Coordinating Large Distributed
Process Structures

Sebastian Steinau, Kevin Andrews, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{sebastian.steinau,kevin.andrews,manfred.reichert}@uni-ulm.de

Abstract. Representing a business process as interacting small pro-
cesses has become feasible with data-centric business process manage-
ment paradigms. These small processes have relations and, thereby, form
a relational process structure. The interactions of processes within this
relational process structure must be coordinated to arrive at a meaningful
overall business goal. However, relational process structures may become
arbitrarily large and, with cloud technology, they may additionally be dis-
tributed over multiple nodes. Coordination processes have been proposed
to coordinate relational process structures, where processes have one-to-
many and many-to-many relations at run-time. This paper shows how
multiple coordination processes can be used in a decentralized fashion to
coordinate large, distributed process structures. The main challenge is
to effectively realize the coordination responsibility of each coordination
process. Key components of the solution are the subsidiary principle and
the hierarchy of the relational process structure. Moreover, from these
key components and the technical properties of coordination processes,
an implementation based on microservices was developed, which allows
fast and concurrent enactment of multiple, decentralized coordination
processes in large, distributed process structures.

Keywords: Process interactions, relational process structure, coordina-
tion process, distributed process execution, BPM in the cloud

1 Introduction

Several approaches to business process management advocate to represent busi-
ness processes as collections of interacting, interdependent small processes. Ex-
amples include the artifact-centric and object-aware approaches [4,5,9], where
the collaboration of artifact or object lifecycle processes forms an entire business
process. Principal challenges of these approaches are to determine which pro-
cesses exist and how they relate to other processes, as well as the coordination
of this structure of interdependent processes. Recently, the relational process
structure [11] and coordination processes [10] have been proposed to tackle these
challenges. A relational process structure captures processes and their relations
in a hierarchical construct, which is used by a coordination process to specify
and enforce coordination constraints. This allows the interactions of different
processes to be guided towards a meaningful overall business process.

However, fundamental challenges still remain. A relational process structure
may become arbitrarily large, i.e., it may comprise hundreds or more types of
processes. At run-time, hundreds or thousands of instances of these different pro-
cess types are created, as well as their interrelations, compounding the problem.
Furthermore, interacting small processes are particularly suited to be employed
in a distributed instead of a monolithic system. In consequence, some processes
may be located on one node of the distributed system, whereas other processes
are located on different nodes. Existing approaches to coordinate such large
process structures propose employing a single central coordinator (e.g., a mas-
ter artifact [13]). The term coordinator is hereby intended as an umbrella term
for any kind of process coordination model, independent of paradigm or exact
specification, e.g., choreography, coordination process, or Proclet [14]. A single,
central coordinator for a vast process structure is however unsuitable. The coor-
dinator has to incorporate all coordination requirements for all processes in its
model. As a result, a central coordinator model can become overloaded, inflex-
ible, costly to maintain, and difficult to understand. As another drawback, all
distributed processes must communicate with the central coordinator, creating
a huge communication overhead and, more importantly, a single point of failure.
Additionally, as process structures become larger, several independent substruc-
tures may emerge, where each requires an individual coordination. For example,
in the automotive industry, cars may be highly customized, requiring varying
constraints on the production, assembly, and testing of the parts for each car.

As process structures may become very large and different substructures may
be distributed across the nodes of a server cluster, it is beneficial to distribute and
split up the coordination of processes as well. While a coordination process can
serve as a central coordinator, the concept is flexible so that multiple coordina-
tion processes may be used to coordinate a relational process structure. Thereby,
several coordination processes collaborate to achieve an overall coordination of
the entire process structure. However, the challenge of coordination responsibility
must be solved, i.e., the question which coordinator is responsible for which pro-
cesses. Coordination processes are uniquely suited for a decentralized application
due to leveraging the hierarchical nature of the relational process structure. This
allows implementing the subsidiary principle, where a coordination process only
coordinates a subset of processes, defining its coordination responsibility. The
result are more flexible and smaller coordination models, a clear coordination
responsibility of each coordination model, and a superior maintainability. This
paper contributes the decentralized and distributed application of coordination
processes and modeling guidelines to effectively model coordination processes in
large, distributed relational process structures.

