a catalogue of patterns, named the Process Coordination Patterns, describing
process interactions in a one-to-many and many-to-many relationship setting. In the
developed pattern catalogue, the discovered seven patterns are illustrated by abstracting
from any specific paradigm. The PCPs may be used as guidance for evaluating the
degree to which existing approaches capture more complex process interactions. In this
thesis, the proposed pattern catalogue is put into practice by evaluating the degree to
which two modelling approaches, based on different paradigms, can support the seven
Process Coordination Patterns.

1.

Contents

Introduction

1.1. Motivation
1.2. Contribution
1.3. Outline. e

Fundamentals
2.1. PatternContext
2.1.1. Basic Concepts of Multiple Process Interactions
2.1.1.1. ProcessNotion.
2.1.1.2. Concurrency/Parallelism
211.3. Relations,
2114, Interactions
2.1.2. Comprehensive Concepts of Multiple Process Interactions
2.2. PatternFormat
2.3. Graphical Representationof PCPs

Process Coordination Patterns

3.1. PCPCatalogue e
3.1.1. PCP 1 Simple Succession.
3.1.2. PCP 2 Concurrent Succession
3.1.8. PCP3Choice
3.1.4. PCP4Coexistence
3.1.5. PCP 5 Synchronisation
3.1.6. PCP 6 Selective Synchronisation
3.1.7. PCP 7 Reassignment,

3.2. Acquired Insights during the Process of Pattern Discovery

Evaluating the Support of Process Coordination Patterns
4.1. Evaluation Methodology
4.2. Scenario 1: Paper Selection Process of a Conference
4.2.1. Process Description o
422. Patterns Overview
4.3. Scenario 2: Built-to-Order Process
4.3.1. Process Description
4.3.2. PatternsOverview
4.4. Conclusions and Statistics,
4.4.1. Models and Exemplary Patterns Implementation
4411. BPMNmodels
4.41.2. PHILharmonicFlows models
4.4.2. Overview of EvaluationResults
4.4.3. BPMN Evaluation

Contents

4.4.4. PHILharmonicFlows Evaluation
445. Threatsto Validity
4.4.6. Interesting Findings

. Related Work

. Summary and Outlook
6.1. Summary
6.2. Outlook e

. Appendix

Introduction

1.1. Motivation

The increasingly competitive business environment is compelling organisations to pursue
various innovative means to reduce costs and satisfy customer demands. Organisations
have recognised business processes as a target for optimisation in order to stay com-
petitive and succeed in the market. For this purpose, Business Process Management
(BPM) is a common practice followed by a large number of organisations in all business
areas [21, 27].

The field of BPM stems from the notion of business processes as being pervasive, in
other words business processes are fundamental components of modern organisations.
The idea of a business process can be traced back to the Industrial Revolution where
large-scale automation changed the concept of production. Individuals who formerly
conducted processes on their own were arranged into groups of specialised workers.
Each individual worked on single repetitive activities that formed part of an overall
business process. The Industrial Revolution marked a transition for workers from
generalists to specialists while the process itself became the means for coordinating the
individual activities that led to the desired production output [43]. BPM recognises that
due to their close relationship to a company’s product or services, managing business
processes adequately enables an organisation to faster respond to market changes and
quickly adapt to business environments [5, 43].

Over time, different paradigms have emerged on how to manage business processes.
The main ones are the activity-centric, the case-handling and the data-centric paradigm.
Within each paradigm, several approaches exist and new ones are constantly being
proposed. Approaches keep emerging because they aim to capture business scenarios
in a form that reflects real-world processes more accurately. Based on these approaches,
today organisations use Process Management Systems (PrMS) for optimising and
automating their business processes. The core element of those process-oriented
systems is the process model, which at design-time describes the steps that need to be
fulfilled in order to reach a business goal. At run-time, the process model is executed and

'In the literature some authors use the terms business processes and processes as synonyms. Tough, in
the context of this thesis, business processes are related to business organisations, as they define how
to achieve the goals of the organisation and thus they are a subset of the set of processes.

1. Introduction

process instances are created [14, 28, 39]. In approaches that are part of the activity-
centric paradigm a process model is composed of activities assigned to resources which
are executed in a pre-specified order [13, 14, 43, 60]. In the case-handling paradigm,
a process model is also illustrated with activities carried out by resources, however
the process model allows more flexibility concerning the order in which activities are
executed [20, 38, 56, 58]. In the data-centric paradigm, a process model consists of
several interdependent data objects, each of them with a determined lifecycle that may
interact with those of other data objects [6, 16, 25, 36]. 2

Process models can be classified into monolithic and interacting process models. Mono-
lithic process models are predominantly created in the activity-centric and case-handling
paradigm. In a monolithic process model, all the involved resources and activities are
contained in one vast model. In monolithic process models, interactions occur between
the different partners involved in a cross-organisational setting which exchange mes-
sages with one another. Interacting process models are prevalent in the data-centric
paradigm. In interacting process models, interdependent processes interact with one an-
other such that on a meta-level a composite business process is achieved. In both types
of models, interactions between interrelated processes need to be properly coordinated
such that a common business objective can be reached [8, 29, 43, 54].

Monolithic process models have proven to be applicable in modelling business scenarios
where the process flow is determined by activities that need to be executed in a prede-
fined order such as accounting, insurance handling or use of municipal services [29]. In
such scenarios, only a few interactions between single process participants need to be
handled. However, when modelling business scenarios with numerous interactions as
found in logistics, production and human resources management, monolithic process
models may not represent them adequately. Describing the overall business process in
one model may not properly capture the nature of numerous interacting processes that
have different relationships with one another [34, 36]. Modelling scenarios with several
interacting processes requires changing the perspective from one vast unfragmented
process to rather elementary processes that interact with one another at certain points
in time [47, 54].

In the IT domain, pattern catalogues such as the Service Interaction Pattern [4, 55]
and Correlation Pattern [3] have been used as the highest level of abstraction for
identifying and describing a number of recurrent characteristics of process interactions
to be modelled. However, both pattern catalogues are not paradigm-independent and
mainly focus on monolithic process models. The interactions are typically based on the
exchange of messages between single process participants that are part of the overall
process model. Consequently, those pattern catalogues do not fully cover numerous
interactions among heterogeneous process instances in one-to-many (7:n), many-to-one
(m:1), and many-to-many (m:n) relationships.

2A detailed description of the mentioned paradigms is beyond the scope of this thesis. The reader may be
referred to the cited sources for details.

1. Introduction

Hence, it is essential to look at interacting processes at a comprehensive level, in
order to properly model scenarios with numerous interacting process instances in
different types of relationships. A pattern catalogue that explicitly captures interactions
of processes in different types of relationships in a paradigm-independent manner is
needed. Even though some papers in the literature mention the problematic nature of
capturing interactions among process instances that have relationships which go beyond
one-to-one (1:1), an appropriate pattern catalogue has not been proposed to date
[16, 28, 51, 54]. This research gap arises from the fact that scenarios with numerous
interacting processes have been mostly ignored by process designers. The reason for
this is that popular process modelling paradigms do not focus on interactions.

Motivated by the existing research gap, this thesis aims to provide a collection of
the different types of interactions that may exist among process instances that have
relationships with one another of the type 7:n, m:1 and m:n. This thesis proposes a
catalogue of patterns, named the Process Coordination Patterns (PCPs) that describe
and visualise principles for coordinating interactions among numerous related process
instances at run-time. The PCPs intend to provide a framework that supports process
designers in modelling business scenarios involving complex process interactions. The
PCPs may be further used as guidance for evaluating the degree to which existing
approaches capture more complex process interactions.

1.2. Contribution

Over the past decade the broad range of PrMS supporting the design and enactment of
business processes called for formal conceptual foundations. The aim was to use those
foundations as a reference point for the evaluation and improvement of PrMS, in both
the commercial and research domains [33, 61]. In 1999, the Workflow Patterns Initiative
was started in an effort to identify a conceptual foundation for assessing the strengths
and weaknesses of existing approaches for process specification and implementation.
An empirical method for identifying requirements for PrMS on a recurrent basis has
been applied since then, documenting them in the form of patterns. This pattern-
based approach represents means for describing core conceptual constructs inherent in
process technology. Patterns can be used to evaluate the suitability of a wide variety
of PrMS [43]. Whilst the first pattern catalogue, which was published in 2003 only
focused on the control-flow perspective of business processes [57], over time new
pattern catalogues focusing on other core perspectives have been released. At present,
the prevailing perspectives encompass the data-[15, 42, 44], flexibility-[33, 37, 59],
interaction-[3, 4, 55], resource-[17, 42] and time-perspective [26] among others.

However, the existing pattern catalogues are not paradigm-independent. They mainly
describe a series of constructs and characteristics and offer solutions to problems
frequently encountered in existing PrMS based on monolithic process models. This poses
a problem especially when complex business scenarios involving multiple interactions

1. Introduction

among related process instances are to be modelled by taking the existing patterns as
guidance. The existing pattern catalogues do not fully address relationships of the type
1:n, m:1 and m:n that interacting process instances may have with one another.

On the one hand, the pattern catalogues for the interaction-perspective acknowledge
the fact that the number of interacting process instances pose a significant challenge for
process modelling [3, 4, 55]. On the other hand, they still primarily focus on situations
with just a few isolated process instances which interact with one another via message
exchanges. However, the real challenge is to cope with scenarios where the number
of interacting process instances in different relationships begin to scale up. Hence,
business scenarios involving multiple interacting process instances may not be modelled
in detail with the existing pattern catalogues for the interaction-perspective. An example
is a recruitment process, where the invitation for a job interview depends on the number
of positive reviews assigned to an application.

A comprehensive catalogue of patterns describing interactions and relationship types
between several process instances at a comprehensive level and which abstracts from
specific paradigms is required. However, such a pattern catalogue describing multiple
process interactions in an abstract and simple manner has not been provided so far. On
that account, the set of patterns provided in this thesis, the PCPs, aim to serve as a
generic basis for evaluating the extent to which existing BPM approaches can be used for
modelling interactions among process instances that go beyond a 7:1 relationship. The
PCPs thus consider 1:n, m:1 and m:n relationships. The proposed PCPs may be used
to spot the difficulties that existing BPM approaches have when dealing with complex
process interaction. Based on the findings, process designers could be able to modify or
extend the approaches, such that these provide a more complete support for modelling
complex process interactions. It is not claimed that the present pattern catalogue
gathering seven patterns is complete. The PCPs are the result of an explorative work
as they have been discovered by looking at business scenarios involving numerous
interacting processes. In the future it is likely that more rare patterns may be found and
added to the current catalogue.

1.3. Outline

The remainder of this thesis is structured as follows. Chapter 2 describes the fundamen-
tals for understanding the context of the PCPs; in particular the notions of processes,
concurrency, relations and interactions are presented. Furthermore, this chapter com-
prises the pattern format used and the graphical notation for describing the PCPs.
Chapter 3 describes the PCP catalogue in detail. Chapter 4 evaluates how two method-
ologically selected modelling languages based on different paradigms support the PCPs.
Chapter 5 discusses related work, before concluding the paper with a summary and an
outlook in Chapter 6.

Fundamentals

This chapter describes the basic concepts and notions needed for understanding the
context in which PCPs are used. The notions of processes, concurrency, relations and
interactions are presented. Based on the described concepts and notions, comprehens-
ive concepts related to multiple process interactions are introduced. Furthermore, the
format used to describe the patterns and the graphical notation employed to illustrate
them are explained in this chapter.

2.1. Pattern Context

This thesis belongs to the BPM field of techniques and tools to support the design and
enactment of operational business processes. While modelling and executing business
processes, it is important to realise that there is a great variety in which related processes
may interact with one another. At specific points in time some processes engage in
single interactions, while others are interlinked in multiple interactions. The design of
scenarios involving numerous process interactions in a comprehensive manner requires
looking at process interactions at a comprehensive level. The following running example
may be used throughout this section to delineate the basic concepts of multiple related
and interacting processes.

Running example: /n a logistics process a customer order placed at an online shop may
contain several products. Based on the availability of the products, the customer
order may be split into multiple packages. The packages related to one customer
order in turn may be distributed with multiple delivery tours at various points in
time. While one package has been already delivered, another one belonging to the
same customer order may be prepared for delivery. Typically, each delivery tour
comprises several packages from different customer orders while one customer
order is related to several delivery tours. This relation between customer orders
and delivery tours constitutes a many-to-many (m:n) relationship. On each delivery
tour, the packages are delivered one after the other. In case that a package cannot
be delivered, it is rescheduled for another delivery tour. If once again the package
cannot be delivered, it is then returned to the shop as undeliverable. Once all
packages corresponding to a customer order have been processed, the order is
billed to the customer.

2. Fundamentals

From the running example it may be deduced that in such scenarios several instanti-
ated processes are interrelated through different types of relationships. Furthermore,
process instances that have been instantiated from the same process may be executed
concurrently. Moreover, process instances interact with other ones at certain points
in time based on specific conditions. Those statements shall be explained in-depth
by abstracting the basic elements and concepts of multiple process interactions in the
subsections hereafter. The catalogue of PCPs is compiled based on these foundations.

2.1.1. Basic Concepts of Multiple Process Interactions
2.1.1.1. Process Notion

A generally accepted technique on how to model business processes does not exist.
As a result, the BPM field is filled with different paradigms for the modelling of business
processes such as the activity-centric paradigm, the case-handling paradigm and the
more recent data-centric paradigm [43]. Nonetheless, when looking at all paradigms
together a common notion of what constitutes a business process can be abstracted.
All paradigms have in common how a business process is perceived: the fulfilment of
particular steps towards a specific goal.

This common notion is the motivation for the PCPs to describe business processes in a
generic manner. In the context of the PCPs it is postulated that a business process may
be regarded as a composite system of distinct individual types of processes, so-called
process types. These are instantiated and interact with one another at certain points in
time in order to accomplish a common goal. In the logistics process described in the
running example, three different process types can be distinguished: customer order,
package and delivery tour.

Within the notion of what constitutes a process, a distinction between process type and
process instance has to be made. While process types represent entities at design-time,
process instances represent entities of instantiated process types at run-time.

Each process type may follow a lifecycle describing the process’s behaviour. The lifecycle
of a process type may be seen as a state-based-view describing the execution states of
the process type from its creation to its disposal. The notion of state-based-views has
been borrowed from the object-aware process paradigm [47], because it allows for a
more generalised view on processes. In particular, the idea of state-based-views fosters
an abstract perception of processes such that the PCPs may project processes in a
paradigm-independent manner. In the following, only the concepts of the state-based-
view that are relevant for the understanding of this thesis are mentioned; further details
can be found in [1, 25, 47].

Every process type has its own individual lifecycle such that state-based-views of process
types differ in states and lengths of the lifecycle. A state-based-view may be illustrated
as a directed graph consisting of nodes and directed edges connecting the nodes. The

2. Fundamentals

nodes represent the states of the process’s lifecycle, while the directed edges represent
transitions indicating that the process may pass from one state to another but not vice
versa. Thus, transitions put states into an unidirectional sequence. There is one start
state Sg , an arbitrary number of intermediate states S; and at least one end state Sg.
The directed structure of the lifecycle implies that only one state can be executed at
a specific point in time, i.e. only one state may be active. Consequently, branching
transitions in the state-based-view thereby have a XOR-semantic. The return to a
previous state within the lifecycle may be exceptionally enabled by backwards transitions,
which may be pictured as reversed edges. While the start state Sy is the only one that
is not the destination of any transition, the end state Sg is the only one that is not the
source of any transition.

In the following, the running example is used to illustrate the described concept of the
state-based-view. An exemplary illustration of the state-based-view of the process type
package derived from the process description is shown in Figure 2.1. In this illustration
none of the states is active such that the state-based-view generally describes the
lifecycle of the process type package at design-time. The lifecycle of a package starts
with the package being packed, then the package is loaded into the delivery truck. In the
next state the delivery of the package takes place and the package is either delivereq,
or in case that a delivery fails, the package is rescheduled for delivery. If a rescheduled
delivery fails again, the package is finally returned to the store as undelivered. After
a package has been either delivered or returned as undelivered the lifecycle of the
package ends with the package being marked as processed.

End State Sy,

V—A—V

Delivered \
Start State Sy Intermediate State S, Rescheduled Processed
I]
! ! Transition I
—t—
} XOR-Semantic

Pack Load Delivery Undelivered

Delivered

Figure 2.1.: State-based-view of the Process Type Package at Design-time

2.1.1.2. Concurrency/Parallelism

At run-time state-based-views capture the behavior of individual process instances.
A process type can be instantiated multiple times, such that several single process
instances from the same process type coexist.

Going back to the running example, a customer order may be split into several packages,
such that at run-time multiple process instances of the type package may be created.

2. Fundamentals

However, process instances are not necessarily instantiated all at once but at different
points in time. For example, process instances of the type package are instantiated
based on the availability of the products in stock. In this case a package may be packed
with those products and loaded into the delivery truck. In the meantime, products that
are not in stock are ordered and once they arrive the next package might be prepared.
Hence, process instances that have been instantiated from the same process type at
either the same or different points in time may be situated at different states of their
lifecycle. Process instances travel through their corresponding lifecycle at their own pace
mostly independently from other process instances. In other words, process instances
may run asynchronously and concurrently.

The notion of concurrent process instances at run-time is pictured in Figure 2.2 where
the active states of the process instances are marked. While package, is situated in the
state processed of its lifecycle, package, is in the state rescheduled.

Figure 2.2.: Concurrent Process Instances Package, and Package, at Run-time

While in general terms concurrent and in parallel are mostly used as substitutes in
the general literature, in the Computer Science domain the meaning differs. The term
concurrent relates to the alternating execution between two threads such that they
advance independently of each other on the same processor. Thread one is first
executed and then suspended; thereafter thread two is executed, suspended and so
on. The term in parallel refers to two threads, both being executed simultaneously
on different processors - that is literally at the same time [52]. In the context of this

2. Fundamentals

thesis, this distinction is mostly unnecessary, so for reasons of simplicity only the term
concurrent is used, summarising concurrent and parallel execution.

