
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Databases and Information
Systems Department

Conceptualization and Realization
of a Generic Mobile App Framework
to support Interventional and
Sensor-driven as well as
Mobile Crowdsensing based
Clinical studies
Master’s thesis at Universität Ulm

Submitted by:
Robin Bird
robin.bird@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Rüdiger Pryss

Supervisor:
Dr. Rüdiger Pryss

2019

Version from August 12, 2019

c© 2019 Robin Bird

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε

Abstract

Creating medical questionnaires, scientific studies and carry them to execution is very

labor- and cost intensive. New trends like the digitization of business processes and

crowd-sensed data collection support professionals and scientists in their research and

allow up-scaling of studies to reach more patients and gain more precise scientific

findings. The use of mobile apps to support scientific studies allows the integration of

vital sensors that improve the quality of scientific studies. One issue remains though,

the creation of a mobile app for a study may still be very cost and time consuming.

The QuestionSys framework is a framework developed in the context of the research

by the Institute of Databases and Information Systems of Ulm University, that allows

researchers as well as clinicians to develop their own mobile apps and allows them to

collect mobile data without programming skills. This project aims to assist scientist as

well as professionals in medical domains to improve patient healthcare and medical

research.

Therefore in the context of this thesis, a mobile framework is created that implements

a process engine that can read and execute generic questionnaires created by the

QuestionSys Configurator. The main goal is to reduce the costs, time effort and the

qualification barrier to design and create new scientific studies. For the framework, the

support for internal as well as external bluetooth sensors is integrated and custom ques-

tionnaire elements of the QuestionSys Configurator are used to configure the sensors.

The framework is developed to easily allow extending functionality for new sensors and

allow adding custom functionality that may be needed in the context of new studies.

To prove the practicability, a case study "Mindful Walking" is implemented using the

developed framework. The study is implemented in the form of a multi-session study.

It supports sensor logging for a bluetooth heart rate sensor, a GPS speed sensor and

a GPS distance sensor and allows the export of all sensor logs. In addition, a demo

application is developed to prepare the framework for integration of a future RESTful Api

that may load studies and upload study results. The application is designed to cache

iii

media files and to execute studies offline. This allows to reach parts of the world with

limited access to the Internet.

iv

Acknowledgment

I would like to express my gratitude to everyone who supported me during this master’s

thesis.

I would first like to thank my thesis adviser Dr. Rüdiger Pryss for his invaluable support,

commitment and assistance during my master’s thesis.

I would also like to thank Dr. Johannes Schobel very much for supporting me during my

master’s thesis and assisting me with the usage of the QuestionSys backend.

Furthermore I acknowledge the contribution of my proofreaders for their help to improve

the writing and wording of this master’s thesis.

v

Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 Objective . 2

1.3 Structure of the thesis . 3

2 Fundamentals 5

2.1 QuestionSys . 5

2.2 Related Work . 7

2.2.1 QuestionSys mobile application . 7

2.2.2 Clinical study apps . 8

2.2.3 Sensor-enabled mobile apps . 9

2.2.4 Discussion . 11

3 Requirements 13

3.1 Functional requirements . 13

3.2 Non-functional requirements . 15

4 Architecture 17

4.1 Quengine Process . 17

4.2 Class architecture . 20

4.3 Data Model and Persistence . 23

4.4 Input Data structure . 27

4.5 Results structure . 29

5 Implementation & Implementation Aspects 33

5.1 Layout Aspects . 33

5.2 View Adapter & QViews . 35

5.3 Persistence Manager . 37

5.4 Meta Data . 39

vii

Contents

5.5 Sensor integration . 42

5.5.1 Bluetooth sensors . 43

5.5.2 Internal sensors . 48

5.5.3 Sensor Logging . 50

6 Case Study: Mindful Walking 53

6.1 Process Model . 53

6.2 Technical Model . 58

6.3 Challenges . 66

7 Presentation of the mobile application 69

7.1 Demo App . 69

7.2 Mindful Walking . 72

7.3 Additional question types . 87

8 Requirements Check 93

8.1 Functional requirements . 93

8.2 Non-functional requirements . 95

9 Conclusion & Prospects 97

9.1 Prospects . 98

viii

1
Introduction

These days, there are many new IT technologies that can be used in medical domains

to either improve patient healthcare or improve medical research.

One of these trends is the use of vital sensors in mobile healthcare applications. There

are multiple scientific papers that cover the implementation of a sensor framework for

mobile applications and the connection of bluetooth enabled sensors with mobile phones

in order to measure the patient’s health data.

Another trend is the digitization of business processes. Digitization can also be used to

improve medical research and clinical studies. The development of multiple apps which

support crowed sensed data collection enables clinical studies to scale up and reach

parts of the world that are usually hard to access. One of these clinical studies is the

Mindful Walking application, which studies the effects on "Mindfulness" on stress.

1.1 Problem statement

The described new technologies may improve the quality of clinical studies and the

speed of creating studies significantly. The use of smart phones for the execution of

clinical studies also enables the chance of integrating vital sensors into clinical studies.

Therefore feedback and statistics can be given to the user instantly and patients may

participate in studies from their home or data may be collected over a long period of

time.

1

1 Introduction

However, none of these solutions address remaining massive costs and effort in creating

a mobile application for new clinical studies. If a generic framework like QuestionSys

that is described in section 2.1 is used to create and deliver questionnaires to the user’s

phone, there is still no way to make the App generic in order to integrate vital sensor

data collection and other functional additions to questionnaire pages.

The basic idea of this master’s thesis is to combine all these technologies and func-

tionality that is needed for studies and to create a concept for a generic mobile app

framework to support interventional clinical studies. In this framework the functionality

for sensor-driven data collection is included and it enables crowd-sensed data collection

as well.

1.2 Objective

In the context of the research of the Institute of Databases and Information Systems, it

is the objective of this work to design and implement the framework which is described

above. As the study input, questionnaires should be created by making use of the

QuestionSys Configurator. The QuestionSys Configurator was designed to create psy-

chological questionnaires, so additional changes have to be made in the questionnaires

to use the output of the QuestionSys Configurator for generic studies. Therefore the

Custom Elements provided by the QuestionSys Configurator will be used to add action

views, sensor configuration and session-aware meta data to the framework. The frame-

work will be implemented for Android and should be able to process the output provided

by the QuestionSys Configurator when exporting studies.

The framework should also have an export functionality to export study results to a JSON

formatted file that may be uploaded using a RESTful Api.

To prove the practicability of the theoretical approach of this master’s thesis, an android

application that embeds the mentioned framework is implemented. Besides, the devel-

oped application is also used to execute the Mindful Walking study and to discuss and

present the challenges of that study.

2

1.3 Structure of the thesis

1.3 Structure of the thesis

This work is structured into nine chapters. The second chapter 2 introduces the Ques-

tionSys Configurator as well as other related work to improve the reader’s understanding

about this master’s thesis. Besides, the use cases for the framework in this work are

discussed. The third chapter 3 defines the requirements for the framework of this work

and the fourth chapter 4 discusses the architectural aspects of the framework. First, the

overall application is introduced, then the class structure is outlined. The data model

and persistence as well as the input data structure are discussed. The end of chapter

four contains a discussion about the results structure. In the fifth chapter 5 selected

implementation aspects like layout aspects, the view adapter used for providing the user

interface, the persistence manager and also saving of meta data are shown. Finally the

sensor integration of bluetooth sensors as well as internal sensors is discussed. It is

also shown how sensor data is logged and persisted. Chapter six 6 introduces the case

study Mindful Walking with a process model. Then the process model is transferred into

a technical model in the QuestionSys Configurator. The challenges when transferring

the process model of the case study into the technical model are discussed. In the

seventh chapter 7 the implemented mobile application is presented by screen-shots and

in the eighth chapter 8 the previously defined requirements are checked. Finally the

ninth chapter 9 is a conclusion and shows the prospects of the study.

3

2
Fundamentals

This chapter introduces basic fundamentals which are required for this work. First,

the QuestionSys Configurator that is used as the platform to create clinical studies is

introduced. Afterward the related work is described in a more accurate way.

2.1 QuestionSys

The QuestionSys framework is a framework that allows researchers as well as clinicians

to develop their own mobile apps to collect mobile data without programming skills [17].

Psychological and social sciences in various situations rely on self-report questionnaires

to collect data. Some researches are unaware of the capabilities and opportunities

offered by smart mobile devices in their respective domain [17] and already existing data

collection apps do not adequately support researchers [17]. In addition, implementing

sophisticated mobile data collection apps usually requires considerable communication

efforts between researchers and mobile app developers [17]. Therefor a model-driven,

end-user programming approach was developed to create psychological or clinical

studies. QuestionSys aims to provide a generic and flexible questionnaire system to

enable process-driven mobile data collection. It encompasses three parts:

1. a questionnaire configurator for defining questions as well as for aggregating them

to pages within the questionnaire. The latter will then be displayed on the smart

mobile device.

2. a questionnaire application enabling the use of smart mobile devices to gather

data,

5

2 Fundamentals

3. a middleware for secure data exchange and data management (including cloud-

based services)

[28]

In the context of this master’s thesis the QuestionSys Configurator is used to create

questionnaires. To create fully-fledged clinical studies, some extension have been made

using the given functionality by the QuestionSys Configurator. The generated output of

the QuestionSys Configurator is used as input for the QuestionSys studies framework

that is developed in context of this thesis.

The Configurator was developed as a web application. It provides a graphical user

interface to create process models that represent questionnaires. Therefor the web

application is divided into three parts. The left part of the application provides the user

multiple elements which can be used to build a process model. Nodes are the basic

elements in a technical model. Nodes can be structural elements or elements with a

user interface that is presented to the participant of the study. The following structure

elements are available:

1. Pages can be used to split UI elements of the study into different pages. These

are illustrated as grey boxes that contain nodes with UI elements. Every page in

the technical model is equivalent to a single page of the questionnaire which can

be displayed to the user in a mobile application.

2. XOR Splits split the model in different lanes by specific conditions. These are

illustrated as inclined squares.

3. XOR Joins join the previously split lanes together.

Since all elements that are attached to an UI element belong to a specific page in the

questionnaire, these elements are called page elements and have to be dropped within

a page. The following page elements are available:

1. Headlines are the headlines of a page and illustrated as light blue rectangles.

2. Questions are the question elements of a page and illustrated as pink rectangles.

6

2.2 Related Work

3. Text elements are used to show formatted text on a page and illustrated as orange

rectangles.

4. Media elements are used to show media objects on a page and illustrated as

yellow rectangles. Media objects may be images, audio files or videos.

5. Custom elements are used to define custom JSON content. In the context of this

master’s thesis these are used to define additional logic or page elements.

The middle part of the application contains the graphical representation of the process

model that is created using the structure elements and the page elements. To adapt the

process model every element can be added or moved by drag and drop gestures.

The right part of the QuestionSys Configurator contains the details of each element.

When an element is selected, the details of that element can be configured. For a

question element that might be the question type and the answer possibilities. For a

XOR split that might be the branches and the conditions following the split.

In the context of this master’s thesis the QuestionSys back-end and the QuestionSys

Configurator have been used to create questionnaires and to export these questionnaires

to a JSON formatted text file that can be used as the input for the QuestionSys studies

framework.

2.2 Related Work

This section presents related work to improve the readers’ understanding about the

precise result of this master’s thesis. Therefore, clinical study apps as well as sensor-

enabled mobile applications are discussed.

2.2.1 QuestionSys mobile application

In the scope of the bachelor’s thesis Developing a Complex User Interface for Mobile

Data Collection Applications of Martin, Robin a sophisticated user interface for mobile

applications to collect mobile data has been developed [3]. The main target was to

7

2 Fundamentals

transfer paper based questionnaires that have several drawbacks like costs, data quality

and logistical issues into an application that is able to show and collect data in large-scale

scenarios. Therefore, specific rules, user interface guidelines for mobile devices, the

style and usability guidelines of the two platforms Android and iOS, and aspects like

visual design, interaction design and navigation in mobile applications were taken into

consideration for developing an UI that can present digitized questionnaires. Figure 2.1

shows the basic structure of a questionnaire page with the corresponding UI developed

in the context of the bachelor’s thesis.

