
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing
https://doi.org/10.1007/s12652-020-02094-9

ORIGINAL RESEARCH

Flexible development of location‑based mobile augmented reality
applications with AREA

Implementation of a serious game shows the flexibility of AREA

Marc Schickler1 · Manfred Reichert1 · Philip Geiger1 · Jens Winkler2 · Thomas Funk2 · Micha Weilbach1 ·
Rüdiger Pryss3

Received: 30 December 2019 / Accepted: 15 April 2020
© The Author(s) 2020

Abstract
Mobile applications have garnered a lot of attention in the last years. The computational capabilities of mobile devices are
the mainstay to develop completely new application types. The provision of augmented reality experiences on mobile devices
paves one alley in this field. For example, in the automotive domain, augmented reality applications are used to experience,
inter alia, the interior of a car by moving a mobile device around. The device’s camera then detects interior parts and shows
additional information to the customer within the camera view. Another application type that is increasingly utilized is related
to the combination of serious games with mobile augmented reality functions. Although the latter combination is promising
for many scenarios, technically, it is a complex endeavor. In the AREA (Augmented Reality Engine Application) project, a
kernel was implemented that enables location-based mobile augmented reality applications. Importantly, this kernel provides
a flexible architecture that fosters the development of individual location-based mobile augmented reality applications. The
work at hand shows the flexibility of AREA based on a developed serious game. Furthermore, the algorithm framework and
major features of it are presented. As the conclusion of this paper, it is shown that mobile augmented reality applications
require high development efforts. Therefore, flexible frameworks like AREA are crucial to develop respective applications
in a reasonable time.

Keywords Mobile augmented reality · Location-based algorithms · Mobile application engineering · Serious game ·
Mobile augmented reality game

1 Introduction

In everyday life, mobile augmented reality is increasingly
utilized (Sánchez-Acevedo et al. 2018). However, the devel-
opment of respective mobile applications is still complex.

To mention only one example, existing mobile operating
systems pose challenging differences and are frequently
updated. Although the capabilities of modern mobile
devices enable powerful mobile applications, the aforemen-
tioned aspects make the development of mobile augmented

 * Rüdiger Pryss
 ruediger.pryss@uni-wuerzburg.de

 Marc Schickler
 marc.schickler@uni-ulm.de

 Manfred Reichert
 manfred.reichert@uni-ulm.de

 Philip Geiger
 philip.geiger@uni-ulm.de

 Jens Winkler
 jens.winkler@cmcitymedia.de

 Thomas Funk
 thomas.funk@cmcitymedia.de

 Micha Weilbach
 micha.weilbach@uni-ulm.de

1 Institute of Databases and Information Systems, Ulm
University, Ulm, Germany

2 CMCityMedia GmbH, Bühlerzell, Germany
3 Institute of Clinical Epidemiology and Biometry, University

of Würzburg, Würzburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-02094-9&domain=pdf

 M. Schickler et al.

1 3

reality applications costly and time-consuming (Korinth
et al. 2020). Hence, flexible frameworks are required. With
the releases of ARkit Apple (2019) and ARCore Google
(2020) by Apple and Google, it seems that also large ven-
dors address the demands of mobile application developers
by providing flexible frameworks. Interestingly, for other
mobile application types, the trend to provide flexible frame-
works is also increasing. For example, Apple has recently
released a framework called HealthKit Apple (2020b) to
develop mobile health applications more flexibly.

In the AREA (Augmented Reality Engine Application)
project, a kernel was implemented that enables the robust
implementation of location-based mobile augmented real-
ity applications. In the light of the discussed demands, the
kernel focuses on the following pillars:

– It shall run on Android and iOS in the same way. More
specifically, the development shall be possible in the
same way on both mobile operating systems, with the
same functionality.

– It shall abstract from the peculiarities of the mobile oper-
ating systems in the best possible way. For example, the
same usage of the sensor possibilities must be ensured
for developers.

– It shall enable developers to easily integrate new features.
– It shall enable developers to easily implement their own

application types on top of AREA.

For interested readers, in-depth information to the modular
design principles of AREA can be found in Pryss et al. (2016,
2017a). In addition, the works (Schickler et al. 2015; Geiger
et al. 2014, 2013; Pryss et al. 2017b) discuss in what way
AREA deals with the peculiarities of the different mobile
operating systems.

Importantly, this work extends (Schickler 2019). In the
latter work, the algorithm framework of AREA was presented
in more detail. This manuscript extends (Schickler 2019) by
the following aspects:

1. The discussion of related works has been extended.
2. The discussion of algorithms developed in AREA has

been extended. In particular, major settings of the algo-
rithms as well as more information to the track optimiza-
tion algorithm have been added.

3. A discussion of aspects when comparing AREA with
ARKit has been added.

4. Most importantly, the development of a serious game
based on top of AREA has been added.

The remainder of the work at hand is organized as follows:
In Sect. 2, related works are discussed. Sect. 3 discusses the
developed AREA algorithms, while Sect. 4 presents aspects
of comparing AREA with ARKit from Apple. In Sect. 5, a

feature is presented that enables the optimization of tracks
and areas using AREA. In Sect. 6, the development of a
serious game on top of AREA is presented and discussed. In
Sect. 7, the practical use of AREA and its features based on
the presented results are summarized. Finally, Sect. 8 con-
cludes the paper with a summary and an outlook.