The remainder of the paper is organized as follows. The challenges and ben-
efits of decentralized and distributed process coordination are elaborated in Sec-
tion 2. Section 3 introduces background information on the relational process
structure and the coordination processes. Section 4 presents the key concepts
of effectively using coordination processes in a large and distributed relational
process structure. Furthermore, an implementation of decentralized coordination

processes is presented, based on microservices. Section 5 discusses related work
before Section 6 concludes the paper with a summary and an outlook.

2 Challenges and Benefits

The coordination of a multitude of different, interdependent processes is a com-
plicated and challenging endeavor. Processes and their relations have to be iden-
tified and, based on these connections, suitable coordination constraints have to
be specified and enforced. The different processes and their relations are sum-
marized under the term process structure. A coordination constraint denotes
a dependency that exists between two or more processes [10]. Generally, ap-
proaches for coordinating process structures involving multiple process types
advocate the use of a single entity with the purpose of coordinating all involved
processes. This entity is denoted as a central coordinator.

Central coordinators of any kind (e.g., a master artifact) are capable of prop-
erly coordinating different processes. Their main disadvantage is poor scalability
in regard to the process structure. As the number of processes in a process struc-
ture grows, central coordinators must accommodate these additional processes
in their coordination description. Moreover, additional coordination constraints
must be incorporated into the coordination descriptions as well. This generally
leads to the central coordinator model becoming large and possibly overloaded.
With increasing complexity, flexibility suffers, the central coordinator model be-
comes more difficult to change, and the understandability of the model is im-
paired as well. Furthermore, performance of the central coordinator may degrade
due to the large number of processes and the resulting communication overhead.
As a consequence, the central coordinator might become a bottleneck for the
overall performance of the business process structure.

From a functional perspective, relying on one central coordinator for coordi-
nating everything is neither the intuitive nor the most effective way of providing
process coordination for large process structures. Consider the following example
of a recruitment business process.

Ezample 1. (Recruitment Business Process)

In the context of recruitment, applicants may apply for job offers. The overall
process goal for a company is to determine who of the many applicants is best
suited for the job. Applicants must write their application for a specific job
offer and send it to the company. The company employees then evaluate each
application by performing reviews. To reject an application or proceed with
the application, a sufficient number of reviews need to be performed, e.g., the
majority of reviews determines whether or not an application is rejected. If the
majority of reviews are in favor of the application, the applicant is invited for
one or more interviews, after which she may be hired or ultimately rejected.
In the meantime, more applications may have been sent in, for which additional
reviews are required, i.e., the evaluation of different applications may be handled
concurrently, as well as the conduction of interviews.

Various interdependent process types can be identified in Example 1: Job Offer,
Application, Review, and Interview. Each Job Offer is largely independent of
other Job Offers, having its own set of applications and reviews. Consequently,
a single central coordinator is tasked with coordinating each Job Offer inde-
pendently from others. The central coordinator must recognize and keep track
of different executions states of processes, decision results made during the ex-
ecution as well as enforcing the appropriate coordination constraints for the
Job Offers and their connected processes, e.g., Applications. This constitutes an
enormous complexity for the model of the central coordinator, especially when
the run-time is concerned. Moreover, the central coordinator acts as a single
point of failure, as problems that might occur with any Job Offer may affect all
other Job Offers as well.

As different Job Offers are conceptually independent from each other, a sen-
sible solution would be to arrange that each Job Offer is coordinated individually
with its connected other processes such as Applications or Reviews. This means
that there is one model of a coordinator that is instantiated multiple times at
run-time, once for each Job Offer. This is denoted as stage-1 decentralized co-
ordination. This shift reduces model complexity, as the logic for distinguishing
different Job Offers may be omitted due to the coordination happening on a
per-Job Offer-basis, which in turn benefits understandability and maintainabil-
ity. The additional complexity of having to instantiate a model multiple times
may generally be neglected, as this is one of the core ideas of a process-oriented
system. Another advantage is that this also eliminates the single point of failure.
If the coordination of one Job Offer fails for some reason, other Job Offers should
remain unaffected. Stage-1 decentralized coordination is inherently supported in
coordination processes (cf. [10]).

The distribution of coordinators has plenty of advantages while at the same
time only small costs incur. Adding more decentralized coordinators may still
yield more benefits.

