Proviado — Personalized and Configurable
Visualizations of Business Processes*

Ralph Bobrik!, Thomas Bauer?, and Manfred Reichert?

! Dept. Databases and Information Systems, University of Ulm, Germany
ralph.bobrikQuni-ulm.de
2 DaimlerChrysler Research & Technology, REL/ID, Ulm, Germany
thomas.tb.bauer@daimlerchrysler.com
3 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. A monitoring component is a much-needed module in order
to provide an integrated view on system-spanning and cross-organiza-
tional business processes. Current monitoring tools, however, do not offer
adequate process visualization support. In particular, processes are al-
ways visualized in the way they were drawn by the process designer. This
static approach is by far not sufficient when dealing with more complex
scenarios where different user groups usually have different perspectives
on processes and related data. In such an environment different views
and personalized visualizations have to be provided. In the Proviado
project we are developing a framework for realizing flexible and adapt-
able visualizations of business processes whose data may be scattered
over multiple information systems. In this paper we focus on personal-
ization and configuration issues, and we show how process visualizations
can be adapted automatically, e.g., by applying different notations for
different user groups or by altering the appearance of visualized elements
depending on their execution state. For this purpose we define a visual-
ization model which maintains all required visualization parameters.

1 Introduction

In order to streamline their way of doing business, today’s companies have to
support a number of business processes (BP) involving different partners, de-
partments, and actors. In this context we have seen an increasing adoption of
BP management technologies as well as emerging standards for BP orchestration
(e.g., BPEL4WS) and BP choreography (e.g., WS-CDL) [I]. These technologies
and standards enable the definition and execution of the operational processes
of an enterprise. In connection with Web Service technology, in addition, the
benefits of BP automation and BP optimization from within a single enterprise
can be transferred to cross-organizational business processes as well.

A BP monitoring component is a much-needed module, particularly if process
data are scattered over distributed, heterogeneous information systems. It has

* This work has been funded by DaimlerChrysler Research €& Technology.

K. Bauknecht et al. (Eds.): EC-Web 2006, LNCS 4082, pp. 61-{T1] 2006.
© Springer-Verlag Berlin Heidelberg 2006

62 R. Bobrik, T. Bauer, and M. Reichert

to provide comprehensive visualization support for both model and instance
data. A process model defines the BP activities, the control and data flow be-
tween them (e.g., represented by control/data edges connecting activities among
each other or linking activities with data elements), and other process aspects
(e.g., resources). A process instance, in turn, is executed on basis of a particular
process model, but comprises additional run-time information to be displayed
(e.g., activity states or application data). An example is depicted in Fig. [l

One major shortcoming of current BP monitoring software is the static way in
which business processes are visualized. Usually, a process model is displayed to
users in exactly the same way as designed (or painted) by the process engineer
at build time. Any adaptation of model contents (e.g., hiding automated activ-
ities) may cause major efforts for re-drawing the process model, particularly if
it comprises dozens or hundreds of activities, data objects, and other graphical
elements. In most cases, it is even not possible to adapt the graphical appear-
ance of a process model to user preferences at runtime. What is needed is a
runtime-adaptable BP visualization, which allows to suppress skipped execution
branches, to hide certain process aspects (e.g., business documents, IT systems),
or to only display activities belonging to a certain role. Further, in multi-user en-
vironments, BP visualizations should be adaptable to the preferences of process
participants, e.g., allowing them to apply different notations for the same process
or to vary colors and symbols for the different process elements.

