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Dealing With Inaccurate Sensor Data in the
Context of Mobile Crowdsensing and mHealth

Robin Kraft , Fabian Hofmann , Manfred Reichert , and Rüdiger Pryss

Abstract—The technological capabilities and ubiquity of
smart mobile devices favor the combined utilization of Eco-
logical Momentary Assessments (EMA) and Mobile Crowd-
sensing (MCS). In the healthcare domain, this combina-
tion particularly enables the collection of ecologically valid
and longitudinal data. Furthermore, the context in which
these data are collected can be captured through the use
of smartphone sensors as well as externally connected
sensors. The TrackYourTinnitus (TYT) mobile platform uses
these concepts to collect the user’s individual subjective
perception of tinnitus as well as an objective environmen-
tal sound level. However, the sound level data in the TYT
database are subject to several possible sensor errors and
therefore do not allow a meaningful interpretation in terms
of correlation with tinnitus symptoms. To this end, a data-
centric approach based on Principal Component Analysis
(PCA) is proposed in this paper to cleanse MCS mHealth
data sets from erroneous sensor data. To further improve
the approach, additional information (i.e., responses to the
EMA questionnaire) is considered in the PCA and a prior
check for constant values is performed. To demonstrate the
practical feasibility of the approach, in addition to TYT data,
where it is generally unknown which sensor measurements
are actually erroneous, a simulation with generated data
was designed and performed to evaluate the performance
of the approach with different parameters based on differ-
ent quality metrics. The results obtained show that the ap-
proach is able to detect an average of 29.02% of the errors,
with an average false-positive rate of 14.11%, yielding an
overall error reduction of 22.74%.

Index Terms—Crowdsensing, environmental sound,
mHealth, noise measurement, sensor anomaly detection,
tinnitus.

I. INTRODUCTION

SMART mobile devices, especially smartphones, are be-
coming increasingly ubiquitous. This ubiquity, as well as
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the technical capabilities of these devices, predestines them for
two concepts: Ecological Momentary Assessments (EMA) and
Mobile Crowdsensing (MCS). In health care, a combination of
these concepts can be used to collect ecologically valid and
qualitative longitudinal data while simultaneously capturing the
context in which these data are collected by using the sensors
of smartphones and connected devices (e.g., wearables) [1].
For example, environmental data (e.g., noise [2], [3]) could
be measured while a user is completing an EMA question-
naire. In this way, questionnaire data can be correlated with
environmental data to provide new insights about users (e.g.,
patients). However, to provide meaningful information, these
sensor measurements must meet several aspects of data quality,
such as accuracy, objectivity, believability, and reputation [4].
For non-standardized smartphone sensors such as the micro-
phone (i.e., different manufacturers, different mobile operating
systems, different scales), achieving these properties can be
particularly challenging.

The mobile platform TrackYourTinnitus (TYT) uses EMA and
MCS to track a user’s individual tinnitus. Tinnitus is the per-
ception of a sound in the ears in the absence of a corresponding
external acoustic stimulus. Tinnitus symptoms are subjective and
vary over time. Therefore, TYT was created to monitor and as-
sess the variability of these symptoms in the daily lives of tinnitus
patients or interested users [5]. The platform has been running
since 2014 and consists of a website for general information and
user registration (https://www.trackyourtinnitus.org/), a mobile
app available for both iOS and Android, and a central backend
for data storage. Users of the mobile app are asked to complete
EMA questionnaires at different times of the day to assess
their individual tinnitus perception (e.g., tinnitus loudness and
distress) [6]. In addition, the mobile app records environmental
sound levels while completing the daily questionnaire [6]. The
process of TYT mobile app [1] as well as the underlying data
set, i.e., the structure and findings about the collected data [7],
have been described in detail in previous work.

The overall goal of this paper is to investigate the relationships
between environmental sound levels and reported tinnitus symp-
toms. More specifically, we want to investigate whether environ-
mental sound levels have an effect on tinnitus. If the objective
sound levels can be related to the subjective data collected in the
EMA questionnaires, new insights could emerge, allowing, for
example, predictions of tinnitus loudness based on the environ-
mental sound data. In this context, it should also be noted that
for tinnitus and many other diseases and disorders, longitudinal
studies capable of collecting ecologically valid data over longer
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periods of time (more than half a decade for TYT) are still very
rare. However, the sound data available in the TYT database [7]
are not suitable for direct comparison with each other and thus
for meaningful interpretation in terms of correlation with tinnitus
symptoms [8]. This is because the environmental sound levels
were retrieved from many different device models from different
manufacturers and thus potentially many different microphones
and other audio components. In addition, the sound level is
stored as a relative amplitude value (Android) or uncalibrated
decibel value (iOS) as retrieved from the mobile system APIs,
as opposed to a comparable Sound Pressure Level (SPL) or
weighted decibel value (e.g., dB(A)). In addition, sound level
values are stored as-is, and no error detection or plausibility
checks are performed during or after measurements, which can
result in many erroneous values (e.g., zero values) being stored
in the database. Furthermore, the mobile app does not indicate
on the user interface that the sound measurement is running.
Therefore, the user could interfere with the measurement (e.g.,
if the microphone is covered or the smartphone collides with an
object) and generate erroneous values again. These erroneous
sensor readings are a common and recognized problem in sensor
network applications [9]. To address these problems, we take
several approaches. On the one hand, we focus on smartphone
calibration, app adaptations to retrieve more meaningful values,
and in-app error detection mechanisms [8]. On the other hand,
we are working on approaches to cleanse the existing data in
the TYT database from a data perspective. This work proposes
such a data-centric approach that aims to detect sensor errors
in mHealth mobile crowdsensing data sets and subsequently
exclude erroneous sensor values from all further analyses.

Based on the characteristics of the given environment, the
following requirements for the approach were defined:

1) The approach should be able to detect and identify sensor
faults in mHealth data sets.

2) The approach should be able to handle data sets for which
it is not known a priori which values are affected by sensor
faults.