Ezample 2. (Unsolicited Application)

Consider the recruitment scenario of an “unsolicited application”, i.e. an ap-
plicant sends in an Application without a prior Job Offer from the company. In
case the unsolicited Application is accepted, a specific Job Offer will be created
for the application.

As the coordinator that coordinates Applications with Reviews and Interviews
is tied to a Job Offer, the unsolicited Application cannot be processed correctly
without a link to a Job Offer. Thus, it is reasonable to add another coordinator
and transfer responsibilities to it from the Job Offer coordinator: The new co-
ordinator coordinates Applications with Interviews and Reviews, and is tied to
the respective Application. The existing Job Offer coordinator is subsequently
only responsible for coordinating the Job Offer with its related Applications.
As a result, an unsolicited Application may be handled correctly in addition
to the usual recruitment procedure. This further reduces the complexity of the
individual coordinator models.

Employing multiple coordinators, also denoted as stage-2 decentralized coor-
dination, is also advantageous in a distributed environment. Processes may run
on different nodes in a distributed cluster, e.g., servers of different departments
of the same company. The nodes and their communication paths are referred
to as the layout of the cluster. As basic premise, communication within a node
is performant and cheap, whereas communication between nodes is more costly.
While the primary goal is the proper coordination of all involved processes, a sec-
ondary goal is to minimize communication between nodes due to its associated
cost. A single central coordinator, running on one node, is forced to communicate
with processes on other nodes. By distributing coordinators among nodes, e.g.,
one coordinator for each node, communication between nodes can be minimized,
resulting in more efficient and performant communication.

To realize the benefits from the use of decentralized coordinators in process
structures, several challenges must be addressed. First, it must be determined
how many coordinators are necessary for a given process structure, taking the
layout of a potential cluster into account. Second, the processes that require
coordination must be assigned to a suitable coordinator, i.e., the responsibility of
the coordinator must be defined. The responsibility includes that redundancies in
the coordination must be avoided. Processes should be assigned, if possible, only
to one coordinator, i.e., the overlap between coordinators should be minimal.
Otherwise, superfluous work would be performed, or communication costs cannot
be reduced compared to a single coordinator. Dividing the responsibility among
several coordinators is the primary challenge of decentralized coordinators.

Coordination processes have been designed with a decentralized application
in large process structures in mind, and can therefore provide a solution to enable
the discussed benefits. This paper contributes new applications of coordination
processes and elicits a modeling guideline to effectively utilize the potential of
coordination processes.

3 Relational Process Structures and Coordination
Processes

For the purposes of this paper, a process is represented in an abstract, sim-
plified manner, which is called a state-based view [12]. In a state-based view,
each process model is partitioned into different states that are relevant for pro-
cess coordination. This allows accommodating processes modeled in different
paradigms. e.g., artifact-centric or activity-centric processes. The current exe-
cution status of a process is determined by the active state of the state-based
view. Furthermore, process types are design-time entities, from which process
instances can be created at run-time. Figure 1b shows the state-based views of
the processes from Example 1.

The basis for using coordination processes is the relational process structure.
It captures all process types relevant for the specific business process [11]. Figure
la shows the design-time relational process structure of the Recruitment Busi-
ness Process (cf. Example 1). A relational process structure not only comprises

/ \ State-based View: Job Offer

State Transition Filled

\# State-based View: Application
1n .l Relation Rejected
Checked

Position
Vacant

Position

Preparation

State

j

Appl Icatlon State-based View: Review Reject
’—|v) pr— — Proposed
1 Assessment| | Proposal o
Proposed
State-based View: Interview Position
Review Interview e e

Filled
(a) Relational Process Structure at design- (b) State-based views of

time the processes in the Rela-
tional Process Structure

Fig. 1: Relational Process Structure and State-based Views

the different process types, but also includes relations between the process types,
forming a directed acyclic graph. A relation indicates that the corresponding pro-
cess types have one or more dependencies between them. A dependency may also
exists transitively over a path of relations between two process types. Relations
further have cardinalities, restricting how many process instances of one type
at run-time may be related to an instance of another process type. Of course,
this implies that processes are in one-to-many or many-to-many relationships. In
order to enforce these cardinalities at run-time, the relational process structure
tracks every created process instance of each process type and monitors each
relation that is established between two instances. Thereby, full transparency
over process instances and their relations is achieved (cf. Figure 2), allowing a
coordination approach to effectively specify constraints on process interactions
at design-time and enforce them on all process instances at run-time.

