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Abstract

Representing a business process as a collaboration of interacting processes has become feasible with the emergence of
data-centric business process management paradigms. Usually, these interacting processes have relations and, thereby, form
a complex relational process structure. The interactions of processes within this relational process structure need to be
coordinated to arrive at a meaningful overall business goal. However, relational process structures may become arbitrarily
large. With the use of cloud technology, they may additionally be distributed over multiple nodes, allowing for scalability.
Coordination processes have been proposed to coordinate relational process structures, where processes may have one-
to-many and many-to-many relations at run-time. This paper shows how multiple coordination processes can be used in a
decentralized fashion to more efficiently coordinate large, distributed process structures. The main challenge of using multiple
coordination processes is to effectively realize the coordination responsibility of each coordination process. Key components
of the solution are the subsidiary principle and the hierarchy of the relational process structure. Finally, an implementation of
the coordination process concept based on microservices was developed, which allows for fast and concurrent enactment of
multiple, decentralized coordination processes in large, distributed process structures.

Keywords Process interactions - Relational process structure - Coordination process - Distributed process execution - BPM
in the cloud

1 Introduction

Several approaches enabling business process management
(BPM) advocate to represent business processes as col-
lections of interacting, interdependent processes. Examples
include the artifact-centric and object-aware approaches to
BPM [23,26,32], where the collaboration of artifact/object

Communicated by Jens Gulden and Rainer Schmidt.

This work is part of the ZAFH Intralogistik, funded by the European
Regional Development Fund and the Ministry of Science, Research
and the Arts of Baden-Wiirttemberg, Germany (F.No.
32-7545.24-17/3/1).

B Sebastian Steinau
Sebastian.Steinau @uni-ulm.de

Kevin Andrews
Kevin.Andrews @uni-ulm.de

Manfred Reichert
Manfred.Reichert @uni-ulm.de

Institute of Databases and Information Systems, Ulm

University, Building O27 Level 5, James-Franck-Ring, 89081
Ulm, Germany

Published online: 09 November 2020

lifecycle processes forms an entire business process. Fun-
damental challenges of these data-centric approaches are to
determine which processes exist and how they relate to other
processes, as well as the coordination of the resulting struc-
ture of interdependent processes. Recently, the relational
process structure [39] and coordination processes [38] have
been proposed to tackle these challenges. A relational process
structure captures processes and their relations in a hierarchi-
cal construct, which is then used by a coordination process
to specify and enforce coordination constraints. This allows
the interactions of different processes to be guided toward a
meaningful overall business process.

1.1 Problem statement

Fundamental challenges remain, as a relational process struc-
ture may become arbitrarily large, i.e., it may comprise
dozens or hundreds of different types of processes. At run-
time, hundreds or thousands of instances of these process
types are created, as well as their interrelations, compound-
ing the problem [30].

Existing approaches to coordinate such large process
structures propose employing a single central coordinator
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(e.g., a master artifact [43]). The term coordinator is hereby
intended as an umbrella term for any kind of process coor-
dination model, independent of the used paradigm, e.g.,
activity-centric, or data-centric. It is also independent of
the exact specification, e.g., choreography, coordination pro-
cess, or Proclet [45]. In many scenarios, as will be shown
in this paper, a single, central coordinator is unsuitable for
a vast process structure. The coordinator has to incorpo-
rate all coordination requirements for all processes in its
model. As a result, a central coordinator model can become
overloaded, inflexible, costly to maintain, and difficult to
understand. As another drawback, all distributed processes
must communicate with the central coordinator, creating a
huge communication overhead and, more importantly, a sin-
gle point of failure. For example, in the automotive industry,
cars may be highly customized, requiring varying constraints
on the production, assembly, and testing of the parts of each
car, thereby creating vast structures of interrelated processes
[29].

Using multiple coordinators for coordinating one rela-
tional process structure is denoted as decentralized process
coordination. Additionally, as process structures become
larger, several independent substructures may emerge, each
of them requiring an individual coordination, which a cen-
tral coordinator may not be able to provide. If this is the case,
decentralized process coordination is not only more conve-
nient and performant, but also a fundamental prerequisite for
the correct execution of the interrelated business processes.

Several variants exist on how to realize decentralized pro-
cess coordination. As these variants are built on top of each
other, they are denoted as stages [40]. Stage-O Decentral-
ized Coordination corresponds to central coordination and
Stage-2 Decentralized Coordination to fully decentralized
coordination. Stage-1 Decentralized Coordination can be
summarily characterized as “many central coordinators” and
therefore is located in between Stage-0 and Stage-2.

Another aspect is that multiple interacting processes are
particularly suited to be employed in a distributed instead
of a monolithic system. In consequence, some processes of a
relational process structure may be located on one node of the
distributed system, whereas other processes may be located
on different nodes. As process structures may become very
large and different substructures may be distributed across
the nodes of a server cluster, it is beneficial to distribute and
split up the coordination of processes as well. This is denoted
as distributed process coordination.

Figure 1 shows a schematic overview of distribution
and decentralization of coordinators and processes. Neither
decentralization nor distribution of coordinators has been
considered so far in other approaches to data-centric BPM
[42]. A more detailed assessment of existing approaches is
presented in Sect. 7.
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Fig.1 Schematic decentralization and distribution of coordinators and
processes

For both decentralized and distributed process coordina-
tion, the challenge of coordination responsibility needs to
be solved, i.e., the question which coordinator is responsi-
ble for which processes. This involves deciding which stage
of decentralization is necessary and the number of coordi-
nators to be used. Moreover, a distribution of processes and
coordinators needs to be taken into account.

1.2 Solution approach

The object-aware process management approach has intro-
duced coordination processes to coordinate relational process
structures [38]. While a coordination process can serve as
a central coordinator, the concept itself is flexible enabling
the use of multiple coordination processes to coordinate a
relational process structure. Several coordination processes
may be employed to coordinate different parts of the over-
all large relational process structure. For very large process
structures, this avoids many of the disadvantages of central-
ized process coordination. Thus, the multiple coordination
processes collaborate to achieve an overall coordination of
the entire process structure.

Moreover, for object-aware process management, dis-
tributed process coordination is of particular importance, as
the run-time engine of object-aware process management has
a hyperscale architecture [2]. The term hyperscale denotes
the ability of the process engine to effectively scale with addi-
tionally provisioned resources to provide more performance
when computing demands are increasing. The run-time
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engine is part of PHILharmonicFlows, the implementation
of the object-aware approach. Having decentralized coordi-
nators benefits distributed process coordination as well, as
communication efforts between nodes may be reduced.

Coordination processes are particularly suited for a decen-
tralized application by leveraging the hierarchical nature
of the relational process structure. This allows implement-
ing the subsidiary principle, where a coordination process
only coordinates a subset of processes, defining its coor-
dination responsibility, with the goal of avoiding overlap
and redundancy between coordinators. The results are more
flexible and smaller coordination models, a clear coordina-
tion responsibility of each coordination model, and superior
maintainability. Furthermore, decentralization and distri-
bution promises significant performance benefits for the
coordination of interacting processes in context of an overall
business process.

1.3 Contribution

This paper builds upon existing work of coordination
processes [37-39] and contributes the decentralized and
distributed application of coordination processes for object-
aware business process management. The major contribu-
tions are as follows:

1. The paper presents the detailed stages of decentralized
process coordination. The aim is to provide a concep-
tual framework for modeling decentralized processes and,
subsequently, more performant process coordination.

2. The stages are the basis for a method for transforming
existing central coordination into decentralized coordi-
nation. The method also enables designing decentralized
coordination from scratch. Further, the method encom-
passes the use of coordination processes in distributed
environments. The objective of this method is to define
the coordination responsibility for all involved coordina-
tors unambiguously.

3. A proof-of-concept prototype and a validation which
shows that decentralized process coordination works in
practice and achieves better performance compared to
central process coordination. This is shown for distributed
and non-distributed environments.

This paper extends a previous conference publication [40]
in several ways. First, it is shown that the decentraliza-
tion of coordination constraints over multiple coordination
processes not only has conceptual benefits for modelers.
The decentralization also enables significant performance
increases in a hyperscale architecture [2]. A corresponding
experiment with the goal of showcasing this performance
advantage has been performed. Second, the performance
benefits of distributing coordination processes across nodes

of the hyperscale architecture are substantiated as well by
appropriate experiments. Again, the goal of the experiment
is to show that decentralized process coordination has per-
formance advantages over central coordination. In summary,
the paper provides a more elaborate validation of the bene-
fits of the approach. Furthermore, an algorithm is sketched
that may significantly improve the modeling of decentralized
coordination processes. All results and concepts in this paper
have been developed using the design science approach.
The remainder of the paper is organized as follows.
Section 2 introduces the different stages of process decentral-
ization and discusses distribution of processes across nodes.
The challenges and benefits of decentralized and distributed
process coordination are elaborated in Sect. 2 as well. In
Sect. 3, background information on the relational process
structure and the coordination processes is introduced. In
Sect. 4, the key concepts of effectively using coordination
processes in a large relational process structure are presented.
In Sect. 5, decentralized process coordination is discussed
and special emphasis is put on distributed coordination pro-
cesses. Furthermore, an implementation of decentralized
coordination processes is presented in Sect. 6, based on the
hyperscale process engine of object-aware process manage-
ment. Section 6 further presents performance measurements
and benchmarks of centralized, decentralized and distributed
process coordination. Section 7 discusses related work before
Sect. 8 concludes the paper with a summary and an outlook.

2 Stages of process decentralization

The coordination of a multitude of different, interdependent
processes is a complicated and challenging endeavor [30].
Processes and their relations have to be identified and, based
on these connections, suitable coordination constraints need
to be specified and enforced. A coordination constraint then
denotes a dependency that exists between two or more pro-
cesses [38]. A coordination constraint usually takes the form
of a plain-text statement, e.g., “An application may only be
created as long as the corresponding job offer is published,”
though formal representations are possible as well. The dif-
ferent processes and their relations are summarized under the
term relational process structure. Generally, approaches for
coordinating process structures that consist of multiple pro-
cess types advocate the use of a single entity with the purpose
of coordinating all involved processes. This entity is called a
central coordinator.

2.1 Stage-0 decentralized coordination
Central coordinators of any kind (e.g., a master artifact [43])

are capable of properly coordinating different processes.
From the perspective of decentralization, a central coor-
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Fig.2 Schematic view of Stage-0 decentralized coordination

dinator is denoted as Stage-0 Decentralized Coordination.
Figure 2 shows a schematic view of Stage-0 Decentralized
Coordination. The main disadvantage of central coordinators
is poor scalability in regard to the process structure [35,36].
As the number of processes in a process structure grows,
central coordinators must accommodate these additional pro-
cesses in their coordination description. Moreover, additional
coordination constraints must be incorporated into the coor-
dination descriptions as well. Generally, this results in the
central coordinator model becoming large and possibly over-
loaded. With increasing complexity, flexibility suffers, the
central coordinator model becomes more difficult to adapt,
and the understandability of the model is impaired as well.
Furthermore, performance of the central coordinator may
degrade due to the large number of processes and the result-
ing communication overhead. As a consequence, the central
coordinator might become a bottleneck for the overall per-
formance of the business process structure.

From a functional perspective, relying on one central coor-
dinator for coordinating everything is neither the intuitive nor
the most effective way of providing process coordination for
large process structures.

In the following, the challenges and solution concepts are
discussed alongside their illustrations in form of a running
example. The solution concepts are by no means limited to
the domain of the running example, but are generic and may
be applied to other fields, such as logistics [9] and healthcare
[11]. The running example represents a recruitment business
process (cf. Example 1).

Example 1 (Recruitment Business Process) In the context of
recruitment, applicants may apply for job offers. The overall
process goal for a company is to determine who of the many
applicants is best suited for the job. Applicants must write
their application for a specific job offer and send it to the
company. The company employees then evaluate each appli-
cation by performing reviews. To reject an application or
proceed with the application, a sufficient number of reviews
need to be performed, e.g., the majority of reviews determines
whether or not an application is rejected. If the majority of
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reviews are in favor of the application, the applicant is invited
for one or more interviews, after which she may be hired or
ultimately rejected. In the meantime, more applications may
have been sent in, for which additional reviews are required,
i.e., the evaluation of different applications may be handled
concurrently, as well as the conduction of interviews.

Various interdependent process types can be identified in
Example 1: Job Offer, Application, Review, and Interview.
Each Job Offer is largely independent of other Job Offers,
having its own set of applications and reviews. A single
central coordinator is therefore tasked with coordinating all
Job Offers, but each independently from others. The central
coordinator must recognize and keep track of different execu-
tions states of processes and decision results made during the
execution. It also must enforce the appropriate coordination
constraints for the Job Offers and their connected processes,
e.g., Applications. This constitutes an enormous complexity
for the model of the central coordinator, especially concern-
ing run-time. Moreover, the central coordinator acts as a
single point of failure, as problems that might occur with
any Job Offer may affect all other Job Offers as well.

2.2 Stage-1 Decentralized Coordination

As different Job Offers are conceptually independent from
each other, a sensible solution would be to arrange that each
Job Offer is coordinated individually together with its con-
nected processes, e.g., Applications or Reviews. This means
that there is one model of a coordinator that is instanti-
ated multiple times at run-time, once for each Job Offer.
This is denoted as Stage-1 Decentralized Coordination. Fig-
ure 3 shows a schematic view of Stage-1 Decentralized
Coordination. This shift reduces model complexity, as the
logic for distinguishing different JobOffers may be omitted
due to the coordination happening on a per-Job Offer-basis,
which in turn benefits understandability and maintainability
of the coordinator models. The additional complexity of hav-
ing to instantiate a model multiple times may generally be
neglected, as instantiating a model multiple times is one of
the core ideas of a process-oriented system. Another advan-
tage is that this eliminates the single point of failure. If the
coordination of one Job Offer fails for some reason, other
Job Offers should remain unaffected. Stage-1 Decentralized
Coordination is inherently supported by coordination pro-
cesses (cf. [38]).

The distribution of coordinators has many advantages,
while at the same time only small costs incur [2,7,36]. Adding
more decentralized coordinators may still yield more benefits
[35].

