Access Control for Monitoring
System-Spanning Business Processes

Sarita Bassil'*, Manfred Reichert?, Ralph Bobrik®, Thomas Bauer*

Dept. Comp. & Information Sciences, Holy Spirit University of Kaslik, Lebanon,
saritabassil@Qusek.edu.lb
2Information Systems Group, University of Twente, The Netherlands,
m.u.reichert@cs.utwente.nl
3Dept. Databases and Information Systems, University of Ulm, Germany,
bobrik@informatik.uni—ulm.de
“DaimlerChrysler Research & Technology, REI/ID
thomas.tb.bauer@daimlerchrysler.com

Abstract. Integrated process support is highly desirable in environ-
ments where data related to a particular (business) process are scattered
over distributed and heterogeneous information systems (IS). A process
monitoring component is a much-needed module in order to provide an
integrated view on all these process data. Regarding process data in-
tegration, access control (AC) issues are very important but also quite
complex to be addressed. A major problem arises from the fact that the
involved IS are usually based on heterogeneous AC components. For sev-
eral reasons, the only feasible way to tackle the problem of AC at the
process monitoring level is to define access rights for the process moni-
toring component, hence getting rid of the burden to map access rights
from the IS level. In this paper, we propose a set of requirements for
AC in process monitoring, which we derived from our case studies in
the automotive domain. We then present alternative approaches for AC:
the view-based approach and the object-based approach. The latter is re-
tained, and a core AC model is proposed for the definition of access rights
that meet the derived requirements. AC mechanisms provided within the
core model are key ingredients for the definition of model extensions.

1 Introduction

In order to streamline their way of doing business, today’s companies are deal-
ing with a number of processes involving different domains, organizations, and
groups. As discussed in [1], an integrated process support is highly desirable
in such an environment where data (e.g., audit trails and reports) related to a
particular process (instance), and with different degrees of sensitivity, are often
scattered over heterogeneous information systems (IS) (cf. Fig. 1). A process

* This work was done during a postdoctoral fellowship at the University of Twente.
It has been partially funded by DaimlerChrysler Research & Technology.

monitoring component is a much-needed module in order to provide an inte-
grated view on all these data. Despite its importance, many of current process-
aware IS [2] do not offer such a component. Specifically, a process monitoring
component is responsible for displaying the status of process instances, for dis-
patching specific activities to corresponding actors, and so on.

Different user groups or roles (e.g., technicians, managers) usually have dif-
ferent perspectives over processes and related data. Therefore, adequate views
need to be provided. This is of particular importance when dealing with complex,
long-running business processes with dozens up to thousands activities.

In the context of process data integration and process monitoring, access con-
trol (AC) issues are very important to be addressed. However, a major problem
is that the involved IS are usually based on different AC components implying
facts such as 1) heterogeneity regarding the meta-models based on which orga-
nizational models and related access rights are defined (e.g., users/groups and
actors/roles), 2) different notions for the same entity/entity type (e.g., user and
actor), and 3) non-registration of particular user(s) in all of the involved IS.

7 7
) technicians & manager
preey
/E(E]:H:L I G]
R = L g
X
\
‘ \ monitoring/visualization layer
¥

7\

-\‘s

entire process

Audit trails & reports
@

@@. =0

AC module 1

Information systems

Fig. 1. Process Data Integration with Multiple Perspectives

In order to preserve integrity of AC information, AC constraints applied at
the process monitoring level should be consistent with the constraints set out by
the different IS. However, it has turned out that the integration of heterogeneous
AC components is difficult to achieve for several reasons: 1) Access rights are not
always explicitly described, but might be “hard-coded”, and hence difficult to
retrieve; 2) AC modules do not always provide interfaces (i.e., APIs) in order to
facilitate the access to information about AC rules (we talk about “black-box”
AC modules); and 3) Rights at the IS level mainly deal with process definition
and execution, and they have been not designed for the monitoring of process
data by different users. Process definition and execution require administration
rights, permissions to create new instances, delegation rights, and rights to work
on specific activities. By contrast, process monitoring requires rights to visual-
ize specific process activities, to display specific activity attributes, or to show

different abstractions on a process (cf. Fig. 2a+b). Taking this into account, it
appears that the only feasible way to tackle the problem of AC at the process
monitoring level is to (re-)define AC rights for the process monitoring compo-
nent, hence getting rid of the burden to inherit AC rights from the IS level. Of
course, if possible, existing AC rights at the IS level should be automatically
mapped to the ones at the process monitoring level, but we cannot assume this
in general. Explicitly, specifying AC rights at the monitoring level also makes
it possible to define them at a finer-grained level when compared with what is
already defined at the IS level.

