
PRESERVING THE CONTEXT OF
INTERRUPTED BUSINESS PROCESS ACTIVITIES

Sarita Bassil�, Stefanie Rinderle�, Rudolf Keller�, Peter Kropf�, and Manfred Reichert�

�DIRO, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
bassil@iro.umontreal.ca

�DBIS, Faculty of Computer Science, University of Ulm, Germany, rinderle@informatik.uni-ulm.de
�Zühlke Engineering AG, Schlieren, Switzerland, ruk@zuehlke.com

�Institut d’Informatique, Faculté des Sciences, Université de Neuchâtel, Switzerland, peter.kropf@unine.ch
�Information Systems Group, University of Twente, The Netherlands, m.u.reichert@cs.utwente.nl

Keywords: Information systems, business processes, flexibility, data analysis, B2B and B2C applications.

Abstract: The capability to safely interrupt business process activities is an important requirement for advanced process-
aware information systems. Indeed, exceptions stemming from the application environment often appear
while one or more application-related process activities are running. Safely interrupting an activity consists
of preserving its context, i.e., saving the data associated with this activity. This is important since possible
solutions for an exceptional situation are often based on the current data context of the interrupted activity.
In this paper, a data classification scheme based on data relevance and on data update frequency is proposed
and discussed with respect to two different real-world applications. Taking into account this classification, a
correctness criterion for interrupting running activities while preserving their context is proposed and analyzed.

1 INTRODUCTION

To stay competitive in the market, companies must
be able to rapidly react to changing situations and to
align their business processes accordingly (Reichert
et al., 2003). In particular, e–business needs a pow-
erful infrastructure to isolate process logic from ap-
plication code (Gartner Group, 1999), and to define,
control, and monitor business processes. Process–
Aware Information Systems (PAIS) offer a promising
perspective in this context (v.d. Aalst and van Hee,
2002). They aim to connect activities, i.e., pieces of
work to perform a task, in order to achieve a common
goal (Workflow Management Coalition, 1999).

However, today’s companies need to maintain a
satisfying level of agility. It appears that agile PAIS
are the ones that provide, among other things, an ap-
propriate and a competent way to cope with changing
situations and unexpected events. This, in turn, is of
particular importance for adequately supporting long-
running, distributed business processes.

From this perspective, transportation companies for
instance must adopt solutions where a close follow-up
of activities is possible such that a customer request
is well satisfied. An example of a transportation ac-
tivity is ”move vehicle V from origin location O to
destination location D”. A close follow-up of this ac-
tivity can be achieved using GPS (Global Positioning
System) which enables to continuously calculate and
provide the position of a vehicle in movement.

Moreover, the occurrence of unexpected problems
during transportation cannot be avoided. Indeed,
there is ample evidence that fleet management at the
operational level (e.g., scheduling of transportation
activities) is highly dynamic in the sense that ongoing
transportation activity sequences require a high de-
gree of adaptation to deal with unexpected problems
(Bassil et al., 2003). As an example, technical prob-
lems of vehicles, traffic jams or forced rerouting may
appear at any time while V is on the road between
O and D. This usually leads to the interruption of the
”move V from O to D” activity. In such a situation,
a dynamic adaptation of an already planned flow of
activities for the satisfaction of a customer request is
needed. This adaptation should take into account the
current context of the interrupted activity. The new
transportation solution may propose to send a new ve-
hicle V’ to the current position of V or to change the
already planned route leading to D. In both cases, the
current position of V should be available such that an
appropriate new solution can be proposed.

In this paper, we focus on interrupted (business)
process activities that require context preservation. In
most cases, activity interruption is triggered by the ap-
pearance of unexpected events coming from the appli-
cation environment (i.e., semantic failures). Preserv-
ing the context of an interrupted activity consists of
saving data, which are produced by or associated with
this activity. This must be done at the right time, e.g.,
as soon as the data become available or relevant.