Example 2 (Unsolicited Application) Consider the recruit-
ment scenario of an “unsolicited application,” i.e. an appli-
cant sends in an Application without a prior Job Offer from
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Fig.3 Schematic view of Stage-1 Decentralized Coordination

the company. In case the unsolicited Application is accepted,
a specific Job Offer will be created for the application.

As the coordinator that coordinates Applications with
Reviews and Interviews is tied to a Job Offer, the unsolicited
Application cannot be processed correctly without a link to
a Job Offer in Stage-1 Decentralized Coordination. As the
coordination constraints are modeled in the Job Offer coor-
dinator, the unsolicited Application is not restricted by any
coordination constraints. As a consequence, undesired out-
comes might occur, such that an Application is accepted
without any Reviews or that Reviews propose rejection but
an Interview is created anyway.

Thus, it is reasonable to add another coordinator and trans-
fer responsibilities to it from the Job Offer coordinator: The
new coordinator coordinates Applicati-ons with Interviews
and Reviews, and is tied to the respective Application.
The existing Job Offer coordinator is subsequently only
responsible for coordinating the Job Offer with its related
Applications. As a result, an unsolicited Application may be
handled correctly in addition to the usual recruitment proce-
dure. This further reduces the complexity of the individual
coordinator models.

2.3 Stage-2 Decentralized Coordination

Employing multiple coordinator models is denoted as Stage-
2 Decentralized Coordination. Each coordinator is responsi-
ble for a different part of the process structure, i.e., different
coordination responsibility. Stage-2 Decentralized Coordi-
nation encompasses Stage-1 naturally. Figure 4 shows a
schematic view of Stage-2 Decentralized Coordination.

<
g >\t\
c -z N
S -7 N
g -, NN
£ OLFa_ -7 70 0 S{0s T
5 - 0 SO RO
=4 -~ s NN ~ S
S - s, / SO~ <2
S ~ A RO -

- ’ I NSRS ~<
S| oHoO o DRSNS S0
3 ], 1 AIRN
8 . " oo O
s il T \ NN SO
g - ’ | ) SN = =
g oo S oo ) NN
z / oo o0 5E0
o 7/ N
O' // \ \\
[ \ N

/

o OO \ I
ki
2 OO

c
o
2
g
§ \
o
S / | \\\ // ! W \\ [ \\\
- I ! VNN m}D‘D
2 A ¥ o ¥ o I o ¥ U O 7 \
s HCH | \ I /
£ | \ | Voo /
é h \\ I \\ \ / DB‘\ O
1 ! ! [ DD
8 | \ oo\
o \ \ |
¢ oo ooo 1 \
& \
& OO e
s @ @ <; '
=] 7 \ 7 N o \SH 4
© 4 A
g . /! N o
5 \ //, \ !
<) / \ A CH Iil ;
g ) /OO0 N L=
3 / S {0 N A,
g2l oo Yo 1 k!
& /
g oe s ! / [EAY
€ ! 1\ / g [
L] / ’
g / / | /
g , ; H | /
8 / \ / | 1 / [
y , \ , | 4 — OHHO
) / \ oo o O !
/ \ || !
oo ooo OO OO
/N i
Jeh Coordinator (| Process

\  / Optional numbers for distinguishing types

Fig.4 Schematic view of stage-2 Decentralized Coordination

Of particular importance here is that Stage-2 Decentral-
ized Coordination is not only advantageous with regard to
smaller coordinator models, higher understandability, and
performance. For some cases, such as the unsolicited appli-
cation, Stage-2 Decentralized Coordination is downright
necessary if the overall business process shall be exe-
cuted correctly and the aforementioned advantages shall be
retained. While a central coordinator is certainly capable of
supporting an unsolicited application, the aforementioned
advantages of decentralized coordination cannot be realized.

Stage-2 Decentralized Coordination is also advantageous
in a distributed environment. Processes may run on differ-
ent nodes in a distributed cluster, e.g., servers of different
departments of the same company. The nodes and their com-
munication paths are referred to as the layout of the cluster.
As basic premise, communication within a node is perfor-
mant and cheap, whereas communication between nodes
is more costly. While the primary goal is the proper coor-
dination of all involved processes, a secondary goal is to
minimize communication between nodes due to its associ-
ated cost. A single central coordinator, running on one node,
is forced to communicate with processes on other nodes.

@ Springer
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By distributing coordinators among nodes, e.g., one coordi-
nator for each node, communication between nodes can be
minimized, resulting in more efficient and performant com-
munication.

To realize the benefits from the use of decentralized coor-
dinators in process structures, several issues need to be
addressed. First, it must be determined how many coordi-
nators are necessary for a given process structure, taking
the layout of a potential cluster into account. Second, the
processes that require coordination need to be assigned to a
suitable coordinator, i.e., the responsibility of the coordinator
needs to be defined. The responsibility includes that redun-
dancies in the coordination constraints must be avoided.
Processes should be assigned, if possible, only to one coor-
dinator, i.e., the overlap between coordinators should be
minimal. Otherwise, superfluous work would be performed,
or communication costs cannot be reduced compared to the
use of a single coordinator. Dividing the responsibility among
several coordinators suitably and effectively is the primary
challenge of decentralized coordinators. Table 1 gives a brief
summary of the stages of coordination decentralization.

In summary, the decentralization of process coordination
involves:

— Deciding the stage of decentralization

— Deciding the number of coordinators

— Determining the coordination responsibility of each coor-
dinator, while

— avoiding redundancy and overlap
— taking the layout of the distributed cluster into
account, if necessary

Coordination processes have been designed with a decen-
tralized application to large process structures in mind and
can therefore provide a solution to enable the discussed bene-
fits. This paper contributes new applications of coordination
processes for Stage-2 Decentralized Coordination of large
process structures.

3 Background

The following section gives an overview over the context and
basic conditions in which decentralization and distribution
can be used and established with the method presented in
this paper.

Object-aware process management is an comprehensive
approach for managing data-centric processes [26]. The core
of object-aware process management is presented as a meta-
model in Fig. 5. Object-aware process management describes
business processes in terms of interacting processes, e.g.,
object lifecycles, with the goal of providing better support
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for data and better flexibility. The business process only
emerges through interactions between processes, and this
requires coordination for guiding the business process toward
a meaningful goal. Note that the meta-model only contains
the concepts relevant for this paper.

The coordination approach of object-aware process man-
agement consists of three concepts: relational process struc-
tures capture and track process types and their relations.
Semantic relationships use these relations for describing con-
straints for coordinating the interactions between processes.
Coordination processes are used for concretely specifying
semantic relationships and enforcing these constraints at run-
time, relying on the information provided by the relational
process structure. Moreover, for obtaining only the relevant
information coordinating the processes, these processes are
abstracted using a state-based view.

Coordination processes and their related concepts rely on
a strict distinction between design-time and run-time enti-
ties. A design-time entity is designated as a fype (formally
superscript! ), whereas run-time entities are instances (for-
mally 7). For the sake of brevity, when referring to entities,
e.g., processes, without a type or instance superscript or
word member, this means that a statement applies to types
as well as instances. By convention, instances are created by
instantiating a type. The dot (.) represents the member access
operator. The symbol <: signifies the subtype relation, i.e., x
is asubtype of y is written as x <: y. Also by convention, any
set is denoted by a capital letter, whereas an element of the
set is denoted with the same lowercase letter and vice versa.
The concepts that constitute and support a coordination pro-
cess are inextricably linked to each other, which necessitates
mutual references and forward references in the formal def-
initions for completeness. The formal definitions mirror the
implementation of the concepts and do not contain cyclic
dependencies, but simply mutual references for navigating
the resulting graph. Consequently, formal definitions may
mention concepts and entities that will only be defined later
in this section. Still, the introduction of concepts and entities
follows a logical top-down manner despite the forward ref-
erences. The intention is to keep this background section as
concise as possible while still conveying the essential infor-
mation. The (mutual) references are implicitly resolved using
a globally unique identifier (GUID) for each entity. Further-
more, as this article is part of a larger body of work in context
of the PHILharmonicFlows project, the formal definitions are
kept consistent in every article.

For the purposes of this paper, a process (cf. Definition 1) is
represented in an abstract, simplified manner, which is called
a state-based view [37]. In a state-based view, each process
model is partitioned into different states that are relevant for
process coordination.
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Table 1 Stages of process

Description

One instance of one central coordinator model
Multiple instances of one coordinator model

Multiple instances of more than one coordinator model

coordination decentralization Stage
Stage-0
Stage-1
Stage-2
Business Process
/dcnsists of>

Relational Process

<consists of>

< coordinat

Coordination Process

Structure

<consists of> <consists of>

Process [——<connects> Relation

\

<represents>.
<abstracts> P

State-based view

<represents>

<consists of>

State

Coordination Step [#———<connects>

<consists of> <consists of> <consists of>

Coordination
Transition

[#—<combines: Port

<creates>

Coordination
Constraint

Semantic

. ) [—<represents>
Relationship

]

<is subtype of>

<is subtype of> <is subtype of>  <is subtype of> <is subtype of>

Self

Top-down

Bottom-Up Transverse Self-Transverse

Fig.5 Essential object-aware process management meta-model

Definition 1 (Process Type) A process type w’ has the form
dT,n,0T.  0T) where

priv’

— d7 refers to a relational process structure to which this
process type belongs (cf. Definition 6)
n is a unique identifier (name) of the process type

T . . . . o .
-0 priv 1S @ process model specification not publicly visible
— 6" is a state-based view mapped to Gp”.v(cf. Definition

3)

Coordination processes originate in the object-aware busi-
ness process management approach. While objects and their
lifecycles have provided the initial motivation for coordina-
tion processes, the object and lifecycle model itself is not a
prerequisite for coordination processes to work. Therefore,
a generalized notion of process 6,,;, is used that may rep-
resent, in principle, any kind of process model specification.
For the purposes of coordination processes, the paradigm
and modeling language in which processes are specified is
unimportant. Consequently, a process 6,;, may be an object-
aware process or a process that is specified using BPMN
2.0 [34]. Due to the arbitrary nature, no formal definition
of 0,y is possible. In every case, a state-based view 6

provides an abstraction level over the actual process specifi-
cation 6,,;, [37] that a coordination process uses. Thereby,
the process to be coordinated is partitioned into different
states that provide significant meaning for process coordi-
nation. State-based views enable a coordination process to
be paradigm-agnostic, i.e., processes from any paradigm or
even different paradigms may be coordinated. This applies
to both type and instance levels.

Definition 2 (Process Instance) A process instance ' has

T g1 I I
the form (w” , d ,l,ep”.v,e ) where

— T refers to the process type from which w! has been
instantiated (cf. Definition 1)

— d! refers to the relational process instance structure to
which this object instance belongs (cf. Definition 7)

— [ is the unique identifier (name) of the process instance.
Default is w .n

- Qp”.v is a process instance specification not publicly vis-
ible

— 6" is a state-based view mapped to Gp”.v(cf. Definition
3)
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State-based views partition a process specification into dis-
tinct and non-overlapping states (cf. Definition 3). A state-
based view 0 is an abstraction over 0,,;y, i.e., the actual
process specification, mapping elements of 6, to states of
the state-based view so that each element (e.g., an activity)
belongs to exactly one state (cf. Fig. 6) [37]. States are used
to indicate the progress of the underlying process 6y .

Definition 3 (State-based View) A state-based view 6 has
the form (w, X', T, ¥) where

— w refers to the process to which this state-based view
belongs (cf. Definitions 1 and 2)

— XY is aset of states o

— T is a set of transitions t

— W is a set of backward transition types .

States o are connected with directed edges T denoting state
transitions. At run-time, an active state o, of a process signi-
fies its current execution status; the active state is determined
by 6,,iv, €.g., the currently executed activity is mapped to
o, Only one state o may be active at a given point in time.
As a consequence, branching state transitions categorically
implement an exclusive choice semantics, i.e., states may be
mutually exclusive regarding activation. Note that this does
not prohibit parallel execution of activities, as parallelism
may still occur within a state. As only one state may be
active, in case of mutually exclusive states, non-active states
are denoted as skipped. Furthermore, state-based views may
include backward transitions { that allow re-activating a
previous state o, i.e., o is a predecessor of the current active
state o,. Figure 6 shows state-based views of the processes
occurring in Example 1.

States and their transitions are, by default, the only entities
that are publicly visible to an outside observer of a process.
The state transitions 7/ and the active state o/ are driven
by Gériv. Despite the simplistic specification, state-based
views capture the essentials of a process in regard to pro-
cess coordination. In addition, if desired, state-based views
may introduce additional process properties, e.g., specific
data attributes that may subsequently be used for process
coordination.

Generally, processes may be interconnected by relations.
A relation represents a connection between two processes,
indicating one or more dependencies between them, i.e.,
multiple coordination constraints can be defined over the
same relation. A relation type (cf. Definition 4) and relation
instance (cf. Definition 5) are defined as follows:

Definition 4 (Relation Type) A relation type 7 represents
a many-to-many relation between two processes and has the

T T
form (wsource’ Otarget> Mupper s Miower s Mupper
Niower) Where
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Fig.6 State-based views of the processes in the recruitment example

T
= Wsource

1)

- ol ger Tefers to the target process type (cf. Definition 1)

— Mypper 1 an upper bound on the number of process
instances @/, With which !, ., may be related.
Default: m,pper =00

— Miower 1S @ lower bound on the number of process
instances @/,,q,, With which !, ., may be related.
Default: mjyyer = 0

— Nypper 18 an upper bound on the number of process

! ree With which wtlmget may be related.
Default: nypper =00

— Njower 18 a lower bound on the number of process
instances @/, with which /,, .., may be related.
Default: njyper =0

refers to the source process type (cf. Definition

instances

Definition 5 (Relation Instance) A relation instance 7! has

T 1 1
the form (777, W00 pgrger) Where

— 7T refers to the relation type from which 7/ has been

instantiated (cf. Definition 4)

- o! refers to the source process instance (cf. Defini-

source
tion 2)
- ol, ger Tefers to the target process instance (cf. Definition

2)

Note that relation instances always have exactly one
source and one target process instance, as one-to-many or
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Design-Time : Run-Time
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Fig.7 Processes and relations at design- and run-time

many-to-many relationships are comprised of multiple rela-
tion instances 7! (cf. Fig. 7). In particular, two processes
may be related by a transitive relation, i.e., a path of rela-
tions exists connecting one process with another. Contrary
to, for example, Entity-Relationship-Diagrams, relations are
directed. This has various purposes, among them the defini-
tion of semantic relationships (cf. Sect. 3.2). For any process
type or instance ®, two sets are maintained in regard to
relations: IT;, is the set of incoming relation instances for
a process instance ol e, I, = {7 |m.wiarger = w’},
and I1,,;, which is defined analogously for outgoing relation
instances. These sets allow realizing some efficiency opti-
mizations in coordination process execution and are therefore
mentioned for accuracy [39].