2.1.1.3. Relations

Between different process types different types of relations may exist. A relation can
be of the type 71:1, 1:n, m:1 or m:n. At design-time, relations indicate that the involved
process types have something to do with each other. This means that at run-time,
process instances that have been instantiated from related process types may interact
with each other at a specific point in time. In the running example several relations
between the involved process types can be found. One order may be split into several
packages, which poses a one-to-many relation. Several packages may be distributed
with one delivery tour, which constitutes a many-to-one relation. Multiple orders from
distinct customers may be distributed with distinct delivery tours, which represents a
many-to-many relation.

In order to look at process relations in detail, relationships between process types can
be further divided into incoming and outgoing relations. Based on this, in the context
of the PCPs, it is set that relations between process types are directed. Depending on
incoming and outgoing relations, process types are differentiated into source process
types and target process types at design-time. Source process types have outgoing
relations while target process types have incoming relations. By analogy, at run-time
related process instances are differentiated into source process instances, which have
outgoing relations and target process instances, which have incoming relations.

At design-time, process types may not only be related to one further process type but
to several process types where each relation can be of a different type. Consequently,
based on the context, one process type can be a target process type in one relation and
a source process type in another relation. The same applies for process instances at
run-time.

The relations set at design-time for the process types of the running example are
illustrated in Figure 2.3. The process type order has a one-to-many relation to the
process type package where the former is the source process type and the later is the
target process type. The relation between the process types is pictured as a directed
dashed edge with the type of relation indicated above. In turn, the process type package
has a many-to-one relation to the process type delivery tour. In this relation the process
type package is a source process type while delivery tour is the target process type.

2. Fundamentals

Figure 2.3.: Relations between Process Types at Design-time

Different process types and the multiple relations between them may generate large
process structures, which can become very complex when enacting them at run-time.
Commonly, multiple source process instances may be related to multiple target process
instances. Knowing which source process instances are related to which target process
instances at run-time is relevant for handling process interactions adequately.

For this purpose, the PCPs are used for identifying and managing the relations that
may exist between process types in business scenarios. This is achieved through a
parameter which is pre-defined at design-time. This parameter specifies the number of
source process instances that may be related to a number of target process instances at
run-time, this degree of relation being referred to as cardinality.

In the context of the PCPs, a relationship represents by default a m:n relationship
between the related source and target process types where the cardinality m is as-
signed to the source process type and the cardinality n to the target process type.
Furthermore, each of the cardinalities m and n may be restricted by a lower and an
upper bound of the form miower, Muppers Mowers Mupper SUCHh that the number of pro-
cess instances in relationship with each other can be restricted at run-time. It applies

(Miower < mupper): (Niower < nupper) -
By setting cardinality restrictions, relationships may also be reduced to a 7:n, m:1 or 1:1
relationship. Cardinality restrictions imply that related process instances may only be
created within the values assigned to the bounds.

In this context, the lower bound m,wer Specifies the minimum number of source process
instances that can be related to target process instances, that lie within the range
Niower--Nupper aSSigned to the target process instances. The upper bound mpper Specifies
the maximum number of source process instances that can be related to target process
instances, that lie within the range niower-.-nupper @ssigned to the target process instances.

Based on the stated concepts concerning the assignment of cardinalities, the following
notation may be used for the PCPs:

10

2. Fundamentals

(mlower . -mupper) : (nlower . -nupper)

In the following, the running example is used for describing the established concepts.
Within the logistics process it may be determined that for economic reasons the delivery
truck driven in a delivery tour must load at least 20 medium size packages out of the
maximal capacity of 50 medium size packages before the delivery process is started. In
this scenario the cardinality m assigned to the source process type package and the
cardinality n assigned to the target process type delivery tour at design-time is written
as (20..50) : 1, where mygwer = 20, Mypper =50, Nyower =nupper=1. This relation specifies
that at run-time not less than 20 packages and up to 50 packages may be loaded into
one delivery truck. The defined upper bound mppe: = 50 assigned to the process type
package states that further process instances of the type package may be packed and
loaded into the delivery truck as long as the upper bound is not exceeded. For example
if 48 process instances of the type package are already loaded into the delivery truck,
up to two additional packages could be packed and loaded into the delivery truck before
the delivery process is started.

2.1.1.4. Interactions

As it has been stated in the sub-subsection Concurrency/Parallelism, at run-time process
instances are in principle independent from one another, each one travelling through its
corresponding lifecycle at its own pace. However, interactions among related process
instances are necessary at certain points in time. Therefore, directed relations among
process types are already established at design-time. Directed relations indicate that
source process instances may interact with related target process instances at run-time.

In a general way, interactions stand for process dependencies, indicating that the
execution of certain process types may depend on the execution status of other process
types. While commonly each process instance runs independently from others, at a
specific point in time a number of process instances of the same type needs to be
synchronised before related process instances can be executed.

Going back to the running example, a typical interaction is that an order cannot be billed
to a customer unless all packages related to that specific order have been processed.
For example, if an order is split into three packages and package, is in state processed,
while package, is in state delivery and packages in state rescheduled, the bill may be
issued only when all three packages are synchronised as processed.

Inherently, interactions between related process instances imply that the synchronised
execution state of a number of source process instances needs to be coordinated" with
the execution state of related target process instances for the overall business process
to advance. In conclusion, the execution of target process instances depends on the

"The name assigned to the PCPs is derived from this concept. The term interaction is intentionally not part
of the name assigned to the PCPs in order to stand out from the patterns in the interaction-perspective
already proposed by other authors.

11

2. Fundamentals

execution status of related source process instances. However, after interactions have
taken place, source and target process instances may continue through their lifecycles
concurrently and asynchronously to each other.

The number of source process instances that are synchronised into a specific execution
state represent a threshold value which needs to be reached such that related target
process instances can be executed. In the context of the PCPs, this threshold value is
denominated as w. Likewise the cardinality restrictions mjower @nd mypper, the threshold
value w is assigned to a source process type. Due to the dynamics of business processes,
where instances may be created or deleted at any point in time, w may be assigned
at both, design- and/or run-time. For w applies that it must lie between the lower and
upper bounds migwer, mupper Of the source process type, such that the following equation
holds:
(mlower Sw< mupper)

Bringing together the notions of cardinality and threshold value assignment, follows:
(mlower <w< mupper)s (nlower < nupper)

Interactions among related process instances can be illustrated using state-based-views.
In Figure 2.4 the example described above is exemplarily illustrated.

Figure 2.4.: Interactions between Process Instances at Run-time

It can be seen that three process instances of the type package that are related to one
process instance of the type order are synchronised into the state processed. The
synchronised states of the process instances are visualised with coloured markings
(blue). Based on the execution status of the source process instances package 5 3, the
target process instance order, can proceed into the state bill. This is visualised with the
coloured marking (blue) of the state bill. Dashed edges going out from the execution
states processed of the process instances package, 5 5 into the execution state bill of
the target process instance order; visualise the resulting interaction.

12

2. Fundamentals

Concerning the cardinalities, in this scenario the cardinality m assigned to the source
process type package and the cardinality n assigned to the target process type order
are written as (1..n) : 1, where migwer = 1, Muypper = N, Niower = Nupper = 1. This relation
specifies that at run-time at least one package and up to n packages are related to one
order.

Regarding the threshold value w, the condition "once all packages are processed..."
represents the number of source process instances of the type package that need to be
synchronised such that a related target process instance of the type order may be billed.
In this case it applies w = n, such that w = mype, = n With n specifying the maximal
number of packages that can be related to an order.

2.1.2. Comprehensive Concepts of Multiple Process Interactions

In the PCPs context, a set of process instances is denoted as A,,, where A is the name
of a specific process type and n is a unique identifier assigned to individual process
instances. In order to easily differentiate between source and target process types,
in this thesis, the characters A to F are assigned to source process types, while the
characters U to Z are used for target process types. For example, a source process type
A may have instances A;, Ay, As..A, which may be related to target process instances
Ui, Us, Us..U,.

For reasons of understandability, until now the presented concepts have only taken into
account interactions between the instances of two related process types, i.e. one source
process type and one target process type. However, the discovered PCPs reveal a
context where multiple interdependent process types need to interact in order to reach
a specific business goal. More precisely, one source process type may be related to
numerous target process types and also numerous source process types may be related
to one common target process type. In those cases two scenarios arise: a) multiple
instances of one source process type may interact with multiple instances of several
related target process types and b) multiple instances of several source process types
may interact with multiple instances of one common target process type.

The PCPs take into account multiple relations and enable the assignment of different
cardinalities and threshold values among process types. To be more precise, in the
scenario a) where one source process type is related to several target process types,
different cardinalities n may be assigned to the target process types. However, the
cardinality m and threshold value w assigned to the source process type must remain
the same. This is due to the fact that, the execution of all target process types depends
on the execution status of the related source process type.

Conversely, in the scenario with several source process types related to one target
process type, the cardinality m as well as the threshold value w assigned to source
process types may vary for each one. However, the cardinality n assigned to the common
target process type must remain the same. That follows from the fact that, the execution

13

2. Fundamentals

of the common target process type depends on the execution status of all related source
process types.

On a related note, when referring to the threshold value w assigned to source process
types, the following haming convention applies in the context of the PCPs: w”, where
superscript A indicates the source process type to which the threshold value w is
assigned.

To clarify the described concepts, the following scenario may be used as an example.
Two medical tests A and B exhibiting a probability of errors, may be performed several
times within a month. Depending on the number of positive results of both tests a
reliable diagnosis Z can be made. The medical tests A and B may be performed up
to three times each. Medical test A requires a minimum of one positive result and test
B a minimum of two positive results before a disease can be surely confirmed. The
described example is illustrated in Figure 2.5.

Figure 2.5.: Example Scenario of Multiple Relations between Process Types

In this scenario the source process types A and B are related to one common target
process type Z. Hence, in general different cardinalities m;, m; may be distinguished
and assigned to each source process type. Thus, the different cardinalities for processes
A and B can be denoted as m” and m®. The cardinality n? may be assigned to the
target process type Z, with which the source process types A and B are both related.
Moreover, two threshold values w” and w® may be distinguished and assigned to the
source process types A and B.

The cardinality assigned to the source process type A and the target process type Z
is written as (1..3):1, where m?_ .. = 1, m*, oc = 3, n% e =% pper = 1 and the
threshold value w*= 1. This notation specifies that at run-time at least one test and at
the maximum three tests of the type A may be related to one diagnosis Z. The threshold
value w® = 1 represents the number of tests A that must be positive for a reliable

diagnosis Z to be made.

14

2. Fundamentals

The cardinality assigned to the source process type B and the target process type Z
is written as (2..3):1, where m”_ .. = 2, mB, ., = 3, n% 0 =n%pper = 1 and the
threshold value w® = 2. This notation specifies that at run-time at least two and up to
three test of the type B may be related to one diagnosis Z. The threshold value w®= 2
represents the number of tests B that must be positive for a reliable diagnosis Z to be

made.

However, only if both threshold values w” and w? have been reached, a conclusive
diagnosis Z can be made. In other words, once a determined number of source process
instances A,, and B,, reach a specific execution status, a common target process
instance Z; can be executed.

In this context, the question may arise as to what occurs with unsynchronised source
process instances that remain after the threshold value w has already been reached.
This scenario arises when the threshold value w does not involve the whole set of
existing source process instances but only a subset such that w < mpe-. Whether the
remaining process instances might be discarded or remain with no further effect is left
as a design choice to the process designer.

Going back to the scenario with the two medical tests A and B, an example illustrated in
Figure 2.6. is used to clarify the described approach.

Figure 2.6.: Example Scenario of Multiple Process Interactions and Remaining Process
Instances

It may be assumed that at run-time the performed medical test A; is evaluated as
inconclusive while two performed medical tests B, and B, are evaluated as positive. In
the event that a second test A is performed and evaluated as positive, a conclusive
diagnosis Z could be made. In this scenario medical test A; is not part of the resulting
interactions between process type A and process type B with the common process type
Z. Whether medical test A, is discarded or archived is thus left as a design choice. In
the illustrated example remaining process instances are archived.

15

2. Fundamentals

As mentioned throughout this sub-subsection the number of source and target process
types related to one another may vary. The specific combination of related source and
target process types constitutes a concrete pattern. In this context, the default quantity
of process types that constitute each pattern is defined with the parameters Pgsource
and Prgrget- Psource Circumscribes the minimum number of source process types,
while P4 Circumscribes the minimum number of target process types necessary for
forming the pattern.

16

2. Fundamentals

2.2. Pattern Format

Patterns provide descriptions for frequently recurring problems that PrMS are facing.
A prerequisite for the effective application of patterns is documenting them using a
systematic approach. To ensure a comparable and precise description, the Process
Coordination Patterns proposed in this thesis are documented uniformly, based on the
pattern standard template proposed by Gamma et al. in [18]. The pattern format used in
this thesis contains the following sections:

* Name: A succinct name describing the essence of the pattern.
» Essentials: The rationale and intent of the pattern.

» Prerequisite: The specific combination of related source and target process types
that constitute the pattern.

* Description: A short summary of the pattern’s functionality.

+ Structure: A graphical representation of the pattern’s functionality using a generic
and language-independent notation.

« Example: An illustrative example of the pattern’s applicability.
* Remarks: Issues potentially encountered when implementing or using the pattern.

The sections description, structure and example are used for depicting 1:1, 1:n/ m:1 and
m:n relationships for each pattern, so that the concept of different process interactions
can be understood.

17

2. Fundamentals

2.3. Graphical Representation of PCPs

The graphical representation of the PCPs is based on simple graphic elements and
constructs. The representation aims to capture the different types of relationships that
interacting process instances may have with one another. Relationships may be of the
form 1:1, 1:n/m:1 and m:n. The graphic elements of the PCPs are shown in Figure 2.7.

Figure 2.7.: Graphic Elements for Describing PCPs

On the upper level of the figure process instances and their relationships are illus-
trated (1).

Process instances are visualised as rectangles with cut-off corners placed one behind
the other, referencing the process type from which they have been instantiated. Process
instances have a unique identifier n.

For example A; represents the first source process instance (2) that has been instanti-
ated from the source process type A. Accordingly, U; represents the first target process
instance (3) that has been instantiated from the target process type U.

Relationships between instances of a process with instances of another process are
expressed by directed dashed edges between source and target process instances with
the type of relationship (4) indicated above the dashed edges. As seen in Figure 2.7, the
source process instance A; and the target process instance U; have a 7:7 relationship.

18

2. Fundamentals

On the lower level of the figure the state-based-views of interacting process instances
are illustrated (5).

Interactions (6) between related source and target process instances are visualised by
directed dashed edges between specific execution-states of their state-based-views. As
shown in the figure, the interaction between A; and U; is based on the end state Sz
of the source process instance A; which is coordinated with the start state SsU of the
related target process instance U;.

Three types of interaction indicators (7) are used as visual aids to indicate the different
types of interactions that may exist among related process instances at run-time.

For the first type of interaction indicator (7.1) two cases are distinguished. The circle
with a A sign is used for indicating that: a) instances of one source process type may
concurrently interact with instances of all target process types, aa) instances of all source
process types may concurrently interact with instances of a common target process type.
The circle with a A indicates “AND” semantics.

For the second type of interaction indicator (7.2) also two cases are distinguished.
The circle with a Vv is used to indicate variations of concurrent process interactions: b)
instances of one source process type may concurrently interact with instances of one to
multiple target process types, bb) instances of one to multiple source process types may
concurrently interact with instances of a common target process type. For the case b)
applies that out of the entire set of target process types, instances of at least one target
process type are part of the interaction. For the case bb) applies that out of the entire
set of source process types, instances of at least one source process type are part of
the interaction. The circle with a Vv indicates “OR” semantics.

For the third type of interaction indicator (7.3) only one case applies. The circle with an X
is employed to indicate that: ¢) instances of one source process type may interact with
instances of not more than one target process type out of the entire set. Once instances
of a source process type start interacting with instances of a target process type, the
instances of the remaining target process types are excluded from interacting. Business
scenarios exhibiting another type of interaction than the one described here could not
be found so far. The circle with an X indicates “XOR” semantics.

19

Process Coordination Patterns

This chapter provides an overview of the Process Coordination Patterns that have
been found during the process of pattern discovery in the frame of this thesis. First,
a catalogue describing the PCPs in detail is presented. Thereafter, insights acquired
during the identification and analysis of the PCPs are discussed.

3.1. PCP Catalogue

The PCP catalogue is a collection of currently seven patterns describing different types
of interactions that may exist among process instances that have relationships with one
another of the type 1:1, 1:n/m:1 and m:n. In the PCP catalogue the interactions between
instances of different process types are explicitly modelled.

The PCPs are an abstraction of process interactions which repeatedly occur in business
scenarios, involving multiple related and interacting processes. All PCPs are based on
fundamental principles. In order to avoid unnecessary repetition when describing each
pattern, these principles are listed hereinafter:

+ At design-time a relationship represents by default a m:n relationship between
the source and target process types where the cardinality m is assigned to the
source process type and the cardinality n to the target process type. Cardinalities
specify the number of source process instances A;, A, As..A, that can be related
to a number of target process instances Uy, Us, Us..U, at run-time. Each of the
cardinalities m and n may be restricted by a lower and an upper bound of the form
Miower> Mupper> Mower> Mupper SUCH that based on the values assigned to the lower
and upper bounds of m and n, the default m:n relationship can be modified to a
1:1, 1:n or m:1 relation.

» The threshold value w specifies the number of source process instances A,, that
need to reach a specific execution state of their lifecycle such that related target
process instances U,, can be executed. The threshold value w may be assigned to
a source process type at both, design- and/or run-time. For w applies that it must
lie between the lower and upper bounds migwer, Mupper Of the source process type.

» From the principles of cardinality and threshold value assignment follows:

20

3. Process Coordination Patterns

(mlower <w< mupper)s (nlower < nuppe’r‘)
Explanatory notes for a better understanding of the PCP catalogue

» The listed examples describing process interactions are one option of many since
business processes differ from one organisation to another. Therefore, the state-
based-views and the execution-states chosen for illustrating exemplary process
interactions vary.

» Each of the presented patterns is described, illustrated and its existence is con-
firmed with an example taken from business scenarios. At first, interactions
between process instances in a 1:1 relationship setting are addressed. Sub-
sequently, interactions between process instances in a 1:n or m:1 relationship
setting are described. Finally, the more complex relationship setting m:n is presen-
ted.