Figure 2.1: Basic Structure of a Questionnaire Page in the Questionnaire Interface
application [3]

2.2.2 Clinical study apps

In the scope of the bachelor’s thesis Conception and implementation of a mobile ap-

plication to conduct a Mindful Walking Study regarding Clinical Psychology of Müller,

Dominik a mobile application was developed that may be used as a supporting tool

when walking mindfully [5]. Therefore the support for the Apple Watch was integrated to

8

2.2 Related Work

use the combined data of an iPhone and an Apple Watch. Also the app allows users to

participate in a study of Mindful Walking that researches whether Mindful Walking might

be helpful to people in their daily lifes [5].

For the application several requirements have been defined. One requirement of the

application for example was to show and select all questionnaires that belong to an

active study the user participates in. The user should also be able to complete and

correct questionnaires. Notifications were used to remind the participant to complete the

questionnaire.

The Apple Watch works as a companion for the mobile application and should be able to

start and stop a Mindful Walk. Also the user should be able to select a target reduction

speed, calibrate the walking speed and show Mindful Walking statistics on the Apple

Watch.

For this functionality a user interface for the iPhone and the Apple Watch has been

created that guides the user through the Mindful Walk study. For the questionnaires that

belong to the study a question view has been created in which the user can answer the

questions that belong to the questionnaire. For the Apple Watch several views have been

created that guide the user through the Mindful Walk. After calibrating the Apple Watch,

the user has to walk for at least five minutes. Therefor a countdown and an instruction

text is shown. After the calibration the user can select a reduction in the walking speed

and the actual Mindful Walk starts. During the Mindful Walk the Apple Watch shows the

distance, the pace, the heart rate and the active energy burned.

The App is designed to be a companion for a clinical study and allows to collect crowd-

sensed based data from users that participate in the Mindful Walking study.

2.2.3 Sensor-enabled mobile apps

Runtastic

One of the best known app that targets end users and integrates internal as well as

external bluetooth sensors is the mobile application "Runtastic" [29]. Runtastic is a

fitness tracker app that supports tracking outdoor activities, tracking training progress

9

2 Fundamentals

and reaching fitness goals [30]. Figure 2.2 shows a workout sessions in the Android

version of the runtastic application. The workout session screen shows a chronometer,

the walked distance, the burned calories, and the pace. It also brings the functionality

to track the GPS route and illustrate it on a map. The application offers the ability to

connect different pulse sensors to the mobile application. Both, the sensor readings as

well as the GPS tracks can be logged and analyzed with the runtastic platform.

Figure 2.2: Workout session in the mobile app "runtastic" showing a chronometer and
several sensor readings [30]

XFitXtreme

The XFitXtreme application is a real-world mobile business application from the fitness

domain that has been developed by the Institute of Databases and Information Systems

at University of Ulm [29]. To integrate bluetooth sensors a sensor framework has been

developed that can easily be integrated into Android applications. The mentioned frame-

work was also used in the XFitXtreme Application. It encapsulates the heterogeneity of

data structure of different sensors as well as the communication between the external

10

2.2 Related Work

sensor and the smart phone [29]. Furthermore, the application provides functionality

to connect to a sensor as well as receiving data from the sensor. XFitXtreme offers

functionality to monitor, record and graphically evaluate the sensor values provided by

the framework. It may be used by athletes that train CrossFit [29]. Figure 2.3 shows how

the vital signs are visualized during the workout.

Figure 2.3: Visualization of vital signs during the workout in the XFitXtreme mobile
application [29]

2.2.4 Discussion

Several apps have been developed that either support clinical studies or integrate internal

or external sensors to collect and log vital signs. The app introduced in 2.2.1 integrates

an user interface that may be used to digitize paper-based questionnaires and distribute

them to mobile devices. For each page of a questionnaire, the app provides a virtual

page and each question is shown in the design of a small card. The evaluated user

interface provides functionality to deliver questionnaires to mobile apps in a generic way.

11

2 Fundamentals

The Mindful Walking app introduced in section 2.2.2 provides a functionality to participate

in a study that is collecting the participants answers to the questionnaires and the

sensor values of the Apple Watch for research purpose. Although the app integrates

questionnaires that belong to the study and uses sensor values of the external Apple

Watch, the app cannot be used to participate in generic studies.

The Fitness apps Runtastic and XFitXtreme introduced in 2.2.3 provide functionality to

connect to different external bluetooth sensors. They also implement an easy to use

user interface that provides an overview over the current sensor values and vital signs.

However, these apps are not designed to create and start generic workouts and do not

support scientific studies.

The objective of the following chapters is to develop a generic app that can run and

support any clinical study and provides functionality for generic questionnaires, generic

actions and can read and monitor internal sensors and external bluetooth sensors.

12

3
Requirements

In this chapter the functional and non functional requirements of the framework are

introduced.

3.1 Functional requirements

1. QuestionSys as interface for generic studies: The QuestionSys Configurator

should be used as a interface for generic questionnaires, studies and exercises

that include sensor values.

2. Multiple session studies: The framework should be able to handle studies that

consist of multiple sessions that are executed at different days.

3. Meta data: Since the framework should support multiple studies containing

multiple sessions, the framework should also support saving and reading of meta

data. Meta data means data, that is not linked to a specific session of the study

but to the study itself and may be used to read results of previous sessions.

4. Multiple studies: The framework should be able to list, handle and execute

multiple studies. For the study input JSON formatted content should be passed to

the framework.

5. Elements: A study consists of one or more study sessions and each study

session consists of one or more study pages. A study page consists of nodes

and a node may be a headline, a text element, a media element, a question or a

custom element. Elements are classic questionnaire elements like likert scales or

drop down menus.

13

3 Requirements

6. Questions: The framework should support and provide UI elements for drop down

questions, multiple choice questions, single choice questions, yes/no questions,

date input, single line text input, multi line text input, likert scales, likert scales with

images, single sliders and slider ranges.

7. Logic elements: The framework should support logic elements like XOR splits

and JOIN elements. XOR split elements split the questionnaire into multiple paths

based on either node result data or meta data input.

8. Custom elements: The framework should support custom elements. Custom

elements are elements that extend the functionality of QuestionSys to functions

like Sensor Configuration, Sensor Start, Sensor Stop or Action Elements.

9. Action elements: The framework should support action elements. Action ele-

ments are exercises that are included in the study and request the user to do an

exercise. When an action has started, previously configured sensor data should

be logged and shown to the user. Also there should be chronometer and a timer

for action elements.

10. Sensors : The framework should support smart-phone internal sensors as well

as external bluetooth sensors that support the Bluetooth Low Energy protocol.

11. Sensor Notifications: During an exercise the user should get notifications if the

sensor values are exceeding a maximum limit or fall below a minimum limit.

12. Pausable: A study should be pausable at any time and input data should remain

persisted.

13. Notifications: The framework should support notifications that remind the user

to start a new study session. Study sessions may be scheduled by the creator.

14. Results: The framework should be able to export study results after the study

has been finished and upload to a RESTful API.

15. Statistics: The framework should be able to create statistics and feedback for the

user. Particularly it should show sensor values of the exercises included in a study.

14

3.2 Non-functional requirements

16. Log-in: The app should provide an user log-in and the functionality to download

user specific studies.

17. Multi-language support: The app should support multiple languages. This

includes user interfaces, questionnaires and user instructions.

3.2 Non-functional requirements

1. Generic: The framework should be generic and work with different kind of studies.

2. Android compatible: The framework should be compatible to the Android mobile

system and should work with all kind of Android devices.

3. Well structured input data: Input data for studies should be well formatted and

has to be equal to the JSON syntax to be platform independent and to be reusable

by all kind of applications.

4. Well structured output data: Study result data should be well formatted and

has to be equal to the JSON syntax to be platform independent and reusable by all

kinds of applications. Result data should be machine processable and analyzable

to create statistics and study results.

5. Loose coupling: The framework should be able to be embedded into other

Android applications.

6. Modularity: The framework should be modular to easily allow exchanging parts

of the framework.

7. Extensibility: The framework should easily be extendable by new questionnaire

elements or sensor devices.

8. Offline mode: The framework should be able to work without internet connection.

Studies should be downloaded and saved on the device, media objects should be

cached for offline use.

9. App feeling: The app should be usable by all kind of users. It should instruct the

user during the execution of a clinical study.

15

4
Architecture

This chapter introduces the architecture of the QuestionSys studies framework. First,

the Quengine’s process is illustrated, then the class structure, the data model and

persistence is shown. In the end the input data structure and the results structure are

explained.

4.1 Quengine Process

The Quengine is the heart of the QuestionSys studies framework and handles the whole

process that belongs to the execution of a study. It serves as the main entry point and

can be embedded in any Android fragment of any application by passing an Android

viewgroup to the Quengine. The Android viewgroup is used as a container in which the

study is loaded and presented.

Figure 4.1 illustrates a BPMN model that represents the basic execution process of a

study. The process also contains the interaction between the user and the Quengine.

The model is separated into two BPMN pools: the user pool on the top and the Quengine

pool on the bottom.

The process starts when the user loads a study into the Quengine. The Quengine

initializes the study as well as the UI elements and informs the user by showing a start

button. Now the user can start the study by pressing the start button. As soon as the

user selects the next page, the Quengine gets notified and increments the current page

object.

17

4 Architecture

Afterwards all nodes that belong to the current page are loaded and handled. That

means, if the nodes contain UI elements, these nodes are added to an array of UI

element nodes. In contrast, if they contain logical elements like XOR Splits or Joins with

conditions, these conditions are evaluated and the next page is calculated and written to

the current page object. Then the nodes are processed again until there are only nodes

with UI elements left.

The UI elements are loaded into a viewadapter that presents all UI elements to the

user. The user then has to fill in the corresponding data. After the data is filled in, the

Quengine checks if all input is complete and correct. If data is missing or incorrect,

these UI elements highlighted and the user has to fill in the data again. This process is

repeated until all necessary information is available and correct.

After a page is finished, the user may then choose to pause or to finish the study. If one

chooses to finish the study, the Quengine saves the meta data that contains the study

cycle and the execution time-stamp. Otherwise the user can access the previous or the

next page of the questionnaire.

18

4.1 Quengine Process

Figure 4.1: Business logic of a study execution containing interaction between the User
and the Quengine

19

4 Architecture

4.2 Class architecture

Figure 4.2 illustrates the class architecture of the QuestionSys studies framework. As

mentioned before, the Quengine on the top left of the diagram is the main entry point of

the framework. The architecture’s design objective was to implement the framework as

modular and expandable as possible. Keeping the framework modular was the reason to

separate functionality that belongs to the user interface, the sensors or the persistence

of the study outcomes.

The user interface is handled by the StudyPageAdapter which instantiates all UI classes

that belong to a specific page of the study. All UI classes that may be used in the

study have to implement the interface QView which itself implements checks for user

input and marking the correctness of the user input. Using an Android Adapter ensures

asynchronous loading and lazy loading for UI elements, which means the user does not

have to wait while study pages that contain many UI elements are loading.

The Quengine also holds the StudyResultsEngine which is responsible for the persis-

tence of the user input as well as other study outcomes. Therefor the StudyResultsEn-

gine as well as the SensorLoggingEngine extend the abstract class PersistenceEngine,

which implements all database functionality.

The SensorManager which is also a component of the Quengine is responsible for the

sensor functionality. It can be distinguished into internal and external sensors. In this

context, all sensors that are included in the smartphone, such as the location sensor,

gyroscope, accelerometer, etc. are defined as internal sensors. The term external

sensors includes all sensors, that are connected via Bluetooth Low Energy. An example

is the heart rate sensor in smart watches. The SensorManager may instantiate an

arbitrary amount of InternalSensor devices and BluetoothDevices. The InternalSensor

devices need to implement the interface InternalSensor and for the BluetoothDevices,

each BluetoothDevice is managed by a BluetoothDeviceService.

Both, the BluetoothDevice and the InternalSensorDevice implement the LoggableAt-

tribute which exports an attribute that is used by the SensorLoggingEngine to log the

20

4.2 Class architecture

sensor values. The LoggableAttribute is also used by the NotificationEngine to check if

the sensor values exceed or fall below the notification thresholds.