At this point, it is important to have a closer look
at the granularity of work unit descriptions. Usually,
a business process consists of a set of activities each
of them dealing with a logical task (e.g., preparing
a patient for a surgery). In addition, such a process
activity can be further subdivided into atomic steps
corresponding to basic working units (e.g., measuring
weight/temperature of a patient as atomic steps of ac-
tivity ”prepare patient”) or to data provision services.
Basic working units are either directly coded within
application programs or worked on manually by peo-
ple. Distinguishing between activities and atomic
steps is useful for the following reasons: Atomic steps
are not managed within worklists like activities are.
This contributes to better system performance since
the costs for managing and updating worklists de-
crease. Furthermore, this approach offers more flex-
ibility to users (if desired) since they can choose the
order in which they want to work on atomic steps. The
distinction between activities and atomic steps finally
leads to the following basic considerations.

It is very important in this context to distinguish
between a continuous and a discrete data update by
activities. The ”move V from O to D” activity intro-
duced above is an example of an activity continuously
updating the ”V current position” data element by a
GPS system. An example of an activity discretely up-
dating data is even more obvious in process-oriented
applications. We may think about the activity ”fill in
a form” with many sections, each one asking for in-
formation (i.e., data) related to a specific topic. The
information becomes relevant, and therefore may be
kept in the system, only after the completion of a spe-
cific section. Filling in a section could be seen as
working on a particular atomic step.

We highlight the fact that a process activity may
apply both updating kinds: it may discretely update
a particular data element �� and continuously update
another data element ��. Moreover, data elements
may be discretely updated by a specific activity ��

and be continuously updated by another activity � �.
As an example, activity ”monitor patient” in a medi-
cal treatment process, may ask to measure twice a day
the ”patient temperature” and to continuously control
the ”patient heart electric signals”. On the other hand,
the ”patient temperature” may be continuously con-
trolled in case of high fever within activity ”monitor
patient” while it may be measured twice a day after
operation within activity ”aftercare”.

Data continuously or discretely updated by activ-
ities may be only relevant for the specifically stud-
ied application (e.g., the vehicle ”current position” in
Fig. 3) or they may be relevant for process execution
as well; in the latter case, these data are consumed by
process activities and therefore have to be supplied by
preceding activities. At the occurence of exceptional
situations, it may appear that mandatory process rel-

evant data will not be available at the time an activ-
ity is invoked. Depending on the application context
and the kind of data, it may be possible to provide
the missing data by data provision services which are
to be executed before the task associated with the re-
spective activity is handled.

We distinguish between exclusive application data
and process relevant data. Note that exclusive ap-
plication data may become process relevant when a
failure occurs. In the transportation application, an
example of process relevant data would be the ”con-
tainer temperature” (continuously) measured during
a ”move V from O to D” activity and relevant for a
”Report to customer” activity within the same pro-
cess. Reporting on the container temperature would
inform the customer whether the transported goods
(e.g., foods) were or were not continuously preserved
under the appropriate temperature. The ”V current
position” is an example of exclusive application data
since it is relevant for the application, in particular
for the optimisation module of the application (Bassil
et al., 2004), but not for the business process man-
agement system. If, however, a road traffic problem
occurs, the ”current position” of V may become rel-
evant for the process as well; i.e., the origin location
O’ of a newly proposed activity ”move V from O’ to
D” changing the already planned route leading to D,
would correspond to ”current position” of V.

Figure 1 shows a data classification scheme in the
context of business processes. This classification puts
the frequency of updating activity data and the rele-
vance of these data into relation. Within these two
dimensions, we respectively differentiate between:
� continuously and discretely updated data, and

� exclusive application and process relevant data.

Discrete

Continuous

Data
Relevance

Data Update
Frequency

Application data
continuously

updated

Application data
written by

atomic steps

Exclusive application

Process data
continuously

updated

Process data
written by

atomic steps

Process

Figure 1: Data Classification Scheme

Taking into account this classification, and know-
ing that exceptions stemming from the application
environment cannot be avoided and generally appear
during activity performance, it would be a challenge
not to loose available data already produced by the ac-
tivity that will be inevitably interrupted or deleted. In

order to formally specify the correctness criterion for
interrupting running activities while preserving their
context, formal definitions of requisite foundation for
this specification are indispensable.

The remainder of this paper is organized as follows:
In Section 2 we define such foundation; we also dis-
cuss two application processes (a medical process and
a transportation process) with respect to the provided
definitions. Then, Section 3 introduces a general cor-
rectness criterion ensuring a safe interruption of a run-
ning activity. Section 4 discusses related work and
Section 5 concludes the paper.