This paper discusses requirements relevant for the definition of such AC
rights. These requirements have resulted from case studies we conducted in the
automotive sector.! We propose approaches for AC, mainly a view-based and
an object-based one. The retained solution (i.e., the object-based approach) is
used as a backbone in order to provide a comprehensive core AC model. This
model allows for the (compact) definition of AC rights at a fine-grained level.
Moreover, AC rights are meant to meet the spectrum of confidentiality possibly
defined on process data. Proposed AC mechanisms will be key ingredients in
future definitions of extended AC models for process monitoring.

Sect. 2 discusses basic considerations by distinguishing between the model
level and the instance level. It also gives a precise terminology of the concepts
used later on in this paper. Sect. 3 exposes the major requirements identified.
Two alternative approaches for AC are studied and compared in Sect. 4. The re-
tained approach is well motivated. In Sect. 5, the logical AC model is introduced.
Sect. 6 discusses related work and Sect. 7 gives a summary and an outlook.

2 Basic Considerations

In order to fix the basic framework of our research, and from a business process
management perspective, we distinguish between the model and the instance
level (cf. Fig. 2). The former gathers different kinds of enterprise models such
as organizational models, functional models, data models, IT-system models,
and process models. Each of the first four models gives input to the process
model defined as a set of one or more linked activities (i.e., description of a piece
of work), which collectively realize a business objective [2]. Specifically, these
activities are carried out, in a coordinated way, by different processing entities
(incl. humans and software systems) in order to reach a goal, such as changing
the design of a car, delivering merchandise, or operating a patient. User-defined
and pre-defined attributes may be associated with process models or activities
(e.g., costs, needed resources).

In our Proviado project [1, 3], at the model level, we focus on the secure visual-
ization of data related to a particular process model. Other kinds of models have
not yet been considered for visualization but will be added later on. Different
types of data may be involved in a process model such as process relevant data

! In the Proviado project [1, 3], we are aiming to propose a solution for visualizing in
a secure way data related to a particular process or to a collection of processes.

Model level Instance level User-adapted views

Organizational model

Access control on visualization:
{a) Abstraction at the state level.
() Restricted view on activity

instances and activity
- atributes.

Wurkl|s15

Functional Pmcpss instances |
model :

(@)

Process model 2 i I 8
And- spm And-jai

)

[C Data model @ .

Activity attributes D

v: activity

IT-System model »: running activity

Fig. 2. Basic Considerations

and application data [4]. We are particularly interested in providing a secure way
to visualize application data. These data are in general strictly managed by the
application(s) supporting the process model. At the instance level, we focus on
the secure monitoring of running process instances. A process instance is defined
as the representation of a single enactment of a process model (i.e., a concrete
business case) [2]. Concepts such as user worklists (i.e., lists of workitems de-
rived from process instance activities), activity execution state (e.g., Running,
Completed), and activity execution cost are associated with the instance level.

At the model and instance levels, different kinds of rights are to be defined:
administration rights, data access rights, permission to create process instances
from a given process model, rights to execute a particular work item, delegation
rights, etc. At the model level (resp. instance level), the visualization (resp. the
monitoring) of user-adapted views derived from specific process models (resp.
process instances) is required. These views must take into account the access
rights of the involved user. Access rights may be defined on different aspects
related to the model and instance levels: process model, activity, process in-
stance, activity instance, data elements, pre-defined and user-defined attributes,
attribute current value, attribute history, etc.

3 Access Control Major Requirements

We investigated a number of case studies in the automotive domain from which
we derived requirements as input for our work. Indeed, we studied different
processes including car engineering, change management (cf. Fig. 3a) and release
management. As the fruit of these case studies, we derived major requirements
for AC in process monitoring.

|5
CR-nit

electr eng

initiate
CR

CR-int.

CR-Mqgr.

generate
expertise

- body eng.

chief eng.

initiate
CR

request generate

expertise

generate
expertise

generate
expertise

provide
evaluation

reruest
comments

planning
provide
comments,

provide
o)/ comments|\ g
i design

provide
comments,

provide
comments,

CR-Board

CRMgr.

