
P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

Journal of Intelligent Information Systems 10, 93–129 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

ADEPTflex—Supporting Dynamic Changes
of Workflows Without Losing Control

MANFRED REICHERT reichert@informatik.uni-ulm.de
PETER DADAM dadam@informatik.uni-ulm.de
University of Ulm, Dept. Databases and Information Systems, D-89069 Ulm, Germany

Abstract. Today’s workflow management systems (WFMSs) are only applicable in a secure and safe manner
if the business process (BP) to be supported is well-structured and there is no need for ad hoc deviations at
run-time. As only few BPs are static in this sense, this significantly limits the applicability of current workflow
(WF) technology. On the other hand, to support dynamic deviations from premodeled task sequences must not
mean that the responsibility for the avoidance of consistency problems and run-time errors is now completely
shifted to the (naive) end user. In this paper we present a formal foundation for the support of dynamic structural
changes of running WF instances. Based upon a formal WF model (ADEPT), we define a complete and minimal
set of change operations (ADEPTflex) that support users in modifying the structure of a running WF, while
maintaining its (structural) correctness and consistency. The correctness properties defined by ADEPT are used to
determine whether a specific change can be applied to a given WF instance or not. If these properties are violated,
the change is either rejected or the correctness must be restored by handling the exceptions resulting from the
change. We discuss basic issues with respect to the management of changes and the undoing of temporary changes
at the instance level. Recently we have started the design and implementation of ADEPTworkflow, the ADEPT
workflow engine, which will make use of the change facilities presented in this paper.

Keywords: workflow management, exception handling, dynamic change, adaptive workflows

1. Introduction

Process-oriented workflow management systems (WFMSs) (Georgakopoulos et al., 1995;
Hsu, 1995; Leymann and Altenhuber, 1994) offer a promising approach for the development
of business applications that directly follow the execution logic of the underlying business
process (BP). The separation of the applications control structures from the implementation
of its task programs contributes to simplify and to speed up application development, and
enables the run-time system to assist users in coordinating and scheduling the tasks of a BP.

Current process-oriented WFMSs are applicable in a reliable and secure manner only
if the BP to be supported is well-structured and there is no need for ad hoc deviations or
dynamic extensions at run-time (see, Barthelmess and Wainer, 1995; Ellis et al., 1995;
Siebert, 1996; Reichert and Dadam, 1997a). As only few BPs are static in this sense,
this significantly limits the benefit and the applicability of current workflow (WF) technol-
ogy. As an example, consider BPs from the clinical domain (see, Reichert et al., 1996,
1997b), where it is often not convenient and cost-effective to capture all possible task
sequences in advance. There are several reasons for this: firstly, there are many WFs
whose planning and execution overlap (dynamically evolving WF) or which are completely



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

94 REICHERT AND DADAM

specified at run-time (ad hoc WF); secondly, unplanned events and exceptions frequently
occur leading toad hoc deviations from the preplanned WFs. Exceptions cover cases such
as requests to deviate from standard processes due to an external event (e.g., in case of
an acute emergency), failed tasks (e.g., when prerequisites for a medical intervention are
violated), incomplete or erroneous information in task inputs and outputs (e.g., incomplete
medical orders), or situations that arise from mismatches between the real processes within
the organization and their computerized counterparts (e.g., due to incomplete or faulty
WF specifications or due to organizational changes) (Strong and Miller, 1995; Meyer,
1996). Since WF designers are generally not capable to predict all possible exceptions
and events beforehand and to capture them in the design of a WF, the WFMS does not
always have sufficient knowledge to handle these situations alone. Instead, user involve-
ment is required in order to resolve exceptions and to deal with unplanned events. Hence,
the resulting requirements are far more challenging than those faced by standard transac-
tion technology and advanced transaction models (Worah and Sheth, 1997; Elmargarmid,
1992).

A basic step towards more flexibility is the effective and efficient support of ad hoc
modifications and well-aimed extensions of processes during their execution. So a WFMS
must provide functions for adding or deleting tasks as well as whole task blocks and for
changing predefined task sequences, e.g., by allowing users to skip tasks, with or without
finishing them later, to work on tasks although the conditions for their execution are not
yet completely satisfied, or to serialize two tasks that were previously allowed to run in
parallel. Ad hoc changes may also concern single attributes of a WF object (e.g., a task).
Examples are the reassignment of a task or the modification of a task’s deadline. As these
changes are less critical to handle than structural changes, we do not consider them further
in this paper.

1.1. Problem description

To allow users to deviate from premodeled task sequences of a WF at run-time is a two-edge
sword. On the one hand, it captures the natural freedom of process participants to work
on a BP and to deal with exceptional situations and unplanned events. On the other hand,
unrestricted changes to the structure of a long-running program—possibly in the midst of its
execution—make it difficult to have the system behave in a predictable and correct manner.
For this reason, supporting dynamic WF changes must not mean that the responsibility
for the avoidance of consistency problems or run-time errors is now completely shifted to
the naive end user or to the application programmer. Instead, correctness and consistency
criteria are required in order to enable the run-time system to adequately assist users in
applying structural changes. That is, the system should guarantee that all consistency
constraints that have been ensured prior to a dynamic change are also ensured after the the
WF instance has been modified.

First of all, this requires that all types ofstructural dependenciesbetween tasks (e.g.,
control, data, and temporal dependencies) are taken into consideration when the WF instance
is restructured. Otherwise, changes such as the deletion or the addition of a task may cause
severe inconsistencies (e.g., unintended lost updates) or even run-time errors (e.g., program



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 95

crashes due to the invocation of task modules with invalid or missing parameters). Changes
must consider the state of the WF instance, too. For example, it should not be possible
to delete a task or to change its attributes if it was already completed. Convenient rules,
which should not appear as too restrictive to users, must be defined in order to avoid an
improper and uncontrolled use of change operations. Finally, forsecurity reasonsit must
be possible to restrict the use of change operations to selected users, or user roles, to specific
WF types or regions of a WF graph (e.g., a single task), to certain states of a WF, or to any
combination of them.