2 FORMAL FRAMEWORK

To be able to precisely define the different kinds
of data and update frequencies we need a formal pro-
cess meta model. In this paper, we use the established
formalism of Well–Structured Marking Nets (WSM
Nets) (Rinderle et al., 2004b) and extend it for our
purposes. Informally, a WSM Net is a serial–parallel,
attributed process graph describing control and data
flow of a business process. More precisely, different
node and edge types are provided for modeling con-
trol structures like sequences, branchings, and loops.
A simple example is depicted in Fig. 2. Here, the
upper two lanes show the control and data flow of a
(simplified) medical treatment process. For example,
activities ”admit patient”, ”inform patient”, and ”pre-
pare patient” are arranged in sequence whereas activ-
ities ”monitor” and ”operate” are executed in parallel.
”Weight” and ”temperature” are examples of process
relevant data elements involved in a data flow between
the activities ”prepare patient” and ”operate”.

As motivated in the introduction an activity can be
subdivided into a set of atomic steps. Going back to
Fig. 2, the lower two lanes show the atomic steps
assigned to the process activities as well as the data
flow between these steps. For example, the atomic
steps ”measure weight”, ”measure temperature”, and
”wash patient” are assigned to activity ”prepare pa-
tient”. ”Provide weight” is an example of a data pro-
vision service assigned to activity ”operate” as atomic
step. If an exceptional situation (e.g., failure at the
”measure weight” atomic step level) occurs this data
provision service will be invoked in order to supply
input data element ”weight” of the activity ”operate”
(and particularly of its atomic step ”anesthetize”). We
define a partial order relation on the set of atomic
steps (incl. data provision services) assigned to a cer-
tain activity. The precedence relation depicts a micro
control flow between elements of this set. Note that,
by contrast, a macro control flow is defined between
activities. We set up this relation by assigning nu-
meric labels to atomic steps, e.g., an atomic step with
numeric label ”1” is considered as a predecessor of

all atomic steps with numeric label ”2” or greater. By
default, all atomic steps have number ”1”, i.e., they
can be worked on in parallel. In this case, the actor
which works on the respective activity is considered
as being the expert in choosing the best order. Data
provision services have number ”0” since they must
be executed before other atomic steps assigned to the
same activity, in order to properly supply these atomic
steps with the required input data.

So far WSM Nets have not considered splitting ac-
tivities into atomic steps. Therefore we extend the
formal definition from (Rinderle et al., 2004b) by in-
cluding this additional level of granularity. In the fol-
lowing, S describes a process schema.

Definition 1 (Extended WSM Net) A tuple S = (N,
D, NT, CtrlE, DataE, ST, P, Asn, Aso, DataE��������)
is called an extended WSM Net if the following holds:

� N is a set of activities and D is a set of process data
elements

� NT: N �� �StartFlow, EndFlow, Activity, AndSplit,
AndJoin, XorSplit, XorJoin, StartLoop, EndLoop�

To each activity NT assigns a respective node type.
� CtrlE � N � N is a precedence relation setting out

the order between activities.
� DataE � N � D � NAccessMode is a set of

data links between activities and data elements
(with NAccessMode = �read, write, continuous-
read, continuous-write�)

� ST is the total set of atomic steps defined for all
activities of the process (with P � ST describing
the set of data provision services)

� Asn: ST �� N assigns to each atomic step a respec-
tive activity.

� Aso: ST �� � assigns to each atomic step a num-
ber indicating in which order the atomic steps of a
certain activity are to be executed. By default: If
� 	 � , Aso(s) = 0 holds; otherwise, Aso(s) = 1.

� ������������� � ST � D � STAccessMode is a
set of data links between atomic steps and data el-
ements (with STAccessMode = �read, write�)

As can be seen in the example from Fig. 2, there
are atomic steps which produce data (e.g., ”measure
weight”) and others which do not write any data el-
ement (e.g., ”wash patient”). In order to express
this fact, we logically extend the set ����� to set
������������� which comprises all read/write data
links between atomic steps and data elements. In
particular, an intra-activity data dependency may be
defined such that intermediate results of an activity
execution can be passed between subsequent atomic
steps ��� and ��� with 	������� � 	�������; i.e.,

����
 �
 ��
���, ����
 �
 ����� 	 �������������.
As an example (Fig. 2), consider the intra-activity
data flow from ”anesthetize” to ”operate” via data ele-
ment ”sensory perception degree”. In fact, the atomic

weight temperature

electro
cardiogram consent

Inform Sign
Measure
weight

Measure
temp.