In the Proviado project [2] we are developing a sophisticated framework for
such adaptive and configurable BP visualizations. Areas of interest include the
(semantic) integration of distributed, heterogeneous process data and their de-
fragmentation, the provision of mechanisms for creating (dynamic) process views
(e.g., by applying graph aggregation /graph reduction techniques), the automated
layouting of process graphs (e.g., after changes), the use of different notations
for a business process, and the provision of personalized process visualizations.
In this paper we focus on configuration issues, i.e., we deal with the question
how to (dynamically) configure, determine, and adapt the graphical appearance
of process elements. We introduce a visualization model (VisModel) for this pur-
pose, which allows for the high-level and user-friendly configuration of visualiza-
tion parameters for a variety of process elements. The design of this model has
been non-trivial, since it must capture different kinds of visualization parameters
in a user-comprehensible and maintainable way. Examples of needed parameteri-
zations include view definitions, links to real-time process data, layout strategies,

Car Manufacturer (&Planning 2\ D ofayt
. Pt
(ECR-Mgr._| production -
instruct a Ees) g i3 IR [i3 IR i3 I @ e
e alzaton . adapt produce with w
(ETesting D) order parts 0duce yith) | oveetue [success
plant Jata obj.

setup test
i control

environment

change > flow edge
. 7 7777777777 - 7 77 7] swlitioin:
PP (@Partner T2\ @Parer 12\ b} (@Pariner 1) 0anD ©OR

Activity Status
v terminated
» running

detail CAD ()
diagram

produce
parts.

Fig. 1. Interorganizational Change Management Process (Realization phase)

build
prototype

profotype

Proviado — Personalized and Configurable Visualizations 63

preferred process notations, etc. We have elaborated the developed visualization
model in several case studies in the automotive domain and implemented a pow-
erful proof-of-concept prototype. Together with the above mentioned features
the visualization model forms the key for the automated and dynamic gener-
ation of personalized process visualizations. By detaching process information
from its visualization we achieve a strict separation of content and presentation,
a well known approach from other areas like Web design, content management,
or software development.

Section [2 starts with an example followed by the description of the require-
ments for realizing personalized process visualizations. Our solution approach is
sketched in Section [3] and Section [describes our proof-of-concept prototype.
In Section [l we discuss related work. Section [0 concludes with a summary and
an outlook on future research.

2 Configuration of Process Visualizations

2.1 Example

A simplified example of a cross-organizational process is depicted in Fig. [It
shows an extract of a change management process from the automotive domain:
After having decided that a certain part of a car (e.g., an electrical control unit)
has to be modified, the implementation of the change is started. Related duties
are then split among the car manufacturer and the part supplier. While the con-
struction and production of the new part is in charge of the supplier, the car
manufacturer must ensure that the car production facilities are adapted accord-
ingly. For this purpose the supplier delivers a first prototype of the new part. If
this prototype complies with the specifications and passes all tests ("integration
tests"), it will be integrated in the production process. In order to keep track
of this process a monitoring component providing site-specific visualizations of
processes and related data is needed. The vision is to be able to generate adapted
and personalized visualizations from given process data (see Fig. Il and Fig. [2).

2.2 Requirements

In order to better understand the requirements for the design of our VisModel
we elaborated real cases from the automotive sector. Requirements for the con-
figuration of process visualizations are depicted in Table [(for details see [2]).
Other requirements related to the overall visualization component (e.g., integra-
tion of process models and related runtime data, visualization of processes in
different forms) can be found in [2].

create reduced view
on CR-Process
where act.actor = ,Partner”

detail CAD
diagram

produce

build
prototype

Fig. 2. Supplier’s view on the process (from Fig. [I])

64 R. Bobrik, T. Bauer, and M. Reichert

Table 1. Requirements for the configuration of process visualizations

Req. 1 Ability to use arbitrary symbols for visualizing a process element

Req. 2 Selection of visualization symbols based on the attribute values of the pro-
cess elements

Req. 3 Precise rules for dealing with conflicting instructions regarding the visuali-
zation of process elements

Req. 4 Personalization of visualizations by adapting colors, fonts, symbols, etc.