Normally, several instances of a specific WF type are active at the same time. As changes
of different kinds may be applied to these instances during their execution, several issues
must be addressed. First of all, WF instances of the same type (i.e., the same starting
schema) may have to be represented by differentexecution graphs. Secondly, the run-
time system must manage changes of different nature concerning their durability. This is
especially important for long-running processes where applied changes may be permanent
or temporary.Permanent changesmust be preserved until completion of the process. By
contrast,temporary changesmay have to be undone if the control of the WF is passed back
to a previous point of control (e.g., when a new iteration of loop is entered). Consequently,
a technical challenge is how to represent and manage these different types of changes,
and how to undo temporary changes in a correct manner. This requires sophisticated
mechanisms for change management and a close integration of change operations with
other core services of the WFMS. Finally, changes should be made “on the fly” without loss
of run-timeperformanceand without disturbing process participants not actively involved
in the change.

In summary, dynamic structural changes represent serious interventions into the control
of a WF, which cannot be handled without extensive system support. In providing support
for dynamic WF changes, whether for the process administrator or, in some form, for the
process participants, it is crucial that these facilities will be manageable and usable in a
proper and secure manner.

1.2. Contribution of this paper

In this paper we present a formal foundation for the support of dynamic changes of running
WF instances. We concentrate on structural changes and on related modification operations.
Implementation issues, e.g., concerning the transactional execution of changes, are outside
the scope of this paper. Fundamental to our approach is a conceptual, graph-based WF
model (ADEPT1) which has a formal foundation in its syntax and (operational) semantics.
Based on this model we develop acomplete and minimal set of change operationswhich
support users in modifying the structure of running WF instances, while preserving their
correctness and consistency(ADEPTflex). If a change leads to the violation of correctness
properties, it is either rejected or the correctness of the WF graph (e.g., concerning the flow
of data) must be restored by handling the exceptions resulting from the change (possibly
leading to concomitant changes). Furthermore, we show how temporary and permanent
structural changes of WF instances are managed and which precautions must be made to
enable the run-time system to undo temporary changes in case of backward operations.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

96 REICHERT AND DADAM

The contribution of this paper is demonstrating the principle feasibility of our approach
and giving some insights into fundamental research issues related to dynamic WF changes.
This includes the following three results:

• we demonstrate the suitability of our WF model for WF specification and for the support
of dynamic structural changes,

• we show how even complex, dynamic structural changes can be applied to a WF instance
during its execution and which precautions must be made to do this in a secure and correct
manner,

• we discuss technical challenges and possible solutions concerning the management of
temporary as well as permanent changes.

At this point we have a prototype running that supports the basic concepts and the change
operations presented in the following. For the remainder of the paper we concentrate on ad
hoc structural changes applied to individual WF instances. We do not explicitly consider
changes at the schema leveland their propagation to WFs whose execution started with the
old schema (see Casati et al., 1996; Ellis et al., 1995). However, many of the presented
concepts can also be applied to this type of change.

Section 2 gives an overview of the ADEPT WF model. In Section 3 we present a
complete and minimal set of change operations which can be used to modify the structure
of a WF during its execution. Section 4 addresses issues concerning the management of
changes and their undoing in case of backward operations. Section 5 discusses related
work. We conclude with a summary, an overview of related issues not addressed within
this paper, and an outlook on future work in Section 6.

2. Fundamentals of the ADEPT workflow model

A variety of WF description languages have been discussed in the literature. Some of
them are based on formal models such as high level Petri nets (Ellis and Nutt, 1993; Ellis
et al., 1995; Kreifelts et al., 1991; Leymann and Altenhuber, 1994), state- and activity-
charts (Wodtke and Weikum, 1997), temporal logic (Manna and Pnueli, 1992; Attie et al.,
1993), or process algebra (Hennessy, 1989). One strength of these formal approaches
lies in the offered mechanisms for specifying, analyzing, and verifying the properties of
static WF structures, e.g., regarding state transitions, deadlocks, or the reachability of
states. Adequate mechanisms for modifying these structures at run-time, however, are
missing for the most part (cf., Ellis et al., 1995). To support dynamic WF changes we
plead for the use of a formal model, too. For several reasons we do not believe that the
general-purpose models mentioned above do build the right basis for this. Firstly, their
generality makes the analysis of more complex WF models extremely costly (cf., Hofstede
et al., 1996), which may cause a significant overhead when complex structural changes
become necessary at run-time. Secondly, for the effective support of users—possibly non-
computer experts—in performing dynamic changes, a WF model must allow an intuitive
and structured representation of a BP, which is hard to achieve with these models.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 97

The ADEPT model presented in this section follows a more structured approach. Essen-
tial for the specification and for the execution of WFs is the concept ofsymmetrical control
structures, which is well-known from structured programming (cf., Reinwald, 1993): task
sequences, branchings (with different split and join semantics), and loop backs are spec-
ified as symmetrical blocks with well-defined start and end nodes. These blocks may be
arbitrarily nested, but they are not allowed to overlap, i.e., the nesting must be regular. In
addition, ADEPT provides support for the synchronization of tasks from parallel branches
of a WF graph. A detailed description of the ADEPT model is beyond the scope of this
paper. We restrict our considerations to the basic concepts provided for the specification of
the control and data flow of a WF. Other important aspects, e.g., the modeling of temporal
and organizational aspects and mechanisms for their dynamic adaptation are described in
(Grimm, 1997; Hensinger, 1997; and Kirsch, 1996).

2.1. Workflow modeling

In this section we informally introduce the basic modeling concepts offered by ADEPT.
A WF schemacomprises a set oftasksandcontrol as well asdata dependenciesbetween
them. We restrict our considerations tosimple tasks, i.e., activities which cannot be further
divided and of which the execution is requested by external (not necessarily human) agents.