2 Related work

Previous research that is related to the development of
location-based augmented reality applications in non-
mobile environments can be found in Kooper and Mac-
Intyre (2003). In Kähäri and Murphy (2006), mobile
devices are used to develop an augmented reality system.
The augmented reality application described in Lee et al.
(2009) enables users to interact with media data through
augmented reality. However, none of these approaches
share insights pertaining to the development of location-
based augmented reality on mobile devices as AREA
does. Regarding tracks in mobile augmented reality,
only little work can be found in literature. For example,
the approaches (Vlahakis et al. 2002; Lee and Hollerer
2008; Hollerer 2004) present tracks as a key feature of
(mobile) augmented reality applications. Interestingly, the
algorithms to implement the tracks are not presented. In
addition, no performance issues related to the developed
track algorithms are discussed. Moreover, few contribu-
tions exist, which deal with the engineering of mobile aug-
mented reality systems in general. For example, (Grubert
et al. 2011) validates existing augmented reality browsers
in the light of engineering aspects. As two recent exam-
ples, in Ren et al. (2019); Liu et al. (2019), edge-driven
aspects for mobile augmented reality are presented. These
works also show that engineering aspects are crucial for
the development of mobile augmented reality applica-
tions. Kim et al. (2016), in turn, discusses various types
of location-based augmented reality scenarios. More pre-
cisely, issues that have to be particularly considered for
a specific scenario are discussed in more detail. Again,
engineering aspects of mobile applications are not consid-
ered. In Yang et al. (2016), an authoring tool for mobile
augmented reality applications, which is based on marker
detection, is proposed, while (Paucher and Turk 2010)
presents an approach for indoor location-based mobile
augmented reality applications. Reitmayr and Schmalstieg
(2003) gives an overview of various aspects of mobile
augmented reality for indoor scenarios. Moreover, another
scenario for mobile augmented reality is presented in Lee
and Rhee (2015). The authors use mobile augmented real-
ity for image retrieval. To summarize, (Yang et al. 2016;
Paucher and Turk 2010; Reitmayr and Schmalstieg 2003;

Flexible development of location-based mobile augmented reality applications with AREA

1 3

Lee and Rhee 2015) do not address engineering aspects
of location-based mobile applications. In Chung et al.
(2016), an approach supporting pedestrians with loca-
tion-based mobile augmented reality is presented, while
(Capece et al. 2016) deals with a client and server frame-
work enabling location-based applications. Presently, new
scenarios emerge, in which mobile augmented reality is
investigated. Recent related works can be found that pro-
vide general overviews (Sánchez-Acevedo et al. 2018).
Other related works deal with particular scenarios. For
example, in Liou et al. (2018); Leighton and Crompton
(2017); Tosun (2017), many examples related to education
are discussed and evaluated. Further scenarios constitute
tourism (Jung et al. 2018; Koh 2019) and crime manage-
ment (Liao et al. 2018). A field, which is currently heavily
pursued, constitutes mobile augmented reality in gaming
scenarios (Rauschnabel et al. 2017; Litts and Lewis 2019;
Laine and Suk 2019; Jang and Liu 2019). In medicine,
mobile augmented reality becomes increasingly important
as well (Ghandorh et al. 2017; Mladenovic 2019). Con-
siderations on psychological factors when using applica-
tions in the reality–virtuality continuum are also being
addressed more and more (Ibili and Billinghurst 2019;
Hoppenstedt et al. 2019). In addition to this, the behavior
of mobile users should be generally considered in future
for any mobile application (Beierle 2019; Majeed 2019).
Finally, in patents, engineering aspects are also covered
(Hill et al. 2019). In conclusion, the engineering of mobile
augmented reality applications is still a topical subject, for

which AREA tries to be a contribution for the interested
community.

3 Algorithm framework

Prior to the algorithm details, a brief introduction into the
concept of AREA (Geiger et al. 2013; Pryss et al. 2017a) is
given. Most importantly, AREA relates users, while hold-
ing their mobile device, to the objects detected in the cam-
era view (i.e., Points of Interest (POIs), tracks, areas, 3D
objects). In general, AREA is based on five pillars.

1. A virtual 3D world is used to relate the user’s position
to the position of the objects.

2. The user is located at the origin of this world.
3. Instead of the physical camera, a virtual 3D camera is

used that operates with the created virtual 3D world. The
virtual camera is therefore placed at the origin of this
world.

4. The different sensor characteristics of the supported
mobile operating systems are covered to enable the vir-
tual 3D world.

5. The physical camera of the mobile device is adjusted to
the virtual 3D camera, based on the assessment of sensor
data.

To enable these five technical pillars, the algorithms pre-
sented in Fig. 1 have been developed. In a first version of

Fig. 1 Algorithm framework

 M. Schickler et al.

1 3

AREA (Pryss et al. 2017a), a Points of Interest (POI) algo-
rithm was developed that showed considerable results (see
Fig. 1, POI Algorithm v1). More detailed information to this
algorithm can be found in Schickler et al. (2015); Geiger
et al. (2014, 2013). However, as the computational capabili-
ties of mobile devices have been continuously increased—
and the practical requirements of the real-life projects as
well— a new POI algorithm became necessary (see Fig. 1,
POI Algorithm v2). All presentations in this work are based
on POI Algorithm v2. Note that the technical aspects of POI
Algorithm v2 can be found in Pryss et al. (2016, 2017a).
Furthermore, in Fig. 1, all references are shown, in which the
respective information of the algorithms (i.e., their listings
and backgrounds) can be found. The following list summa-
rizes the important aspects as well as new features shown
in this work:

– The calculations to position POIs correctly are based on
a multitude of other calculations (i.e., mainly the sen-
sor fusion) and design decisions (i.e., mainly whether or
not using external libraries). In this context, the correct
positioning of POIs constitutes a major challenge. On
the other hand, the provided performance is also very
important. When considering preciseness and perfor-
mance on different mobile operating systems with the
goal to have comparable mobile applications, the overall
technical endeavor is even more challenging. For exam-
ple, on Android, for the sensor fusion, an additional 3D
rotation matrix algorithm (Pryss et al. 2017a) became
necessary to enable the same user experience as on iOS
(see Fig. 1, only on Android).