CR-Mgr.

approve
CR

instruct
realization

instruct
realization

activity

contral
flow edge
AND-split
jain

‘ OR-spltf
jain

©

View 1

com-
menting

approval [*frealization[Mconclusior

View 3

generate
expertise
‘ ‘
generate 3
expertise

mofor eng.

generate
expertise

request
expertise

generate
expertise

View 2
(CRMgr.) ((CR-Mar.)

recest request
expertise evaluation

(CRMor) (CR-gr) (CRMr)

request instruct conclude
comments realization CR
abort

Fig. 3. Automotive Domain — (a) Simplified Process of Dealing with Change Requests
(CR), (b) Different Views on CR Process

Requirement 1 (Definition of AC rights at a fine-grained level).
AC rights for process monitorning should meet the spectrum of confidentiality
defined on data related to a particular process (instance). Moreover, they should
be definable on different aspects/objects of the model and instance levels (e.g.,
the process itself, the activities, the attributes, and the data elements).

— Requirement 1.1 (Meeting a spectrum of confidentiality). A distinction should
be made between at least three levels of confidentiality: a first level in which
all available information can be accessed, a second level where only high-level
information can be accessed (i.e., abstraction), and a third level where no
information is available at all. Considering the process of managing change
requests (cf. Fig. 3a), for example, we may think about a (pre-defined) at-
tribute (e.g., activity cost) associated with a specific activity (e.g., generate
expertise). Such an activity may require a “two days by person” cost to be
accomplished. One may have the right to access this information (i.e., the
exact value of the attribute), to access abstracted information such as “less
than one week (i.e., less than five days by person)”, or to access nothing. The
spectrum of confidentiality may also be restricted to only two levels: “give”
or “don’t give information”. Regarding change management for example, an
external partner may design part of the car; internally, a verification of this
component may be done before it is integrated with the overall design of the

car. The external partner might or might not have the right to know about
the existence of the verification activities.

— Requirement 1.2 (AC rights definable on different objects of the model /
instance levels). We define “object” as an entity of a process model or pro-
cess instance respectively. For example, an expertise document produced as
output of a generate expertise activity is considered as a data object.
The generate expertise activity itself as well as the change request (CR)
process model are considered as two different objects. Moreover, a group of
objects is also an object. E.g., AC rights may be defined 1) on all running
CR process instances, or 2) on specific CR process instances.

Requirement 2 (Definition of static AC rights). A differentiation is
done between AC rights that are independent from the execution of a process
instance (“static” AC rights), and those that depend on the execution of a pro-
cess instance (“dynamic” AC rights). The latter are based on elements such
as activity status and control principles (e.g., separation/binding of duties, dual
control, and inter-case constraints) [5, 6]. Going back to our CR process, a person
from a specific department (e.g., motor eng.) responsible for generating expertise
might not be allowed to access the expertise document generated by the other
departments (car body eng. and electronic eng.) unless she finishes generating
her own expertise. In this paper, we focus on the definition of static AC rights.

Requirement 3 (Usability and maintainability of AC rights). AC
rights should be simple to define and easy to maintain. As discussed in [7],
a significant challenge is to balance collaboration and flexibility. It is to ensure
that the advantages provided by collaborative systems, e.g., process-aware IS, are
not reduced by AC rights too rigidly defined. For this purpose, abstractions are
required at the objects’ level. It is for example an obligation to define hierarchies
on objects in order to specify AC rights at different levels of granularity. E.g.,
it might be reasonable to authorize a particular user (e.g., a manager) to access
all running CR, process instances. However, regular users might have access to
specific CR process instances: a CR initiator may have the right to access only
CR process instances that correspond to change resquests initiated by her.

Table 1 gathers major requirements identified. The ones highlighted (i.e., R1,
R2, and R3) are addressed by the solution proposed in Sect. 5. Other require-
ments (R4 - R7) were identified, but are not considered in this paper.

Table 1. Access Control Major Requirements

Requirements Requirements’ description

R1 Definition of AC rights at a fine-grained level
R1.1 Meeting a spectrum of confidentiality
R1.2 AC rights definable on diff. aspects of the mod./inst. levels

R2 Definition of static AC rights

R3 Usability and maintainability of AC rights

R4 Definition of dynamic AC rights

R5 Definition of AC rights on the visualization of a collection of processes
R6 Definition of AC rights for the look-ahead problem

R7 Completeness of the AC component

4 Candidate Solution Approaches for Access Control

Among a list of possible approaches for AC, we feature two candidate solutions
that we study and compare: the view-based and the object-based approach. In
both approaches we follow the main idea proposed by a generalized approach to
AC, that is RBAC (Role-Based Access Control) [8], in which AC rights are not
directly linked to concrete users, but to roles. The view-based approach consists
of defining one basic view per user role; this view implicitly reflects the AC
rights of the role over a process by only showing the information to be accessed
by users with the respective role. The object-based approach consists of defining,
for each role, AC rights on the different aspects of a process (e.g., activity,
activity attributes, process instance). We first illustrate each of the two featured
approaches (Sect. 4.1). We then summarize the advantages and drawbacks of
these approaches (Sect. 4.2). This helps us to clearly motivate the object-based
approach as the solution approach retained and elaborated in the following.

