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Abstract

Loud noise is a common risk factor for physical and mental health in our industrial-
ized world, which can trigger different sorts of health issues like permanent hearing
loss and tinnitus. To mitigate noise-induced problems in daily life, smartphones can
be used as an easy way to observe noise levels. As recording quality differs de-
pending on smartphone models and calibration techniques, standardized methods
are needed to acquire comparable results. To examine such possibilities in more
detail, several acoustical experiments were performed regarding the recording ca-
pabilities of in-build smartphone microphones compared to an external microphone
to figure out optimal smartphone recording conditions as this further increases mea-
surement accuracy. Additionally, various different calibration approaches differing
in effort and accuracy are evaluated. Results show that smartphones are capable
of measuring sound pressure levels accurately with only small deviations of about
+3 dB(A). Moreover, smartphone microphones are heavily frequency dependent,
which is why an approach was presented to normalize for these variations. Gath-
ered calibration data was further brought in conjunction with sound perception data
of tinnitus probands, to show an application in health issues. The presented meth-
ods provide a straightforward approach to measure sound levels with a smartphone
and compare them to other device conditions, opening the use of smartphones in
the modulation of sound perception in tinnitus and other conditions.
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1 Introduction

Loud noise in daily life can often cause reduced well-being, stress, sleep and con-
centration problems or in extreme situations even hearing problems, like hearing
loss or tinnitus. To quantify the amount of noise people are exposed during the day,
an easy and effortless way is needed.

Since measuring the loudness of noise is not an easy task, this can normally only
be fulfilled by appropriate hardware, which is capable of measuring sound levels
e.g. a Sound Level Meter (SLM). To measure sound levels properly, the device
needs to be calibrated beforehand, which can only be achieved by using another
very precise reference device. All in all, this is a very cumbersome task. Also,
sound measuring devices are not widely used, since they are expensive, large,
heavy and only usable for the task of measuring. Besides that, paying attention to
high noise levels, e.g. at a concert or a nightclub is not that common and socially
accepted. Nevertheless, a frequent exposure to high noise levels has permanent
consequences on hearing. To bring a change to this fact, the high prevalence of
smartphones can help, since they are equipped with a microphone and a permanent
companion. Therefore, adding the possibility to measure noise with a smartphone
could increase the awareness for high sound levels and help avoiding them. As a
result, this could mitigate the exposure time to high sound levels, thus decreasing
the risk for permanent hearing problems and provide a positive impact on general
health. Moreover, people with hearing disabilities like tinnitus have the possibility
to get acoustical information about their surroundings easily, which might help to
better understand their disease.

However, a lot of different smartphones with a varying equipment of hardware exist,
and at least for the largest operating mobile systems Android by Google and iOS by
Apple, it is not possible to measure the current sound level with a smartphone out of
the box. Rather than that, they all differentiate in the way of how they record sound
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levels since not only the build-in hardware is different, but also can other software
lead to different amplitude levels. Additionally, neither the manufacturers of the
operating system nor the smartphone producers, provide a calculation to convert
the measured amplitudes to a comparable unit. Thus, the question arises, if there
is a way to measure the current loudness with a smartphone in a comparable unit,
so that measurements can be compared independently of the used device.

To improve the current situation, three calibration approaches are compiled in the
following work, which address the problem of the heterogeneous hardware. Two
of the approaches are furthermore evaluated and assessed in terms of accuracy,
feasibility and convenience.

Additionally, to further review the measuring capabilities of smartphone microphones
under different conditions like distance and direction, the acoustical recording capa-
bilities of smartphones as well as the usage of an external microphone, are tested
and compared. This shall give information about the accuracy of sound measuring
results in certain situations and how reliable they are.

1.1 Motivation

To better analyze the impact of noise in daily life, it is necessary to measure infor-
mation about surrounding noise multiple times a day. This can help to get a better
understanding of the loudness for noise-induced mental health problems and hear-
ing disabilities, such as hearing loss and tinnitus.

Since the analysis of surrounding noise shall be available to as many people as
possible, the process of collecting noise levels should rather be uncomplicated to
provide an easy use. Therefore, it is not favorable to use any expensive or com-
plicated external hardware. Instead, using a smartphone-based application that
makes it easy to collect and save noise data for anyone seems to be a better ap-
proach.

Additionally, by offering the possibility to measure noise levels with a smartphone,
this opens an uncomplicated way to get quick information about the sound level
around oneself to assess the current noise situation. Observing high sound levels
in the surrounding with the smartphone, could probably convince a person to leave
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an area that could possibly lead to hearing damage. Thus, an application could start
to raise and increase social awareness for noise-induced health problems since its
easy availability.

1.2 Purpose

Gathering a lot of acoustical data for a longer period can not only increase personal
well-being and reduce the proneness for noise-induced disabilities, but also ben-
efit scientific medical research. Therefore, this work shall aid the research for the
TrackYourTinnitus' project, by providing a solution to gather acoustical data with a
crowd-based technique to assist the analysis of reasons for tinnitus.

Using the already well working TrackYourTinnitus application, which analyzes tin-
nitus fluctuation via a survey, it is possible to extend the built-in loudness measur-
ing function. For further analysis, calibration of measurements taken from various
smartphones allows a better understanding of how tinnitus is perceived in different
noise environments. All in all, this can support further tinnitus research.

1.3 Approach

The following work is based on the already implemented noise measuring function
of the TrackYourTinnitus application. Although, the function to record amplitudes
is already working, the retrieved data was not satisfactory, due to the hardware
differences and no standardized recording methods of the various smartphones.
Therefore, several calibration approaches were developed to adjust the measured
amplitudes to a common scale. For this purpose, already working approaches were
found and verified, however further options which might give the chance for more
precise results have been explored in addition to that.

Also, the idea to conduct further experiments regarding acoustical behavior of smart-
phones has come up, since the quality of the measuring results might change under
different conditions. This includes measuring amplitudes in decreasing distances

Thttps://www.trackyourtinnitus.org/
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of the sound source and analyzing the fluctuations and changes. Therefore, this
should help gaining knowledge about the fact whether the recorded values of smart-
phones do accurately reflect reality since decrease of sound level follows specific
physical laws. Additionally, the impact of measuring the sound level from different
directions has been considered as significant, to examine the possible omnidirec-
tional recording capabilities of smartphone microphones in more detail.

1.4 Structure of the Thesis

The thesis is structured in seven chapters. The following chapter deals with the
audiological fundamentals about hearing and the technical expertise of sound mea-
suring. The third chapter describes the general concept. Afterwards, in the fourth
chapter the experiments which are examined in the course of this thesis are de-
scribed. The fifth chapter presents the results of the experiments which are then
discussed in the sixth chapter. Finally, a conclusion with an outlook is given in the
last chapter.
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The following chapter explains the audiological fundamentals of hearing and the
perception of sound in the brain. Moreover, it is described how sound measuring
works in general as well as how it is performed with smartphones. Lastly, additional
reference to related studies is given.

2.1 Hearing

The human ear gives us the ability to sense sounds perceived via vibrations, which
are released by an audio source. The outer ear collects the waves in the air, which
then go through the ear canal until they reach the eardrum, which vibrates. Three
bones, malleus, incus and stapes then transfer the sound vibrations further to the
snail-shaped cochlea. As the cochlea is filled with fluid, the vibrations cause ripples,
which are sensed at the basilar membrane. As the cochlea is not shaped evenly,
sound waves of high frequency are sensed at the beginning part, which is narrow
and stiff. Lower frequencies are sensed at the more flexible and wider top of the
cochlea (apex). At the basilar membrane, the organ of Corti picks up the waves
by using about 20.000 small hair cells, which convert the sound waves into nerve
impulses. The electrical signal then travels via the auditory nerve to the cerebral
cortex of the brain, thus enabling us to hear [31]. Figure 2.1 shows this.

Being exposed to noise over a longer period may decrease the ability to hear. This
is referenced to as Noise-induced Hearing Loss (NIHL). NIHL can be caused by
damage to the hair cells in the cochlea or by damage to the synapses of the auditory
nerve [1]. High sound levels cause destruction to hair cells and degenerated hair
cells will not get replaced and therefore die, resulting in a permanent deterioration to
hearing. NIHL can be temporary by exposure to sounds of more than 80 dB(A), e.g.
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Figure 2.1: Overview of the auditory system [7]

by industrial noise, jet engine, visiting a nightclub. Usually hearing then recovers
within 24 hours. But reoccurring exposure and exposure over a longer time to high-
intensity sounds (> 120 dB(A)) will cause the hearing loss to be persistent [26].

2.2 Auditory Perception

Hearing a sound and understanding what it means does not mean the same thing.
While the pure task of hearing is performed solely by our ears, the actual process of
recognizing the heard sound and interpreting it is a complex task for our brain and
is called auditory perception [5].

The auditory perception can be divided into different process steps [8].

» Detection
A sound wave is within the human hearing range and can be heard.

+ Discrimination
The ability to differentiate sounds from each other correctly.
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* |dentification
A sound needs to be identified and assigned to where it comes from and what
the sound source is.

+ Comprehension
The information of the sound needs to be understood, so that the perceived
message can be used.

Further studies, involving research and analysis of the functionality of the auditory
system and the auditory cortex during the last years, have shown that the path to
perceiving auditory information is quite complex.

Following the explanation of the auditory system in section 2.1, the acoustic stim-
uli which have been transferred to the brain, are divided into perceptual features.
This enables us to split a mixture of auditory sources into distinct auditory objects.
Therefore, we can differentiate the incoming sound stream and assign each sound
to its corresponding source [5]. The brain’s auditory cortex makes this possible by
analyzing the perceptual components of sound, such as pitch ("height" of the tone),
timbre ("tone color") and loudness [29]. By having defined the auditory object, it
can be further converted into an abstract level of perception, which then makes it
possible to include information from the brain to combine them with the perceived
object. Then, this abstract representation can be interpreted to make use of the
information [5].

However, the sound we hear might not be heard by other humans the same way
since the level of perception is not the same for everyone. Different intensity lev-
els and noise frequencies might have a stressful or more unwanted effect to some
humans more than others. Therefore, also the definition between sound and noise
can be of highly subjective nature [10]. Since the exact parameters that lead to
noise cannot be clearly defined, a research branch called psychoacoustics deals
with the “relationship between physical stimuli and the induced perception® [42].
The most important parameters of psychoacoustics are loudness (critical ranges
of human hearing) and sharpness (proportion of high-frequency spectral compo-
nents to total loudness) as well as roughness, fluctuations and strength (time and
level differences in the sound signal, which modifies both amplitude and frequency)
[10]. There are several ways to measure each parameter, e.g. by calculating the
psychoacoustical perceived loudness with a method by E. Zwicker. Considering
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psychoacoustical parameters, it is evidently that there is a huge gap between the
way sound is measured and how it is perceived by the individual, as other factors
such as psychological experience, expectation and attitude have to be included into
a measurement which concerns human perception [10]. Therefore, it is not enough
to only include A-weighted levels when measuring noise since no adequate answer
can be given by that [10].

2.3 Tinnitus

Tinnitus, derived from the Latin word tinnire (to ring), describes the perception of
sound in absence of an external sound source [16]. Persons affected can sense
a lot of different sounds ranging from a typical ringing noise to hissing, whistling,
sounds analogous to animals like cicadas or crickets or complex sounds resem-
bling human voices or music [12] [3]. Data from the National Health and Nutrition
Examination Survey (NHANES) in the U.S. has shown that more than 50 million US
adults with about 15 % between 60 and 69 years old reported having experienced
any form of tinnitus [37].

Tinnitus can be classified into objective and subjective tinnitus. The former one
is the more seldom occurring form of tinnitus, with only 1% of all tinnitus reported
cases in the U.S. affected [2]. This is the case if another person can measure it.
The more often occurring form is subjective tinnitus, which is only perceived by
the person affected [3]. This makes it very hard for objective measurements, as
there are only certain ways to examine the severity of the case and ways for further
investigation and comparison rely on subjective impressions.

The main cause for tinnitus is hearing loss, which is often caused by reduced
cochlear nerve activity. Beside otological causes, there are numerous risk factors,
which include exposure to loud environments, head or neck injuries, acoustic shock
traumas and high blood pressure. Since there is no general rule for what causes
tinnitus initially, people with limited hearing capabilities can develop it as well as
people with normal hearing. Generally, the likelihood for tinnitus increases with age
up to 70 years [3].

Symptoms related with tinnitus are sleeping difficulties, emotional stress, physical
exhaustion and difficulties staying in too noisy or very quiet environments. Severe
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degrees of tinnitus can lead to a large impairment to health including working dis-
ability, anxiety and depression [12].

Possible treatments for tinnitus can either reduce the intensity of the tinnitus by
means of pharmacotherapy or try to weaken the disturbance of subjective percep-
tion with cognitive, sound or habituation therapy [12]. Also hearing aids proved to
be a supporting factor when tinnitus comes in combination with hearing loss. Not
only do hearing aids offer the possibility to increase the audibility of speech, they
can also support their wearer by amplifying only specific non-related tinnitus fre-
quencies which helps in decreasing the perception of these frequencies and aiming
towards better recognition of speech as well as taking away the stress associated
to them [12]. Other approaches using hearing aids include masking the tinnitus
by using a sound generator, which usually creates white noise or pleasant ambi-
ent sounds based on the specific type of tinnitus to reduce its loudness and thus
reducing the awareness [32].

2.4 Measuring Sound Levels

Converting sound intensity and sound pressure into a numerical unit can be a quite
confusing task since the logarithmic scale differs to typical measurement scales.
However, due to the way sound is sensed by the human ear, the logarithmic scale
better depicts changes in loudness. A short introduction on how sound levels are
measured and a connection to the human hearing are given in the following chapter.

2.4.1 Decibel

Sound travels in waves and consists of frequency and amplitude. The measurement
unit of sound is Decibel (dB) with a logarithmic scale. That is the case because
of the way our hearing works. The logarithmic scale starts from 0 and increases
in multiples of 10 dB. An increase of 10 dB will sound twice as loud to our ears.
However, an increase of 3 dB will already double the sound intensity. This can be
explained by looking into what loudness and sound intensity actually means. While
sound power is measured by the energy per united time which is emitted by a sound
source, the sound intensity is the sound power per area. The intensity measured

10
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in dB is defined as dB([) := 10 = 1og10(%) [27]. Loudness on the other hand is
subjective and depends on the ability of the listener’s hearing and characteristics of
the sound like duration and frequency. For example, sounds with the same intensity
but different frequencies do not necessarily need to have the same loudness. Figure
2.2 shows the coherence between intensity and loudness to our hearing. The unit
phone describes the perceived loudness of pure frequencies. The perception of
lower frequencies increases with rising intensity, as higher frequencies around 3
kHz can be perceived with even lower intensity [27].

Figure 2.2: Loudness is different for the perception of our hearing depending on the
frequency and the intensity [27].

2.4.2 Sound Pressure Level

To effectively use the decibel scale for measuring loudness or intensity, it is neces-
sary to use a reference unit, as decibel itself is a relative scale and does not have
a magnitude. To make use of the decibel unit regarding measuring sound levels,
the loudness can be measured in dB(SPL). The unit Sound Pressure Level (SPL)
is dependent on the atmospheric pressure and is measured in Pascal (Pa). It is
referenced as 20 pPa, which was assumed to be the Threshold of Hearing (ToH).