– On top of the POI algorithms, two additional algorithms
were implemented. The first algorithm is able to han-
dle clusters. Clusters are overlapping POIs, which are
difficult to interact with. How clusters are handled is
presented in Pryss et al. (2017a). The second algorithm
is able to calculate tracks and areas. The demand for
this feature emerged while using AREA in practice. For
the development of the algorithm that is able to han-
dle tracks and areas, note that OpenGL libraries were
used in addition. The decision was made with respect
to the differences of the two supported mobile operat-
ing systems Android and iOS. In this context, it was a
goal to combine the (1) best of the already proven AREA
developments and the (2) existing features of OpenGL.
More specifically, the proven sensor fusion and POI algo-
rithms of AREA should be further used as they revealed
comparable results on both mobile operating systems. In
addition, as the OpenGL libraries are decoupled from the
sensor fusion with respect to general functions required
for track and area handling, it was efficient to additionally
use features of OpenGL for AREA. Therefore, OpenGL
libraries were utilized for track and area handling. In-

depth information to this algorithm can be found in Pryss
et al. (2017b).

– In practice, even when considering the existing powerful
mobile device capabilities, the proper handling of tracks
and areas is challenging with respect to the resource per-
spective. When dealing with a huge number of tracks or
areas, or a combination of both, present mobile devices
reveal their limitations. Therefore, a new algorithm was
implemented, which deals with performance issues while
displaying many tracks and areas at the same time. How
this algorithm operates will be presented in Sect. 5.

– Except for the new algorithm that deals with the perfor-
mance while displaying many tracks and areas, all other
algorithms were evaluated in experiments (i.e., compared
to other mobile augmented reality applications). As can
be obtained from the works (Pryss et al. 2017a, b), AREA
competes well with other mobile applications providing
the same or similar features. However, in future experi-
ments, performance will be further evaluated. Moreover,
the newly developed algorithm for track and area han-
dling will be evaluated in a separate experiment.

– Since Apple and Google recently released ARkit Apple
(2019) and ARCore Google (2020), future developments
will consider these libraries as well.

– Based on the developed algorithms shown in this work,
the development of a serious game is discussed in Sect. 6,
which is denoted with ARGame.

As an additional information of AREA, Listing 1 presents
major settings used in the algorithms of the iOS version
of AREA. Note that the same settings are managed on
Android. Radius, minRadius, maxRadius, maxPOIVisible,
cameraFieldOfView, compassBetterOnlyPortait, radius-
Picker, areaIsModal, and sharedInstance are used by the
algorithm that positions POIs correctly. useGoogle, goog-
leAPIKey are used for testing purposes. If POIs cannot
(or not being wanted to) be loaded from a remote data-
base, this feature can be used to gather data from Google.
Finally, poiClustering, horizontalClusterWidth, and verti-
calClusterHeight are used to handle POI clusters.

Flexible development of location-based mobile augmented reality applications with AREA

1 3

4 ARKit and AREA

Since Apple recently released ARkit Apple (2019), this
section shall enable researchers to directly compare the
features and function of the iOS version of AREA with
ARkit. In general, ARkit was developed by Apple with
the goal to provide a multitude of mobile augmented
reality applications. Currently, all features developed in
AREA pursue the goal to enable location-based mobile

augmented reality applications. To be more precise, the
location is based on GPS coordinates and therefore AREA
mainly aims at outdoor location-based augmented real-
ity applications. In ARkit, also many other features like
face tracking are provided. Consequently, ARkit aims at a
broader perspective on mobile augmented reality applica-
tions. However, from the technical perspective, it might
be of interest to directly compare the functions of the
iOS version of AREA with ARKit. In ARkit, the chain
of classes ARSession > ARFrame > ARCamera must be
used to enable a location-based mobile augmented real-
ity experience. To be more precise, the class ARSes-
sion must be used to handle the sensor fusion, while the
classes ARFrame and ARCamera must be used to handle
the positioning of POIs. Regarding the ARSession class,
compared to AREA, a developer must manually add GPS
data to the sensor fusion. With ARkit, compared to AREA,
a developer is relieved from directly reading data from
the device’s motion sensing hardware. Another interesting
comparison is related to the ARCamera class of ARKit. By
using the ARCamera class, the correct positioning of POIs
can be accomplished. Therefore, the relevant components
of the ARCamera class (Apple 2020a) can be compared to
the iOS version of AREA as shown in Table 1.

In order to compare the functions directly, the corre-
sponding AREA functions are presented in the following.
First, Listing 2 presents the listing that can be compared
to the func transform of ARKit.

Table 1 Comparing ARKit and AREA Functions

ARKit AREA

func transform func normalizedRotationMatrix
func projectionMatrix func redrawAreaView
func projectPoint func positioningPOI

 M. Schickler et al.

1 3

Second, Listing 3 presents the listing that can be compared
to the func projectionMatrix of ARKit.

Third, Listing 4 presents the listing that can be compared
to the func projectPoint of ARKit.