[Job Offer 1

Job Offer 2

pplication 4
Z \

=

Fig.2: Run-time Relational Process Structure, tracking Every Process Instance
and Relation (simplified view)

Coordination processes [10] constitute an approach for managing process in-
teractions based on the features of the relational process structure. Both co-
ordination processes and relational process structure have their origins in the
object-aware process management approach [5]. A coordination process speci-
fies coordination constraints between process types in terms of semantic rela-
tionships. Semantic relationships are basic interaction patterns of processes in
a one-to-many or many-to-many relationship [12]. In a coordination process,
processes are represented by coordination steps. A semantic relationship, and
consequently, a coordination constraint between two process types, is created
by establishing a coordination transition from one coordination step to another.
Figure 3 shows a coordination process that coordinates the recruitment business
process (cf. Example 1).

Process Type

Coordination Step

T [
Job Offer |, | "Job Offer rop-0own wl_APPlication

| Published Creation

Job Offer

[@ Bottom-Up

Application

Self

Preparation Sent

Top-Down

L
—1

State Type Port

Coordination Transition Preparation

Fig. 3: Coordination Process for the Recruitment Business Process, Part 1

Coordination steps specify a process type and a state of the respective process
type. Each incoming semantic relationship of a coordination step represents a
condition that must be fulfilled before the respective process is allowed to activate
the specified state. Knowing the relations of processes from the relational process
structure, fine-grained coordination of the processes becomes possible.

Job Offer

Position Filled

Bottom-Up —
Application
f f Rejected
seif Review sotomup . Application Interview !
Reject Proposed Checked \‘ Reject Proposed
Bottom-Up seif Self-Transvers
([[(
~ el Review Interview /., Interview |, ..o, s _Application |, . . Job Offer
Transvers:
Proposed Preparation Hire Proposed Accepted Position Filled

Fig.4: Coordination Process for the Recruitment Business Process, Part 2

Coordination processes conceptually require a coordinating process type to
function. In the example from Figure 3, the respective coordination process is
attached to a Job Offer. This means that each instance of Job Offer comes with
its own coordination process that coordinates the Job Offer with its correspond-
ing Applications, Reviews, and Interviews. Coordination processes already rep-

resent decentralized coordinators, as they are instantiated together with the
coordinating process type. A central coordinator can be realized by instantiat-
ing a coordinating process type only once, with one coordinating process type
per process structure. In the following, it is shown how further decentralization
can be achieved with coordination processes, i.e, realizing stage-2 decentralized
coordination.

4 Decentralized Coordination Processes

When coordinators are decentralized, one of the primary challenges concerns re-
sponsibility, i.e., deciding which coordinator shall be responsible for which pro-
cesses. In particular, coordinators may share responsibility for several processes,
i.e., they enforce the same or different coordination constraints on the same
processes. Consequently, it is crucial that coordinators do not model contradict-
ing constraints, e.g., a combination of constraints states exactly the opposite
of another constraint. With decentralized coordinators, this challenge gains im-
portance as coordinators are modeled individually, i.e., contradictions may not
be spotted easily. Consequently, the relational process structure offers a way
to address this challenge, i.e., avoiding the possibility for contradictions alto-
gether by clearly defining the responsibility of each coordinator. In particular,
responsibilities must overlap as little as possible. Fundamental for the solution,
the relations in a relational process structure are directed, which means that
processes can be arranged hierarchically. This hierarchy is an integral part of
how semantic relationships work, the cornerstone of the coordination process
concept. Additionally, the hierarchy of a relational process structure offers ad-
vantages when using multiple coordination processes to coordinate a relational
process structure.