3) The approach should be computationally efficient, so that
it is possible to apply it to very large data sets.

The main challenge for the algorithm in the proposed ap-
proach is that it is generally not known which sensor mea-
surements are erroneous and which are not. For this reason, a
simulation using generated data with similar characteristics to
the TYT data set was designed and run to assess the performance
of the algorithm with different parameters based on different
quality metrics. Furthermore, since little information is available
about the sound measurement itself that would allow detection
of sensor errors, the algorithm takes into account additional
information (i.e., responses to the EMA questionnaire). The core
of the proposed approach is a Principal Component Analysis
(PCA) complemented by a constant value check. In addition,
since conventional PCAs are not able to handle missing values,
an upstream procedure is used to impute data.

The remainder of this paper is organized as follows. Section II
considers related work. Section III presents in detail the mate-
rials and methods used for the proposed approach. Section IV
presents the results of the simulation and the application of the

approach to the TYT data set. A discussion of the results in
terms of the practical relevance and limitations of the approach
is given in Section V, while Section VI concludes the paper with
a summary and an outlook on future work.

II. RELATED WORK

Much of the previous work on anomaly detection for sensor
signals has been done in the field of Wireless Sensor Networks
(WSNs). Teh et al. [10] identified two main types of solutions
in this context: statistical methods (e.g., Principal Component
Analysis (PCA) [11], [12]) and classification-based methods
(e.g., Artificial Neural Networks (ANNs) [13]). For WSNs, Sta-
tistical Process Control (SPC) [14] approaches are mostly used
for the surveillance of chemical processes [10], for which sce-
narios with highly correlated data from distributed sensors are
prevalent. PCA analyses, in turn, are based on multivariate de-
tection mechanisms, such as Squared Prediction Errors (SPEs).
Body Sensor Networks (BSNs) [15], as derivatives of WSNs,
make use of sensors applied to patients in form of implantable
sensors or wearable devices. Note that for both WSNs and BSN,
all of the above-mentioned analyses techniques are commonly
applied as they generate multivariate data. In contrast to this,
univariate data can be also analyzed, for example, by the use of
Contribution Plots (CPs) [14] instead of SPEs.

Classification-based techniques rely on a set of pre-labeled
training data that allow to build a prediction model for further
detection. Safaei et al. [15] stated that ANNs are one of the
most popular methods to efficiently identify outliers. During a
training phase, a classifier uses pre-labeled data to learn sepa-
rating outliers from normal data. This approach of combining
neurons in a dynamic network in order to describe logical
problems [13] allows the development and use of very accurate
and fast detection algorithms. However, [16] and [17] name
the difficulties in defining the most suitable ANN parameters
that enable correct error detection. These parameters include,
for example, the type of neural network, the number of hidden
layers, and their number of neurons. In addition, training data
sets have to be available and precise to create a useful detection
mechanism. The authors developed an approach that is suitable
for automated fault detection, but due to challenges mentioned
above, it is only able to detect 50% of the defined error types.
The authors also pointed out a wide gap in the explainability of
given input and the retrieved results. In the mHealth context, the
large variety of devices with unknown technical peculiarities,
creates an additional challenge for this classification. Therefore,
apart of the very dynamic possibilities of this approach, we did
not consider it suitable for our purposes.

Error detection approaches that need no prior knowledge and
can be applied to data of arbitrary form can be found in the
field of statistics. PCA is recognized as one of the most popu-
lar [10] tools for sensor error detection in the WSN context. [18]
proposes the usage of robust PCA in combination with SPE
to detect multivariate anomalies within a set of physiological
measurements. For this purpose, a central computational device
gathers measurements of distributed sensors and normalizes data
during pre-processing. In a first step, the dimensional size of the
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data is reduced. This is followed by SPE to detect multivariate
anomalies by comparing it with an adaptive threshold [19]. The
authors apply CPs to each physiological value afterwards in
order to determine the contribution of each value to the detected
anomaly. Finally, the PCA model is updated if the parameters
change.

To validate their approach, [18] compared different (online
and offline) PCA-implementations in a case study with regard
to their performance. The authors found different robust offline
PCA-implementations to perform much better than the classic
implementation. They investigated the degree of variability that
retains after dimension reduction for a number of l principal
components: l = 3 describes 98.2%, compared to l = 4 for
94.9% or l = 5 for 99.8%. This reflects in smaller proportions of
unexplained variability and gives better dimension reductions.

Miller et al. [14] developed a quality metric that addresses the
question of the origin of an observed fault in SPC. In this context,
a variable that can be computed with values from the PCA model
is given by the Hotelling’s T 2 score, which we will use as a
control variable in the approach of the work at hand. In contrast
to classification-based approaches, PCA-based approaches in
combination with the mechanisms mentioned above seem to fit
better into our application context. This is not only due to certain
similarities of WSNs and mHealth applications, but also due to
the very sound methodology and the independence from prior
knowledge about the correctness of the data.

Other efficient outlier detection approaches were created, for
example, by Saneja and Rani [20]. The authors propose three dif-
ferent phases that are scalable for Big Data applications to iden-
tify anomalies in highly correlated parameters. Initially, a corre-
lation coefficient matrix is constructed. Then, correlating sensors
are used for dynamic predictions using linear support vector
machines, sliding windows and dynamic thresholds. The last
stage is constituted by a parallel computing phase. Aderibigbe
and Chi [21] propose a mechanism to identify temporal outliers,
using median absolute deviation. After exceeding a static thresh-
old, the majority voting allows the detection of false-positives.
Due to dynamically changing conditions, dynamic thresholds in
particular have a big validity for sound measurements. A Big
Data approach may be out of scope for this initial evaluation
of methods, but might nevertheless find application in future
developments of our approach.

[20] and other statistical-based approaches in the eHealth
or mHealth context rely on physiological databases such as
PhysioNet1 to evaluate their performance. PhysioNet (formerly
Physiobank2) or MHEALTH3 consist of measurements that were
gathered within various studies and contains arbitrary anoma-
lies. To better control performance, synthetic data generation is
required. Although there exist several different simulators [22],
most of them are strongly tied to WSNs and tend to focus on val-
idating their protocols. Approaches like [23] therefore manually
select a number of 10,000 data points they consider error-free.