4.1 Description of Solution Approaches

View-based Approach. Considering a particular process model such as the
CR process (cf. Fig. 3a), a number of views could be (manually) defined on
this process. Each of these views would then reflect the information accessible
for users with a particular role. Access rights over the process may be derived
implicitly from each view. Suppose the following views are defined on the CR
process (cf. Fig. 3b): (View 1) High-level view on CR process, (View 2) View on
expertise activities of CR process, and (View 8) View on request activities
of CR process. Then one basic view per role may be defined: (“general man-
ager”, View 1), (“CR manager”, View 2), and (“engineer”, View 3). Each of
the views implicitly reflects the read access rights of the particular role when
visualizing/monitoring the CR, process:

— A general manager may have access to high-level activities like initiation,
expertise, evaluation, commenting, and so on.

— A CR manager may have access to activities request expertise, request
evaluation, request comments, instruct realization, and conclude CR.

— An engineer may have access to concrete activities request expertise and
generate expertise.

Object-based Approach. It consists of explicitly defining an extensible set of
access rights for each role:

— (“general manager”, {initiation, expertise, evaluation, commenting,
approval, realization, conclusion}, Read)

— (“CR manager”, {request expertise, request evaluation, request
comments, instruct realization, conclude CR}, Read)

— (“engineer”, {request expertise, generate expertise}, Read)

A view may then be generated for a specific user based on the access rights
associated with the role(s) played by this user. As an example, a view such as
View & illustrated in Fig. 3b would be generated for motor engineer John Smith.

4.2 Solution Approaches: Advantages and Drawbacks

We discuss the merits and shortcomings of these two approaches.

View-based Approach. The most obvious advantage comes from the fact
that an existing concept (e.g., View Definition Language) can be explicitly reused
in order to reflect the access rights over processes. Hence, there is no need for
defining a new AC language (assuming that the process-aware IS clearly supports
a View Definition Language). However, three drawbacks can be identified:

Costly maintenance of views: Considering a particular process model P to-
gether with the views derived from P. Suppose a modification is brought to P:
(1) the views affected by this modification have to be identified possibly among
a large number of existing views; (2) the identified views have to be adapted to
reflect the modification brought to P. This adaptation should be done without
any failure; (3) the modified views imply an implicit modification over AC rights.

Complexity of views combination: Since a single user may play more than one
role (e.g., John Smith being a general manager as well as a motor engineer), this
may lead to the necessity of combining multiple views (e.g., View 1 and View
3). The resulting view, automatically generated or even manually modeled out
of multiple views, will be shown to the user. On the one hand, we are facing
a combinatorial problem (i.e., the different ways of arranging views in order to
combine them). On the other hand, conflicts may exist between access rights
reflected by the views to be combined. Such conflicts, first, must be detected,
and second, be solved, probably by applying specific conflict resolution policies
[9,10] in order to correctly derive the combined view to be shown to the user.

Occurrence of redundant information due to lack of abstraction: Suppose that
a specific role R has access, among other things, to a specific activity A in all
processes involving this activity. Using the view-based approach, this access right
would be reflected by showing activity A within all the views respectively defined
on the processes involving activity A. This leads to redundant information due
to the definition of access rights at the level of process models, not involving
functional models (cf. Sect. 2), for example. The redundancy of information is
an issue not only for the view-based approach, but for other approaches as well, as
long as the notion of abstraction is missing (e.g., at the activities level). However,
redundancy has more impact in conjunction with the view-based approach than
in conjunction with the object-based one, since for the latter the definition of
abstractions is easier to achieve (cf. Sect. 5.3).