» For the graphical representation of each pattern, the default quantities of related
process types that constitute each pattern is pictured.

+ For abstraction purposes in the pattern description, in the case of a 7.n, m:1 and
m:n relationship between interacting process instances, the cardinality assigned
to the process types is not a specific number but remains an abstract value. For
example in the case where instances of one source process type A interact with
instances of two target process types U and W in a 1:n relationship, the cardinality
mwith m4_ .=m4, .. = 1is assigned to A while the cardinality n" assigned to U

w

is 1Y wer=n"upper = 1 @nd the cardinality n* assigned to W is n"{ .= n"\ .. = n.

In the case of interactions between instances of A with instances of U and W in
a m:n relationship, the cardinality m with m4___.=m4, .. = m is assigned to A

upper
while the cardinality nV assigned to U is nY_..=nY

upper = T and the cardinality
nW assigned to Wis n" _=n"

upper .

21

3. Process Coordination Patterns

3.1.1. PCP 1 Simple Succession

Essentials

PCP 1 describes the basic case of process interaction. Only two process types are
involved. The execution of the target process type depends on the execution status of
the related source process type.

Prerequisite

PSource=PTarget=1

Description 1:1

The execution of one single process instance U; depends on the execution status of
another single process instance A;.

Structure 1:1

Example 1:1

A customer places an order in an online shop. Once the availability of the product in
stock is verified, a notification process can be started to inform the customer.

22

3. Process Coordination Patterns

Description 1:n

The execution of a set of process instances WW,, depends on the execution status of one
single process instance B;.

Structure 1:n

Example 1:n

A company announces a job offer. Once the position is filled in the selection process,
the review process is stopped and the remaining applications are rejected [47].

23

3. Process Coordination Patterns

Description m:n

The execution of a set of process instances V,, depends on the execution status of
another set of process instances C,,.

Structure m:n

Example m:n

A customer awards a contract to an engineering company. Once the time schedules of
several engineers are checked for remaining time slots, advisory support meetings with
the customer can be arranged.

Remarks

No interaction indicator is needed as visual aid.

24

3. Process Coordination Patterns

3.1.2. PCP 2 Concurrent Succession

Essentials

PCP 2 describes concurrent process interactions. One source process type is related to
several target process types. The execution of all target process types depends on the
execution status of the common source process type. All target process types may be
executed concurrently.

Prerequisite

PSource: 1: PTargetZ 2

Description 1:1

The execution of two or more single process instances X; and Y; depends on the
execution status of one single process instance D;. The single process instances X;
and Y7 may be executed concurrently.

Structure 1:1

Example 1:1

A customer places an order for a product. Once the order has been processed, both the
shipment and the payment processes are started.

25

3. Process Coordination Patterns

Description 1:n

The execution of two or more sets of process instances U,, and V,, depends on the
execution status of one single process instance A;. The sets of process instances U,
and V,, may be executed concurrently.

Structure 1:n

Example 1:n

A company creates a new position. After a corresponding job offer has been prepared,
multiple processes are started to publish the job offer on different portals. The job offer
may be advertised in social networking sites and in newspapers.

26

3. Process Coordination Patterns

Description m:n

The execution of two or more sets of process instances Y,, and Z,, depends on the
execution status of a set of process instances FE,,. The sets of process instances Y, and
Z, may be executed concurrently.

Structure m:n

Example m:n

A travel agency offers group tours. Once a minimum number of travellers are registered
for a group tour, both the hotel and flight booking processes for the participants are
started.

Remarks

Interaction indicator: The circle with a A is used as visual aid to indicate that one source
process type interacts with all related target process types.

27

3. Process Coordination Patterns

3.1.3. PCP 3 Choice

Essentials

PCP 3 describes mutually exclusive process interactions. One source process type
is related to several target process types. The execution of all target process types
depends on the execution status of the common source process type. Target process
types are mutually exclusive, i.e. once one of them is executed, the remaining ones are
permanently prevented from execution.

Prerequisite

PSource: 1: PTargetZ 2

Description 1:1

The execution of two or more single process instances W; and X; depends on the
execution status of one single process instance A;. The single process instances W,
and X; are mutually exclusive. Once the execution of one process instance begins, the
remaining process instances are permanently prevented from being executed.

Structure 1:1

Example 1:1

A thunderstorm destroys the roof of a property; the owner is insured and requests
the damage to be taken over by the insurance company. Based on the result of the
insurance cover evaluation process, either a payout process granting the insured amount
is approved or a rejection decision letter is send to the claimant cf. [49].

28

3. Process Coordination Patterns

Description m:1

The execution of two or more single process instances X; and Y; depends on the
execution status of a set of processes instances B,,. The single process instances X;
and Y; are mutually exclusive. Once the execution of one process instance begins, the
remaining process instances are permanently prevented from being executed.

Structure m:1

Example m:1

A company wants to slim down the product portfolio. Based on the results of an evaluation
process, the company decides which variant of a product it will continue manufacturing.
The production process of the less desired variant is stopped.

29

3. Process Coordination Patterns

Description m:n

The execution of two or more sets of process instances U,,, V,, and Z,, depends on the
execution status of a set of process instances C,,. The sets of process instances U,
V,, and Z,, are mutually exclusive. Once the execution of one set of process instances
begins, the remaining sets of process instances are permanently prevented from being
executed.

Structure m:n

Example m:n

A business manager of a supermarket chain is responsible for the procurement of several
subsidiaries. She may place several orders of the same product for different subsidiaries.
The wholesaler evaluates the urgency of delivery of the orders and based on that, he
decides for the most convenient means of carriage between airplain, train or truck.
Multiple delivery tours for the chosen transportation are set up.

Remarks

Interaction indicator: The circle with a x is used as visual aid to indicate that one source
process type interacts only with one out of the entire set of related target process types.

30

3. Process Coordination Patterns

3.1.4. PCP 4 Coexistence

Essentials

PCP 4 describes a special case of concurrent process interactions. One source process
type is related to several target process types. The execution of all target process types
depends on the execution status of the related common source process type. Target
process types are non- mutually exclusive. At least one target process type is executed.
Subsets of the set of target process types may be executed concurrently.

Prerequisite

PSource: 1: PTa’/‘getZ 2

Description 1:1

The execution of one to multiple single process instances X1, Y7 and Z; depends on the
execution status of one single process instance F;. At least one of the single process
instances X1, Y7 and Z; is executed. In the case where multiple single process instances
are executed, execution may be concurrent.

Structure 1:1

Example 1:1

A staff member must undergo a routinely health check. Based on the symptoms exhibited
by the patient during the doctor’s visit, one to several different lab tests may be conducted
cf. [53].

31

3. Process Coordination Patterns

Description m:1

The execution of one to multiple single process instances Uy, Yiand Z; depends on the
execution status of a set of process instances A,,. At least one of the single process
instances Uy, Y1and Z; is executed. In the case where multiple single process instances
are executed, execution may be concurrent.

Structure m:1

Example m:1

A staff member is submitted to an employee assessment. Depending on the results, the
following measures may be taken: specialised training, transfer to another area and/or
promotion.

32

3. Process Coordination Patterns

Description m:n

The execution of one to multiple sets of process instances U, W, and Z,, depends
on the execution status of a set of process instances B,,. At least one of the sets of
process instances U,,, W,, and Z,, is executed. In the case where multiple sets of process
instances are executed, execution may be concurrent.

Structure m:n

Example m:n

Random samples are taken from a finished product. Based on the type of the defects,
different spare parts need to be reordered.

Remark

Interaction indicator: the circle with a Vv is used as visual aid to indicate that one source
process type may interact with one to multiple target process types.

33

3. Process Coordination Patterns

3.1.5. PCP 5 Synchronisation

Essentials

PCP 5 describes concurrent process interactions. Several source process types are
related to one common target process type. The execution of the target process type
may only proceed if all source process types have reached a specific execution status.
All source process types may be executed concurrently.

Prerequisite

PSourcez 2: PTarget: 1

Description 1:1

The execution of a single process instance V7 depends on the execution status of two
or more single process instances A; and Bi, which must be all executed. The single
process instances A; and B; may be executed concurrently.

Structure 1:1

Example 1:1

A register customer places an order. Once the goods issue has been posted and the
shipping process has been started, an invoice message is sent to the customer.

34

3. Process Coordination Patterns

Description 1:n

The execution of a set of process instances W,, depends on the execution status of two
or more single process instances A, B; and ', which must be all executed. The single
process instances Ai, By and C; may be executed concurrently.

Structure 1:n

Example 1:n

In a build-to-order process of a computer manufacturer, customers order products that
are custom-built. The manufacturer procures the required components from various
suppliers. To reduce costs, the manufacturer bundles components of multiple customer
orders in different joint purchase orders. The construction process of multiple customer
orders can be started after all joint purchase orders have arrived [28].

35

3. Process Coordination Patterns

Description m:n

The execution of a set of process instances W,, depends on the execution status of two
or more sets of process instances C,, and D,,, which must be all executed. The sets of
process instances C,, and D,, may be executed concurrently.

Structure m:n

Example m:n

The construction of a building is assigned to a company. After material-orders are
placed and labourers are booked, the construction company can establish the detailed
milestones for constructing the building.

Remark

Interaction indicator: the circle with a A is used as visual aid to indicate that all source
process types may interact with a common target process type.

36

3. Process Coordination Patterns

3.1.6. PCP 6 Selective Synchronisation

Essentials

PCP 6 describes a special case of concurrent process interactions. Several source
process types are related to one common target process type. The execution of the
target process type may proceed once a subset of the set of source process types have
reached a specific execution status. Source process types are non- mutually exclusive.
At least one source process type is executed. Subsets of the set of source process types
may be executed concurrently.

Prerequisite

PSom'ceZ 21 PTarget: 1

Description 1:1

The execution of a single process instance Y; depends on the execution status of one to
multiple single process instances Dy, E; and Fy. The single process instances D1, F;
and F; are non-mutually exclusive. At least one of the single process instances D, E;
and I3 is executed. In the case where multiple single process instances are executed,
execution may be concurrent.

Structure 1:1

Example 1:1

A patient goes to a doctor for examination. Several kinds of tests are performed to check
the presence of a suspected disease. The test results may be available at different times.
Once a subset of tests has produced a positive result, a reliable diagnosis can be made
and the patient may advance to treatment cf. [49].

37

3. Process Coordination Patterns

Description m:1

The execution of a single process instance V7 depends on the execution status of one to
multiple sets of process instances A,,, B, and C,,. The sets of process instances A4,,,
B, and C,, are non-mutually exclusive. At least one of the sets of process instances
An, By, and C,, is executed. In the case where multiple sets of process instances are
executed, execution may be concurrent.

Structure m:1

Example m:1

A travel agency offers the booking of different services as part of a comprehensive travel
packaging. Once the booking processes for the hotel accomodations, car rentals and/or
tickets to key attractions have been finalised, the payment process can be initialised.

38

3. Process Coordination Patterns

Description m:n

The execution of a set of process instances W,, depends on the execution status of one
to multiple sets of process instances A,,, B,, and F,,. The sets of process instances A,,,
B, and F,, are non-mutually exclusive. At least one of the sets of process instances
An, B, and F, is executed. In the case where multiple sets of process instances are
executed, execution may be concurrent.

Structure m:n

Example m:n

In the frame of a project on rural development in an African country, seeds are distributed
to local farmers in different areas of the country. For ensuring food security, three to five
different types of seeds shall be sown in each area. Several orders for each type of seed
are placed. The sowing process in the different areas can start once the first type of
seeds is handed over to the farmers.

Remark

Interaction indicator: the circle with a Vv is used as visual aid to indicate that a subset of
the set of source process types may interact with a common target process type.

39

3. Process Coordination Patterns

3.1.7. PCP 7 Reassignment

Essentials

PCP 7 describes the dynamic change of relations among process instances during
execution. A source process instance which is related to a certain target process
instance is rerouted to a different target process instance. As a result, a relationship
emerges which did not exist before.

Prerequisite

PSourcez 1: PTargetZ 1

Description 1:1

The execution of one single process instance U; depends on the execution status of
a set of process instances A,,. The execution of another single process instance W;
depends on the execution status of a set of process instances C,,. Of the set of process
instances A,, at least one instance A, may be rerouted to a different process instance
W1 during execution. As a result, As is now related to the process instance W; and
added to the set of process instances C,, such that C;, 53 As.

Structure

Examples

» A company has published several job offers. During the review process of applica-
tions for a specific job offer, it turns out that the application of a certain candidate
may be better suited for a different job offer which is also vacant. Therefore, the
application is rerouted to this job offer for reviewing cf. [49].

40

3. Process Coordination Patterns

» A potential tenant commissions a real state agent with finding an appartment for
him. The real state agent has several applications for a specific property. During the
selection process the potential tenant may be offered a different housing property
than the originally applied for.

* In the process of selecting papers for a conference each paper is evaluated by
various reviewers. A reviewer may declare that she might not meet the deadline
for reviewing one or several papers assigned to her. As a result, these papers are
assigned to a different reviewer for evaluation [54].

41

3. Process Coordination Patterns

3.2. Acquired Insights during the Process of Pattern
Discovery

During the compilation of the PCP catalogue, the relationships between the discovered
seven patterns were analysed. It has been established that based on their similarities
the patterns can be divided into four groups.

The first pattern group consists of one pattern, PCP 1 which addresses the basic case of
process interaction involving only two process types.

The second group consists of three patterns. PCP2, PCP 3 and PCP 4 follow the same
scheme, where the execution of several target process types depends on the execution
status of one source process type, namely:

* In the case of PCP 2 the entire set of target process types is executed.
* In the case of PCP 3 at most one target process type of the entire set is executed.
* In the case of PCP 4 one to multiple target process types are executed.

The third pattern group consist of two patterns. PCP5 and PCP 6 follow a common
scheme, where the execution of one target process type depends on the execution
status of several source process types, in particular:

+ In the case of PCP 5 the entire set of source process types is executed.
* In the case of PCP 6 one to multiple source process types are executed.

The fourth group consists of one pattern, PCP 7, which compared to the other groups
seems to be out of the ordinary. PCP 7 has been added to the catalogue after being
observed in several scenarios, but its clustering not being suitable in any of the other
pattern groups. While the other six PCPs specify one scenario with related source and
process types, PCP 7 assumes more than one scenario of related source and process
types. Process instances that are part of one relation in one scenario are rerouted and
attached to another relation in another scenario.

Concerning the second and third group of patterns, those may be seen as converse
cases. While PCP2 and PCP 5, and PCP 4 and PCP 6 represent appropriate counter-
parts, PCP 3 remains without a counterpart. This results from the fact that, a pattern
where the execution of a common target process type depends on the execution status of
at most one source process type out of the entire set seems non-existent. Such a pattern
implies that the execution of the target process type requires one input but not the other.
To be more precise, the execution of the target process type may only proceed if at most
one source process type out of the entire set has reached a specific execution status,
such that the remaining ones are prevented from being executed. However, based on
how PCPs are defined the described pattern seems non-existent in business scenarios
involving different process types related to one another. It seems highly unlikely that
the execution of one target process type may depend on at most one out of several

42

3. Process Coordination Patterns

source process types, such that only one source process type can be executed. For
such a scenario it would be more consistent to apply PCP 1 as the execution of the
target process type depends only on one source process type, such that the existence
of further source process types is irrelevant.

Each one of the proposed seven PCPs intends to address a recurring type of interaction
among related processes encountered in business scenarios. The PCP catalogue
compiles elementary interactions; for more complex interactions to be modelled a
number of PCPs may need to be combined.

43

Evaluating the Support of Process
Coordination Patterns

In this chapter, two modelling approaches, of which one is based on the activity-centric
paradigm and the other on the data-centric paradigm, are assessed for the support
of the current PCP catalogue. Two scenarios exhibiting multiple process interactions,
in particular one-to-many and many-to-many relationships, are exemplarily used for
the evaluation. The degree of pattern support for each modelling approach is deter-
mined based on a 3-value scale. The obtained results are discussed, investigating the
encountered problems and corresponding reasons.

4.1. Evaluation Methodology

One of the values of PCPs lies in their independence from specific BPM paradigms.
Therefore, two approaches, based on different paradigms, are assessed for their PCP
support in this section. As mentioned in Chapter 1, the main paradigms implemented in
PrMS are the widely used activity-centric paradigm, the case-handling paradigm and the
more recent data-centric paradigm.

Prior to the assessment of modelling approaches, a framework determining relevant
criteria for their systematic selection was established. It is emphasised that, for the
evaluation of modelling approaches on their suitability for supporting PCPs, a strong tool
support for modelling is indispensable. The framework applied for the selection of the
modelling approaches is based on the following criteria:

» C1-Behaviour specification: Capability of the approach to model the behaviour
of a process from its creation to its end.

» C2-Interaction specification: Refers to the presence of an interaction concept.

» C3-Support for model verification: Capability of the approach for verifying a
model in respect to a specified set of correctness criteria (e.g. absence of dead-
locks and livelocks).

* C4-Tool support for modelling: Refers to the availability of a (GUI-based) tool
that supports the design of process models.

44

4. Evaluating the Support of Process Coordination Patterns

Based on these criteria for assessing PCP support, case-handling approaches are
irrelevant for PCPs for fundamental reasons. Case-handling approaches are based on
the concept of an isolated case containing all activities and data objects that are part
of it. Consequently, cases cannot have interactions, so that criterion C2-Interaction
specification is not supported [50]. Therefore, from the considered approaches for
evaluation, one is based on the activity-centric paradigm and the other on the data-
centric paradigm.

The described criteria, among others, have been assessed in detail in [50] in a systematic
literature review (SLR). Based on the conducted SLR, in [50] a framework for the
systematic evaluation and comparison of data-centric approaches was developed. In
the SLR 17 process modelling approaches identified from 38 primary studies were
thoroughly analysed. The SLR provides insights of the capabilities of several data-
centric approaches; thereby a special focus was put on the tooling and software support
of the approaches. The data-centric approaches analysed in the SLR, which exhibit a
mature tool implementation, were taken into account for the selection of the data-centric
modelling approach evaluated in this thesis.