1[Online]. Available: https://physionet.org (Accessed: 2022-03-14).
2[Online]. Available: https://archive.physionet.org/physiobank/ (Accessed:

2022-03-14).
3[Online]. Available: http://archive.ics.uci.edu/ml/datasets/mhealth+dataset

(Accessed: 2022-03-14).

Afterwards, the authors inject errors at random, specified by
their probability. In our approach, we also apply random errors
of defined form to the data set. However, due to the large effort of
manual data selection, the approach in the work at hand instead
relies entirely on synthetic data.

In summary, none of the aforementioned approaches is able
to handle a univariate data set with possibly missing data points,
which is the case for TrackYourTinnitus. The contribution of
the work at hand is therefore to provide such an outlier detection
approach and, in addition, to provide a simulation tool to evaluate
the performance of this approach with different parameters suit-
able for our TYT mHealth data purposes. This is in line with [24],
as the authors have stated that quality of imputed data is essential
and can therefore influence medical conclusions drawn from it.
Our proposed approach is validated against a generated data set
that contains realistic anomalies, allowing these anomalies to be
tracked and thus fine-granular performance measurements to be
made. The aim of this synthesis is to provide the possibility
of dealing with verified error-free data points and errors of
defined shape. We therefore hope to be able to define algorithm
parameters in a more accurate way than other approaches.

III. MATERIALS AND METHODS

In the following, the materials and methods used in the present
work are described. In this context, the data set to which the
approach is to be applied is outlined in more detail. Furthermore,
the chosen approach, including the different algorithm phases,
is explained in detail.

A. Materials

The analyzed data set was extracted from the TYT database
on the 23 rd of December, 2021. It contains a total of 107,231
entries. The structure of the TYT database was described in [7].
The mobile apps capture the individual tinnitus perception by
asking users to fill out tinnitus assessment EMA questionnaires
at random times of the day. The process was described in detail
in [1]. Each entry in the database contains the answers to the
eight questions of the TYT EMA questionnaire [25], along with
a timestamp and the user agent that contributed the answers.
In addition, a sound level value is stored in each entry that is
retrieved by measuring the environmental sound level during the
first 15 seconds of the user completing the EMA questionnaire
by utilizing the microphone of the mobile device [6]. This value
is denoted as sensor value in the following, while the user agents
that contributed the EMA answers and sensor measurements are
denoted as sensors.

B. Methods

As depicted in Table I, sensors are considered at a certain level
of abstraction. Each of the sensors s is treated as a black box
and provides measurement data in nominal values. These values
are identified by [0, 1]

⋃{⊥}, where ⊥ describes an erroneous
value. The measurements of the sensors are further referred to
as measurements m.

https://physionet.org
https://archive.physionet.org/physiobank/
http://archive.ics.uci.edu/ml/datasets/mhealth+dataset
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TABLE I
VARIABLES THAT ARE USED THROUGHOUT THE DEVELOPMENT AND

IMPLEMENTATION OF THE ANOMALY DETECTION ALGORITHM

Mapping a sensor value x into the range of [0, 1] is done by
applying the mapping function T (x) = x−a

b−a , with [a, b] being
[0,1]. As mentioned above, the TYT data set contains not only
sensor data, but also EMA answers. Since these answers are
either of binary form or retrieved from visual analogue scales
(VAS), they can easily be mapped to the above range and are
therefore completely uniform. Each sensor s has m measure-
ments as well as m properties p. Each device is characterized
by s ≥ 1 sensors and p ≥ 0 properties that are associated with
it. In addition, it was assumed that the clocks of the devices
are synchronized and thus the time distances between different
measurements are approximately the same. Although TYT data
was collected at arbitrary points of time, the algorithm outcome
should not be influenced by this fact.

PCA was chosen as core of the proposed approach because
it is a well-established statistical method for detecting sensor
errors in the context of WSNs (as outlined in Section II), which
have similar conditions to (mHealth) mobile crowdsensing ap-
plications. Since constant value readings, as a severe form of
sensor fault that is quite common in the TYT data set (see
Section III-B3), could not be reliably eliminated by the PCA
in initial tests, the PCA step was complemented by a constant
check based on the approach proposed by [9].

1) Algorithm Overview: The overall process for the devel-
oped algorithm is illustrated in Fig. 1. In a first step, sensor
measurements and EMA properties are treated separately. The
algorithm takes ©4 sensors and ©3 properties as an input and
returns©10 a set of marked sensors. The actual implementation
handles devices, as properties are treated alongside with sensor
measurements, due to their uniform character.

Due to prerequisites of the algorithm main stage, the elim-
ination stage, ©1 pre-processing was defined as a necessary
intermediate stage. It includes ©5 data selection as many data
points were considered unusable, e.g., due to too few sensor
measurements. As the PCA-based algorithm is not able to handle
missing values, a ©6 data imputation step was added. This is
done by applying a k-Nearest Neighbor (kNN) interpolation for
missing data points.

Since constant values are a complete failure form of sensor
faults [26], a©7 constant check forms the first step in the©2 elim-
ination stage. Afterwards, the proposed©8 PCA-based approach
is performed, using Hotelling’s T 2 score and Contribution Plots
(CPs). The algorithm finishes with an©10 output of all erroneous
and correct sensors. In the following, the different steps are
described in detail.

Fig. 1. Sensor anomaly elimination process that includes a pre-
processing stage ©1 and an elimination stage ©2 . The algorithm out-
put©10 includes all sensors, where faulty ones are marked.

2) Algorithm Stages: As a common language for the do-
mains of scientific computing and data science, the implementa-
tion of the proposed architecture from Fig. 1 was done in Python.
As a general convention, in- and output files as well as configu-
rations use the JSON file format. Libraries SCIKIT-LEARN 4 and
NUMPY 5 provided some helpful routines, for instance SCIKIT’s
PCA, or different numeric algorithms from the NUMPY library.