Wash
patient Anesthetize Operate

Provide
weight

1 1 1 1 1 0 1 2

A
to

m
ic

st

ep
s

D
at

a
o

n

m
ac

ro

le
ve

l sensory perception
degree

Admit
patient

Inform
patient

Operate

Monitor

Prepare
patient

 Aftercare

C
o

n
tr

o
l f

lo
w

AndSplit AndJoin

Process Schema S:
 : Control flow
 : Data flow

weight temperature consent D
at

a
o

n

m
ic

ro

le
ve

l

sensory perception
degree

Figure 2: Medical Treatment Process

step ”operate” needs this data element to decide when
to begin surgery.

Based on Def. 1, process instances can be cre-
ated and executed. As discussed in (Rinderle et al.,
2004b), during runtime a process instance references
the WSM Net it was created from. Its current ex-
ecution state is reflected by model–inherent activity
markings. An activity which can be worked on is thus
labeled 	��
�����. As soon as activity execution is
started the marking changes to ����
��. Finally, a
finished activity is marked as ��������� and an ac-
tivity, which belongs to a non-selected, alternative ex-
ecution branch, is marked as ��
����.

Definition 2 (Process Instance on Extended WSM
Net) A process instance I on an extended WSM Net S
is defined by a tuple (S, � �

��������, Val�) where:

� S = (N, D, NT, CtrlE, � � �) denotes the extended
WSM Net I was derived from

� ��
�������� = (NS� , STS�) describes activity and

atomic step markings of I:
��� � � �� �NotActivated, Activated, Running,

Completed, Skipped�
���� � �� �� �NotActivated, Activated,

Running, Completed, Skipped�
� � ��� denotes a function on D. It reflects for each

data element d 	 D either its current value or the
value Undefined (if d has not been written yet).
Markings of activities and atomic steps are corre-

lated. When an activity becomes activated, related
atomic steps (with lowest number) become activated
as well. The atomic steps will then be carried out ac-
cording to the defined micro control flow. As soon
as one of them is executed, both the state of this
atomic step and of its corresponding activity change
to����
��. An activity is marked as ��������� af-
ter completion of all corresponding atomic steps. Fi-

nally, if an activity is skipped during process execu-
tion, all related atomic steps will be skipped as well.

As motivated in the introduction, it is important
to distinguish between data elements only relevant in
context of application and data elements relevant for
process progress as well. We can see whether a data
element is relevant for the process if there is an activ-
ity reading this data element.

Definition 3 (Data Relevance) Let S be an extended
WSM Net, let w 	 �write, continuous-write� and r 	
�read, continuous-read�. Then we denote d 	 D as

� an exclusive application data element if

��
 �
 �� 	 ����� �� �
��
 �
 �� 	 �����

� a process relevant data element if

��
 �
 �� 	 ����� ��

� 	 �������
 ��
 ���: ��
 �
 �� 	 �����

�������
 �� denotes all direct and indirect succes-
sors of activity n.

The Data Relevance dimension captures both data
elements that are produced by the process, but are
only consumed by the application, and data elements
that are produced and consumed by the process. In
our medical treatment process (cf. Fig. 2), data
elements ”weight” and ”temperature” taken during
the ”prepare patient” activity are examples of pro-
cess relevant data elements. They are of utmost im-
portance for carrying out the subsequent ”operate”
activity (e.g., to calculate the quantity of anesthesia
that has to be administered to the patient). By con-
trast, ”consent” is an exclusively application relevant
data element. As explained in Section 1, when a
failure occurs, an exclusive application data element
may become relevant for the process as well. A pa-
tient who already consented upon a surgery accepts
the risks, and the ”consent” data element may thus be

D
at

a
o

n

m
ac

ro

le
ve

l
C

o
n

tr
o

l f
lo

w

current position container temperature

Attach at
P

Move to
O

Load at
O

Move to
D

Unload
at D

Move to P

Report to
customer

…

Process Schema S:
 : Control flow
 : Data flow

Figure 3: Container Transportation Process

used in subsequent activities dealing with respective
problems. Turning now to the container transporta-
tion process, ”current position” is an exclusive appli-
cation data element whereas ”container temperature”
is a process relevant data element (cf. Fig. 3).