11
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This makes 1 Pa correspond to an SPL of 94 dB. An increase of 6 dB will double
the sound pressure [36]. A comparison between the sound level of different sounds
can be seen in figure 2.3. In the following work the term sound pressure level is
abbreviated to sound level.

Figure 2.3: Comparison of different decibel values and their effects on hearing [39].

2.4.3 A-weighting

The way of measuring sound can differ according to its use. In the case of measur-
ing for hearing-based applications, it is often measured using the A-weighted sound
pressure level dB(A).

This scale focuses more on the way humans hear. As seen in Figure 2.2 frequen-
cies are not perceived equally by the ear, as humans are only able to hear frequen-
cies between 16 Hertz (Hz) and 16 kHz with the highest sensitivity between 2 and
4 kHz. Due to the minor sensitivity for low frequencies, a consistent scale would
only provide limited meaning to noise measurements, as non-perceivable, lower

12
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frequencies would be given the same significance as higher frequencies which are
perceived more. Weighting helps to directly show the effects of loudness concern-
ing hearing damage [30]. The curve of the A-weighting can be seen in figure 2.4.
A-weighting comes in use for sound pressure levels below 55 dB. For higher levels,
B and C-weighting are chosen.

D e
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df

Figure 2.4: The A-weighting filter curve [36].

However, studies have shown, that the role of lower frequencies is much more im-
portant to physical and psychological factors than it is depicted with the A-weighting
sound pressure level. Although high-frequency hearing loss is much more common,
the effect of a vast amount of health factors for lower frequencies has been proven
in recent studies, making the general use of the A-weighted sound pressure level
questionable [30].

2.4.4 Sound Level Meter

Measuring the sound pressure with a decent degree of precision is achieved by us-
ing a SLM e.g. the one in figure 2.5. Basic devices have a range of +30 dB to +130
dB and can measure frequencies from 20 Hz to 8 kHz. Usable devices are low-cost
and can be used for simple measurements, however, they have quite a high amount
of tolerance range, which must be taken into account if an accurate measurement is

13
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needed. Dependent on the standardization class, devices have different tolerance
limits for different reference frequencies. In the most-used frequencies between 20
Hz and 10 kHz lower Class 2 devices have an error-rate between +1.5 and 5.6 dB
[15]. For basic sound measurements though the difference between a Class 2 and
a Class 1 SLM is inconsiderable.

Figure 2.5: A sound level meter with a pop filter

The functionality of a SLM is achieved by using a microphone, amplifier, weighting
network, rectifier, and a display. In the first step, the signal of the sound wave is
converted into an electrical signal, which is then increased by using a preamplifier.
Afterwards, a weighting network alters the signal by filtering its frequencies to adapt
to a defined weighting standard. Most SLMs use the widespread A-weighting, which
is discussed in chapter 2.4.3. Following this, the signal is amplified once more
and converted from alternating current to direct current. Finally, the signal can be

14
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displayed [24]. This process is visualized in figure 2.6.

Preamplifier Amplifier

Microphone —> —> Weighting network —>| —> Rectifier —> Display

Figure 2.6: The functionality of a sound level meter, based on Kumar (2018)

2.5 Smartphone Sound Processing

As briefly touched in the introduction chapter, collecting acoustic data with a smart-
phone poses an ambitious challenge to its executor. To understand the difficulties
one has to overcome, it is important to get a brief knowledge about how the actual
functionality behind recording sound with a smartphone works and what stages a
signal has to pass until it can be measured by an application. Faber (2017) has
made some important research about the sound measurement possibilities and
limitations of smartphones, which are summarized briefly in the following sections
[9].

An acoustic signal can be recorded with either the build-in or an external micro-
phone, which can be connected via the audio jack or wireless. Following this, the
analog signal is transmitted through an Analog-to-digital Converter (ADC), which
creates a numerical representation out of the measured signal. Lastly, it can then
be delivered by the Operating System (OS) to requesting applications [9]. The pro-
cess is visualized in figure 2.7.

All mentioned steps will manipulate the incoming sound signal until it reaches the
application which measures it. It is important to state, that a smartphone was initially
not designed and built to provide proper sound measuring tools, as it is mainly intent
to be used as a communication device. Nevertheless, due to its vast amount of
functionality and tools, it can be used for other applications as well, like loudness
measuring. Most of the tools, which are build-in to modify the incoming signal are
designed to enhance the sound signal to understand someone better while making
a call for example. Since there was no need to get a clear amplitude signal, most
systems did not provide a method to disable these modifiers in the past or even do

15
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Figure 2.7: The process of converting an acoustical signal into a measurement
value that can be used by a smartphone application, based on Faber
(2017)

not provide it today. Moreover, the build-in hardware like the microphone does have
limited quality as it is designed to fit into the phone which only has a small outlet,
thus reducing its capability to record clear signals. This explains, why it is often not
that easy to get a good measurement accuracy.

2.5.1 Microphone

In the first step the microphone is a very import factor, when it comes to deviations
of precision.

In most cases, the build-in microphone is used for measurement purposes. If there
are multiple microphones available, normally only one, which provides the best om-
nidirectional features is selected. Given the position the microphone is located, it
can only record sound properly in a monodirectional way, even though its omnidi-
rectional design [9]. This changes the recorded signal strength depending on where
the signal originates, due to the acoustic shadow of the smartphone.

Better results have been achieved by using an external microphone. Possible op-
tions to connect can either be wireless (headset) microphones via Bluetooth. Other
non-wireless microphones are connected directly wired to the audio jack or data
port of the phone. Usually, wired measurements using the audio jack provide a
higher quality than wireless [9].

16
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2.5.2 Hardware

The sheer amount of different smartphone models are an important factor to con-
sider when obtaining sound measurements. Different build-in hardware parts such
as microphone or ADC, which are involved in signal processing, will manipulate
the quality of the outcome. Furthermore, smartphone manufacturers do not rely on
the same parts for all their smartphones, so the quality can differ for each smart-
phone model, too. Also, systems like Automatic Gain Control (AGC) can completely
corrupt the signal, as they are normally used to keep the outgoing signal at a con-
stant level independent of the incoming signal’s amplitude to enhance the quality of
phone calls [9].

2.5.3 Operating System

Just as the hardware does, the OS, which runs on the system, plays an important
role when it comes to the quality of the signal a phone can provide. As the OS
has direct control to the underlying hardware, it can often control to a certain part
the way the hardware operates. Whether this helps to improve the outgoing signal
does not only rely on the interface the hardware offers, but also on the Application
Programming Interface (API) the OS provides [9]. If one of both is not available, the
application on the top of the chain does not have any possibility to get an accurate
signal.

For example, Apple’s operating system (iOS) did constantly provide a high-pass
filter to all microphone inputs, due to their limitation to only partly record frequencies
below 200 Hz. Only iOS 6 in 2012 has added a function to disable this behavior and
the in-build AGC via the system’s API which now makes reliable measurements
possible [9].

2.6 Related Work

As of the current state of writing, performing acoustical measurements is a niche
topic since smartphones initially are not built for this. However, there is an increased
need to measure sound levels of noise. Since it is necessary to measure sound

17
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levels as reliable as possible, several smartphone applications are available, which
try to achieve a high degree of accuracy. There are a lot of studies which analyze the
performance of these applications like Kardous and Shaw (2014) or Faber (2017)
[17] [9]. Despite the increasing number of applications, only some of them provide
decent results. Since for most of the applications with good results the complete
functionality is unclear and most of them are subject to change, additional ways
are needed to make sound measuring possible for the average user. To further
investigate the acoustical behavior of smartphones in regard to measure sound in
changing environments as for directional or omnidirectional recordings, Hawley and
McClain (2018) provided valuable findings [13].

Moreover, this work provides a contribution to smartphone-based mobile crowd-
sensing studies which aim at gathering information about environmental data on a
large scale. Additional work in this field has been done by Kraft et al. (2020) who
presented an approach on how geospatial data could be helpful for concerned per-
sons and tinnitus patients to track noise levels in their surrounding area [22]. For
this purpose, an architecture was developed to process large amounts of data ef-
fectively and give the user a visual overview of loudness data that was gathered by
other users [21].

18
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The work of this thesis builds up on the already well-established Track Your Tinnitus
application, which can be used to easily track tinnitus perception by using a smart-
phone. At the moment this involves observing the progress of the user’s tinnitus
measured by questionnaires throughout the day. This enables the affected persons
to measure fluctuations and working out daily habits and coherences, that have a
positive or negative impact on the perception of tinnitus [20].

To further extend this well-functioning system, improved noise measuring with a
smartphone will be introduced. Noise poses an important factor for broader tinnitus
evaluation, which will enable the system to gather more precise information about
the actual situation, hence using the noise measurements in combination with user
given data for extended evaluation. Recorded measurements e.g. environment
noise include data such as loudness and frequencies, which can give direct feed-
back to the user, thus supporting him to gain more knowledge of his specific tinnitus.
Consequently, including sound data for tinnitus studies allows analyzing the precise
characteristics and effects tinnitus has on the health of the affected person.

For uncomplicated sound measuring purposes the smartphone microphone should
be the primary way for measurements, as the aim for further studies is to have a
lot of participants who can join the study without the need for additional hardware.
However, due to better omnidirectional performance, an external microphone will be
tested and compared against the qualities of the internal microphone. This should
compensate for the different types of smartphones, the various analysis procedures
and the position of the smartphone while recording.

Recording with a smartphone seems like a trivial thing, since every conventional
smartphone is equipped with a microphone and a lot of apps make heavily use of
this technology to send voice messages or record videos with audio. Therefore, the
technological part is already established. However, measuring sound levels with
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this equipment is a completely new application area for which neither the smart-
phone nor the hardware was designed for. Hence, a workaround by developing an
adequate applicable recording method and building an application around it, that al-
lows to take precise measurements is something completely new. Measuring noise
with a smartphone, which would enable almost everyone who has a smartphone
to do so, is only a niche sector at the moment and a standardized process to cope
with the hardware differences of the smartphones has yet to be developed.

Altogether, the following work will examine the characteristics of different smart-
phone types, and the use of internal and external microphones for sound measuring
purposes by using different frequencies and changing volume levels. Additionally,
the results of the measurements will aid to create a method, that ensures com-
parability between the recordings and to achieve necessary modulations to adjust
the measurement abilities of various smartphone types. This includes setting up
a standardized concept to guarantee objectivity on one hand, and simultaneously
working close to reality to reach a high degree of validity.

One way to achieve this for instance, is the positioning of the smartphone’s micro-
phone, as it is mostly located at the bottom of the phone. Most of the time, the
microphone is facing the user, which results being in the acoustic shadow without
acquiring a direct source of the signal, but an altered and mitigated version as seen
in figure 3.1. As a consequence, this does not only influence loudness, but also
implies recording a mutated frequency spectrum, which could both interfere with a
reliable result. Nonetheless, it has yet to be proven how much influence the limited
omnidirectional features of the internal microphone have.

Other important factors are effects of hardware and software differences of smart-
phones as already discussed in section 2.5. It has to be shown, if and to what extent
different microphones and varying processing hardware account for deviating data
outcomes. To create a whole spectrum of multiple factors, different frequencies
have to be tested together with multiple volume levels to find similarities and dis-
tinctions.
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Figure 3.1: Most of the sound waves are reflected and mitigated before they are
recorded by the smartphone.
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Measuring amplitudes with smartphones poses a challenge to a lot of different
tasks. The first issue that needs to be handled are the various amount of smart-
phone models, which measure amplitudes on a separate scale. That is the case
why a calibration of all models is necessary. This calibration topic will be evalu-
ated with different approaches, as there are multiple possible methods to execute
a calibration. As part of the methods will be tested and evaluated in the next chap-
ter, the following text should give an introduction on the ideas, the functionality and
use-cases of the method. Additionally, experiments are being conducted, that an-
alyze the acoustical modalities of the involved smartphone microphones. This will
be done to give an overview of different aspects, that need to be considered when
amplitude measurements are performed by a smartphone. This includes acoustical
behavior tests, which are performed to evaluate how results vary for different situa-
tions. Since the sound environment varies during daily life, some frequencies may
be recorded differently than others. This is why varying sound samples are being
part of the evaluation and will also be compared against each other.

4.1 Calibration Techniques

As introduced earlier, smartphone models have different characteristics when it
comes to recording audio, which has an effect on the measured amplitudes. How-
ever, this mostly does not have an impact on the comprehension of the recorded
data (e.g. listening to a conversation that was recorded with a low amplitude can
be compensated by increasing the volume). On the contrary, when amplitudes are
measured this fact does play a huge role, as these amplitudes cannot be converted
directly to a standardized scale. Hence, a need for calibration is obviously neces-
sary.
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A calibration of a smartphone recording can be achieved in many possible ways. To
decide which calibration method should be chosen, it is necessary to assess the ob-
jectives of the project. Particularly, the required accuracy of the measurement and
the effort willing to apply in order to receive the desired degree of accuracy, should
be considered accurately. Evaluation of several ways for calibration has shown that
gaining a higher degree of accuracy is not possible without the use of external hard-
ware such as a calibrated SLM or a tone generator, which can either measure the
amplitude on a normalized scale or play a tone with a standardized volume. How-
ever, as this greatly increases the difficulty for measurements that only require a
rough estimation of the measured sound level, other means of calibration are re-
quired, that reduce the necessary work until a measurement can be performed.
Especially when crowd-sourcing shall be performed and many people with different
technical skills are put into place, it is inevitable to keep the process of calibration as
uncomplicated as possible (or even perform it on behalf of the user as seen later)
to eliminate any high deviation errors in calibration since this would decrease the
accuracy of the whole data set. Consequently, having diversified opportunities for
calibration depending on purpose of use has its justification.

In the following section two calibration methods will be covered, that have been
classified applicable for general use. For every method there will be a way on
how the calibration can be performed in detail. This includes not only a detailed
description of the functionality, but also associated assumptions, that will be verified
to evaluate the further use of the respective method. Additionally, a theoretical
method which could serve as a convenient method for future calibration uses will
be presented.

4.1.1 Basic Calibration

To perform a straightforward sound level measurement with a smartphone, no ex-
ternal hardware is necessary. Nevertheless, getting an estimate of the sound level
requires performing a calibration of the microphone. To keep this as simple as pos-
sible, Dr. M. Ziegler outlined an approach which involves an easy-to-use method
for a simple calibration in combination with the application "Spaichinger Schall-
analysator" '. The calibration can either be performed by tearing apart sheets of

'https://spaichinger-schallpegelmesser.de/schallanalysator.html
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copy paper, or with a tone which has a consistently equal volume that must be
verified beforehand. Since the former method is usable without any additional hard-
ware, the main focus will be put on it. The following summary is taken from the
instruction document of the application [40].

Figure 4.1: The application "Spaichinger Schallanalysator" in measurement mode,
displaying sound pressure level, base frequency and corresponding
tone [40]

A screenshot of the user interface of the application is given in figure 4.1. The cur-
rent volume in dB(A) is given as well as the base frequency with its corresponding
tone. Additionally, the app offers more features like measuring the sound intensity
in W/m?, the effective sound pressure in Pa and much more.