4.1 Coordination Process Scope

For clearly defining responsibilities, the concept of scope of a coordination pro-
cess is essential. A coordination process is attached to a coordinating process
type, and its scope determines which other processes the coordination process
is allowed to coordinate, i.e., its responsibility. The coordinating process can be
easily identified from a coordination process model. By convention, the start
and end steps of a coordination process must refer to the coordinating process
type [10]. The hierarchy of the relational process structure provides an easy
and intuitive solution for defining the scope. The scope of a coordination pro-
cess is defined as all lower-level process types of the coordinating process type.
Lower-level processes are all process types that have a (transitive) relation to
one particular process type. Regarding the relational process structure in Figure
la, Review and Interview are both lower-level processes of Application, which in
turn are all lower-level processes of Job Offer. Attaching a coordination process
to the Job Offer consequently allows coordinating the entire relational process
structure in Figure la, i.e., Reviews, Interviews, Job Offers and Applications.

The scope of a coordination process achieves that the responsibility of a co-
ordination process is not arbitrary, but clearly defined. This provides a great
advantage when modeling decentralized coordination processes, as arbitrary re-
sponsibilities of multiple coordinators create unnecessary redundancy as well
as potentially contradicting constraints, and decrease the maintainability and
understandability of the overall model.

While the scope defines the responsibility of a coordination process, in a rela-
tional process structure, the scopes of multiple coordination processes may still
overlap. For example, when a coordination process is attached to the top-level
process in the hierarchy of the relational process structure, its scope overlaps with
the scopes of coordination processes attached to lower-level processes. Consider
the unsolicited application from Example 2. Application is a lower-level process
type of Job Offer (cf. Figure la). An unsolicited application requires its own
coordination process in absence of the coordination process from a Job Offer.
However, in the end, if an unsolicited application is accepted, a Job Offer, to-
gether with its associated coordination process, will be created. The Job Offer
coordination process has the Applicationin scope.

4.2 Subsidiarity

As shown with this example, simply attaching a new coordination process to the
Application process type creates overlapping scopes with the Job Offer coordi-
nation process. The required coordination constraints to coordinate Reviews and
Interviews would have to be be replicated in the Application coordination pro-
cess, creating redundancy. In addition to redundancy, contradicting constraints
in multiple coordination processes may, in principle, inadvertently be specified.
However, the hierarchy of the relational process structure allows additional mea-
sures to remove overlap: The application of the subsidiarity principle. The Oxford
dictionary defines subsidiarity as follows:

Subsidiarity (noun)(in politics) the principle that a central authority
should have a subsidiary function, performing only those tasks which
cannot be performed at a more local level.!

Transferring this principle to both coordination processes and the relational
process structure, subsidiarity means that a coordination constraint should be
modeled in the lowest coordination process whose scope comprises all process
types involved in the constraint. Regarding the unsolicited application, modeling
any coordination constraints involving only Application, Review, and Interview
in the Job Offer coordination process is a clear violation of subsidiarity. By mov-
ing corresponding coordination constraints to the Application coordination pro-
cess, subsidiarity is fulfilled. Only the coordination constraints for Application
and Job Offer are kept in the Job Offer coordination process. Figures 5 and
6 show Application and Job Offer coordination processes after the application

! https://en.oxforddictionaries.com/definition /subsidiarity

=~

Job Offer Job Offer
Self

Closed Position Vacant

Bottom-Up
[4 [4 [4

Job Off Job OFf Applicati Applicati Sotipm i
ol er ol [o) 'er Top-Down PP lication Self pp! ication sorf
Preparation Published Creation Sent Application

L

Rejected
Self

€ €

Application Job Offer
Bottom-U

Accepted Position Filled

Fig.5: Job Offer Coordination Process

of the subsidiarity principle. Benefits include the proper support of the unso-
licited application variant and the elimination of redundancy between coordi-
nation processes. Further, note that the correct coordination of an unsolicited
application is only possible with two coordination processes. Moreover, each
coordination process model is smaller, simpler and more understandable. Al-
together, the subsidiarity principle and scopes enable the proper decentralized
coordination of small sections of a relational process structure with coordination
processes, which, in turn, collaborate as well to provide coordination for the
entire relational process structure.