The evaluation of the criteria proposed in [50] is based on a 3-value scale consisting
of the values: fully supported, partially supported and not supported. Concerning
criterion C1, an approach fully supports behaviour specification if it enables the formal
specification of a behaviour model at design-time. In the case of a partially formal or
informal behaviour model specification, the approach exhibits partial support. Regarding
criterion C2, the approach fully supports interaction specification if the interaction concept
is completely formalised. If the interaction concept is partially formalised or informal
specifications exist, this criterion is partially supported. Referring to criterion C3, full
support is given if it can be evaluated whether all aspects of a process model are
compliant with formally specified correctness criteria. Partial support is assigned to the
approach in the case that an aspect of the process model lacks formalised criteria or the
correctness criteria are only stated informally, such that formal verification is not possible.
Relating to criterion C4, full support for modelling indicates the presence of a tool that
allows specifying all aspects of a process model. If the tool supports at least one but not
all modelling aspects, the support of the approach is considered as partial. If no tool
exists, criterion C4 is considered as not supported.

Based on the results of the SLR, the modelling notation of the PHILharmonicFlows
framework has been selected for the evaluation of PCP support in this thesis. According
to the SLR, this approach fully supports the four criteria stated above. In the following, a
brief overview of the PHILharmonicFlows approach is provided.

PHILharmonicFlows [25] is classified as a data-centric approach for BPM. The PHILhar-
monicFlows approach is based on the object-aware concept, where business processes
are specified in terms of interdependent objects with lifecycles that interact with one
another, based on established relations between them. Objects are the main building
blocks of the PHILharmonicFlows approach. They represent business objects such
as a customer order or a job application. Objects hold attributes and have a lifecycle

45

4. Evaluating the Support of Process Coordination Patterns

process, in which the object’s behaviour is described. Objects alone do not constitute
a business process, but it is only through interactions among objects that a business
process emerges. At certain points in time for the business process to advance, the
progress of an object may depend on the execution status of another object. On this
account, the behaviour of the involved objects needs to be coordinated, i.e. interactions
between objects are necessary.

In this context, PHILharmonicFlows differentiates three model types: the data model
[48], the lifecycle processes [46] and the coordination processes [47]. In the data model,
objects, their attributes and relations to other objects are captured. Relations connecting
objects with one another are similar to ER modelling, but additionally indicate process
dependencies. For example an object such as product may be connected to another
object such as customer order through a 1:n relation. At design-time, this relation
indicates that many products may be related to one customer order. At run-time, based
on the defined 1:n relation, interactions between the involved objects may take place by
coordinating their behaviours. Furthermore, relations between objects may be restricted
by assigning cardinality constraints. A lifecycle process consists of different states that
are connected by state transitions. Objects progress from one state to another, based on
available data, i.e. a state becomes executable once required attribute values are present.
However, at times the execution state of an object’s lifecycle process may depend on the
execution state of another object’s lifecycle process. Coordination processes capture
these object interdependencies in the form of semantic relationships, which represent
basic dependency constraints among processes in one-to-many and many-to-many
relationships. At run-time, coordination processes enforce semantic relationships based
on the execution status of the objects between which semantic relationships are defined.
In other words, an object’s process execution may progress or halt based on whether
conditions captured by semantic relationships are currently satisfied or not.

Hereafter it is referenced how according to the SLR performed in [50], PHILharmon-
icFlows supports the four criteria C1, C2, C3 and C4 stated above. The formal spec-
ification of lifecycle processes, describing objects’ behaviour, awards full support for
criterion C1. Coordination processes capture the overall business processing logic,
which is based on the interactions of the different objects, involved at specific points in
time. The presence of a formal specification for interactions makes criterion C2 fully
supported. In the PHILharmonicFlows framework the data model, the lifecycle processes
and the coordination processes are formally specified. Formal correctness criteria can
be defined, thus enabling a complete verification of all specified process models of
the approach. Thereby, this approach is fully compliant with criterion C3. The tooling
for the PHILharmonicFlows framework comprises a modelling tool for the creation and
verification of process models. Therefore, full support is granted to criterion C4.

Concerning the activity-centric approach selected for evaluation in this thesis, the Busi-
ness Process Model and Notation (BPMN) as the de-facto standard for business process
modelling has been selected. In the following, the main characteristics of BPMN are de-
scribed, pointing out how BPMN supports the four criteria C1, C2, C3 and C4. BPMN was

46

4. Evaluating the Support of Process Coordination Patterns

not assessed in [50], however for the evaluation of the criteria the technical specification
of BPMN [35] was used.

BPMN is a graphical notation based on the imperative activity-centric paradigm, wherein
only allowed activity flows are captured in the process model. The created process mod-
els describe one primary way of performing business processes which are predictable
and may have relatively few and well-scoped variations [19, 61].

In models created with BPMN, every process is contained in a pool describing the se-
guence in which activities take place within a single organisation. A single pool contains
private business processes, i.e. these processes are internal to a specific organisation.
The sequence flow contained within a single pool cannot cross the boundaries of the
pool. The formal specification of pools, the therein contained activities and sequence
flow describing the behaviour of a process award full support for criterion C7. In or-
der to model cross-organisational business processes, also known as collaborations,
several pools are used. Each partner’s process is modelled in a separate pool such
that several partner’s private business processes interact with one another to reach a
common business goal. Consequently, interactions only exist between separate private
business processes. Interactions are modelled and coordinated with message flows
crossing pool boundaries, connecting single processes with one another. In addition,
data artifacts representing data objects or data stores can be used to show the flow
of information within and across pool boundaries [35]. Since a formal specification for
interactions exists, criterion C2 is fully supported. In the BPMN technical specifica-
tion the basic execution semantics of BPMN elements such as events, gateways, data
artifacts etc. is described informally (textually). The data type definition language for
execution semantics is canonically XML-schema. However, the formal verification of the
sequence flow and data flow is outside the scope of the BPMN technical specification.
As a result, diverse verification approaches for detecting sequence flow and data flow
anomalies have emerged. Examples for verification techniques are mapping BPMN
models to Petri nets [2, 12, 45] or to YAWL [9], an extension of Petri nets. Since the
BPMN standard does not provide a generally valid verification framework, criterion C3 is
partially supported. For BPMN several management-suites with an integrated modelling
tool exist, thereby criterion C4 scores full support.

PHILharmonicFlows as a representative of the data-centric paradigm and BPMN as a
representative of the activity-centric paradigm were assessed for PCP support. For this
purpose, two scenarios, the paper selection process of a conference and a built-to-order
process were modelled with each of the selected approaches. These scenarios were
chosen because in total six out of the seven PCPs compiled in the current catalogue
are present in the scenarios. Each scenario is described in detail and the PCPs
found therein are listed. The suitability of PHILharmonicFlows and BPMN for modelling
complex process interactions was evaluated by investigating which of the PCPs found in
the scenarios are directly supported.

As shown in Table 4.1 the degree of pattern support is determined based on how the
criteria relationship type, cardinality restriction and threshold value w are supported in

47

4. Evaluating the Support of Process Coordination Patterns

terms of modelling. A 3-value scale consisting of the values: direct support, partial
support and no support is hereby assigned.

Tabelle 4.1.: Evaluation Criteria for Pattern Support

Relationship type Cardinality Threshold
restriction value w
1:1 1:m/m:1 m:n Miowers Mupper> Mowers Nupper ASSIgNMenNt
at design-
/run-time
Direct + + + + +
support
Partial + + + +/- +/-
support
No . - - . -
support

A pattern is directly supported if it can be properly represented with the modelling
approach. This requires that, the type of relationship between interacting instances of
different processes can be distinguished. Furthermore, the modelling approach allows to
set cardinality restrictions for specifying the number of source process instances that can
be related to a number of target process instances at run-time. In addition, the threshold
value w determining the condition for process interactions can be explicitly assigned
through formal constructs of the modelling approach at design- and/or run-time.

Partial support is awarded if the pattern can be indirectly represented with the modelling
approach. This means that, the type of relationship between interacting instances of
different processes can be distinguished. However, the modelling approach may not
support cardinality restrictions, so that the number of source and target process instances
related to one another is undefined. Furthermore, the assignment of the threshold value
w may not be explicitly supported through formal constructs. It is conceivable that
cardinality restrictions and threshold value assignment may be represented with a
workaround such as a textual annotation. A pattern is not supported if it cannot be
modelled.

4.2. Scenario 1: Paper Selection Process of a Conference

Academic conferences offer researchers the opportunity to publish and discuss their
work. Conferences must ensure that published papers fit the topic of the conference
and meet certain quality criteria. For this purpose, conferences implement a rigorous
selection process for papers, based on “peer reviews”. The goal of the paper selection
process is selecting high-quality papers out of a set of submitted papers. The number

48

4. Evaluating the Support of Process Coordination Patterns

of papers to accept is either fixed beforehand, or a desired percentage (“acceptance
rate”) of all submitted papers is defined. Academic conferences usually consist of an
organising committee with one or more general chairs, a program board (PB) and a
program committee (PC). PB members are responsible for the management of the
reviews, while PC members are responsible for performing the peer reviews.

4.2.1. Process Description

In the following, a generic selection process for an academic conference, adapted from
[7, 54], is described:

Initial conference organisation: At first, a set of people is appointed by the general chairs
to participate as members of the PB and PC. The appointed individuals may accept
or decline to join the program board and program committee; for those that decline
replacements need to be found.

Call for papers: Once a certain number of PB and PC members is staffed, a call for
papers is discussed and agreed upon. The call is then published, announcing the
upcoming conference and asking for submissions. The call for papers states the topics
of the conference as keywords and explains the paper selection process. It includes the
key dates of the conference such as the paper submission deadline, the acceptance
notification date, the camera-ready paper deadline and the actual conference dates.
Furthermore, the specific layout and maximum length of the paper is defined in the call
for papers.

Paper submission: Authors prepare and submit their papers according to the call for
papers. This is required to happen on or before the submission deadline.

Pre-Check and Bidding: After the submission period has ended, PB members check
whether all submitted papers meet the formal criteria (paper layout, page limit etc.).
Papers which do not comply with the requisites are rejected and do not make it to the
bidding phase. In the bidding phase, PB and PC members, choose their preferences for
papers they want to review, based on their expertise and interests. Furthermore, they
must declare possible conflicts of interest.

Paper distribution: At the end of the bidding phase, an algorithm allocates a subset
of papers to each PC member. The decision how to distribute the papers among PC
members takes into account the whole set of available papers. The allocation is best
effort; i.e. PC members are not guaranteed to only receive papers they placed a bid for,
although they will never receive papers from a conflict of interest author. Also, each PB
member is responsible for at least one submitted paper, which requires performing a
meta-review based on the submitted reviews.

Review: PC members should review the assigned papers on time. They may assign
papers to sub-reviewers at their own discretion. Usually, it is ensured that each paper
receives at least three reviews. If reviewers are unable to deliver the assigned reviews,

49

4. Evaluating the Support of Process Coordination Patterns

additional reviewers may be appointed by PB members in order to ensure a fair evaluation.
Once the reviews are submitted, PB members start preparing the meta-reviews. In case
that not all three reviews per paper are received, the meta-review is made based on the
submitted ones. Meta-reviews recommend whether to accept or reject a paper. This
process should take place weeks prior to the notification key date.

Discussion and paper selection: In this phase a final assessment of the submitted papers
is made based on submitted meta-reviews. The papers are compared and ranked by
PB members, selecting those of acceptable quality. Another selection criterion is the
minimum and maximum number of papers to be presented. In the case where several
papers address the same topic from different or opposing perspectives, this needs to
be considered. Once the final set of accepted submissions has been determined, all
other submissions are rejected. Finally, if necessary, the responsible PB member has to
update the meta-review for making the decision of acceptance or rejection transparent
to the authors.

Notification: Authors are notified by e-mail of either acceptance or rejection of their
papers. In case of acceptance, authors must prepare the camera-ready version of their
paper ensuring correct formatting. Furthermore, reviewer's comments must be taken
into account. If authors choose to ignore the reviewer's comments, it may lead to the
rejection of the paper. Authors must sent their camera-ready version on or before the
corresponding deadline. Otherwise, the submission will not be part of the proceeding’s
publication.

Publication: Timely submitted final versions are assembled and sent to the publisher for
preparing the conference proceedings.

4.2.2. Patterns Overview

In the described process of paper selection of a conference the following fundamental
process types with their corresponding states were abstracted:

» Conference (C): Preparation, Publication, 1. Closure, 2. Closure, 3. Closure, Pro-
ceedings Assemble.

 Paper (P): Creation, Submission, Initial Check, Selection, Camera-Ready Prepara-
tion, Camera-Ready Submission, Camera-Ready Check, Collection for Publication.

» Bid (B): Creation, Preparation, Placement.
» Review (R): Assignment, Paper Assessment, Recommendation, Submission.
* Meta-review (MR): Preparation, Selection proposal, Submission.

The overall business process exhibits interactions between the involved process types
such that two PCPs can be found. PCP 1 appears seven times, while PCP 3 is found
once; altogether eight PCPs are comprised in the scenario. In the following these PCPs
are described.

50

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #1
PCP: PCP1
Process Types: Conference, Paper

Description: Once the conference is published, several papers may be submitted at
different points in time.

Relation Type: 1:n

C _ 0 C _1-
lower — T upper —_ LIin

P

_ P _
lower — TV =n

Cardinality Restriction: m upper

Threshold value: w¢=1

51

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #2
PCP: PCP3
Process Types: Paper, Bid, Conference

Description: Based on the result of the initial paper check, either bids are placed for
reviewing the paper or an initial rejection notification is sent.

Relation Type: 1:n | 1:1

Cardinality Restriction: m” . =m?%, .. =1nf . =n8 . =n,

lower upper

C _nC _
N ower — T upper 1!

Threshold value: w’=1

52

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #3
PCP: PCP1
Process Types: Bid, Review

Description: Once bids for the whole set of available papers are placed, reviews may
be assigned.

Relation Type: m : n

Cardinality Restriction: m?5 . =m?% . =m;nf =n% . =n,

lower upper

Threshold value: wZ=m

53

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #4
PCP: PCP1
Process Types: Review, Meta-Review

Description: Once the reviews related to a paper are submitted, a meta-review may be
prepared. At least, if possible, three reviews should be submitted for each paper
before a meta-review can be prepared.

Relation Type: m : 1

R

MR _ MR =1
upper ’

lower — Tt upper —

Cardinality Restriction: m”%___ =3 m

lower =5 »n

Threshold value: w%> 3

54

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #5
PCP: PCP1
Process Types: Meta-Review, Paper

Description: Once all meta-reviews for the whole set of available papers are submitted,
the final set of papers may be selected.

Relation Type: m : n

Cardinality Restriction: m™%_ =m"f =m;nf =n" . =n,

lower upper

Threshold value: wf=m

55

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #6
PCP: PCP1
Process Types: Paper, Conference

Description: Once a paper has been assessed in the final selection process, a notifica-
tion stating the decision may be sent. A paper is either selected or rejected.

Relation Type: 1:1

Cardinality Restriction: m© =m?’ =1;n

lower upper

C _ . C -1
)

lower —

Threshold value: w’=1

56

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #7
PCP: PCP1
Process Types: Paper, Conference

Description: Once the camera-ready version of a paper has been assessed, a final
rejection or acceptance notification may be sent.

Relation Type: 1:1

P —_ o P _1-
lower — T upper —_ LIin

C _ . C -1
)

lower — upper

Cardinality Restriction: m

Threshold value: w’=1

57

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #8
PCP: PCP1
Process Types: Paper, Conference

Description: Once the final paper versions are collected for publication, the conference
proceedings may be prepared.

Relation Type: m : 1

Cardinality Restriction: m”’|_ . =m”® .. =m;n . =n% =1

lower upper

Threshold value: w”’=m

58

4. Evaluating the Support of Process Coordination Patterns

4.3. Scenario 2: Built-to-Order Process

Built-to-Order (BTO) is a production approach where products are custom-made. BTO
products usually exceed standard specifications, therefore products are not built until a
confirmed customer’s order is received. BTO production is typically found in highly cus-
tomisable products such as computers and cars. For economic reasons, manufacturers
of BTO products usually do not store specialised components in a warehouse but source
them from suppliers according to customer orders.

4.3.1. Process Description

Exemplarily, a BTO process, adapted from [28, 36], is described with a custom-built PC
offered by an online retailer:

Customer order registration: The process starts when the customer selects the PC
configurator on the retailer’s website. At first, the basic template of the PC system is
chosen by the customer; i.e. whether it is a gamer-PC, mini-PC, a PC for professional
image editing etc. The template system usually comes with a default configuration, but
may be individually configured. Thereby it is distinguished between mandatory basic
components and optional components. The customer chooses his or her desired com-
ponents among the available options of the retailer for the following basic components:
computer case, mainboard, processor, RAM, CPU cooler, graphics card, power supply
unit, and hard drive/SSD. Optional components available for selection are, among others,
the operating system, monitor, peripherals, additional hard drives, and high-performance
cooling solutions, e.g. water cooling. If the customer is satisfied with the chosen config-
uration, the customer confirms the order and proceeds with the online payment. The
online retailer then proceeds to source the PC components. For simplicity, the sourcing
process starts once payment has been received.

Components sourcing: Components are not held in stock but need to be sourced from
suppliers. The online retailer creates a number of purchase orders to be send to various
suppliers to procure the required components. To reduce costs, components of multiple
customer orders are bundled into joint purchase orders (JPOs). This means that, one
JPO may contain components of multiple customer orders. Thus, one customer order
depends on the components procured with multiple JPOs. A JPO is sent once a minimum
order value for the corresponding component has been reached. Once a JPO is received
by the corresponding supplier, it is checked against the stock. Based on stock availability
suppliers can confirm or reject the orders. If a JPO is rejected by a supplier, then a new
JPO is sent to another supplier for these components. If a JPO order is confirmed, the
components are retrieved from the warehouse. The components are then shipped and
an invoice is sent to the online retailer.

Customer order fulfiiment: Once all JPOs are delivered, the components are assembled
into the ordered custom computer. After assembly, every configured PC is subject to a

59

4. Evaluating the Support of Process Coordination Patterns

rigorous testing, ensuring functionality and stability. The product is then delivered to the
customer and the customer order is archived.

