
Mediation Patterns for Message Exchange Protocols

Stanislav Pokraev1 and Manfred Reichert2

1 Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands
Stanislav.Pokraev@telin.nl, http://www.telin.nl/

2 Center for Telematics and Information Technology,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

M.U.Reichert@ewi.utwente.nl, http://www.ewi.utwente.nl/

Abstract. Systems interact with their environment (e.g., other systems) by ex-
changing messages in a particular order. Interoperability problems arise when
systems do not understand each other’s messages or follow incompatible mes-
sage exchange protocols. In this paper we identify mismatches in message ex-
change protocols (involving two systems) and we propose solution patterns to
compensate these mismatches.

1 Introduction

In order to interoperate systems must follow compatible message exchange proto-
cols. For example, if one system first sends message M1 and then message M2, the
partner system should be able to receive these two messages in the same order (i.e.,
M1 before M2). However, autonomous systems (especially when built in isolation) do
not always use compatible message exchange protocols and therefore cannot interop-
erate. To compensate such mismatches and to make systems interoperable we need an
additional system, which we denote as process mediator.

In this paper we identify the most common mismatches in message exchange pro-
tocols and propose respective process mediators to compensate these mismatches.
Our findings are based on the result of a literature study [1][2][3][4] and a case
study[5].

We illustrate the patters using the notation depicted in Figure 1.

System Message
sending

Message
receiving Condition

Figure 1. Notation

2 Mediation Patterns

In the following we summarize typical mismatches in message exchange protocols
and propose mediation patterns to compensate them.

Problem: System A intends to send two messages, first M1 and then M2, whereas

system B expects only message M2.
Solution: Mediator M receives message M1 and ignores it. Next, it receives mes-

sage M2 and forwards it to system B. This pattern is illustrated in Figure 2.

Problem: System B expects two messages, M1 and M2, whereas system A intends

to send only message M2.
Solution: Mediator M receives message M2 from system A. Next, it uses addi-

tional information (either provided by another system or derived from the execution
history) to construct and send message M1 to system B. Finally, the mediator sends
message M2 to system B. Note, that this mismatch can only be compensated if media-
tor M has all information necessary to construct message M1. This pattern is illus-
trated in Figure 3.

M1

M2

M2

M2

M1

M2

A M B A M B

Figure 2. Unexpected message M1 Figure 3. Insufficient message M1

Problem: System A sends message M1 to system B and continues without expect-

ing an acknowledgement, whereas system B intends to send message Mack to ac-
knowledge the reception of message M1.

Solution: Mediator M receives message M1 from system A, sends it to system B,
and then receives the acknowledgement Mack on behalf of system A. This pattern is
illustrated in Figure 4.

Problem: System A sends message M1 and expects acknowledgement Mack

whereas system B does not intend to send such an acknowledgement.
Solution: Mediator M receives message M1, sends it to system B, and then sends

an acknowledgement (Mack) to system A on behalf of system B. This pattern is illus-
trated in Figure 5.

M1

M1

Mack

A M B

Figure 4. Unexpected acknowledgement

M1

M1

Mack

A M B

Figure 5. Insufficient acknowledgement

Problem: System A intends to send message M1 first and then M2, whereas system

B expects first message M2 and then M1.
Solution: Mediator M receives first message M1 and then message M2. Next, it

sends message M2 first and then message M1. This pattern is illustrated in Figure 6.

M1

M2

M2

A M B

M1

Figure 6. Message reordering

Problem: System B expects two messages M2 and M3 whereas system A intends to

send only one message M1 that contains both M2 and M3.
Solution: Mediator M first receives message M1. Then it uses the information

from M1 to construct M2 and M3. Finally, the mediator sends M1 and M2 in the
order expected by system B. This pattern is illustrated in Figure 7.

 Problem: System B expects message M2 n times whereas system A intends to

send only one message M1 that contains all n messages M2.
Solution: Mediator M first receives message M1. Then it starts a process of con-

structing M2 from the information in M1 and sending M2 to system B. This process
is repeated until some condition evaluates to true. The pattern is illustrated in Figure
8.

A M B

M2

A M B

Figure 7. Message splitting

M3

Figure 8. Message splitting

M1 M1

M2

Problem: System A sends messages M1 and M2 whereas system B expects one

message M3 that aggregates M1 and M2.
Solution: Mediator M receives both messages M1 and M2. Then it uses the infor-

mation from these two messages to construct M3. Finally, the mediator sends M3 to
system B. This pattern is illustrated in Figure 9.

Problem: System A sends message M1 n times whereas system B expects one sin-

gle message M2 that aggregates all n messages M1.
Solution: Mediator M starts a process of receiving messages M1 until some condi-

tion evaluates to true. Next, it uses the information in the received messages to con-
struct M2 and then sends M2 to system B. This pattern is illustrated in Figure 10.

A M B

M1

A M B

M1

M2

Figure 9. Message combining

M3
M2

Figure 10. Message combining

3 Discussion

The presented mediation patterns address only mismatches in message exchange
protocols. Some of the patterns (e.g., message splitting and aggregation) require se-
mantic mapping between the data in the exchanged messages. Only if such mappings
exist the mediators can construct an output message(s) provided input one(s).

More complex patterns can be constructed using the ones presented in the previous
section. For example, splitting message M1 to three messages M2, M3 and M4 can be
achieved by composing two ‘message splitting patterns’ (cf. Figure 11). Likewise,

changing the order of three messages can be achieved by extending the message reor-
dering pattern (cf. Figure 12), etc.

Figure 11. Composing message
splitting patterns

M1

M2

A M

BM3

M2

A Ma

B

M34

M1

M3

Mb

M4
M1

M2

M3

Figure 12. Extended message
reordering pattern

4 Acknowledgments

The present work has been done in the Freeband Communication project A-Muse
(http://a-muse.freeband.nl). Freeband Communication (http://www.freeband.nl) is
sponsored by the Dutch government under contract BSIK 03025. The presented work
a result of collaboration between the Telematica Instituut and the University of
Twente, the Netherlands, which is partially supported by the Commission of the
European Communities under the sixth framework programme (INTEROP Network
of Excellence, Contract N° 508011, http://www.interop-noe.org/).

References

1. Bussler, C. B2B-Integration: Concepts and Architecture. Springer-Verlag, 2003.
2. Cimpian, E. and Mocan, A. Process Mediation in WSMX. WSMX Working

Draft, 08 July 2005. http://www.wsmo.org/TR/d13/d13.7/v0.1/
3. Hohpe, G. and Woolf, B. Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. Addison-Wesley Professional, 2004.
4. Pollock, J. T. and Hodgson, R. Adaptive Information: Improving Business

Through Semantic Interoperability, Grid Computing, and Enterprise Integration.
Wiley-Interscience, 2004.

5. Semantic Web Services Challenge 2006, http://sws-challenge.org

http://www.wsmo.org/TR/d13/d13.7/v0.1/