21

4 Architecture

Figure 4.2: Class architecture of the Quengine including SensorManager, Persis-
tenceEngine and NotificationEngine

22

4.3 Data Model and Persistence

4.3 Data Model and Persistence

In this section the data model that is used by the Quengine is explained. Figure 4.3

illustrates the complete data model that is used as the input model for every study that is

executed.

Every study is represented by a Study object which contains a Meta object with meta

data, an arbitrary amount of MediaObjects and one Model object. The MediaObjects

contain information to gain access to media that is included in the study. That may be

images, videos and audio files. The Model object is used as a container for Nodes

and LinkData Objects. A LinkData Object marks possible paths from Node to Node by

providing a from object and a to object. These objects contain the keys of the nodes,

that are included in the study.

Each node has a key, a group id (that is used by the Quengine to assign the node

to groups like study pages), a correspondingNodeKey, a boolean isGroup, a text, a

category, and an ExecutableComponent. The ExecutableComponent specifies the type

of the node. Types may be PageComponents, XORSplitComponents or XORJoinCom-

ponents. Every node may contain an Element which contains detailed information for

the component if needed.

The attributes of an Element can be distinguished into those that are for specifying

questions with UI elements, and those that contain logical elements.

For specifying questions Elements contain:

1. a question type

2. an export name, which can be set by the creator of the study and is used by the

framework as the identifier for the element

3. a flag that indicates, if the question is mandatory to fill in

4. an instruction for the user

5. a caption for media objects, if there are media objects included

6. a unit for questions that need to be filled in

23

4 Architecture

7. a media id, if there are media objects included

8. a flag that indicates, if the question is linked to a MediaObject

9. a minimum and maximum length attribute if the user has to type in free text

10. a start number

11. an end number

12. a step size

The start number, end number and the step size are mainly used for sliders. Question

types may be Likertscale, Likertscale with Images, SingleSlider, FreeText, etc.

For the logical Elements a gateway type is defined which represents the logic element

like a XORSplit element. In case of a XORSplit Element, the Element also contains one

or more Branches. A Branch is a split in the process model. It indicates the direction in

which the process engine may continue.

A Branch contains a name, the key for the next Node, a indicator if the Branch is the

default Branch and a condition string or one or more Variable mappings. A condition

string is a predefined string that is evaluated by the process engine and may access

meta data like the current study cycle or time stamp. A VariableMapping is a mapping

to the outcome of a question and compares the output with a given value. Only if all

VariableMappings are evaluated and all conditions are true, the Branch conditions are

fulfilled.

For the Elements that belong to a question, the Element may also include Items that

represent options that the user can select in case of Single Choice or Multiple Choice

question.

For the sensor configuration and action view configuration the CustomConfiguration and

CustomContent models have been added. The CustomConfiguration contains a type

and a sensor id if the Element references a sensor.

The CustomContent model contains a day attribute that may be used to schedule

notifications. For reading and writing of meta values it also contains one or more meta

objects that have a name and may also have a value. For the action views, a action

24

4.3 Data Model and Persistence

config is included that defines the headline and an instruction for the user. It also defines

a countdown for the action and provides the seconds for the countdown.

For the sensor configuration there are one or more Sensor models that contain an id,

a name, a sensor type and a sensor attribute. It also contains the configuration for

the sensor value logging and the user notifications. The log config contains a flag that

defines if logging for the sensor is enabled and the frequency of the logging in seconds.

The FluidNotification model also contains a flag, that indicates if the notifications are

enabled as well as a notification frequency. Also the minimum and the maximum

threshold of the notifications are defined in the NotificationThresholdValue. In this

context FluidNotification means, that the user is constantly notified about the current

sensor values while the sensors are running.

25

4 Architecture

Figure 4.3: Data model of a study processed by the Quengine

26

4.4 Input Data structure

4.4 Input Data structure

The exported data of the QuestionSys Configurator is used as the input model for each

study. The QuestionSys Configurator doesn’t support configuring sensors and action

elements. The sensor configuration and other functionality that had been added to the

framework have been implemented by using a Custom Element in the QuestionSys

Configurator and adding the data to the Custom Configuration attribute and Custom

Content attribute of that element. The input data is provided as a JSON formatted string

and can easily be translated into the data model shown in section 4.3. No modifications

have been made to the JSON export, so the JSON can directly be processed by the

Quengine.

However, at this point the API integration has not yet been implemented, since the API

has not been finished yet. Nevertheless, preparations have been made. In the sample

app there is a fragment showing a list of all available studies the user has access to and

since a JSON formatted file is used as input for the study data, the integration with the

API is prepared.

Listing 4.1 shows a sample study input in JSON format. For demonstration purposes

the listing has been shortened. The JSON contains three root objects: meta, model and

media. Meta includes all meta data belonging to the study like the contact person, the

name and version. The media object contains all media objects that can be downloaded

from the server. The model is the main part of the study and contains a node data array

and a link data array. The link data array is just an array with references from one node

to another node. Every object represents a path in the process model of the study.

The node data array contains all nodes of the study. A node may be a logical element or

contain UI elements like questions. In Listing 4.1 the node represents a Likert question.

The group is used to link the node to a specific page of the study. In the element

object the information about the question is saved. The Items array contains all possible

answers the user can select. The study is fully multilingual and supports English as well

as German. Additional languages may be added easily.

1 {

27

4 Architecture

2 "meta": {

3 "contact": "Hollie Nikolaus",

4 [...]

5 "version": "2.0.0"

6 },

7 "model": {

8 "nodeDataArray":

9 [

10 {

11 "text": "WHO-5.4",

12 "category": "Question",

13 "group": -140,

14 "element": {

15 "name": "WHO-5.4",

16 "question": {

17 "de": "In den letzten zwei Wochen ...",

18 "en": "Over the past 2 weeks ..."

19 },

20 "questionType": "Likert",

21 "exportName": "WHO-5.4",

22 "isMandatory": true,

23 "instruction": {

24 "de": "... habe ich mich beim Aufwachen frisch [...]

25 "en": "... I woke up feeling fresh and rested."

26 },

27 "items": [

28 {

29 "key": "1561237454541497",

30 "displayKey": "1",

31 "de": "Die ganze Zeit",

32 "en": "All of the time"

28

4.5 Results structure

33 },

34 [...]

35]

36 },

37 "key": -148

38 }

39],

40 "linkDataArray":

41 [

42 {

43 "from": 1,

44 "to": -5

45 },

46 [...]

47]

48 }

49 }

Listing 4.1: Sample study input formatted as JSON formatted string

4.5 Results structure

The objective of this master’s thesis is to provide a simple, standardized and machine

processable export function to export all study outcomes like user inputs and sensor

logging data. Another goal of this scientific work is to provide an easy functionality to

create statistics about the study results and to be able to process huge amount of data.

Therefore the JSON format has been chosen as the study results export format.

Listing 4.2 shows a sample result of a user participating in a study:

1 {

2 "studyCycles":

29

4 Architecture

3 [

4 {

5 "cycle": 1,

6 "questions":

7 [

8 {

9 "nodeKey": "-120",

10 "questionTitle": "Over the past 2 weeks ...",

11 "resultValue": "1561237592235256",

12 "resultValues": []

13 },

14 [...]

15],

16 "sensorResults":

17 [

18 {

19 "sensorName": "HEARTRATE",

20 "sensorRuns":

21 [

22 {

23 "sensorValues": [

24 61.0,

25 61.5,

26 [...]

27],

28 "sensor_run": 1

29 }

30],

31 "timestamp": "2019-06-24"

32 }

33]

30

4.5 Results structure

34 }

35]

36 }

Listing 4.2: Sample result of a user participating in a study

The export starts with a study cycles array that contains all cycles of a study that have

been performed by the participant. Every study cycle object contains the cycle number,

a time-stamp of the cycle, a questions array that contains the outcome of all questions

the participant has answered and an array sensorResults containing the sensor logs.

Every question object contains the node key of the question, the question title and either

a question value or an array with question values if the question allows or requires multi-

ple result values. The result value represents the result option key of the corresponding

question. The node key may be used to allocate the corresponding question and the

result options that are available.

Since the framework allows logging of multiple sensors for each study, each object in

the sensor results array represents the logs of a single sensor. It contains the sensor

name of the sensor that gets logged and a sensor runs array. The sensor runs array

is necessary, because in each study cycle the sensors may be started and stopped

multiple times. Each time the sensor restarts another object in the sensor runs array is

pushed. Each object contains the sensor run value and an array sensorValues of the

actual values.

31

5
Implementation & Implementation Aspects

In this chapter selected implementation aspects are presented and discussed. First,

layout aspects are discussed, then the view adapter and the QViews are shown. Third,

the persistence manager is illustrated. Then meta data is discussed and last the sensor

integration is shown.

5.1 Layout Aspects

It was a requirement of the study to create a clean, tidy and uniform feel and look without

a lot of unnecessary overhead, so that any participant of any country and culture can

use the application.

Each study consists of one or more study pages that contain different types of questions

or other UI elements for the participant. To create a uniform look and feel it was the

main idea to create an interface that can be embedded into any Android View and

automatically generates the UI elements that belong to the study.

Integrating the framework into a sample app requires a Android fragment with at least

two Android view groups. One view group is used for adding the meta layout containing

the previous, start and next page buttons, the other view group is used as a container

for the actual UI elements that belong to the study. Usually, the second view group is

nested into the first one. It is also possible to customize the first view group and add

additional UI elements or a background image. In the sample app every study includes a

background image and the meta data as well as the UI elements overlay that background

image.

33

5 Implementation & Implementation Aspects

Listing 5.1 shows the constructor of the Quengine. The constructor is called in the

fragment that embeds the Quengine:

1 public Quengine(Context context,

2 String studyJSON, EngineHolder engineHolder) {

3 [...]

4 }

Listing 5.1: Quengine constructor

The constructor expects three different data objects: the Context, a JSON formatted

string that contains information about the study and the EngineHolder. The Engine-

Holder is the fragment that should hold the UI elements to the Quengine. The rest is

completely managed by the Quengine.

The fragment that is used to render the study elements must implement the EngineHolder

interface:

1 public interface EngineHolder {

2 public void addMetaLayout(View view);

3 public Fragment getFragment();

4 public void setAdapter(RecyclerView.Adapter adapter);

5 public void clearAdapter();

6 public void endStudy();

7 public void pauseStudy();

8 }

Listing 5.2: EngineHolder Interface

The interface provides a method to add the meta layout to the fragment. The meta layout

is needed for the page counter and the meta buttons. It also provides methods to get

the fragment that is needed for app permission handling, to set the view adapter that is

discussed in section 5.2, to clear the adapter (when the page is changed), to end the

study and to start or to pause the study.

34

5.2 View Adapter & QViews

To create a uniform look and feel, every UI element that belongs to a study and requires

interaction with the user, has a white and semi-transparent background layer that lets the

background image of the study shine through but also improves contrast and readability.

The design language is referred from a white card.

This card element is split into a headline element with white text color that is drawn on a

background in the configurable accent color of the app and the body element containing

an user instruction and the interaction elements. The interaction elements can be various

types of elements like text inputs, radio buttons, check-boxes, sliders, media elements

and also complex elements like action elements. Each page may have any amount of

questions and becomes scrollable if the cards do not fit the screens’ height.

Figure 7.19 shows a typical page of a study containing multiple questions. Each question

is represented by a card element and each card element contains a headline on the top

of the card and the UI elements that belong to the question in the body of the card.

5.2 View Adapter & QViews

The StudyPageAdapter is responsible for loading and rendering all UI elements that

belong to the study. The Quengine has exactly one StudyPageAdapter, which is passed

to the fragment that serves as the container for all UI elements that belong to the

study. The adapter handles all UI elements asynchronously so that the UI is only ren-

dered at the time the user scrolled to that UI element. The StudyPageAdapter extends

the Android native RecyclerView.Adapter and overrides the methods getItemCount,

getItemViewType, onCreateViewHolder and onBindViewHolder. It also has a method

completePage.

At the time of the creation, the adapter receives a list of nodes. That list contains the UI

elements that need to be rendered on the page. Every time the user starts the study or

switches the study page, a new page needs to be rendered and the adapter is recreated

with a new list of nodes.