4.3.2. Patterns Overview

In the described process of Built-to-Order custom-PC the following fundamental process
types with their corresponding states were abstracted:

» Custom-PC (PC): Basic Template Selection, Basic Components Selection, Op-
tional Components Selection, Confirmation, Online Payment, Assembly, Testing,
Delivery

« Joint Purchase Order (JPO): Creation, Sent, Confirmation, Bill

» Basic Components (BC): Selection, Register, Order Placement, Retrieval from
Warehouse, Shipment, Delivered, Installed

» Optional Components (BC): Selection, Register, Order Placement, Retrieval from
Warehouse, Shipment, Delivered, Installed

In order to avoid any repetition, the process types of the individual basic and optional
components have not been described for each one, for they have the same execution
states. The overall business process exhibits interactions between the involved process
types such that four PCPs can be found. PCP2 and PCP 5 appear four times each,
while PCP 4 and PCP 7 are each found once; altogether ten PCPs are comprised in the
scenario. In the following those PCPs are described.

60

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #1
PCP: PCP2
Process Types: Custom-PC, Basic Components

Description: Once the basic components of the custom-PC are configured in the PC
configurator by the customer, these may be marked as selected.

Relation Type: 1:n

BC BC

PC _
lower — TV

Cardinality Restriction: m7C =m =1;n

lower upper

Threshold value: w?’¢=1

61

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #2
PCP: PCP4
Process Types: Custom-PC, Optional Components

Description: Once the optional components of the custom-PC are configured in the PC
configurator by the customer, those may be marked as selected.

Relation Type: 1:n

ocC ocC

PC _
lower — TV

Cardinality Restriction: m7C =m =1;n

lower upper

Threshold value: w?’¢=1

62

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #3
PCP: PCP2
Process Types: Custom-PC, Basic Components, Optional Components

Description: After the online payment of the custom-PC is made, the chosen basic and
optional components may be registered by the online retailer.

Relation Type: 1:n & 1:n

: H e H . pPC _ pPC _1-.,BC _ ., BC — -
Cardinality Restriction: m "5 =m " = 1, 09500 = 1 upper = 15
oc _ ,0C _
" lower — T upper — n

Threshold value: w?’¢=1

63

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #4
PCP: PCP2
Process Types: JPO, Basic Components, Optional Components

Description: Once a JPO has been created, previously registered basic and optional
components offered by the supplier to whom the JPO will be send to, may be
placed there.

Relation Type: 1: n & 1:n

JPO _ ., JPO BC BC

Cardinality Restriction: m " =m” .. = 1; n 55 0 = " pper = 7
oc _,0C _
N ower — T upper n

Threshold value: w/7°=1

64

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #5
PCP: PCP5
Process Types: Basic Components, Optional Components, JPO

Description: Once placed basic and optional components have reached the required
minimum order value, the JPO may be sent.

Relation Type: m: 1 & m: 1

: H inti . BC _ ,, 6 BC — 0 OC ., 0C —
Cardinality Restriction: m 5 . = m 00 = m; mYg o = MmO ne = m;
JPO _ ,,JPO _
" jower = T "upper = 1

Threshold value: wZ¢=m; w9 =m

65

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #6
PCP: PCP2
Process Types: JPO, Basic Components, Optional Components

Description: Once the JPO is accepted, the basic and optional components may be
retrieved from the supplier’s warehouse.

Relation Type: 1:n & 1:n

H H e . JPO __ JPO _ 1., BC _ ., BC —
Cardinality Restriction: m (" =m" = =1, n5 o = 1 pper =
oc _ ,0C _
" lower — T upper — n

Threshold value: w /=1

66

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #7
PCP: PCP5
Process Types: Basic Components, Optional Components, JPO

Description: Once the basic and optional components have been shipped, the JPO
may be billed to the online retailer.

Relation Type: m: 1 & m: 1

H H iction: BC _ ,,BC — - O0C _— OC —
Cardinality Restriction: m 5 . = m 00 = m; mYg o = MmO ne = m;
JPO _ ,JPO _
n lower — n upper 1

Threshold value: wZ¢=m; w9 =m

67

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #8
PCP: PCP7
Process Types: JPO, Basic Components, Optional Components

Description: In case of an order rejection, the basic and optional components may be
placed into JPOs related to different suppliers who also offer those components.

Relation Type: 1:n & 1:n

H H e . JPO __ JPO _ 1., BC _ ., BC —
Cardinality Restriction: m (" =m" = =1, n5 o = 1 pper =
oc _ ,0C _
" lower — T upper — n

Threshold value: w /=1

68

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #9
PCP: PCP5
Process Types: Basic Components, Optional Components, Custom-PC

Description: Once all basic and optional components are delivered, the custom-PC
may be assembled.

Relation Type: m: 1 & m: 1

: H inti . BC _ ,, 6 BC — 0 OC ., 0C —
Cardinality Restriction: m 5 . = m 00 = m; mYg o = MmO ne = m;
rc _ , PC —
" 1ower = T upper = 1

Threshold value: wZ¢=m; w9 =m

69

4. Evaluating the Support of Process Coordination Patterns

PCP No.: #10
PCP: PCP5
Process Types: Basic Components, Optional Components, Custom-PC

Description: Once all basic and optional components have been installed, the custom-
PC may be subject to a rigorous testing.

Relation Type: m: 1 & m: 1

H H iction: BC — BC — . ocC — ocC — .
Cardinality Restriction: m 7 ., = m% e = m; MY = Mper = M;
nPC — 7’LPC -1
lower upper

Threshold value: wZ¢=m;w%=m

70

4. Evaluating the Support of Process Coordination Patterns

4.4. Conclusions and Statistics

The conclusions and statistics presented in this section are based on the degree of
pattern support provided by BPMN and PHILharmonicFlows for the patterns found in
Scenario 1 and Scenario 2. The procedure adopted for the evaluation of PCP support is
as follows.

First, a general overview of the modelling concepts of each approach is provided by
exemplarily describing how BPMN and PHILharmonicFlows capture one PCP, selected
from Scenario 1. In this context, only the modelling concepts of each approach that are
relevant for understanding the results of the evaluation are mentioned. In subsection
4.4 .1, the implementation of the selected PCP is described, thereby referencing the
corresponding models of BPMN and PHILharmonicFlows for Scenario 1, set out in
the appendix. In order to minimise bias, no attempt, with one exception, was made
to optimise the models in favour of PCP support. That is, the models are based on
general modelling conventions within the specifications of each approach. The exception
concerns modelling Scenario 1 in BPMN with several single pools instead of only two
pools, such that process interactions could be modelled and assessed for PCP support.
However, this illustration is valid according to the BPMN standard [35].

Second, the degree of support provided by each approach for the selected PCP, was
determined based on the evaluation criteria for pattern support stated in Table 4.1.
The other PCPs were then evaluated in a similar fashion. The obtained results for the
pattern support provided by each approach for Scenario 1 and Scenario 2 are exhibited
in subsection 4.4.2. A detailed discussion of the obtained results is provided in the
evaluation of each approach in subsections 4.4.3 and 4.4.4. Here, based on the general
insights gained from the evaluation, a conclusion about the scope and suitability of PCP
support is drawn for each approach.

Finally, threats to validity and interesting findings related to the evaluation are presented
in subsections 4.4.5 and 4.4.6.

4.4.1. Models and Exemplary Patterns Implementation

In the following, a general overview of the modelling concepts of each approach is pro-
vided by exemplarily describing in detail how BPMN and PHILharmonicFlows graphically
represent one PCP from Scenario 1. A detailed description of the modelling concepts
of each approach is beyond the scope of this thesis. Though, substantial information
is disclosed for generally understanding how Scenario 1 and Scenario 2 have been
modelled. Due to the size and number of the models, those are set out in the appendix.

From Scenario 1, the paper selection process of a conference, PCP 1 Simple Succession,
as the basic case of process interaction has been chosen. Since this work focuses on
evaluating the degree of support of multiple process interactions, an example of PCP 1

71

4. Evaluating the Support of Process Coordination Patterns

in a one-to-many relation was chosen. Consequently, PCP # 1 describing that “Once the
conference is published, several papers may be submitted at different points in time”,
serves as an example.

PCPs abstract process interactions as generally as possible. This generalisation is
necessary to account for the heterogeneous definition of interactions in approaches.
PCPs thus try to capture the essence of interactions. However, concrete approaches do
not necessarily comply to hundred percent to the abstract definition of PCPs. BPMN
and PHILharmonicFlows both provide their own solutions for modelling process inter-
actions, each fundamentally different from the other. Therefore, when evaluating PCP
support of the approaches, certain pragmatic adaptions are required to account for the
discrepancies between approach and the definition of a PCP. A strict interpretation of
the PCP definition would result in many not supported verdicts (cf. Table 4.1), which for
most approaches are unwarranted, as they are caused by the generalisation. This is
specially the case for BPMN; the pragmatic adaptions are explicitly pointed out in the
description of the models and pattern implementation.

4.4.1.1. BPMN models

The implementation of PCP #1 from Scenario 1 in BPMN is described hereafter. All the
following O reference the BPMN model shown in Figure A.1 in the appendix.

The different participants involved in the scenario are modelled as pools representing
private business processes, as in @. Four pools are used to illustrate the collaboration:
conference organisation, authors, PB committee and PC members. On the abstract
level of PCPs, pools may represent process types. Concerning the number of process
instances involved in the scenario, some pools contain a multi-instance marker, indicating
participant multiplicity. This is for instance the case for the pools authors and PC
members. Relation types among interacting processes may be interpreted based on
multi-instance markers assigned to pools.

Interactions between the different processes rely on electronic message exchanges,
which are connected through message flows between pools such as at @. In this context,
a pragmatic adaption is that one message exchange between two pools may not be
equivalent to one interaction but it may represent a set, that is, one or more interactions.
Based on this interpretation, for instance one message exchange between a retailer
and a customer can then be interpreted as several interactions between products (being
shipped by the retailer) and an order (being billed to the customer).

Pools and the therein contained flow elements (events, gateways, sequence flows,
activities, data objects and data associations) describe the behaviour of a process
from its creation to its end. Therefore, the elements contained within a pool may be
interpreted as the states of the process. In order to point out that multiple instances of an
activity are created and executed, an activity may contain a multi-instance marker. Data
objects are used to model physical or virtual items such as physical letters, materials

72

4. Evaluating the Support of Process Coordination Patterns

and pdf documents. Data objects are created, manipulated and used during process
execution. Data objects representing a collection of data have a multi-instance marker.
In BPMN, the notion of states and state changes is not captured explicitly. However,
due to the language permissiveness, different solutions for mapping BPMN models to
state-based-views have been proposed in the literature. For instance, two examples are
mapping BPMN to so-called high-level behavioral diagrams in [10] and mapping BPMN
to a process semantics model in [62], based on the mathematical notations Z [11] and
CSP [40]. However, those solutions generate vast and complex models. Therefore, in
the BPMN models in this thesis, the notion of states within processes as defined by
PCPs is endorsed through the use of data objects flowing in and out of flow elements,
as in @. Hence, the states of the process may be explicitly represented. The referenced
state of data objects is thereby put into square brackets.

PCP#1 is expressed at @ by the pool conference organisation sending electronic
messages to the pool authors. In addition, a signal event is thrown by the conference or-
ganisation, broadcasting the paper call published online which is caught by all interested
authors. The processes conference organisation and authors interact in a one-to-many
relationship which is expressed by the multi-instance pool of authors. The data objects
attached to the electronic messages and the throwing signal event are used to highlight
their states. In the PCP context, it can be abstracted that once paper calls are sent
and/or the signal event is broadcasted by the conference organisation, several papers
are prepared and then submitted by participating authors.

4.4.1.2. PHILharmonicFlows models

The implementation of PCP #1 from Scenario 1 in PHILharmonicFlows is described
hereafter. Additional examples, necessary for understanding the concept of the PHIL-
harmonicFlows framework are also described. All the following O reference the PHIL-
harmonicFlows models shown in the appendix, which are referred to accordingly in the
description. The description of the general concepts of PHILharmonicFlows is based on
[1, 46, 47, 48, 49].

The types of objects and persons involved in Scenario 1 and existing relations among
them are captured in the data model in Figure A.2. Object types and relations are
directly derived from the business objects and persons involved in the overall business
process described in Scenario 1. Thereby, object types represent small interdependent
processes with lifecycle processes describing the objects’ behaviour.! As illustrated in
the data model, object types include Conference, Paper Call, Paper, Bid, Review and
Meta-Review. General Chair, Author, PC Member and PB Member are user types, a
special case of an object type representing a person. User types work in conjunction with
the authorisation system of PHILharmonicFlows to grant fine-grained permissions, which

"Note that, in the context of PHILharmonicFlows the terms object types and processes are used as
synonyms, as objects always have a lifecycle process.

73

4. Evaluating the Support of Process Coordination Patterns

generally allow instantiating and executing object lifecycles. User types thus indicate
responsibilities for creating and executing the processes with which they are connected.

Processes are connected to one another through relations of different types similar to
the ones found in ER models. For example a Conference may be related to one or more
Papers (1 : n). In turn, one Paper may have one or more relations to Bids (1 : n). In
case of Reviews, the relation is restricted to at minimum three and at most five Reviews
per Paper (3 : 5...1). In case of Meta-Review, the relation is restricted to one Review per
Paper (1 : 1). The same applies for Conference and Paper Call (1 : 1).

Established relations between processes at design-time indicate process dependencies
at run-time. This means that, at a specific point in time, the execution of a process
instance depends on the execution status of a related process instance. In this context,
process dependencies are expressed in the data model through directed edges between
object types. The direction of the relation classifies processes into lower-level and higher-
level processes; i.e. the former is the child process and the latter the parent process. For
example, Paper is a higher-level process of Bids, Reviews and Meta-Reviews. Directed
edges further allow to express common process relations, e.g. Paper Call and Paper
are both related to Conference, a common higher-level process. Furthermore, also
transitive relations are taken into account in the data model. An example are Review
and Conference which are not directly related, but transitively via a path of relations.
Transitive relations indicate that, dependencies exist between processes which are not
directly connected. Simply put, at a specific point in time, the execution of a Conference
instance depends on the execution status of its transitively related Review instances. It
can be deduced from the data model that one-to-many relations are directed, where 1 is
assigned to the higher-level process and n to the lower-level process. Many-to-many
relationships may be broken down into several one-to-many relations.

Part of the data model is also a set of attributes assigned to each object type. Because of
space reasons, those have been omitted in the data models of Scenario 1 and Scenario 2
illustrated in Figure A.2 and Figure A.7. The attribute types are elementary and describe
the data held in the corresponding object types. An example attribute type is Title, a
String defined in the Paper object type. Attribute types assigned in the data model
are relevant for describing an object’s behaviour in the corresponding object’s lifecycle
process.

Each object and user type is required to have a lifecycle process, which is described by
a directed acyclic graph. The lifecycle process may be seen as a state-based-view, that
consists of different states describing the object’s behaviour at design-time. A lifecycle
process has one start state and at least one end state. In this context, attribute types
defined in the data model are grouped into the states of an object’s lifecycle process.
States are connected to one another by transitions. In object lifecycles only one state
may be active at any point in time. At run-time, the transition of an object from one state
to the next one is based on the assignment of attribute values by authorised users, i.e.
user types with which the object type is related in the data model. Lifecycle processes
are thereby data-driven, specifying the default order in which attribute values need to be

74

4. Evaluating the Support of Process Coordination Patterns

present for a process to progress. Backwards transitions allow returning to a previous
state in case that an attribute value needs to be corrected. The operational semantics of
lifecycle processes enables flexibility by allowing for data values to be entered at any
point in time while ensuring a correct process execution.

The lifecycle processes, i.e. the state-based-views of the object types found in Scenario
1 and Scenario 2 are illustrated in Figure A.3 and Figure A.8. In those representations,
only the states of the object lifecycle processes are illustrated; attribute types have been
omitted for reasons of simplicity.

In PHILharmonicFlows, the data model and lifecycle processes can be seen as the pre-
ceding steps to arrive at an expressive overall business process. At run-time, processes
run, in general, independently from one another. Occasionally for the overall business
process to advance, the progress of an object type may depend on the execution status
of another object type. On this account, the behaviour of the involved processes needs to
be coordinated, i.e. processes need to interact with one another. Coordination processes
are thereby used to model process interactions.

Based on the defined relations in the data model, process interactions are modelled
in coordination processes by coordinating the lifecycle processes of related object
types. Coordination processes rely thereby on semantic relationships, which represent
dependency constraints in one-to-many and many-to-many relationships that may exist
between processes. An example for such a dependency constraint is the condition stated
by PCP #1 that “Once the Conference is published, several Papers may be submitted at
different points in time”. Semantic relationships are based on five patterns that can be
combined in various ways to specify complex process dependencies. Table 4.2, taken
from [47], gives an overview over semantic relationships.

In coordination processes, semantic relationships can be automatically derived from
the underlying data model. Strictly speaking, this means that, semantic relationships
may only be established between processes if a path of relations exists between these
processes.

75

4. Evaluating the Support of Process Coordination Patterns

Tabelle 4.2.: Overview over Semantic Relationships

Name Description of the semantic relationship

Top-Down The execution of one or more lower-level processes depends on
the execution status of one common higher-level process.

Bottom-Up The execution of one higher-level process depends on the
execution status of one or more lower-level processes of the
same type.

Transverse The execution of one or more processes is dependent on the

execution status of one or more processes of different type. Both
types of processes have a common higher-level process.

Self The execution of a process depends upon the completion of a
previous step of the same process.

Self- The execution of a process depends on the execution process of

Transverse other processes of the same type. All processes have a common

higher-level process.

Coordination processes allow to only expose the interactions which are useful for un-
derstanding the overall business process. Coordination processes take into account
that interacting process instances may be executed asynchronously. This means that,
a coordination process intervenes only when necessary, at specific points during the
execution of a process instance, impacting its execution as little as possible.

Complex scenarios, such as Scenario 1 and Scenario 2, may be broken down into
several coordination processes or modelled as one. Coordination processes may be
modelled based on the defined process hierarchy in the underlying data model, i.e.
taking into account higher-level and lower-level process relations.