We now define the notion of data update frequency.
Based on this notion we will be able to define a cri-
terion for safely interrupting running activities while
preserving their context. Intuitively, for a discrete
data update by atomic steps there are certain peri-
ods of time between the single updates, whereas for
continuous data updates by activities the time slices
between the single updates converge to �. For defin-
ing the time slices between data updates, we need the
function ��� � �� �� �
 � ���!
����which maps
each atomic step of �� either to a specific point in
time or to ���!
���. In detail:

������� ��

�
���
!
���
 �
 ��
��� 	 �������������

 ���!
��� ��"���
��

�"���#$ ��� ��

�
�������
�� �
�� �! ��
� #$ ��!����

Note that the infinite default value we assign to ���
is updated as soon as �� is completed. Hence, the real
completion time of �� is assigned to ���.

Definition 4 (Data Update Frequency) Let S be an
extended WSM Net, let w 	 �write, continuous-
write� � NAccessMode, and let d 	 D, n 	 N with
��
 �
 �� 	 �����. Let further �� �

� be the set of
atomic steps associated with activity n and writing
data element d; i.e., �� �

� := ��� �������� � �

���
 �
 ��
��� 	 ��������������.

Then we denote (d, n) as:

� A discrete data update of d by n if

��
 �
 ��
��� 	 �����

In terms of atomic steps:
��� 	 �� �

�: stp(��) = ��� �� Undefined

� A continuous data update of d by n if

��
 �
 ����
�����-��
��� 	 �����

In terms of atomic steps: �� �
� � �

In case an activity � continuously updates a data el-
ement � no atomic steps writing � are dissociated, i.e.,
there are no atomic steps associated with � that write
�; e.g., take the absence of atomic steps writing the
”current position”, the ”container temperature”, and
the ”electro cardiogram” in Figures 2 and 3. These
data elements are examples of data continuously up-
dated respectively by a GPS system, a thermometer,
and a cardiograph instrument.

On the other hand, the set of atomic steps discretely
writing a data element may be limited to only one
atomic step. The ”consent”, the ”weight”, and the
”temperature” are written once respectively by the
”sign”, the ”measure weight” and the ”measure tem-
perature” atomic steps (cf. Fig. 3).

Fig. 4 summarizes the classification of the data in-
volved in the medical treatment and in the container
transportation process, taking into account the general
data classification scheme presented in Fig. 1.

Discrete

Continuous

Data
Relevance

Data Update
Frequency

Process

- Container current

position

- Patient consent

Exclusive application

- Container temp.

- Patient electro
cardiogram

- Patient weight
- Patient temp.

- sensory perception
degree

Figure 4: Data Classification for the Medical Treatment /
Container Transportation Processes

3 CORRECTNESS CRITERION

In order to correctly deal with exceptional situa-
tions, it is crucial to know those points in time when
running activities can be safely interrupted. A run-
ning activity is safely interrupted means that the con-

text of this activity is kept (1) such that all input data
of subsequent activities are correctly supplied, or (2)
in order to find possible solutions for exceptional sit-
uations. We denote these certain points in time as safe
points of the respective activities.

The challenging question is how to determine the
safe point of an activity. In order to adequately answer
this question, our distinction between continuous and
discrete data update is helpful. As the following defi-
nitions show, it is possible to precisely determine the
particular safe interrupt points for discrete and con-
tinuous data updates, i.e., those points in time when
the respective data are updated such that subsequent
activities reading these data are correctly supplied.