Flow of control. We represent a WF’s control flow as a directed, structured graph(N, E).
Tasks are abstracted as a set of nodesN (of different typesNT) and control dependencies
between them as a set of directed edgesE (of different typesET). The use of nodes and
edges has to meet the restrictions which we describe in the following. Each WF schema has
a uniquestart node(NT= STARTFLOW), and it has a uniqueend node(NT= ENDFLOW).
The start node has no predecessor, and the end node has no successor. All other nodes fromN
must be preceded and succeeded by at least one node. Thesequential executionof two tasks
is modeled by connecting them with a control edge (ET= CONTROLE). The modeling of
branchesis depicted in figure 1. Branches start with a split node, and they are synchronized
symmetrically at a unique join node. ADEPT supports three types of branching:parallel
processing(AND-split/AND-join), conditional routing(OR-split/OR-join), andparallel
branching with final selection(AND-split/OR-join). The routing decision of aconditional
branching(see figure 1(b)) may either be value-based or is made by users. In the latter case
all successors of the split node are triggered when it fires. As soon as one of these tasks

Figure 1. (a) Parallel processing, (b) conditional branching, and (c) parallel branching with final selection.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

98 REICHERT AND DADAM

is selected for execution, the work items of the others are removed from the corresponding
worklists. This allows us to model situations where several tasks are activated, but only one
of them may be executed. When the split node of aparallel branching with final selection
(see figure 1(c)) fires, all successor branches are triggered, and they may be worked on
concurrently. In contrast to a parallel processing, the flow may proceed at the join node
as soon as one of the branches is completed. Depending on their current state the tasks of
the other branches are then removed from the corresponding worklists, aborted, or undone.
Undoing a branch does not necessarily lead to the execution of compensation tasks. In any
case, the corresponding tasks are reset in their state (see Section 2.2), and their effects on
data elements of the WF (see below) are undone. As an important extension, more than
one branch may be completed. In this case the “winner” must be selected by an authorized
user before the flow can proceed.

Up to now we have only considered non-cyclic WF graphs. In ADEPT, the repetitive
execution of a set of tasks can be modeled by the use ofloops. Like a branching, a loop
corresponds to a symmetrical block with a unique start node (NT = STARTLOOP) and a
unique end node (NT= ENDLOOP) which are connected by a loop edge (ET= LOOP E).
In addition, the end node is associated with a loop condition, which is evaluated each time
the node is triggered. As we will see in Section 4, the use of loops raises some challenging
issues in connection with dynamic changes. When inserting a new task into a loop’s body,
for instance, it must be clear whether this insertion should only be valid for the current
iteration of the loop or for following iterations as well.

To take provisions for task failures already at the modeling level, ADEPT provides a
second type of backward edge: afailure edge(ET = FAILURE E) connects a tasknfailure

with a preceding nodenrestart. At run-time, the edge signals if the execution of the tasknfailure

fails. As a consequence, all nodes succeedingnrestart(incl. nrestart) and precedingnfailure (incl.
nfailure) are reset in their state. In contrast to a loop iteration, the effects of the corresponding
tasks on the data elements of the WF instance (see below) are undone. Afterwards the flow
proceeds with the execution ofnrestart. Note that the symmetrical structuring and the regular
nesting do not apply to failure edges, as a task may have several outgoing failure edges,
possibly linking it with nodes from different branches of a preceding parallel branching.
Another restriction must be added: If the nodenrestartis contained within a loop’s body (or
within a branch with OR-join), this body (branch) must also contain the nodenfailure. As
the use of failure edges is therefore not always possible in connection with these control
structures, also we support the dynamic rollback of WFs. Generally, the state of a WF can
be reset to an arbitrary previous state.

The expressive power of the control structures presented so far is not sufficient for the
modeling of WFs with long-running, concurrent executions. To support synchronizations
of tasks from different branches of a parallel processing, two types ofsynchronization edges
(sync edges) are supported:

• A “soft” synchronizationn1 → n2 (ET = SOFT SYNCE) is used to specify adelay
dependencybetween the two tasksn1 and n2, i.e., n2 may only be executed ifn1 is
either completed or if it cannot be triggered anymore. This type of synchronization does
therefore not necessarily require the successful completion ofn1.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 99

Figure 2. Example of a simple WF model.

• On the other hand, a “strict” synchronizationn1 → n2 (ET= STRICTSYNCE) between
n1 andn2 requires thatn1 must be successfully completed beforen2 is allowed to start.
A strict synchronization may be used to synchronize tasks from a conditional branching
with tasks from a parallel branching with final selection.

The use of sync edges has to meet certain constraints in order to avoid redundant con-
trol dependencies between tasks, cycles, or even termination problems of the WF. In any
case, only nodes from different branches of a parallel processing (with AND-join) may be
synchronized by the use of sync edges. Furthermore, a sync edge may not connect a node
from inside a loop bodyB with a node not contained withinB.

Example 1. Figure 2 shows an example for the use of a soft synchronization: the taskH is
triggered whenG is completed andE is either completed or skipped (i.e., the corresponding
branch is not selected for execution).

Flow of data. The input and the output data of tasks and the flow of data between them
are an important functional aspect of a WFMS. Nevertheless, the modeling of the data flow
and the exchange of structured data between the tasks of a WF are often poorly supported
in today’s WFMSs (Sheth et al., 1996). This leaves significant complexity to application
developers, and it makes it impossible to provide system support for verifying the correctness
of a data flow schema or for adjusting it when structural changes are applied to a WF. In
our model, the exchange of data between tasks is based on global WF variables: a WF
schema is associated with a set of data elementsD where each elementd ∈ D has a unique
identifier idd and a domaindomd. The data flow between tasks is defined by connecting
their parameters with elements fromD. For simplification, the input (output) parameters of
the WF schema are logically treated as the output (input) parameters of its start (end) node.