Object-based Approach. The main advantage of this approach is three-
fold. Indeed, the drawbacks identified for the view-based approach appear to be
advantages here. First, there is no maintenance of views; the cost behind the
maintenance operation is abolished. Second, views have not to be combined and
hence the complexity behind this operation does not exist. Third, if it is possible
to define different levels of abstractions on objects, this will reduce redundancy
when specifying access rights. The object-based approach may be criticized for
not being intuitive since AC rights, instead of basic views, are initially defined
for each role. However when compared with the drawbacks of the view-based

approach, we voluntarily accept this only criticism, and select the object-based
approach in order to elaborate the core solution for our logical AC model.

Taking into account the discussion of advantages and drawbacks, Table 2
gives a summary of the most important criteria that play either in favor of or
against each of the considered approaches. As we can see, among five criteria,
three criteria play in favor of the object-based approach, while only one criterion
plays in favor of the view-based approach.

Table 2. Comparison of the View-based and Object-based Approaches

Criteria/Approaches View-based Object-based

Ease of AC rights definition

Ease of AC rights maintenance

Ease of conflicts resolution

Ease of AC rights combination
Redundancy-free

+ Criterion plays in favor of the approach
- Criterion plays against the approach

* This criterion is reduced to the “Ease of conflicts resolution” criterion

o+

5 An Access Control Model

An AC model for process monitoring must allow for the restriction of access to
authorized users only. In Sect. 5.1, we present the formal framework for AC rights
definition and manipulation. In Sect. 5.2 and Sect. 5.3, we discuss AC model
extensions 1) for coping with the problem of users playing multiple roles, and 2)
for meeting the specific requirement of AC rights usability and maintainability.

5.1 Core AC Model

The specification of an AC module at the process monitoring level requires,
first and foremost, the definition of access rights. A first step towards meeting
Requirement R1 (cf. Table 1) consists of defining access rights on attributes
associated with specific process aspects that we call objects. Activities, process
models or process instances are examples of accessed objects; attributes, indeed,
reflect fine-grained characteritics of such objects. For this purpose, first of all,
we formally define the link between an object and its associated attributes.

Definition 1 (Set of Attributes Associated with an Object). Let ObjSet
and AttSet respectively be the set of objects and the set of attributes involved
in the process monitoring component. Then function attributeSet determines all
attributes associated with an object obj € ObjSet. Formally:
attributeSet: ObjSet — AttSetl
with Vatt € attributeSet(obj): att is a valid attribute defined on obj.

We associate with every object involved in the process monitoring component
a set of attributes. Formally: Yobj € ObjSet: attributeSet(obj) C AttSet

10

In order to illustrate Def. 1, we reconsider the process from Fig. 3a. For the
sake of simplicity, we will only retain the concrete concept of activity instead of
the generalized concept of object. Let ObjSet = {request expertise, generate
expertise, request evaluation, provide evaluation, request comments,
provide comments} be a set of activities involved in the CR process. Let further
AttSet = {Atty, Atto, Atts, Atty, Atts} be the set of attributes involved in the
CR process. Taking into account Def. 1, suppose that the set of attributes asso-
ciated with each activity is captured as follows: attributeSet(req. expertise)
= {Att1, Atts}; attributeSet(gen. expertise) = {Att;, Atto, Atty, Atts}; at-
tributeSet(req. evaluation) = {Att;, Atts}; attributeSet(prov. evaluation)
= {Atty, Atts, Atts}; attributeSet(req. comments) = {Att;, Atts}; attribute-
Set(prov. comments) = {Att;, Atto}. We may think of Att; as the activity
status that could take values from the set {NotActivated, Activated, Running,
Completed, Skipped}. Atto may be the starting date/time of an activity. Atts
could be the employee black list with possible values {Yes, No} specifying whether
this list should be taken into account (or not) when employees are chosen to work
on a specific task (e.g., generate expertise). If this list is taken into account,
employees on black list may be excluded from those that may work on the task.

Based on Def. 1, we retain two types of information that may be checked /read:
the existence and the value of an object’s attribute. We distinguish between two
different spectra of confidentiality defined on this information: 1) “Allow” /“don’t
allow” to check the existence of an attribute within an object; 2) “Allow” /“don’t
allow” to read the value of an attribute within an object, or allow to read another
form of the value. From this we derive Def. 2.