3.1 Relational process structures

Relational process structures provide a basis for the use of
coordination processes. At design-time, a relational process
type structure captures all processes and their relations (cf.
Definition 6) [39]. Formally, a relational process type and
instance structure (cf. Definition 7) are defined as follows:

Definition 6 (Rel. Process Type Structure) A relational
process type structure d’ has the form (n, 27,
1T where

— n is the name of the relational process type structure
— 27 is the set of process types w! (cf. Definition 1)
— II7 is the set of relation types w7 (cf. Definition 4)

Definition 7 (Rel. Process Instance Structure) A relational
process instance structure d! has the form (47,227, 11')
where

— dT refers to the relational process type structure from
which d’ has been instantiated
— 2! is the set of process instances ! (cf. Definition 2)

2

Employee

Applicant 1n
P R

Job Offer

Review Interview

Fig.8 Relational process type structure for the recruitment example

— IT! is the set of relation instances 7/ (cf. Definition 5)

Relation types 7 (and by extension, relation instances) that
belong to relational process structure d only exist between
processes in d.£2. Creating a new relation between two pro-
cesses is referred to as linking process instances. The new
process instance and the new relation are then added to the
respective sets of the relational process structure the other
process instance belongs to.

At run-time, the purpose of the relational process instance
structure is to track and capture every instantiation and dele-
tion of processes and relations, enabling full process relation
awareness [39]. Process instances may be added from time
to time to an existing relational process instance structure,
each creating a new relation between the process to add and
aprocess instance that is already part of the relational process
structure.

A coordination process can query the relational process
instance structure to obtain up-to-date information about pro-
cesses and their relations.

Example 3 (Relational Type Structure) Figure 8 shows the
corresponding relational process type structure for the run-
ning example (cf. Example 1), showing various process types
and their relations.

The process types Applicant and Employee are user pro-
cess subtypes concerned with representing users, relevant for
authorizations and permissions in object-aware process man-
agement. The formal notation w; — wj is used to signify
a (transitive) directed relation from w; to w;. The directed
relation between processes induce a hierarchy in a relational
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Application 5

Fig. 9 Run-time relational process structure, tracking every process
instance and relation (simplified view)

Review 2

process structure. In this context, the terms lower- and higher-
level become important. For illustration, Job Offer is denoted
as a higher-level process in respect to process Application,
as there is a directed relation from Application to Job Offer
(cf. Fig. 8). Job Offer is higher-level to Review and Interview.
Analogously, Review and Interview are lower-level processes
in respect to process Application. This terminology applies to
transitive relations as well. At run-time, a possible relational
process instance structure d/ may look like as depicted in
Fig. 9.

For the purpose of coordination processes, each process
is required to know all its related processes, specifically its
lower- and higher-level processes. In order to avoid computa-
tionally expensive queries every time lower- or higher-level
processes are needed, the relational process structure main-
tains two sets per process w: L, for all lower-level processes
and H,, for all higher-level processes. Process w is part of
these sets by definition, i.e., w € L,,. Note that these sets
exist at both design- and run-time. These sets are kept up
to date as the process structure evolves, providing a crucial
performance benefit to process coordination [39] at run-time.

Altogether, relational process structures allow a coordina-
tion approach to gain full knowledge over processes and their
relations, thereby enabling fine-grained and comprehensive
process coordination. Relational process structures represent
one foundation for coordination processes.

3.2 Semantic relationships

Semantic relationships are means to specify coordination
constraints at a high level of abstraction [37]. A coordina-
tion constraint is a formal or informal statement describing
one or more conditions or dependencies that exist between
processes. For example, the statement “An application may
only be accepted if three or more reviews are positive” is
a coordination constraint. In essence, process coordination
is tasked with formally capturing and enforcing coordina-
tion constraints. Other coordination approaches, e.g., BPMN
choreographies [34], choose messages to express the neces-
sary interactions between the processes to be coordinated.
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However, due to complex process relationships and large
amounts of process instances, defining messages in a pro-
cedural manner is cumbersome. This is especially true for
larger relational process structures.

A coordination constraint must be expressed in terms of
semantic relationships for its use in a coordination process. A
semantic relationship describes a recurring semantic pattern
inherent in the coordination of processes in a one-to-many
or many-to-many relationship (cf. Table 2). As one exam-
ple of a pattern, several process instances may depend on
the execution of one other process instance. Semantic rela-
tionships thereby abstract over possibly multiple message
exchange sequences and are inherently asynchronous. For a
proper representation of coordination constraints, the com-
bination of multiple different semantic relationships might
become necessary. Moreover, a semantic relationship may
only be established between processes if a (transitive) rela-
tion within the relational process structure, i.e., a dependency,
exists between these processes. Figure 10 illustrates the types
of semantic relationships between different processes. The
self-semantic relationship is not depicted due to being triv-
ial.

Semantic relationships are specified at design-time in
context of a coordination process. Formally, a semantic rela-
tionship s” is defined as follows:

T

Definition8 A semantic relationship s’ has the form

. T T
%A, Evalid’ w,,) where

-

is the identifier of the semantic relationship, =~ €
{top—down, bottom—up, transverse, self ,self
- transverse}

— XA is an expression, configuring s” in case of | €
{bottom—up, transverse, sel f —transverse}

- Z‘vTalid is a set of state types in case of ¢ € {rop—down}

— ], refers to the common ancestor in case of ¢ € {trans—
verse, self —transverse}

Semantic relationships are always defined between two types
of processes. Different semantic relationships, determined
by the identifier °, signify different basic constraints (cf.
Table 2). One of the outstanding features regarding semantic
relationships is that the appropriate semantic relationship can
be automatically inferred, helping a modeler of a coordina-
tion process. This is possible as the direction of the relations
directly implies certain semantic relationships between pro-
cess types [39]. This is exemplified in Example 4.

Example 4 (Top-Down and Bottom-Up Semantic Relation-
ships I) Consider Fig. 8: A top-down semantic relationship
can be established from Job Offer to an Application, as there
is a relation from Application to Job Offer. Additionally, a
bottom-up semantic relationship can be established from
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Table2 Overview over

. . . Name
semantic relationships

Description of the semantic relationship

Top-down

Bottom-up

Transverse

Self

Self-transverse

The execution of one or more lower-level processes
depends on the execution status of one common
higher-level process

The execution of one higher-level process depends
on the execution status of one or more lower-level
processes of the same type

The execution of one or more processes is dependent
on the execution status of one or more processes of
different type. Both types of processes have acommon
higher-level process

The execution of a process depends upon the comple-
tion of a previous step of the same process

The execution of a process depends on the execution
process of other processes of the same type. All pro-
cesses have a common higher-level process

1
| state, higher-level I |

States, lower-level |

==
S<So-- -7
\\\\ = -7,

-
|

N [
|

Top-Down Semantic Relationship Bottom-Up Semantic Relationship

Fig. 10 Semantic relationships

Application to a Job Offer. The direction of the connection
and the direction of the relation determine directly the type of
semantic relationship. Note also that one relation supports
establishing multiple semantic relationships on top.

The execution status referred to in Table 2 is represented
by the state-based view of the process (cf. Sect. 3). At
run-time, semantic relationships have a logical value to indi-
cate whether or not they are satisfied; Boolean operators
are required to express more complicated coordination logic
involving more than one semantic relationship.

Semantic relationships feature either an expression in case
of a bottom-up, transverse, or self-transverse semantic rela-
tionship [37]. Top-down semantic relationships feature a state
set [37]. Self-semantic relationships cannot be configured
and do not possess an expression or a state set (cf. Definition
8). Expressions and state sets may be addressed collectively
by using the umbrella term coordination condition. A coordi-
nation condition modifies the basic semantics of the semantic
relationship (cf. Table 2), which is needed to customize a
semantic relationship to specifically represent a coordination
constraint.

3.3 Coordination processes

Coordination processes are a generic concept for coordi-
nating interdependent processes by expressing coordination

Common Process,|
higher-level

Transverse Semantic Relationship

i \\‘I [Relation Common Process)| i \\‘I
| higher-level |
7 7

- ~

Self- Transverse Semantic Relationship

Coordination Coordination
Transition Transition
Type Process Type Type

—
State Type
Port Type p ‘[g:oriination
ep lype

Fig. 11 Coordination process modeling elements

constraints with the help of semantic relationships, which are
then enforced at run-time [38]. The concept allows specifying
sophisticated coordination constraints for vast structures of
interrelated process instances with an expressive, high-level
graphical notation using a minimum amount of modeling
elements.

A coordination process type is a design-time entity and
is represented as a directed, connected, acyclic graph that
consists of coordination step types, coordination transition
types, and port types (cf. Fig. 11). A formal definition for
coordination process types is presented in Definition 9. Fig-
ure 12 shows the coordination process type for the processes
of the running example, which ensures the correct enactment
of the overall recruitment business process.
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Definition 9 (Coordination Process Type) A coordination
process type ¢! has the form (»!,  ,, BT, AT,
HT) where

- a)CTO g TETETS to the process type to which the coordination

process type ¢! belongs

BT is a set of coordination step types 87 (cf. Definition

10)

— AT is a set of coordination transition types 87 (cf. Defi-
nition 11)

HT is a set of port types n” (cf. Definition 12)

Coordination steps are the vertices of the graph referring
to a process type w! as well as to one of its states o/ of
its state-based view 07, e.g., Job Offer and state Published.
For the sake of convenience, a coordination step ﬁT is
addressed with referenced process type and state in the form
of ProcessType:State, e.g., Job Offer:Published. A formal
definition for coordination steps is presented in Definition
10.

Definition 10 (Coordination Step Type) A coordination

step type ﬂT has the form (cT, ol o7, AOT,”, HT) where

— T refers to the coordination process type (cf. Definition
9)

— ! refers to a process type (cf. Definition 1)

— oTrefers to a state type belonging to o', ie., o! €
ol ol 27

- AOTM is a set of outgoing coordination transition types 7

(cf. Definition 11)
— HT is a set of port types n” (cf. Definition 12)

A coordination transition 87 is a directed edge that connects a
source coordination step type ,BA.Y;C with a target coordination
T

step type B, (cf. Fig. 12 and Definition 11).

Definition 11 (Coordination Transition Type) A coordina-

tion transition type 87 has the form (87, n” , sT) where

— BI. refers to the source coordination step type (cf. Def-
inition 10)

- n,Ta, refers to the target port type (cf. Definition 12)

- sT is a semantic relationship between Bl..oT

T T T
18T 0

and

More precisely, 7 connects to one of multiple ports n tTa , that
are attached to B! . Definition 12 provides a formal definition
of ports.

Definition 12 (Port Type) A port type 1’ has the form
(BT, AT ) where:
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— BT refers to the coordination step type to which this port
type belongs (cf. Definition 10)

- AiTn refers to the set of all incoming coordination transi-
tions 87 (cf. Definition 11)

By creating a coordination transition between source step
BI . andtarget step L, a semantic relationship s7 is created
as well. Conceptually, a semantic relationship is attached to a
coordination transition. With the relations from the relational
process structure and the definitions of semantic relationships
(cf. Table 2), the identifier ~ can be automatically derived.
The identifier ~ determines which semantic relationship is
established between the process types referenced by the two

coordination steps.

Example 5 (Top-down and bottom-up semantic relationships
IT) Consider Fig. 12: Connecting Job Offer:Published with
Application:Creation constitutes a top-down relationship.
The sequence in which the steps occur is important for deter-
mining the type of semantic relationship. By connecting
Application:Sent with Job Offer:Closed, abottom-up seman-
tic relationship is established instead, as Application is a
lower-level process type of Job Offer.

As coordination transitions represent coordination con-
straints with semantic relationships, coordination constraints
depend on previous constraints for fulfillment. In Example 5,
activating Job Offer:Closed requires at least one Application
in state Sent, which in turn requires Job Offer:Published to
be activated. The coordination constraint between Job Offer:
Closed and Application:Sent depends on the constraint
between Job Offer:Published and Application:Creation.
Therefore, coordination process graphs must be acyclic, oth-
erwise cyclic dependencies and, therefore, deadlocks are
possible. Consequently, the acyclicity of coordination pro-
cesses is not a restriction of expressivity, but a requirement
for correctness.

Moreover, a coordination process is not required to coor-
dinate all processes at every point in time. Depending on the
coordination constraints, only the processes and states that
are necessary for these constraints need to be modeled and
are therefore subject to coordination. States and processes
that do not occur in a coordination process model are not
constrained in their execution by process coordination. Con-
sequently, coordination process allow for a high degree of
freedom in executing processes by only providing coordina-
tion when absolutely required.

Ports allow realizing different semantics for combining
semantic relationships [39]. Connecting multiple coordi-
nation transitions to the same port corresponds to AND-
semantics, i.e., all semantic relationships attached to the
incoming transitions must be enabled for the port to become
enabled as well. Enabling a port also enables the coordination
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step, allowing the state of the coordination step to become
active. Generally, at least one port of a coordination step must
be enabled for the coordination step to become enabled as
well. Consequently, connecting transitions to different ports
of the same coordination step corresponds to OR-semantics.