The following describes the development of Algorithm 1 as
proposed in Section III-B1.
©5 Data Selection: Prior to the actual analysis of data points,

a set of appropriate devices has to be chosen. Real-world data
sometimes poses too few measurements per device. This had
to be considered during algorithm development and led to an
exclusion of devices with m < 30 measurements. This filtering,
taking place prior to Algorithm 1, will not be specified in detail
here.

4[Online]. Available: https://scikit-learn.org/stable/ (Accessed: 2022-03-01).
5[Online]. Available: https://numpy.org (Accessed: 2022-03-01).

https://scikit-learn.org/stable/
https://numpy.org
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Algorithm 1: Pseudo Code of the Elimination Process of
Fig. 1. A Description of the Used Variables can be Found in
Table I.

1: function IDENTIFYFAULTS(devices,m, k, l, ε, δ)
2: IMPUTE(devices, k)
3: for device in devices do
4: if SD(SMOOTHEN(device.sensor.data)) < ε then
5: device.sensor.filtered← true
6: end if
7: end for
8: t = 1
9: while t ≤ m do

10: X ← BUILDDATAMATRIX(devices)
11: (P, T, λ1, . . ., λl)← PCA(X, l)
12: D ← diag{λ1, . . ., λl}
13: T 2 ← xtPD−1PTxT

t

14: if T 2 < δ then
15: break
16: end if
17: c← P

TT
t

18: i← argmaxj |cj |
19: deviceIndex← DEVICEINDEX(devices, i)
20: devices[deviceIndex].sensors.filtered← true
21: t = t+ 1
22: end while
23: end function

©6 Missing Data Imputation: Handling erroneous sensor mea-
surements by completely removing them and applying interpo-
lation methods could not bring the desired success. It either was
not clear if the remaining data points could still be analyzed
in a significant way, or interpolation polynomials were of too
high order, unnecessarily increasing complexity. As the main
error detection stage©8 is not able to handle missing data, the
imputation method of choice is stated by a k-Nearest Neighbor
(KNN) [27] interpolation. The implementation, as seen in Line 2
of Algorithm 1, replaces missing values with a weighted average,
calculated fromk nearest neighbors in respect of their distance to
the missing data point. It is calculated using the Euclidean Norm
of two points A = (a1, a2, . . ., an) and B = (b1, b2, . . ., bn),
which is defined as:

D(A,B) = (Σn
i=1|xi − yi|2) 1

2 . (1)

In order to handle missing values in the neighbor data set, a
method was chosen as proposed by Dixon [28]: Throughout the
calculation of Euclidean Distance, empty values are summed up
as zero values. Afterwards, the result is weighted, using the num-
ber of missing values. This step concludes the©1 pre-processing
stage, resulting in data that fits further analyses.
©7 Constant Check: This first step in the elimination stage was

designed to overcome constant value errors by utilizing a simple
constant check [9]. Realized in Lines 3–7 of Algorithm 1, the
standard deviation for a set of sensor measurements is calculated
and compared to a threshold ε. For standard deviations below this
threshold, values are assumed to be constant and their belonging

sensors are marked with a flag. Before standard deviations can
be calculated, a linear Kalman filter [29] is applied. This noise
reduction technique allows the estimation of proper sensor val-
ues in real time, and serves for the reduction of falsely detected
constant values.
©8 PCA-stage: The underlying formal description was pro-

vided by Teh et al. [10]: LetX ∈ Rm×n be a matrix, consisting of
m rows andn columns. Columnsn include all measurements of a
sensor at a given time stamp. Rows m contain the measurements
of all sensors at a time frame. A loadings matrix P contains
the l first eigenvectors [λ1, . . ., λl] of the covariance matrix
XTX . Prior to this, one needs to choose the number of principal
components to keep: l ≤ min{m,n}. For l < n, the dimension
of the data set can be reduced. Principal components can be
obtained in a score matrix T with the linear transformation
T = XP ∈ Rm×n, where P is defined as:

P =

⎛
⎜⎝
| | |
v1 v2 . . . vl

| | |

⎞
⎟⎠ , (2)

consisting of the above-mentioned eigenvectors. This formal
description is implemented in Lines 10–13 from Algorithm 1.
Samples, containing measured sensor values and the corre-
sponding properties, are used in chronological order to build
the data matrix X (Line 10). Line 11 takes matrix X as well as
the algorithm parameter l, which describes the number of PCA
components. Next, it is described how various variables can be
derived from a calculated PCA model, which are later combined
in theT 2 score. Different from the original BESI algorithm, only
a single PCA model has to be calculated per iteration, compared
to n− 1 for n sensors.

As the described complexity reduction does not proceed
lossless, Hotelling’s T 2 score (Line 13) acts as a control vari-
able [14]. Originally, the BESI-algorithm includes Q-statistics
for this purpose. However, as [30] describes, this approach is
far too sensitive for our purpose of an mHealth application.
Compared to delicate chemical processes, which were the orig-
inal field of application for this algorithm, T 2 score states a
sufficient method for error detection. Let x ∈ R1×n be a vector
representing a sample. Hotelling’s T 2 score is defined as:

T 2(x) = xPD−1PTxT , (3)

with D = diag(λ1, λ2, . . ., λl), as diagonal matrix of the sorted
eigenvalues of the covariance matrix.

The underneath error detection mechanism relies on the idea
of iteratively ©11 eliminating faulty sensors if ©9 T 2 exceeds
delta, until all faulty sensors and their belonging properties are
eliminated. As described in Lines 14 – 16, Hotelling’sT 2 score is
used as a measure for abnormal behavior. ForT 2 < δ, a sensor is
considered working correctly, no further processing is necessary
and the next sensor value is analyzed.