Flexible development of location-based mobile augmented reality applications with AREA

1 3

Currently, performance experiments are conducted
to compare ARKit with AREA. In general, the provision
of ARKit emphasizes that mobile augmented reality has
become an important mobile application type. In line with
ARKit, the application of AREA in practice revealed that fea-
tures enabling mobile augmented reality applications beyond
location-based outdoor scenarios are promising. Therefore,
the authors of the work at hand work on new features like,
for example, the recognition of objects in AREA. Further-
more, AREA is currently compared with ARCore Google
(2020) from Google.

5 Optimization of track and area algorithm

In the real-life projects1 for which AREA is utilized, the dis-
play of many tracks and areas with the algorithm shown
in Pryss et al. (2017b) revealed performance issues. There-
fore, a feature on top of this algorithm was implemented in
order to cope with demanding scenarios. It is only shown
how the optimization is implemented in Android and for
tracks; however, areas and the implementation on iOS are
performed using the same principles. In general, a track is
displayed by the use of bars. Between each bar, a distance
of 1 m (m = meter) is used. Having this in mind, a track of
1km (km=kilometer) requires roughly 501 bars. Each bar, in
turn, is represented by two triangles. Each vertex of a trian-
gle has 3 coordinates (x, y, and z), and a RGBA value (i.e.,
r, g, b, and a components). The three coordinates as well
as the 4 RGBA components require 4 bytes. Having these
values also in mind, reconsider the track of 1km. This track
would require 501 ⋅ 2 ⋅ 3 ⋅ (3 + 4) ⋅ 4 = 84168 bytes to store
it. If many tracks or areas shall be displayed, this affects the
performance based on the required data to be stored and cal-
culated. To increase the performance in the case that many
tracks have to be displayed (or/and areas), the general idea
is to manage a detail level for tracks (and areas). Based on
this detail level, tracks and areas can be displayed in differ-
ent resolutions. The notion of the resolution and how it is
calculated are shown in the following.

As the first step, the required preliminary calculations are
presented. As a first step, consider a list checkpoints con-
taining n vectors (x, y, and z). Each vector n in checkpoints
represents one point on a track that shall be displayed. Fur-
thermore, the checkpoints list stores the values in an ordered
manner according to a track. In addition, three further lists
are managed: degreesY, degreesXZ, and pairs. Each of these
lists stores n − 2 values. More specifically, the values of the
three lists store the following:

– degreeY: stores the angle of a track point B that lies
between points A and C. More precisely, it stores the
difference in height between A and C, based on point B.

– degreeXZ: stores the angle of a track point B that lies
between points A and C. More precisely, it stores the
cardinal points between A and C, based on point B.

– pairs: stores the indexes of points A, B, and C.

To determine degreesY and degreesXZ, the following calcu-
lations are applied:

– degreesY: To calculate the angle for a point B, the two
points B′ and B′′ are calculated. B′ contains (xb, ya, zb)
and B′′ contains (xb, yc, zb). Following this, B′ holds the
y-value of the point A and B′′ the y-value of the point C.
Based on this, the two rectangular triangles A − B� − B
and B − B�� − C can be created. Finally, the sum of tri-
angles between A − B� − B and B − B�� − C results in the
single entry degreesY.

– degreesXZ: To calculate all values for degreesXZ, the
vectors AB and AC are calculated.

Based on the shown lists, the size of a track can be decreased
with respect to so-called detail levels. A detail level reduces
tracks (and areas) to x track points. Reduction means that the
originally defined amount of track points n is reduced to x.
The reduction, in turn, is calculated as follows:

– The lists degreesY, degreesXZ, and pairs are calculated
for a track that shall be minimized.

– Then, within a loop, all values in degreesY and degreesXZ
are evaluated whether they will be in the list for x. If x
points have been identified, the loop will be finished. The
next steps show how the evaluation is performed.

– First, a variable steps is initialized with 1 (meaning 1
degree). steps is a threshold that must be exceeded when
calculating |180 − degreesY[i]| + |180 − degreesXZ[i]|
for each entry in the lists degreesY and degreesXZ. If the
calculation exceeds the value of steps, the entry will be
used for x.

– Visually speaking: The more the triangle between two
points approaches 180 degrees, the more it visually
approaches a straight line. Consequently, the elimina-
tion of such a point can be visually accepted.

– If no value can be found within a loop run that can be
eliminated, then steps is increased to 2 (and so forth).

– If a value can be found at index i of the lists degreesY
and degreesXZ, then they are recalculated as follows:
degreesY[i − 1] , degreesY[i + 1] , degreesXZ[i − 1] ,
degreesXZ[i + 1] , pairs[i − 1] , and pairs[i + 1] are newly
calculated and the entries for the index i are removed.

– If the initial lists degreesY, degreesXZ, and pairs are
decreased to x points, the algorithm is finished.

1 see http://www.liveg uide.de for all mobile applications that use
AREA

http://www.liveguide.de

 M. Schickler et al.

1 3

– The list of x points is then displayed using the algorithm
shown in Pryss et al. (2017b). All other relevant calcula-
tions for a further understanding can be found in Geiger
et al. (2013); Pryss et al. (2017a).

The implementation of the algorithm to reduce the number
of track points is shown in Listing 5. Note that the listing
only shows the Android version (the iOS version works
accordingly).

5.1 Track optimization in practice

AREA manages seven detail levels. To be more specific, the
tracks (and areas) are displayed using these levels, depend-
ing on the distance a user has to them. The detail levels are
distinguished by the number of track points to which the
track is reduced to by Algorithm 5. The levels, in turn, are
managed as shown in Table 2.