A coordination process ¢ corresponds to a directed, acyclic
graph which possesses exactly one start coordination step
Bsiarr€ c.B and a set of end coordination step types Beng C
c.B. The notions of start and end coordination step apply
equally to types and instances. A start coordination step has
no ports n and, consequently, no incoming transitions §, i.e.,
Bstart-H = (. Analogously, an end coordination step S,,,4 has
no outgoing transitions, i.e., Beng-Aowsr = ¥. Coordination
process enactment begins at start step Sy4 and terminates
when reaching an end step Beng € Bena-

A coordination process is attached to a particular process
type within the relational process structure. This process type
is denoted as a coordinating process type a’chor 4- Note that
a)cToor 4 1s a short-hand notation for a process a)lT being a
coordinating process type, i.e., 3¢ : c.w! = wlT , and does
not signify one specific process. A coordinating process type
is a process w! with an attached coordination process type ¢!
that functions as the coordinator. The notion of coordinating
process applies as well to the run-time at the instance level,
i.e., there may be one or more coordinating process instances.
For the recruitment example (cf. Example 1), Job Offer is
designated as the initial coordinating process type.

For illustrating the concepts of semantic relationships and
coordination processes, the following Example 6 gives a
rundown of the coordination process (cf. Fig. 12) of the
recruitment example (cf. Example 1) and the most important
coordination constraints that it represents. Encircled numbers
( represent points of interest in Fig. 12.

Example 6 (Coordination Process Rundown) Any Job Offer
process begins enactment in the start state Preparation, repre-
sented by the start coordination step type of the coordination
process (cf. Fig. 12). The outgoing self-semantic relationship
signifies the transition to state Published of the Job Offer.
Then, Coordination Constraint 1 is represented using a top-
down semantic relationship (D.

Coordination Constraint 1 An application may only be cre-
ated as long as the corresponding job offer is published

Following coordination step type Application:Creation, again
a self-semantic relationship allows an application to tran-
sition to state Sent. When in state Sent, Reviews may be
created for the Application (cf. Coordination Constraint 2),
a constraint that is represented again by a top-down seman-
tic relationship (9. Multiple lower-level processes (Reviews)
depend upon the execution status (state Sent) of one higher-
level process (the Application) (cf. Table 2).

Coordination Constraint2 An application may only be
reviewed once it has been sent to the company

Moreover, at least one Application in state Sent allows a
Job Offer to reach next state Closed (cf. Coordination Con-
straint 3). For representing this coordination constraint, a
bottom-up semantic relationship is established between coor-
dination step types Application:Sent and Job Offer:Closed
@. This is due to Job Offer being a higher-level process of
Application (cf. Table 2).

Coordination Constraint 3 A job offer may be closed once at
least one application has been received

Coordination Constraint 4 states when Applications may
reach state Rejected or when Interviews may be created.
Rejection is handled by a bottom-up semantic relationship
between coordination step types Review:Reject Proposed
and Application:Rejected (3). The precise semantics of the
bottom-up semantic relationship are accomplished with an
expression A (cf. Definition 8).

Coordination Constraint4 An interview with the applicant
may only be performed if at least three reviews or the simple
majority of reviews are in favor of the applicant. Applications
for which this is not the case must be rejected

In case of favorable Reviews, a transverse semantic rela-
tionship is established between Review:Invite Proposed and
Interview:Preparation (&). Interviews depend on Reviews in
the context of a particular Application (cf. Table 2). The
Application serves as the common ancestor w., of the trans-
verse semantic relationship (cf. Definition 8). The precise
semantics of the transverse semantic relationship are again
established with an expression A (cf. Definition 8). In case
of unfavorable reviews, the Application must be rejected.
Interview:Reject Proposed is connected to a second port of
coordination step Application:Rejected (5).

Two ports on the same coordination step constitutes
OR-Semantics, as an Application may be rejected due
to unfavorable Reviews or unfavorable Interviews. After
Interviews have been created and conducted, another assess-
ment of the applicant is accomplished. In case of favorable
Interviews, the Application may be Accepted (cf. Coordi-
nation Constraint 5). Hence, a bottom-up semantic rela-
tionship is established between Interview:Hire Proposed and
Application:Accepted (6).

Coordination Constraint 5 At least one interview or a simple
majority of interviews must be in favor of the applicant before
the applicant can be accepted for the job offer

In addition to the bottom-up semantic relationship rep-
resenting Coordination Constraint 5, another coordination
constraint affects the acceptance of an Application (cf. Coor-
dination Constraint 6)
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Fig.12 Coordination process of the running example

Coordination Constraint 6 Only one applicant may be
accepted for a job offer.

Here, Applications depend on other Applications; hence,
a self-transverse semantic relationship is established (7)
(cf. Table 2). The self-transverse semantic relationship
permits only one Application to reach state Accepted,
whereas subsequent Applications are blocked. The self-
transverse semantic relationship connects to the same port
of Application:Accepted as the previous bottom-up semantic
relationship. This represents AND-semantics, as Coordina-
tion Constraints 5 and 6 need to be fulfilled simultaneously.

Finally, Coordination Constraint 7 determines under
which conditions a Job Offer:Closed may terminate.

Coordination Constraint 7 The job offer is successfully com-
pleted when an applicant has been found. If no suitable
applicant is found, the job offer ends with status “Position
vacant.”

The representation of Coordination Constraint 7 must be
split into two semantic relationships. One bottom-up seman-
tic relationship established between Application:Rejected
and Job Offer:Position Vacant represents the case where
no suitable applicant can be found. A second bottom-up
semantic relationship between Application:Accepted and
Job Offer:Position Filled represents the opposite case, i.e.,
a suitable applicant has been found (®).

Coordination constraints, as demonstrated in Example
6, can be found in any domain. These can be represented
using semantic relationships and ports. Coordination pro-
cesses already realize Stage-1 Decentralized Coordination by
being able to be instantiated multiple times. In the following,
concepts are presented to make coordination processes effec-
tively realize Stage-2 Decentralized Coordination. These
concepts address primarily the issue of coordination respon-
sibility.

4 Decentralized process coordination

Coordination processes possess the technical capability to
be employed in a decentralized fashion by design. However,

@ Springer

additional concepts are required to effectively realize Stage-1
and Stage-2 Decentralized Coordination. In regard to estab-
lishing Stage-1 Decentralized Coordination, the baseline is
as follows: A coordination process model ¢! represents
coordination constraints between process types in terms
of (multiple) semantic relationships s”. The process types
! to be coordinated and their relations 7 are captured
in a relational process structure dT . Furthermore, a coor-
dination process ¢! is always attached to a process type,
which is then denoted as a coordinating process type a)zo ord”
The “coordinating process type” property meets the crite-
ria for Stage-1 Decentralized Coordination. Consequently,
coordination processes already represent Stage-1 Decentral-
ized Coordination, as they are instantiated together with
the coordinating process type a)CTmr 4+ A central coordinator
(i.e., Stage-0 Decentralized Coordination) can be realized
by instantiating a coordinating process type only once, with
one coordinating process type per process structure, i.e., it
holds |[a)T|ElcT.a)Zwrd =, w’ €d’]| = 1.In the follow-
ing, it is shown how further decentralization can be achieved
with coordination processes, i.e., how Stage-2 Decentralized
Coordination can be realized.

In principle, any process type in a relational process struc-
ture 47 may become a coordinating process type a)chr 4 1€
there may be as many coordination processes cl.T e CT as
there are process types a)iT e 27,1cT| < |27 |. Whether
this is actually a reasonable decentralization is an entirely
different matter. As such, in principle, a relational process
structure d” may be coordinated using multiple coordina-
tion processes c’, establishing a prerequisite for Stage-2
Decentralized Coordination. However, just creating multi-
ple coordination processes does not result in a meaningful
overall process coordination that leads toward the particular
goal of the overall business process.

In general, when coordinators are decentralized, one of
the primary challenges concerns coordination responsibil-
ity, i.e., deciding which coordination process ¢T shall be
responsible for which processes w”. If this remains arbi-
trarily defined, or not at all, detrimental consequences might
occur. For example, a process modeler may specify coordina-
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tion constraints in any coordination process. In consequence,
a specific coordination process might not be an obvious
choice to look for this particular coordination constraint
later on. If a particular coordination constraint needs to
be modified, potentially all coordination processes need to
be searched for this particular coordination constraint. This
problem becomes more pronounced as a process structure
grows in size. Ultimately, this results in a process structure
and business process, respectively, becoming unmaintainable
and confusing to understand. While coordination responsi-
bility is of general concern to any coordinator, this paper is
particularly concerned with coordination process responsi-
bility.

In particular, coordination processes may comprise coor-
dination constraints for several processes, i.e., they enforce
the same or different coordination constraints on the same set
of processes. Consequently, it is crucial that multiple coor-
dination processes do not model contradicting constraints,
e.g., a combination of constraints stating exactly the oppo-
site of another constraint. With decentralized coordinators,
this challenge gains importance as coordinators are modeled
individually, i.e., contradictions may not be spotted easily.
Consequently, the relational process structure offers a way to
address this challenge, i.e., avoiding the possibility for con-
tradictions altogether by clearly defining the responsibility
of each coordinator. Furthermore, this includes that there is
little to no overlap between the individual responsibilities of
each coordination process. A particular process type should
clearly be the responsibility of one coordination process, not
of multiple.

The fact that relations in a relational process structure are
directed offers a fundamental building block for creating a
solution for defining coordination process responsibilities.
The directed relations imply that processes can be arranged
hierarchically. This hierarchy is an integral part of how
semantic relationships work, the cornerstone of the coor-
dination process concept. Additionally, the hierarchy of a
relational process structure offers advantages when using
multiple coordination processes for coordinating the pro-
cesses in a relational process structure.

4.1 Coordination process scope

For clearly defining responsibilities, the concept of scope
of a coordination process is essential. A coordination pro-
cess is attached to a coordinating process type, and its scope
determines which other processes the coordination process
is permitted to coordinate, i.e., its responsibility. The coor-
dinating process can be easily identified from a coordination
process model. By convention, the start and end steps of a
coordination process must refer to the coordinating process
type [39]. The hierarchy of the relational process structure
provides an easy and intuitive solution for defining the scope.

A —

Employee

2

Applicant Job Offer Scope

Review Interview

Fig. 13 Job offer coordination process scope

The scope of a coordination process is defined as all lower-
level process types LT, of the coordinating process type

coord
T
,,0rd- LLOWET-level processes are all process types thathave a

(transitive) relation to one particular process type. For exam-
ple, in the running example the coordinating process type
CTOW 4 18 Job Offer. For the sake of easier referencing, scopes
of different coordination processes are distinguished by refer-
ring to the name of the coordinating process type w,,, ;> €.2.,

the scope of Application.

w

Example 7 (Scope) Regarding the relational process struc-
ture from Fig. 8, Review and Interview are both lower-level
processes of Application, which, in turn, are all lower-
level processes of Job Offer. Figure 13 shows the scope of
the Job Offer process type. Attaching a coordination pro-
cess to the Job Offer consequently allows coordinating the
entire relational process structure in Fig. 13, i.e., Reviews,
Interviews, Job Offers, and Applications. This excludes pro-
cesses that concern users, i.e., Applicant and Employee.

With the scope of a coordination process, it is achieved that
the responsibility of a coordination process is not arbitrarily,
but clearly defined. This provides a great advantage when
modeling decentralized coordination processes, as arbitrary
responsibilities of multiple coordinators create unnecessary
redundancy as well as potentially contradicting constraints.
Moreover, it would decrease the maintainability and under-
standability of the overall model.

While the scope defines the responsibility of a coordina-
tion process, in a relational process structure, the scopes of
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Fig. 14 Job offer and application coordination process scopes

multiple coordination processes may still overlap (cf. Exam-
ple 8).

Example 8 (Overlapping Scope I) When a coordination pro-
cess is attached to the top-level process in the hierarchy
of the relational process structure, its scope overlaps with
the scopes of coordination processes attached to lower-level
processes (cf. Fig. 14). Consider the unsolicited application
from Example 2. Application is a lower-level process type
of Job Offer (cf. Fig. fig:Statespsbasedspsviewsspsof). An
unsolicited application requires its own coordination pro-
cess in absence of the coordination process from a Job Offer.
However, a Job Offer, together with its associated coor-
dination process, will be created in case the unsolicited
application is accepted in the end.

As Example 8 and Fig. 14 show, the scope of one coor-
dination process may be overlapping with scopes of other
coordination processes. It can even be the case that the scope
of one coordination process is fully contained within the
scope of another coordination process. Overlapping scopes
are synonymous with insufficiently defined coordination
responsibility (cf. Example 9). Therefore, additional con-
cepts are required to remedy the overlap between scopes of
coordination processes.

Example 9 (Overlapping Scope II) The Job Offer coordina-
tion process has the process Application in scope. In fact,
the scope of the Application is fully contained within the
Job Offer scope. As such, the danger of modeling contradict-
ing or redundant coordination constraints in the coordination
processes of Job Offer and Application still exists.
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4.2 Subsidiarity

The issue of overlapping scopes can be solved by defining
which coordination constraints belong to a particular coordi-
nation process. As shown with Example 8, simply attaching
a new coordination process to a process type would create
overlapping scopes with other coordination processes. The
coordination constraints required to coordinate process types
present in both scopes would have to be replicated in the new
coordination process. This would create unnecessary redun-
dancy in the coordination constraints.

In addition to redundancy, contradicting constraints in
multiple coordination processes may, in principle, inadver-
tently be specified. However, the hierarchy of the relational
process structure allows for additional measures to remove
overlap—the application of the subsidiarity principle. The
Oxford dictionary defines subsidiarity as follows:

Subsidiarity (noun)(in politics) the principle that a
central authority should have a subsidiary function, per-
forming only those tasks which cannot be performed at
a more local level.!

Subsidiarity allows the scope of a particular process type
wzo ora.; 10 extend only as far as another coordinating process
type wzo ord.i-+x downward in the process hierarchy. The hier-
archy level i is counted from the top of the relational process
structure hierarchy, where the top level processes belong to
hierarchy level 0. The number x > 0 signifies an offset for
the hierarchy level of the next coordination process in the
hierarchy. Restricting the scopes of coordination processes
in this manner achieves minimal overlap between scopes (cf.