If the limit was exceeded, Lines 17 and 18 describe the
calculation of sensor contribution to the overall fault. Detecting
the highest contribution is done by solving the linear equation
Pc = TT

t and finding the maximum argument. Afterwards, the
sensor is marked as faulty in Lines 19 and 20.
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TABLE II
CONCRETE VALUES THAT WERE CHOSEN FOR THE VARIABLES FROM

TABLE I, FOR THE SIMULATION

Algorithm 1 takes an array of potentially erroneous devices,
containing their sensors and measurements as well as properties
p. For statistical reasons, non-analyzable devices are removed
from the data set prior to the application of the algorithm. Sensors
that are detected faulty throughout the detection process are
only marked erroneous, not eliminated. Therefore, the©10 output
allows a distinction between 1) erroneous sensors and 2) those
considered being correct. Additionally, 3) sensors that were ex-
cluded from the analysis can be obtained. According to different
use cases, these three groups might be combined for analyses.

3) Simulation: As mentioned in Section II, a common source
of data to validate the error detection approach is stated by phys-
iological databases in combination with manual selection. To
overcome limitations of not being able to generate physiological
data synthetically as well as injecting errors of defined form,
the following paragraph describes our proposed simulation ap-
proach.

A first requirement of the developed simulation is to generate
a data set which can be used as input for Algorithm 1. This
includes the generation of a defined number of devices, their sen-
sors, measurements and properties. Devices should be identical
concerning their number of generated values. As second vital re-
quirement, errors should be generated and injected according to
a configuration. For validation purposes, meta data of erroneous
sensors should be available throughout the whole simulation
and validation process. In addition, the simulation should be
portable, running on most major operating systems, and in order
to create reproducible results, it should be deterministic. As one
main assumption of Algorithm 1 is that there exists a correlation
between sensor measurements and their properties, these values
have to be generated under this assumption.

The input parameters taken by the algorithm were used to
fine-tune the accuracy of the developed approach. The variables
are shown in Table II and were chosen to be optimal with respect
to the selected quality metrics. To this end, 1) the parameters k,
l, ε, and δ were varied based on a binary search process, 2) 50
simulation runs were performed with each set of parameters, 3)
the results were recorded, and 4) the quality metrics (see below)
were calculated. Finally, the parameters with the optimal quality
metrics and the corresponding results were used for the further
analyses.

The implementation of the developed simulation was created
in Python, utilizing SCIKIT-LEARN 4 and NUMPY 5. The whole
simulator is configurable and can be used to generate a defined
number of devices, their sensors and belonging data sets. For
convenience reasons, the generated data is saved in JSON file

format and has a form that suits the algorithm input format. Via
configurations, an occurrence percentage can be defined for each
of the following error types:

1) Missing data: The absence of data points may have sev-
eral reasons. Due to unstable network connections, there
might for example occur package loss [31]. In addition,
an empty device battery, for example, stops the recording
and transmission of sensor data.

2) Outliers: The authors of [32] define outliers as “an
observation or subset of observations that appear to be
inconsistent with the rest of the data set”. In the context
of the present work, the device microphone may produce
outliers, for example, if the smartphone collides with a
surface or object during measurement [8].

3) Bias: Described as a constant shift over time in compar-
ison to the normal sensor readings. According to [33],
this error might be caused by overheating of system
components, which manifests itself, for example, in the
microphone output although there is no perceivable sound
source.

4) Drift: This error is similar to a bias, with the difference
that a shift is increasing over time and does not depend
on the sensor’s true value [33]. For example, micro-
vibrations during smartphone usage throughout the day
may cause gyroscope drifts [34].

5) Noise: As another additive fault, noise is described as
“small variations in the data set” [10]. According to [35], a
common model for this fault is white noise, a phenomenon
that, e.g., microphones suffer from due to environmental
influences.

6) Gain: Unlike previous types of sensor faults, gain is
non-additive. The original sensor reading is multiplied by
a constant value and therefore might deviate substantially
from the original value [26]. In the context of the present
work, gain might occur, for example, if the hardware
sensor (i.e., the device’s microphone) is corrupted or if
device software system components, such as the system
APIs or the processing algorithms in the TYT app, are
not operating correctly.

7) Constant values: As one of the most severe error types,
sensors that only provide constant or stuck-at-zero values
are unusable for almost all purposes [26]. For example,
missing permissions to access the device’s microphone
may lead to a constant value of zero being recorded by
the TYT app.

The generator-script accepts the configuration described
above as well as a random number generator seed. The lat-
ter parameter allows the simulation to work deterministic by
making random choices using the seed. In order to generate
error-free random, but correlated numbers at first, a random
matrix C = (cij) is created for each device. If i is a prop-
erty and j is a sensor measurement, cij is uniformly chosen
from [ 12 , 1] ∪ [−1,− 1

2 ]. Otherwise, it is uniformly chosen from
[−1, 1]. Matrix C was designed to resemble a covariance matrix
with dimensions equal to the sum of the number of sensor
measurements and properties. Therefore, it is symmetric, but not
necessarily positive semi-definite. For this reason, it is converted
to the nearest covariance matrix, by converting it to a correlation
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TABLE III
ERROR PROBABILITIES DEFINED FOR THE SIMULATION

matrix, clipping the eigenvalues and then converting it back to
the covariance matrix. NUMPY’s multivariate_normal-routine
takes the resulting matrix to generate random but correlated
numbers. As the outcome suffers from oscillations, a real peri-
odic smooth random function [36] is applied, C giving function
coefficients. Afterwards, the result is mapped to the interval of
[−1, 1].

The different types of errors (as described above) are then
applied to the set of data points that were correct up to that
point in time. Within the provided simulation configuration,
probabilities of occurrence are specified for each type and gen-
eration is controlled accordingly. The probabilities used for the
configuration in the scope of the present work are shown in
Table III. Meta information about the injected error are stored in
place with the data points. This meta information is not visible
to the detection algorithm, but serves for analysis and validation
purposes.