In practice, there are often great differences in the format and in the representation of
data which is the output of one task and the input to another. In order to avoid hard-wired
adjustments within task modules, each task noden ∈ N can be associated with a set of
so-called auxiliary servicesSn. The execution of these services is closely connected to the
execution of the task. An auxiliary services ∈ Sn := Sprec

n ∪ Ssucc
n is either triggered when

n is started (s ∈ Sprec
n ) or when it is terminated (s ∈ Ssucc

n ), and it therefore does not appear
as a separate work item in any worklist. Services from the setSprec

n may also be used to



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

100 REICHERT AND DADAM

request incomplete or missing input data of a task from the user initiating it, which has
turned out to be important in our context (see Section 3). Furthermore, a taskn (also the
application program associated with it) may only be executed after all services fromSprec

n

have been successfully completed. On the other hand, if a task fails or if it is undone, the
effects of its associated services on global data elements are undone as well.

Definition 1 (Data flow schema). Let (N, E) be the control flow graph of a WF schemaP
and letD denote a finite set of data elements associated withP. Let furtherPARS(X) denote
the set of parameters associated with the task or the serviceX [PARS(X) := InPARS(X) ∪
OutPARS(X)]. A data link dfbetween a parameterpardf and a data elementddf is then
described by the 4-tuple:

df = (ddf, ndf, pardf, accessmodedf)

with

ddf ∈ D, ndf ∈ N ∪ S

(
S :=

⋃
n∈N

Sn

)
, pardf, ∈ PARS(ndf),

accessmodedf ∈ {read, write}
The set of all data linksDF, connecting task or service parameters with global data elements
from D, is called thedata flow schemaof P.

The data links connecting service parameters with data elements fromD form a key part
of P’s data flow schema. The intuitive meaning of a link(d, n, p, read) ∈ DF is that the
value of p ∈ InPARS(n) is read fromd when the taskn is started. On the other hand, the
data link(d, n, p, write) expresses that the value of the output parameterp ∈ OutPARS(n)

is written intod after the successful completion ofn. In Section 2.3 we introduce properties
for the correctness of a data flow schema; these properties constitute the basis for detecting
possible exceptions resulting from a change and for adjusting the data flow schema when
the WF is restructured.

With respect to data management we follow an approach similar to that described in
(Reuter and Schwenkreis, 1995). When a task (or service) updates a data elementd, its
current value is not overwritten. Instead a new version is created, which may be accessed
by succeeding tasks and services. This allows us to restore previous values of data elements
in case of a partial rollback, and it makes it possible for tasks from different branches of
a parallel processing (with OR-/AND-join) to work on different copies of the same data
elementd.

Example 2. An example for a simple data flow schema is depicted in figure 3 [Note, that
the output parameter (input parameter) of the start node (end node) corresponds to the input
parameter (output parameter) of the WF]. Assume thatG has read access to the data element
d1 Although the taskC may writed1 beforeG is started, this value would not be visible to
G. G may only access that value ofd1 written by the start node of the flow. Generally, a
task may only read those values of a data element which have been written by a task or by
a service preceding it in the flow of control.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 101

Figure 3. Example of a simple data flow schema.

In summary, a WF schemaP is described by a 5-tuple (N, E, S, D, DF) with finite and
non-empty setsN of tasks andE of directed edges between them.S denotes the set of
services preceding or succeeding the execution of tasks.D denotes the set of data elements
andDF defines the set of data links connecting task and service parameters with elements
from D.

2.2. Workflow execution

The state of a WF instance is one of the major criteria for deciding whether a specific
structural change can be applied to it or not. As an example, consider the deletion of a
task which should not be allowed if the task was already completed. Furthermore, after
applying structural changes to a WF graph, concomitant changes of the states of its nodes
and edges may become necessary in order to proceed with the flow of control. The state of
a newly inserted task, for instance, may have to be changed depending on the states of its
predecessors.

ADEPT is based on a well-defined operational semantics to support this. The state of
a WF instance is defined by the current marking of its nodes and edges, by the values
stored for its data elements (possibly in different versions), and by its execution history.
The state of a single taskn is described by the current markingNSn of its node(NSn ∈
{NOT ACTIVATED, ACTIVATED, RUNNING, COMPLETED, FAILED, SKIPPED}), the
total numberItn of its previous executions, and relevant data about them. Finally, each edge
e of a WF execution graph is in one of the statesESe ∈ {NOT SIGNALED, FALSE SIG-
NALED, TRUE SIGNALED}. When a WF instance is created, the graph of its starting
schema (N, E, S, D, DF) is initialized. The state of all nodes is set toNOT ACTIVATED,
and all edges are marked asNOT SIGNALED. Furthermore, the WF’s input data are stored
in the corresponding data elements.

When the WF is started, the start node of its graph is marked asCOMPLETED, and
its outgoing control edge is set toTRUE SIGNALED. Each time an edgen1 → n2 (of
arbitrary type) is marked, the state of its destination noden2 is reevaluated according
to the execution rulesdefined by ADEPT. Executions rules describe the conditions un-
der which a node may be activated, i.e., routed to the corresponding worklists. If the



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

102 REICHERT AND DADAM

Figure 4. Application of execution and signaling rules in connection with a loop.

noden2 corresponds to an AND-join, for instance, it is set to the stateACTIVATEDif
the following conditions are met:n2 is marked asNOT ACTIVATEDand all ingoing con-
trol edges(ET= CONTROLE) are marked asTRUE SIGNALED. Furthermore, all sync
edgesn → n2, n ∈ N with ET= STRICTSYNCE must be marked asTRUE SIGNALED,
and all sync edgesn → n2, n ∈ N with ET = SOFT SYNCE must be marked as either
TRUE SIGNALEDorFALSE SIGNALED(see Section 2.1). Corresponding execution rules
exist for all node types of a WF (incl. the start and the end nodes of loops).