Definition 2 (Access Control on Existence/Value of Attribute). Let
(obj, att) (obj € ObjSet, att € attributeSet(obj)) denote an attribute att associ-
ated with object obj. Then Existop; are determines whether it is allowed for some-
one (or not) to check the existence of attribute att within object obj; Valoyj,att
determines whether it is allowed for someone (or not) to read the value of at-
tribute att within object obj. Formally:

. 0 if not allowed to check existence of att within obj
Existoyjate = { ! / J

1 if allowed to check existence of att within obj

0 if not allowed to read value of att within obj
Valopjare := § 1 if allowed to read only another form of value
2 if allowed to read value of att within obj

Back to our example from Fig. 3a, suppose role “engineer” has the following
access rights on the CR process:

— Access to activities request expertise and generate expertise.
— Access to the value of Atty, access to another form of the value of Atts.
— Access to the existence of Atts within request expertise.

Taking into account Def. 2, the AC on the existence/value of the different
attributes can be captured as follows:

11

Valgenerate expertise, Att; — 27 Valgenerate expertise, Atto —]-7
Valrequest expertise, Att; — 27 ExZStrequest expertise, Atts — 1

By default, we may suppose that the closed policy, considered as a classical
approach for AC [11], applies. If not specified otherwise:

Valopjare = 0 and Existopjqnr = 0, V obj € ObjSet, att € attributeSet(obj)

In this context, two classical approaches for AC are discussed in literature
[11]. The closed policy where positive rights need to be specified explicitly, and
the open policy where negative rights need to be specified explicitly. The closed
policy approach is known to ensure better protection than the open policy. In the
latter, the need for protection is not strong: by default, access is to be granted.

Intuitively, we may also suppose that a specific operation prevails on another
(cf. Fig. 4). For example, whenever it is allowed to read the value of an attribute,
this implies that it is also allowed to read another form of the value, and also
that it is allowed to check the existence of the attribute. Note that positive
rights prevail on negative rights, i.e., positive rights are on bottom of the scale
in Fig. 4. This is because of the closed policy adopted. Taking into account this
prevailment scale, the following set of access rights is retained:

Valgenerate expertise, Att; — 23 Valgenerate expertise, Atto — 17

Valrequest expertise, Att; — 27 E:EiStrequest expertise, Atts — 13

EmiStgenerate expertise, Atty — 07 EmiStgenerate expertise, Atts — 07

Exist activity, Attrivute = 0, ¥V Activity € ObjSet \ {request expertise,
generate expertise}, Attribute € attributeSet(Activity)

prevails an pravalls on prevails an prevails an
""""""" *--"' ""--.___ *.-'
=0 Exisf =1 Val

actalt actalt

Val

actatt

=0 Exist

act st

=1 Val

actatt =

2

Fig. 4. Prevailment of Access Rights

AC rights being clearly defined, we present now a mechanism consisting of
two functions that respectively return 1) whether an attribute is associated with
an object or not, 2) the exact value or an abstraction of the value of an attribute.

Definition 3 (Existence/Value of Attribute). Let (obj, att) (obj € ObjSet,
att € attributeSet(obj)) be an attribute associated with an object. Let Val be a
function on ObjSet x AttSet, Val: ObjSet x AttSet — Domayser U {Undefined}.
Val reflects for each (obj, att) € ObjSet x AttSet its current value from domain
Dom asrser or the value “Undefined” if att has not been written yet. Let Func-
tionSet be the set of functions that can be applied on the value of an attribute
in order to provide another form of this value. For defining the specific function
that can be applied on a specific attribute, we need the function:

fa: ObjSet x AttSet — FunctionSet U {Undefined} which maps each cou-
ple (obj, att) € ObjSet x AttSet to a specific function from FunctionSet or to
“Undefined” if att ¢ attributeSet(obj) or no function is defined.

12

Then, f returns either the name of attribute att within object obj, or “Unde-
fined”; h determines either the value or another form of the value of attribute
att within object obj, or “Undefined”. Formally:

f: ObjSet x AttSet — AttSet U {Undefined}

.) Joatt if Ewxistoyare = 1A att € attributeSet(oby)
with f(obj, att) := {Undefined otherwise

h: ObjSet x AttSet — Domagtset U Dompunctionset U {Unde fined}

Undefined if Valopjare =0
with h(obj,att) := < fa(obj, att)(Val(obj, att)) if Valopjae =1
Val(obj, att) if Valopjae =2

Domauset = Uppre asrser DOMart

Dompunctionset = UfctEFunctionS’et Domges

If we go back to our example, applying Def. 3 would lead to the following
existence/value of the different attributes:
h(generate expertise, Att1) = Val(generate expertise, Att1)
f(generate expertise, Att1) = Atty
h(generate expertise, Atty) = fa(generate expertise, Atty)
(Val(generate expertise, Atty))
f(generate expertise, Atty) = Atto
h(request expertise, Att1) = Val(request expertise, Att;)
f(request expertise, Att1) = Attq
h(request expertise, Atts) = Undefined
f(request expertise, Atts) = Atts
h(Activity, Attribute) = f(Activity, Attribute) = Undefined
for all other combinations of activities and attributes