Definition 5 (Safe Interrupt Point for a Discrete
Data Update) Let (d, n) (n 	 N, d 	 D) be a dis-
crete data update of d by n, and let �� �

� be the set
of atomic steps associated with n and writing d. Let
further B := �stp(��), st 	 �� �

� � �
 p 	 P: Asn(p) =
n and (p, d, write) 	 DataE���������. Then the safe
interrupt point ����	� of (d, n) corresponds to the max-
imum point in time any atomic step writes d (on con-
dition that d cannot be provided by a data provision
service). Formally:

����	� ��

�
��%�&� � & �� �

 ���!
��� � ��"���
��

Informally, the safe interrupt point for a discrete
data update by atomic steps is that maximum point in
time when the last write access to the respective data
element has taken place.

Definition 6 (Safe Interrupt Point for a Continu-
ous Data Update) Let (d, n) (n 	 N, d 	 D) be a
continuous data update of d by n with a start updat-
ing time t� and a finish updating time t
. The safe
interrupt point ����	� of (d, n) (�� ' ����	� ' �
)
corresponds to the time when d becomes relevant
for subsequent activities. This time is fixed by the
user. If no safe interrupt point is fixed by the user
����	� := Undefined holds.

Intuitively, for continuous data updates there is no
”natural” safe interrupt point. Therefore, we offer the
possibility to define a safe interrupt point by the user.
An example usage for such a user-defined safe inter-
rupt point would be the ”waiting time” in order to get
the right container temperature after attaching it to
the vehicle that shall power the refrigeration system
within the container.

In order to determine the safe point of an activity,
we have to consider that there might be several safe
interrupt points. One example is the activity ”prepare
patient” which has two safe interrupt points belonging
to data elements ”weight” and ”temperature” (Fig. 2).

Definition 7 (Activity Safe Point) Let ���, . . . , �
�
be the set of data elements (continously) written by

activity n 	 N (i.e.,
 (n, ��, w) 	 DataE, i = 1,
. . . , k, w 	 �write, continuous�write�). Let further
�����	�
 � � �
 �

��
��	� be the related safe interrupt points.

Then we denote ���	� = max������	�, . . . , �����	�� as the

safe point of n (if �����	� = Undefined � i = 1, . . . ,
k, ���	� is set to Undefined as well). Thereby, ���	�
corresponds to the time when n can be safely inter-
rupted keeping its context. An activity n can be safely
interrupted if all input data of subsequent activities of
n are provided.

Using the notion of activity safe point we can state
a criterion based on which it is possible to decide
whether a running activity can be safely interrupted
or not.

Criterion 1 (Interrupting a Running Activity by
Keeping its Context) Let S be an extended WSM
Net, let I be an instance on S, and let w 	 �write,
continuous-write� � NAccessMode. A node n 	 N
with ���(n) = Running and safe point ���	� can be
safely interrupted at �������
�� if one of the following
conditions holds:

� �
��
 �
 �� 	 �����

� ���	� '� �������
�� or ���	� = Undefined

� ���
 �
 �� 	 DataE, �������
�� ' ����	�:
� is an exclusive application data element

A running activity can be safely interrupted from a
process perspective if it either writes no data or if it
solely writes exclusive application data. If a running
activity writes process relevant data it can be safely
interrupted if it has an undefined safe point or its safe
point has been already transgressed. Finally, if exclu-
sive application data become process relevant (e.g., if
an exception handling process makes use of the full
context of the interrupted activity), the last condition
of Criterion 1 may not be applicable.

In order to illustrate the defined correctness
criterion, we consider the container transportation
process. Based on process schema S provided in Fig.
3, instance (� in Fig. 5 has been started. Taking into
account a defined transportation network, each of the
activities’ locations in (� is captured by a coordinate
(x, y). E.g., the origin and the destination locations in
activity ”move vehicle V from Montréal to Québec”
would respectively correspond to the coordinates
(1.5, 3.5) and (13, 8) within the transportation
network. Suppose that a road traffic problem
occurs at time �������
�� � ������� � ���
�����
(elapsed time since departure) while V is on the
road between Montréal and Québec. At this time,
suppose that the GPS system is indicating (7, 5.5)
for the current position of V. To avoid the traffic
problem, an optimisation module may propose a new
transportation solution that consists of changing the
already planned route leading to Québec. The new

Montréal
(1.5,3.5)

Drummondville (6,4)

Québec (13,8)

Trois-Rivières
(7,7)