The completion of a task leads to the signaling of its outgoing control as well as of its
outgoing sync edges. The marking of edges follows well-definedsignaling rules, which are
based on the operational semantics of the different control structures. Upon successful com-
pletion of an AND-split node, for example, all outgoing edges are set toTRUE SIGNALED.
This, in turn, may trigger the activation of succeeding tasks, and so on. On the other hand,
a task is skipped if it cannot be activated anymore. That is the case, for example, if the
task belongs to a branch of a conditional branching that has not been chosen for execution,
or if an ingoing sync edge of the task (withET = STRICTSYNCE) has been marked as
FALSE SIGNALED. When a task node is marked asSKIPPED, its outgoing edges are set
to FALSE SIGNALED, which may lead to the skipping of succeeding nodes.

Finally, a WF instance terminates successfully when the ingoing control edge of its end
node is set toTRUE SIGNALED. We omit further details and present two examples instead.

Example 3. Figure 4 shows the use of the execution and signaling rules in connection with
a loop. AfterE was completed and the loop conditionC was evaluated toTRUE, the loop
edge is set toTRUE SIGNALED(see figure 4(a)). This, in turn, triggers the execution of
the start node of the loop, whereupon the states of all nodes and edges of the loop’s body
(incl. the loop’s end node and the loop edge) are reset andC is activated (see figure 4(b)).

Example 4. As a second example, consider figure 5(a). Assume that upon receiving a
node termination event fromB its outgoing control edgeB → C signalsTRUEand the
edgeB → D signalsFALSE. This, in turn, leads to the reevaluation of the nodesC and
D, which are activated respectively skipped. After skippingD, its outgoing control as well



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 103

Figure 5. Synchronizing nodes from different branches of a parallel processing.

as its outgoing sync edges are set toFALSE SIGNALED. Consequently, the state ofG is
reevaluated, and it is set toACTIVATED(see figure 5(b)).

2.3. Correctness and consistency properties

As motivated in Section 1, formal criteria are needed to identify the possible exceptions
resulting from a structural WF change and to provide support for handling them. In this
section we give an overview of some of the correctness properties defined by ADEPT. We
focus on the flow of data. Properties regarding the correctness of the control flow are only
sketched at the beginning of this section.

Flow of control. A control flow graph(N, E) must meet certainconstraintsin order to
ensure the correct execution of the WF at run-time. Each noden ∈ N must be reachable
from the WF’s start node. That is, there is a valid sequence of signaling events leading from
the initial marking of the WF graph to the activation ofn (see Section 2.2). Furthermore, we
require that from every reachable state of the WF a final state can be reached, i.e., there is a
valid sequence of signaling events leading from the current marking of the WF graph to the
activation of its end node. For non-cyclic WF graphs, which are based on task sequences
and symmetrical branchings, these properties are satisfiedby construction. This does not
always apply to a WF graph whose control structures contain backward or sync edges. For
example, the use of sync edges should not lead to cycles or termination problems of the
flow. The presentation of conditions under which a graph(N, E) satisfies these properties
and algorithms for their analysis are outside the scope of this paper.

Flow of data. In the following, we simplistically assume that for the correct execution
of an actionA (i.e., a task program or an auxiliary service assigned to a task) all input
parameters must be supplied, and that after its successful completion all output parameters
are written. ADEPT imposes a set of restrictions which govern the nature of a correct
data flow schema. For each data linkd f ∈ DF (cf., Definition 1) the domains ofddf and
pardf must be type compatible. In addition, each parameter of an action must appear in
exactly one data linkd f ∈ DF2. In order to avoid the invocation of actions with missing
or incomplete input data the following constraint has to be added:



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

104 REICHERT AND DADAM

Rule DF-1. Let P= (N, E, S, D, DF)be the schema of a WF. Forn ∈ N ∪ S let Vn

denote the set of all valid action sets (incl. tasks fromN as well as services fromS) whose
elements preceden in the flow of control and which are completed beforen is started. For
n ∈ N ∪ S, d ∈ D we then require:

Reads(n, d) ⇒ (∀V ∈ Vn : ∃ n∗ ∈ V : Writes(n∗, d))

The predicateReads(n, d) (Writes(n, d)) expresses that an input parameter (an output pa-
rameter) ofn ∈ N ∪ S is connected tod by a data linkd f ∈ DF.

This rule ensures that all input parameters of an action are supplied before it may be
executed. Trivially, for a given taskn ∈ N, NTn 6= STARTFLOWwhich reads a data
elementd, the rule DF-1 is satisfied ifd is written by the start node of the WF, or if it is
written by a preceding auxiliary services ∈ Sprec

n . Furthermore, this rule guarantees that
the output parameters of a WF (i.e., the input parameters of its end node) are completely
supplied. In order to avoid unintended lost updates of data elements a second constraint
has to be made, which we describe only informally here. For details the interested reader
is refered to Appendix A.

Rule DF-2. Tasks from different branches of a parallel processing (with AND-join) are
not allowed to have write access to the same data element, unless they are synchronized by
a sync edge.

Write-after-write conflicts might also occur if two succeeding tasks have write access
to the same data element and no read access occurs between them (see Appendix A). In
(Hensinger, 1997) we present an algorithm for checking the correctness of a data flow
schema with respect to the rules DF-1 and DF-2. The algorithm makes use of the sym-
metrical structuring of WF graphs, but it considers synchronizations between tasks from
parallel branches as well. For a basic understanding, however, an example is more suitable.

Example 5. In the WF graph depicted in figure 3,G may read the data elementsd1 andd2,
but it is not allowed to readd3; d3 is not written within all task sets ofVG = {{STARTFLOW,
A, B, D, F}, {STARTFLOW, A, B, F}}. The taskH , however, may read the data elements
d1, d2, andd3 as each of them is written within all task sets fromV H = {{STARTFLOW, A,

F, G, B, C, E}, {STARTFLOW, A, F, G, B, D,E}} (cf., rule DF-1).G would not be allowed
to writed3 as this data element may be written by the concurrent taskC (cf., rule DF-2).