Example 10).

Example 10 (Establishing Subsidiarity I) In the running
example, applying subsidiarity restricts the scope of the
Job Offer process type to extend only as far the Application,
and no longer involves Review or Interview, as illustrated in
Fig. 15.

Note that the process type w! still lies in both the

coord ,i+x

. . T T
scopes of the coordination processes @ coord. i and w coord.itx-

However, as coordination constraints always describe depen-
dencies between two or more processes, a non-ambiguous
assignment to a corresponding scope can be found regardless.

Suppose there is a coordination constraint involving w_, ., ;

the subsidiarity principle assigns the coor-

T
coord,i*

T
and a)coord, i+x°

dination constraint to the coordination process of

T
coord,i

Suppose further there is a third process type fur-

This is because process type w is not in the scope of

T
@coord Ji+xt
ther down the hierarchy, denoted a)iﬂy with y > x. Then, a

! https://en.oxforddictionaries.com/definition/subsidiarity.
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Fig. 15 Scopes adjusted based on the subsidiarity principle
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coord ,i+x y would

. . . T
be assigned to the coordination process of @, ;> as both
T T . . . .
D eoord.i4x AN @; t+y are in the scope of 'thls cgordmatlon pro-
cess. For the running example, subsidiarity is demonstrated

in Example 11.

coordination constraint involving and a)iT+

Example 11 (Establishing Subsidiarity II) The Application
process type still lies in both scopes (cf. Fig. 15). For a
coordination constraint (e.g., Coordination Constraint 1) that
involves process types Job Offer and Application, the coor-
dination constraint should belong to the Job Offer scope.
Coordination constraints involving process types Application
and Review consequently belong to the Application scope.

Transferring the subsidiarity principle to both coordina-
tion processes and the relational process structure, subsidiar-
ity means that a coordination constraint should be modeled
in the lowest coordination process whose scope comprises all
process types involved in the constraint. So for a coordination
constraint involving two process types w! and a)bT where a
and b are hierarchy levels , this constraint should be assigned
to a coordination process where its coordinating process type
! fulfills the properties set out by Definition 13:

coord,,i

Definition 13 (Coordination Constraint Assignment) Given
a coordination constraint involving process types w! and a)Z
and the possible coordinating process types a)LTo ord.; Withi €
{0, .., |$21}, the coordination constraint should be assigned to

T .
wcoord, ilf

1wl e, Aol €L?, :Theprocesses »! and
coord i coord, i
w,, are related to Deoord.i OF identical to Deoord.it This

automatically implies they are within scope
2. i — max: a)CTU ord.i 18 the coordinating process type fur-
thest down in the hierarchy

For coordination constraints involving more than two pro-
cess types, the properties for subsidiarity can be extended
in straightforward way. For the recruitment business pro-
cess, the application of the subsidiarity principle is shown
in Example 12.

Example 12 (Coordination Constraint Assignment)

Regarding the unsolicited application (cf. Example 2), mod-
eling any coordination constraints involving only Application,
Review, and Interview in the Job Offer coordination process
is a clear violation of subsidiarity.

By moving respective coordination constraints to the
Application coordination process, subsidiarity is fulfilled.
Only the coordination constraints for Applica—tion and
Job Offer are kept in the Job Offer coordination process.

More precisely, consider Coordination Constraints 1-7
from Example 6.

— Coordination Constraints 1, 3, 6, and 7 involve only pro-
cess types Application and Job Offer. Consequently, they
should be modeled within the Job Offer scope.

— Coordination Constraints 2, 4, and 5 involve only process
types Review, Interview, and Application. They therefore
should be modeled within the Application scope.

Example 13 shows how Stage-2 Decentralized Coordina-
tion can be established.

Example 13 (Established Stage-2 Decentralized Coordina-
tion)

Considering the knowledge gained from Example 12, it
becomes possible to re-model the Job Offer coordination
process to account for decentralization and subsidiarity.
This re-modeled coordination process is depicted in Fig. 16
and only contains coordination constraints pertaining to the
subsidiarized Job Offer scope as outlined in Fig. 15. Conse-
quently, the other coordination constraints involving Review,
Interview, and Application process types have been moved
to the Application coordination process (cf. Fig. 17).

The subsidiarity principle has been applied strictly, and the
new coordination process fully meets its requirements. More-
over, together, both coordination processes of Application
and Job Offer implement the same coordination constraints
as before. As an added benefit, however, unsolicited appli-
cations may now be handled properly by the overall busi-
ness process due to the dedicated coordination process of
Application.
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Fig. 17 Application Coordination Process

As depicted in Fig. 15, the Application process type is
involved in both coordination processes. States Application:
Creation, Application:Sent, Application:Rejected,
and Application:Accepted are required to model coordination
constraints for Job Offers as well as Reviews and Interviews.

As can be seen from Example 13, the overall number of
elements in each coordination process has become noticeably
smaller, reducing complexity significantly. Furthermore, due
to the consequent application of the subsidiarity principle,
there can be no conflict between coordination constraints.
With the concepts of scope and subsidiarity, Stage-2 Decen-
tralized Coordination can be achieved with coordination
processes, unambiguously defining the coordination respon-
sibility of each coordination process.

In summary, each coordination process is smaller, simpler,
and more understandable in comparison with the coordina-
tion process depicted in Fig. 12. Altogether, the subsidiarity
principle and scopes enable the decentralized coordination
of small sections of a relational process structure with coor-
dination processes, which, in turn, collaborate to provide
coordination for the entire relational process structure. As
such, Stage-2 Decentralized Coordination is fully viable.
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4.3 Automatically establishing Stage-2
Decentralized Coordination

As an added value of the scope and subsidiarity concepts,
the actual modeling of distributed coordination processes
might benefit substantially from automation. Consider the
recruitment example using Stage-1 Decentralized Coordina-
tion and the corresponding coordination process (cf. Fig. 12).
The application of the subsidiarity principle results in the
coordination processes depicted in Figs. 16 and 17. Estab-
lishing subsidiarity represents a pattern that, in principle,
can be used to create an algorithm that automatically con-
verts a model with Stage-1 Decentralized Coordination to a
model with Stage-2 Decentralized Coordination. Essentially,
the main idea of the algorithm consists of three steps. Note
that these steps represent a sketch of an algorithm which
ignores many special cases and details necessary for a fully
viable algorithm. The intention of this sketch is to demon-
strate feasibility of such an algorithm.

1. Identification and Classification of Coordination Con-
straints. Given a relational process structure with a
Stage-1 coordination process model, the algorithm needs
to identify the specific coordination constraints that may
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be moved to a lower scope, as shown in Example 12.
The Stage-1 coordination process model contains all the
relevant constraints in the form of semantic relationships
and coordination step types. The coordination constraints
represented in this form are easily accessible for formal
analysis of the involved process types. Due to the rela-
tional process structure, the process type involved in the
coordination constraint that is highest up in the hierar-
chy can be easily identified. Each coordination constraint
can consequently be classified by a process type using
an appropriate classification algorithm. Thereby, differ-
ent classes with a specific process type as class identifier
are created. Based on these resulting classes additional
coordination processes can be created. The class iden-
tifier process type becomes a new coordinating process
type. The created coordination process models are ini-
tially empty, i.e., they do not contain coordination steps
or coordination transitions. Moreover, this classification
may be modified with parameters. For example, it should
be possible to specify how many coordination processes
should coordinate the relational process structure.

2. Decentralization. With the newly created empty coordi-
nation processes and the classified constraints, the con-
straints can be cut-and-pasted from the Stage-1 model to
their respective Stage-2 coordination processes. The cut-
and-paste fragments of the coordination processes, which
represent one or more constraints, may be disconnected,
i.e., no coordination transitions exist between them. The
correct connections, however, can be deduced from the
Stage-1 coordination process model. Moreover, the cut-
and-paste of coordination constraints might leave gaps
in the Stage-1 model. Both kinds of gaps may be filled
by simply creating new coordination transitions between
start and end connections of the coordination process frag-
ments according to the original Stage-1 coordination pro-
cess model. For example, this step of the algorithm can be
shown by comparing coordination step Application:Sent
connected with coordination steps Application:Accepted
and Application: Rejected in Figs. 12 (Stage-1) and
16 (Stage-2). By cutting-and-pasting and creating new,
additional coordination transitions, the modified Stage-1
coordination process model itself becomes a compliant
Stage-2 Decentralized Coordination process model.

3. Establishing Correctness. The newly created Stage-2
coordination process models might not fully adhere to
some of the correctness criteria outlined for coordination
processes. For example, it is not guaranteed that start and
end coordination steps reference the respective coordinat-
ing process type of the coordination process. In this case,
proper start and end steps are added to the coordination
process and connected to the existing start and end steps
of the coordination process graph fragments.

In consequence, a Stage-1 decentralized business process
model can be automatically transformed into a Stage-2
decentralized business process model. Note that this is only
possible due to the inherent properties of relational process
structures, semantic relationships, and coordination pro-
cesses. Other approaches that support Stage-2 Decentralized
Process Coordination might not be capable of automatically
establishing Stage-2 Decentralized Coordination.

Incidentally, the way relational process structures and
coordination processes support establishing Stage-2 Decen-
tralized Coordination, it is possible to reverse Stage-2
Decentralized Coordination back to a model with Stage-1
Decentralized Coordination. Essentially, this means integrat-
ing the decentralized coordination process back into a single
coordination process with the largest scope that is necessary.
This can be used to test various configurations of decentral-
ized coordination processes without having to model them
individually and manually. The modeler may start with one
central coordination process or multiple decentralized coor-
dination processes. Using the algorithm and parametrization,
the modeler can quickly adapt the coordination to various
needs, depending on the goals or needs of the overall model.

Bothestablishing Stage-2 Decentralized Coordination and
the reversal to Stage-1 Decentralized Coordination may be
immensely beneficial for saving the process modeler sig-
nificant effort when decentralizing or centralizing process
coordination.

5 Distributed environments

Having decentralized coordination processes across different
hierarchy levels yields significant benefits for the simplicity
of the coordination process models. However, a factor that
might significantly influence subsidiarity and Stage-2 Decen-
tralized Coordination of a plethora of processes has not been
discussed yet: The influence of distributed environments.

In settings where multiple processes collaborate to achieve
a business goal, it is not unreasonable to assume that these
processes may not all be executed on the same machine.
Instead, processes may be executed on a multitude of differ-
ent machines or servers, i.e., a distributed environment. With
the advent of cloud computing, distributed applications are
gaining even more momentum, as scalability is becoming an
important issue [2,4].

The PHILharmonicFlows project has developed a hyper-
scale process engine, called PHILharmonicFlows, that allows
distributing processes horizontally across different compu-
tational nodes [2]. This enables superior performance in
executing processes by leveraging the computing power of
entire computational clusters. Consequently, the problem of
executing relational process structures in a distributed envi-
ronment is of considerable practical importance. Especially
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Fig.18 Schematic view of the stages of decentralization in a distributed
environment

regarding large process structures, coordination processes
might become a bottleneck if the distributed environment
is not properly taken into account

In detail, processes in a relational process structure may
not all belong to the same (computational) node, e.g., a
single server. In a distributed cluster, e.g., a cloud environ-
ment, there exist multiple nodes. Different processes may
be assigned to different nodes. The distributed nodes may
exist for different reasons, possible examples include differ-
ent physical locations each being represented by a node, or
simply multiple servers in the same company department or
cluster. Figure 18 shows a schematic view how the different
stages of decentralization and distribution fit together.

Consider the following example of a car manufacturing
process, which exemplifies a distributed approach to a busi-
ness process that produces a car (cf. Example 14).

Example 14 (Car Manufacturing) The automotive company
“Generic Inc” assembles its best-selling model GeneriCar
at its main facilities called Plant A. The constituting parts
of GeneriCar are produced and assembled at various sub-
sidiaries of Generic Inc. The Substructure of the car and its
components are fabricated at Plant B, except for Tires, which
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are manufactured at Plant T. Interior, Engine Compartment,
and Body are manufactured as well at different plants. The
Engine itself, as a complex part, hast its own production
facility called Plant E. All components of the Car are
transported with trains and trucks between the different facil-
ities. Each component undergoes a specific lifecycle process
that describes production, testing, optional storage, deliv-
ery, and integration into the next higher-level component of
the Car. As one of the first companies, Generic Inc rolled
out a company-wide, distributed process-aware informa-
tion system (PAIS) dedicated to the IT-support of enacting,
coordinating, and monitoring the processes for each car com-
ponent and their interdependencies. The system replicates the
structure of the facilities, i.e., each plant has its own compu-
tational node in the company-wide PAIS.

Figure 19 shows a graphical overview of nodes, processes,
and assignments of the processes to the nodes. The assign-
ment of processes to nodes can have an impact on the optimal
approach for reaching Stage-2 Decentralized Coordination.
When choosing where to create decentralized coordination
processes, the layout of clusters and nodes as well as the
process assignment, must be taken into account.

In regard to process coordination in distributed environ-
ments, performance and scalability are the main challenges
in addition to correct coordination. Specifically, communi-
cation between processes and, consequently, communication
between nodes has an important impact on the overall per-
formance of the distributed relational process structure. In
general, communication within a node is considered cheap,
whereas communication between nodes is costly in terms of
time and performance. This holds regardless of any specific
metrics, and communication between nodes should therefore
be reduced to a minimum. Costly extra-node communication
is showcased by Example 15.

Example 15 (Extra-node communication I) Consider node
Plant D in Fig. 19 tasked with assembling the Engine
Compartment. Processes for the Cooling System, Battery,
and Alternator run together with the Engine
Compartment on the same Plant D node. These pro-
cesses are coordinated using a coordination process with
Engine Compartment as the coordinating process type. As
all these processes run on the same Plant D node, the
coordination of the processes is performant as communica-
tion stays entirely within the node. However, the Engine is
also part of the Engine Compartment assembly, but is pro-
duced at a different plant called Plant E. So the processes
that comprise the EngineCompartment, i.e., Engine, Piston,
Spark Plug, Oil, and Crankshaft, are also coordinated by the
Engine Compartment coordination process, but are located
on a different node. As such, the communication required to
coordinate the processes on Plant E must cross node bound-
aries, as the coordination process is located on the Plant D
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Fig. 19 Car manufacturing relational process structure

node. As there are five processes on the Plant E node, the
communication overhead is severe due to extra-node com-
munication cost.