 Current position of V at tinterrupt

Expected position at itionCurrentPos

safe
t

 : Activated
 : Running
√ : Completed

 : Interrupted
 activity

 : Inserted
 activity

current position container temperature

Attach at
(6,4)

Instance IS on S

Move (6,4)
� (1.5,3.5)

Load at
(1.5,3.5)

Move (1.5,
3.5) � (13,8)

Unload at
 (13,8)

Move (13,8)
� (6,4)

Report to
customer

…
√ √ √

Attach at
(6,4)

current position

Instance I’S (modified IS)

container temperature

Move (6,4)
� (1.5,3.5)

Load at
(1.5,3.5)

Move (1.5,
3.5) � (13,8)

Unload at
(13,8)

Move (7,5.5)
� (7,7)

Move (7,7)
� (13,8)

…

…

√ √ √

Figure 5: Container Transportation Scenario

route includes a detour via another location, that is
Trois-Rivières located at position (7, 7). However,
this new solution is only possible if V is close enough
to Trois-Rivières, which means that the current
position of V is beyond (6, 5). This correponds
to ���
����������������	� � ������� � 	��
�����. In
addition, suppose that the right container temperature
is reached
��
����� after finishing loading the
container and hence after the departure from the
origin location, i.e., �

������������������
���
��	� �

������� �
��
�����. Taking into account Def.
7, the safe point of activity ”move vehicle
V from Montréal to Québec” corresponds to
max����
����������������	�
 �

������������������
���
��	� �

' �������
��. Hence, this activity can be safely
interrupted. The exclusive application data element
”current position” was used to generate the new
solution shown in Fig. 5. Following the road traffic
problem, this data element becomes process relevant
as well: it is given as input to the inserted activity
”move vehicle V from current location to Trois-
Rivières”. Note that in this specific example, the
”container temperature” data element is not relevant
for the definition of the safe point, and hence it could
be fixed to ���!
���.

4 DISCUSSION

In this paper a ”divide and conquer” approach is
adopted: An activity is divided into atomic steps so
that the interruption of this activity becomes possible

by preserving its context.

In (Sadiq et al., 2001; Mangan and Sadiq, 2002)
”pockets of flexibility” are defined. So called ”con-
tainers” comprise different activities and constraints
posed on these activities (e.g., activity & always be-
fore activity�). These containers can be inserted into
certain regions within the process. If process execu-
tion reaches such a container the assigned user can
choose the order of working on the offered activities
by obeying the imposed constraints. This idea can
be compared to our approach of subdividing activi-
ties into atomic steps and posing an order relation on
them if necessary. However, both approaches use a
different level of granularity and focus on different
aims. The approach presented by (Sadiq et al., 2001)
provides more flexibility regarding process modeling
whereas our approach uses atomic steps for being able
to preserve the data context in case of unexpected
events during runtime.

The two kinds of data addressed by the Data Rel-
evance dimension of our data classification scheme
have already been discussed within the literature
(Workflow Management Coalition, 1999; v.d. Aalst
and van Hee, 2002). In (Workflow Management
Coalition, 1999), a differentiation is made between
application data and process relevant data. It is ar-
gued that application data may become process rele-
vant if they are used by the workflow system to deter-
mine a state change. In this paper, we adopt the same
definitions and interpretations as provided in (Work-
flow Management Coalition, 1999); furthermore, we
judiciously highlight the fact that exclusive applica-

tion data may become process relevant when a fail-
ure occurs. In (v.d. Aalst and van Hee, 2002), a
bigger variety of process data is featured: analysis
data, operational management data, historical data,
etc. It is stated that application data cannot be di-
rectly accessed by a workflow system but only in-
directly through instance attributes and applications
themselves. Hence, only the way of accessing appli-
cation data from a WfMS is discussed.

The infinite completion time assigned as a default
value to an atomic step �� may be more precisely pre-
dicted using, for instance, the forward/backward cal-
culation technique based on the duration of activities
as proposed in (Eder and Pichler, 2002; Eder et al.,
2003). This would allow estimating an activity safe
point (���	�) as a specific point in time (instead of in-
finite) even before reaching this point.