Which level is actually used is determined during run
time based on the position changes of a user. In Figs. 2 and
3, the algorithm is shown in practice (the screenshots are
from one of the real-life applications that can be found in
CMCityMedia (2020)). Notably, trails that are displayed by
the use of bars constitute detail Level 0. The other displayed
trails constitute detail Level 4. In practice, the feature was
highly welcome as the performance could be increased. Cur-
rently, experiments are conducted (as shown in Pryss et al.
(2017a)) to obtain quantitative results on the actual perfor-
mance increase.

6 ARGame development

As already discussed in Sect. 2, the combination of mobile
augmented reality and serious games has recently garnered
a lot of attention (Rauschnabel et al. 2017; Litts and Lewis
2019; Laine and Suk 2019; Jang and Liu 2019). In the real-
life projects of AREA (CMCityMedia 2020), this was also a
frequent demand. Therefore, the development of an imple-
mented serious game on top of AREA is presented. The game
is denoted with ARGame. In detail, the technical aspects of
the ARGame, the required extensions of AREA, and impres-
sions of the ARGame are presented. With ARGame, it can be
shown that the flexible design of AREA enables new applica-
tions on top of it in a reasonable development time.

Being a decisive aspect, the operating principle of
ARGame is delineated in the following. In this context,
note that AREA is commercially utilized for city apps
(CMCityMedia 2020). In these apps, users have the
opportunity to experience many aspects of a city. With
the presented ARGame, the experience shall be enhanced.
To be more precise, a citizen shall be enabled when using
ARGame to find avatars. These avatars are geo-tagged, and
if a user is within a radius of 10m to an avatar, then the

Table 2 Track optimization reduction levels

Level Reduction schema

0 No reduction
1 Tracks within 50 m of a user’s position (i.e., using 50 track

points)
2 Tracks within 100 m of a user’s position (i.e., using 40 track

points)
3 Tracks within 200 m of a user’s position (i.e., using 30 track

points)
4 Tracks within 300 m of a user’s position (i.e., using 20 track

points)
5 Tracks within 400 m of a user’s position (i.e., using 10 track

points)
6 Tracks beyond 400 m of a user’s position (i.e., using 5 track

points)

Flexible development of location-based mobile augmented reality applications with AREA

1 3

latter is displayed in the camera view of a user. Figs. 4 and
5 illustrate how these avatars appear on Android and iOS.

If the user clicks on the avatar, then it disappears and
the user gets credits for having found the avatar. Credits, in
turn, can be used to be redeemed in the participating stores
of the respective city for which the app was developed.
The overall idea is that the attention of users is attracted to
important points in the city. By using this principle, users
learn more about the city, on the other, they are awarded.
Fig. 6 illustrates received points of a user. One more fea-
ture is provided by the ARGame, which is shown in Fig. 7,
it offers contextual information. The latter shall support
users in playing ARGame.

Next, it is discussed how ARGame was technically inte-
grated into the existing AREA core. Note that the technical
integration is discussed based on the Android implementa-
tion as the differences to iOS are only very slightly.

If AREA is started by a user, then the activity denoted
with Area20MainActivity is called. The respective onCre-
ate method is shown in Listing 6.

In the context of the onCreate method, the getFragment
method is important, which is shown in Listing 7.

Fig. 2 Track optimization in
practice I (iOS version)

Fig. 3 Track optimization in
practice II (iOS version)

 M. Schickler et al.

1 3

Fig. 4 Avatar on android

Fig. 5 Avatar on iOS

Fig. 6 Received credits on iOS

Fig. 7 Contextual information on android

Flexible development of location-based mobile augmented reality applications with AREA

1 3

Based on the content of the config object, AREA decides
which augmented reality function shall be utilized. Nota-
bly, Area20MainFragment comprises all algorithms, which
have been summarized in Fig. 1. In this case, AREA shows
Points of Interest, Tracks, and Areas. As the second option,
Area20GameFragment means to start the ARGame. A third
option, which is currently implemented, is called Area-
20MarketingFragment. This feature shall provide a chatbot,
which appears in front of geo-tagged shops to help custom-
ers before actually entering the shop.

In the Area20MainFragment, the classic AREA functions
are summarized. As already described, these are the features
to display POIs, tracks, areas, and the radar. Notably, the
Area20GameFragment inherits from Area20MainFragment,
and mainly uses the transformation of coordinates and the
radar feature. Due to the reason that in Area20MainFrag-
ment solely 2D objects are used, but 3D objects are addition-
ally needed in Area20GameFragment, the rendering feature
had to be changed for Area20GameFragment. This includes
adding new functions that are shown in Figs. 4, 5, 6, and
7. Finally, the required calculations of the positions of the
avatars had to be changed for Area20GameFragment.

Technically, the changes are accomplished as follows.
After initializing the Area20MainFragment, the method
denoted with initViews is called, which is shown in List-
ing 8. In this method, the radar and the button to terminate
AREA are initialized. These functions are also used by the
ARGame. In this method, it is also evaluated whether or not
the app is allowed to use the camera function of the mobile
device. Furthermore, the method initSurfaceView is initial-
ized, which is important for the rendering of the avatars. For
ARGame, the method initSurfaceView is overwritten for the
rendering of avatars. In Listing 9, the method, which was
overwritten, is presented. Importantly, the object, which is
denoted with sensors, corresponds to the same object as in
Area20MainFragment to calculate the correct and current
position of the mobile device.