Obviously, communication between nodes cannot be
totally avoided, as processes need to be coordinated across
nodes. Coordination processes, however, allow minimizing
the communication between nodes significantly. By attach-
ing coordination processes to process types where the scope
encompasses the entire node, the communication is kept
within a node, as exemplified by Example 16. Note that fur-
ther coordination processes within a node are still possible
by using additional coordination process types for Stage-2
Decentralization within the node itself (cf. Fig. 18).

Example 16 (Extra-node communication II) The communi-
cation overhead in Example 15 can be significantly reduced
by creating a new coordination process with Engine as
the coordinating process type. The previous extra-node
communication required between Piston, Spark Plug, Oil,
and Crankshaft and the Engine Compartment coordination
process is internalized, i.e., communication solely occurs
within node Plant E due to use of the Engine coordi-
nation process. Piston, Spark Plug, Oil, and Crankshaft,
which are all located on the Plant E node, now exclusively
communicate with the Engine coordination process. The
Engine Compartment coordination process only coordinates
with the Engine process externally.

As shown with Examples 15 and 16, distributed envi-
ronments may have a huge influence on the appropriate
decentralization of process coordination. Taking the layout
of clusters and nodes into account when modeling multiple
coordination processes increases the overall benefit offered
by a decentralized approach, allowing for optimal process
coordination.

Altogether, coordination processes allow for the decen-
tralized coordination of large process structures. The rela-
tional process structure hierarchy, scope, and subsidiarity
principle provide clear responsibilities for each coordination

process, facilitating modeling and reducing modeling errors.
In particular, the coordination approach no longer contains a
single point of failure. By using multiple coordination pro-
cesses for the same large process structure, the individual
coordination process models become smaller and simpler,
resulting in greater understandability and maintainability of
the models. As shown, these advantages also translate well
to a distributed cluster, where a coordination process can be
used for each node, significantly reducing communication
overhead and, therefore, increasing the performance of exe-
cuting the processes.

6 Technical implementation

Coordination processes have originated in the object-aware
process management paradigm [26]. The concepts of object-
aware process management, i.e., objects, lifecycles, relations,
and coordination processes, have been implemented in the
PHILharmonicFlows prototype. A lifecycle process of an
object conforms to the definition of process type (cf. Def-
inition 1).

The initial prototypical implementation of PHILharmon-
icFlows as an object-aware process management system
was developed from 2008 to 2012. It involved functional
design- and run-time of the basic concepts of object-ware
process management, though many advanced features could
not be realized due to the technology available at the time. In
2015, a fully new implementation internally named ‘“Pro-
teus” was started, leveraging the emerging concepts of
microservices. Microservices allow for a scalable and per-
formant execution of object-aware processes. However, this
also rendered almost all of the existing codebase of the
previous prototype obsolete. The new paradigm of microser-
vices also required to re-think and adapt many concepts
of object-aware process management, accounting for the
new requirements imposed by this fundamental change.
Concepts such as object lifecycles [41], the relational pro-
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cess structure [39], and coordination processes [38] were
extended and adapted, with a major focus on the run-time.
In particular, the operational semantics required a substan-
tial overhaul. The re-implementation of PHILharmonicFlows
also paved the way for the development of advanced features
such as ad hoc changes for object aware-process manage-
ment [3] and a hyper-scalable run-time environment [2] and
enabled the concepts Decentralization and Distribution of
process coordination, as presented in this article. This new
and improved microservice-based implementation continues
using the branding PHILharmonicFlows.

Both distribution and decentralization are inherently rel-
evant to the object-aware process management paradigm
in particular, but also to other data-centric approaches to
BPM [42]. As business processes emerge from potentially
large relational process structures containing interacting
objects with lifecycles, decentralization of process coordi-
nation yields significant benefits. PHILharmonicFlows, the
implementation of the object-aware paradigm, comprises a
distributed process engine based on microservices, and may
be deployed to a cloud-based cluster. As such, multiple coor-
dination processes have significant benefits as well. The
intention is to show that, in addition to the functional bene-
fits of having multiple coordination processes, it also yields
significant performance improvements, even when there is
no distribution over multiple nodes.

6.1 Actors and microservices

With PHILharmonicFlows, much effort has been put into
development to create a scalable process management sys-
tem that supports a large number of concurrently running
processes [2]. Object-aware process management is uniquely
suited for this, as its conceptual elements, e.g., objects and
their lifecycle processes, can be represented as individual
actors. Actors in the actor model theory are the basic build-
ing blocks for concurrent computation [1]. Actor model
theory serves as a theoretical foundation for implementing
concurrent and distributed systems. Object-aware process
management, with objects, lifecycles, and coordination pro-
cesses corresponding to individual actors and the requirement
for concurrent and scalable process execution, fits the basic
notions of actor model theory flawlessly. Therefore, it was
logical to design the new implementation of PHILharmon-
icFlows around actors and microservices.

Inessence, an actor is an independent entity that consists of
a message queue and a store for arbitrary data. An actor may
receive messages from other actors or from external sources
and processes them using data contained in the message and
data from its store. An actor may only work on exactly one
task atatime, i.e., conceptually it runs on one single computa-
tional thread. An actor servicing a message may only work on
this single message, whereas all other messages are put in the
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queue until the current message will have been serviced. An
actor system is realized by having multiple actors of different
types that express different functionality. In such a system,
the actors then may run concurrently and in parallel. Because
of the single computational thread and the message queuing,
most of the concurrency problems regarding persistence and
computation, e.g., race conditions and dirty reads/writes, are
not present in an actor system. Moreover, actors may com-
municate asynchronously.

PHILharmonicFlows is realized as an actor system. Each
object instance, together with its lifecycle process and its
attributes, is implemented as one actor. Coordination pro-
cesses are actors as well, but have a different actor type.
Figure 20 shows a schematic view of actors and their com-
munication. In particular, an actor may involve other actors
when servicing a request, as required data or functionality
may be located with other actors. Note that in Fig. 20, Actor
A is servicing an external request, depicted by the message
in its message queue and the outgoing communication from
its thread.

Each actor in the PHILharmonicFlows system is realized
as a microservice using Microsoft’s Azure Service Fabric
Framework?. Azure Service Fabric combines microservices
with the actor paradigm, and therefore constitutes an ideal
technical framework for building PHILharmonicFlows. The
overall architecture of the PHILharmonicFlows system can
be seen in Fig. 21. As has been demonstrated in [2], PHIL-
harmonicFlows can scale horizontally very well, i.e., across
distributed machines or a cloud.

Microservices are capable of running concurrently or in
parallel by definition. As each process is implemented using
a microservice, logically the concurrent execution of process
instances is guaranteed by the PHILharmonicFlows imple-
mentation.

Still, the implementation must enable the asynchronous
interactions between processes. Any object lifecycle process

2 https://docs.microsoft.com/en-us/azure/service-fabric/.
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is, in principle, independent from any other object life-
cycle process, there is no coordination of object lifecycle
processes, apart from coordination processes. Conceptually,
semantic relationships enable the asynchronous execution of
the coordinated processes. Semantic relationships are repre-
sented by actor data, and several communication exchanges
between the actors to represent their functionality at a funda-
mental level. Their implementation uses the message stores
and message exchange capability of the actors. Therefore,
semantic relationships constitute abstractions over multi-
ple, conditional series of messages between actors. As
actors are inherently capable of asynchronous communica-
tion, the implementation of semantic relationships enables
asynchronous process interactions as well. Therefore, true
asynchronous execution of interdependent lifecycle pro-
cesses is enabled by PHILharmonicFlows.

In summary, PHILharmonicFlows is capable of execut-
ing a multitude of processes concurrently and in parallel by
using the Azure Service Fabric Framework to implement the
concepts. Asynchronous communication is enabled by the
underlying actors.

6.2 Decentralized coordination process
performance on a single node

In order to prove that coordination processes have perfor-
mance advantages when they are decentralized, an experi-
ment was set up.

Experimental goal

It must be demonstrated that the execution time of the pro-
cesses in a process structure, which is coordinated by multiple
decentralized coordination processes, is (significantly) lower

or equal than the same process executions using one single
coordination process.

Experiment basics

For enabling the quantitative measurements for decentralized
coordination processes, two PHILharmonicFlows models
were defined:

1. the recruitment business process described in the running
example (cf. Example 1) and
2. an insurance claim business process (cf. Fig. 22).

These models have been defined in three variants, which are
used for comparison:

— Central coordination: One single coordination process
— Decentralized coordination: Two coordination processes
— No coordination: No coordination processes

In terms of object types, the insurance claim model is slightly
larger than the recruitment model. All processes and coordi-
nation processes are located on the same node, i.e., there is
no distribution across nodes for this experiment.

Furthermore, for each model, an execution sequence was
defined that resembles a fairly standard and sufficiently
complex execution of the business processes. An execution
sequence defines a series of actions, describing at which
points process instances are created or deleted, or when they
change their state. In detail, an execution sequence action is
created using one of the following functions (cf. Table 3) and
supplying it with concrete parameter values.

Function InstantiateProcess(w”) creates a new process
instance, given a process type . The function LinkInstances
", /g) takes two process instances a)ll , i = 1,2 as
arguments and creates a relation between them, provided
that a respective relation type exists in the model. Func-
tion ChangeAttributeValue(wl, ¢T, v) writes value v
to attribute instance ¢! of process instance w!. Attribute
instances can be uniquely identified by their type ¢7,
given the process instance w!. In case ¢! already has
a value, the value is overwritten with v. Finally, func-
tion CommitTransition(!', ¢7) causes a state change, i.e.,
after completion of the function the target of the transition
becomes the active state o/

In PHILharmonicFlows, itis possible to execute processes
using only these four main functions (cf. Table 3). This is
enabled by the data-driven lifecycle processes in PHILhar-
monicFlows, on which the models are based. The details
of lifecycle process execution have been described in [41].
Based on these functions, an execution sequence is designed
that realizes a full business process execution involving mul-
tiple process instances.
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Table 3 Execution sequence operations

Demand Completed

Function

Description

InstantiateProcess(w’)

: Il
LinkInstances(!}, !5)
ChangeAttributeValue(w’, ¢T, v)

CommitTransition(!', g7

Creates a new instance of process type @

Writes value v of an attribute instance ¢ that has type ¢” of process w

T

Creates a new relation instance between process instances a){ and wé.

1

Commits transition 7/ that has type 7 of process w’. Implies a state change of !

The execution sequence describes how the instances of
both models are executed, i.e., any instance of the model,
regardless of the configuration of potential coordination pro-
cesses, performs the same actions in the same order. The
execution sequence is designed to not violate any coordina-
tion constraints in order to achieve identical results even when
there is no coordination process involved. Otherwise, in one
case, an action may be blocked by a coordination process. In
case of amissing coordination process, the same action would
not be blocked and create different results and therefore bias
in the performance measurements. A full description of both
models, together with the detailed execution sequences and
their descriptions, as well as the results of all benchmarks,
has been made available.

Measurement setup

As PHILharmonicFlows supports parallel and concurrent
process execution as enabled by the actor microservices, per-
formance measurements follow the guidelines for measuring
the performance of parallel computing systems, as described
in [2]. This experiment reuses the exact methodology from
[2] and is therefore not replicated in detail here for the sake of
brevity. In short, the general idea is to dynamically determine
the number of runs n needed to achieve a given confidence
interval CI for the measured value, for a given confidence
percentage 1 — «.

The value measured is the execution time #)¢,. of the exe-
cution sequence with the processes being coordinated by a
central coordination process. Execution time #2¢,. measures

3 The data can be found at https://bit.ly/2DvVEZvk.
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the same for decentralized coordination processes. For estab-
lishing a baseline, 1. denotes the time for enacting the

execution sequence without any coordination process. £,
2c
t

ocrand )¢, - are the summation of the execution time of each
individual action in the execution sequence. All measure-
ments in context of a scenario are denoted as a benchmark.

All benchmarks have been run on a Lenovo T470p note-
book. It features a Intel(R) Core(TM) i7-7700HQ 4 Core/8
Thread CPU running at base clock 2.80GHz in stock con-
figuration. The CPU was neither overclocked, undervolted,
nor locked to a specific frequency. The laptop further has 16
GB RAM DDR3-2400 and an SSD. Software-wise, it runs
Windows 10 Pro x64 v1903, Visual Studio Enterprise in the
most up-to-date version (as of October 15th, 2019), and the
debug-compiled, up-to-date PHILharmonicFlows software.
The benchmarks were performed with the laptop plugged in,
using best performance mode of Windows 10.

Results, observations, and interpretation

The overall execution times are reported in Table 4, giving
an overall impression of the performance of the PHILhar-
monicFlows process engine. All execution times are provided
in the form of standard intervals [lower,upper] , where time
has the format [ss : fff]. Three Scenarios #1-3 have been
run, two times using the recruitment business process, one
time the insurance model containing the coordination pro-
cess in Fig. 22. The confidence 1 — « of the respective f. ¢
confidence interval is given as a percentage rounded to two
decimal places.
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Table 4 Performance measurements of two process models

# 1 2 3
Model Recruitment Recruitment Insurance
Instances 32 10 20
Actions 289 82 168
CItls, [01:613, 01:761] [00:502, 00:530] [01:069, 01:140]
n"¢ 6 6 6
11—« 96.88 96.88 96.88
CcI tf;‘ea [02:291, 02:421] [00:597, 00:609] [01:202, 01:268]
n?e 6 6 6
11—« 96.88 96.88 96.88
CcI tl;‘ea [02:484, 02:596] [00:911, 00:978] [01:256, 01:284]
nte 6 6 6
11—« 96.88 96.88 96.88

— Scenario #1 is the recruitment business process, where
5 Applications are submitted and reviewed, each having
3-5 Reviews.

— Scenario #2 is a cut-down version of Scenario #1, where
only one Application is submitted and subsequently
accepted to fill the position.