Req. 5 Accessibility of process visualization via easy to maintain (Web) clients

Req. 6 Easy creation of new process notations and symbols

Req. 7 Easy implementation and integration with our overall architecture for BP
visualization support

Req. 1 reflects the mentioned concept of separating content and presentation.
In order to personalize process visualizations we must be able to easily adapt
the symbol used for a certain process element. Among other things we have to
specify at a high level which symbols shall be applied under which conditions.
Generally, the graphical appearance of a process element depends on its proper-
ties (cf. Fig. [B)). As an example consider process activities. By default we might
want to represent activity nodes by a square with rounded edges. However, for
activities of type "testing” this default representation should be replaced by a
special symbol reflecting the test result with a colored flag (cf. Fig.[I)). Or at the
process instance level we might want to color activities depending on their state.
Generally, arbitrary process data (i.e. process element attributes, instance and
application data) may be used to determine the appearance of process elements.
Additional complexity arises from the necessity to specify the format of a symbol
dependent on process attributes (Req. 2), which are not associated with the cur-
rent process element, but connected with another element via edges. Depending
on the name of the actor working on an activity, for example, the color of the ac-
tivity node may have to be altered, facilitating recognition of tasks belonging to
the same actor. Altogether, for a complex process and its visualization this leads
to a large number of dependencies or rules, describing the applicability of sym-
bols and formats. In this scenario it is not far-fetched that two rules contradict
each other. For example, let Rule 1 specify a red color for activities performed
by a particular user. In contrast Rule 2 may state that running activities shall
be emphasized with green color. Then it may occur that an activity fulfills both
rules and it is not clear whether the activity shall be drawn red or green. This
kind of conflicts between formatting instructions should be resolved in order to
achieve consistent process drawings (Req. 3).

Adapted process visualizations must be made available to users as easy as
possible and deployment efforts should be minimized (Req. 5). In particular,
access to process information via Web browsers should be supported. In order
to achieve this we use SVG (Scalable Vector Graphics) as format for displaying
processes. Usually respective Web browser plug-ins are available and installed
at the client side. Further, frameworks for supporting SVG on the server-side
exist as well (Req. 7). For the task of generating process visualizations standard

Proviado — Personalized and Configurable Visualizations 65

element type - - -
(&oo eg element = ,activity |:“>
e

preferences _ «
: ot element = ,actor’
visualization of a ” Mr. Lucas

process element » 0.
| status = ,running” |:: > } ‘
EN attribute value ..
%% B ;
%

)

8o
process or .| activity.type = |:l‘>
application Jesting”

data test goal

Fig. 3. Dependencies of data determining presentation

XML-based technologies (like XSLT or sXBL) allow to convert arbitrary XML
data structures into SVG [3]. However, the direct application of these technolo-
gies would contradict our goal to separate content and presentation because of
their complex syntax. In particular, graphical aspects are mixed with the logic
for combining different templates, which results in high maintenance costs.

3 Visualization Model

Key component for specifying and maintaining visualization parameters is the
Visualization Model (VisModel), whose entries are organized in an XML-based
tree-structure. Fig. [depicts the role of this model in our overall approach for
generating personalized process visualizations. The VisModel represents a log-
ical view on the parameters for this visualization procedure. This includes, for
instance, a representation of the process model to be displayed, an optional
view definition reassembling the process model, a definition of the notation to
be used, graphical settings regarding the appearance of process elements (e.g.,
colors, fonts, etc.), and information needed to access workflow or application
data at runtime. In order to realize a particular process visualization we use one
VisModel. Consequently, if different visualizations of a process are desired, logi-
cally, multiple VisModels have to be created. Note that the information needed
for this can be gathered partially from existing information (e.g., reusing models
capturing visualization profiles of a particular user group).

Fig. M shows the steps (S0-S3) necessary to automatically generate a process
visualization. Starting point is an "integrated" process model, which correlates
(fragmented) process data from different source systems in a harmonized way.
First, we restrict this visualization content to that information needed by the user
(S0). This is realized by a view component which applies aggregation and reduc-
tion techniques to process models (cf. Fig.). Step SO is followed by formatting
steps S1-S3: S1 fixes the graphical symbols designed for the different process
elements. Doing so we consider information from the visualization model; S2
fills graphical symbols with real attribute values related to the process model or
process instance to be displayed; within S3 formatting parameters are customized
to user preferences, e.g., by coloring the process visualization in accordance to
cooperate identity guidelines.