The result of applying Def. 3 on our CR process, taking into account specific
access rights assigned to role “engineer”, is illustrated in Fig. 5.

lectr. eng.
generate
expertise

Activity status = “Running”
Starting date = “This week”

Activity status = “Completed”
tarting date = “Last week”

chief eng.
generate |--
expertise

[CR-Mgr.)
| request
expertise

Activity status = “NotActivated™

generate Starting date = “Nest week”(expected

expertise

Activity status = “Completed” A gf":'w zlatuii‘:Cnmple:(tid‘ Activity status:

Employee black list arting date = "L ast wee v C leted
generate omple
expertise » Running

Fig. 5. View on CR Process Provided to Role “Engineer”

13

5.2 Extended AC Model - Users Playing Multiple Roles

In this section, we recognize and we point out the fact that one user may play
more than one role leading to inconsistencies between the AC rights associated
with each of the different roles. As an example, a user may play both roles
“manager” and “engineer”. On the one hand, engineers may not be given access
to private information. On the other hand, managers may need to access private
documents, and access to such information may be given to them. In this context,
a number of conflict resolution policies are discussed in the literature [9, 10, 12,
13]. None of these policies represents “the perfect solution”. Whichever policy
we take, we will always find one situation for which it does not fit. [9] states
some problems of the different policies in conjunction with specific scenarios.

Interestingly, conflicts may result either from explicitly defining negative AC
rights, or from applying the closed policy. In the latter case, a simple solution
approach may be to neglect negative AC rights deriving from the used policy.
Conflict resolution policies should be applied in the former case. For lack of
space, we will abstain from discussing this matter here.

5.3 Extended AC Model - Compact Definition of AC rights

So far, we have expressed that a certain attribute is allowed to be accessed (or
not) within a certain object, particularly a certain activity. However, we must
also be able to state, for instance, within which processes this is allowed, i.e.,
what is the context of the AC to be defined. Candidates for the context are:
the entire process visualization component (All), a group of process models, a
particular process model, a group of process instances related to a particular
process model, and a process instance.

The example elaborated in Sect. 5.1 presents a set of AC rights defined on
a specific process model: CR);. We may think of the following representation:
(CRu, Valgenerate expertise, Att; = 2) stating that the value of Att; from activity
generate expertise is allowed to be read within process model CR)y.

Suppose that AC rights are defined on a set of process models (e.g., My, My,
Ms3). This would lead to a set of couples: (M1, Valgenerate expertise, Att; = 2),
(M27 Valgenerate expertise, Att; — 2)7 (M37 Valgenerate expertise, Att; = 2) Hence,
we recognize the need for abstraction at the objects’ level in order to compact the
definition of AC rights reducing the redundancy as much as possible. Therefore,
one feasible way is to organize objects hierarchically (cf. Fig. 6): “All” at the
top level, “Group of process models” at the next level down, “Process model” at
the level just after, etc., and to propagate AC rights top-down. This allows us to
meet the AC rights usability and maintainability requirement (cf. R3 in Table
1). Going back to our example, a group of process models Gy = {M;, Ma, M3}
would be defined, and the set of three couples would be reduced to the following
Couple: (GMa Valgenerate expertise, Att; — 2)

This approach would also simplify the definition of exceptions. As an exam-
ple, it would be easy to express that no restrictions exist at all regarding accesses
within any of the defined processes except the following: no accesses are allowed

14

R Instantiated from

Groupof Group of <— Inherited from

process process
models instances Note: Activities and Attributes
CR, come down in the hierarchy
Gy = (M, M,, M}
Process Madel «««x«rsmasnenane Process Instance

Fig. 6. Objects’ Hierarchy

to activity approve CR within the CR process model. This would be reduced to:
(All, Valpi, an = 2) (ie., access is given to everything in order to bypass the
closed policy), and (CRyr, Existapprove cr, au = 0) (i.e., access is retrieved from
approve CR within CRyy).