— Scenario #3 is an insurance business process, comprising
one instance of each process type.

Regarding the setup of the measurements, the execution
sequences have been designed to resemble what can be
considered fairly standard process executions. Within the
constraint of being fairly standard, the sequences still try
to prolong process execution, i.e., maximizing f,x... When-
ever branches may be chosen during decisions, the execution
sequence chooses the longer path. Furthermore, the execu-
tion sequences take no advantage of the parallelism possible
with the PHILharmonicFlows engine. Each sequence simu-
lates a single user, executing each action sequentially. Note
that this does not prevent the PHILharmonicFlows engine
from using some parallel execution, i.e., its inherent paral-
lelism. Still, the execution sequences constitute a worst case
as far as the concurrent execution of processes is concerned.

Moreover, the models used for the measurements exhibit
very high degrees in the amount of coordination required.
Especially the recruitment example shows very tight coor-
dination. The model has 4 processes with 5 states each, and
of these 20 states in total, 4 are not subject to coordination
by a coordination process (cf. Figs. 6 and 12). As such, the
model almost maximizes the amount of coordination, lead-
ing to almost another worst case for the total execution time.
The insurance example is less tightly coordinated. In light of

these detrimental conditions, a maximum execution time of
less than 3 seconds for Scenario #1 is satisfactory.

As can be seen in Table 4, running the same execution
sequence of Scenario #1 with a central coordination pro-
cess takes roughly ls more compared to running without
any coordination process. For all scenarios, the variant with
decentralized coordination processes is slightly ahead of the
central coordination variant using one coordination process.
For Scenarios #1 and #2, the difference is ~ 300ms, whereas
in Scenario #3 both intervals are approximately identical,
with decentralized coordination being ahead by ~ 20ms over
one central coordination process.

Given the number of process instances (32) and number of
actions (289) for Scenario #1 and sequential execution, total
execution time manages to remain significantly below 3 sec-
onds (highest interval C1 )¢, =[02:484, 02:596]. Scenarios
#2 and #3 have less actions and consequently achieve bet-
ter total execution times (highest interval C1 £}, =[00:911,
00:978] for Scenario #2 and C1 )¢, =[01:256, 01:284] for
Scenario #3. Note also that the execution sequences produce
consistent results, as it takes only the minimum amount of
runs (6) to obtain the necessary confidence level of > 95 %.

Table 4 shows that decentralization has clear benefits over
central coordination. This is most likely due to the decentral-
ized coordination processes allowing for better utilization
of parallelism in the PHILharmonicFlows engine. Note that
the usage of parallelism is not entirely prevented by the
sequential application of individual actions. The sequen-
tial application only prevents more parallel execution. The
decentralization allows splitting the workload across multi-
ple coordination processes, creating a significant reduction of
overall execution time. Without decentralization, all updates
are done on the same coordination process. While the size
of the effects varies with the specific model and execution
sequence (cf. Scenarios #1 and #3 in Table 4), it is noticeable
in all Scenarios shown in Table 4.

Table 5 displays various metrics related to the benchmarks
of Scenarios #1 - #3. The data are obtained from the last
(sixth) run of Scenario #1 of each individual benchmark run,
as the total execution time is guaranteed to be within the inter-
val bounds and, therefore, is representative. As the execution
times are based on a single run, there is no variance and the
interval notation of Table 4 is not needed.

Table 5 is partitioned by the functions presented in
Table 3, permitting to draw some conclusions on where
the performance benefit of decentralized process coordi-
nation comes from. Comparing the values for function
Linklnstances(/g, /2), there is a significant reduction in
execution time comparing decentralized and central coordi-
nation processes. This supports the previous assumptions that
better utilization of parallelism is responsible for the over-
all performance increase. Whenever a new process instance
is linked to a relational process structure, coordination pro-
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Table 5 Statistical data for the last run of Scenario #1 (Recruitment)

Instantiate Process(w™)

ChangeAttribute Value(w' 6T, v)

CommitTransition(w!, 77) LinkInstances(w', wh)

Total 0CP 00:378 00:323 00:223 00:738
Time 2CP 00:591 00:351 00:313 01:120
10P 00:495 00:358 00:271 01:423
0CP 00:012 00:003 00:003 00:024
Average —y0p 00:018 00:003 00:004 00:036
1CP 00:014 00:003 00:004 00:046
0CP 00:011 00:002 00:003 00:023
Median ) p 00:013 00:002 00:004 00:038
1CP 00:013 00:003 00:003 00:046
0CP 00:010 00:001 00:002 00:021
Minimum ) -, 00:011 00:001 00:001 00:020
10P 00:010 00:001 00:002 00:019
0CP 00:021 00:009 00:007 00:030
Maximum 00:047 00:027 00:014 00:046
1CP 00:026 00:036 00:010 00:074

cesses must be notified of the change. Then, the coordination
process must perform an update by reevaluating affected
coordination constraints. This can be done in parallel for
two coordination processes, and as each coordination process
comprises less constraints compared to a central coordination
process, the update can be performed faster.

The speedup of Linklnstances(/I , .’é) is, however, coun-
teracted by InstantiateProcess(w’ ). Decentralized coordi-
nation requires the instantiation of multiple coordination
processes, which results in increasing instantiation times for
coordinating process types. The function ChangeAttribute
Value(a)l , ¢T, v) is not affected much by having multi-
ple coordination processes; the values for both variants are
roughly the same. The function CommitTransition(!!, o7),
however, is slower with decentralized process coordination
than with central process coordination, though only by 40ms.
This can be explained with the coordination constraints that
are shared between decentralized coordination processes,
e.g., coordination step Application:Sent is present in both
decentralized coordination processes. As such, whenever a
change affects state Sent of an Application instance, a slight
overhead occurs from having to communicate with two coor-
dination processes.

The absolute differences between no coordination, cen-
tral coordination, and decentralized coordination are largely
unimportant. These values are highly dependent on the busi-
ness process, as well as the specific execution sequence.
However, as the execution sequence constitutes a worst case
regarding parallel execution, the performance measurements
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allow drawing the conclusion that decentralized coordination
is generally faster than central coordination, i.e., a qualitative
ranking regarding performance can be made. Furthermore,
Table 5 indicates where these performance advantages are
realized.

In essence, the performance advantage of decentralized
process coordination is due to the inherent parallelism of
the PHILharmonicFlows engine. The engine is capable to
distribute workloads across different coordination processes
in variant with decentralized coordination, resulting in an
overall speedup compared to central coordination. Note that
this occurs even when the execution sequence is a worst
case regarding parallelism. Therefore, allowing more par-
allel execution of processes generally shifts the advantage
further toward decentralized coordination.

Limitations

However, note that the experiments only show some cases
that should give a reasonable estimate of the performance of
decentral vs. central process coordination. Due to the amount
of possible combinations of models, execution sequences,
and the number of ways to organize coordination processes, it
is impossible to guarantee favorable performance for decen-
tralized coordination in every case. In consequence, the
experiment has a limited generalizability. The experiment
uses a single representation of decentralized coordination
with only two coordination processes. Other setups with
more or different coordination processes might yield dif-
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ferent results. Generally, however, as various factors affect
performance differently, it is certainly possible to create or
encounter exceptions where decentralized process coordina-
tion performs poorly or even worse than central coordination.
For the given execution sequence representing a fairly
standard case, decentralized process coordination performs
adequately.

Due to the various possibilities decentralization in this
experiment can be organized, the quantitative, relative differ-
ences between central and decentralized coordination have
limits regarding expressiveness. However, the experiment
represents the worst case regarding parallelism. On a qual-
itative level, decentralization performs almost always better
due to the better usage of parallelism.

Summary

Performance benefits of decentralized process coordination
on a single node could be demonstrated. At the very least,
the results show that decentralized process coordination does
not perform worse than central process coordination for the
given benchmarks. While the significance of the quantita-
tive differences is limited, qualitatively a clear advantage is
present. This is due to increased parallelism of decentralized
coordination, compared to central coordination in the PHIL-
harmonicFlows Engine. Moreover, the following experiment
will demonstrate the performance of decentralized process
coordination in a distributed environment, where processes
are located on multiple nodes.

6.3 Decentralized coordination process
performance on multiple nodes

In order to prove that coordination processes have perfor-
mance advantages if they are decentralized and distributed,
an experiment with a distributed cluster was set up.

Experiment goal

For this experiment, the goal is to show the performance
advantage of decentralized coordination by reducing extra-
node communication in a distributed environment.

Experiment setup

In the basic setup, processes are distributed across multiple
nodes on a computing cluster. In the central variant, one coor-
dination process is located on one node, coordinating every
process on every node. This requires significant extra-node
communication. In the decentralized variant, each node is
coordinated by its own coordination process located on the
same node, which should require less extra-node communi-
cation, resulting in a better overall performance.

Concretely, two scenarios CMICP and CM7CP are
defined. Both scenarios constitute edge cases regarding
decentralization and are based on the car manufacturing
model (cf. Example 14). This example exemplifies a suffi-
ciently large relational process structure for multiple con-
figurations of virtual clusters and coordination processes.
Scenario CM1CP presumes one coordination process with
coordinating process type Car and a virtual cluster as
depicted in Fig. 19.

— Scenario CM1CP represents the edge case of fully central
process coordination.

— Scenario CM7CP retains the same virtual cluster (cf.
Fig. 19), but is coordinated by seven coordination pro-
cesses. Each coordination process is located in another
node of the cluster, and the coordinating process type
is highest in the hierarchy of the relational process
structure, but still belongs to the respective node (cf.
Fig. 19). Therefore, coordinating process types for Sce-
nario CM7CP are Car, Substructure, Interior, Engine
Compartment, Body, Tire, and Engine. Scenario CM7CP
realizes fully decentralized coordination in a distributed
cluster.

For the sake of comparison, the recruitment business process
example (cf. Example 1) is evaluated as well. Here, distribu-
tion is defined as follows: Job Offers are located on node A,
whereas Applications, Reviews, and Interviews are assigned
to node B.

— Scenario R1CP has one coordination process, and
— Scenario R2CP has 2 coordination processes.

Both scenarios reuse the execution sequence defined in Sce-
nario #1 (cf. Sect. 6.2). Table 6 gives an overview of the
amount of intra- and extra-node communication of all sce-
narios in regard to their respective execution sequences.

Measurement setup

The goal is to determine the amount of communication
occurring between processes and coordination processes and
whether this is extra-node or intra-node communication. For
this reason, PHILharmonicFlows logs each communication
unit between processes and coordination processes. Note that
a communication unit in this context is not equal to a single
message exchange as, for example, known from BPMN 2.0
choreographies [34]. This is due to the fact that PHILhar-
monicFlows uses semantic relationships, which are defined
on a higher level of abstraction and, therefore, may comprise
multiple message exchanges. Instead, as objects with lifecy-
cle processes and coordination processes are implemented as
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Table 6 Intra- and extra-node

communication for different Id Model Number CP Intra-node Extra-node
scenarios CMICP Car Manufacturing 1 27 765
CM7CP Car Manufacturing 7 799 81
RICP Recruitment 1 70 810
R2CP Recruitment 2 705 175

actors, individual actor method invocations are logged. Com-
munication between actors occurs by one actor invoking an
actor method on another actor. Accordingly, actor method
invocations are the communication unit used for these bench-
marks.

For each communication unit, i.e., actor method call, the
source and target are logged, which are identified by their
ID. Source and target are either a process instance or a coor-
dination process instance. Moreover, the name of the actor
method is logged as well. For both source and target, the
corresponding object types are determined and added to the
log.

The aforementioned log setup describes a qualitative
benchmark. For the purposes of this benchmark, qualitative
logs are sufficient to arrive at dependable results. From the
logs, it is possible to calculate intra- and extra-node com-
munication by superimposing a virtual cluster with multiple
nodes on the actual single-node cluster. In other words, each
process and coordination process running on the single-node
cluster is assigned a node where it virtually resides. This
simulates a multi-node cluster, with the drawback that actual
time measurements are meaningless, as it is actually still the
same node of the cluster. However, as source and target of the
message exchange are logged, it can be determined whether
the resulting communication was intra-node or extra-node on
the virtual cluster. For intra-node and extra-node communica-
tion, different virtual costs may be assigned. In consequence,
the measurement results are no longer quantitative, but only
allow for a qualitative assessment of the benefits.

The virtual cost assignment to extra- and intra-node
communication is done under the assumption that external
communication takes longer. One of the advantages of this
qualitative approach is that costs can be varied, i.e., large
and small differences between intra-node and extra-node
communication can easily be realized. This allows quickly
simulating different settings that may closely resemble real-
istic settings. Moreover, as the multi-node cluster is also
virtual, its layout can be changed easily. Changing the lay-
out allows assessing a wide variety of cluster layouts and
coordination process setups for their costs associated with
extra-node communication.
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Table 7 Performance estimates based on different cost ratios for the
car manufacturing model

Ratio Total cost CM7CP Total cost CM1CP Difference

1.5 920 1174 +27.6%
961 1557 +62.0%
1042 2322 +122.8%
1204 3852 +219.9%

10 1609 7677 +377.1%

Results, observations, and interpretation

As can be seen in Table 6, the scenarios significantly differ
in the amount of intra-node and extra-node communication.
This can be entirely expected, as the respective scenarios
are on opposite sides of the decentralization spectrum. How-
ever, it is yet unclear how much this difference might affect
the performance of the overall system. In other words, how
much does extra-node communication cost in terms of per-
formance.

Though we cannot measure the impact directly, instead
several estimates based on different, fictitious performance
numbers can be given. For this purpose, intra-node com-
munication is assigned a fixed performance cost of 1. For
extra-node communication, a ratio is defined by how much
slower extra-node communication is compared to intra-node
communication, i.e., the cost ratio in terms of performance.
The total cost in terms of performance for each scenario is
calculated using the formula

$totalCost = L$intra—node + $extra—node * ratioj
where $intra—node and $extra—node correspond to the val-
ues shown in Table 6. The total cost is rounded down to the
nearest Integer value. Table 7 reports on performance cost
estimates based on different ratios between intra- and extra-
node communication.