66 R. Bobrik, T. Bauer, and M. Reichert

X F - = -
C ,, N\ bunld @as&gn fill up @ adapt —
J (o R | view symbols symbols style Fa)
G =)| Fy P ®
rocess model reduce document: e o %P3
p! A8 ™~ values: name=A !cr:is. Al 100t
— . . name state="running” ||| act.name: Arial 10pt rocess (SVG)
A state = running ‘remove actor: Arial 7pt P
H activities of actor: A » L
Xlink = file://X.doc [P2" % S
N [name
instance data ' - = -
H L » Al
'

4

faal

Ss ey . 0
. .

| visualization model

Fig. 4. Role of the Visualization Model in generating a process visualization

3.1 Template Mechanism

To enable the flexible configuration of the used process notation, we introduce
a sophisticated template mechanism. Key design criteria have been Req. 1-3,
with the reuse of existing templates in mind. The mechanism is subdivided in
two parts: the description of the symbols and definition of their usage.

Describing Symbols. A template definition consists of three specification
parts (cf. Fig. Bh): 1) input parameters of the template, where references to
process elements are handed over; 2) representation of the symbol in SVG; 3)
parameters (e.g. name of activity, activity state, starting time, etc.) to be filled
with process data values. As mentioned, we adopted SVG as format for defining
graphical symbols because of its XML-based syntax and the general advantages
of vector graphics over raster graphics. This also allows for the easy definition of
process symbols by using off-the-shelf SVG editors. In our approach each tem-
plate defines exactly one symbol with its graphical characteristics (e.g. shapes
and text areas). The text areas (i.e., parameters of the template) are filled by
concrete values from the process model/instance to be displayed. Within the pa-
rameter sections, XPath expressions (relative to the SVG-symbol root) are used
to describe the location of the corresponding text area (location attribute).
As process data values may need to be transformed before presenting them to
the user (e.g. converting an internal date format into a standard format; cf.
Fig.[Bb) the value attribute may comprise of code in a scripting language (e.g.
JavaScript). Via these scriptlets it is further possible to access all kind of process
data and to arrange it using arbitrary scripting functions (cf. parameter endtime
in Fig. [0 a). For expressing special formatting options dependent on arbitrary
process attributes, if-then-else or choice structures may be used. Hereby the
evaluation conditions are expressed by also using JavaScript.

Fig. Bl shows an example for an activity template. The right side depicts the
symbol definition based on SVG. On the left, corresponding parameter defin-
itions are shown. Among other things they illustrate the mechanisms used to
reference the locations of the data values inside the symbol. A choice construct
is used to determine the correct process state symbol for activity nodes.

Proviado — Personalized and Configurable Visualizations 67

<parameter name="name"
[Location="g/text [@pv:name='name’]"
value="act.name" />

<g class="activity" pv:name="activity">
| <rect width="50" height="30" £i11-"rgb(240,240,240)"

<parameter name="state"
[Location="g/q[@pv:name="symbol’]"> stroke="black" />
<text transform="20,10" pv:name="name"

<choice>
<when test="act.state=RUNNING">
e xlink:href="fact_state RUNNING" />

class="act_n style="font-size:12pt;" />
<text transform= 5T pviname-"starttime"
class="act attr" style="font-size:10pt;" />
<text transform-"45,25" pviname-"endtime"
class="act attr" style="font-size:10pt;" />
..[<9 transform-"48,2" pv:name-"symbol"
class="act_symbol"/>