Of course, the constraints upon which the definitions of the rules DF-1 and DF-2 are
based must be relaxed in several respects. In our current implementation we follow a more
flexible approach that distinguishes between optional and mandatory task parameters. Such
extensions are important as not always all input parameters of a task are necessarily required
for the correct processing of the task program. We further distinguish between parameters
that can be supplied by a corresponding auxiliary service and those that cannot. We enrich
interface descriptions with semantic information about parameters, and we provide support
for referenced data (e.g., documents or database objects). Finally, concurrent write opera-
tions to the same data element must be allowed under certain conditions (e.g., in connection



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 105

with data elements of typeSETor LIST). For simplification, we omit these extensions for
the remainder of the paper.

Note, that structural changes of a WF may violate the presented rules if no further
precautions are made. The deletion of a task, for instance, is accompanied by the deletion
of the data links connecting its output parameters with elements fromD. This, in turn,
may lead to missing parameter data for succeeding steps and therefore to a violation of
rule DF-1. On the other hand, the dynamic insertion of a task and the addition of new data
links connecting its output parameters with elements fromD may lead to lost updates and
therefore to the violation of rule DF-2. We will come back to this in Section 3.

2.4. Adequacy of the ADEPT model

At first glance, the ADEPT model seems to be somewhat limited when compared to other
WF models. Thesestructural limitationsare deliberated, as they offer advantages in several
respects: The use of symmetrical control structures provides the basis for a syntax-driven
design of WF’s (cf., Kirsch, 1996) and for an efficient analysis of structural properties
of a BP model (cf., Hensinger, 1997). We believe that this is crucial for the support of
dynamic WF changes, especially if we want to ensure that applied changes are correct. In
our experience, ADEPT offers a good compromise for the trade-off existing between the
expressive power of a WF model on the one hand, and the complexity of model checking
on the other hand. With respect to clinical BPs (by nature these processes are probably
much more complex than the BPs found in many other application areas) it has proven
that the modeling power of ADEPT is adequate. Note, that for the specification of more
complex BPs, sync edges, failure edges, or null tasks (cf., Section 3) are very helpful. In
addition, we are working on extensions of the ADEPT WF model (e.g., regarding concepts
for the support of time and time dependencies) which will further increase its modeling
power.

3. Dynamic structural changes of workflows

Based upon the ADEPT model we have developed a set of operations (ADEPTflex) which
serves as the framework for dynamic structural changes of WFs. The main emphasis in
designing these operations was put oncorrectnessandconsistencyissues: The application
of a change operation to a specific WF instance must result in a WF with a syntactically
correct schema and with a “legal” state, i.e., the change should not cause inconsistencies and
run-time errors. Furthermore, the set of change operations should becompleteandminimal
in the sense of being able to realize each possible form of correct and consistent restructuring
of a WF graph—with “minimal” we mean, that the number of change operations needed
to achieve completeness should be kept as minimal as possible. Other design goals, which
we do not discuss in detail in this paper, concernefficiencyandsecurityissues as well as
ease of use.

In summary, ADEPTflex comprises operations for inserting tasks as well as whole task
blocks into a WF graph, for deleting them, for fast forwarding the progress of a WF
by skipping tasks, for jumping to currently inactive parts of a WF graph, for serializing



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

106 REICHERT AND DADAM

tasks that were previously allowed to run in parallel (and vice versa), and for the dynamic
iteration and the dynamic rollback of a WF respectively of a WF region (incl. the undoing of
temporary changes). These operations, in turn, provide the basis for implementing higher-
level operations such as the replacement of a certain WF region by a new one. Theinsert
operationshall serve as an illustrative example, and it will be discussed in more detail in
Section 3.1. The other operations are sketched in Section 3.2.

3.1. Dynamic insertion of tasks

The addition of a new task to a WF during its execution may become necessary due to
several reasons. The support of dynamically evolving WFs, unplanned events and missing
or incomplete data name a few examples. The dynamic addition of a task to a WF is
somewhat comparable to the addition of a new procedure to a program in the midst of
its execution. When a task is inserted into a WF graph, new nodes and edges (including
data links) must be added while maintaining the correctness and consistency of the WF.
Current state-of-the-art systems do not provide a sufficient level of flexibility and consistency
with respect to this operation. Typically, they allow the addition of an activity only upon
completion of a task and before the activation of its successors (e.g., Hsu and Kleissner,
1996; Casati et al., 1996; Vogel and Erfle, 1992). Issues concerning data integrity are mostly
ignored, leading to the problems mentioned in the introduction section. For the flexible
support of BPs a more generic approach is required. Generally, it should be possible

• to add new tasks or even premodeled task blocks to a WF at any point of time during its
execution

• to synchronize the execution of an inserted task with the execution of other tasks from
the WF graph

• to insert tasks into WF regions which have not yet been entered
• to dynamically map the parameters of the added task to existing or to newly generated

data elements

There is no problem to provide an operation for inserting a new task as a direct predecessor
(or successor) of a given node, for adding a task as a new branch between a split node and its
corresponding join node, and so on. However, this would not yield to a satisfactory solution,
as it does not reconcile with our design goals minimality and ease of use. Supporting the
dynamic addition of tasks raises the challenge to find asingle, genericoperation that is
completein the sense of being able to realize each possible form of insertion. Obviously,
the addition of a task as a direct successor of another task is too weak to meet the requirements
presented above. We therefore follow a more generic approach: a new taskX, together with
associated servicesSX, data elementsDX, and data linksDFX, may be inserted into the
graph of a WF instance by synchronizing its execution with two node setsMbeforeandMafter:
The execution ofX is triggered as soon as all tasks from the setMbeforeare either completed
or cannot be worked on anymore, i.e., the tasks defined byMbefore delay the execution of
X. This allows us to synchronizeX with (preceding) tasks from different branches of the
WF graph. On the other hand, tasks fromMafter may only be activated after completingX.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 107

Figure 6. Dynamic insertion of a new taskX (together with associated auxiliary servicesSX , data elementsDX ,
and data linksDFX) between two task setsMbeforeandMafter.