The getItemCount method returns the size of the node array that got passed to the

StudyPageAdapter. The getItemViewType method returns an integer that represents

35

5 Implementation & Implementation Aspects

the viewtype of the node at the selected position. Every question type, action or

sensor configuration view is linked to a viewtype defined as a final int value. The

onCreateViewHolder method then accesses the viewtype and creates the QView based

on the viewtype.

The action view, the sensor configuration view and each question type implement the

QView Interface and extend the Android View class. The onBindViewHolder method is

called when an UI element becomes visible to the user and is used to initialize that view.

For initialization the init method of the corresponding QView gets called with a QConfig

as parameter.

The QConfig contains all information that is needed for the QView to provide the UI for

the user. This includes the Context, the Element, the Node and the selected Key/Keys.

Every QView needs different content to provide the UI for the user, so the QConfig

was implemented in the Builder pattern and is instantiated using a static Builder class.

The information that is relevant for each specific QView is passed to the corresponding

QConfig.

During instantiation each QView loads the UI that belongs to the node, then reads

the default data if there is any default data. If the user already set data for the node

before, the saved data is loaded from the realm database and shown in the UI. The

realm database is an object-based, light-weight and open source database available

for Android and other plattforms [31]. All database operations in the framework are

implemented asynchronously, so that there are no lags when scrolling through the nodes

of a page.

Figure 7.17 shows the action view as an example for a QView. As explained in section

5.1 the QView is shown as a card layout that contains a headline and a card body. In

the card body the actual UI elements are shown. The headline of the action QView is

always "Action" as there is another headline inside the card body.

Under the headline in the card body there is a countdown timer or depending on the

configuration alternatively a chronometer. The Action view can be configured to either

show a countdown timer or a chronometer. If a countdown timer is shown, then the user

has to start the timer and cannot complete the action view before the countdown has

36

5.3 Persistence Manager

completed. Below the countdown timer there is an Android grid view which is used to

show all configured sensor values in a grid. Each sensor features an icon, a value and

the unit of the value. On the bottom there is space for an additional text like an instruction

and a start/stop bottom to start and stop the timer, respective the chronometer.

When the user goes to the next page, first the current StudyPageAdapter finishes all UI

elements and checks if the user input is valid. Therefor the QView interface provides the

methods finishNode and markInputValid. First the markInputValid method is called for

every QView and each QView checks if the user input is complete and valid. If the input

is not valid, the view marks the invalid input and the method returns "false". The page is

not changed then. If all inputs are valid, for each QView the method finishNode is called.

Each node finishes ongoing processes and saves the user input. The action view, for

instance stops all running sensors.

5.3 Persistence Manager

One of the main elements of the framework is the functionality to save and persist user

input and sensor values. In order to provide an easy and centralized way of saving study

result data, the PersistenceManager was created. Figure 5.1 shows the class diagram

of the PersistenceManager, the SensorLoggingEngine and the StudyResultsEngine,

which both extend the PersistenceManager.

The PersistenceManager uses a realm database to persist study results and sensor

logs. Therefore it provides the Realm instances that are used to read and save data.

Since every node may have different requirements for saving data and uses different data

types, a generic and extendable way of saving data was needed. For that reason the

SaveDataObject that extends RealmObject was created. A SaveDataObject provides

several fields for saving data. Different fields are used by different question types as

the data type may vary. A user input for example may save a string, a slider may save

an Integer. Each SaveDataObject contains fields for assigning the SaveDataObject to

a studyId, a attributeName and saving a timestamp. The PersistenceManager uses a

realm database to persist study results and sensor logs. Therefor it provides the Realm

37

5 Implementation & Implementation Aspects

Figure 5.1: Class diagram of the PersistenceManager, the SensorLoggingEngine and
the StudyResultsEngine. Both extend the PersistenceManager.

38

5.4 Meta Data

instances that are used to read and save data. Since every node may have different

requirements for saving data and uses different data types, a generic and extendable

way of saving data was needed. For that reason the SaveDataObject that extends

RealmObject was created. A SaveDataObject provides several fields for saving data.

Different fields are used by different question types as the data type may vary. A user

input for example may save a string, a slider may save an Integer. Each SaveDataObject

contains fields for assigning the SaveDataObject to a studyId, a attributeName and

saving a timestamp.

To save user inputs, two result value fields are provided as well as a list of result values.

To save sensor logs, a field for the current sensor run is provided as well as a list of

sensor values. The sensor run field is mandatory, since each study cycle may have

multiple action views that may log the sensors multiple times. In this context a sensor

run means the log of a sensor during a single action view. If there is another action view

in a study, the sensors are started again in a new sensor run.

The PersistenceManager provides methods for getting SaveDataObjects and getting

MetaDataObjects. These methods are called within the StudyResultsEngine and the

SensorLoggingEngine. The StudyResultsEngine extends the PersistenceManager and

adds the methods that are used to read and write user input. In contrast, the Sensor-

LoggingEngine adds the methods that are used to read and write sensor logs.

5.4 Meta Data

As the framework supports multiple study cycles per study, it was a requirement to save

user input that should be accessible not only within the current cycle of the study, but

within all cycles. Therefore the framework supports reading and writing meta data that is

valid for all cycles of a study. Meta data may be the age, the weight or other attributes of

the participant, that usually don’t change during the participation of a study, even if the

study is performed multiple times with a break of several days.

For saving meta data, methods have been added to the PersistenceManager that

support the reading and saving of meta values. Meta values are objects that consist of

39

5 Implementation & Implementation Aspects

a name and a value. The method readMetaValue returns the Meta Object of a given

study id and a given meta value. The method writeMetaValue writes the meta value for

a given meta name and study id. Study id, meta name and meta value are all passed

as parameters to the method.

If the study creator wants the Quengine to persist meta values, a custom element has

to be used. The full configuration is illustrated in Figure 5.2. The figure shows how

a custom element may be configured to direct the Quengine saving a custom value

with the name group and the value 0. The types’ value has to be "WRITE_META".

Furthermore it needs to be set in the configuration field. The content field contains the

meta values as an array of JSON objects. Each object contains the name and the value

of the meta object that has to be written.

Figure 5.2: Custom node that is configured to write a meta value for a study

Listing 5.3 shows the method of the PersistenceManager that persists the meta data that

gets passed to it. Before the method executes the realm transaction it checks whether

the meta objects are available or not. If the object is already saved, then the value of the

object becomes overwritten. If it doesn’t exist yet, then the meta object is created and

saved.

40

5.4 Meta Data

1 public void writeMetaValue(int studyId, String metaName, String

metaValue) {

2 Realm _realm = RealmHelper.getNewRealmInstance();

3 _realm.executeTransactionAsync(new Realm.Transaction() {

4 @Override

5 public void execute(Realm _realm) {

6 RealmList<MetaValue> metaValues = new RealmList<>();

7 StudyMetaObject studyMetaObject

8 = getStudyMetaObjectSynchronously(studyId, _realm);

9 if (studyMetaObject.metaValues != null)

10 metaValues = studyMetaObject.metaValues;

11 boolean found = false;

12 for (MetaValue val : metaValues) {

13 if (val.name.equals(metaName)) {

14 val.value = metaValue;

15 found = true;

16 break;

17 }

18 }

19 if(!found){

20 MetaValue metaValueObject = new MetaValue();

21 metaValueObject.name = metaName;

22 metaValueObject.value = metaValue;

23 metaValues.add(metaValueObject);

24 }

25 studyMetaObject.metaValues = metaValues;

26 }

27 }, [...]);

28 }

41

5 Implementation & Implementation Aspects

Listing 5.3: WriteMetaValue Method of the PersistenceManager that persists the meta

values

Meta values can be used to save data that belongs to more than one study cycle, but

can also be used to control the process flow of a study and switch to different branches

within the study based on meta values. If the study creator wants to separate study

participants into two groups and let the participant perform different actions based on the

participant group, one would save the assigned group as a meta value. One would then

create a XOR node with two branches and set the condition for one branch to match

the desired participant group. The QuestionSys Configurator brings the functionality to

create branches and set conditions for each branch. To access previously saved meta

values, one has to use the pattern: meta.METANAME. The framework automatically

reads the value of an meta object with the METANAME after the prefix "meta.".

Figure 5.3 shows a sample for a branch condition that accesses a meta value.

Figure 5.3: Branch condition that accesses a meta value

5.5 Sensor integration

One of the main functions of the framework is the integration of both internal and external

sensors in studies. Internal sensors are sensors that are integrated in the smart phone,

external sensors are sensors that are connected via bluetooth to the smart phone.

42

5.5 Sensor integration

It was goal of this master’s thesis to implement a generic way to connect sensors, access

sensor values and add new sensor types to the framework. Therefore internal and

external sensor classes have been split. Both implement the shared interface Log-

gableAttribute and Sensor which functions as the interface to the PersistenceManager

and the NotificationManager. The following two subsections introduce implementation

aspects of the external sensors, the internal sensors and the sensor logging.

5.5.1 Bluetooth sensors

External sensors like step counters, heart rate sensors, etc. have to be bluetooth devices

that use the Bluetooth Low Energy Standard and provide GATT attributes. As a case

study a heart rate device that uses Bluetooth LE has been integrated in the framework

and tested in the Mindful Walking study in chapter 6.

Figure 5.4 shows a class diagram that illustrates how external sensors have been

integrated into the framework. The SensorManager holds an arbitrary amount of Blue-

toothDeviceServices. For every bluetooth device that is connected to the user device

and is in the study one BluetoothDeviceService is instantiated and assigned to the

device.

The BluetoothDeviceService holds a BluetoothDeviceSetting, a BluetoothDevice and

overrides methods to start and stop a sensor. Therefor it implements the interface Sen-

sor. Each BluetoothDevice has a BluetoothDeviceSetting that configures the sensor’s

attribute that should be read, the name of the bluetooth device and the MAC-address of

the bluetooth device. This information is used by the BluetoothDevice class to connect

to the physical device. The BluetoothDeviceService also provides a method to discover

bluetooth devices in range, so that the user can configure the device to use.

The BluetoothDevice class is implemented as an abstract class and implements the

interfaces IBluetoothDevice and LoggableAttribute. It has an attribute currentSensor-

Value which is a float value that represents the current value of the sensor. In case of a

heart rate device this value would be the heart rate as the beats per minute.

43

5 Implementation & Implementation Aspects

Figure 5.4: The class diagram illustrates the integration of external bluetooth sensors
into the framework

44

5.5 Sensor integration

The abstract class also provides methods for connecting and disconnecting bluetooth de-

vices as well as scanning and searching for bluetooth devices. It also provides a method

to connect to a GATT client. The getSensorValue method of the LoggableAttribute

interface has been overridden and just returns the current sensor value.

Since the BluetoothDevice class only provides the methods to handle the bluetooth

devices, but does not have any information about the different sensor devices, to

integrate a real sensor into the framework one must create a class for every type

of bluetooth device. That class must extend the abstract class BluetoothDevice and

override the methods getGattCallback, getBLUETOOTH_SERVICE_UUID, getBLUE-

TOOTH_CHARACTERISTIC_CONFIG_UUID, and getBLUETOOTH_VALUE_UUID. This

is the only position in the code where one must register a new type of Bluetooth Sensor

since the rest of the functionality is provided by the BluetoothDevice class.

Listing 5.4 shows how the HeartRateDevice class has been implemented to support

reading of the heart rate using a Bluetooth LE heart rate sensor:

1 public class HeartRateDevice extends BluetoothDevice {

2 BluetoothGattCallback gattCallback =

3 new BluetoothGattCallback()

4 {

5 @Override

6 public void onServicesDiscovered(BluetoothGatt gatt,

7 int status)

8 {

9 super.onServicesDiscovered(gatt, status);

10 BluetoothGattCharacteristic characteristic =

11 gatt.getService(getBLUETOOTH_SERVICE_UUID())

12 .getCharacteristic(getBLUETOOTH_VALUE_UUID());

13 gatt.setCharacteristicNotification(characteristic,

14 true);

15 BluetoothGattDescriptor descriptor =

16 characteristic.getDescriptor(

17 getBLUETOOTH_CHARACTERISTIC_CONFIG_UUID());

45

5 Implementation & Implementation Aspects

18 descriptor.setValue(

19 BluetoothGattDescriptor

20 .ENABLE_NOTIFICATION_VALUE);

21 gatt.writeDescriptor(descriptor);

22 }

23 [...]