Obviously, the centrally coordinated variant CMICP of
the car manufacturing model displays a large increase in
performance cost with increasing ratio, as it generates sub-
stantially more extra-node communication. At the same time,
the decentralized variant shows only a moderate increase with
increasing ratios. According to these numbers, the decentral-
ization and distribution of coordination process across nodes
becomes more beneficial with increasing cost for extra-node
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communication. However, for all these different ratios, it is
unknown which of them represents a realistic value for the
cost ratio. In the following, it is assessed which ratio is more
likely to be encountered in the real world.

Estimating realistic cost ratios

Concerning intra-node communication, real values from
communication within datacenters can be taken as a basis.
Various websites* give the round trip time within a datacen-
ter as 0.5 ms. For the sake of caution, a quadrupling of this
value results in 2 ms for average intra-node communication.
Datacenters are highly optimized for network latency and are
likely not the primary location where PHILharmonicFlows
might be used. In general, the more conservative estimate of 2
ms should be more accurate. Note that a communication unit
also comprises a round trip, as the actor method invocation
brings back a result. Therefore, intra-node communication
and extra-node communication in PHILharmonicFlows are
comparable to datacenter communication.

As for extra-node communication, a reasonable estimate
is highly dependent on the distance between each node. For
the car manufacturing example, nodes represent physical
construction facilities, which are likely located in different
countries or, more precisely, cities in different countries.
An estimate of 500 km between nodes is likely to be on
the low end of the possible spectrum of distances between
cities in different countries. For obtaining a real-life time
value for a message round trip for a 500 km distance, pings
between major cities are a good source. The website wonder-
network.com® maintains regular pings between their servers
in various locations all over the world. 500 km roughly cor-
responds to the distance between Paris, France and Frankfurt
am Main, Germany (477.79 km), and the website reports an
average ping of 10 ms. Note that the ping utility® measures
round trip time, making these values comparable.

Judging from these values, a ratio of 5 (= 10 ms/2 ms)
is likely to be a realistic value in regard to the underlying
distance. This is a very cautious estimate, and real-life ratios
may be higher. According to Table 7, with a ratio of 5, car
manufacturing with central coordination takes roughly triple
the time of the car manufacturing using decentralized coor-
dination. In consequence, the results show a clear incentive
for using decentralized process coordination in distributed
environments. There is a clear performance benefit for decen-
tralized process coordination on multiple nodes.

4 https://gist.github.com/jboner/2841832, https://people.eecs.
berkeley.edu/~rcs/research/interac-tive_latency.html.

3 https://wondernetwork.com/pings.

© https://en.wikipedia.org/wiki/Ping_(networking_utility).

Limitations

For determining the benefits of multiple coordination pro-
cesses, the experiment only describes a qualitative analysis
of communication patterns. Instead of logging the time taken
to perform a communication unit, it is logged how many
individual units of communication have occurred in total,
without logging execution time. A quantitative analysis is
not possible as the necessary infrastructure to perform such
a benchmark is not at our disposal. Furthermore, even if
the infrastructure was available, it remains extremely diffi-
cult to reliably measure accurate execution times of message
exchanges in a multi-node setup. Therefore, this experiment
cannot give conclusive quantitative results.

The qualitative analysis further relies on some data val-
ues that cannot be obtained by direct measurement in
the PHILharmonicFlows engine, e.g., the time for intra-
node and extra-node communication. The logical argument
undertaken to arrive at concrete data values was made con-
servatively, with the intent of erring on the side of caution.
Additionally, the initial data obtained for the logical argument
might be unreliable or unrepresentative, e.g., data center ping
times. Other sources for the same data might report different
values. The results that have been obtained in this experiment
therefore have a large margin of error, but most likely in favor
of the approach.

Finally, the underlying assumption that extra-node com-
munication is slower than intra-node communication might
prove to be false, however, this can be deemed rather unlikely
in general. The comparison distance of 500 km for extra-node
communication is arbitrary and the results vary if the distance
is lowered or increased.

Summary

In summary, the performance measurements emphasize the
benefit of decentralized process coordination when using
multiple coordination process. Especially in distributed envi-
ronments, the use of multiple coordination processes pro-
vides clear advantages in performance. This performance
advantage is complemented by the functional benefits which
include smaller models, clear coordination responsibility,
and better maintainability.

7 Related work

Most approaches to business process management that rely
on interacting processes are closely related to data-centric
process management paradigms [42]. As they primarily rely
on process interactions, they may therefore also be classified
as interaction-centric approaches in addition to being data-
centric.
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Proclets are small, lightweight processes that focus on
interactions between processes [44,45]. As one of the first
approaches, proclets abandoned monolithic process mod-
els in favor of multiple, interacting processes. Proclets are
defined using the well-known formalism of Petri nets. The
approach also recognized that instances of proclets may need
to communicate with more than one other proclet. There-
fore, the proclet approach supports one-to-many interactions
between proclets. For this purpose, the used Petri net formal-
ism is extended with ports, enabling communication with
other proclets. Ports are fully integrated into the Petri net
formalism, supporting the formal analysis techniques known
from standard Petri nets. The communication between pro-
clets goes over channels that connect to ports on other
proclets.

The actual communication between proclets over a chan-
nel is realized by performatives, a special form of message.
A major advantage of the proclet approach is the support
for the full range of formal analysis techniques enabled by
Petri nets. Proclets have the potential to form large inter-
connected structures of different proclet types. However,
interactions between proclets are coordinated by the indi-
vidual proclets themselves, using performatives. As Proclets
coordinate with other proclets individually in a one-to-many
fashion, no concept for separate coordinators exists. Fur-
thermore, no specific research regarding decentralization of
individual proclets or coordinators is known.

Artifact-centric process management [33] describes busi-
ness processes as interacting artifacts. The behavior of arti-
facts is expressed in lifecycles. Central to this approach is the
artifact, which holds all process-relevant information in an
information model. An artifact lifecycle is specified using the
Guard-Stage-Milestone (GSM) meta-model [22,23]. In gen-
eral, an artifact may interact with other artifacts. However,
GSM does not provide dedicated coordination mechanisms
or explicit artifact relations, contrary to the object-aware
approach presented in this paper. Instead, GSM incorpo-
rates an arbitrary information model as well as an expression
framework with which artifact interactions may be specified.
While this, in theory, allows expressing any concept or con-
straint, in practice many of the capabilities of artifact-centric
process management hinge on the power of the expression
framework. As a drawback, expressions might become very
complex and must be supported by a rule engine to real-
ize the full potential of artifact-centric process management.
In principle, the concepts of the relational process structure
and the semantic relationships may be recreated in GSM with
complicated expressions to realize at least the basic function-
ality of coordination processes. While this is not impossible,
it requires great effort on part of the modeler to achieve the
same functionality as object-aware process management pro-
vides out-of-the-box.

@ Springer

Artifact-centric process management has been prototyp-
ically implemented in the BizArtifact demo tool’, whose
predecessors include Barcelona [20] and Siena [12]. Due to
the complexity of an artifact-centric business process, model
verification [6,8] constitutes an important aspect of artifact-
centric process management. Moreover, several variants of
artifact-centric process management exist in regard to coor-
dination.

Artifact-centric hubs [21] constitute one of the first ideas
to allow collaboration using artifacts. However, the interac-
tions take place between process participants, not among the
artifacts themselves. The basic idea is that participants use
artifacts to interact with each other, where an artifact is sim-
ilar to a bulletin board. [27] reused these ideas that lead to
the creation of artifact-centric hubs, but instead used these
ideas for introducing an approach enabling artifact chore-
ographies. Process participants, called agents, use artifacts
and execute them. Artifacts are assigned to a specific loca-
tion. By knowing where artifacts are located and who is
using them, a choreography between these agents can be
automatically generated. While both [21] and [27] provide
approaches for managing interactions, the interacting par-
ties are not the artifacts themselves. Instead, choreographies
between participants are created, a stepping stone to artifact-
based cross-organizational business process. Consequently,
both approaches are not directly comparable to coordination
processes. Moreover, using artifacts in a large-scale setting
has not been investigated by artifact-centric process man-
agement. As the artifact-centric hubs are supposed to be
centralized, no decentralization or distribution concepts have
been investigated.

In contrast, [43] presents an approach for providing declar-
ative choreographies for artifact-centric processes where
artifacts and not participants are the interacting entities. The
artifacts in this approach use a type-instance schema as well.
Declarative choreographies recognize the need for explicitly
knowing the relations between artifacts and their multiplicity.
Consequently, one-to-many relationships and many-to-many
relationships are supported by a concept called a correlation
graph. The artifact instances are coordinated using messages,
which are exchanged based on the constraints of the declar-
ative choreography. The constraints are specified by using
expressions, where the expressions require greater expres-
siveness than the expressions used for semantic relationships.
In turn, this makes expressions for artifacts more complicated
in comparison. Similar to [21], decentralized or distributed
coordination of artifacts has not been a specific concern,
though decentralization and distribution are of interest for
the approach in principle.

[18] investigates many-to-many interactions between pro-
cesses. The need for supporting many-to-many relationships

7 https://sourceforge.net/projects/bizartifact/.
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when dealing with interactions between artifacts is recog-
nized. Artifact lifecycles are specified by using Petri nets,
specifically proclets, instead of GSM, with the intention of
using the formal properties of Petri nets to verify an entire
artifact-centric business process [ 17]. Many-to-many interac-
tions between processes are fully incorporated into the Petri
net descriptions of these processes [44,45]. The interactions
between different Petri net-based processes are expressed
in terms of correlation and cardinality constraints, and full
operational semantics are provided. This form of descrip-
tion is accessible for formal reasoning and verification. As
opposed to coordination processes in object-aware process
management, which aim at high-level abstractions for differ-
ent concepts by using specialized notations, [17,18] aim at
notational simplicity by restricting themselves to few syn-
tactical concepts, i.e., Petri nets only. Similar to Proclets,
dedicated coordinators do not exist.

The coordination of large process structures with a focus
on the engineering domain is considered in [30,31]. The
COREPRO approach explicitly considers process relations
with one-to-many process relations and dynamic changes at
run-time, but transitive relations are not covered. In compar-
ison with COREPRO, semantic relationships are similar to
external state transitions of a lifecycle coordination model.
Howeyver, the external state transitions do not take the seman-
tics of the respective process interaction into account. While
COREPRO considers large-scale application of its specific
modeling concepts, no specific investigations into decentral-
ized coordination have taken place.

In principle, artifacts and proclets can be used in a dis-
tributed environment. Conceptually, no coordinator, similar
to the coordination process concept, is present in these
approaches. Consequently, no research toward decentralized
process coordination may be found in the literature. Fur-
thermore, distribution of proclets or artifacts has not been
investigated as well.

As PHILharmonicFlows comprises an execution engine
capable of supporting decentralized processes and coordina-
tion processes, it is necessary to assess other process engines.
[36] shows that most decentralization efforts in BPM are
achieved based on process engines, but not individual pro-
cesses or coordinators. In this regard, PHILharmonicFlows
and its hyperscale process engine are far ahead. Other types of
decentralization take place on the task level, where individual
tasks of a single process instance are executed on different
nodes.

[15,16] and [10] distribute workloads of business pro-
cesses between a client-side engine and a cloud-based engine,
taking into consideration that users might not want to store
their business data in the cloud. The approaches suggest to
primarily run compute-intensive workloads on the cloud-
based engine and transfer business data only when necessary.
[15] further presents a method for decomposing the process

model into two complementary process models: one for the
client engine and one for the cloud engine.

[24] deals with very large workflow engines and presents
concepts to provide high availability of the engine. The coun-
teract failing workflows, a backup strategy is presented. The
backup allows resuming a particular process instance at any
point in their execution.

[7] presents concepts for the executing processes in a
distributed environment. The paper presumes a cluster with
different nodes, and each node has a workflow engine server.
Workflows may be transferred between nodes to achieve
optimal performance, though individual servers may become
overloaded. The approach replicates workflow engine server
within nodes of the cluster to achieve more performance by
evenly distributing computing load within the node.

8 Summary and outlook

With coordination processes, the conceptual, technical and
methodological capabilities exist to successfully implement
decentralized process coordination for large process struc-
tures. The concepts of scope, hierarchy of the relational
process structure, and the principle of subsidiarity decrease
complexity and, thus, make the entire approach feasible.
On the benefits side, large-scale coordination of large pro-
cess structures becomes feasible, while at the same time the
complexity and size of individual coordination process mod-
els are reduced compared to a central coordinator. As has
been shown, this also applies to distributed relational process
structures. However, in a different sense multiple coordina-
tion processes are more complex than a central coordinator.
Again, subsidiarity and hierarchy are central to manage this
complexity, enabling designers to model the coordination of
large process structures. Furthermore, it has been shown that
decentralization of processes and process coordination has
performance advantages compared to central process coordi-
nation. Through state-based views, the concepts presented in
this paper can, in principle, be transferred to other paradigms,
given these paradigms can conform to the concept of a rela-
tional process structure.

While coordination processes can already deal with a vast
number of coordination problems, there are still several areas
left for improvement. One challenge concerns the monitor-
ing of a business process which is constituted by interacting,
interdependent processes. Coordination processes may be
used to gain valuable insights into the overall progress of
the business process, as coordination processes may be used
to aggregate status information from the coordinated pro-
cesses. This is especially challenging when decentralized and
distributed coordination processes are involved, but offers
promising perspectives as well. Decentralized process coor-
dination, in principle, allows for the decentralized monitoring
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of related process instances, enabling a more fine-grained
view of the progress.
Currently, PHILharmonicFlows offers some practically

oriented verification for single coordination processes. Expand-

ing this verification to include decentralized coordination
processes is immensely beneficial to a designer. Regarding
theoretical concepts such as controllability and realizability,
significant contributions have been made for choreographies
of activity-centric processes [13,19,25,27,28] and artifact-
centric processes [5,6,8,14]. As coordination processes are
based on semantic relationships, it is unclear how these
results translate to coordination processes and in particular
to decentralized coordination processes. A thorough investi-
gation into the applicability of these results to coordination
processes is the subject of future work.
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