A calibration with the paper tearing method consists of two steps. First, the smart-
phone or an external microphone is placed approximately 90 cm (which equals
three length of paper sheets) away of the person who will perform the calibration. It
is important to state, that the smartphone should be positioned at the same height
as the paper that is getting teared apart and that the direction of the smartphone
microphone is aimed at the person. The calibration can then be started by letting
the smartphone measure the amount of background noise so that a difference cal-
culation can be performed afterwards. Also, a sound level correction value can be
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given depending on where the calibration was performed. The second step of the
calibration process includes tearing apart 10 DIN-A4 sheets of white copy paper
(80 g/m?) one after another. The application measures the sound level of every rip
and calculates a standard deviation, which is about 2 dB afterwards. The smart-
phone is then ready to be used for basic sound level measurements. Figure 4.2
shows the setup that was established for the experiment.

Figure 4.2: Execution of the calibration by tearing apart paper

The method works by the fact, that the noise, which is created by tearing apart
paper at a specific distance away from the microphone, has the same loudness for
every performed paper tearing. Therefore, the recorded amplitude will serve as a
comparison value to calculate amplitude values to dB(A), since the noise of tearing
apart paper in dB(A) is known to the application. This enables the application to
calculate a compensation value for later measurements, based on the loudness of
the performed calibration.

Anyway, depending on where the calibration has been performed, a sound level
correction value can be applied at the time of calibration. This is due to the fact,
that the sound which is recorded by the microphone consists of primary sound from
the sound source, as well as sound that has been reflected by walls and furniture.
As diffused sound superimposes the direct sound of the loudspeaker, the correction
value needs to be increased for small rooms. An approximate value for different type
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of rooms would need to be gathered in further experiments.

Moreover, if an external microphone is used, the possibility is given to manually
configure the frequency response of the microphone. However, as this is already
covered in the next section 4.1.2, no further research will be done in this direction
with the application.

Another way to calibrate the microphone with the help of the application is offered
by using a tone generator, which creates a 1000 Hz tone between 75 and 95 dB
or by using an external sound source and a reference SLM, that can confirm the
correct decibel value. Since this is also part of the next chapter 4.1.2, it will not be
elaborated further at this place.

The paper tearing technique was then reconstructed and examined for its accuracy.
To do so, different frequencies were outputted on a Bluetooth loudspeaker and the
sound level in dB(A) was measured by the smartphone using the already mentioned
"Spaichinger Schallanalysator" application. Beyond that, an SLM was used next to
the smartphone to validate the measurements. Thus, both results can be analyzed
and compared. This approach is shown in figure 4.3.

Figure 4.3: Measuring the sound level of different frequencies after calibrating the
smartphone with the paper tearing technique
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This experiment will check the following hypotheses:

1. Calibration of the microphone will lead to reliable measurements
2. Different frequencies will not exceed a certain deviation level

3. The deviation level varies for different frequencies, so each frequency is
recorded with various sound levels

4.1.2 Frequency-based Calibration

Every sound consists of several frequencies, which are all measured with varying
intensity by a microphone. This fact is referred to as the frequency response of the
microphone. Each microphone has a defined frequency operating range, which de-
termines what frequencies can be recorded by it. However, this does not imply that
all frequencies in this range are recorded equally. This is why a frequency response
curve is necessary to specifically compare the capabilities of microphones in detail.
The frequency response is specified by testing the entire frequency spectrum of
the microphone and then measuring the amplitude of each tested frequency which
yields a microphone-specific frequency response curve. An example for a curve is
given in figure 4.4.

Figure 4.4: A frequency response curve of a microphone. The output varies de-
pending on the frequency. [6]
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Since smartphone models are not equipped with the same type of microphone,
sound level measuring with a smartphone microphone will undoubtedly face the
same issues, meaning they will certainly not only differ in the frequency ranges,
which can be sensed, but will also have differences in their frequency responses.

Aside from the deviations of the frequency responses, comparing loudness with
smartphones is additionally made complicated by the specific characteristics of the
smartphone microphone and the way the sound is processed by the system, which
is further discussed in chapter 2.5. This leads to the fact that measured ampli-
tude values cannot be converted to standardized decibel values without previous
calibration.

Nevertheless, by creating a frequency response curve, the deviations of every fre-
quency as well as the overall amplitude shift caused by the microphone and the
system characteristics can be represented together. Moreover, by comparing fre-
quency response curves of different smartphones with each other, an adjustment
can be made for each frequency. This makes it possible to measure how much
smartphone microphones deviate from each other independently of the hard- and
software that is being used.

A calibration is performed by calculating a specific difference value per frequency.
In other words, a specific frequency curve c for smartphone A shall be referenced to
as c4. This curve shall be compared to cp, the frequency curve of smartphone B.
Each frequency curve consists of multiple frequencies n that shall be tested. For the
following experiment, n is defined as n € {500, 1000, 2000, 4000, 5000, 7000, 8000,
10000}. After the creation of the whole device curve, each frequency will have a
corresponding measured amplitude.

ca(n) : Amplitude of smartphone A for frequency n

Advantages of this method should be a good precision since the measurement
deviation of all frequencies are taken into account for calibration.

However, other than for the basic calibration in 4.1.1, additional hardware is nec-
essary to perform this type of calibration approach. Firstly, to play the different fre-
quencies it is necessary to have a loudspeaker which can play all the frequencies
that have been defined. Secondly, a calibrated reference device is necessary.

28



4 Experimental Design

Figure 4.5: Performing a frequency calibration by the help of a sound level meter

This includes either a SLM as shown in figure 4.5 to measure the sound level for
which the calibration should take place, or alternatively by using an already cali-
brated smartphone. This works by finding out the sound level with the help of the
already calibrated smartphone before the start of the calibration.

In both cases a smartphone or another device needs to be paired to the loudspeaker
to play all the defined frequencies, but the smartphone that should be calibrated can
also take over this role. The same process must be carried out for each smartphone,
that shall be calibrated.

Luckily, once a frequency response curve ¢(n) has been created for a smartphone
model, it can be shared with other smartphones of the same model as they are
supposed to have the same acoustics. In this case a cloud database could be
established to store the model specific ¢(n) values. For every new non-calibrated
smartphone the model identifier could be compared with the database and if avail-
able, automatically download the calibration values. Therefore, only one calibration
for each smartphone model would be required.

The idea is based on the company Eardial?, which already uses a similar approach

2https://eardial.com/calibration/
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to calibrate smartphones, however, without the focus on different frequencies.

Beyond testing for multiple frequencies, the sound level plays an important role. It
is necessary to calibrate all smartphones with the same defined sound level, so
the sound level of a starting frequency should be constant and verified before the
start of a calibration attempt. Therefore, an initial volume calibration at about 80
dB(A) for 1000 Hz must be made initially by using a SLM or an already calibrated
smartphone.

However, the extent of the sound level regarding the measured amplitude for dif-
ferent smartphones is unknown. To further analyze the effects of loudness on the
measurement accuracy, an Android application has been developed to test the fre-
quency responses of microphones at different volume levels. For this purpose, the
smartphone must be paired to a Bluetooth loudspeaker, which is placed at a 20 cm
distance away from the smartphone microphone. Then, a specially defined list of
frequencies is played one after another for 2 seconds each with a 1 second pause
afterwards to measure from silence again. Furthermore, to calculate the deviation
level for each frequency, several volume levels are analyzed, too. Therefore, the fre-
quency output starts at the lowest selectable volume level of the smartphone and
is then gradually increased until 15, which is the highest sound level for an Android
smartphone. During the output of the frequencies, the smartphone measures the
amplitude of the frequency that is played. The process of outputting and recording
the amplitude has been developed to run fully automatically. This should provide
knowledge about the impact of loudness on the overall amplitude shift.

The following hypotheses will be examined in combination with this experiment:

1. Varying frequencies have an impact on the recorded amplitude

2. Different smartphone models do not reflect varying frequencies evenly in am-
plitude.

3. Smartphones do not represent rising sound levels evenly in amplitude.

4.1.3 Internal Calibration

Another calibration approach is presented by performing a self-calibration with a
smartphone. However, as this method deals with the internal sound processing of
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the OS, it is unknown if it can practically be used at the time of writing, therefore it
is only described theoretically. Nevertheless, there might be a chance to develop a
calibration method out of this idea later since it should be very precise and would
not require additional user effort.

To get a practical use out of the previously described methods, a lot of
time-consuming work is necessary to be done by the user. Beyond that, addi-
tional items are necessary like the paper sheets for the method presented in 4.1.1,
a SLM or a calibrated smartphone shown in 4.1.2. This needs to be done to obtain
a reference volume where all executions of the experiments can refer to. However,
for a self-calibration this is not necessary, as it is only performed internally by the
smartphone itself.

To perform a calibration without relying on a monitored volume, the application
needs to have access to the digital sound input interface. This enables the ap-
plication to pass testing frequencies with a fixed volume directly to the digital input
processing of the system without using the loudspeaker and microphone. Previous
calibration methods always relied on outputting sound by using a loudspeaker or
creating it in other ways and then recording it via the microphone. This always in-
volves an analog to digital conversion, which is prone to measurement errors and
involves the use of an ADC, that alters the input unpredictably.

By the method of passing digital sound directly to a digital interface, all previously
necessary digital to analog conversion and a re-conversion into a digital signal
would thus be skipped. The schematic for this approach can be seen in figure 4.6.
Any sound leaving the operating system for calibration purposes would directly be
diverted to the digital input line, to avoid any conversation interferences. This pure
digital to digital interface would allow identifying differences in signal conversion and
internal processing in a more precise way and correct them.
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Figure 4.6: Schematic of a calibration approach with a pure digital-to-digital inter-
face

4.2 Acoustical Behavior

To achieve knowledge about the behavior of smartphone microphones, a variety
of experiments will be performed. An overview of each experiment is given in the
following section.

4.2.1 Noise Samples

To test the overall microphone recording performance, four different audio samples
were selected varying in frequency, tone and base. This is done to figure out if
and to what extend microphones record volumes for various frequencies differently.
Analyzing the audio samples is performed by utilizing the Time-based fast Fourier
Transformation (TFFT), which transforms the input signal of a time domain into a
frequency domain. This allows comparing the distinctions of the characteristics of
the audio samples. All samples are uncompressed and lossless WAV files, which
are shortened to a duration of about half a minute. All samples are free to use
and taken from the website soundeffects+ 3. Every audio sample will be shortly
evaluated below. The figures with the time-based fast fourier transformation of the

3https://www.soundeffectsplus.com/
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samples were made with the software WavePad*, the figures with the audio spec-
trum of the samples are created with the help of the software Audacity®.

1. Violin
The first sample is 30 seconds long and consists of a violin only, playing a
part of the Minuet from String Quintet in E Major, Op. 11, No. 5 by Luigi
Boccherini. As seen in figure 4.7a the sample consists of a tone pattern with
mostly small, high intensity tones ranging from 0 to 5000 Hz. Figure 4.7b
shows large fluctuations of the loudness.

(a) Time-based fast fourier transformation (TFFT) of a violin playing

(b) Audio spectrum of a violin in the relative dB unit

Figure 4.7: Characteristics of the violin sample

2. Street Traffic
The second sample also has a duration of 30 seconds and includes mostly
of street noise caused by traffic. Additionally, some chatter here and there
can be noticed. The TFFT graph in figure 4.8a shows a loud and stacked
frequency image for smaller frequencies up to 1000 Hz, which represent the
motor sounds. Higher frequencies in the range from 1000 to 4000 Hz are

*https://www.nch.com.au/wavepad/fit.ntml
Shttps://www.audacityteam.org/
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quieter and less dense. Analyzing the loudness of the traffic noise in figure
4.8b shows a changing volume, however this change is performed steadily
and no fluctuations in a short time can be observed.

(a) TFFT of street traffic

(b) Audio spectrum of street traffic in the relative unit

Figure 4.8: Characteristics of the traffic sample

3. Airliner Takeoff

The third sample is 26 seconds long and consists of a fixed microphone
recording heavy sound of an aircraft engine spooling up to takeoff thrust with
decreasing sound level as the aircraft accelerates away from the microphone.
The transformation in figure 4.9a shows a base-heavy and low frequency pat-
tern, which is measured continuously throughout the recording. Two increas-
ing lines can be seen, one starting from 1800 Hz increases up to 2900 Hz and
the other higher one starts at 3000 Hz and increases to 6000 Hz. Increas-
ing frequencies up to 10 kHz can be measured at about 7 seconds until 13
seconds, as the aircraft passes by the microphone. Afterwards the distance
to the aircraft increases, hence higher frequencies are declining. The loud-
ness of the airliner can be seen in figure 4.9b, it shows a gradually increasing
loudness until the turbines are fully ready, then some regularly occurring small
fluctuations, until the aircraft takes off. Thereafter, the sound decreases rather
fast.
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(a) TFFT of a large airliner taking off

(b) Audio spectrum of a large airliner

Figure 4.9: Characteristics of the airliner sample

4. Helicopter

The fourth and last sample is a 30 seconds long noise caused by a helicopter.
As seen in figure 4.10a, due to the rotation of the rotor blades, it creates a
loud and bass-heavy noise between 0 and 2000 Hz. Additionally, a lot of
higher and more quiet frequencies up to 9000 Hz can be measured, which
is created by the oscillating wind. Other than the first samples, this sample
does hardly have any variations, so it provides a good comparability source
for some experiments later. The audio spectrum of the helicopter is visualized
in figure 4.10b. Here, a generally even loudness can be observed with no
visible fluctuations.
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(a) TFFT of a helicopter

(b) Audio spectrum of a helicopter in the relative

Figure 4.10: Characteristics of the helicopter sample

4.2.2 Recording Environment

For the recording of the samples a specific experimental set-up was created. This
included setting up a sound system in stereo mode with two side and one center
speaker to achieve a wider angle of sound source. The center speaker was placed
in the middle directly in front of the smartphone. The two side speakers are placed
40 cm to the side and turned 45 degrees inwards. To eliminate possible post pro-
cessing of the sound system as much as possible, any audio enhancing modes and
bass amplifier were disabled. The samples were transferred from a laptop over an
AUX IN cable.

To conduct experiments from different distances, markers were installed on the floor.
Every meter, stripes of different color were installed. Due to limited room space
about 5 meters were covered.

During the experiments, the ambient noise was minimized as much as possible to
about 30 dB(A).
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4.2.3 Technical Requirements

For the process of measuring sound levels with a smartphone, a custom android
application was created.

One feature of the application was a selection of the recording mode the application
should use for the upcoming measurement. Although, Android only mentions the
MediaRecorder class on their official documentation for recording audio®, there is
in fact one more possibility to record audio, which includes the AudioRecord class.
The differences are rather complex. MediaRecorder only offers a straightforward
solution for developers who just want to record audio and not process it further
in any way. Therefore, data is directly written into a file without any possibilities
to intervene during the process of recording. Nevertheless, in terms of measuring
sound levels, MediaRecorder does include the getMaxAmplitude () method, which
allows to receive the maximum amplitude recorded since its last call. After some
tests, it seems that the return value is converted to signed 16-bit integer values (0
to 32767), which correspond to the sound pressure recorded at the microphone.
However, the Android documentation does not explicitly state this’.