24 @Override

25 public void onCharacteristicChanged(BluetoothGatt gatt,

26 BluetoothGattCharacteristic characteristic)

27 {

28 super.onCharacteristicChanged(gatt, characteristic);

29 int value = characteristic.getIntValue(

30 BluetoothGattCharacteristic.FORMAT_UINT8, 1);

31 processData(value);

32 }

33 };

34

35 @Override

36 public BluetoothGattCallback getGattCallback() {

37 return gattCallback;

38 }

39

40 @Override

41 public UUID getBLUETOOTH_SERVICE_UUID() {

42 return convertFromInteger(0x180D);

43 }

44

45 @Override

46 public UUID getBLUETOOTH_CHARACTERISTIC_CONFIG_UUID() {

47 return convertFromInteger(0x2902);

48 }

46

5.5 Sensor integration

49

50 @Override

51 public UUID getBLUETOOTH_VALUE_UUID() {

52 return convertFromInteger(0x2A37);

53 }

54

55 public HeartRateDevice(Context context, String address,

56 Sensor sensor) {

57 super(context, address, sensor);

58 }

59 }

Listing 5.4: The class that represents a heart rate device and extends the BluetoothDe-

vice class

The method getGattCallback returns the BluetoothGATT callback that is used by the

BluetoothDevice class. Based on the type of device the callback must be adapted.

Bluetooth GATT is an abbreviation of Bluetooth Generic Attributes and a part of the

Bluetooth Low Energy Protocol. It establishes common operations and a framework

for the data transported and stored by the Attribute Protocol [27]. In this context the

bluetooth gatt characteristic is the actual sensor value. The onCharacteristicChanged

of the GATT callback is called every time the bluetooth gatt characteristic changes. In

that method one has to process the data and set the current sensor value to the value of

the bluetooth gatt characteristic.

Every device that supports BluetoothGATT has at least one bluetooth service uuid, one

characteristic config uuid and one bluetooth value uuid. These uuids depend on the

sensor type one wants to read and are defined by the Bluetooth SIG [27].

In case of the heart rate device the service 0x180D represents the Heart Rate service

defined by the Bluetooth SIG. The BluetoothGATTDescriptor with the uuid 0x2902 repre-

sents the Client Characteristic Configuration and is used in the BluetoothGattCallback to

enable notifications when the characteristic value has been changed. The GATT charac-

47

5 Implementation & Implementation Aspects

teristic 0x2A37 represents the Heart Rate Measurement characteristic and contains the

actual heart rate value.

To add functionality for a new external sensor type, all three UUID’s have to be looked

up and the methods have to be adapted to return the correct uuid’s.

5.5.2 Internal sensors

Internal sensors mean the sensors that are integrated in the user’s device. Most smart

phones have an internal GPS sensor, an accelerometer, a gyroscope and other sensors

like brightness sensors.

An internal sensor in the context of a clinical study is not the raw hardware sensor output

but the processed value one wants to log and present to the user. This may be a step

counter that uses a combination of multiple hardware sensors, a distance sensor that

uses the GPS sensor of the device or a speed sensor that calculates the speed in which

the user is walking.

For the case study a speed sensor and a distance sensor have been implemented using

the GPS sensors of the device to calculate the speed of the user and the distance the

user has moved.

Figure 5.5 illustrates the implementation of the internal speed sensor and the distance

sensor as a class diagram.

The class SpeedmeterSensor is the central class of the speed and distance sensors

and implements the InternalSensor interface, which then implements the Sensor and

the LoggableAttribute interfaces. As the SpeedmeterSensor class implements the Log-

gableAttribute interface and the user’s speed as well as the distance are two indepen-

dent sensor values, to integrate both of them at the same time, two SpeedmeterSensor

classes have to be instantiated. The config that is passed to the constructor defines, if it

provides the value for the speed or the distance.

Each SpeedmeterSensor class holds a Data object and a GPSServices class. The Data

class contains all sensor values that are calculated from the GPS sensors. The GPSSer-

vices class extends an Android Service and implements a listener for the user location. It

48

5.5 Sensor integration

Figure 5.5: The class diagram illustrates the integration of a internal speedmeter sensor
into the framework

contains all functionality to calculate the speed and distance the user has moved based

on the raw GPS sensor values. As for the external sensors the BluetoothDeviceService

provides the methods for start and stop the sensor, for the internal speed and distance

sensors the SpeedmeterSensor class provides these methods. Listing 5.5 shows the

method to start the sensor:

1 @Override

2 public void startSensor()

3 {

4 if(!data.isRunning())

5 {

6 data.setRunning(true);

7 data.setFirstTime(true);

8 context.startService(new Intent(context,

9 GpsServices.class));

10 }

11 if (sensor.logConfig.isActivated) {

49

5 Implementation & Implementation Aspects

12 sensorLoggingEngine = new SensorLoggingEngine(0,

13 sensor, this);

14 sensorLoggingEngine.startLogging();

15 }

16 if (sensor.fluidNotification.isEnabled) {

17 notificationEngine = NotificationEngine

18 .newBuilder()

19 .Context(context)

20 .StudyResultsEngine(studyResultsEngine)

21 .FluidNotification(sensor.fluidNotification)

22 .LoggableAttribute(this)

23 .Nodes(nodes)

24 .build();

25 notificationEngine.startFluidNotification();

26 }

27 }

Listing 5.5: StartSensor method of the Speedmeter sensor that starts the speed and

distance sensors

To start a sensor, first it is checked whether the sensor is already running. If it is running,

is doesn’t get started again. Otherwise, the Data object, that contains the sensor

values, is marked as running. The GPSServices Android service, that listens for location

changes, is started. After the service is started, it is checked if the sensor that is used in

the study is configured to log the sensor values and in case the logging is enabled, a

new SensorLoggingEngine is started. The same goes for the user notifications and the

NotificationEngine.

5.5.3 Sensor Logging

The main reason for sensor integration within clinical studies is to log and analyze sensor

logs during user actions. For example, in the Mindful Walking case study the moving

50

5.5 Sensor integration

speed and the heart rate of the user is logged and may be used to show the progress

of the user in the Mindful Walk sessions. Therefore the SensorLoggingEngine was

implemented to log and persist the sensor values while the sensor is started.

Every sensor for that logging is enabled, holds a SensorLoggingEngine that is respon-

sible for logging the values of the sensor. Since both external and internal sensors

implement the LoggableAttribute Interface, the SensorLoggingEngine accesses the get-

SensorValue method that is overridden in the Sensor classes to access the actual

sensor values. When the logging process starts, a Java thread becomes started which

persists the sensor values to the realm database in a configured interval. Listing 5.6

shows the method in which the logging gets started.

1 public void startLogging()

2 {

3 loggingTask = new Runnable()

4 {

5 @Override

6 public void run()

7 {

8 addValueToValueListInRealm(loggableAttribute

9 .getSensorValue());

10 handler.postDelayed(loggingTask,

11 sensor.logConfig.logFrequency * 1000);

12 }

13 };

14 handler.post(loggingTask);

15 }

Listing 5.6: StartLogging method of the SensorLoggingEngine starts logging the sensor

values

Within the startLogging method a new Java Runnable is created. The sensor value

of the loggableAttribute is being added to the Realm database. For saving the realm

entries, the methods provided by the abstract class PersistenceManager, which the

51

5 Implementation & Implementation Aspects

SensorLoggingEngine extends, are used. The task is called again after the given

frequency of the logConfig of the sensor that becomes logged.

52

6
Case Study: Mindful Walking

In order to investigate if the designed framework can replace an individually created

app for one clinical study and measure the typical effort to design a new study, a case

study that is called Mindful Walking study has been created using the QuestionSys

Configurator.

The main goal of the Mindful Walking study is to increase the level of Mindfulness the

user experiences. Mindfulness has been defined as the intentional and nonjudgmental

attention to experiences of the present moment [23].

For the Mindful Walking study, Walking activities in the study are integrated for the sake

of increasing the Mindfulness of the user [5]. The study and the app should guide the

user as well as possible through the process to gain a maximum result.

This chapter introduces a BPMN process model which builds the fundamentals of the

technical model of the Mindful Walking study. The arised challenges while the process

models was transformed to the technical model are discussed afterwards.

6.1 Process Model

The Process Model in Figure 6.1 and in Figure 6.2 is referred from the Bachelor’s

thesis Conception and implementation of a mobile application to conduct a Mindful

Walking Study regarding Clinical Psychology [5], the Bachelor’s thesis Konzeption und

Realisierung einer mobilen Anwendung zur Unterstützung von gestressten Patienten

mithilfe des "Mindful Walking Gedankens [25] and the Bachelor’s thesis A personalized

53

6 Case Study: Mindful Walking

support tool for the training of mindful walking: The mobile “MindfulWalk” application

[2].

For the questionnaires the German translation of the Five Facet Mindfulness Question-

naires has been integrated [18].

The Process Model Mindful Walking 6.1 is the study illustrated as an overall Business

Process in BPMN. That means, for every user the process is only started and passed

through once, even if the user participates in the study at different days and starts it

multiple times in the app. These multiple cycles are modeled as loops within the process

model.

The process of the Mindful Walking Study 6.1 starts by accepting the terms and agree-

ments. If the user doesn’t accept the terms and agreements, the process immediately

ends. If one agrees then one should fill in the WHO-5 (Five Well-being index), the PSQ

(Perceived Stress Questionnaire) and the FFMQ (Five Facet Mindfulness Questionnaire)

questionnaires. After filling in the questionnaires the participant is randomly assigned to

a participant group (control group or experimental group). For each of the participant

groups there’s another lane in the study.

For the control group one is first informed about the assignation and then has to wait for

two weeks until one has to fill in the WHO-5, the PSQ and the FFMQ questionnaires

again. Then the study has finished and the participant gets an notification that the study

has been finished successfully.

For the experimental group the participant is also informed about the assignation, but

then after one day the first Mindful Walk sub process can be started. Figure 6.2 shows

the sub process of a single Mindful Walk.

A single Mindful Walk starts with an instruction shown to the participant. Afterwards one

has to fill in the body scale State Mindfulness Scale (SMS). Then one has to determine

the regular walking speed. That means one has to walk for a some time and measure

the regular walking speed. After the regular walking speed has been measured, one has

to choose a target speed. The target speed may be an reduction of 10%, 25% or 50% of

the regular walking speed.

54

6.1 Process Model

After choosing the target speed the Mindful Walk is performed. That means the partici-

pant has to walk for at least five minutes in the target speed, while speed, distance and

heart rate are measured and logged. After the Mindful walk, the body scale SMS has

to be filled in again as well as a specific Mindful Walk questionnaire provided by Ulm

University. Then a variable Mindful Walk cycles becomes incremented and the Mindful

Walk sub process is finished.

This sub process is performed fourteen times in an one day interval and after fourteen

days the WHO-5, the PSQ and the FFMQ questionnaires are filled in again. Then the

study is finished and a notification is sent to the participant.

55

6 Case Study: Mindful Walking

Figure 6.1: BPMN Model of the Mindful Walking Study

56

6.1 Process Model

Figure 6.2: Subprocess of a single Mindful Walk action

57

6 Case Study: Mindful Walking

6.2 Technical Model

The technical model of the Mindful Walking study is the model created in the QuestionSys

Configurator and based on the process model in chapter 6.1. The JSON export of the

QuestionSys Configurator is imported into the framework without any further adaptions.

The technical model includes the complete functionality of the study as well as all

changes that have to be made when transforming the process model to the technical

model.

The technical model in Figure 6.3 and Figure 6.4 starts with a XOR-Split Gateway that

splits the study into two lanes: first cycle and the second and following cycles.

If one starts the study the first time, one will get into the left line and the study starts

with a welcome page. After the participant has been welcomed, another page is shown

containing a headline, the WHO-5 questionnaire instruction and the WHO-5 questions. In

Figure 6.3 and 6.4 besides one exemplary question, all questions have been removed for

clarity. The WHO-5 questionnaire is followed by the PSQ and the FFMQ questionnaires.