As an example, outliers are created according to their defi-
nition from [37]: Let p be a sensor value and let p1, . . ., pq, . . .
be a sorted list of the remaining data points sorted ascending
by their distance to p. The point p is called an O(d, q) outlier if
|pq − p| ≥ d holds. Respectively, we try to mimic an O(d, 3)
outlier by calculating the mean μ of a sensor reading and
its two direct siblings as well as using the specified standard
deviation σ.

In addition to the actual simulation, a set of quality metrics was
defined that allows a performance validation of the approach.
These metrics are calculated by comparing the generated sensors
with injected errors to the cleansed sensors after applying the
proposed approach. The following metrics based on the true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) as defined by [38] are used:

1) Positive Predictive Value (also referred to as precision or
confidence) [38]

PPV =
TP

TP + FP
(4)

2) Fault Detection Rate (also referred to as recall or true-
positive rate) [38]

FDR =
TP

TP + FN
(5)

3) False-positive Rate [38]

FPR =
FP

FP + TN
(6)

TABLE IV
CONCRETE VALUES THAT WERE CHOSEN FOR THE VARIABLES FROM

TABLE I, FOR THE APPLICATION TO THE TYT DATA SET

4) F-measure [39]

F−measure =
2 ∗ PPV ∗ FDR

PPV + FDR
(7)

5) Average Error Reduction

ER = 1− Errorafter

Errorbefore
(8)

where Errorbefore and Errorafter is the average error
in the data set before and after the application of the
proposed approach. The Error for a single sensor is
thereby defined as the Euclidean Distance of the initially
correct sensor values to the faulty sensor values after the
error-injection.

4) Data Application: A real-world scenario to validate the
proposed approach was given by its application to the TYT data
set. Due to a diverging data structure compared to the accepted
algorithm input, it was first converted into a utilizable form. This
includes removing unnecessary information and selecting user
data with a number of m ≥ 30 sensor samples. As described in
Section III-B2, a lower number of measurements and proper-
ties was considered non-analyzable. Sound level measurements
were scaled into the target domain [0, 1] in order to adjust
the weighting of the scalar questionnaire answer data. Missing
answers were afterwards imputed by kNN-imputation.

The parameters chosen for the application of the approach on
the TYT data set are shown in Table IV. Since the data did not
seem to suffer from noise, which was supported by a manual
review of the data set, the optional Kalman filter was skipped. In
addition, ε = 0.001 was considered sufficient for an adequate
constant value detection, because constant value readings in
the TYT data set are not much affected by noise (i.e., they are
mainly stuck-at-zero values). Parameters k, l and δ were chosen
based on the results of several iterations of the algorithm with
different parameters obtained through a binary search process
(similar to the parameter selection during the simulation process
in Section III-B3).

IV. RESULTS

The results from the simulation as well as the application of
the approach to the TYT data set are described in the following.

A. Simulation and Performance

The characteristics of the simulation are shown in Table V.
50 runs of the simulation were performed resulting in a total of
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TABLE V
RESULTS OF THE SIMULATION AFTER 50 RUNS

Fig. 2. Plots of the sensor values for simulated devices including dif-
ferent types of injected errors. (a) missing data. (b) missing data, noise,
gain.

25,000 simulated sensors with different types of sensor faults
according to the pre-defined error probabilities (see Table III).
Examples for the values of these sensors with different injected
error types are shown in Fig. 2.

In total, 6,465 (25.86%) of these sensors were considered
faulty. After the application of the approach, a total of 4,491
(17.96%) sensors were eliminated, with 1,877 (PPV =41.79%)
of these sensors actually being faulty. Thus, the average fault
detection rate (FDR) over all runs was 29.02%. The fault
detection rate of each individual run is shown in Fig. 3. In
total, 2,614 correct sensors were eliminated by the approach,
yielding to an average false-positive rate (FPR) of 14.11%.
Fig. 4 shows the false-positive rate for each individual run.
Finally, the average error reduction (ER) across all runs was

Fig. 3. Detection rate of faulty sensors for each run in the simulation.

Fig. 4. False-positive rate for sensors for each run in the simulation.

22.74%. The error reduction for each individual run is shown in
Fig. 5.

B. Application to the TYT Data Set

The results of the application of the elimination approach to
the TYT data set are shown in Table VI. The 107,231 samples
in the data set were contributed by 3,255 unique sensors (i.e.,
unique users with unique devices). 566 of these sensors were
eligible for further processing because they held at least 30
samples. Furthermore, the KNN imputation excluded 24 sensors
as they contained too many missing data points, resulting in
542 sensors that were considered in the elimination stage. The
distribution of manufacturers of these sensors (i.e., devices) is
shown in Fig. 6(a). During the elimination stage, the constant
check eliminated 85 sensors. In the next step, another 12 sensors
were eliminated by the PCA, resulting in a total of 97 (17.89%)
sensors eliminated. The eliminated sensors and their contributed
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Fig. 5. Error reduction for sensors for each run in the simulation.

TABLE VI
RESULTS OF THE APPLICATION OF THE ALGORITHM TO THE TYT DATA SET

samples were then removed from the original TYT data set, re-
sulting in 14,819 (13.82%) samples removed. The distribution of
sensor manufacturers after the elimination is shown in Fig. 6(b),
while the distribution for the eliminated sensors is shown in
Fig. 6(c).

V. DISCUSSION

In the following, the results of the simulation and the applica-
tion to the TYT data set are discussed. Furthermore, limitations
of the proposed approach are considered.