On the other hand, AudioRecord offers a greater number of choices, as it provides
the raw sound stream in byte format, which needs to be compressed manually.
Even though this seems rather obstructive since it makes the whole process of just
retrieving the amplitude more complicated, it is actually a huge benefit, as sound
compressing can be accomplished by the app directly. Hence, there is no need of
being dependent on the unknown underlying algorithm of the MediaRecorder. Ad-
ditionally, small experiments on different devices have shown, that retrieved sound
levels are much higher, when using AudioRecord, which leads to a higher accuracy
when sensing small level changes. A comparison between both modes is shown in
figure 4.11.

However, both classes support the deactivation of any possible activated AGC that
usually normalizes any incoming signal to the same amplitude, which would make
any sound level measurements pointless.

8https://developer.android.com/guide/topics/media/index.html
"https://developer.android.com/reference/android/media/MediaRecorder
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Figure 4.11: Different amplitude levels can be measured, depending on the selected
recorder mode.

Before the start of a recording, different parameter need to be set. This includes the
audio sampling rate, audio encoding bit rate and the audio channel.
The MediaRecorder class also includes setting an output format and the audio en-
coder, which should be used since the recorded data is directly encoded and saved
into a file. On the contrary, AudioRecord allows setting an audio format, which is
set to a linear Pulse Code Modulation (PCM). The application automatically selects
a representation of a 16-bit signed integer, or if unavailable, it falls back to 8 bit.
Same applies for the sample rate, which has a default value of 48000 and will fall
back to smaller values, if higher ones are not available. The number of channels is
set to mono on default, to increase comparability, as only some smartphones are
capable of stereo recordings.

Furthermore, the application measures the current sound level in both modes every
50 milliseconds for 40 seconds and logs the amplitude including a timestamp in a
CSV file. The uncompressed audio data is also recorded in both modes and saved
if further analysis needs to be performed. Screenshots of the application can be
seen in figure 4.12.
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(a) The start screen with a toggle switch (b) The application records the amplitudes
to start a direct recording with Au-
dioRecord or the rather unsophisticated
MediaRecorder.

Figure 4.12: Screenshots of the self-developed application to measure amplitudes
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4.2.4 Monodirectional Behavior

In the same way loudness does, distance is having an impact on the measured
sound level, as sound waves are traveling longer until they are recorded by a mi-
crophone. To find out what extent distance has on the measured sound level an
experiment will be conducted where the distance from the acoustic source to the
microphone will be increased consistently.

The monodirectional behavior experiment will be performed in a way to achieve a
high degree of realism to serve as a reference statement for future studies. There-
fore, three speakers are positioned in one line in front of the person taking the
measurements to get a distributed sound source over a range of about 1 meter.
This is due to the fact, that typical noise is mostly not released from a selected point
but from a broader range. Additionally, it is assumed that the source of noise orig-
inates at or below of the ears of the person and that the smartphone is generally
placed lower than the head. As a general rule, it shall be defined, that the most
frequently taken posture for recording measurements is a person standing upright,
with a smartphone in the (right) hand at the height of the thorax region and with the
smartphone microphone facing the body.This posture with its common position of
the smartphone was selected because it can be found very frequently in everyday
life of a lot of persons. Therefore, having this height of the smartphone might help
to receive more comparable results for the analysis of data of future experiments
and studies. Since this effect was prioritized, no preference was given to measure
the exact loudness coming out of the speaker. In conclusion, this posture can serve
as a general standard for future measurement research since it has been defined
to best resemble the conditions where future measurements should be taken.

However, due to the individual sound characteristics of the narrow and tall room
where the experiment was conducted and due to the fact, that no sound absorber
or other precautionary measures were installed to mitigate sound reflection, the
outcome will result in a lot of inevitable deviations. Therefore, the results cannot be
compared to similar experiments taken in a sound laboratory, since the experiment
was not conducted in perfect conditions. Nevertheless, it may serve as a general
orientation for future measurements, since the results should still provide significant
data.

By conducting the experiment, the following hypotheses shall be validated:
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1. The measured sound level will decrease with increasing distance.

2. Decrementation of measured sound levels will occur proportionally with in-
creasing distance. Only minor measurement deviations might occur.

4.2.5 Omnidirectional Behavior

The validity of sound level measurement likely depends heavily on the direction the
sound is coming from. This is assumed due to the fact, that smartphones usually
only have one primary microphone, which is positioned at one side of the device.
Although, often smartphone manufacturers claim their microphone to be omnidirec-
tional, this cannot be achieved reliably because of the construction type of smart-
phones. This fact has already been investigated in other studies like Faber (2017),
therefore the focus shall be put on the posture in which the smartphone is held.
This can make a difference, due to coverage of the microphone by parts of the body
like the hand or the upper body, when facing away from the sound source.

To investigate this issue further, the following experiment was conducted. One per-
son stands in front of a speaker with a smartphone in his hand. Then he rotates
around his own axis to let the sound hit the smartphone from different sides. As the
sound is coming from the front most of the time, the smartphone itself deflects part
of it and a lot is reflected by the body of the person into the microphone. However,
when the person is turning to the side by 90 degrees, sound will pass by the mi-
crophone unchanged, as there is only little reflection, but it will not directly hit the
smartphone. Turning by 90 degrees further to 180 degrees, the person is stand-
ing between microphone and sound source, so amplitude values will most likely be
much lower than before. The last 90 degree for a total of 270 degrees is similar
to the 90-degree turn, nevertheless as the smartphone is held in the right hand,
sound waves could slightly be blocked by the right arm, although it is unknown if
this deviation is measurable with the given experimental setup.

Besides testing the results of the internal smartphone microphone, the same exper-
iment shall be conducted with an external microphone to compare the results. It can
be assumed, that even a cheap, external microphone with omnidirectional capabili-
ties, is performing better by delivering much more precise results, than the build-in
microphone of the smartphone, since it is less likely, that the external microphone
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gets covered up, when attached correctly.

In summary, the following hypotheses can be made:

1. A smartphone microphone reflects direction differences in the sound level it
measures depending on a predefined posture.

2. Sound coming from another direction then the smartphone microphone points
to, will be measured with a lower sound level.

3. An external microphone provides steady results, independent on the direction
of sound.

4. According to 1., 2. and 3. an external microphone will deliver more precise
results than the internal microphone with variable direction of sound.
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During the process of collecting data for the experiments, various smartphones run-
ning the Android operating system were used. To represent a selection of varying
hardware, smartphones of the three companies Samsung, Huawei and Oneplus
were used. The utilized smartphones are listed below:

» Huawei Honor 6X, running Android Version 7.0

OnePlus 7 Pro, running Android Version 10.0.7
+ Samsung Galaxy S4, running Android Version 6.0.2
« Samsung Galaxy S7, running Android Version 8.0

« Samsung Galaxy S8, running Android Version 9.0

Additionally, an external condenser microphone with an omnidirectional polar pat-
tern is used, which has a frequency range of 20 Hz to 16 kHz and a sensitivity of
-30 dB+2dB.

For a lot of experiments during this study, a SLM of the type Tenmars TM 103 was
used which has a frequency range of 31.5 Hz to 8 kHz, a measurement range of 30
to 130 dB(A) and an accuracy of +1.5dB.

The analysis of gathered data was performed by using python with the mathematical
and scientific libraries NumPy and SciPy. To process the gathered measurements,
the database format SQLite was used. Other diagrams were created with Microsoft
Excel with the CSV file format.

During the analysis of the results an interesting observation was made. The results
often showed a significant amount of double measurement values consecutively,
indicating a transmission smaller than measured since the polling rate of the app
was set to 50 ms. However, these values have not distorted the comparison of
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multiple data sets, as not the amount of polling values was decisive for the length of
analyzed data but the length of the audio sample. Anyhow, all consecutive double
values have been filtered out.

The following chapter gives an overview of the results that were gathered while
performing different acoustical smartphone experiments. The first section deals
with the results of the two experiments that were performed to achieve a reasonable
degree of precision among different smartphone models. The section afterwards
investigates the acoustical behavior of smartphones, especially how reliable the
measurement values are they provide. Therefore, data is gathered under different
conditions to obtain a wide range of information, which will allow analyzing gathered
data in the future more efficiently. Finally, the third section deals with the evaluation
of the already collected data of the Track Your Tinnitus application.

5.1 Calibration Techniques

The acoustical calibration of smartphones is a vital task for a possible model-wide
comparison. Since each smartphone manufacturer or even smartphone model
measures amplitudes at a varying specific value range, it is hard to calculate a
comparable loudness value, e.g. in dB purely based on the given amplitude values.

As an example, the violin sample seen in figure 5.1 shows, that the Samsung smart-
phone records amplitude values mostly in the range of 6000 and 8000, sometimes
tearing out to 5000 and 9000. On the other hand, values of the Huawei are generally
lower at around 3000 to 6500. Unlike the previous models, the Oneplus shows lower
values around 3000 to 4000 almost continuously. In addition to that, the fluctuations
in amplitude on the Oneplus are very low, which could be due to the smartphone
characteristics in general or it could be a sign for a built-in, non-deactivatable AGC.
Another possible reason for low indicated fluctuations might be a low rate of trans-
mission of the current amplitude, either by the ADC to the system or by the system
to its API. Nevertheless, it is shown, that a calibration is necessary before taking
any sound level measurements.
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Figure 5.1: Comparison of smartphone models recording at varying amplitude
ranges

The following section presents the results of the calibration experiments.

5.1.1 Basic Calibration

The following experiment was performed by using the application "Spaichinger Schal-
lanalysator" for Android with version 2.2 (last update: 05.05.2020)".

The experiment is split into two parts. Firstly, conducting the calibration approach
of the application, which includes tearing apart 10 sheets of copy paper. Secondly,
measuring sound levels with the smartphone and a SLM next to it. For this pur-
pose, multiple frequencies (100 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 5000 Hz,
7000 Hz, 8000 Hz, 10000 Hz) were played at a consistent volume with a Bluetooth

Thttps://spaichinger-schallpegelmesser.de/schallanalysator.html
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speaker. This makes it possible to find out how much the sound levels of the smart-
phone deviate from the ones measured with the SLM and to find out if the deviation
changes for different frequencies. The sound level for each frequency was consec-
utively measured 12 times simultaneously on the Oneplus smartphone and on the
SLM.

The calibration part of the application is performed with the help of an interactive
process. Initially, the process starts by measuring the background noise to calculate
a threshold value for later measurements. Then, the actual calibration process can
be initiated by the user, by pressing a button and starting to tear apart one sheet
of paper. Meanwhile, the application measures the amplitude of the tearing and
allocates it a decibel value. This process is repeated for 10 times. After that, a
standard deviation is calculated and outputted. For this measurement, a deviation
value of 2 dB(A) has been given by the application.
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Measurement interval (about 180ms each)

Figure 5.2: Measuring sound levels while tearing apart five sheets of paper to cal-
culate the deviations of the peaks

To prove how the standard deviation of the tearing process can be computed, five
sheets of paper were teared apart, and the noise was measured by using the men-
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tioned application in an already calibrated phase. The audio spectrum of the pro-
cess can be seen in figure 5.2. A standard deviation was then calculated with the
maximum values of each tearing approach. By doing this, the standard deviation
results in 1.7 dB(A), which is close to the 2 dB(A), that were calculated by the ap-
plication while performing the calibration with ten sheets. Additionally, the average
of all maximum values is calculated, which corresponds to 74.8 dB(A).
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Figure 5.3: Measured sound levels of different frequencies on a smartphone and on
the SLM after having performed a smartphone calibration

The second part of the experiment gives insights on the deviations of the sound
levels measured by the smartphone application and a SLM. To do this, the sound
levels of each frequency were mean averaged for the smartphone and SLM each.
Then, both results were compared, which is shown in figure 5.3. Here, the frequen-
cies in Hz are depicted, as well as the recorded sound level in dB(A). Both devices
show a high increasing sound level between 100 Hz to 500 Hz and then only a
lower increase until 4000 Hz. As it was expected since both SLM and smartphone
measure the sound level in dB(A) this does approximately match the A-weighting
filter curve. Although, the A-weighting peaks at around 3000 Hz and further shows
a slow decrease. Calculating a two-paired, homoscedastic t-test of smartphone
and SLM values (without 100 Hz), provides a result of p = 0.68. Nevertheless, it
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can clearly be said, that the measurements of the smartphone are reliable, which
proves the first hypothesis.

0 2000 4000 6000 8000 10000 12000

Smartphone deviations from SLM in dB(A)
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Maximum deviation of 3 dB(A) Maximum deviation of 2 dB(A)

Figure 5.4: Average deviation of sound levels measured with a smartphone in re-
gard to the SLM at different frequencies (without 100 Hz).

To further evaluate the deviations of the smartphone, the values were analyzed in
detail. The deviations of the smartphone in regard to the SLM for each measured
frequency can be seen in figure 5.4. Although, the deviations of the smartphone
seem to be very high with about -14 dB(A) at 100 Hz, the error decreases dras-
tically at 2000 Hz in the range of -8 dB(A) to -9 dB(A) and then further improves
for 4000 Hz to around 5 dB(A). After that, the error rate decreases even further to
a range of -4 dB(A) to -2 dB(A) for the highest frequencies measured. The rea-
son for these differences could be the result of different frequency response rates
of the microphone for each frequency, which will be discussed later. Additionally,
some minor measurement errors shall be considered. Nonetheless, it is neces-
sary to say, that no sound level correction value has been added to the measured
smartphone values, which would be needed to settle the effects of the room, where
the measurement has been taken place. However, by adding a correction value of
5.5 dB(A), the measurement error reduces to + 3 dB(A) for frequencies between
500 and 10000 Hz. An even further reduction to a maximum error of + 2 dB(A)
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is also ensured for frequencies between 500 and 8000 Hz. Therefore, the second
and the third hypothesis, that different frequencies are recorded with different sound
pressure levels and do not exceed a certain deviation level, have also be proven.

Interestingly, different frequencies do not generally show large fluctuations in devi-
ation, which shows that different frequencies only have a limited impact on the ac-
curacy of the measured sound level for the tested smartphone microphone. Thus,
applying only a single correction value for all frequencies is feasible. Nevertheless,
to achieve even better results with smaller deviations the frequency response values
of the microphone should be taken into account if known, to limit the compensation
of the frequency difference. Another possibility, if the exact frequency response
value is unknown, is to use the frequency-based calibration method, which is ex-
plained in the next section 5.1.2.

5.1.2 Frequency-based Calibration

To include the frequency response of the smartphone microphone in the calibra-
tion, a more sophisticated approach is necessary. For this purpose, a set of fre-
quencies was outputted with a loudspeaker 20 cm away from a smartphone mi-
crophone with an initial calibration value of 80 dB(A) at 1000 Hz. This defined
volume level was not changed during the experiment. For each smartphone, every
frequency was measured three times and average values were calculated. Calcu-
lating a two-paired, homoscedastic t-test of the results, provides significant values
with « = 0.05 and p < « for p = 0.016, p = 0.005 and p = 0.004 for the Galaxy S4
and p = 0.049, p = 0.0 and p = 0.0 for the Galaxy S7. The Oneplus results were
not significant for the second try with p = 0.0, p = 0.787 and p = 0.0.