The addition of a new task transforms the schema (N, E, S, D, DF ) and the state (NS, ES)
of the WF to a new schema (N′, E′, S′, D′, DF′,) and a new state (NS′, ES′) (see figure 6).
Such a graph transformation must result in a WF with a syntactically correct schema (incl.
the flow of data) and with a legal state. In order to ensure this, several constraints regarding
the definition of the setsMbefore, Mafter, DX, SX, andDFX as well as the structure and the
state of the WF must be made. Before we discuss them in detail, we sketch the steps which
become necessary when inserting a new task into a WF graph. First of all, we concentrate
on the restructuring of the control flow. Afterwards we discuss relevant issues regarding
the adjustment of the data flow.

Graph substitution.3 In the following, let (N, E) be the syntactical correct control flow
graph of a WF instance. The following steps must be carried out in order to insert a new
taskX between the two node setsMbeforeandMafter:

1. Find the minimal, closed subgraphB ⊆ (N, E) that contains all nodes fromMbefore∪
Mafter. Let nbegin denote the start node, and letnend denote the end node of B.4

2. Insert an AND-split noden1 as a direct predecessor of the nodenbegin, and insert a
corresponding AND-join noden2 as a direct successor of the nodenend. Both,n1 as well
asn2, are supposed to be null tasks5 (NT = NULL), i.e., task nodes without associated
actions. When embedding the noden1 (n2) into the WF graph, it takes over the input
(output) firing behavior and the ingoing (outgoing) control edges of the nodenbegin(nend).

3. Insert a new node, representingX, as a branch between the nodesn1 and n2, and
synchronizeX with the tasks fromMbefore and Mafter. That is, for eachB ∈ Mbefore¬
{STARTFLOW} add a sync edgeB → X, and for eachA ∈ Mafter¬{ENDFLOW} add a
sync edgeX → A (with ET= SOFT SYNCE).

4. Apply reduction rules and reevaluate the state of nodes and edges (see below).

As already mentioned, the application of these steps must lead to a syntactically cor-
rect WF graph. To ensure this, the following constraints must be made: Firstly, for all



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

108 REICHERT AND DADAM

Figure 7. Insertion of a new task between two sets of nodes.

na ∈ Mbefore, nb ∈ Mafter the nodena must precedenb in the flow of control. Secondly, the
region covered by the nodes betweenMbefore andMafter (incl. nodes from these sets) may
only contain complete loop control structures. Finally, to avoid the insertion of unnecessary
synchronization edges, nodes fromMbefore(Mafter) should not succeed each other in the flow
of control. One can show, that the insertion of a new task does not violate the syntactical
correctness of the graph(N, E) and does not lead to termination problems if these condi-
tions are satisfied. For further details the interested reader is refered to Appendix B. We
omit them here and present an example instead.

Example 6. The example depicted in figure 7 shows how a taskX is inserted between two
sets of nodes. First of all, the minimal block that contains all nodes from the set{C, D, F}
is determined (see figure 7(b)). In the next step, a split noden1, representing a null task,
is inserted between the predecessorA and the start nodeB of the block. In the same way
a corresponding join noden2 is added. Finally,X is inserted as a new branch betweenn1

andn2, and it is synchronized with the nodesC, D, andF by adding the soft sync edges
C → X, D → X, andX → F (see figure 7(c)). One can easily see that the symmetrical
structuring of the WF graph is preserved and that the insertion of the sync edges does not
influence the termination behavior of the WF (cf., Section 2.3).

The example further shows that null tasks and sync edges might be added to the WF
graph which are not necessarily required to achieve the desired execution semantics. These
nodes and edges may be removed from the resulting graph by applying a set of well-defined
reduction rules. Examples for such rules are depicted in figure 8. Reduction rules may be



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 109

Figure 8. Examples of reduction rules.

applied to the null tasks originating from the insertion of a task and to their direct successors
and predecessors. Their application does not change the WF’s execution behavior, i.e., the
set of valid task sequences remains unchanged. The effect of their application to the WF
from figure 7(c) is shown in figure 7(d).

State constraints. The applicability of the insert operation depends on the state of the
WF graph, too. In order to avoid the insertion of a new task as a predecessor of an already
running or terminated task, we require that all elements fromMafter must be in one of the
statesNOT ACTIVATEDor ACTIVATED. If a taskn ∈ Mafter has already been activated,
i.e., routed to worklists, the corresponding work items are removed from these worklists
before the insertion takes place. The nodes fromMbeforemay be in an arbitrary state.

After adding new nodes and edges to a WF graph its state must be reevaluated. This
reevaluation is based on the execution and signaling rules presented in Section 2.2. Whether
a newly inserted task is activated immediately or not depends on the current state of the
WF graph. The former is the case if at insertion time all nodes fromMbefore are in a final
state (i.e.,COMPLETEDor SKIPPED). Note, that the insertion of a new task does not
necessarily mean that it will be activated for sure. If the task is inserted into a region of
the WF graph that has not yet been entered, its execution may depend on future routing
decisions.

Example 7. As a simple example, consider the graph shown in figure 9, and assume that
a new taskX shall be inserted between the AND-splitD and its corresponding AND-join
G. Using the presented graph substitution steps, applying reduction rule 6 (cf., figure 8),



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

110 REICHERT AND DADAM

Figure 9. Adding a new taskX between the AND-splitD and its corresponding AND-joinG.

and reevaluating the WF’s state, the expected result is obtained (see figure 9(c)). Note,
that it is possible to addX as a new branch betweenD andG, although the successors of
the AND-split D, the nodesE and F , have already been completed respectively started.
Furthermore, looking at the WF graph from figure 9(a), a new taskX may not be inserted
between the nodesD andE. In order to insert a new task betweenD andF , first of all, the
execution ofF would have to be aborted by the user.