</when>
<when test="act.state=COMPLETED">...</when>

</choice>
</parameter>
<parameter name="symbolstyle"

location="g/rect/@style" />

</g>

Fig. 5. Template mechanism: Definiton of a symbol

<template id="default_act'">

<!-- input section -->
<inputs>

<if test="self.type=ACTOR">
<template id="actor">

<input variable="act" type="activity"> <inputs>
<descr>activity node</descr> <input name="actor" value="self"/>
</input> </inputs>
</inputs> </template>
<graphic> </if> <if test="self.type=ACTIVITY">
<!-- symbol section (SVG) --> <choose>
<symbol> <when test="self.type=’testing’">
<g class="activity" pv:name="activity"> <template ref="testing_act">
. <inputs>
</g> <input name="act" value="self"/>
</symbol> </inputs>
<!-- parameter section --> </template>
<parameter name='"name' </when>
location="g/text[@pv:name="name’]" <otherwise>
value="act.name" /> <template ref="default_act">
. <inputs>
<parameter name="endtime" <input name="act" value="self"/>
location="g/text[@pv:name=’endtime’]" </inputs>
value="formatDate(act.end, ’dd/mm/yyyy>)"/> </template>
</graphic> </otherwise>
</template> </choose>

</if>

Fig. 6. (a) Definition of templates (b) Usage of templates

Defining Usage. Having defined a set of templates the next challenge is to
specify under which conditions these templates shall be applied. Main complex-
ity in this context is to define the correlations between process elements and
available templates (cf. FigBl). As an example consider the process from Fig. Il
where we want to use a rectangle with rounded edges for displaying activities
and a special symbol for representing "test activities". We first considered using
logic rules for this task, but withdrew this idea. First, we would have obtained a
large number of rules to be maintained. Second, specification of such rules would
have been a complex task (e.g., precise conditions for firing rules would have had
to be specified). Third, rules are not guaranteed to be conflict-free; i.e., there
might be two rules, one defining a red background color and the other specifying
a green color. A general conflict resolution strategy for this case would be very
complex to realize. The solution we have chosen instead is depicted in Fig. [Eb.
Using "if-then-else"-like statements together with a first-occurrence-wins policy,
it is ensured that the template to be applied can be determined unambiguously
at runtime. The algorithm we developed in this context traverses all elements of
the process model and assigns the corresponding symbols to them.

68 R. Bobrik, T. Bauer, and M. Reichert

CR-Process .activity > rect{
St\(lggget £ill: blue;
e —— Al “ stroke: black;
(—_ stroke-width: 2pt;
-fF OEM P
K ¥ L
— CR-Process .activity text.act_name {
5l _m stroke: none;
rocess (SVG stylesheet i11: ite;
p (SVG) “(,CSS) %ﬁ £ill: ‘tlhlte,
S A3 d ! font-size: 20pt;
g Supplier }

Fig. 7. Use of stylesheets for adapting format parameters

3.2 Formatting a Process Visualization

The task of formatting a process visualization is subdivided into 3 steps (cf.
Fig. @). In Section B we already explained how to describe unambiguously
which symbol has to be used for visualizing a certain process element. This
definition is interpreted in Step S1 where symbol templates are assigned to the
process elements. In Step S2 the parameter values of the templates are calculated
according to the scriptlets contained in the templates. Consequently, the place-
holders are substituted by concrete values from the process model (instance).
During Step S3 graphical attributes of the process elements are adapted accord-
ing to users’ preferences (cf. Fig[7)). In this step, colors, fonts, line styles, etc. can
be modified using Cascading Style Sheets (CSS). The latter complement SVG
graphics’ formatting capabilities. In contrast to the previous steps, S3 is executed
by the rendering engine of the SVG viewer. By using templates for the coarse
layout and stylesheets for the personalization of graphical attributes we gain ad-
ditional flexibility, which allows us to easily adapt the final appearance of process
visualizations. This is realized by providing more than one stylesheet for a par-
ticular VisModel. The stylesheet to be used is selected lately at runtime, e.g.,
depending on the organizational unit that requested the process visualization. It
is even possible to hide process elements in this late stage using CSS-attributes.
Key to deal with the requirements from Table [l is the described template
mechanism. It enables great flexibility defining the appearance of process ele-
ments and also promotes their reuse (Req. 1-3). The look of the resulting process
graphs can be customized further using stylesheets (Req. 4). By adopting SVG
easy deployment of a visualization component considering available Web-browser
plug-ins becomes possible (Req. 5). Further, the availability of frameworks for
generating SVG server-side is useful in our context. Thus Req. 5 and 7 are met.
In addition to this, SVG allows for the easy definition of process symbols us-
ing standard editors (Req. 6). The implementation efforts could be reduced by
harking back to existing libraries (e.g. for JavaScript and XPath) (Req. 7).