The results of each measurement are compared in figure 5.5. Both the Oneplus
7 Pro and the Galaxy S7 have consistently higher amplitudes, which are at least
twice as large for 5000 Hz and seventeen times as large for 10 kHz than the Galaxy
S4. This shows the differences that the smartphones have due to their specific
characteristics. Additionally, a distinct frequency response for each smartphone can
clearly be seen as well as the results for alternating each frequency. This shows
that a single calibration value for every smartphone is not sufficient in every case
for a general well-performing calibration. Therefore, the first hypothesis that varying
frequencies have an impact on the recorded amplitude is correct.

49



5 Results

12000
10000
o 8000 -
3 1
£ 6000
o
g
4000
1
L
2000
0
500 1000 2000 4000 5000 7000 8000 10000
Frequency
==@==0nePlus 7 Pro Galaxy S4 Galaxy S7

Figure 5.5: Measured amplitudes for the frequency calibration with indicated stan-
dard deviations.

The next step was to generate a dependency between amplitude and the mea-
sured sound level. Since the sound level of the A-weighting is not constant for all
frequencies, a difference value must be added or subtracted to the 80 dB(A) at 1000
Hz. This is further explained in section 2.4.3 with figure 2.4. However, measuring
the sound level in dB(A) with a SLM, the recorded values are not the same due to
measurement inaccuracies like direction, position or reflection. The maximum devi-
ations were 4.06 % for 20 kHz, which corresponds to +3.3 dB(A) or 4.26 % for 10
kHz, with -3.3 dB(A). For all other frequencies, the deviations were lower or even
zero. The full list of deviations is shown in table 5.1.

Frequency in Hz 500 | 1000 | 2000 | 4000 | 5000 | 7000 | 8000 | 10000
A-weighting in dB(A) 76,8 | 80 | 81,2 | 81 80,5 | 79,48 | 78,9 | 77,5
SLM in dB(A) 74,4 | 80 | 84,5 | 81 81,8 | 796 | 77,8 | 74,2

Relative deviations in dB(A) | -2,4 0 3,3 0 1,3 | 0,12 | -1,1 -3,3
Absolute deviations in % -3,12 | 0,00 | 4,06 | 0,00 | 1,61 | 0,15 | -1,39 | -4,26

Table 5.1: Deviations of the SLM to the A-weighting
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All in all, there are two options to calibrate the amplitude values with: the opti-
mum A-weighting decibel values or the recorded experimental ones which include
the measurement deviations. For the following calculations, the reference curve
was created with the decibel values, which were taken with the sound level meter
under experimental conditions. This decision was made, because the specific cir-
cumstances under which the data with the sound level meter was gathered are the
same as when the amplitudes were recorded with the smartphone. To display the
maximum deviations to the optimal A-weighting curve, the standard deviation is in-
dicated in the plot, however as already discussed, it is very minor and not detectable
in figure 5.6.
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Figure 5.6: The calibration factors for the Galaxy S4 (right axis) are much higher
and show a greater deviation rate than the ones of the Oneplus and the
Galaxy S7 (left axis).

To achieve a general comparison for each frequency across all devices, the dB(A)
value measured with the SLM is divided by the measured amplitude of the smart-
phone, which gives a frequency- and device-specific calibration factor. Due to norm
purposes, it is multiplied by 10000. This factor has been chosen to adapt to the
current amplitude values of the smartphones. Nonetheless, should the amplitude
values rise for smartphones in the next generations, this factor must be scaled fur-
ther up or the calibration values will be rather small or result in a high deviation. The
current decibel deviation of the calibration factor varies due to the amplitude range
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of the smartphone and is larger for higher amplitudes. For the Oneplus 7 Pro at
8000 Hz, the highest amplitude was measured in this experiment, which leads to a
deviation of 1 calibration factor of 0.9 dB(A). All calibration factors can be seen in
figure 5.6. The calibration factors of the Oneplus and the Galaxy S7 are in a similar
range, due to their similar operating amplitudes and are denoted on the primary
vertical axis. Since the Galaxy S4 records amplitudes with a much lower value, a
larger calibration factor is needed, shown on the secondary vertical axis. Another
fact is that the graphs of the Oneplus and the Galaxy S7 are very steady and both
show low fluctuations, however, the fluctuations in amplitudes are much higher for
the Galaxy S4. For example, the calibration factor is six times as high for the Galaxy
S4 between 5000 Hz and 8000 Hz due to the high drop in amplitude. For the One-
plus and the Galaxy S7, the deviation is not greater than three times between 500
Hz. and 10000 Hz. This indicates that the deviations between the microphone char-
acteristics of the Galaxy S4 in regard to the A-weighting are much greater than with
the other smartphones. Since different smartphones do not record frequencies with
the same amplitude, the second statement is proven.

Additionally, the question is raised by how much the accuracy changes if multiple
sound levels are included into the calibration. With the use of the self-developed
application, many frequencies have been outputted on a Bluetooth speaker with
the use of the complete volume spectrum of the smartphone. The results of the
self-calibration can be seen in figure 5.7.
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(a) Samsung Galaxy S6

(b) Samsung Galaxy S8

Figure 5.7: Measuring volumes of different frequencies on two different Samsung
Galaxy models with external speaker.
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The graph of figure 5.7a shows multiple frequency lines, which were outputted and
measured at different volumes with a Galaxy S6. Generally, frequencies between
8 Hz and 128 Hz have overlapping amplitudes and form a steady increasing line.
Interestingly, the same applies for 1024 Hz. Higher frequencies with 256 Hz, 512
Hz and 2048 Hz have continuously much steeper rising curves, due to microphone
characteristics. Frequencies of 4096 Hz, 8192 Hz and 14000 Hz have not been
generated and outputted correctly by the tone generator used with the application,
however they are not relevant for this example, which is why they have been left out.
The average background amplitude level was 249 for both measurements.

The same experiment has been conducted with the Galaxy S8 which is another
smartphone of the same manufacturer, however in a later version. This was done
to see how large the deviations in model variants are. In figure 5.7b, a relatively
similar image to the first tested version can be seen. However, the former bundled
frequency ranges are now stretched further apart and more fluctuating for higher
selected sound levels. In contrast, for lower sound levels the measured frequencies
are dense. Moreover, the higher, correctly outputted frequencies, are not measured
at higher levels, thus a huge change in microphone characteristics can be detected.
Looking at the general changes for increasing volumes, the overall rise is far lower
compared to the curves, than what is shown in the curves of the former model.

This fact can obviously be identified, when calculating a moving average curve out
of all frequencies as seen in figure 5.8.

This has been done to efficiently compare the average amplitude level with the other
smartphone variant. Both curves show a similar behavior for the first five volume
levels with deviations below 1000, then the curves split apart and increase with
different rates until volume level 12 with a deviation of about 9000. While the mea-
sured amplitude levels of the Galaxy S6 rise much higher, the Galaxy S8 does not
increase that fast, thus the distance to the S6 is getting bigger. The Galaxy S6 stops
its steep rise at a volume level of 13 and only increases marginally thereafter. For
the Galaxy S8, the curve peaks at level 14 and stays constant after that. Deviations
are between amplitudes of 8000 and 9000. However, as discussed below, the stan-
dard deviation of the mean is much higher at the end for the Galaxy S8 and more
visible at the middle levels for the Galaxy S6. This shows, that smartphones do not
represent rising sound levels evenly in amplitude, which is the answer to the third
statement.
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Figure 5.8: Moving average of amplitudes for frequencies 8 hz to 2048 hz of two
smartphone variants

5.1.3 Analysis of already gathered data

Before the work for this thesis started, a large data set has already been gath-
ered with the TrackYourTinnitus application for Android and iOS. The functionality
included a set of defined questions regarding the current state and extent of the
tinnitus perception at the time of answering [20]. For a more detailed analysis,
the sound level data should be combined with information about the current noise
situation. However, since the involved smartphones have not been calibrated be-
forehand, it is necessary to find a calibration approach afterwards. The gathered
data include the amplitude values, a user id, hard- and software information about
the device and the current time.

To determine the actual loudness data for a specific device it is possible to directly
convert the amplitude data into sound pressure values. However, this requires to
have information at least about the characteristics of the microphone, as already
discussed in section 4.1, since a more detailed approximation of the sound level is
only possible by having knowledge about the frequencies of the sound sample, as
shown in section 4.1.2.
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Nevertheless, to make a simplified statement about the approximate sound pres-
sure value for a given amplitude, an average amplitude calculated out of different
sound scenes was measured to include a wide range of frequencies. Therefore, the
violin and the traffic sound sample, which were already used in section 4.2, were
played by a Bluetooth loudspeaker at an average sound level of 80 dB(A) and 60
dB(A) at a distance of about 20 cm. The sound levels have been verified by an
SLM, the same way as it is shown in figure 4.5. At the same time, the amplitudes
were measured by the Galaxy S7 smartphone. The measured amplitudes of the
complete sample duration were averaged for each sample and a whole average
value was calculated out of that. The results are shown in table 5.2.

dB(A) 80 60

Amplitudes for the violin sample 3691 | 409
Amplitudes for the traffic sample 4282 | 401
Average amplitudes for both samples | 3987 | 405

Table 5.2: Averaged amplitudes for the violin and traffic sound samples played at
two different sound pressure levels.

The first average amplitude of 3987 shall be defined as a, and was used for the
calibration at 80 dB(A). The second average amplitude of 405 shall be defined as
a; and was used later for validation purposes at 60 dB(A). Before calculating the
calibration factor, b = 100 amplitude values were subtracted from the amplitude at
80 dB(A), due to static background noise. Thereafter, the resulting amplitude is
divided by sound pressure of the corresponding sound level of 80 dB(A), which cor-
responds to the calibration value c. This is done by converting the sound pressure
level L,, which is measured in dB(SPL) to the sound pressure p, which is measured
in Pascal, as introduced in section 2.4. Additionally, p, is defined as the reference
sound pressure given as py = 20 uPa = 2 x 107°. The formula is defined as:

p=po*10%
[36]

For the calibration sound level of L, = 80 dB(A), the sound pressure corresponds
to p = 0.2 Pa. This results in the following reference value, which serves as a
device specific calibration.
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. a0~—b _ 3987 — 100 _ 10435
D 0.2

For the next step, an amplitude value for which the sound level is calculated is
divided by the calibration value. For this example, the amplitude of 405 is taken,
which corresponds to the sound pressure of this amplitude.

. ay 405
=—=——=0.0208 P
b= T 10435 ¢
Lastly, this sound pressure can then be converted back to its corresponding sound
pressure level L, [36]. For the measured amplitude value of 405 with its sound

pressure of about 0.0208 Pa, the sound pressure level is calculated as:

0.02084

=20 * ~ 60.36 dB(SPL)

§ |'Bz

This corresponds roughly to the average volume of our sound samples which was
60 dB(A). This shows, that a conversion of amplitudes to a sound pressure level is
indeed possible. The complete source code is given in listing A.1.

This knowledge can be transferred to the data samples for the Galaxy S7 of the
TrackYourTinnitus dataset. For the Galaxy S7 140 data samples exist, which were
measured by one user. Calculating the amplitudes to their corresponding dB(SPL)
values by using the already explained method, creates the histogram in figure 5.9.
This shows, that all samples might be measured between 48 dB and 93 dB, which
appear to be reasonable values.

Since this approach is only feasible if loudness information about the smartphone is
known, another approach shall be presented if no calibration was done beforehand.
Nevertheless, this requires that the data set is large enough and the amplitude
range is known.

However, it is necessary to consider, that the sound levels have been calculated
by neglecting their corresponding frequencies, which is an important factor as seen
in section 5.1.2. Additionally, no defined measurement posture was defined, which
could interfere with the results, as seen in section 5.2.2. Nevertheless, the method
serves as a fairly accurate value to evaluate part of the already gathered data under
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Figure 5.9: A histogram of the converted sound level values for the Galaxy S7 data
samples

the condition, that an amplitude value for a defined sound level is known.

Looking at the TrackYourTinnitus data set again, shows that the amount of individ-
ual data points is 78767, however, since this thesis only deals with Android smart-
phones, data set from Apple devices are omitted. The largest amount of measure-
ments (1596) was taken with an LG Optimus smartphone with an amplitude range
between 0 and 29050, which roughly corresponds to the default amplitude range on
Android. Other Android devices which show a high occurrence in the data set are
the Samsung Galaxy S Ill mini (1030) with a range of 89 to 31157 and the Samsung
Galaxy Note 3 (916) with a range of 0 to 4633. Since the maximum amplitude of the
Note 3 is much lower, compared to the other ones, this indicates, that the amplitude
range is different for varying devices, even from the same manufacturer.

Doing a further analysis with a selected number of devices which supposedly have
the same amplitude range of about 0 to 32767 (LG Optimus, Samsung Galaxy S llI
mini, Samsung Galaxy S4), provides a sample of 33710 data samples by 41 indi-
vidual users. Falsified values with a sound level of 0 were filtered out. The analysis
can be seen in a histogram in figure 5.10. By dividing the amplitude scale into sev-
eral regions this indicates that with 30% about third of the samples were taken in an
amplitude range between 15 and 1515. The next group with amplitudes up to 3015
takes up 21% of all samples. Then amplitudes to a value of 4515, which is about a
third of the whole amplitude range, correspond to 11% of all samples. It can clearly
be seen that most of the amplitude data is taken in rather quiet surroundings like at
home for example in a calm room. This fact can help to further analyze the sound
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Figure 5.10: A histogram with the number of data samples for multiple Android
smartphones of the same amplitude range.

level for example by setting a constant volume level for the most common amplitude
values.

For a very quiet room the sound level could be about 20 dB(A). Since the lowest
measured amplitude is 15, this will serve as the corresponding calibration ampli-
tude. Calculating the sound pressure levels for every data point as shown before
creates the histogram in figure 5.11.

Here, it can easily be seen, that most of the data samples could be taken at around
60 dB(SPL) to 70 dB(SPL), which corresponds to the sound level of a conversation
or street traffic. Since these are both frequently occurring occasions, the calibration
values seem to be well selected. Nevertheless, once again these values do only
represent an approximation of the actual sound level and should therefore not be

taken at face value.
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Figure 5.11: A histogram with the number of data samples and their corresponding
sound level values for multiple Android smartphones of the same am-
plitude range.

5.2 Acoustical Behavior

Investigation of the acoustical behavior of smartphones, was performed by using
a stereo sound system and the already in section 4.2.1 described samples. All
experimental data was taken on a consistent volume level. The number of tested
smartphones was n = 3 with different manufacturers to cover a diverse spectrum
of hardware. Furthermore, the experiments were repeated with an external micro-
phone, connected via an AUX-IN cable instead of the in-built smartphone micro-
phone.

5.2.1 Monodirectional Behavior

To find out if and to what extent distance has an influence on the amplitude and
how the quality varies for increasing distance, further experiments have been con-
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ducted. As sound only emerges from one direction and directly hits the smartphone,
the experiment measures the monodirectional behavior of the smartphone. The
experiment is conducted by playing different sound samples on a stereo system
and recording the emitted sound waves on different smartphones at three distinct
distances from the main speaker (1 meter, 2 meters, 3 meters). After that, the
experiment was repeated by using an external microphone as the choice of input
source.