After the questionnaires have been filled in, the participant has to choose the participant

group. The answer chosen in that question is used as a condition in the following

XOR-split. Depending on the answer given, different lanes are followed.

The first lane starts with a custom element that writes the value "0" for the meta key

"group". In the text node the participant gets an information that one has been assigned

to the experimental group and that one should for fourteen days participate each day in

a Mindful Walk. The third element is a custom element of type NOTIFICATION and the

content "days": 1.

The participant will receive a notification after one day that another Mindful Walk is

available.

The second lane starts with a custom element that writes the value "1" for the meta

key "group". In the text node the participant gets an information that one has been

assigned to the control group and that one should fill in another questionnaire in fourteen

days. The third element again is a custom element of the type NOTIFICATION and the

content "days": 14.

58

6.2 Technical Model

Figure 6.3: Technical model of the Mindful Walking study - Top part

59

6 Case Study: Mindful Walking

Figure 6.4: Technical model of the Mindful Walking study - Bottom part

60

6.2 Technical Model

The participant will receive a notification after fourteen days that another questionnaire

to fill in is available.

Coming from the study entry, the second lane starts with another XOR-Split that splits

the lane into the two participant groups: control group (right lane) and experimental

group (left lane).

If the participant is assigned to the control group, the line starts with the WHO-5 ques-

tionnaire page, the PSQ questionnaire page and the FFMQ questionnaire page. Then

a finish page is shown. That page contains a headline, a text element that informs the

participant that one has successfully finished the study and finally a custom element that

writes the value "true" for the meta key "finished". At that point the participation in the

Mindful Walking study is fully finished and the participant may not start over again.

If the participant is assigned to the experimental group the lane is split into two lanes

by another XOR-Gateway. If one has participated in less than fourteen cycles, then a

Mindful Walk starts. That means that first a Mindful Walk Welcome Page is shown. That

page contains a headline, a welcome message for the user and a custom element. The

custom element is of type SENSOR_CONFIG and configures the speed sensor, that is

used in the first action element.

The next page is the SAM scale (Self-Assessment Manikin) containing the body scale

SAM questions. Then on the following page the first custom element of type ACTION is

shown. That is the custom element to determine the regular walking speed. Since there

is no minimum time limit the participant has to walk, the countdown is set to false. The

complete configuration is shown in Listing 6.3.

1 {

2 "actionconfig":

3 {

4 "headline": {

5 "de": "Geschwindigkeit ermitteln",

6 "en": "Determine Speed"

7 },

8 "instruction": {

61

6 Case Study: Mindful Walking

9 "de": "Bitte laufen Sie in

10 Ihrer normalen Gehgeschwindigkeit

11 und ermitteln Sie die Geschwindigkeit.",

12 "en": "Please walk in your regular Walking Speed

13 and determine the speed"

14 },

15 "countdown": false,

16 "seconds": 0

17 }

18 }

Listing 6.1: Configuration for the action element that allows the participant to determine

the regular walking speed

On the next page one is asked for the target speed. A helper page follows to configure

the sensors for the actual Mindful Walk. At that point the bluetooth sensor for the Heart

Rate, the Speed Sensor and the Distance Sensor are configured, automatically started

and shown in the next action element. The logging for all of the sensors is set to true

with an interval of three, respective ten seconds.

Also the user notifications for each sensors are configured in the attribute fluidNotification.

The notification is enabled for the heart rate sensor and the speed sensor and the

notification frequency is set to ten or five second. That means one may get notifications

for the walking speed every five seconds. For each notification config a maximum and/or

a minimum amount is set. For the heart rate one gets a notification if the heart rate drops

down below an absolute value of 50 bpm or if the heart rate exceeds an absolute value

of 100 bpm.

For the speed sensor a maximum value is set, so that one only gets a notification if

the walking speed exceeds the target speed. Therefor the attribute valueExportNode

is set to TargetSpeed, which means that the maximum value is set to the result of the

previously set node with the export name TargetSpeed.

The complete sensor configuration is shown in Listing 6.2.

62

6.2 Technical Model

1 {

2 "sensors":

3 [

4 {

5 "id": 0,

6 "name": "Heartrate",

7 "sensorType": "EXTERNAL",

8 "sensorAttribute": "HEARTRATE",

9 "logConfig": {

10 "isActivated": true,

11 "logFrequency": 3

12 },

13 "fluidNotification": {

14 "isEnabled": true,

15 "notificationFrequency": 10,

16 "maxValue": {

17 "valueExportNode": null,

18 "value": 100

19 },

20 "minValue": {

21 "valueExportNode": null,

22 "value": 50

23 }

24 }

25 },

26 {

27 "id": 1,

28 "name": "Walking Speed",

29 "sensorType": "INTERNAL",

30 "sensorAttribute": "SPEED",

31 "logConfig": {

63

6 Case Study: Mindful Walking

32 "isActivated": true,

33 "logFrequency": 10

34 },

35 "fluidNotification": {

36 "isEnabled": true,

37 "notificationFrequency": 5,

38 "maxValue": {

39 "valueExportNode": "TargetSpeed",

40 "value": 0

41 },

42 "minValue": {

43 "valueExportNode": null,

44 "value": 0

45 }

46 }

47 },

48 {

49 "id": 2,

50 "name": "Distance",

51 "sensorType": "INTERNAL",

52 "sensorAttribute": "DISTANCE",

53 "logConfig": {

54 "isActivated": true,

55 "logFrequency": 10

56 },

57 "fluidNotification": {

58 "isEnabled": false

59 }

60 }

61]

62 }

64

6.2 Technical Model

Listing 6.2: Configuration for the sensors in the Mindful Walk study. The sensor logging

is activated for the heart rate sensor, the speed sensor and the distance

sensor. Notifications are enabled for the heart rate sensor and the speed

sensor.

The next page contains the actual Mindful Walk as a custom element of type ACTION.

In that action element the participant is instructed for the Mindful Walk. The countdown

attribute is set to "true" and the "seconds" attribute is set to "300". That means, that

one has to perform at least five minutes of mindful walking. As soon as the Mindful

Walk is started, the sensors are started automatically and after the action element has

finished, the sensors are stopped automatically.

The complete configuration is shown in Listing 6.2.

1 {

2 "actionconfig": {

3 "headline": {

4 "de": "Mindful Walk",

5 "en": "Mindful Walk"

6 },

7 "instruction": {

8 "de": "Bitte klicken Sie auf Start um min.

9 5 Minuten Mindful Walk durchzufuehren.

10 Die App wird Sie benachrichtigen,

11 falls Sie ihre Zielgeschwindigkeit

12 ueberschreiten.",

13 "en": "Please click on start to start

14 a mindful walk.

15 The app will notificate you,

16 if you exceed the target speed."

17 },

18 "countdown": true,

65

6 Case Study: Mindful Walking

19 "seconds": 300

20 }

21 }

Listing 6.3: Configuration for the action element that allows the participant to determine

the regular walking speed

After the Mindful Walk has finished, the SAM Scale questionnaire page is shown another

time, then the specific Mindful Walk questionnaire. In the end a finish page is shown.

That contains a message for the participant and a custom element that schedules an

user notification for the next day. At that point one Mindful Walk has been finished and

the participant comes back on the next day.

If one has participated in more than fourteen cycles, then the study is finished in the

same way like in the control group lane.

6.3 Challenges

When transforming the business logic (process model) of the Mindful Walking study to

the technical model in order to run the study in an app, one can easily see, that the

model had to be adapted and functionality had to be added. The following listing points

out the challenges that occurred during the implementation of the Mindful Walking study:

1. Multiple study cycles: The most obvious difference between the process model

and the technical model one can see, is that the process model is only executed

once per participant and the cycles of the Mindful Walk sub process are modeled

within the process model as loops with timer events. Since for the technical

implementation it would not be practical, that the process remains opened over

a long period of time, another solution had to be found. In order to allow studies

that are executed on different days, a functionality had to be added that the engine

can keep track about the study cycles. After every completed study cycle, meta

data is saved that contains the count of cycles the study has been executed. Also

for every study cycle, the time stamp is saved. Since the study does not complete

66

6.3 Challenges

if one cycle ends, another meta data had to be added, that contains a flag, that

indicates if the study has been fully completed. That attribute had to be set in the

end of the study participation. In case of the Mindful Walking study that flag is set

after fourteen cycles of execution.

2. Multiple sensor configurations: The Mindful Walking study contains two action

elements during each study cycle. One is to determine the regular walking speed

and the other one is for the actual Mindful Walk. For each action element another

set of sensors is needed. The first action element only uses the speed sensor

and is configured to not log the sensor values nor notify the participant about the

sensor values. The second action element uses the speed sensor, the distance

sensor and the heart rate sensor. Logging and notifications are enabled. Therefore

two configuration elements had to be added and the second sensor configuration

has to overwrite the first sensor configuration.

3. Scheduled study cycles: Since the Mindful Walk study needs to be executed on

a daily schedule, the study execution has to be blocked if the time gap between

two cycles has not passed yet. Therefore the framework saves a time stamp for

every passed study cycle.

4. Meta Data: Some input is used not only in the current study cycle, but in all cycles

of the study. For example the participant group is set once and used in all cycles.

Therefor functionality had to be added to save meta attributes.

5. Conditions based on meta data: Meta data has to be used as input for condi-

tions. The Mindful Walking study varies depending on the participant group. The

functionality for meta conditions had been added and conditions may access meta

values by using the prefix "meta.".

6. Scheduled notifications: After every Mindful Walk in the case study, a notification

is scheduled for the next day. Therefore a custom element of type NOTIFICATION

has been added to schedule notifications.

7. Accessing data of other nodes in action element: Within the Mindful Walk

sub process the user is notified if the target speed is exceeded. The target speed

has been set in a previously shown question element. To access the user input

67

6 Case Study: Mindful Walking

within the sensor config an attribute valueExportNode had to be added that links

to the result of another node.

68

7
Presentation of the mobile application

This chapter introduces the application and shows which UI elements the questionnaires

support as well as how the case study Mindful Walking has been implemented.

7.1 Demo App

This section shows how an app that embeds the QuestionSys studies framework may

be developed. For demonstration purpose a demo app with basic functionality has been

implemented. This implementation may be used as a template for future applications.

The app starts with a login screen. The user may login or register for an account by

typing in the user name and the password. Figure 7.1 shows the login screen.

69

7 Presentation of the mobile application

Figure 7.1: Login Screen

The demo app brings a sliding menu from that the different features can be selected. To

configure and connect the external bluetooth sensors there is an external sensor setting

menu that can be seen in Figure 7.2. For each supported sensor type there is a list item

that can be tapped to search for a bluetooth device and connect it.

70

7.1 Demo App

Figure 7.2: External Sensor settings

The study list in Figure 7.3 shows all studies that are available for the user. Tapping on a

study loads and starts a cycle of the study.

71

7 Presentation of the mobile application

Figure 7.3: Study List

7.2 Mindful Walking

This section presents the UI of the case study Mindful Walking that has been imple-

mented.

When the study has been selected, a start screen with a play button is shown (Figure

7.4). Clicking on the play button starts the study cycle.

72

7.2 Mindful Walking

Figure 7.4: Start Screen after the a study was selected

The study begins with a welcome screen containing a headline and a text element

thanking the user for the participation. The welcome screen can be seen in Figure 7.5.

73

7 Presentation of the mobile application

Figure 7.5: Mindful Walking study: Welcome Screen

Figure 7.6 shows the Well-Being Index questionnaire that is shown to the user in the first

study cycle. The page consists of a headline, an instruction and the questions. Each

question of the questionnaire contains a likert scale, so the user has to select the answer

that fits best from the given options.

74

7.2 Mindful Walking

Figure 7.6: Mindful Walking study: Well-Being Index questionnaire as Likert Scale

The user has to completely fill in the questionnaire. If a question has not been filled in

and the user wants to go to the next page, the question becomes highlighted, as shown

in Figure 7.7.

75

7 Presentation of the mobile application

Figure 7.7: Mindful Walking study: Incorrectly or incompletely filled in questionnaire

elements are highlighted

Two more questionnaires follow (Figure 7.8), then the user has to select the participant

group in Figure 7.9.