By way of example, Scenario 1 is illustrated with two coordination processes. This
representation is based on an existing process hierarchy between Conference and
Paper (cf. Figure A.2). The coordination process Conference in Figure A.4 illustrates the
overall business process from a higher perspective, describing the interactions between
Conference and Paper, thus abstracting from details related to the paper selection
process. In comparison, the coordination process Paper in Figure A.5 describes the
individual stages that take place from the creation of a paper till the final selection
assessment. Both coordination processes convey a picture of the overall business
process from different perspectives while revealing how they are interrelated.

Another example concerns Scenario 2, which is illustrated with two coordination pro-
cesses. This representation is based on the fact that a process hierarchy between

76

4. Evaluating the Support of Process Coordination Patterns

Custom-PC and Joint Purchase Order does not exist, also neither through a common
higher-level process (cf. Figure A.7). This implies that they are independent from one
another. Both processes are only indirectly related through the basic and optional
components such that interactions between Custom-PC and Joint Purchase Order do
not occur. Interactions occur only between Custom-PC and the different components,
modelled in the coordination process Custom-PC (cf. Figure A.9), and between Joint
Purchase Order and the different components, modelled in the coordination process
Joint Purchase Order (cf. Figure A.10).

Coordination processes allow to model coordination constraints for multiple interrelated
process instances while using only three modelling elements: coordination steps, coor-
dination transitions and ports. Coordination processes are represented as a directed
graph. In the following, it is exemplarily explained how PCP#1 from Scenario 1 is
expressed with the coordination process Conference. All the following O reference this
coordination process shown in Figure A.4. The operational semantics of the modelling
elements are thereby briefly described.

Coordination steps are the building blocks of the model, referring an object type as well
as one of its states. The coordination step is addressed in the form object type:state,
e.g. @ Conference:Preparation. A coordination step can be interpreted as a container
of process instances of the referenced object type. Coordination steps thus provide
an abstract way to represent multiple process instances at design-time, which are then
enacted at run-time.

A coordination transition is a directed edge connecting coordination steps with one
another. Based on the direction of the edge, coordination steps are differentiated into
source and target coordination steps. In this context, both source and target coordination
steps reference an object type of the data model. Coordination transitions recognise
the relations between higher-level and lower-level processes defined in the data model.
To put it concisely: By creating coordination transitions between coordination steps, se-
mantic relationships are automatically derived based on two things, the relations defined
in the data model, and the referenced lifecycle states of the objects being coordinated.
For example at @, connecting Conference:Published to Paper Call:Announcement
constitutes a top-down relationship indicating that for a paper call to be announced, first
a conference needs to be published.

At run-time, coordination processes enforce semantic relationships based on the exe-
cution status of the objects between which semantic relationships are defined. In other
words, an object’s process execution may progress or halt based on whether conditions
captured by semantic relationships are currently satisfied or not. Taking PCP#1 as an
example, by connecting Paper Call:Announcement to Paper:Submitted at @ a trans-
verse relationship is created. The semantic relationship between these coordination
steps enforces that a Paper Call must reach state Announcement before any Paper may
be in state Submitted. Once a particular Paper Call reaches state Announcement and
the state becomes active, the transverse semantic relationship becomes enabled and
subsequently allows any number of Papers to be submitted, at different points in time.

77

4. Evaluating the Support of Process Coordination Patterns

So far, it follows from all the foregoing descriptions that, PCP # 1 from Scenario 1 can be
modelled with the PHILharmonicFlows framework.

A coordination process graph is acyclic and connected, implying that for a semantic rela-
tionship to be enabled it is required that all predecessor semantic relationships must have
been enabled. This means that, for example enabling the bottom-up semantic relation-
ship of Paper:Initial Check Rejected with Conference:Not Participant requires that the
top-down semantic relationship Conference:Published with Paper Call:Announcement
has already been enabled. Furthermore, as it may be generally deduced from the
coordination processes, the start and end coordination steps of a coordination process
must reference the start and end states of the lifecycle of the coordinated object type. In
this way, a proper start and completion of the coordination process is ensured.

As it has been mentioned above, for more complex coordination constraints to be
expressed, multiple semantic relationships may need to be combined. This is enabled
through the concept of ports, which are incorporated in coordination processes. Ports
are attached to a coordination step @, such that coordination transitions do not directly
target a coordination step but the port attached to it. Except from the start coordination
step, any coordination step must have one or more ports. Ports allow realising AND- and
OR-semantics when combining semantic relationships. Connecting multiple coordination
transitions to the same port corresponds to AND-semantics. This means that, for the
port to become enabled, which in turn activates the attached coordination step, all
semantic relationships attached to the incoming coordination transition must be enabled.
Connecting coordination transitions to different ports attached to a coordination step
corresponds to OR-semantics. Hence, for the coordination step to be activated, at least
one port must be enabled. Moreover, AND-and OR-semantics can be freely combined
to create advanced boolean expressions.

From the provided description, it is recognisable that the concept of AND-and OR-
semantics provided by semantic relationships allows to model more complex process
interactions as the one described by PCP # 1 in Scenario 1.

An example for a more advanced pattern that can be properly modelled with AND-
semantics is PCP # 10 from Scenario 2. The implementation of this pattern is found
in the coordination process Custom-PC in Figure A.9. The coordination step Custom-
PC:Testing at ® has one port with thirteen incoming coordination transitions. Therefore,
for the custom-PC to be subject to a rigorous testing, all conditions represented by
the semantic relationships need to be fulfilled. The bottom-up semantic relationships
outgoing from the source coordination steps referencing basic and optional components
require a sufficient number of each component (e.g. at least one) to have reached state
Installed before the custom-PC may be tested. The exact number of each component
required to be in state Installed is thereby a design-choice that can be configured with
an expression framework provided by coordination processes.

One example for an OR-semantics construct, which allows to model two patterns
from Scenario 2 at once, is found in the coordination process Paper at ® in Figure
A.5. Rejecting a Paper may be achieved in two different ways. First, the Meta-Review

78

4. Evaluating the Support of Process Coordination Patterns

corresponding to a Paper endorses an immediate rejection; thereby PCP #5 is supported.
Second, during the selection assessment of the set of available Papers, a rejection of
the Paper is endorsed, and the Paper is rejected then, which provides support for
PCP #6. In the first case the corresponding semantic relationship is bottom-up while in
the second case it is a self semantic relationship, both connect to two different ports of
the coordination step Paper:Rejected. In a nutshell, the OR-semantics allows rejecting
the Paper in either case.

In order to express more complex coordination constraints, semantic relationships pro-
vide configuration options, which are based on an expression framework. Boolean,
arithmetic functions, constants and variables based on process data are part of the
expression framework. The expression framework reflects the process context to be eval-
uated while keeping the expressions simple. This is achieved by relying on specialised
counting functions. Such functions count process instances, which are represented
by the source and target coordination steps between which a semantic relationship is
created. Counting functions take particularly into account the active state of process
instances at run-time. For example, depending on whether a particular state is active,
has been active, has not yet been active, or has been skipped, the configured seman-
tic relationship may be enabled or not. In addition, the expression framework allows
realising a NOT boolean operator.?

To name an example from Scenario 1, configuration options enable a process modeller
to explicitly specify that at least three Reviews have to be submitted per Paper for a
Meta-Review to be prepared. On a side note, this coordination constraint is contained in
PCP # 4. The corresponding semantic relationship has been annotated with its respective
coordination expression at @ in Figure A.5. The expression implemented in the model
is:

(#Sourceln > 3)||(#Sourceln = #AllSource) && (#Sourceln > 0).

This expression covers more than the constraint demanded by PCP #4. It expresses
that, at run-time, in the context of one Paper, a Meta-Review may be prepared as soon
as three Reviews reach the state Closed, or based on the existing Reviews that are in
the state Closed, whereby at least one must reach this state.

In case that, a modeller has not configured a semantic relationship, it defaults to the
expression (#Sourceln = #AllSource) && (#SourceIn > 0). This implies that, the
referenced state of the source coordination step must be active in all process instances.
The default expression is concretised by means of an example, the coordination process
Joint Purchase Order in Figure A.10. The bottom-up semantic relationships between
the source coordination steps referencing several basic components in state Shipment
and the target coordination step referencing Joint Purchase Order:Billed, at & are
set to default. This means that, in the context of one Joint Purchase Order, for the
semantic relationship to become enabled, the instances that are active within each

2A detailed description on the expression framework implemented in coordination processes is beyond the
scope of this thesis and can be found in [47].

79

4. Evaluating the Support of Process Coordination Patterns

source coordination step, must correspond to all existing instances of each source
coordination step.

In the coordination models of Scenario 1 and Scenario 2 found in the appendix, only
the described expressions are shown. The remaining semantic relationships are set to
default and therefore not illustrated.

4.4.2. Overview of Evaluation Results

The scenarios modelled with BPMN and PHILharmonicFlows were chosen to cover
as many different PCPs as possible. Each scenario exhibits different PCPs, allowing
to examine the degree to which the selected modelling approaches can adequately
model PCPs. The degree of pattern support of both modelling approaches is shown
in Table 4.3 for Scenario 1 and in Table 4.4 for Scenario 2. The results are based
on the evaluation criteria relation type, cardinality restriction and threshold value w,
presented in Table 4.1. Note that the modelling approaches show a different degree of
pattern support. Nonetheless, this evaluation is not an overall quality assessment of the
individual approaches.

Tabelle 4.3.: Overview of Pattern Support for Scenario 1

Scenario 1: Paper selection process of a conference

PCP BPMN PHILharmonicFlows
1. PCP 1 +/- +
2. PCP 3 +/-

3. PCP 1 +/- +
4, PCP 1 +/- +
5. PCP 1 - +
6. PCP 1 +/- +
7. PCP 1 +/- +
8. PCP 1 +/- +
Direct support 8/8
Partial support 7/8

No support 1/8

80

4. Evaluating the Support of Process Coordination Patterns

Tabelle 4.4.: Overview of Pattern Support for Scenario 2

Scenario 2: Built-to-Order process

PCP BPMN PHILharmonicFlows
1. PCP 2 +/- +
2. PCP 4 +/- +
3. PCP 2 +/- +
4. PCP 2 - +
5. PCP 5 +/- +/-
6. PCP 2 - +
7. PCP 5 +/- +
8. PCP 7 +/- +
9. PCP 5 +/- +
10. PCP 5 - +
Direct support 9/10
Partial support 7/10 1/10
No support 3/10

The obtained results in Table 4.3 for Scenario 1 and in Table 4.4 for Scenario 2 are
discussed in the evaluation of each approach in subsections 4.4.3 BPMN Evaluation
and 4.4.4 PHILharmonicFlows Evaluation. Moreover, encountered problems and cor-
responding reasons are mentioned. The obtained results are based on the degree of
support provided by each approach for PCP # 1 from Scenario 1. The other PCPs have
been evaluated in a similar fashion, giving the results in Table 4.3 and Table 4.4.

4.4.3. BPMN Evaluation

In subsection 4.4.1 the implementation of PCP # 1 from Scenario 1 was described. The
degree of support provided by BPMN for PCP #1 as shown in Table 4.3, is assessed as
partial for the following reasons. The O reference the BPMN model in Figure A.1 in the
appendix.

Concerning the feature relation type, one process, the conference organisation, is
related to several processes, the authors which are modelled as a multi-instance pool.
On an abstract level, it is identifiable that the conference published by the conference
organisation is related to several papers created by different authors. Modelling the
relation type one-to-many, where many remains an abstract value n as stated by the
assessed PCP is thus supported.

81

4. Evaluating the Support of Process Coordination Patterns

Regarding the feature cardinality restriction, BPMN provides the option of assigning
properties to certain flow elements and organisational elements (e.g. pools, swimlanes).
Yet, property elements are not visually displayed on a process diagram but contained
within a flow or organisational element. For instance, a minimum and maximum value
defining the number of participants within a pool can be assigned. However, the values
assigned have to be specific numbers, implying that the number of process instances
have to be known at design-time. Though, this is not always the case. For instance, the
number of authors that may submit papers for a conference is unknown at design-time.
By assigning cardinality restrictions to pools, BPMN explicitly specifies the number of
participants within one process. Contrary to PCPs, in BPMN the number of participants
within one process that can be related to participants of another process is implicitly
stated. In other words, specifying the number of instances of one process type that
can be related to instances of another process type as defined by PCPs is not explicitly
foreseen. However, this fact is problematic when one process is related to several
processes where each relation is of a different type. In such a case, the number of
process instances related to one another is ambiguous. Based on the findings hereby
provided, it can be generally concluded that the degree of support provided by BPMN for
the feature cardinality restriction is partial.

Relating to the feature threshold value w, explicitly modelling a number of process
instances that need to be synchronised into a specific execution state such that related
process instances can be executed is only possible through workarounds. BPMN it not
primarily a data flow language; modelling the data perspective is considered optional by
BPM experts and therefore often omitted for reasons of complexity reduction. According
to the BPMN standard [35], data objects do not have any direct effect on the sequence
flow or message flow of processes. However, modelling data objects indicating their
states provides a possibility for depicting the threshold value w to some extent. By
modelling the multi-instance data object <paper call [sent]> attached to the message
send activity at ®, it is visualised that the conference organisation interacts with the
authors based on the former process reaching a specific execution state. However,
the BPMN standard [35] leaves the structure of data objects underspecified. BPMN
experts differ in opinions whether a data object that is a collection of data represents
multiple instances of an object or just one object instance with a list of fields cf.[7, 28, 41].
Therefore, contrary to pools, data objects do not have a property element for determining
the number of data object instances that can be created. For the evaluation of PCP
support, it is assumed that a multi-instance data object represents multiple object
instances. However, the number of object instances that need to reach a specific
execution state for an interaction to take place still remains ambiguous. A solution for
this problem could be using textual annotations attached to the data objects, indicating
the threshold value w needed for process interactions. Note that, textual annotations
are not binding, they are merely a mechanism to provide additional text information in
a BPMN model [35]. Based on the established evaluation method in section 4.1 data
objects as well as textual annotations represent workarounds for picturing the feature

82

4. Evaluating the Support of Process Coordination Patterns

threshold value w. It can be therefore stated that, in general BPMN provides partial
support for the feature threshold value w.

All aspects considered, based on the evaluation criteria for pattern support stated in
Table 4.1, partial support is assigned to BPMN for PCP #1.

A further substantial information for understanding the results stated in Table 4.3 is
the evaluation of PCP #5 from Scenario 1. This pattern describes that “Once all meta-
reviews for the whole set of available papers is submitted, the final set of papers may
be selected”. As it can be seen at ®, the activities submit meta-review and select final
papers and their corresponding data objects are contained in the pool PB committee
such that there is no interaction. As a result, in this case a process interaction as defined
by PCP #5 cannot be modelled and is thus, not supported. In the evaluation overview
in Table 4.3 and Table 4.4, for some cases BPMN has been evaluated as providing no
pattern support. In general, this results from the fact that, analogous to the mentioned
example, interactions between pools capturing the assessed patterns are missing.

To mention one further significant finding, a more complex pattern, PCP 2 Concurrent
Succession, is briefly assessed hereinafter. From scenario 2, the BTO process for a
custom-PC, PCP #3 has been chosen for assessment. PCP # 3 describes that “After
the online payment of the custom-PC, the chosen basic and optional components may
be registered by the online retailer”. The implementation of the pattern is shown in the
BPMN model in Figure A.6 in the appendix; the following O reference this model. The
degree of support provided by BPMN for PCP # 3 is assessed as partial.

Concerning the feature relation type, according to PCP #3 one custom-PC is related to
several components such that several interactions may take place. In BPMN, process
interactions occur only between collaboration participants via message exchanges.
Therefore, a pragmatic adaption is made, such that the individual process interactions
described by PCP # 3 are abstracted and modelled as one message exchange between
the two processes customer and online retailer. One message exchange may thus
represent one or more interactions. Thereby, on an abstract level, it is identifiable that
one custom-PC is related to several components. This is represented through the
message exchange between the pools customer and online retailer to which the data
object <custom-PC-order [paid]> is attached at @. Based on the custom-PC being
paid by the customer, several components are registered by the online retailer. This is
highlighted with the multi-instance data object <components [registered]> found in the
pool online retailer ®. Modelling the relation type one-to-many between custom-PC
and components, where many remains an abstract value n as stated by the assessed
PCP is supported in a roundabout way.

Regarding the feature cardinality restriction, as already mentioned, in BPMN the number
of process instances related to one another remains ambiguous. Therefore, BPMN
generally provides partial support to the feature cardinality restriction. Since the feature
threshold value w may not be explicitly assigned through formal constructs of BPMN,
here again partial support is awarded.

83

4. Evaluating the Support of Process Coordination Patterns

All'in all, evaluating the support of multiple process interactions as defined by PCP 2
Concurrent Succession requires pragmatic adaptions to account for the discrepancies
between approaches and the definition of a PCP. This is done by bundling several
interactions into one message exchange. In fact this means that, process interactions
of the type 1:n as stated by some of the patterns assessed, could be contemplated
and evaluated as such in BPMN. Otherwise, in most cases of Scenario 2, process
interactions of the type 1:n, would correspond to process interactions of the type 1:1 in
BPMN, thus showing less PCP support.

The other PCPs have been evaluated in a similar fashion, leading to the presented
results in Table 4.3 and Table 4.4.

4.4.4. PHILharmonicFlows Evaluation

In subsection 4.4.1 the implementation of PCP#1 from Scenario 1, among further
examples, was described. As shown in Table 4.3 and Table 4.4, PHILharmonicFlows
has been assessed as providing a full degree of support for almost all of the patterns
found in Scenario 1 and Scenario 2. The only exception is PCP #5 from Scenario 2,
assessed as partially supported. This exception is further specified after accounting for
the overall full support awarded to PHILharmonicFlows.

In general it can be stated that, the overall concept of PHILharmonicFlows feats neatly
with the essence of PCPs for the following reasons. The abstract notion of processes
with a corresponding lifecycle process on which PCPs are build upon, is derived from
the object-aware approach, on which also PHILharmonicFlows is based. On the abstract
level of PCPs, object types may therefore represent process types.