During the experiment the smartphone was held in the hand at a height of 1.5 meter
in a posture explained in subsection 4.2.4.
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Figure 5.12: Measuring amplitudes with increasing distance with the aircraft takeoff
sample on the Galaxy S7 (left) and the Oneplus (right)

The results show that the measured sound level indeed decreases with further dis-
tance with every device. The measured amplitudes were consistently lower on all
devices with consistent behavior for the aircraft takeoff sample. This can be seen in
figure 5.12 for the Galaxy S7 and the Oneplus smartphones. For both smartphones,
the measurement provides similar results when comparing both smartphones in
terms of their ability to reflect distance correctly in the amplitude values. Noticeably,
the Galaxy shows more deviant values for different distances, consequently it might
have a better distance measurement than the Oneplus, which values lie more to-
gether. Another interesting point is that the course of the polynomial trend line is
not the same for all distances. For the first distance on both phones more excessive
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movements can be observed, thus the sound level characteristics of the sample are
described better. For increasing distances, the amplitude movements decrease.
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Figure 5.13: Measuring amplitudes with increasing distance with the helicopter
sound sample on the Galaxy S7 (left) and the Oneplus (right)

A similar result can be seen with the helicopter sample on both phones in figure
5.13. Again, the Galaxy S7 shows much more split apart values for the first distance,
while the amplitude values for the Oneplus seem to have spread more equally.
Nonetheless, all smartphones show the ability to reflect distance in their amplitude
values for both samples.

However, the ability to distinguish distance well is not consistent with all samples.
The violin sample does not give any coherent clues about the difference of 2 meters
and 3 meters distance as seen in figure 5.14. While a distance of 1 meter is clearly
identifiable with the use of a polynomial trend line, for an increasing distance this
is not possible anymore. The reason for this might be the high frequencies of the
violin which might be more prone to a higher rate of room reflection. Similar results
are measured on all smartphones and even the use of an external microphone did
not show any improvement in this regard.
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Figure 5.14: No statements about the distance of 2 m and 3 m can be made for the
violin sample across all devices

Repeating the whole experiment with the use of an external microphone, rather
leads to similar results for the traffic sample with the Galaxy S7 smartphone. A
comparison for the internal and external microphone can be seen in figure 5.15.

This similar behavior was also noticed on other devices. Analysis of the raw ampli-
tude data of the devices however shows, that the 1 meter and 2 meters measure-
ment values are split more apart when using an external microphone. This creates
a noticeable larger margin between the amplitudes of the first distance and the ones
thereafter, which can also be confirmed consistently on all devices. Although, this
behavior is not evenly distributed on all smartphones, as intensity varies according
to which smartphone is used. For the Samsung smartphone this effect can slightly
be noticed at around the 25 second mark, as the curves do not overlap that much.
Nevertheless, for the monodirectional measurement, the differences can only be
measured slightly.
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Figure 5.15: Comparison of amplitudes with increasing distance by using a Sam-
sung Smartphone (left) in combination with an external microphone

(right)

To find out, whether the obtained results of the monodirectional behavior can be
valued, it is necessary to prove them in some way. Following the scientific Inverse-
square law, the sound pressure decreases proportionally with distance by 1/r. Since
this rule should apply to the executed measurements as well, it should be possible
to find out if the law can be transferred to smartphone recordings. Proving this would
allow the comparison of two or more values received from a sound source playing
sound with a steady loudness. Furthermore, this technique would allow to roughly
determine the distance from the sound source to the smartphone. To evaluate if
the executed experiment does have any correlation to the Inverse-square law, three
distinct amplitude values from each measured distance (1 meter, 2 meters, 3 me-
ters) have been compared to the proportional decrease of the Inverse-square law.
However, since only three measurement points exist, just an approximate guess
with three data points can be made.

For analysis purposes, the measured amplitude value of each distance is plotted
together with the curve of the Inverse-square law 1/r, where r is defined as the dis-
tance in meters. This attenuation factor is then applied by multiplying the measured
amplitude at 1 meter to it, which allows to adapt the formula to the measurement.
The results can be seen in figure 5.16. A clear decrease in amplitude for increas-
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Figure 5.16: Comparison between proportional signal reduction and measured val-
ues

ing distance can be analyzed, as it was observed before. However, signal levels
do not decrease proportional but proceed more linear. The reason for this might
be the acoustical characteristics of the room, where the measurement was taken.
Due to sound reflection of the walls, the amplitude degradation is far less than as-
sumed. If the experiment was replicated with less reflection, the derivation of the
measured levels with regard to the expected values should be far less. Additionally,
it is unknown, if the amplitude of the smartphone directly corresponds to the sound
pressure, since it is an arbitrary value of the Android OS. Hence, it might not entirely
describe the sound pressure at the smartphone microphone.

Even though this experiment was only performed at three distances and the acous-
tical characteristics of the room might have modified the measurement values, the
results still indicate a clear reduction of amplitude with accumulated distance. Com-
paring the results with the curve of the Inverse-square law, they are in a proximate
range, although in spite of the given limitations a highly certain prove cannot be
made.
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5.2.2 Omnidirectional Behavior

To figure out the impact of the direction the sound is coming from, the sound level
was measured at different directions from the sound source. As sound is not always
hitting the smartphone from straight ahead, it must be evaluated how other sound
directions influence the measured amplitude of the smartphone.
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1000 A - 1m

o0 A0 N 20 O A0 20 20

Figure 5.17: Measuring the amplitude with the internal microphone of the Oneplus
(left) and an external microphone (right) at different positions to the
sound source. The use of an external microphone leads to lower devi-
ations.

The omnidirectional experiment has been performed with the traffic sample. As fig-
ure 5.17 shows, variations in loudness can clearly be seen for different positions.
In the first orange marked range, the sound is coming from the front (O degrees).
After that, the person holding the smartphone in his right hand turns to the right (90
degrees). Interestingly, an increasing amplitude can be observed. Then, the person
is turning right again and stands with his back to the sound source (180 degrees).
The amplitude declines a lot in consequence of this and less amplitude spikes are
measured. As a last position, the person turns right again (270 degrees), which in-
creases the amplitude again, which can be seen in the yellow range. Nevertheless,
a slight less average amplitude value than in the green range can be observed, al-
though the person stands sideways to the sound source during both ranges. This
might be the case due to the shielding of the right arm, which blocks the sound
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waves, that would directly hit the microphone, therefore the amplitude is lower in
the yellow range than in the green. On the other hand, the green range shows a
large increase, which could be the case of the reflection of the right hand, which
reflects the sound waves into the microphone, thus the spike in amplitude is seen.

Repeating the experiment with an external microphone does show some differences
as expected. The use of a true omnidirectional microphone does indeed mitigate the
position differences since the amplitude does not show a lot of excessive changes
as the internal microphone does. Obviously, the amplitude drops significantly, when
standing behind the sound source (blue range), since the body blocks a lot of the
incoming sound waves. However, this effect is much less, when compared to the
internal microphone. Amplitude changes between the other three positions are only
slightly visible and could also be part of the sample. Hence, it is clearly deducible,
that the use of an external microphone does lead to more accurate results, when
measuring sound from different positions.
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The performed experiments have shown that smartphones are indeed capable to
measure noise in daily life. Therefore, they can also be used as an easy tool to be
aware of the surrounding noise level in real time to lower the risk of health issues
like stress, hearing loss or tinnitus caused by high noise levels. Moreover, this type
of smartphone application can also be used to mitigate the effects of tinnitus for
affected people. This can be done for example by identifying unpleasant frequen-
cies or uncomfortable noise levels (too quiet or too loud) and issuing a warning if
a threshold is exceeded. In summary, this research about noise measuring with a
smartphone represents only the beginning of a larger field of application, which can
be adopted quite easily, after the basic issues are solved.

Basic Calibration Approaches

Several calibration approaches have been introduced to convert smartphone am-
plitude values to the comparable dB(A) unit. Two methods, the basic and the fre-
quency calibration, have been presented. Although, both methods have only been
tested with Android smartphones in this thesis, the theory behind it works for all
smartphones the same if their operating system provides an amplitude value that
corresponds to the surrounding loudness. This has been proven for iPhone smart-
phones as well by M. Ziegler [40]. Beyond that, the calibration can be reproduced
by anyone, which shows that the external validation can be ensured.

The results of the basic calibration show that it only takes about 5 minutes and
some sheets of paper to gain an accuracy of a maximum of 3 dB(A). However, a
compensation value of 5.5 dB(A) has to be taken into account to compensate for
any room impacts. Since this correction value has only been created by using the
help of a SLM, results may change if an estimation of this value must be assumed.
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This topic is further discussed in the section The Effects of Reflection. Nonetheless,
this approach has proven to work as an uncomplicated method to provide decent
results.

The measured results are comparable with the results of other testing measure-
ments by M. Ziegler (Sept. 2019), which have been gained by using this calibration
method. First, the standard deviation of the calibration is said to be about 2 dB(A).
For the conducted measurement, these 2 dB(A) have exactly been measured dur-
ing this study. Additionally, the accuracy of the measurement is supposed to be
about 2 to 3 dB(A), which has also been shown here with a maximum deviation of
3 dB(A). The compensation value was chosen a bit higher with 5.5 dB(A) than the
values with 0 to 3.5 dB(A) in the comparison measurement of Ziegler (2019). How-
ever, since the compensation value is dependent on the characteristics of room and
microphone, it is hard to compare [41].

Nonetheless, only one compensation value is added for the basic calibration, that
corresponds to all frequencies and sound levels. This shows a limitation of the
basic calibration. Since the process of tearing a paper covers a specific range of
frequencies and only has a defined loudness range, it does not take the specific
frequency response and the response for different sound levels of the microphone
into account. While a difference in frequency response was suspected before, its
existence has already been verified with the measurements of the basic approach.

Despite that, most of these limitations shall be solved by using the frequency-based
calibration, which aims at providing a solution for such issues.

Frequency-dependent Calibration

The frequency calibration focuses on two things. Firstly, to compensate any devia-
tions resulting from a different frequency response of the microphone and secondly,
provide compensation for deviations in different sound levels.

Additionally, the frequency calibration emphasizes the importance of performing an
individual calibration for different frequencies, since the amplitude curve of each
smartphone clearly shows an own behavior. By including an individual calibration
factor, the frequency differences can indeed be compensated. Nonetheless, it is
necessary to apply further research to bring the concept to application. Especially,
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when measured sound consists of multiple frequencies, a single calibration factor is
not available, due to the unique characteristics of each frequency to the recording.
Hence, it is necessary to determine a new calibration factor out of all recorded
frequencies. One solution could be to use the calibration factor value of the lowest
measured frequency of the sample in question, which is referred as the fundamental
frequency. This frequency has the feature of being the lowest and the loudest
perceived frequency of the human ear [4]. However, it must be shown, that the
calibration factor identified, results in a reliable sound level measurement.

Another approach to accomplish a valid calibration factor is by performing a time-
frequency analysis like the Short-time Fourier Transform (STFT). This is used for
continuous signal streams with changing frequencies over time. To determine the
corresponding frequencies, the time signal is split into segments, which can then
be analyzed further by dividing them into a frequency spectrogram [35]. A graphical
representation of the result is given in figure 6.1. Information about specific fre-
quency components of the sound could then be applied to calculate an appropriate
calibration factor using the already collected calibration data.

Figure 6.1: A 3D example for the short-time Fourier transform, which includes fre-
quency (x-axis), colored intensity (y-axis) and time (z-axis) [38].
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Additional Factor: Smartphone Age

One more issue that is worth mentioning, is that the age of a smartphone seems
to have a negative effect on the accuracy. The result of the frequency calibra-
tion shows a larger scale of amplitude for the newer Oneplus 7 Pro and Galaxy
S7 phones, which indicates a higher accuracy, due to a larger scale. Additionally,
looking at the calibration factors for each frequency of the involved smartphones,
shows that the frequency fluctuations are much higher for the Galaxy S4, whereas
the Oneplus and the Galaxy S7 show an almost constant trend. Hence, the extent
of necessary calibration is much higher for the Galaxy S4 since it does not depict
the A-weighting accurately. This finding is comparable to the results of Murphy and
King (2016), who observed that accuracy increases with newer phones. The rea-
son behind this might be more advanced microphone technology or a deterioration
for smartphone microphones with age [28]. Similarities between the Galaxy S4 and
the Galaxy S7, which are smartphones by the same manufacturer could not be
identified, however due to the age difference this is not surprising.

The Impact of Sound Levels for Calibration

The results of the impact of loudness for the calibration do not give a clear outcome.
Resulting from the measurements, a different increasing rate of amplitudes for vary-
ing sound levels was shown. This indicates that the amplitude does not increase
gradually. However, this was only shown by increasing the internal Android volume
level and testing for pure frequencies. It is necessary to state, that the Android
volume level generally cannot be used to calibrate a smartphone since it was not
proven that the output sound level gradually increases evenly with increasing vol-
ume levels. Furthermore, different loudspeakers could possibly output the volume
levels at different sound levels, too. Thus, a better procedure for future applications
would be to measure the different sound levels in dB(A), as it would increase com-
parability. Additionally, several loudness values in dB(A) could be defined to use
for future frequency measurements. Nevertheless, this includes additional hard-
ware like a SLM or an already calibrated smartphone. However, looking at the re-
sults of the monodirectional experiment shows that by decreasing the distance and
thus loudness indeed not every sample has shown an equally decreasing amplitude
(apart from possible impacts of reflection).
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Besides that, it is important to notice, that for this experiment and the behavior
measurements, no amplitude to dB(A) conversion was performed to avoid falsifying
the measurement results and showing the raw amplitude values. This was done
to prevent calculation errors tamper with the validity of the results. Therefore, no
conclusions from microphone pressure to dB(A) should be made.

To say if an inclusion of a loudness compensation value in future calibrations can be
done, further knowledge about the smartphone behavior for decreasing loudness is
needed. However, information about loudness cannot directly be retrieved since this
is part of the calibration result and the actual sound level is unknown. But retrieving
additional information about the type of noise and its direction could be achieved
by detailed sound analysis with the use of machine learning. Thus, the recorded
sound could be classified, which on one hand might be beneficial to the calibration
and on the other hand could be an advantage in tinnitus research, since the specific
type of noise which correlates to the perception of tinnitus at that moment could be
identified. Hence, this might serve as a future approach to improve calibration and
well-being as well.

Comparison to Related Studies

For a comprehensive comparison of the results, other studies are included, which
deal with noise levels measured by a smartphone. Kardous and Shaw 2014 have
tested several sound measuring applications for iPhone devices without perform-
ing any type of calibration and 3 of 10 applications had deviations below 2 dB(A)
[17]. A large experiment has been performed by Murphy and King (2016), who con-
ducted 1472 tests on 100 phones. Interestingly, only one application for Android
but four applications for iOS have accurately measured deviations below 2 dB(A).
Additionally, it was stated, that Android applications do generally provide “less reli-
able” results, than iOS applications, which might be the case due to more diverse
hardware [28].

All in all, the relatively straightforward and uncomplicated calibration approaches
evaluated in the course of this study give promising results, which can be improved
even more by some modifications regarding the calibration. Nonetheless, the re-
sults show that a comparable level to professional applications can be achieved,
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although it is necessary to have in mind that the measurements for this work have
been gathered under limited conditions.