A. Interpretation of the Results

First, the results of the simulation are discussed in terms
of the performance metrics. As shown in Section IV-A, the
average positive predictive value (PPV ) of the proposed ap-
proach is 41.79% while the average fault detection rate (FDR)
is 29.02%. At the same time, the average false-positive rate
(FPR) is 14.11%. In other words, about every third faulty sensor
is detected and eliminated by the proposed approach, while
about every seventh eliminated sensor is in fact not affected
by any faults other than missing data and should therefore be
considered correct. The quality of the proposed approach can
now be assessed by comparing these metrics. The first quality
metric we can examine is the tradeoff between PPV and FDR,

which is also captured by the F-measure as the harmonic mean
of both values [38], [39]. Reducing the number of false-positive
increases the PPV . In reality, this increase often leads to a
decrease of the FDR, i.e., an increase in the number of false-
negatives, at the same time [38]. The goal would be to maximize
both values simultaneously, i.e., to maximize the F-measure. For
the results of the simulation, both the PPV and the FDR are
reasonably high, leading to an F-measure of 34.26%. In addition,
we can assess the ability of the approach to discriminate between
faults and non-faults by comparing FDR and FPR [38]. For
an approach that just classifies sensors as faulty on a random
basis, FDR would be equal to FPR, i.e., the chance of a true-
or false-positive prediction would be equal [38]. However, for
the proposed approach, FDR is higher (even about twice as
high) as FPR, indicating a fair ability to discriminate between
faults and non-faults. Moreover, the approach reduces the error
by 22.74% on average (ER). Overall, one can conclude a good
performance of the proposed approach for the data sets generated
in the simulation.

Second, the results of the application of the proposed approach
to the TYT data set are considered. As shown in Section IV-B,
only 542 of the 3,255 devices (16.66%) are eligible for the
elimination process of the approach. This number seems low
at a first glance, but it can be seen in Table VI that these devices
account for 89,111 (83.10%) of the total samples in the data set.
In the elimination stage, 85 devices are removed by the constant
check, suggesting many constant value readings within the data
set (as also found in [8]). A manual inspection of these values
and a review of the code of the TYT mobile apps indicates
that most of these constant values are zero values that occur
because the Android app has not been granted permission to
access the device’s microphone. Nevertheless, this high number
shows that the constant check is a valuable step in detecting
sensor faults. Together with the second step of the elimination
stage, the PCA, a total of 97 devices can be eliminated from
the data set. As shown in Fig. 6, the manufacturer distribution
before [see Fig. 6(a)] and after [see Fig. 6(b)] the elimination is
similar. This is due to the fact that the manufacturer distribution
of the eliminated devices [see Fig. 6(c)] roughly corresponds to
that of the original data set. In other words, the devices classified
as faulty by the proposed approach are distributed about evenly
across device manufacturers. However, it can be observed that
comparatively less miscellaneous devices are detected by the
approach. This could be due to the heterogeneity of device
manufacturers (e.g., LG, Motorola, HTC, OnePlus, Huawei,
Xiaomi and others) in this group. The eliminated devices account
for 3.0% of the devices and 13.82% of the samples in the total
data set, as extracted from the TYT database. The remaining
and cleansed data set could then be used as a baseline for
further analyses of the environmental sound level measurements,
for example, to investigate the interrelationships with tinnitus
symptoms.

B. Limitations

The approach described in the scope of this work is subject
to several limitations. These limitations will be discussed in the
following paragraphs.
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Fig. 6. Device manufacturer distribution (a) before and (b) after elimination of sensors that have been marked faulty as well as for (c) the eliminated
sensors (i.e., devices).

Issues in the ecological and mHealth context: Some of the
limitations of the proposed approach are given by several error
factors, which occur in particular in the context of mHealth. Cho
et al. [40] group these error factors into technical-related, user-
associated and data-governance factors. As the TYT study is
operated on data that is gathered during everyday life, there is no
specified environmental setting, no delimited number of utilized
devices. Hard- and software-related issues are accompanied by
the “black box” behavior of smartphones concerning to their
processing of collected data [41]. This lack of explainability,
together with missing comparability between different operating
systems and device manufacturers, states a huge quality issue.
Standardization and calibration protocols [8] could provide a
solution at least for the latter problem.

Assumption of over-determination: A main assumption of the
algorithm in the proposed approach is an over-determination
of the system. In this context, we included EMA questionnaire
answers, as the devices and their sensors alone do not meet this
requirement. It needs to be further investigated under which cir-
cumstance, for example, constant questionnaire answers might
influence the algorithm outcome. In addition, our approach is a
priori not able to handle data sets with missing values or too few
samples (m < 30, see Section III-B2). [20] emphasize the ability
of generalizing even from noisy or incomplete data that artificial
intelligence-based approaches bring. It needs to be evaluated,
how, for example, the generated simulation data set would be
sufficient for accurately trained models and how the detection
mechanism could be improved.

Lack of data distribution knowledge: Ayadi et al. [42] name
a lack of data distribution knowledge prior to the analysis
to be a huge challenge for parameter-based statistical outlier
detection approaches. Without prior knowledge of the data form
and according manual selection, the developed approach creates
challenges in selecting fitting parameters and thresholds. Further
research must evaluate if approaches using dynamic thresholds,
such as [20], might be applied to our context.

PCA approach: The core detection mechanism of our algo-
rithm, the PCA stage, mainly relies on an initial model training.
Since this model should be trained using data mainly unaffected
from errors, it is essential for the later detection mechanism.
As it is still unclear how large this training set has to be, further
improvements for the PCA algorithm are difficult to apply. These
improvements could include, for example, the implementation

of a robust PCA, as it is less sensitive to anomalies than classical
PCA [18], or of an online PCA algorithm [18], [19], which in-
crementally adapts an initially trained PCA model and therefore
would increase performance.

False-positive rate: The proposed approach still shows a
quite high false-positive rate. The application of the Boruta
algorithm [43] might overcome this problem. To this end, this
machine learning algorithm tries to select features that are
relevant for the results. Properties are seen as features, sensors
are equal to results. However, the inclusion of BORUTA_PY,6

as implementation of the previously named algorithm, strongly
increased computational complexity, but could not bring the
desired results in a first attempt.