76

7.2 Mindful Walking

Figure 7.8: Mindful Walking study: Perceived Stress Questionnaire

77

7 Presentation of the mobile application

Figure 7.9: Mindful Walking study: Control group selection

After the selection, a confirmation is shown (Figure 7.10) and based on the selection,

the content of the next study cycles differ.

78

7.2 Mindful Walking

Figure 7.10: Mindful Walking study: Control group selection confirmation

In the experimental group the next study cycle contains a Mindful Walk session. Figure

7.11 shows the welcome screen and instruction for the Mindful Walk.

79

7 Presentation of the mobile application

Figure 7.11: Mindful Walking study: Welcome screen for the daily Mindful Walk

First, some questionnaires that contain Likert scales with images are shown. An example

can be seen in Figure 7.12.

80

7.2 Mindful Walking

Figure 7.12: Mindful Walking study: Mood questionnaire as a Liker Scale with images

Second, an action element is shown (Figure 7.13), allowing the user to determine the

regular walking speed. For that action view only the internal speed sensor is enabled

and logging and notifications are disabled.

81

7 Presentation of the mobile application

Figure 7.13: Mindful Walking study: Regular Walking speed determination as an action

view

In Figure 7.14 the user has to select the target speed for the Mindful Walk. That target

speed is used as notification threshold for the followed Mindful Walk.

82

7.2 Mindful Walking

Figure 7.14: Mindful Walking study: Selecting the target speed for the Mindful Walk

Figure 7.15 shows the sensor configuration for the Mindful Walk. The page allows the

user to reconfigure the bluetooth sensors that are required for the study. In this case

only the heart rate sensor is required.

83

7 Presentation of the mobile application

Figure 7.15: Mindful Walking study: Sensor configuration during a study

Clicking on the heart rate sensor opens a dialog (Figure 7.16) in which the sensor can

be selected.

84

7.2 Mindful Walking

Figure 7.16: Mindful Walking study: Bluetooth device selection screen for connecting

external sensors

Figure 7.17 shows the actual Mindful Walk. The action element contains a headline, a

countdown, a list of the activated sensors and the current sensor readings as well as an

instruction. The Mindful Walk is configured to run for at least five minutes, therefor the

countdown is set to five minutes and the page cannot be switched before the countdown

runs out.

85

7 Presentation of the mobile application

Figure 7.17: Mindful Walking study: Performing a Mindful Walk

Figure 7.18 shows the last screen of a Mindful Walk session.

86

7.3 Additional question types

Figure 7.18: Mindful Walking study: Completion of a daily mindful walk

7.3 Additional question types

In this section additional question types that are supported by the framework are shown.

These question types have not to be used in the Mindful Walking study.

Figure 7.19 shows demos for a drop down question, a multiple choice question and a

single choice question.

87

7 Presentation of the mobile application

Figure 7.19: Dropdown, multiple choice and single choice question UI elements

In Figure 7.20 there is a Yes/No question, a date selection and a float number input.

88

7.3 Additional question types

Figure 7.20: YesNo, Date and number input question UI elements

The framework also supports integer input, single line text input and multi line text input.

The date selection can be seen in Figure 7.21.

89

7 Presentation of the mobile application

Figure 7.21: Date input popup window

Figure 7.22 shows a Slider range question and a single slider question.

90

7.3 Additional question types

Figure 7.22: Single slider and range slider question UI elements

91

8
Requirements Check

In this chapter, it is shown whether the previously defined requirements were fulfilled.

8.1 Functional requirements

1. QuestionSys as interface for generic studies: The requirement has been

fulfilled. The studies are created in the QuestionSys Configurator and additional

features are covered by custom elements. The JSON output of the study exported

from the QuestionSys Configurator is used as input for the framework without any

additional changes.

2. Multiple session studies: The requirement has been fulfilled. The framework

supports multiple cycles for each study. A study may have one or more cycles and

data may be transported from cycles to cycles using meta data. Every SaveData

Object has an attribute that assigns it to a specific session.

3. Meta data: The requirement has been fulfilled. The framework supports saving

arbitrary meta values that can be used to save instance comprehensive data. For

example the meta data object finished is used as a flag to save if the study has

been fully completed and if there are no more cycles available.

4. Multiple studies: The requirement has been fulfilled. The framework supports

multiple studies. Studies are transferred to the framework as a string in the JSON

format and then cast to the internal models.

93

8 Requirements Check

5. Elements: The requirement has been fulfilled. The framework supports all previ-

ously defined elements like headlines, text elements, media elements, question

elements and custom elements.

6. Questions: The requirement has been fulfilled. The framework supports and

provides UI elements for drop down questions, multiple choice questions, single

choice questions, yes/no questions, date input, single line text input, multi line text

input, likert scales, likert scales with images, single sliders and slider ranges.

7. Logic elements: The requirement has been fulfilled. The framework supports

logic elements like XOR split and join elements. XOR split elements split the

questionnaire into multiple paths based on conditions that access either node

result data or meta data input.

8. Custom elements: The requirement has been fulfilled. The framework supports

the custom elements WRITE_META, READ_META SENSOR_CONFIG, SEN-

SOR_START, SENSOR_STOP and ACTION.

9. Action elements: The requirement has been fulfilled. The framework supports

action elements. Action elements may contain a countdown timer, a chronometer,

a view to show sensor values and an instruction for the user.

10. Sensors : The requirement has been fulfilled. The framework supports smart-

phone internal sensors as well as external bluetooth sensors that support the

GATT protocol.

11. Sensor Notifications: The requirement has been fulfilled. The framework sup-

ports fluid notifications. That means, while the sensors are enabled the user

constantly receives notifications if the sensor values are not within the configured

limits.

12. Pausable: The requirement has been fulfilled. A study may be paused at any

time and input data remains persisted.

13. Notifications: The requirement has not been fulfilled yet, since this thesis focuses

on the architecture of the framework. User notifications may be added to a future

94

8.2 Non-functional requirements

app that embeds the QuestionSys studies framework. However, the input data

form of the notification settings has already been prepared.

14. Results: The requirement has partly been fulfilled. The framework supports

exporting study results in JSON form after the study has been finished. However,

since the QuestionSys API at this point has not been finished yet, the result data

can not be uploaded yet.

15. Statistics: The requirement has not been fulfilled yet, since this thesis focuses

on the architecture of the framework. Statistics and user feedback may be added

to a future app version.

16. Log-in: The requirement has partly been fulfilled. The app sample app provides

a log-in screen. However, since the QuestionSys API at this point has not been

finished yet, the log-in function has to be added in the future.

17. Multi-language support: The requirement has been fulfilled. User Interfaces

have been exemplary translated into English and German. Also, questionnaires

can be translated into different languages using the QuestionSys Configurator.

The framework fully supports loading different languages for study content.

8.2 Non-functional requirements

1. Generic: The requirement has been fulfilled. All kind of studies can be created in

the QuestionSys Configurator and imported in the framework.

2. Android compatible: The requirement has been fulfilled. The framework has

been implemented for Android.

3. Well structured input data: The requirement has been fulfilled. As input data for

the framework, the export data from the QuestionSys Configurator is used, which

is well formatted.

4. Well structured output data: The requirement has been fulfilled. The results

data is of type JSON and well structured.

95

8 Requirements Check

5. Loose coupling: The requirement has been fulfilled. The framework can easily

be embedded into other applications.

6. Modularity: The requirement has been fulfilled. The framework is modular and

parts of the framework like the UI can be exchanged easily.

7. Extensibility: The requirement has been fulfilled. The framework can be ex-

tended by new functionality using the custom element. New bluetooth sensors may

be added by extending the BluetoothSensor class and defining the GATT attribute.

8. Offline mode: The requirement has been fulfilled. Studies are saved and loaded

locally as well as media objects are cached in the local storage. Result data is

locally saved in the realm database.

9. App feeling: The requirement has been fulfilled. The app is usable by all kind of

users and provides feedback and instructions for the user. For instance, questions

are marked red if the input data is incorrect or missing. Sensors may even be

configured during the study if they have not been connected yet.

96

9
Conclusion & Prospects

The objective of this master’s thesis was to build a generic framework, that connects

to the QuestionSys backend and runs a process engine that is capable rendering a

complete clinical study in form of a business process. Therefore the custom elements in

the QuestionSys Configurator have been used to extend the functionality and to meet

the requirements of an interventional clinical study.

Main requirements have been the integration of action elements as a template for clinical

exercises. Also internal as well as external sensors had to be integrated. During the

execution of action elements, the sensor values have to be logged and feedback has to

be given to the user.

In scope of this thesis the above described framework has been developed for Android.

The framework renders studies that consist of various study pages. Every page may

have questions or action elements and can be rendered by the framework.

Sensor integration as well as sensor logging and user notifications have been imple-

mented.

A layout for the questionnaire elements has been developed and the framework renders

various UI elements depending on the node and question type.

A persistence manager has been implemented that is responsible to persist questionnaire

answers and sensor logs.

To investigate if the designed concept and architecture work, a case study Mindful

Walking has been implemented to show how a clinical study may be created for the

framework. For the study Mindful Walking some challenges had to be overcome.

97

9 Conclusion & Prospects

First, Mindful Walking is a study that is designed to be executed for a longer period of

time. That’s why there had to be a function to the framework added to save meta data in

order to transport data from one study instance to another. Second, during each Mindful

Walking instance, there are two exercises for the user. The first exercise is to measure

usual walking speed and the second is the actual Mindful Walk. Since for those two

exercises two different sets of sensors have to be used, functionality had to be added to

overwrite the sensor configuration at any time of the study.

The above mentioned challenges have been solved by making various changes in

the framework and adding functionality in the custom elements. The creation of the

Mindful Walking study took around fifteen hours, so the effort creating a study with the

QuestionSys Configurator and the framework can be significantly lower than creating

an individual app for each new study.

9.1 Prospects

In order to deploy the application on Android devices and advertise it, some additional

changes have to be made and some additional features may be added:

• In context of this thesis a demonstration application has been implemented that

embeds the framework. However, since the QuestionSys backend system at the

time of the thesis has not fully been finished, some adaptions have to be made

for the app. First, the log-in page should be filled with functionality and the user

and password should be sent to the backend to authenticate the user. Also a

registration function for new users should be added. Second, at this time the

studies used in the app are added as assets to the app. To publish the app, a

feature needs to be added to download the studies that the user is assigned to.

The feature to list the studies has already been prepared, but also needs to be

adapted. There is already a function implemented to export study results and

sensor logs to a JSON file and send as mail to the reviewer, but in best case

the study results should be uploaded to the QuestionSys backend automatically,

therefor the results export should be adapted.

98

9.1 Prospects

• To motivate the user to regularly participate in the studies, a function should be

added to give feedback and show statistics on the study progress. There are many

ways to design statistics, one of them would be to add a statistic that compares

sensor values of exercises of each study cycle. In the case study Mindful Walking

the user would then see how the quality of the Mindful Walks improve each time

and the heart rate may reduce in each walk. Another way would be to compare

results of likert scales in each study cycle. In the case study Mindful Walking the

user would then see how the stress level becomes lower each day of participation.

• To allow doctors and psychologists to design even more types of studies besides

the support of bluetooth heart rate devices, support for more types of bluetooth

sensors may be added. As described in section 5.5 sensors can be added fairly

easy to the framework if they support the Bluetooth Low Energy protocol.

• Since notifications are an app specific function, when embedding the framework

into an Android application, the support for user notification needs to be added.

This allows to remind the user of new studies that can be downloaded or to remind

the user if one should participate in another cycle of the study. The preparations

in the framework to set notifications for a study have already been made and the

study creator may add a custom element that sets the count of days until the

notification should be sent to the user.

• The QuestionSys backend may be adapted to allow the upload of the study results.

Especially for uploading the sensor log data, some changes may have to be made.

In best case, the backend should add functionality to create different types of

statistics using both study result data and sensor log data.

• Since for the framework some new types of custom elements have been added

to the input data, the QuestionSys Configurator might be adapted to allow a more

user friendly study creation.