Application | Application | Review o Review Bottom-Uj Application

Creation Sent Preparation Reject Proposed Rejected

Bottom-Up

Bottom-Up

Application Interview

\ Checked Reject Proposed
self

Bottom-Up

Review Interview s Interview Application
Transvers eottom-U

Invite Proposed Preparation Hire Proposed Accepted

Fig. 6: Application Coordination Process

4.3 Coordination Processes in Distributed Environments

Distributing coordination processes across different hierarchy levels yields signif-
icant benefits for the simplicity of the coordination process models. In settings
where multiple processes collaborate to achieve a business goal, it is not unrea-
sonable to assume that these processes are not all executed on the same machine.
With the advent of cloud computing, distributed applications are gaining even
more momentum, as scalability is becoming an important issue [1,2]. For that
matter, it is possible to distribute a relational process structure over different
nodes in a distributed cluster (e.g., a cloud). Coordination processes and rela-
tional process structures originate in object-aware process management and are
implemented in the PHILharmonicFlows prototype, which comprises a process
execution engine based fully on microservices [1,5]. As such, the issue of dis-
tribution of processes across nodes is highly relevant not only for object-aware
processes, but in the general sense as well.

10

Figure 7 shows an example of a feasible distribution of a relational process
structure over three nodes. It assigns process types to a specific node, e.g., process
A is assigned to Node 1. Each instance of A at run-time is placed onto Node
1 as well. The abstract example is chosen here instead of Example 1 due to its
larger size and, therefore, a better illustration of the distribution across nodes.

In regard to process coordination in distributed environments, performance
and scalability are the main challenges in addition to a correct coordination.
Specifically, communication between processes, and, consequently, communica-
tion between nodes, has an important impact on the overall performance of
the distributed relational process structure. In general, communication within
a node is considered cheap, whereas communication between nodes is costly in
terms of time and performance. This holds regardless of any specific metrics,
and communication between nodes should therefore be reduced to a minimum.

INode 2

Fig. 7: Relational Process Structure distributed across different Nodes

Obviously, communication between nodes cannot be totally avoided, as pro-
cesses need to be coordinated across nodes. Coordination processes, however,
allow minimizing the communication between nodes significantly. By attaching
coordination processes to process types where the scope encompasses the entire
node, the communication is kept within a node. Note that further coordination
processes within a node are still possible. In Figure 7, process type F has a
coordination process that comprises all process types of Node 2. Coordinating
the process types F,H, K, and I therefore requires no communication between
nodes. Process type F still requires communication with the coordination process
of B on Node 1, but the communication amount of Node 2 with the coordination
process of B is significantly reduced.

Altogether, coordination processes allow for the decentralized coordination
of large process structures. The relational process structure hierarchy, scope,
and subsidiarity principle provide clear responsibilities for each coordination
process, facilitating modeling and reducing modeling errors. In particular, the

11

coordination approach no longer contains a single point of failure. By using mul-
tiple coordination processes for the same large process structure, the individual
coordination process models become smaller and simpler, resulting in greater
understandability and maintainability of the models. As shown, these advan-
tages also translate well to a distributed cluster, where a coordination process
can be used for each node, significantly reducing communication overhead and,
therefore, increasing performance.

4.4 Implementation

Both coordination processes and the relational process structure have been im-
plemented in the PHILharmonicFlows prototype. This prototype is based on
the object-aware process management approach and has been developed in the
PHILharmonicFlows? project at Ulm University. The tool supports a modeling
GUI, a run-time GUI where processes and their execution can be visualized, and
a server with a REST-enabled interface connected to both GUIs (cf. Figure 8).

T'rwzwwk!

Soe Ot G Objet DsaWodl Object Coudimation Senfice
Instance 81 nstace 42 Insance #3 Instance #4 Instonce #1 Inance 46 Insiance#2 oyl

N
A on_ Colrdimion o
Insance 41 Insance 42 Ingance 81 Insarce 49 Insance o5 Insance 86 nsance 43
Instantiated
Actor Services } Framework Services
—
o ® | %
G QP ?’3 4
) \J [T—

Object Relation
Actor Service Actor Service

=])) il Ju_ |
> > bl fl gl]
Modeling Client 1 & il Jii]
Coordination Data Model Reliable State Hosting &

! ActorSenvice Actor Service Manager Activation
== =
Shared REST| I '%‘ Ej

Interface

Transport Communication
Subsystem Subsystem

User Simulation Fil Il lu:
(Swagger) irewall ~ HTTP Cluster Cluster Servers
PNPS Monitoring (Only HTTP Gateway “
@ oo Communication) (Stateless) -

Clients Cluster

Fig. 8: PHILharmonicFlows prototype architecture

Based on this implementation, an extension of the server and GUIs has been
developed to support more than one coordination process in a relational process
structure. This development has been conducted based on the concepts presented
in this paper. Figure 9 shows the Application coordination process from Figure
6 modeled in the PHILharmonicFlows tool.