VI. SUMMARY AND OUTLOOK

In this work, we proposed an approach to cleanse Mobile
Crowdsensing (MCS) mHealth data sets from erroneous sensor
data. Specifically, the overall goal was to harness environmental
sound level data provided via the TrackYourTinnitus (TYT)
database to enable meaningful interpretation regarding the corre-
lation of these objective sensor readings with subjective tinnitus
symptoms. To this end, the existing data were analyzed and the
problem formalized. The proposed approach includes several
pre-processing steps and uses Principal Component Analysis
(PCA), which considers the responses to the Ecological Mo-
mentary Assessment (EMA) questionnaire of the TYT app as
additional information, and a preceding constant value check
(constant check) to detect sensor errors. In addition, a simula-
tion was designed and run using generated data with similar
characteristics to the TYT data set to assess the performance
of the approach with different parameters. The simulation was
then used to evaluate the performance of the proposed approach
with different quality metrics and to determine appropriate pa-
rameters for application to the TYT data. Finally, the approach
was applied to the TYT data set, eliminating all devices that
were found to be erroneous. The results show that the proposed
approach performs well for data sets similar to the simulated
data and therefore could be used for real-world scenarios.

6[Online]. Available: https://github.com/scikit-learn-contrib/boruta_py (Ac-
cessed: 2022-03-25).

https://github.com/scikit-learn-contrib/boruta_py
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Future work should further explore the aspects discussed in
Section V. The proposed approach is subject to several limita-
tions and uncertainties that need to be addressed. In addition,
there are other approaches in the literature that could lead to
even better results. For mHealth data sets such as TYT, additional
information about the devices and the context of the sensor mea-
surements would enable more accurate analyses. The TYT plat-
form could therefore be extended to provide such information.

In conclusion, it has been shown that sensor errors in MCS
mHealth data sets can be detected using a data-centric approach.
However, there are many challenges and uncertainties when the
distribution of sensor errors is not known a priori and when little
to no additional information is available about the data quality of
sensor measurements. Therefore, further work should and must
be done in the future to interpret MCS mHealth data.
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[24] A. Koren, M. Jurčević, and R. Prasad, “Comparison of data-driven models
for cleaning ehealth sensor data: Use case on ECG signal,” Wireless Pers.
Commun., vol. 114, no. 2, pp. 1501–1517, 2020.

[25] R. Pryss, W. Schlee, B. Langguth, and M. Reichert, “Mobile crowdsensing
services for tinnitus assessment and patient feedback,” in Proc. IEEE Int.
Conf. AI Mobile Serv., 2017, pp. 22–29.

[26] J. Kullaa, “Detection, identification, and quantification of sensor fault in a
sensor network,” Mech. Syst. Signal Process., vol. 40, no. 1, pp. 208–221,
2013.

[27] E. Fix and J. L. Hodges, “Discriminatory analysis nonparametric discrimi-
nation: Consistency properties,” Int. Stat. Review/Revue Int. de Statistique,
vol. 57, no. 3, pp. 238–247, 1989.

[28] J. K. Dixon, “Pattern recognition with partly missing data,” IEEE Trans.
Syst., Man, Cybern., vol. 9, no. 10, pp. 617–621, Oct. 1979.

[29] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

[30] L. Mujica, J. Rodellar, A. Fernandez, and A. Güemes, “Q-statistic and t2-
statistic pca-based measures for damage assessment in structures,” Struct.
Health Monit., vol. 10, no. 5, pp. 539–553, 2011.

[31] Y. Li and L. E. Parker, “Nearest neighbor imputation using spatial–
temporal correlations in wireless sensor networks,” Inf. Fusion, vol. 15,
pp. 64–79, 2014.

[32] V. Barnett and T. Lewis, “Outliers in statistical data,” Wiley Ser. Probability
Math. Statist. Appl. Probability Statist., 2nd ed. Chichester, U.K.: Wiley,
1984.

[33] J. Rabatel, S. Bringay, and P. Poncelet, “Anomaly detection in monitoring
sensor data for preventive maintenance,” Expert Syst. Appl., vol. 38, no. 6,
pp. 7003–7015, 2011.

[34] A. Lawrence and F. F. Ling, “Gyro and accelerometer errors and their
consequences,” in Modern Inertial Technology. New York, NY, USA:
Springer, 1998, pp. 25–42.

[35] A. Klöckner, F. L. van der Linden, and D. Zimmer, “Noise generation for
continuous system simulation,” in Proc. 10th Int. Modelica Conf.-Lund,
2014, pp. 837–846.

[36] S. Filip, A. Javeed, and L. N. Trefethen, “Smooth random functions,
random odes, and gaussian processes,” Soc. Ind. Appl. Math. Rev., vol. 61,
no. 1, pp. 185–205, 2019.

[37] B. Sheng, Q. Li, W. Mao, and W. Jin, “Outlier detection in sensor net-
works,” in Proc. 8th ACM Int. Symp. Mobile ad hoc Netw. Comput., 2007,
pp. 219–228.

[38] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction
methods,” ACM Comput. Surv., vol. 42, no. 3, pp. 1–42, 2010.

[39] C. J. Van Rijsbergen, “Foundation of evaluation,” J. Documentation,
vol. 30, no. 4, pp. 365–373, 1974.

[40] S. Cho, I. Ensari, C. Weng, M. G. Kahn, and K. Natarajan, “Factors
affecting the quality of person-generated wearable device data and associ-
ated challenges: Rapid systematic review,” J. Med. Internet Res. Mhealth
Uhealth, vol. 9, no. 3, Mar. 2021, Art. no. e20738.

[41] P. Düking, F. K. Fuss, H.-C. Holmberg, and B. Sperlich, “Recommen-
dations for assessment of the reliability, sensitivity, and validity of data
provided by wearable sensors designed for monitoring physical activ-
ity,” J. Med. Internet Res. Mhealth Uhealth, vol. 6, no. 4, Apr. 2018,
Art. no. e102.

[42] A. Ayadi, O. Ghorbel, A. M. Obeid, and M. Abid, “Outlier detection ap-
proaches for wireless sensor networks: A survey,” Comput. Netw., vol. 129,
pp. 319–333, 2017.

[43] M. B. Kursa, A. Jankowski, and W. R. Rudnicki, “Boruta—A system for
feature selection,” Fundam. Informaticae, vol. 101, no. 4, pp. 271–285,
2010.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