To position avatars within the radar, the function didUp-
dateLocation of Area20MainFragment is reused, which is
shown in Listing 10. With the method setUpSourrounding-
PointsOfInterest, those avatars are determined, which are
within a radius of 400m to the user. These avatars will be then
displayed within the radar in the same way as displayed by
Area20MainFragment.

 M. Schickler et al.

1 3

Prior to the presentation of the procedure to initialize
and start the game, Fig. 8 summarizes all classes of AREA,
including those that are needed for ARGame. Most impor-
tantly, the modular design of AREA has enabled the flex-
ible integration of ARGame.

Finally, the overall procedure of ARGame is presented.
After the AREA20GameFragment is displayed, a GET
request is sent to the server of the company of the city apps
(CMCityMedia 2020) to eventually obtain the available
games. Listing 11 shows such a request. Each ARGame has
an ID, with which the available avatars for an ARGame are
specified (see Listing 12)

Then, it will be identified whether or not a user is
already subscribed to ARGame. If not, then all avatars are
loaded. If the user is already subscribed for ARGame, only
those avatars will be loaded that were not found by the
respective user so far. The loading procedure of the avatars
is done by the method addARTarget (see Listing 13).

Fig. 8 Class diagram with ARGame extensions on android

Flexible development of location-based mobile augmented reality applications with AREA

1 3

ARTargets are handled by AREAPointOfInterest in Area-
20MainFragment. They are sent to the poiStore by the Area-
20MainFragment in order to finally display the ARTargets on
the radar. After that, the ARTargets are handed over to the
ARGamingSurfaceView method (see Listing 14), which, in
turn, hands them further over to the ARGamingRenderer

After handing over the ARTargets to the ARGamin-
gRenderer, the ARTargets (i.e., the avatars) are rendered
and positioned based on their GPS coordinates. Note that
the utilized textures are currently hardcoded within the
ARGamingRenderer.

Finally, to get a better impression how the loading
procedures of the classes Area20MainFragment and
AREA20GameFragment differ, the two sequence diagrams in
Figs. 9 and 10 show both procedures in detail. Fig. 9 shows
it for AREA20GameFragment, while Fig. 10 presents it for
Area20MainFragment.

It is further shown in Figs. 9 and 10 that the general
extensions of AREA for the ARGame were flexibly possible.

7 Discussion

Currently, AREA is used in various scenarios in everyday life
(CMCityMedia 2020). Three aspects are particularly impor-
tant for this extensive use. First, the algorithm framework

Fig. 9 Call Sequence for
AREA20GameFragment

 M. Schickler et al.

1 3

shown in this work (see Fig. 1) was bundled into the AREA
kernel, including its modular architecture (Pryss et al. 2017a,
b). Following this, the development of business applica-
tions on top of AREA becomes easily possible. This positive
characteristic was mainly shown in this work based on the
development of ARGame. Second, AREA reveals a proper
user experience with respect to robustness and performance.
The achieved robustness was also an important pillar for
the development of ARGame. Experiments conducted with
AREA (Pryss et al. 2017a, b) confirm that it is competitive
to mobile applications that provide the same or a similar
feature set at the time of conducting the experiments. Third,
AREA provides the same feature set on Android and iOS.
The ability to cope with the peculiarities of the different
mobile operating systems, while providing the same features
on all of these mobile operating systems, is highly welcome
in practice. However, to keep pace with the frequent updates
of the underlying mobile operating systems on one hand,
and to continuously implement new features that emerge
in practice on the other hand, is still a very challenging
endeavor. Therefore, insights into frameworks and operating
principles as shown in this work are of utmost importance.
Nevertheless, in future experiments, AREA must prove its
performance compared to ARKit Apple (2019) and ARCore
Google (2020). In general, performance measures are cur-
rently missing for two other important aspects. First, it must
be quantitatively measured how developers consider AREA
compared to other solutions in terms of time and working
costs. Second, it must be measured in more experiments,
how AREA competes with existing other frameworks as well
as other existing mobile applications. In the light of these
limitations, the utilization of AREA in commercial scenarios
shows its feasibility in practice.

8 Summary and outlook

This work provided insights into the development of the
AREA framework. As the first contribution, a comprehen-
sive overview of the implemented algorithms to enable
location-based mobile augmented reality applications was
presented. On top of this, the development of ARGame was
presented, a serious game, which is used for commercial
purposes. In general, the development of mobile applica-
tions is demanding when considering the peculiarities of the
different mobile operating systems on the market. To cope
with this heterogeneity, AREA provides the same function-
ality for business applications that are developed based on
top of it for Android and iOS. This is enabled by enclosing
all features in the AREA kernel. To show how this is tech-
nically accomplished, all steps to integrate ARGame into
AREA were presented. Following such implementations,
application developers can utilize AREA like ARKit from
Apple or ARCore from Google to easily create their own
location-based mobile augmented reality applications. Fur-
thermore, as this work provides implementation details, this
may help the community in using the insights for further
developments and improvements. In this context, it was also
shown that frameworks like AREA should be quantitatively
assessed. Hence, AREA has been evaluated in experiments
(Pryss et al. 2017a, b). These experiments have shown that
AREA reveals considerable performance results compared
to other mobile augmented reality applications providing
a similar feature set. Furthermore, it was reported that cur-
rently conducted experiments investigate how AREA com-
petes with ARKit and ARCore. Another experiment inves-
tigates a new feature that was developed on top of the track
and area algorithm. Altogether, mobile augmented reality

Fig. 10 Call Sequence for Area-
20MainFragment

Flexible development of location-based mobile augmented reality applications with AREA

1 3

applications can support many new scenarios and fields.
However, powerful solutions that can be easily developed
across the different mobile operating systems in the same
way are becoming more and more important. Finally, con-
siderations on psychological factors should be also taken
into account when using applications in the virtuality-reality
continuum like AREA. Therefore, such investigations are
pursued in future work on AREA.