Concerning the feature relation type, the data model allows to capture processes and
the relations between them at design-time. In this context, process relations can be
explicitly defined in an abstract manner, e.g. 1 : n. Many-to-many relations are inher-
ently supported by breaking them down into several one-to-many relations. Regarding
the feature cardinality restriction, the data model further allows assigning cardinality
constraints to process relations. With the data model, process relation awareness is
captured at design-time and enforced at run-time. It can be generally concluded that
PHILharmonicFlows provides full support for the features relation type and cardinality
restriction.

Relating to the feature threshold value w , it can be generally stated that, this feature is
fully supported by PHILharmonicFlows through the concept of coordination processes
modelled at design-time. Coordination processes capture complex process interactions
by specifying coordination constraints and enforcing them at run-time. Dependency con-
straints among process instances are thereby captured through semantic relationships,
which can be configured with a context-aware expression framework. Configurating
semantic relationships allows to explicitly set threshold values w such that interactions

84

4. Evaluating the Support of Process Coordination Patterns

occur based on the execution states of the interacting process instances, taking into
account asynchronous process execution.

In the main, the PHILharmonicFlows framework supports the characteristic features of
PCPs. However, PCP #5 from Scenario 2, as the only exception, has been assessed as
being partially supported. This results from the fact that, this patterns displays a higher
degree of complexity, relatively to the other ones. PCP #5 describes that “Once placed
basic and optional components have reached the required order value, the joint purchase
order may be sent”. The implementation of this pattern is illustrated in the coordination
process Joint Purchase Order shown in Figure A.10. At @ the target coordination step
Joint Purchase Order:Sent has one port with thirteen incoming transitions outgoing
from the source coordination steps referencing basic and optional components in the
state Order Placement. However, each one of the bottom-up semantic relationships
outgoing from the source coordination steps, require a specific value to be reached for
the semantic relationship to be enabled. This implies that, the configured expressions
must be able to aggregate attribute values assigned to the source coordination steps, in
this case the prices, such that based on predefined values being reached, i.e. minimum
values, the semantic relationships are enabled. Aggregate functions are not yet part of
the expression framework of PHILharmonicFlows. However, as mentioned in [47], the
expression framework is not limited to the existing functions and may be expanded in
the future such that more complex constraints may be expressed. Since the essentials
of PCP #5 can be modelled, i.e. interactions based on execution states, partial support
was awarded.

Finally, one further substantial information concerns the support provided by PHILhar-
monicFlows for PCP # 8 from Scenario 2. This pattern represents PCP 7 Reassignment,
the special case of the PCP catalogue, involving the rerouting of process instances.
PCP # 8 states that “In case of an order rejection, the basic and optional components
are placed into joint purchase orders related to different suppliers who also offer those
components”. The implementation of this pattern is implicitly enabled, in particular, by
how semantic relationships coordinate the processing of object types with the processing
of other object types based on their execution status. Though, backwards transitions in
lifecycles processes play thereby a major role. PCP # 8 is implemented in the process
Joint Purchase Order shown in Figure A.10; described in the following. Referencing
PCP #5 from Scenario 2, described above; provided that a JPO instance reaches the
state Sent at @, the JPO may then either proceed to state Accepted or to state Re-
jected. Accepting a JPO enables the top-down semantic relations between JPO and the

components that may be part of the JPO at @. This means that, a component instance
may then transit from the state Order Placement to the state Confirmation in its corre-
sponding lifecycle process (cf. Figure A.8). By looking at the defined lifecycle process
for components and the coordination process Joint Purchase Order in Figure A.10, it
can be derived that: In case that a JPO is rejected, a component instance cannot transit
to the next state Confirmation, thus remaining in the state Order Placement. Based
on the design-time information, the run-time environment of the PHILharmonicFlows
framework enables tracking the execution progress of individual process instances as

85

4. Evaluating the Support of Process Coordination Patterns

well as their relations. This means that, authorised users may trace component instances
that are “stuck” in the state Order Placement due to a rejected JPO. Then, by enabling
the backwards transition in the lifecycle process of a component, a state change from
Order Placement to state Registration is possible. The component instance may then
be placed in another JPO. By resetting the state of the process instance component, the
bottom-up semantic relation between the coordination step referencing the component
and the coordination step referencing the JPO is erased. In other words, the process
instance component is no longer related to that specific JPO. The run-time environment
of the PHILharmonicFlows framework enables to obtain accurate information about the
execution state of process instances and their relations at any point in time.

4.4.5. Threats to Validity

In the following, factors that may call into question the evaluation results of pattern
support provided by BPMN and PHILharmonicFlows are discussed. These factors are
denoted as threats to validity.

With respect to BPMN, a threat to validity poses the fact that modelling process inter-
actions depends on the modeller’'s perception of the overall business processes. To be
more specific, it is conceivable to model Scenario 1 with two pools only. One pool could
represent the paper selection process of a conference and be sub-partitioned into the
lanes conference organisation, program board and program committee. This represen-
tation is based on the fact that according to the BPMN standard [35], the meaning of the
lanes is up to the modeller. Lanes are commonly used for allocating activities to roles or
systems within one process. In that sense, the mentioned lanes could be seen as roles
of one process. The other pool could represent the authors. Based on how interactions
are defined in BPMN, evaluating the PCP support required to model the processes
involved as single pools. Otherwise, there would not have been many interactions to
assess. Furthermore, relationship types between distinct lanes are not supported in
BPMN. Therefore, in order to capture the types of relations among interacting processes,
those were modelled as single pools. However, the decision of modelling Scenario 1
with four processes instead of two represents potential bias in favor of BPMN.

Another threat to validity is that, for the evaluation, PCPs were applied with some room
for interpretation. This stems from the fact that, even tough PCPs abstract process
interactions as generally as possible, concrete approaches such as BPMN do not
necessarily comply to hundred percent to this abstract definition. Therefore, when
evaluating PCP support of the approaches, certain pragmatic adaptions were required
to account for the discrepancies between approaches and the definition of a PCP. In
this context, for the assessment of BPMN one message exchange between two pools
was not perceived as being equivalent to one interaction but to a set, that is, one
or more interactions. Hence, several interactions may be bundled into one message
exchange. As a result, process interactions of the type 1:n as stated by some of
the patterns assessed, could be apprehended as such in BPMN. Otherwise, in most

86

4. Evaluating the Support of Process Coordination Patterns

cases, process interactions of the type 1:n, would correspond to process interactions
of the type 1:1 in BPMN, thus complicating a comparison. It is worth noting that, the
pragmatic adaptions taken are not completely arbitrary. The BPMN standard [35] does
not concretely specify the ratio between messages, message flows and interactions.
In the context of collaborations, it merely mentions that the interaction between two
pools is shown through message flows. Then again, in the context of choreographies
it is mentioned that one or more message flows represent interaction(s) between two
participants. Consequently, it is underspecified how many messages correspond to an
interaction and vice versa.

All'in all, the pragmatic adaptions concerning process interactions represent an inter-
pretation in favour of BPMN. If the PCPs would have been applied too dogmatically,
the evaluation of BPMN would show less support for PCPs, due to the rigidity in the
application of the PCPs. However, a strict evaluation leading to a worse performance of
BPMN in terms of PCP support would be also legitimate.

Relating to PHILharmonicFlows, no pragmatic adaptions were required as the interac-
tions concept of PHILharmonicFlows rather coincides with the definition of PCPs. Yet,
this may result in a more strict evaluation of PHILharmonicFlows as PCPs were applied
as defined. An example is the partial support awarded for PCP #5 from Scenario 2.
Even tough, the main essence of the pattern is supported, on the whole only partial
support was awarded, as the assessment delved into technical details by examining the
expression framework.

4.4.6. Interesting Findings

In the context of the evaluation, interesting findings were identified, which are reported
in the following.

An interesting finding is that in Scenario 1, the basic case of process interactions, PCP 1,
accounts for 7 of the 8 patterns present in the scenario (87,5%). In Scenario 2, PCP 2
and PCP 5, each account for 4 of the 10 patterns present in the scenario (40%). Scenario
1 comprises five process types while Scenario 2 comprises up to fifteen process types
(depending on how many optional components are selected). It could be assumed
that, in scenarios involving several process types, as it is the case in Scenario 2, more
advanced PCPs can be found. However, this assumption would have to be investigated
in future work by gathering numerous different process scenarios.

Another interesting finding is that, PCP 6 is the only pattern that is not part of any of
the scenarios modelled, such that its support could not be evaluated. The scenarios
modelled with BPMN and PHILharmonicFlows were chosen based on literature with
focus on multiple interacting process instances. The intention was thereby to cover as
many different PCPs as possible. However, since there is not much literature with focus
on multiple process interactions, it could not be guaranteed that the evaluation would
cover all PCPs of the current catalogue. A possible approach for future investigations

87

4. Evaluating the Support of Process Coordination Patterns

on PCP support could be to conduct an extensive SLR with focus on multiple process
interactions. Hence, a much larger data basis would be available for a systematic
selection of scenarios involving multiple process interactions.

One further interesting finding is that in PHILharmonicFlows with one coordination
construct, i.e. a connection of coordination steps, coordination transitions and ports, it is
possible to model more than one PCP at once. As already described in subsection 4.4.1,
this is the case for PCP #5 and PCP # 6 from Scenario 2, which can be both captured
with one OR-semantics construct.

Finally, one interesting finding related to Scenario 1 is the review-phase, where reviews
assigned to a PC member may be reassigned to a different PC member in case that the
former cannot meet the submission deadline. The described reassignment process does
not comply with PCP 7 from the Pattern Catalogue as it involves the rerouting of single
process instances from one user to another. PCPs do not consider user as processes,
therefore the described rerouting was not considered as a pattern for assessment.
However, since PHILharmonicFlows differentiates between object types and user types,
the routing of reviews from one PC member to another could be considered as a special
case of PCP 7, which has been adapted for the approach. The reassignment of reviews
could be implemented in PHILharmonicFlows by defining a backwards transition from
the state Paper Assessment to the state Assignment in the lifecycle process of Review
(cf. Figure A.3 in the appendix). Authorised users, for example PB members, could then
reset the state of a Review and assign it to a different PC member.

The evaluation performed in this thesis provided an initial insight in interesting findings.
In the future, a more extensive evaluation involving more scenarios, such that more
PCPs appear in different ratios, is likely to generate new insights.

88

Related Work

This chapter discusses other pattern catalogues describing process interactions that
take into account relationship types. In addition, modelling approaches that take multiple
process interactions into consideration are also briefly presented.

Service Interaction Patterns (SIPs) [4, 55] comprise a collection of thirteen patterns
focused on interactions between organisation-centric processes. Interactions between
processes occur on a service-oriented basis, where each business process represents
a service provider. Interactions between business processes are based on message ex-
changes between activities within those processes. SIPs describe interactions between
processes based on the number of participants involved and the number of messages
exchanged in a business transaction. However, many-to-many relations are not consid-
ered in the pattern catalogue, merely one-to-many and many-to-one relations are taken
into account.

Correlation Patterns [3] are a collection of eighteen patterns that also describe interac-
tions between services through message exchanges. The focus lies on the matching
of incoming and outgoing messages between business processes, termed as corre-
lation. Correlation patterns are based on three main concepts, events, conversations
and process instances, which are grouped into correlation mechanisms. The scenarios
described, in which correlations might occur, take to some extent multiplicity of process
instances into account. Analogous to SIPs, many-to-many relations are not considered.

Semantic relationships [49] are a collection of five patterns capturing elementary types
of coordination constraints among processes. As already described in the context of
PHILharmonicFlows in subsection 4.4.1, semantic relationships incorporate the support
for one-to-many and many-to-many process relations. Semantic relationships allow for
concurrent and asynchronous process execution while affecting process execution only
if required. By configuring basic semantic relationships, more complex coordination
constraints may be represented. Semantic relationships are paradigm-independent as
processes are abstracted with state-based-views, thus allowing for the coordination of
processes modelled in any paradigm.

SIP and Correlation Patterns, both describe interactions that take into account relation-
ships among interacting process instances. However, both pattern catalogues are limited
to the activity-centric paradigm as interactions rely on message exchanges. Furthermore,
many-to-many relations are not considered. In contrast, semantic relationships may be

89

5. Related Work

used to model process interactions in many-to-many relations, independently from a
specific paradigm.

In the literature, different modelling approaches with a main focus on process interactions
have been proposed. Yet, most of them have not been implemented into a prototype
that supports the design of process models. In the following, a small overview of those
approaches is presented.

Proclets [53, 54] are lightweight processes which interact with one another via mes-
sages called performatives. Proclets allow setting cardinality restrictions for a message
multicast, i.e. specifying the number of Proclets receiving a performative. Cardinality
restrictions are fixed at design-time, though the exact recipients of a performative at
run-time is mostly unknown at design-time. Proclets take asynchronous and concurrent
execution into account. However, many-to-many relations between Proclets are not con-
sidered. Proclets are defined using an extended version of Petri nets, which supports the
sending and receiving of performatives. A tool support for modelling process interactions
based on the Proclets framework is not available so far.

Business Artifacts [23, 24] are business objects that consist of a lifecycle model and
an information model. For process modelling the Guard-Stage-Milestone (GSM) meta-
model [22] is used. The information model describes the data of a business object during
its lifecycle while the lifecycle model describes the creation and evolution of the business
object as it passes through a business. Relations between Business Artifacts play a
role for the specification of the overall business process, however relation types are not
explicitly defined. Business Artifacts interact with one another based on a sophisticated
expression framework that is integrated into the process model. Cardinality restrictions
can be configured with the expression framework. A prototype engine that supports the
GSM meta-model has been developed by the IBM Research-Team for internal business
operations.

The COREPRO approach [30, 31] focuses on the coordination of data-driven process
structures in the engineering domain. Product components are modelled as data objects
with a corresponding object lifecycle composed of states. Relations between data
objects of the type one-to-many are explicitly considered. However, neither many-to-
many relations nor cardinality restrictions are supported. Process interactions occur by
coordinating the state of an object’s lifecycle with the state of another object’s lifecycle.
Similar to PHILharmonicFlows, a data model and a lifecycle coordination model are
defined and displayed separately. Major parts of the COREPRO modelling concept have
been implemented in a prototype, the COREPRO Modeler [32], for conducting case
studies in the automotive industry.

The BPMN standard [35] comprises choreography diagrams which explicitly focus on
process interactions. Choreographies represent a type of business contract between two
or more organisations. Choreography diagrams concentrate on the message flow be-
tween process participants instead of the individual tasks performed by each participant.
Choreography diagrams posses few modelling elements, such that only the interactions

90

5. Related Work

between senders and receivers are illustrated. Relation types between interacting pro-
cesses can be deduced based on single-instance and multi-instance markers. However,
analogous to collaboration diagrams, the support in restricting process cardinality is very
limited. Several commercial modelling tools are offered for the design of choreography
diagrams.

91

Summary and Outlook

In this chapter the main contributions of this thesis are briefly summarised. Furthermore,
possible research directions for future work are presented.

6.1. Summary

This thesis aimed at providing a pattern catalogue describing the different types of
interactions that may exist among process instances that have relationships of 1:n,
m:1 and m:n. It was specific aim to capture patterns that go beyond the common 1:1
relationships. Furthermore, it was of fundamental importance to create a collection of
patterns that explicitly capture process interactions in a paradigm-independent manner.
For these, Process Coordination Patterns have been introduced. The current PCP
catalogue, presented in Chapter 3, consists of seven patterns.

PCPs abstract process interactions as generally as possible; they try to capture the
essence of the interaction, aiming to support a wide variety of process paradigms.
Thereby, processes are considered at a comprehensive level as they are partitioned
into different execution states that provide significant meaning for process interactions.
PCPs take into account concurrent and asynchronous process executions. Interactions
are based on execution dependencies among processes that are interrelated through
different types of relationships. In the current PCP catalogue each pattern comprises
variants for 1:1, 1:n/m:1 and m:n relationships. PCPs are a collection of elementary
interactions derived from literature involving complex relationships. It is likely that through
future research in this field, more rare patterns may be found and added to the current
catalogue.

The degree to which two modelling approaches support modelling interactions captured
by the PCPs has been evaluated in Chapter 4. From the two modelling approaches
assessed for PCP support, one is based on the activity-centric paradigm, BPMN, and the
other, PHILharmonicFlows, on a data-centric paradigm. For the evaluation, two scenarios
exhibiting multiple process interactions, in particular one-to-many and many-to-many
relationships, were selected. The evaluation results showed that PHILharmonicFlows as
compared to BPMN provides a higher degree of support with respect to the capturing of

92

6. Summary and Outlook

multiple process interactions. This follows from the fact that, PHILharmonicFlows has
been designed with multiple process interactions in mind.

The evaluation performed in this thesis provided an initial insight of the scope and
suitability of modelling approaches based on different paradigms. In future evaluations
on PCP support, more modelling approaches could be compared and more precise
conclusions about their similarities and differences with respect to the capturing of
multiple process interactions could be drawn. Based on the design goal of supporting
PCPs, existing interaction-centric modelling approaches could be modified. Furthermore,
PCPs could serve as guideline for the design of new interaction-centric modelling
approaches, ensuring that these support PCPs.

6.2. Outlook

To extend the theoretical base and practical use of PCPs, the following research topics
have emerged as candidates for future work:

The Internet of Things (IoT) is a challenging topic in BPM, driving the need for new
and different approaches to business process modelling and execution. The loT repre-
sents a comprehensive environment that consists of a large number of smart devices,
interconnecting heterogeneous physical objects to the internet. loT poses a challenge
in how to manage several single processes interacting with one another in both ways,
synchronously and asynchronously, forming together one complex business process.
PCPs could support process designers in tackling interacting heterogeneous processes
in many-to-many relationship settings. A thorough empirical investigation of the PCPs
framework for modelling large scale interactions shall demonstrate their applicability in
practice.

The PCP framework intends enhancing a sufficiently detailed level of abstraction to
serve as guidance for assessing the capabilities of modelling approaches based on
different paradigms. However, this generalisation of processes leads to loss of detail,
such that concrete modelling approaches do not necessarily conform to the overall defi-
nition of PCPs. The specific representation of state-based-views for different modelling
approaches belonging to different paradigms is therefore a possible future research
topic.