The run-time engine of the server is also able to handle multiple coordina-
tion processes in a relational process structure without any adjustments. This
becomes possible since the initial design of the engine considered multiple coor-
dination processes as a future extension. Furthermore, the PHILharmonicFlows
server is based on a microservice architecture [1]. Each process instance is real-
ized as one microservice. Microservices may be organized in clusters. Therefore,

2 For more details on the prototype visit https://bit.1ly/2KYvyT9

12

Fig.9: Modeling the Application Coordination Process with the PHILharmon-
icFlows Modeling Tool

a relational process structure consists of microservice processes and can be dis-
tributed in a cluster, benefiting from decentralized coordination processes as
described in Section 4.3.

Process hierarchy and subsidiarity are simple principles, but they create chal-
lenges regarding their support at both design and run-time. The fact that these
principles can be applied with coordination processes in a straightforward fash-
ion to achieve decentralized process coordination in a distributed environment
required extensive backing by concepts and implementations. The straightfor-
wardness of using the principles for an intricately complex process coordination
solution is the result of foresight as well as careful design and engineering. Both
conceptual design and implementation in software of the relational process struc-
ture, the coordination process with its semantic relationship, and the microser-
vice engine architecture had to converge to enable the frictionless application of
decentralized coordination processes in both modeling and run-time.

5 Related Work

Artifact-centric process management [9,4] operates with artifacts that represent
business entities. A business process in the artifact-centric paradigm is con-
stituted by the interactions of the involved artifacts. As such, artifact-centric
process management has been dealing with the same challenges as coordina-
tion processes in object-aware process management. Traditional activity-centric
process management paradigms have investigated the interactions of different
processes in one-to-one relationships, where no process structures emerge at
run-time. Therefore, activity-centric process coordination is not considered close
related work and is therefore not discussed here.

For artifact-centric process management, [3] recognizes the need of process
structures, especially regarding many-to-many process relationships. Proclets
[14] are chosen to represent an artifact lifecycle as well as their interactions. An
approach is developed to represent the interactions of artifacts by means of a
new, meaningful artifact acting as a coordinator between two artifact instances.
However, open challenges include the specification which artifact instances inter-
act at run-time and defining a coordinator artifact for each two artifact instances.
The relational process structure solves the problem of knowing which instances

13

interact with which other instances. Coordination processes are able to coordi-
nate processes in any relationship, reducing the complexity compared to having
a coordinator between any two processes.

Again in the context of artifact-centric process management, [13] proposes
declarative artifact choreographies to coordinate the interactions of different ar-
tifacts. The declarative choreographies operate on a type-instance schema and
involve many-to-many relationships between artifacts, sharing similarities with
the coordination process approach. The artifact instances and their relations
are captured in a correlation graph, which shares the same responsibility as a
relational process structure, but is not hierarchically organized. Based on this
correlation graph, declarative rules and constraints may be specified, implement-
ing the declarative choreography. It is however unclear whether a declarative
choreography acts only as a central coordinator or is capable of decentralized
coordination of a correlation graph.

Finally, [6] introduces the concept of agents and location-aware artifacts.
More precisely, an artifact knows which agent it (currently) belongs to. The gen-
eral idea consists of agents acting upon artifacts and eventually passing artifacts
on to other agents. This approach requires an interaction model between agents,
i.e., a choreography. The approach synthesizes this interaction model from the
lifecycles of all artifacts, which, in essence, represents a central coordinator. The
approach is tailored towards artifact-based inter-organizational processes.

The coordination of large process structures not rooted in artifact-centric
process management, but with focus on the engineering domain, is considered in
[7,8]. The COREPRO approach explicitly considers process relations with one-
to-many cardinality, thereby exhibiting the concept of a process structure. A
Lifecycle Coordination Model acts as a central coordinator of a process structure.
Decentralized lifecycle coordination models are not considered in this approach.