99

Bibliography

[1] Joachim, J.: Entwicklung neuer Anwendungsszenarien für ein prozessorientiertes

Fragebogensystem. (2017)

[2] Frank, J.: A personalized support tool for the training of mindful walking: The mobile

"MindfulWalk" application. (2017)

[3] Martin, R.: Developing a Complex User Interface for Mobile Data Collection

Applications. (2018)

[4] Malsam, F.: Konzeption, Implementierung und Evaluation eines Rahmenwerks zur

Auslesung der Herzfrequenz durch Fitnesstracker in Android. (2018)

[5] Müller, D.: Conception and implementation of a mobile application to conduct a

Mindful Walking Study regarding Clinical Psychology. (2019)

[6] Schobel, J., Ruf-Leuschner, M., Pryss, R., Reichert, M., Schickler, M., Schauer, M.,

Weierstall, R., Isele, D., Nandi, C., Elbert, T.: A generic questionnaire framework

supporting psychological studies with smartphone technologies. In: XIII Congress

of European Society of Traumatic Stress Studies (ESTSS) Conference. (2013)

69–69

[7] Schobel, J., Schickler, M., Pryss, R., Maier, F., Reichert, M.: Towards Process-

Driven Mobile Data Collection Applications: Requirements, Challenges, Lessons

Learned. In: 10th Int’l Conference on Web Information Systems and Technologies

(WEBIST 2014), Special Session on Business Apps. (2014) 371–382

[8] Schobel, J., Schickler, M., Pryss, R., Reichert, M.: Process-Driven Data Collection

with Smart Mobile Devices. In: 10th International Conference on Web Information

Systems and Technologies (Revised Selected Papers). Number 226 in LNBIP.

Springer (2015) 347–362

101

Bibliography

[9] Schobel, J., Pryss, R., Reichert, M.: Using Smart Mobile Devices for Collecting

Structured Data in Clinical Trials: Results From a Large-Scale Case Study. In:

28th IEEE International Symposium on Computer-Based Medical Systems (CBMS

2015), IEEE Computer Society Press (2015) 13–18

[10] Schobel, J., Pryss, R., Schickler, M., Reichert, M.: Process-Driven Mobile Data

Collection (Extended Abstract). In: 8th International Workshop on Enterprise

Modeling and Information Systems Architectures (EMISA 2017). (2017)

[11] Schobel, J.: A Model-Driven Framework for Enabling Flexible and Robust Mobile

Data Collection Applications. (2018)

[12] Pryss, R., Reichert, M., John, D., Frank, J., Schlee, W., Probst, T.: A Personalized

Sensor Support Tool for the Training of Mindful Walking. In: IEEE 15th International

Conference on Wearable and Implantable Body Sensor Networks (BSN 2018).

(2018) 114–117

[13] Mehdi, M., Mühlmeier, G., Agrawal, K., Pryss, R., Reichert, M., Hauck, F.: Ref-

erenceable mobile crowdsensing architecture: A healthcare use case. In: 1st

International Workshop On Services For Mobile Data Collection. (2018)

[14] Jimenez-Ramirez, A., Barba, I., Reichert, M., Weber, B., Valle, C.D.: Clinical

Processes - The Killer Application for Constraint-Based Process Interactions? In:

30th Int’l Conference on Advanced Information Systems Engineering (CAiSE 2018).

Number 10816 in LNCS, Springer (2018) 374–390

[15] Hoppenstedt, B., Pryss, R., Kammerer, K., Reichert, M.: CONSENSORS: A Neural

Network Framework for Sensor Data Analysis. In: 26th International Conference

on COOPERATIVE INFORMATION SYSTEMS (CoopIS 2018)). LNCS, Speinger

(2018)

[16] Schobel, J., Probst, T., Reichert, M., Schickler, M., Pryss, R.: Enabling Sophisti-

cated Lifecycle Support for Mobile Healthcare Data Collection Applications. IEEE

Access 7 (2019) 61204–61217

102

Bibliography

[17] Schobel, J., Pryss, R., Probst, T., Schlee, W., Schickler, M., Reichert, M.: Learn-

ability of a Configurator Empowering End Users to Create Mobile Data Collection

Instruments: Usability Study. JMIR mHhealth and uHealth 6 (2018) e148

[18] Michalak, J., Zarbock, G., Drews, M., Otto, D., Mertens, D., Strähle, G., Schwinger,

M., Dahme, B., Heidenreich, T.: Erfassung von Achtsamkeit mit der deutschen

Version des Five Facet Mindfulness Questionnaires (FFMQ-D). Zeitschrift für

Gesundheitspsychologie 24 (2016) 1–12

[19] Kinnamon, D., Ghanta, R., Lin, K.C., Muthukumar, S., Prasad, S.: Portable

biosensor for monitoring cortisol in low-volume perspired human sweat. Nature

(2017) 1–13

[20] Muaremi, A., Arnrich, B., Tröster, G.: Towards Measuring Stress with Smartphones

and Wearable Devices During Workday and Sleep. BioNanoScience 3 (2013)

172–183

[21] Anastasova, S., Crewther, B., Bembnowicz, P., Curto, V., Ip, H.M., Rosa, B., Yang,

G.Z.: A wearable multisensing patch for continuous sweat monitoring. Biosensors

and Bioelectronics 93 (2017) 139 – 145 Special Issue Selected papers from the

26th Anniversary World Congress on Biosensors (Part II).

[22] Choi, S., Kim, S., Yang, J.S., Lee, J.H., Joo, C., Jung, H.I.: Real-time measurement

of human salivary cortisol for the assessment of psychological stress using a

smartphone. Sensing and Bio-Sensing Research 2 (2014) 8 – 11

[23] Pryss, R., Reichert, M., John, D., Frank, J., Schlee, W., Probst, T.: A personalized

sensor support tool for the training of mindful walking. In: 2018 IEEE 15th Inter-

national Conference on Wearable and Implantable Body Sensor Networks (BSN).

(2018) 114–117

[24] Mani, M., Kavanagh, D.J., Hides, L., Stoyanov, S.R.: Review and Evaluation of

Mindfulness-Based iPhone Apps. PubMed (2015)

[25] Kozlowski, D.: Konzeption und Realisierung einer mobilen Anwendung zur Un-

terstützung von gestressten Patienten mithilfe des "Mindful Walking Gedankens".

(2018)

103

Bibliography

[26] Google: Sensors Overview. https://developer.android.com/guide/

topics/sensors/sensors_overview (2019) Accessed: 2019-07-01.

[27] SIG, B.: GATT Specifications. https://www.bluetooth.com/

specifications/gatt (2019) Accessed: 2019-07-01.

[28] Ulm University, I.o.D., Systems, I.: QuestionSys - A Generic and

Flexible Questionnaire System Enabling Process-Driven Mobile Data

Collection. https://www.uni-ulm.de/in/iui-dbis/forschung/

laufende-projekte/questionsys/ (2019) Accessed: 2019-07-01.

[29] Schobel, J., Schickler, M., Pryss, R., Nienhaus, H., Reichert, M.: Using Vital Sen-

sors in Mobile Healthcare Business Applications: Challenges, Examples, Lessons

Learned. In: 9th Int’l Conference on Web Information Systems and Technologies

(WEBIST 2013), Special Session on Business Apps. (2013) 509–518

[30] Runtastic: Runtastic. https://play.google.com/store/apps/details?

id=com.runtastic.android (2019) Accessed: 2019-07-01.

[31] IO, R.: Realm Database. https://realm.io/products/realm-database

(2019) Accessed: 2019-07-01.

104

https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview
https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt
https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys/
https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys/
https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=com.runtastic.android
https://realm.io/products/realm-database

List of Figures

2.1 Basic Structure of a Questionnaire Page in the Questionnaire Interface

application [3] . 8

2.2 Workout session in the mobile app "runtastic" showing a chronometer and

several sensor readings [30] . 10

2.3 Visualization of vital signs during the workout in the XFitXtreme mobile

application [29] . 11

4.1 Business logic of a study execution containing interaction between the

User and the Quengine . 19

4.2 Class architecture of the Quengine including SensorManager, Persis-

tenceEngine and NotificationEngine . 22

4.3 Data model of a study processed by the Quengine 26

5.1 Class diagram of the PersistenceManager, the SensorLoggingEngine

and the StudyResultsEngine. Both extend the PersistenceManager. . . . 38

5.2 Custom node that is configured to write a meta value for a study 40

5.3 Branch condition that accesses a meta value 42

5.4 The class diagram illustrates the integration of external bluetooth sensors

into the framework . 44

5.5 The class diagram illustrates the integration of a internal speedmeter

sensor into the framework . 49

6.1 BPMN Model of the Mindful Walking Study 56

6.2 Subprocess of a single Mindful Walk action 57

6.3 Technical model of the Mindful Walking study - Top part 59

6.4 Technical model of the Mindful Walking study - Bottom part 60

7.1 Login Screen . 70

7.2 External Sensor settings . 71

7.3 Study List . 72

105

List of Figures

7.4 Start Screen after the a study was selected 73

7.5 Mindful Walking study: Welcome Screen 74

7.6 Mindful Walking study: Well-Being Index questionnaire as Likert Scale . . 75

7.7 Mindful Walking study: Incorrectly or incompletely filled in questionnaire

elements are highlighted . 76

7.8 Mindful Walking study: Perceived Stress Questionnaire 77

7.9 Mindful Walking study: Control group selection 78

7.10 Mindful Walking study: Control group selection confirmation 79

7.11 Mindful Walking study: Welcome screen for the daily Mindful Walk 80

7.12 Mindful Walking study: Mood questionnaire as a Liker Scale with images 81

7.13 Mindful Walking study: Regular Walking speed determination as an action

view . 82

7.14 Mindful Walking study: Selecting the target speed for the Mindful Walk . . 83

7.15 Mindful Walking study: Sensor configuration during a study 84

7.16 Mindful Walking study: Bluetooth device selection screen for connecting

external sensors . 85

7.17 Mindful Walking study: Performing a Mindful Walk 86

7.18 Mindful Walking study: Completion of a daily mindful walk 87

7.19 Dropdown, multiple choice and single choice question UI elements 88

7.20 YesNo, Date and number input question UI elements 89

7.21 Date input popup window . 90

7.22 Single slider and range slider question UI elements 91

106

Listings

4.1 Sample study input formatted as JSON formatted string 27

4.2 Sample result of a user participating in a study 29

5.1 Quengine constructor . 34

5.2 EngineHolder Interface . 34

5.3 WriteMetaValue Method of the PersistenceManager that persists the

meta values . 41

5.4 The class that represents a heart rate device and extends the Blue-

toothDevice class . 45

5.5 StartSensor method of the Speedmeter sensor that starts the speed and

distance sensors . 49

5.6 StartLogging method of the SensorLoggingEngine starts logging the sen-

sor values . 51

6.1 Configuration for the action element that allows the participant to deter-

mine the regular walking speed . 61

6.2 Configuration for the sensors in the Mindful Walk study. The sensor

logging is activated for the heart rate sensor, the speed sensor and the

distance sensor. Notifications are enabled for the heart rate sensor and

the speed sensor. 63

6.3 Configuration for the action element that allows the participant to deter-

mine the regular walking speed . 65

107

Name: Robin Bird Matriculation number: 750747

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other

sources or tools than the ones specified.

Ulm, .

Robin Bird

	Introduction
	Problem statement
	Objective
	Structure of the thesis

	Fundamentals
	QuestionSys
	Related Work
	QuestionSys mobile application
	Clinical study apps
	Sensor-enabled mobile apps
	Discussion

	Requirements
	Functional requirements
	Non-functional requirements

	Architecture
	Quengine Process
	Class architecture
	Data Model and Persistence
	Input Data structure
	Results structure

	Implementation & Implementation Aspects
	Layout Aspects
	View Adapter & QViews
	Persistence Manager
	Meta Data
	Sensor integration
	Bluetooth sensors
	Internal sensors
	Sensor Logging

	Case Study: Mindful Walking
	Process Model
	Technical Model
	Challenges

	Presentation of the mobile application
	Demo App
	Mindful Walking
	Additional question types

	Requirements Check
	Functional requirements
	Non-functional requirements

	Conclusion & Prospects
	Prospects