Additional Factors: Distance to the Microphone and its Surroundings

Results of the data for the acoustical behavior give different results depending on
the samples, which have been tested. A general capability to reflect even small
distance changes of one meter in sound levels was proven. Despite an even de-
crease for the traffic sample for all 3 meters, other samples have shown problems
to correctly reflect changes between 2 and 3 meters. Possible reasons for this are
again room reflection parameters. Interestingly, the impact does change depending
on the type of frequency, which is explained in further detail in section 6. Thus, it is
no surprise, that for higher frequency samples like the violin tones, a much higher
degree of reflection is measured.

The results of the omnidirectional experiment show, that the direction of the micro-
phone to the sound source does indeed make a difference. All in all, this experiment
provides knowledge if and to what extent different directions of sound sources have
an influence on the amplitudes measured. Obtained results can possibly help to
design future experiments which include the originating direction of sound into the
calculation of sound level, as sound can be sensed with a higher intensity by the
person when it is coming from behind, than it is measured with the smartphone
in front. Therefore, a compensation value might be added to account for direction
parameters. Having in mind, that the smartphone is not exposed directly to the
surrounding sound every time, the same applies, if the smartphone is covert up,
e.g. in a pocket. Under these conditions, it is harder to make any reliable assump-
tions about the results of the internal microphone, as low sound levels might not be
recognized correctly anymore.

Additional Facotrs: Use of external Microphones

The performance of the external microphone is varying. While for the Samsung
smartphone the use of an external microphone provides similar results as to the
internal microphone, the results showed a much lower amplitude for the Oneplus
phone.
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The reason for this lies in the custom characteristics of the external microphone
completely differing from the one of the internal microphone of the smartphone.
Here the question arises, whether it is possible to achieve the same acoustical be-
havior by using the same external microphone on different smartphones. However,
when comparing two different smartphones using the same external microphone,
the results still differ, as the sound processing modalities of the smartphones are
not the same, as it is also discussed in 2.5. For the external microphone in the
monodirectional experiment the amplitudes are diverging (about 500 higher with
the Samsung, and 2000 lower with the Oneplus). Nevertheless, for another exter-
nal microphone, this is different again. If that was the case, a re-calibration would
have to be performed every time, when an external microphone is used in combi-
nation with a new smartphone.

As a general consequence, values of the distance measurements increased at least
between the distances of 1 meter and 2 meters for all devices by the use of an
external microphone, which certainly improves the measurement quality. With 2
meters and 3 meters, the improvement can still be measured with the Oneplus
phone in a mitigated form, the Samsung phone seems to be more prone to sound
reflection since the positive effect of the external microphone can no longer be
detected. Nonetheless, the positive effect of the external microphone can be seen,
that is why the use of an external microphone is mostly better when compared to
the internal microphone. However, considering the used external microphone was a
low-price model, better results might be even achieved with a higher quality model.

These findings are close to the results of Faber (2017), who compared two inexpen-
sive external microphones and concluded that “even a very inexpensive microphone
[...] can be used for reasonably accurate measurements with a smartphone® [9].
Additionally, a follow-up study of Kardous, Chucri and Shaw (2016) with external
microphones has shown an enhancement of the mean deviation from 2 dB(A) with
the internal microphone to 1 dB(A) with an external microphone, stating that exter-
nal microphones “greatly improve the overall accuracy and precision of smartphone
sound measurements” [18].
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A Guidance for future Measurements

Following the outcome of the results, the general recommendation to retrieve loud-
ness data as accurate as possible, is to point the smartphone microphone in the
direction of the sound to avoid sound reflection as much as possible. For the same
reason, a lot of space should be around the microphone, which is the case with
wide rooms being more favorable than small rooms. Additionally, nothing should
block the path between the sound source and the microphone, so the sound level
can be recorded directly in an unmitigated form. This includes removing any smart-
phone bumpers, cases or other form of protection parts, which could interfere with
the measurement. Moreover, the height of the smartphone should be the same as
the sound source to achieve an accurate recording. For an unsophisticated mea-
surement, holding the smartphone at the general posture is sufficient. However,
depending on the aims of the measurement, a defined height for holding the smart-
phone could be predefined, e.g. at face level to examine the consequences for
hearing.

Since all measurements in this study have only been conducted under limited con-
ditions in a living room, they need to be proven under some real life conditions,
which includes a lot more external influences that might have an enormous impact
on the accuracy. This includes for example increased background noise like wind
or walking sounds, reduced sound reflection, changing distances and directions, a
covert smartphone in a pocket or accidentally covering the microphone for a short
time, which can lead to high amplitude spikes. Therefore, methods to identify and
exclude such errors need to be developed to take correct measurements during
large surveys. Some additional factors that are needed to consider when perform-
ing complex measurements will be elaborated in the next section.

The Effects of Reflection

Every calibration attempt and behavior experiment was made in a room with no
sound absorbing materials, so it is possible that the results heavily depend on the
room characteristics of the place where the experiment was conducted. This in-
cludes sound waves, which are either absorbed or reflected according to the mate-
rial they hit. Lower frequencies have a longer wavelength and spread very much, so
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they are only reflected by larger objects, while higher frequencies are more direc-
tional and can even bounce off from smaller objects and thus are more likely to add
to the measurement [33]. Thus, the measurement values deviate from exact results,
which would have been gained under optimal conditions. A good example for this
is demonstrated in figure 6.2, which is taken from a monodirectional measurement,
which has been taken during an early experimental stage. Here, the impacts of
reflection can be seen very clearly, since the measurement results at 5 meters dis-
tance have been recorded with a higher amplitude than the ones at 3 meters. The
reason for this abnormality is the wall of the room, since due to the diffused sound
reflection of the wall, the recorded amplitude is much higher. Thus, even though the
sound at 3 meter distance has a much smaller distance to the sound source, it is
measured at a lower amplitude, because of the impact, that reflection has on the 5
meter measurements.
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Figure 6.2: The impact of sound reflection is the reason why the sound is recorded
at a much higher amplitude than it has.

To counteract this effect in future calibration approaches, it is necessary to choose
a balancing value, which need to be further evaluated. This value can be estimated
based on experience or calculated as a better alternative. For this purpose, new
methods need to be developed to calculate an approximate balancing value de-
pending on the size, equipment, floor and wall materials of the room. Additional
help could be given by having the possibility to locate the current position of the
user to change the balancing value, depending on the surrounding conditions. For

76



6 Discussion

example, choose a lower compensation value for reflection when outdoors and a
higher one when in a small room indoors. These approaches can even include real
time balancing values, which might help to reduce the impact of reflection on the
result.

Considering Accuracy and Use Case

In any case one can assume, that for more precise results also more complex mea-
surement procedures are needed. This can either include more advanced software
and experience taken in experiments beforehand, the help of additional hardware
or even both. Although, the aim of gathering loudness data with a smartphone is
to achieve as much as precise results as possible, this does not mean to make
this task too hard to be accomplished by the average user. Thus, a careful consid-
eration between a high accuracy and a straightforward calibration and measuring
procedure needs to be found. There are several reasons for this: Firstly, a too
advanced approach leaves higher chances for the user to make errors during cali-
bration or measurements, which could result in small deviations of measurements
in the best case, or even falsify the complete result in the worst case. Secondly,
the user could be unable to carry out the calibration due to missing hardware or
additional needed equipment. Another reason for this might be incomprehensible
or too complex instructions, which deter the user to even start the calibration. Con-
sequently, the selected approach should be as easy as possible to perform.

Additionally, if microphone characteristics of a specific smartphone are known or
have been examined, it is possible to share these over the internet to let other users
benefit from it. Therefore, only one calibration per smartphone would be necessary
to perform since calibration data is the same for identical smartphone models. This
would reduce the difficulty for sound level measurements even further, if a large
database is established, since the average user would only need to deal with the
calibration, if no one else has already performed it. Hence, this would make it
possible to perform a calibration on behalf of the user, which is especially useful for
large crowd-based data collections.
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Noise Measuring in Context of Tinnitus Perception

When measuring noise to investigate the course of tinnitus perception, it is im-
portant to consider the sensation of the individual person, since subjective tinnitus
cannot be measured objectively [11]. Studies have already shown that the percep-
tion and annoyance of tinnitus fluctuates during the day, however, this varies from
patient to patient [14]. Hence, in order to find a way to reduce the distress, fur-
ther studies to measure the individual fluctuations in the perception of tinnitus are
needed, which can be achieved by the use of questionnaires, as they are provided
as part of the TrackYourTinnitus application [34]. The advantage of this is to further
analyze the health condition of patients by gathering relevant medical data in their
daily life, which is also referred to as Ecological Momentary Assessment (EMA). By
combining the collected data of a large number of different participants, this helps
to gain addition insights [19].

Moreover, including data about noise can additionally provide important information,
since exposure to noise can likely cause emotional stress, which in turn has nega-
tive effects on tinnitus [25] [23]. Therefore, specific types of noises that can cause
stress to the individual person need to be identified. This may include but might
not be limited to high frequency sounds, high intensity sound levels, specific noise
occurrences, which include a certain type of frequencies that cause annoyance or
a combination of all. Thus, it is necessary to examine probable causes further by
measuring and analyzing frequencies and noise levels.

The presented frequency calibration approach, in combination with a standardized
measuring method, is well suited for this type of investigation since it does not only
provide the ability to measure the sound level, but it also assures that the measure-
ment is accurately done for different types of frequency responses of smartphone
microphones. The acquired noise data can then further be used by performing a
correlation with subjective data of the patient’s questionnaire about the current tin-
nitus condition to obtain a widespread result. This method allows to do a much
more differential analysis and utilization of the collected data since the relationship
between noise and tinnitus perception can be investigated much easier and in more
detail. As a result, the frequency method serves as a valuable approach for mea-
suring noise levels for a general use, as well as to determine and modulate the
tinnitus perception with a smartphone.
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Following the results of the study it can be concluded, that the complex procedure
of measuring sound levels with a smartphone is a task that can be accomplished.
With the acoustical behavior experiments it has been proven, that smartphones are
indeed capable of measuring sound correctly in relation to its distance. However,
all results should be considered with caution, due to the impact of sound reflection
and other factors.

Allin all, the experiments and data do not only make it possible to convert amplitude
values into sound pressure levels, but additionally lead to a better understanding in
the way of how smartphones record sound and how changing factors like distance
or position have an influence on the recorded amplitude. This enables further appli-
cations in the field of noise measuring for personal and health usage, as measuring
sound levels (in a basic fashion) does not require more additional equipment than
a smartphone and a calibration procedure. Therefore, anyone has the possibility
to perform sound level measurements in daily life, which can provide approximate
answers to basic questions, like: Could the current sound level be harmful for my
hearing? Or: How long can | expose myself to this sound level until health risk might
occur?

An additional use case is given by collecting and analyzing information about fre-
quency and loudness of tinnitus patients in their daily life, which might result in
further knowledge about the impact of tinnitus especially in its subjective occur-
rence. This can be achieved by putting the gathered data into context with informa-
tion about the perception of the affected person to provide further improvements in
dealing with tinnitus.

A summary of the findings and an outlook to future opportunities is given below.
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7.1 Summary

This work deals with different topics, which include the analysis of smartphone am-
plitude data, collecting and developing own approaches to calibrate a smartphone
microphone and performing different experiments regarding the acoustical behavior
of an internal as well as an external microphone.

Results from the basic calibration have shown promising results with regard to gen-
eral application, with a good accuracy to start with and a small effort for the calibra-
tion. Additionally, to compensate for the microphone response and to deal with dif-
ferences in loudness, the frequency-based calibration has been introduced. While
it provides a higher degree of accuracy, it requires much more effort to be accom-
plished. However, it has been shown, that it is worth to further develop the basic
calibration technique to include reference values into the calibration that account for
changing conditions and therefore achieve more precise results in these cases.

The results of the calibration have consequently led to the analysis of sound data
samples of tinnitus probands since the data could be determined by a subsequent
calibration approach.

Moreover, additional information when measuring amplitudes at different distances
and positions were gathered. This has demonstrated that smartphones are able to
show distance differences in amplitude, however, due to measurement limitations,
the accuracy could not be proven. Another important finding is that the position
to the sound source is important as well as the general posture as the time of
measuring since this is highly influential for the result. Therefore, standardization
suggestions for future measurements have been made and tested with multiple
smartphones to increase the reliability.

Together with the achieved knowledge in the course of this study, a way to efficiently
gather sound level data has been presented, which does not only benefit the aver-
age user, but could be very beneficial for tinnitus patients to monitor their health
issues as well as for other conditions.
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7.2 Outlook

The results achieved in this work may serve as a starting point to measure loudness
with the help of a smartphone. As discussed before, a calibration is necessary
beforehand and can be carried out in different ways, which all pose different difficulty
and accuracy levels. Additionally, the number of overall calibrations to be performed
can be reduced drastically, if they do not need to be performed by every user, e.g.
by sharing them over the internet with regard to the type of smartphone used. This
method would need to be developed and tested.

Nevertheless, all calibration measurements have not been in use outside up to now.
Thus, more effort will be necessary to achieve good results also in daily life mea-
surements. Although the presented calibration methods are state of the art, it will be
necessary to improve and adapt them to changing indoor and outdoor conditions.
Beside the introduced and currently working methods, with changing technology
and more knowledge on this topic, there is a lot more potential to develop new ap-
proaches in the future, as the presented internal calibration shows. Hopefully, this
will give everyone in the future the possibility to measure sound levels with a smart-
phone. Moreover, it might lead to a general awareness to sound as sound levels
and sound types are factors for well-being and iliness. The further use of the results
in tinnitus evaluation and treatment shows a first application in this direction.
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Listing A.1: Conversion of a measured amplitude value to the sound pressure level
in dB(SPL), by using a predefined amplitude and its sound pressure
level as a calibration value.

package de.uulm.dbis;

// Idea based on https://stackoverflow.com/a/14870458/3964954

// converston of smartphone amplitudes to dB(SPL) after a
- calibration was performed

public class Amp2Dec {

// reference sound pressure
private final double REFERENCE = 0.00002;

[/ - defined calibration values ----------------

private final int BG_AMP = 50; // measured amplitude of
- background noise

private final int X = 4000 - BG_AMP; // measured amplitude

— during caltbration

private final double Y = 80.0; // corresponding dB(SPL)
/) e

// calculated dB(SPL)
private double db;

public Amp2Dec(int amp) {
db = amplitude_to_decibel (amp);

82



22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

A Source Codes

private double amplitude_to_decibel(int amp) {
// calibration value, given that amplitude value X
—~ corresponds to Y dB(SPL)

double calibration_value = X / spl_to_pressure(Y);

// pressure in pascal, given that amplitude behaves
— Trelative to the pressure

double pressure = amp / calibration_value;

// dB(SPL), using the formula for the sound pressure level
return 20 * Math.loglO(pressure / REFERENCE);

//sound pressure in pascal for a given sound level

private double spl_to_pressure(double spl) {
return Math.round (1000000000 * REFERENCE * Math.pow(10, spl
- / 20)) / 1000000000.0;

public double getDb() {

return db;
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Listing A.2: Measure amplitude levels with an Android smartphone aiming for the
highest possible quality.

package de.uulm.dbis;

// Imports are shortened due to their large amount

public class AudioAnalyzer {

// Adapted from

// https://qgist.github.com/pardom-2zz/9644274 audioRecorder
— implementation

// https://stackoverflow.com/a/21124025 audioRecorder to wav

— amplementation

private static int RECORDER_BPP; // bits per sample
private static int RECORDER_CHANNELS_INT; // 1=MONO, 2=STERE0
private final int SECONDS_TO_RUN = 40;