PCPs have been illustrated with simple graphic elements and constructs so far. For
examining the use of PCPs in a series of PrMS as a means of assessing the specific
capabilities of individual offerings for the support of multiple process interactions, a
formal representation of PCPs is needed. A major focus of future work could therefore
be the development of formal semantics for PCPs.

The current PCP catalogue has been developed based on current literature with focus
on multiple process interactions. However, there is not much literature with focus on this
topic. Therefore, using the PCP catalogue for the purpose of process language analysis

93

6. Summary and Outlook

in the future, would be useful for obtaining a broader database such that potentially new
PCPs could be discovered.

94

Appendix

Figure A.1.: Paper Selection Process of a Conference - BPMN Model Part 1

95

A. Appendix

Figure A.1.: Paper Selection Process of a Conference - BPMN Model Part 2

96

A. Appendix

Figure A.2.: Paper Selection Process of a Conference - PHILharmonicFlows Data Model

97

A. Appendix

Figure A.3.: Paper Selection Process of a Conference - PHILharmonicFlows Lifecycle
Processes

98

A. Appendix

Figure A.4.: Paper Selection Process of a Conference - PHILharmonicFlows Coordina-
tion Process Conference Part 1

99

A. Appendix

Figure A.4.: Paper Selection Process of a Conference - PHILharmonicFlows Coordina-
tion Process Conference Part 2

100

A. Appendix

Figure A.5.: Paper Selection Process of a Conference - PHILharmonicFlows Coordina-
tion Process Paper Part 1

101

A. Appendix

Figure A.5.: Paper Selection Process of a Conference - PHILharmonicFlows Coordina-
tion Process Paper Part 2

102

A. Appendix

Figure A.6.: Built-to-Order Process - BPMN Model Part 1

103

A. Appendix

Figure A.6.: Built-to-Order Process - BPMN Model Part 2

104

A. Appendix

Figure A.6.: Built-to-Order Process - BPMN Model Part 3

105

A. Appendix

Figure A.7.: Built-to-Order Process - PHILharmonicFlows Data Model

106

A. Appendix

Figure A.8.: Built-to-Order Process - PHILharmonicFlows Lifecycle Processes

107

A. Appendix

Figure A.9.: Built-to-Order Process - PHILharmonicFlows Coordination Process Custom-
PC Part 1

108

A. Appendix

Figure A.9.: Built-to-Order Process - PHILharmonicFlows Coordination Process Custom-
PC Part 2

109

A. Appendix

Figure A.10.: Built-to-Order Process - PHILharmonicFlows Coordination Process Joint
Purchase Order Part 1

110

A. Appendix

Figure A.10.: Built-to-Order Process - PHILharmonicFlows Coordination Process Joint
Purchase Order Part 2

111

4.1.
4.2.
4.3.
4.4.

List of Tables

Evaluation Criteria for Pattern Support 48
Overview over Semantic Relationships 76
Overview of Pattern Support for Scenario1 80
Overview of Pattern Support for Scenario2 81

112

List of Figures

2.1. State-based-view of the Process Type Package at Design-time 7
2.2. Concurrent Process Instances Package; and Package, at Run-time . . . 8
2.3. Relations between Process Types at Design-time 10
2.4. Interactions between Process Instances at Run-time 12
2.5. Example Scenario of Multiple Relations between Process Types 14
2.6. Example Scenario of Multiple Process Interactions and Remaining Pro-
cessinstances 15
2.7. Graphic Elements for DescribingPCPs 18
A.1. Paper Selection Process of a Conference - BPMN Model Part1 95
A.1. Paper Selection Process of a Conference -BPMN Model Part2 96

A.2. Paper Selection Process of a Conference - PHILharmonicFlows Data Model 97
A.3. Paper Selection Process of a Conference - PHILharmonicFlows Lifecycle

Processes e 98
A.4. Paper Selection Process of a Conference - PHILharmonicFlows Coordi-
nation Process Conference Part1 99
A.4. Paper Selection Process of a Conference - PHILharmonicFlows Coordi-
nation Process Conference Part2 100
A.5. Paper Selection Process of a Conference - PHILharmonicFlows Coordi-
nation Process Paper Part1, 101
A.5. Paper Selection Process of a Conference - PHILharmonicFlows Coordi-
nation Process Paper Part2, 102
A.6. Built-to-Order Process-BPMN Model Part1 103
A.6. Built-to-Order Process-BPMN Model Part2 104
A.6. Built-to-Order Process-BPMN Model Part3 105
A.7. Built-to-Order Process - PHILharmonicFlows Data Model 106
A.8. Built-to-Order Process - PHILharmonicFlows Lifecycle Processes 107
A.9. Built-to-Order Process - PHILharmonicFlows Coordination Process Custom-
PCPart1 e 108
A.9. Built-to-Order Process - PHILharmonicFlows Coordination Process Custom-
PCPart2 e 109
A.10.Built-to-Order Process - PHILharmonicFlows Coordination Process Joint
Purchase Order Part1 i ... 110
A.10.Built-to-Order Process - PHILharmonicFlows Coordination Process Joint
Purchase Order Part2 111

113

Bibliography

[1] Andrews, K., Steinau, S., Reichert, M.: Enabling Fine-Grained Access Control in
Flexible Distributed Object-Aware Process Management Systems. In: 2017 IEEE
21st International Enterprise Distributed Object Computing Conference (EDOC).
pp. 143—152 (2017)

[2] Awad, A., Decker, G., Lohmann, N.: Diagnosing and Repairing Data Anomalies in
Process Models. In: Business Process Management Workshops. pp. 5-16. Springer
Berlin Heidelberg (2010)

[3] Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-
Oriented Architectures. In: Fundamental Approaches to Software Engineering. pp.
245-259. Springer Berlin Heidelberg (2007)

[4] Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: Business
Process Management. pp. 302—-318. Springer Berlin Heidelberg (2005)

[5] Buhl, H.U., Réglinger, M., Stéckl, S., Braunwarth, K.S.: Value Orientation in Process
Management. Business & Information Systems Engineering 3(3), 163-172 (2011)

[6] Cohn, D., Hull, R.: Business Artifacts: A Data-centric Approach to Modeling Busi-
ness Operations and Processes. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 32(3) (2009)

[7] Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Animating Multiple Instances
in BPMN Collaborations: From Formal Semantics to Tool Support. In: Business
Process Management. pp. 83—101. Springer International Publishing (2018)

[8] Decker, G., Barros, A.: Interaction Modeling Using BPMN. In: Business Process
Management Workshops. pp. 208-219. Springer Berlin Heidelberg (2008)

[9] Decker, G., Dijkman, R., Dumas, M., Garcia-Barfiuelos, L.: Transforming BPMN Dia-
grams into YAWL Nets. In: Business Process Management. pp. 386—-389. Springer
Berlin Heidelberg (2008)

[10] Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service
Choreographies Using BPMN and BPEL4Chor. In: Advanced Information Systems
Engineering. pp. 79-93. Springer Berlin Heidelberg (2008)

[11] Derrick, J., Boiten, E.A.: Refinement in Z and object-Z: Foundations and Advanced
Applications. Springer Science & Business Media (2013)

[12] Dijkman, R., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Process
Models in BPMN. Information and Software Technology 50(12), 1281-1294 (2008)

[13] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer Berlin Heidelberg (2018)

114

Bibliography

[14] Dumas, M., van der Aalst, W., ter Hofstede, A.: Process-aware Information Systems:
Bridging People and Software through Process Technology. John Wiley & Sons
(2005)

[15] Eder, J., Lehmann, M.: Synchronizing Copies of External Data in Workflow Man-
agement Systems. In: Advanced Information Systems Engineering. pp. 248-261.
Springer Berlin Heidelberg (2005)

[16] Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.: Many-to-Many:
Some Observations on Interactions in Artifact Choreographies. In: Proceedings of
the 3rd Central-European Workshop (ZEUS). vol. 705, pp. 9-15. CEUR-WS. org,
CEUR Workshop Proceedings (2011)

[17] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Standard for Role-based Access Control. ACM Transactions on Information
and System Security 4(3), 224—274 (2001)

[18] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Abstraction and
Reuse of Object-Oriented Design. In: ECOOP’ 93 — Object-Oriented Programming.
pp. 406—431. Springer Berlin Heidelberg (1993)

[19] de Giacomo, G., Dumas, M., Maggi, F.M., Montali, M.: Declarative Process Modeling
in BPMN. In: Advanced Information Systems Engineering. pp. 84—100. Springer
International Publishing (2015)

[20] Ganther, C., van der Aalst, W.: Process Mining in Case Handling Systems. In:
Multikonferenz Wirtschaftsinformatik 2006 (MKWI). pp. 125-137. GITO-Verlag
Berlin (2006)

[21] Houy, C., Fettke, P., Loos, P., van der Aalst, W., Krogstie, J.: BPM-in-the-Large
— Towards a Higher Level of Abstraction in Business Process Management. In:
E-Government, E-Services and Global Processes. pp. 233—244. Springer Berlin
Heidelberg (2010)

[22] Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F., Hobson, S., Linehan, M.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the Guard-Stage-
Milestone Approach for Specifying Business Entity Lifecycles. In: Web Services
and Formal Methods. pp. 1-24. Springer Berlin Heidelberg (2011)

[23] Hull, R., Damaggio, E., de Masellis, R., Fournier, F., Gupta, M., Heath, F., Hobson,
S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Business
Artifacts with Guard-stage-milestone Lifecycles: Managing Artifact Interactions with
Conditions and Events. In: Proceedings of the 5th ACM International Conference
on Distributed Event-based System. pp. 51-62. ACM (2011)

[24] Hull, R., Narendra, N.C., Nigam, A.: Facilitating Workflow Interoperation Using
Artifact-Centric Hubs. In: Service-Oriented Computing. pp. 1-18. Springer Berlin
Heidelberg (2009)

115

Bibliography

[25] Kinzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Maintenance and Evolution:
Research and Practice 23(4), 205-244 (2011)

[26] Lanz, A., Weber, B., Reichert, M.: Time Patterns for Process-aware Information
Systems. Requirements Engineering 19(2), 113—141 (2014)

[27] Meidan, A., Garcia-Garcia, J.A., Escalona, M.J., Ramos, |.: A Survey on Business
Processes Management Suites. Computer Standards & Interfaces 51, 71-86 (2017)

[28] Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex
Data Dependencies in Business Processes. In: Business Process Management.
pp. 171-186. Springer Berlin Heidelberg (2013)

[29] Meyer, A., Weske, M.: Activity-Centric and Artifact-Centric Process Model Roundtrip.
In: Business Process Management Workshops. pp. 167—181. Springer International
Publishing (2014)

[30] Muiller, D., Reichert, M., Herbst, J.: Data-driven Modeling and Coordination of Large
Process Structures. In: On the Move to Meaningful Internet Systems 2007: CooplS,
DOA, ODBASE, GADA, and IS. pp. 131-149. Springer Berlin Heidelberg (2007)

[31] Mdiller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and Dynamic
Adaptation of Data-driven Process Structures. In: Advanced Information Systems
Engineering. pp. 48—63. Springer Berlin Heidelberg (2008)

[32] Muller, D., Reichert, M., Herbst, J., Poppa, F.: Data-driven Design of Engineering
Processes with COREPROModeler. In: 16th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). pp.
376-378 (2007)

[33] Mulyar, N.A.: Patterns for Process-aware Information Systems: An Approach based
on Colored Petri Nets. Ph.D. thesis, Technische Universiteit Eindhoven (2009)

[34] Nigam, A., Caswell, N.S.: Business artifacts: An Approach to Operational Specifi-
cation. IBM Systems Journal 42(3), 428—445 (2003)

[35] Object Management Group: Business Process Model and Notation (BPMN), Version
2.0 (2011), http://www.omg.org/spec/BPMN/2.0

[36] Popova, V., Fahland, D., Dumas, M.: Artifact Lifecycle Discovery. International
Journal of Cooperative Information Systems 24(1) (2015)

[37] Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems:
Challenges, Methods, Technologies. Springer Berlin Heidelberg (2012)

[38] Reijers, H.A., Rigter, J.H., van der Aalst, W.: The Case Handling Case. International
Journal of Cooperative Information Systems 12(3), 365-391 (2003)

[39] Reijers, H.A., Vanderfeesten, I., Plomp, M.G.A., van Gorp, P., Fahland, D., van der
Crommert, W., Garcia, H.D.D.: Evaluating Data-centric Process Approaches: Does
the Human Factor factor in? Software & Systems Modeling 16(3), 649-662 (2017)

116

http://www.omg.org/spec/BPMN/2.0

Bibliography

[40] Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR (1997)

[41] von Rosing, M., von Scheel, H., Scheer, A.W.: The Complete Business Process
Handbook: Body of Knowledge from Process Modeling to BPM. Morgan Kaufmann
Publishers Inc (2014)

[42] Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow Data
Patterns: Identification, Representation and Tool Support. In: Conceptual Modeling
— ER 2005. pp. 353-368. Springer Berlin Heidelberg (2005)

[43] Russell, N., van der Aalst, W., ter Hofstede, A.: Workflow Patterns: The Definitive
Guide. The MIT Press (2016)

[44] Sadiq, S., Orlowska, M., Sadiq, W., Foulger, C.: Data Flow and Validation in
Workflow Modelling. In: Proceedings of the 15th Australasian Database Conference.
pp. 207-214 (2004)

[45] von Stackelberg, S., Putze, S., Mllle, J., B6hm, K.: Detecting Data-Flow Errors in
BPMN 2.0. Open Journal of Information Systems 1(2), 1-19 (2014)

[46] Steinau, S., Andrews, K., Reichert, M.: Flexible Data Acquisition in Object-aware
Process Management. In: 7th Int’| Symposium on Data-driven Process Discovery
and Analysis (SIMPDA). pp. 113-127. CEUR-WS.org (2017)

[47] Steinau, S., Andrews, K., Reichert, M.: Modeling Process Interactions with Coor-
dination Processes. In: On the Move to Meaningful Internet Systems. OTM 2018
Conferences. pp. 21-39. Springer International Publishing (2018)

[48] Steinau, S., Andrews, K., Reichert, M.: The Relational Process Structure. In:
Advanced Information Systems Engineering. pp. 53—67. Springer International
Publishing (2018)

[49] Steinau, S., Kinzle, V., Andrews, K., Reichert, M.: Coordinating Business Pro-
cesses Using Semantic Relationships. In: 2017 IEEE 19th Conference on Business
Informatics (CBI). pp. 33—42. IEEE Computer Society Press (2017)

[50] Steinau, S., Marrella, A., Andrews, K., Leotta, F., Mecella, M., Reichert, M.: DALEC:
a Framework for the Systematic Evaluation of Data-centric Approaches to Process
Management Software. Software & Systems Modeling (2019)

[51] Sun, Y., Xu, W., Su, J.: Declarative Choreographies for Artifacts. In: Service-
Oriented Computing. pp. 420—434. Springer Berlin Heidelberg (2012)

[52] Tanenbaum, A.S., Bos, H.: Modern Operating Systems. Pearson Education (2014)

[53] van der Aalst, W., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow Modeling
using Proclets. In: Cooperative Information Systems. pp. 198-209. Springer Berlin
Heidelberg (2000)

[54] van der Aalst, W., Barthelmess, P, Ellis, C.A., Wainer, J.: Proclets: A Framework for
Lightweight Interacting Workflow Processes. International Journal of Cooperative
Information Systems 10(4), 443—-481 (2001)

117

Bibliography

[55] van der Aalst, W., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Patterns,
Formalization, and Analysis. In: Formal Methods for Web Services: 9th International
School on Formal Methods for the Design of Computer, Communication, and
Software Systems, pp. 42—88. Springer Berlin Heidelberg (2009)

[56] van der Aalst, W., Stoffele, M., Wamelink, J.W.: Case Handling in Construction.
Automation in Construction 12(3), 303-320 (2003)

[57] van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns.
Distributed and Parallel Databases 14(1), 5-51 (2003)

[58] van der Aalst, W., Weske, M., Griinbauer, D.: Case handling: A New Paradigm for
Business Process Support. Data & Knowledge Engineering 53(2), 129—162 (2005)

[59] Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support
Features—Enhancing Flexibility in Process-aware Information Systems. Data &
Knowledge Engineering 66(3), 438—466 (2008)

[60] Weske, M.: Business Process Management Architectures. Springer (2012)

[61] Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A., Russell, N.: On
the Suitability of BPMN for Business Process Modelling. In: Business Process
Management. pp. 161-176. Springer Berlin Heidelberg (2006)

[62] Wong, P.Y.H., Gibbons, J.: A Process Semantics for BPMN. In: Formal Methods
and Software Engineering. pp. 355-374. Springer Berlin Heidelberg (2008)

118

Name: Marisol Schwarz Rosado Matrikelnummer: 947052

Erklarung

Ich erklare, dass ich die Arbeit selbststéandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

Marisol Schwarz Rosado

	Introduction
	Motivation
	Contribution
	Outline

	Fundamentals
	Pattern Context
	Basic Concepts of Multiple Process Interactions
	Process Notion
	Concurrency/Parallelism
	Relations
	Interactions

	Comprehensive Concepts of Multiple Process Interactions

	Pattern Format
	Graphical Representation of PCPs

	Process Coordination Patterns
	PCP Catalogue
	PCP 1 Simple Succession
	PCP 2 Concurrent Succession
	PCP 3 Choice
	PCP 4 Coexistence
	PCP 5 Synchronisation
	PCP 6 Selective Synchronisation
	PCP 7 Reassignment

	Acquired Insights during the Process of Pattern Discovery

	Evaluating the Support of Process Coordination Patterns
	Evaluation Methodology
	Scenario 1: Paper Selection Process of a Conference
	Process Description
	Patterns Overview

	Scenario 2: Built-to-Order Process
	Process Description
	Patterns Overview

	Conclusions and Statistics
	Models and Exemplary Patterns Implementation
	BPMN models
	PHILharmonicFlows models

	Overview of Evaluation Results
	BPMN Evaluation
	PHILharmonicFlows Evaluation
	Threats to Validity
	Interesting Findings

	Related Work
	Summary and Outlook
	Summary
	Outlook

	Appendix