4 Proof-of-Concept Implementation

We have implemented the described concepts in a powerful proof-of-concept pro-
totype. Fig.]l depicts sample screens showing the same process in two different
execution states and with different appearance. Fig. [Bh shows a visualization of

Proviado — Personalized and Configurable Visualizations 69

the process from Fig. [, which is similar to what is offered by current process
design tools. In Fig. Bb the same process is depicted in another style and with
progressed execution state. Reducing the number of elements and streamlin-
ing notation often leads to an improved readability as in the given case. This
is particularly suitable for monitoring components highlighting activity execu-
tion states using different colors. Similarly, another VisModel using colors for
identifying participating actors and varying border styles for representing exe-
cution states can be defined. Additional information on less important process
attributes can be visualized using tool-tips (cf. Fig. Bb). Since we apply SVG,
processes can be monitored with standard Web browsers. Usually they include
respective plugins providing basic operations (e.g., zooming) by default. Ad-
vanced SVG features like animation and scripting have enabled us to interact
with users in a sophisticated way, e.g., by replaying process execution with ani-
mated state transitions. Our demonstrator is implemented using Java and other
standard techniques like XML, XPath, CSS, and JavaScript.

| [setup test E‘
" | S|

% Planning

change

request
instruct ¥
part
realization

% CR-Manager

=
| [test order LJ
> parts

2 Testing % CR-Manager

4

- setup test

X Testing [rate. running
Start date: 28-02-2006
Responsible: Mr. Lucas

change test log prototype
request

)

¥ Partner

Fig. 8. Screenshots showing two different presentations of the same process

70 R. Bobrik, T. Bauer, and M. Reichert
5 Related Work

There are numerous Workflow Management systems (WfMS) which enable the
definition, execution, and monitoring of business processes. In particular, the
modeling and monitoring components of these WEMS provide visualization sup-
port for model and instance data. However, only those process data can be
visualized which are under control of the WiMS (e.g., WBI Monitor [4]). A more
open approach is followed by process performance management (PPM) tools
(e.g. ARIS PPM [5]), which support the monitoring of processes whose data is
scattered over multiple information systems. Altogether these tools show limita-
tions with respect to their visualization component. Neither can the visualization
of a process be personalized nor can it be adapted to the current context. In par-
ticular, processes are always displayed as drawn by the process designer, and the
discussed requirements are not met. Furthermore, at the process instance level
visualization support is mainly restricted to the control flow perspective, whereas
other process aspects (e.g., data flow, resources, application data, etc.) cannot
be displayed. Finally, the Web interfaces of current tools are rather poor and also
not adaptable to users’ needs. For these reasons, current monitoring tools are
mainly used by administrators and developers. A more flexible, but also more
complex approach is offered by generic visualization software; e.g., ILOG JViews
is not bound to a specific WEMS or workflow meta model and therefore enables
more flexible, but also more complex to realize process visualizations.

The area of Information Visualization deals with the use of computer-sup-
ported, interactive, visual representations of data to amplify cognition [6]. Sev-
eral approaches are available for the visualization of general graph structures
[7]. However, there is literature dealing with BP visualization [SI9UT0/TT]. Most
approaches focus on special aspects rather than providing a complete picture.
Examples include the layouting of certain process graphs [9], the mapping to
SVG [10/12], and the adaptation of the set of displayed process elements [13].
ArchiMate [11] is more ambitious and supports different visualizations and view-
points of enterprise architectures for different user groups. However, most of the
discussed requirements have not been addressed by these approaches.