Acknowledgements Open Access funding provided by Projekt DEAL.

Compliance with ethical standards

Conflict of interest Authors R.P. and M.S. have received financial sup-
port for consultation services from the CMCityMedia GmbH.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Apple (2019) Arkit. https ://devel oper.apple .com/arkit /. Accessed 20
Mar 2020

Apple (2020) Arcamera. https ://devel oper.apple .com/docum entat ion/
arkit /arcam era. Accessed 20 Mar 2020

Apple (2020) Healthkit. https ://devel oper.apple .com/healt hkit/.
Accessed 20 Mar 2020

Beierle F et al (2019) What data are smartphone users willing to share
with researchers? J Ambient Intell Human Comput 11:2277–2289

Capece N, Agatiello R, Erra U (2016) A client-server framework for
the design of geo-location based augmented reality applications.
In: 20th int’l conf on information visualisation, IEEE, pp 130–135

Chung J, Pagnini F, Langer E (2016) Mindful navigation for pedestri-
ans: Improving engagement with augmented reality. Technology
in Society 45:29–33

CMCityMedia (2020) Liveguide. http://www.stadt sindw ir.de/data/refer
enzen .php. Accessed 20 Mar 2020

Geiger P, Pryss R, Schickler M, Reichert M (2013) Engineering an
advanced location-based augmented reality engine for smart
mobile devices. Technical Report UIB-2013-09, University of
Ulm

Geiger P, Schickler M, Pryss R, Schobel J, Reichert M (2014) Loca-
tion-based mobile augmented reality applications: Challenges,
examples, lessons learned. In: 10th int’l conf on web information
systems and technologies, pp 383–394

Ghandorh H, Mackenzie J, Eagleson R, de Ribaupierre S (2017)
Development of augmented reality training simulator systems for
neurosurgery using model-driven software engineering. In: 30th

Canadian Conference on Electrical and Computer Engineering,
IEEE, pp 1–6

Google (2020) Arcore. https ://devel opers .googl e.com/ar/. Accessed
20 Mar 2020

Grubert J, Langlotz T, Grasset R (2011) Augmented reality browser
survey. Technical report, Graz University of Technology

Hill EL, Komoni K, Piotrowski R, Xiong Y (2019) Virtual reality and
augmented reality functionality for mobile devices. US Patent
App. 16/264,729

Hollerer T (2004) User interfaces for mobile augmented reality sys-
tems. PhD thesis, Columbia University

Hoppenstedt B et al (2019) Applicability of immersive analytics in
mixed reality: usability study. IEEE Access 7:71921–71932. https
://doi.org/10.1109/ACCES S.2019.29191 62

Ibili E, Billinghurst M (2019) Assessing the relationship between
cognitive load and the usability of a mobile augmented reality
tutorial system: a study of gender effects. Int J Assess Tools Educ
6(3):378–395

Jang S, Liu Y (2019) Continuance use intention with mobile augmented
reality games: Overall and multigroup analyses on pokémon go.
Inform Tech People

Jung T, Lee H, Chung N et al (2018) Cross-cultural differences in
adopting mobile augmented reality at cultural heritage tourism
sites. Int J Contemporary Hospitality Manag 30(8):

Kähäri M, Murphy D (2006) Mara: sensor based augmented reality
system for mobile imaging device. In: 5th IEEE and ACM Int’l
symp on mixed and augmented reality, vol 13

Kim W, Kerle N, Gerke M (2016) Mobile augmented reality in support
of building damage and safety assessment. Natural Hazards Earth
Syst Sci 16(1):287

Koh LK (2019) Tourism system using mobile augmented reality and
location-based services (lbs). https ://dr.ntu.edu.sg//handl e/10356
/13651 0

Kooper R, MacIntyre B (2003) Browsing the real-world wide web:
maintaining awareness of virtual information in an ar information
space. Int’l J Hum Comput Interaction 16(3):425–446

Korinth M, Sommer-Dittrich T, Reichert M, Pryss R (2020) Design
and evaluation of a virtual reality-based car configuration concept.
In: Arai K, Kapoor S (eds) Advances in computer vision. CVC
2019. Advances in intelligent systems and computing, vol 944.
Springer, Cham

Laine TH, Suk H (2019) Designing educational mobile augmented
reality games using motivators and disturbance factors. In: Gero-
imenko V (ed) Augmented reality games II. Springer, Cham

Lee R, Kitayama D, Kwon Y, Sumiya K (2009) Interoperable aug-
mented web browsing for exploring virtual media in real space.
In: Proc of the 2nd int’l workshop on location and the web, ACM,
pp 7

Lee T, Hollerer T (2008) Hybrid feature tracking and user interaction
for markerless augmented reality. In: Virtual reality conference,
IEEE, pp 145–152

Lee Y, Rhee S (2015) Efficient photo image retrieval system based on
combination of smart sensing and visual descriptor. Intell Auto
Soft Comput 21(1):39–50

Leighton L, Crompton H (2017) Augmented reality in K-12 education.
In: Mobile technologies and augmented reality in open education,
IGI Global, pp 281–290