Another interesting application of the presented re-
sults arises in the context of process schema evolution
(Rinderle et al., 2004a) i.e., process schema changes
and their propagation to running process instances.
One important challenge in this context is to find cor-
rectness criteria in order to ensure correct process
instance migration after a process schema change.
According to the compliance criterion (Casati et al.,
1998; Rinderle et al., 2004a) it is forbidden to skip al-
ready running activities, i.e., the respective process in-
stances are considered as being non–compliant. How-
ever, if we transfer the concepts of safe interruption of
activities to the safe deletion of activities the number
of process instances compliant with the changed pro-
cess schema can be increased.

5 SUMMARY AND OUTLOOK

We have proposed a framework to correctly ad-
dress the issue of safely interrupting running busi-
ness process activities in case of exceptional situa-
tions; i.e., interrupting running activities by preserv-
ing their data context, which is extremely important in
order to be able to provide adequate solutions in the
sequel. This work was motivated by the analysis of
data involved in the context of specific complex, yet
representative, process-oriented applications, namely
the container transportation application and the med-
ical application. Besides modeling logical work units
as process activities we have introduced another level
of granularity by defining the atomic step concept.
The latter is of utmost importance to build up the ba-
sis for a two-dimensional data classification scheme.
On the one hand, the definition of the data relevance
dimension, distinguishing between exclusive applica-
tion data and process relevant data, is considered at its
pure level within the safely interruption criterion con-
ditions statement. On the other hand, we dug deeper
regarding the data update frequency dimension by

defining safe interrupt points for each of the discrete
and the continuous data update by activities. This has
led to the formal definition of the activity safe point
considered as the backbone for the safely interruption
criterion. Preserving this criterion, in turn, guarantees
that if an activity is safely interrupted all necessary
data is kept and can be used to figure out an adequate
solution for the respective exceptional situation.

As future work, we aim to study extended transac-
tional issues (e.g., semantic rollback) at both the mi-
cro flow and the macro flow level. In particular, this
must be done in a way that enables flexible exception
handling procedures (incl. dynamic flow changes).
Respective facilities are indispensable for realizing
adaptive enterprise applications.

REFERENCES

Bassil, S., Bourbeau, B., Keller, R., and Kropf, P. (2003).
A dynamic approach to multi-transfer container man-
agement. In Proc. Int’l Works. ODYSSEUS’03, Sicily.

Bassil, S., Keller, R., and Kropf, P. (2004). A workflow–
oriented system architecture for the management of
container transportation. In Proc. Int’l Conf. BPM’04,
pages 116–131, Potsdam.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (1998). Work-
flow evolution. DKE, 24(3):211–238.

Eder, J. and Pichler, H. (2002). Duration histograms for
workflow systems. In Proc. Conf. EISIC’02, pages
25–27, Kanazawa, Japan.

Eder, J., Pichler, H., Gruber, W., and Ninaus, M. (2003).
Personal schedules for workflow systems. In Proc.
Int’l Conf. BPM’03, pages 216–231, Eindhoven.

Gartner Group (1999). Why e-business craves workflow
technology. Technical Report T-09-4929.

Mangan, P. and Sadiq, S. (2002). A constraint specification
approach to building flexible workflows. Journal of
Research and Practice in Inf Tech, 35(1):21–39.

Reichert, M., Dadam, P., and Bauer, T. (2003). Dealing
with forward and backward jumps in workflow man-
agement systems. Int’l Journal SOSYM, 2(1):37–58.

Rinderle, S., Reichert, M., and Dadam, P. (2004a). Correct-
ness criteria for dynamic changes in workflow systems
– a survey. DKE, 50(1):9–34.

Rinderle, S., Reichert, M., and Dadam, P. (2004b). On deal-
ing with structural conflicts between process type and
instance changes. In Proc. Int’l Conf. BPM’04, pages
274–289, Potsdam.

Sadiq, S., Sadiq, W., and Orlowska, M. (2001). Pockets of
flexibility in workflow specifications. In Proc. ER’01
Conf., pages 513–526, Yokohama.

v.d. Aalst, W. and van Hee, K. (2002). Workflow Manage-
ment. MIT Press.

Workflow Management Coalition (1999). Terminology &
glossary. Technical Report WFMC-TC-1011, WfMC.