6 Summary and Outlook

We have presented an approach for the personalized visualization of process
model and process instance data. For this we have introduced a VisModel that
comprises all configuration parameters providing adaptable BP visualizations.
Key concept is the flexible definition of process symbols independent from
process model data. This has been realized based on a powerful template mecha-
nism. Due to lack of space we have explained basic concepts by means of simple
examples rather than providing formal considerations.

The configuration of process visualizations, i.e., the specification of a Vis-
Model, is a complex task that requires writing XML-code. We plan to build a
sophisticated tool that allows for the graphical definition of a VisModel as well

Proviado — Personalized and Configurable Visualizations 71

as for template reuse. Template generation will be facilitated integrating an SVG
editor. Layouting general process graphs is another complex task [14]. This and
other challenges have been factored out in this paper. At the moment we opt
for using existing positioning information of process elements, but we aim at
replacing this workaround with sophisticated layout algorithms. Layouting will
be introduced to the formatting task from Fig. [(after Step S2), where the re-
sulting graph objects can be used to calculate the adequate layout. Automatic
layout even gets more important when taking into account more advanced issues
like view mechanisms or different visualization forms of process data (e.g., swim
lanes, gantt charts, etc.). Finally, in Proviado several other activities are on their
way to accomplish all tasks depicted in Fig.[dl This includes view generation (S0),
access control, and process data integration.

References

1. Havey, M.: Essential Business Process Modeling. O’Reilly Media (2005)

2. Bobrik, R., Reichert, M., Bauer, T.: Requirements for the Visualization of System-
Spanning Business Processes. In: Proc. 16th Int. Workshop on Database and
Expert Systems Applications (DEXA), Copenhagen, Denmark (2005) 948-954

3. Jolif, C.: Comparison between XML to SVG Transformation Mechanisms. In:
Proc. SVG Open’05, Enschede, Netherlands (2005)

4. IBM: IBM WBI Monitor V. 4.2.3. (2003) IBM Report.

5. IDS Scheer AG: ARIS Process Performance Manager (PPM). White Paper (2004)

6. Card, S.K., MacKinlay, J.D., Shneiderman, B.: Readings in Information Visual-
ization: Using Vision to Think. Morgan Kaufmann, New York (1999)

7. Herman, I., Melangon, G., Marshall, M.S.: Graph Visualization and Navigation
in Information Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics 6 (2000) 24-43

8. Luttighuis, P.O., Lankhorst, M., van de Wetering, R., Bal, R., van den Berg, H.:
Visualising Business Processes. Computer Languages 27 (2001)

9. Six, J.M., Tollis, I.G.: Automated Visualization of Process Diagrams. In: Proc.
9th Int. Symp. on Graph Drawing (GD ’01), Vienna, Austria (2002)

10. Koolwaaij, J.W., Fennema, P., van Leeuwen, D.: SVG for Process Visualization.
In: SVG Open 2003, Vancouver (2003)

11. Steen, M., Akehurst, D., ter Doest, H., Lankhorst, M.: Supporting Viewpoint-
Oriented Enterprise Architecture. In: 8th Int. Enterprise Dist. Object Computing
Conf. (EDOC), Monterey, California (2004) 201-211

12. Mendling, J., Brabenetz, A., Neumann, G.: EPML2SVG - Generating Websites
from EPML Processes. In: Proc. of the 3rd GI Workshop on Event-Driven Process
Chains (EPK 2004), Luxembourg (2004)

13. Streit, A., Pham, B., Brown, R.: Visualization support for managing large busi-
ness process specifications. In: Proc. 3rd Int. Conf. Business Process Management
(BPM). Volume 3649 of LNCS., Nancy, France (2005) 205-219

14. Rinderle, S., Bobrik, R., Reichert, M., Bauer, T.: Business process visualization
- use cases, challenges, solutions. In: 8th International Conference on Enterprise
Information Systems (ICEIS’06), Paphos, Cyprus (2006)

	Introduction
	Configuration of Process Visualizations
	Example
	Requirements

	Visualization Model
	Template Mechanism
	Formatting a Process Visualization

	Proof-of-Concept Implementation
	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