Thread recordingThread = null;

private boolean USE_DIRECT_REC; // true: audioRecord false:
— medtaRecorder

private ScrollView scroller;

private File filename;

private TextView myText;

private Context context;

private String agc_status = "";

private String recorder_settings = "";

private File recording_file;

private File recording_file_dir;

private MediaRecorder mediaRecorder = null;

private AudioRecord audioRecorder = null;

private int mSampleRate;

private short mAudioFormat;

private short mChannelConfig;
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private short[] mBuffer;

private int mBufferSize = AudioRecord.ERROR_BAD_VALUE;

private int mLocks = O;

private ArrayList<Integer> amplitude_list = new ArrayList<>();

private File recording_file_dir_temp;

public AudioAnalyzer(TextView con, ScrollView scroller, Context
< context, boolean dir) {

this.myText = con;

this.scroller = scroller;

this.context = context;

this .USE_DIRECT_REC = dir;

analyze();

public void analyze() {
Handler handler = new Handler();
Runnable runnable = () -> {
Date date = new Date();
SimpleDateFormat formatter = new
— SimpleDateFormat ("dd-MM-yyyy_HH-mm-ss-SSS");
SimpleDateFormat formatter2 = new
— SimpleDateFormat ("HH-mm-ss-SSS");
File path = new File(Environment.
< getExternalStorageDirectory() .getAbsolutePath() +
- "/AudioAnalyzer");
if (!(path.isDirectory())) {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.0)
- A
try {
Files.createDirectory(Paths.get (path.
~ getAbsolutePath()));
} catch (IOException e) {
e.printStackTrace();
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} else {
path.mkdir();
}
System.out.println("AudioAnalyzer Directory
<~ created");
} else {
System.out.println("AudioAnalyzer Directory is not
— created");
}
filename = new File(path, "audioanalyzer_ " +
- formatter.format(date) + ".csv");
recording_file = new File(path, "recording_ " +
— formatter.format(date) + ".aac");
recording_file_dir_temp = new File(path, "recording_ " +
- formatter.format(date) + "_temp.raw'");
recording_file_dir = new File(path, "recording_ " +
— formatter.format(date) + ".wav");
initRecorder();
try {
FileWriter writer = new FileWriter(filename);
writer.append("DEBUG,");
writer.append(" RECORDING MODE: " + (USE_DIRECT_REC

< 7 "DIRECT (AUDIO REC) " : "MEDIA REC "));
writer.append(" HARDWARE INFOS: " + "ManuFacturer
— " + Build.MANUFACTURER + "Version 0S: " +

— Build.VERSION.BASE_0OS +
"Model: " + Build.MODEL +
"Product: " + Build.PRODUCT + " "
)3
writer.append(" " + agc_status + " " +
- recorder_settings + " ");
writer.append("\n");
// 20 * seconds
for (int 1 = 0; i < 20 * SECONDS_TO_RUN; i++) {
int amp = getAmp();
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82 String currdate_log = formatter.format(new
— Date());

83 String currdate_disp = formatter2.format(new
< Date());

84 String str = currdate_log + "," + amp + "\n'";

85 writer.append(str);

86 System.out.println("MAX AMP: " + amp);

87 handler.post(() -> {

88 myText.append(currdate_disp + ", " + amp +

"\n");

89 scroller.fullScroll(ScrollView.FOCUS_DOWN) ;

90 b

91 try {

92 Thread.sleep(50);

93 } catch (InterruptedException e) {

94 e.printStackTrace();

95 }

96 }

97 writer.flush();

98 writer.close();

99 } catch (IOException e) {

100 e.printStackTrace();

101 }

102 stopRecorder () ;

103 +;

104 new Thread(runnable) .start();

105 }

106

107 private void stopRecorder() {

108 if (USE_DIRECT_REC)

109 stopAudioRecord() ;

110 else {

111 mediaRecorder.stop();
112 mediaRecorder.reset();

113 mediaRecorder.release();
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private void initRecorder() {
if (USE_DIRECT_REC) {
initializeAudioRecord();
startAudioRecord();
} else
initializeMediaRecord();

private int getAmp() {
if (USE_DIRECT_REC)
return getRawAmplitude();
else

return mediaRecorder.getMaxAmplitude();

public void initializeMediaRecord() {
mediaRecorder = new MediaRecorder();
// disable any agc
AudioManager audioManager = (AudioManager)
- context.getSystemService(Context.AUDIO_SERVICE);
if (audioManager.getProperty(AudioManager.
«» PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED) != null)
- {
mediaRecorder.setAudioSource (MediaRecorder.
— AudioSource.UNPROCESSED) ;
agc_status += " AGC: UNPROCESSED ";
} else {
mediaRecorder.setAudioSource (MediaRecorder.
— AudioSource.VOICE_RECOGNITION);
agc_status += " AGC: VOICE RECOGNITION ";
}
// testing
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144 int sampr = 96000;

145 int encbitr = 384000;

146 int auch = 1;

147 // or 4410072

148 mediaRecorder.setAudioSamplingRate (sampr) ;

149 // or 96000°?

150 mediaRecorder.setAudioEncodingBitRate (encbitr);

151 // or AMR_NB?

152 mediaRecorder.setOutputFormat (MediaRecorder.OutputFormat.
— MPEG_4);

153 // or AAC or AMR_NB?

154 mediaRecorder.setAudioEncoder (MediaRecorder.AudioEncoder. |
—~ HE_AAC);

155 // could also be "/deu/null"

156 mediaRecorder.setOutputFile(String.

— valueOf (recording_file));

157 // mono or stereo?
158 mediaRecorder.setAudioChannels (auch) ;
159 recorder_settings += "AUDIO RECORDER

< SAMPLERATE/ENCODINGBITRATE/CHANNELCONFINT/AUDIOFORMAT:

n
—

160 + sampr + "/" + encbitr + "/" + auch + "/" +
"output: MPEG_4 / encoder: HE_AAC";

161 try {

162 mediaRecorder.prepare();

163 } catch (IOException e) {

164 e.printStackTrace();

165 }

166 mediaRecorder.start();

167 +

168

169 public void initializeAudioRecord() {

170 if (mSampleRate > 0 && mAudioFormat > O && mChannelConfig >
- 0) {
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audioRecorder = new

—

—

—

AudioRecord(MediaRecorder.AudioSource.MIC,
mSampleRate, mChannelConfig, mAudioFormat,

mBufferSize) ;

return;

// Find best/compatible AudioRecord
for (int sampleRate : new int[]{48000, 44100, 32000, 16000,
8000} {

—

for
—

—

(short audioFormat : new
short []{AudioFormat.ENCODING_PCM_16BIT,
AudioFormat.ENCODING_PCM_8BIT}) {
for (short channelConfig : new
< short[]{AudioFormat.CHANNEL_IN_MONO,
< AudioFormat.CHANNEL_ IN_STEREOD}) {
// Try to initialize
try {
mBufferSize = AudioRecord.
- getMinBufferSize(sampleRate,
- channelConfig, audioFormat);
if (mBufferSize < 0) {
continue;
}
mBuffer = new short[mBufferSize];
audioRecorder = new
— AudioRecord(MediaRecorder.AudioSource. |
— MIC, sampleRate, channelConfig,

— audioFormat, mBufferSize);

if (audioRecorder.getState() ==

< AudioRecord.STATE_INITIALIZED) {
mSampleRate = sampleRate;
mAudioFormat = audioFormat;

mChannelConfig = channelConfig;
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if (channelConfig ==
<« AudioFormat.CHANNEL_ IN_MONO) {

RECORDER_CHANNELS_INT = 1;
} else {
RECORDER_CHANNELS_INT = 2;

}
if (audioFormat ==
< AudioFormat.ENCODING_PCM_16BIT) {
RECORDER_BPP = 16;
} else {
RECORDER_BPP = 8;
}
System.out.println("AUDIO RECORDER
< INITIALIZED");
String rec_set = "AUDIO RECORDER
< SAMPLERATE/CHANNELCONFINT/J
< AUDIOFORMAT/mBUFFERSIZE:

"
—

+ sampleRate + "/" +
<> RECORDER_CHANNELS_INT + "/"
— + RECORDER_BPP + "/" +
— mBufferSize;
System.out.println(rec_set);
recorder_settings += rec_set;
return;
}
System.out.println("AUDIO RECORDER ERROR") ;
audioRecorder.release();
audioRecorder = null;
throw new IllegalStateException('Could not

< 1init audioRecorder");

} catch (Exception ignored) {

+
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public synchronized void startAudioRecord() {

// AGC DISABLE

if (AutomaticGainControl.isAvailable()) {
AutomaticGainControl agc = AutomaticGainControl.create(

audioRecorder.getAudioSessionId()

)3
agc_status += " AGC STATUS BEFORE: " + agc.getEnabled()
B L
agc.setEnabled(false);
agc_status += " AGC STATUS AFTER: " + agc.getEnabled()

N + " II;
} else {
agc_status = " NO AGC AVAILABLE ";
}
if (audioRecorder == null || audioRecorder.getState() !=

— AudioRecord.STATE_INITIALIZED) A
throw new IllegalStateException("startRecording()
— called on an uninitialized AudioRecord."):
b
if (mLocks == 0) {
audioRecorder.startRecording() ;
recordingThread = new
— Thread(this: :writeAudioDataToFile, '"AudioRecorder
< Thread");
recordingThread.start();
} else {
throw new IllegalStateException("Could not start

— audioRecorder");

mLocks++;
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// Write the output audio in byte
private void writeAudioDataToFile() {
String filename = getTempFilename();
FileQOutputStream os = null;
try {
os = new FileOutputStream(filename) ;
} catch (FileNotFoundException e) {

e.printStackTrace();

while (mLocks != 0) {
// gets the wvoice output from microphone to byte format
int bufferReadSize = audioRecorder.read(mBuffer, O,
— mBufferSize);
calcRawAmplitude (mBuffer, bufferReadSize);
try {
// writes the data to file from buffer
// stores the woice buffer
// short[] shorts = new short[bytes.length/2];
// to turn bytes to shorts as either big endian or
- laettle
// endian.
// ByteBuffer.wrap(bytes).order(Bytelrder.
« LITTLE_ENDIAN).asShortBuffer().get(shorts);
// to turn shorts back to bytes.
bytel[] bytes2 = new byte[mBuffer.length * 2];
ByteBuffer.wrap(bytes2) .order (ByteOrder.
< LITTLE_ENDIAN)
.asShortBuffer() .put (mBuffer) ;
os.write(bytes2);
//  ServerInteractor.Senddudio (buffer);
} catch (IOException e) {
e.printStackTrace();
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try {
os.close();
} catch (IOException e) {

e.printStackTrace();

public synchronized void stopAudioRecord() {
mLocks--;
if (mLocks == 0) {
if (audioRecorder != null) {

audioRecorder.stop();
audioRecorder.release();
audioRecorder = null;
recordingThread = null;
// copy the recorded file to original copy & delete
— the recorded copy
copyWaveFile(getTempFilename (), getFilename());
deleteTempFile();

private String getFilename() {

return recording_file_dir.getAbsolutePath();

private void deleteTempFile() {
File file = new File(getTempFilename());
file.delete();

// stores the file into the SDCARD
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private String getTempFilename() {

return recording_file_dir_temp.getAbsolutePath();

private void copyWaveFile(String inFilename, String

—

outFilename) {

FileInputStream in;

FileOutputStream out;

long totalAudiolen;

long totalDatalen;

int channels = RECORDER_CHANNELS_INT;

long byteRate = RECORDER_BPP * mSampleRate #* channels / 8;

try {
in = new FileInputStream(inFilename) ;
out = new FileQutputStream(outFilename) ;
totalAudioLen = in.getChannel().size();
totalDatalen = totalAudiolLen + 36;

WriteWaveFileHeader (out, totalAudiolen, totalDatalen,
mSampleRate, channels, byteRate);
bytel[] bytes2 = new byte[mBuffer.length * 2];
ByteBuffer.wrap(bytes2) .order (ByteOrder .LITTLE_ENDIAN)
.asShortBuffer () .put (mBuffer) ;
while (in.read(bytes2) != -1) {
out.write(bytes2);

in.close();
out.close();
} catch (IOException e) {

e.printStackTrace();
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344
345 private void WriteWaveFileHeader (FileQOutputStream out, long
< totalAudiolen,
346 long totalDatalen, long
— longSampleRate, int
- channels, long byteRate)

347 throws IOException {

348 byte[] header = new byte[4088];

349

350 header[0] = 'R'; // RIFF/WAVE header

351 header[1] = 'I';

352 header[2] = 'F';

353 header[3] = 'F';

354 header[4] = (byte) (totalDatalen & O0xff);

355 header[5] = (byte) ((totalDatalen >> 8) & 0xff);
356 header[6] = (byte) ((totalDatalen >> 16) & 0xff);
357 header[7] = (byte) ((totalDatalen >> 24) & Oxff);
358 header[8] = 'W';

359 header[9] = 'A';

360 header[10] = 'V';

361 header[11] = 'E';

362 header[12] = 'f'; // 'fmt ' chunk

363 header[13] = 'm';

364 header[14] = 't';

365 header[15] = ' ';

366 header[16] = 16; // 4 bytes: size of 'fmt ' chunk
367 header[17] = 0;

368 header[18] = 0;

369 header[19] = 0;

370 header[20] = 1; // format = 1

371 header[21] = 0;

372 header[22] = (byte) channels;

373 header[23] = 0;

374 header[24] = (byte) (longSampleRate & 0xff);

375 header[25] = (byte) ((longSampleRate >> 8) & 0xff);
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header [26]
header [27]
header [28]
header [29]
header[30]
header[31]
header [32]
- align
header[33]
header [34]
header [35]
header [36]
header[37]
header[38]
header [39]
header [40]
header[41]
header [42]
header [43]

(byte)
(byte)
(byte)
(byte)
(byte)
(byte)
(byte)

g s
'al;

(byte)
(byte)
(byte)
(byte)

((longSampleRate >> 16) & Oxff);
((longSampleRate >> 24) & Oxff);
(byteRate & 0xff);

((byteRate >> 8) & O0xff);

((byteRate >> 16) & 0xff);

((byteRate >> 24) & 0xff);

(channels * RECORDER_BPP / 8); // block

RECORDER_BPP; // bits per sample

(totalAudiolen & Oxff);
((totalAudioLen >> 8) & Oxff);
((totalAudioLen >> 16) & Oxff);
((totalAudioLen >> 24) & O0xff);

out.write(header, 0, 4088);

private void calcRawAmplitude(short[] mBuffer, int
bufferReadSize) {
if (bufferReadSize < 0) {

amplitude_list.add(0);

—

return;

by

int sum =

for (int i

+

0; i < bufferReadSize; i++) {
sum += Math.abs(mBuffer[i]);

if (bufferReadSize > 0) {
amplitude_list.add(sum / bufferReadSize);
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return;

}
amplitude_list.add(0);

private int getRawAmplitude() {
if (amplitude_list.size() == 0) {
return 0;
} else
return amplitude_list.get(amplitude_list.size() - 1);
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