Liao TC-L, Yang H, Lee S, Xu K, Feng P, Bennett S (2018) Augmented
criminality – how mobile augmented reality crime overlays
affect people’s sense of place. AoIR Selected Papers of Internet
Research, 6. Retrieved from https ://journ als.uic.edu/ojs/index .php/
spir/artic le/view/8437

Liou H, Yang S, Chen S, Tarng W (2017) The influences of the 2D
image-based augmented reality and virtual reality on student
learning. J Educ Technol Soc 20(3):110–121

http://creativecommons.org/licenses/by/4.0/
https://developer.apple.com/arkit/
https://developer.apple.com/documentation/arkit/arcamera
https://developer.apple.com/documentation/arkit/arcamera
https://developer.apple.com/healthkit/
http://www.stadtsindwir.de/data/referenzen.php
http://www.stadtsindwir.de/data/referenzen.php
https://developers.google.com/ar/
https://doi.org/10.1109/ACCESS.2019.2919162
https://doi.org/10.1109/ACCESS.2019.2919162
https://dr.ntu.edu.sg//handle/10356/136510
https://dr.ntu.edu.sg//handle/10356/136510
https://journals.uic.edu/ojs/index.php/spir/article/view/8437
https://journals.uic.edu/ojs/index.php/spir/article/view/8437

 M. Schickler et al.

1 3

Litts BK, Lewis WE (2019) Mobile augmented reality: exploring a new
genre of learning. GetMobile 22(3):5–9

Liu L, Li H, Gruteser M (2019) Edge assisted real-time object detection
for mobile augmented reality. In: The 25th annual international
conference on mobile computing and networking (MobiCom’19).
Association for Computing Machinery, New York, NY, USA,
Article 25, pp 1–16. https ://doi.org/10.1145/33000 61.33001 16

Majeed T, et al. (2019) What is of interest for tourists in an alpine des-
tination: personalized recommendations for daily activities based
on view data. J Ambient Intelli Human Comput pp 1–12

Mladenovic R et al (2019) Effectiveness of augmented reality mobile
simulator in teaching local anesthesia of inferior alveolar nerve
block. J Dental Educ 83(4):423–428

Paucher R, Turk M (2010) Location-based augmented reality on mobile
phones. In: IEEE computer society conference on computer vision
and pattern recognition workshops, IEEE, pp 9–16

Pryss R, Geiger P, Schickler M, Schobel J, Reichert M (2016)
Advanced algorithms for location-based smart mobile augmented
reality applications. Proc Comput Sci 94:97–104

Pryss R, Geiger P, Schickler M, Schobel J, Reichert M (2017a) The
AREA framework for location-dased smart mobile augmented
reality applications. Int J Ubiquitous Syst Pervasive Netw
9(1):13–21

Pryss R, Schickler M, Schobel J, Weilbach M, Geiger P, Reichert M
(2017b) Enabling tracks in location-based smart mobile aug-
mented reality applications. Proc Comput Sci 110:207–214

Rauschnabel P, Rossmann A, Tom Dieck M. (2017) An adoption
framework for mobile augmented reality games: the case of Poké-
mon Go. Comput Hum Behav 76:276–286

Reitmayr G, Schmalstieg D (2003) Location based applications for
mobile augmented reality. In: Proc of the fourth Australasian user
interface conference on user interfaces, Australian Computer Soci-
ety, Inc., pp 65–73

Ren J, He Y, Huang G, Yu G, Cai Y, Zhang Z (2019) An edge-comput-
ing based architecture for mobile augmented reality. IEEE Netw
33(4):162–169. https ://doi.org/10.1109/MNET.2018.18001 32

Sánchez-Acevedo MA, Sabino-Moxo BA, Márquez-Domínguez JA
(2018) Mobile augmented reality: evolving human-computer
interaction. In: Management Association I (ed) Virtual and aug-
mented reality: concepts, methodologies, tools, and applications.
IGI Global, pp 200–221. https ://doi.org/10.4018/978-1-5225-
5469-1.ch010

Schickler M, Pryss R, Schobel J, Reichert M (2015) An engine enabling
location-based mobile augmented reality applications. In: 10th
int’l conf on web information systems and technologies (Revised
Selected Papers), no. 226 in LNBIP, Springer, pp 363–378

Schickler M et al (2019) The area algorithm framework enabling loca-
tion-based mobile augmented reality applications. Proc Comput
Sci 155:193–200

Tosun N (2017) Augmented reality implementations, requirements,
and limitations in the flipped-learning approach. In: Mobile tech-
nologies and augmented reality in open education, IGI global,
pp 262–280

Vlahakis V, Karigiannis J, Tsotros M, Ioannidis N, Stricker D (2002)
Personalized augmented reality touring of archaeological sites
with wearable and mobile computers. In: Sixth international sym-
posium on wearable computers, IEEE, pp 15–22

Yang Y, et al. (2016) Mobile augmented reality authoring tool. In: 10th
int’l conf on semantic computing, IEEE, pp 358–361

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1109/MNET.2018.1800132
https://doi.org/10.4018/978-1-5225-5469-1.ch010
https://doi.org/10.4018/978-1-5225-5469-1.ch010

	Flexible development of location-based mobile augmented reality applications with AREA
	Abstract
	1 Introduction
	2 Related work
	3 Algorithm framework
	4 ARKit and AREA
	5 Optimization of track and area algorithm
	5.1 Track optimization in practice

	6 ARGame development
	7 Discussion
	8 Summary and outlook
	Acknowledgements
	References