6 Related Work

The provision of adequate security mechanisms is indispensable for any IS. Par-
ticularly, in the context of process-aware IS such as ADEPT [14], approaches
have been proposed for dealing in a secure way with specific issues related to
process management. As an example, Weber et al. propose an extension to RBAC
in order to support process changes safely [15]. Rinderle and Reichert address
changes that may occur within organizational structures [16]. They discuss how
to support such changes, and how to adapt access rules when the underlying
organizational model is changed. However, to our best knowledge, no research
work has yet addressed the problem of AC in conjunction with process data
integration and process monitoring.

Some of the aspects retained in this paper have already been introduced by
others. The fine-grained control was discussed in [7] as one of the collaborative
environment factors that determine the usability of a specific AC model. The
authors argue that it is not sufficient to define AC rules only for groups of users
on clusters of objects. A user might need a specific permission on an instance
of an object at a particular point (i.e., time) in the collaboration session. In our
approach, we were more explicit when defining AC rights at a fine-grained level:
1) we introduced the spectrum of confidentiality concept that would reflect the
“specific” permission to grant or to revoke, and 2) we hierarchized objects such
that AC rights may be defined in a compact way on the different aspects of the
process model and instances. In [7], no details were given regarding time (i.e., a
permission is valid only for a specific time space). This is an interesting point
to be further investigated. In the context of adaptive process-aware 1S, Weber
et al. propose the definition of process type dependent AC rights [15]. Change
commands that are useful within a particular contexrt are only allowed. This
idea can be compared to our approach of specifying the context of an AC right.
However, both approaches focus on different aims. In [15], more assistance is
provided for users when performing a change, whereas in this paper, the context
notion is used for defining AC rights in a more focused way.

15

7 Summary and Outlook

In this paper, we identified an exhaustive list of AC requirements in the context of
business process monitoring. We then presented possible solution approaches for
major requirements, and we motivated the objects-based approach that we used
for proposing a core AC model for process monitoring. Two extensions to this
model were also discussed: the first one deals with the problems that may appear
when a single user plays more than one role; the second extension introduces the
“context” notion and discusses the compact definition of AC rights taking into
account a defined objects’ hierarchy. Major requirements were addressed using
the proposed AC model and its extensions.

In future work, we will address requirements R4-7 (cf. Table 1). Our research
work will also include the investigation of advanced issues such as the aggregation
and the definition of AC rights on data elements and other process aspects.

References

1. Bobrik, R., Reichert, M., Bauer, T.: Requirements for the visualization of system-
spanning business processes. In: Proc. DEXA’05 Workshops, Copenhagen (2005)
948-954

2. Dumas, M., v.d. Aalst, W., t. Hofstede, A.: Process-Aware ISs. Wiley (2005)

3. Rinderle, S., Bobrik, R., Reichert, M., Bauer, T.: Business process visualization -
use cases, challenges, solutions. In: Proc. ICEIS’06, Paphos (2006) (accepted for
publication)

4. v.d. Aalst, W., van Hee, K.: Workflow Management. MIT Press (2002)

5. Schaad, A., Moffett, J.: A framework for organisational control principles. In:
Proc. ACSAC’02, Las Vegas (2002) 229-238

6. Botha, R., Eloff, J.: Separation of duties for access control enforcement in workflow
environments. IBM Systems Journal 40 (2001) 666-682

7. Tolone, W., Ahn, G.J., Pai, T.: Access control in collaborative systems. ACM
Computing Surveys 37 (2005) 29-41

8. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM ToISS 4 (2001) 224-274

9. di Vimercati, S.D.C., Samarati, P., Jajodia, S.: Policies, models, and languages for
access control. In: Proc. Int’l Workshop DNIS’05, Aizu-Wakamatsu (2005) 225-237

10. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM ToDS 26 (2001) 214-260

11. Castano, S., Fugini, M., Martella, G., Samarati, P.: Database Security. Addison
Wesley (1995)

12. Fernandez, E., Gudes, E., Song, H.: A model for evaluation and administration of
security in object-oriented databases. IEEE ToKDE 6 (1994) 275-292

13. Shen, H., Dewan, P.: Access control for collaborative environments. In: Proc.
CSCW’92. (1992) 51-58

14. Reichert, M., Dadam, P.: ADEPT f., - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93-129

15. Weber, B., Reichert, M., Wild, W., Rinderle, S.: Balancing flexibility and security
in adaptive PMSs. In: Proc. CooplS’05, Agia Napa (2005) 59-76

16. Rinderle, S., Reichert, M.: On the controlled evolution of access rules in information
systems. In: Proc. CoopIS’05, Agia Napa (2005) 238-255