Finally, for an overview and a discussion of coordination approaches in gen-
eral, that do not necessarily act on process structures, please refer to [10].

6 Summary and Outlook

With coordination processes, the conceptual, technical and methodological ca-
pabilities exist to successfully implement decentralized process coordination in
large process structures. The concepts of scope, hierarchy of the relational pro-
cess structure, and the principle of subsidiarity make the complexity of it all
manageable and, therefore, the whole approach feasible. On the benefits side,
large-scale coordination of large process structures becomes feasible, while at
the same time, the complexity and size of individual coordination process mod-
els is reduced compared to a central coordinator. As has been shown, this also
applies to distributed relational process structures. However, in a different sense
multiple coordination processes are more complex than a central coordinator.
Again, subsidiarity and hierarchy are central to managing this complexity, en-
abling modelers to model the coordination of large process structures.

14

In future work, a thorough empirical investigation and evaluation of the co-
ordination process concept, including large relational process structures, will be
conducted. This investigation is challenging due to the inter-linked nature of the
concepts of coordination process, semantic relationships and relational process
structure. Individual evaluations of each concept are therefore rather pointless,
as they must be seen and evaluated in a broader context.

Acknowledgments. This work is part of the ZAFH Intralogistik, funded by the
European Regional Development Fund and the Ministry of Science, Research and
the Arts of Baden-Wiirttemberg, Germany (F.No. 32-7545.24-17/3/1)

References

1. Andrews, K., Steinau, S., Reichert, M.: Engineering a Highly Scalable
Object-Aware Process Management Engine Using Distributed Microservices. In:
CooplS’18, Part II. pp. 80-97. Springer

Baeyens, T.: BPM in the Cloud. In: BPM’13. pp. 10-16. Springer (2013)

3. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Many-
to-Many: Some Observations on Interactions in Artifact Choreographies. In: 3rd
Central-European Workshop on Services and their Composition (ZEUS), 2011.
CEUR Workshop Proceedings, vol. 705, pp. 9-15. CEUR-WS.org (2011)

4. Hull, R., Damaggio, E., de Masellis, R., Fournier, F., et al.: Business Artifacts with
Guard-Stage-Milestone Lifecycles: Managing Artifact Interactions with Conditions
and Events. In: DEBS’11. pp. 51-62. ACM (2011)

5. Kiinzle, V., Weber, B., Reichert, M.: Object-aware Business Processes: Fundamen-
tal Requirements and their Support in Existing Approaches. International Journal
of Information System Modeling and Design (IJISMD) 2(2), 19-46 (2011)

6. Lohmann, N., Wolf, K.: Artifact-Centric Choreographies. In: ICSOC’10. pp. 32-46.
Springer (2010)

7. Miiller, D., Reichert, M., Herbst, J.: Data-driven Modeling and Coordination of
Large Process Structures. In: CoopIS’07. pp. 131-149. LNCS, Springer (2007)

8. Miiller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and
Dynamic Adaptation of Data-driven Process Structures. In: CAiSE’08. pp. 48-63.
LNCS, Springer (2008)

9. Nandi, P., Kumaran, S.: Adaptive Business Objects-A new Component Model for
Business Integration. In: ICEIS (3). pp. 179-188 (2005)

10. Steinau, S., Andrews, K., Reichert, M.: Modeling Process Interactions with Co-
ordination Processes. In: 26th Int’l Conf. on Cooperative Information Systems
(CooplS). pp. 21-39. Springer (2018)

11. Steinau, S., Andrews, K., Reichert, M.: The Relational Process Structure. In:
CAiSE’18. pp. 53-67. Springer (2018)

12. Steinau, S., Kiinzle, V., Andrews, K., Reichert, M.: Coordinating Business Pro-
cesses Using Semantic Relationships. In: CBI’17. pp. 33—43. IEEE Computer So-
ciety Press (2017)

13. Sun, Y., Xu, W., Su, J.: Declarative Choreographies for Artifacts. In: ICSOC’12.
pp. 420-434. Springer (2012)

14. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A Frame-
work for Lightweight Interacting Workflow Processes. International Journal of Co-
operative Information Systems 10(04), 443-481 (2001)

N

15