Adjusting the data flow schema.As already mentioned, a new taskX may be “plugged”
into a WF graph, together with associated data elementsDX, auxiliary servicesSX, and
data linksDFX. So when a taskX is added to the WF schema(N, E, S, D, DF), this does
not only lead to the modification of the control flow graph(N, E) and of its state, but also it
generally requires extensions of the setsD, SandDF. In any case, it must be ensured that
the resulting WF schema(N ′, E′, S′, D′, DF′) meets the correctness properties defined in
Section 2.3.

All input parameters of the newly inserted taskX must be supplied before it may be exe-
cuted (cf., rule DF-1). A simple approach to achieve this would be to request the necessary
input data from the user initiatingX. For this, X has to be connected with a preceding
provider services (see Section 2.3), whose output parameters logically correspond toX’s
input parameters. In our current prototype implementation such a service is supported by
the dynamic generation and the dynamic processing of an electronic form, which makes
use of the interface description ofX. The procedure depicted in Table 1 shows how the
setsDX, SX, andDFX might be adapted in order to obtain a syntactically correct data flow
schema satisfying rule DF-1.

Obviously, if the original WF schema(N, E, S, D, DF) satisfies the rule DF-1, this
also applies to the schema(N ′, E′, S′, D′, DF′) with S′ := S∪ SX, D′ := D ∪ DX, and
DF′ := DF ∪ DFX. In practice, however, this simple approach would not always yield to a



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 111

Table 1. Adjusting a data flow schema by adding new data links.

DX := ∅; DFX := ∅;

create a provider service s with OutPARS(s) := ∅;

for all par ∈ InPARS(X)do

create data element dp with (Iddp 6= Idd ∀ d ∈ D ∪ DX) ∧ (domdp = dompar):

DX := DX ∪ {dp}
create parameter p with (Idp = Idpar ∧ domp = dompar ∧ dir p = “OUT”):

OutPARS(s) := OutPARS(s) ∪ {p}
DFX:= DFX ∪ {(dp, s, p, write), (dp, X, par, read )}

end

SX = S
prec
X := {s}

satisfactory solution, since unnecessary and redundant data entries may result in the course
of a WF execution, potentially leading to data inconsistencies. For a more intelligent
support, it must also be possible to dynamically map parameters of the inserted task to
already existing data elements fromD. This raises a variety of challenging issues with
respect to dynamic parameter mapping, which can only be sketched here. First of all, the
data elementsCX ⊆ D to which X’s input parameters may potentially be mapped must be
identified. According to rule DF-1 (cf., Section 2.3), we obtain

CX = {d ∈ D | ∀V ∈ V X : ∃n∗ ∈ V : Writes(n∗, d)}.

Example 8. As an example, consider the WF graph depicted in figure 3. Assume that a
taskX should be inserted between the nodesB andC. Then we obtainCX = {d1, d2}.

Note, that the definition of the setCX is independent from the state of the WF. This
ensures that all data elements ofCX are supplied whenX is activated, independently from
previously made routing decisions. On the other hand, there are scenarios in which it would
be useful to relax this assumption and to consider the state of the WF as well; that is, to
extend the set of data elements to which input parameters fromX may be linked to

C∗
X = CX ∪ {d ∈ D | ∃n∗ ∈ pred(X) : NSn∗ = COMPLETED∧ Writes(n∗, d)}6

Example 9. As an example, take the insertion shown in figure 9, and assume thatB is
the only task that writes the data elementd1 ∈ D. SinceB is completed at the timeX is
added, we haved1 ∈ C∗

X. Input parameters fromX may therefore be potentially mapped
to d1, although this data element is not contained in the setCX (see figure 10). Following
this approach, it might become necessary to undo the insertion ofX in case of a backward
operation. As we will see in Section 4, in this context it makes a big difference whetherX
should be executed at most once (temporary insertion), or whether the insertion should be
valid until completion of the WF (permanent insertion).



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

112 REICHERT AND DADAM

Figure 10. Linking an inserted task to existing data elements.

The setCX (orC∗
X) only describes which data elements may be considered when input pa-

rameters ofX are mapped to elements fromD. A specific input parameterp ∈ InPARS(X)

may be linked to a data elementd ∈ CX (or d ∈ C∗
X), only if their domains correspond

to each other. Of course, this purely syntactical approach would be insufficient in practice
and would leave significant complexity to the user. A more sophisticated approach which
aims at the semi-automatic mapping of parameters to data elements is presented in (Blaser,
1996). Basic to it is a controlled vocabulary which is used for the naming of data elements
and task parameters (respectively the data structures they are built upon). The vocabulary
is organized as a semantic network and considers semantic relationships between the con-
cepts, upon which data elements and parameters are built. In (Blaser, 1996) we also deal
with the problem of heterogeneous structures and formats of parameter data from different
tasks.

Similar reflections must be made regarding linkages of the output parameters of an
inserted task to existing or newly inserted data elements. In order to avoid unintended lost
updates, an output parameter may be linked to a data element, only if the rule DF-2 is further
satisfied. In the WF graph shown in figure 10, for instance, the output parameters of the
newly inserted taskX may not be mapped to the data elementd2.

Further issues. So far we have concentrated on correctness and consistency issues re-
garding the dynamic addition of a task to the graph of a WF instance. For the sake of
completeness, some important aspects, which are not further addressed in this paper, have
to be mentioned.

First of all, in our experience it has turned out to be important to allow process participants
to fix a date or a deadline for the execution of the inserted task. The necessary extensions
for this are described in (Grimm, 1997).

Secondly, for security reasons, ADEPTflex allows WF designers (as well as selected
process participants) to restrict the use of the insert operation to specific WF types or WF
categories, to selected users or user roles, to specific regions of a WF graph (e.g., a task
block), to selected WF states, to specific activity types or categories, or to any combination
of them. Generally, also we do not require that the user who adds a task to a WF must
subsequently work on it. This provides additional flexibility to process participants, as they
are allowed to add tasks to a WF of which the execution may be explicitly or implicitly
delegated to other process participants. This requires a powerful meta model for capturing
organizational entities and relationships between them.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 113

Table 2. Examples for the use of the insert operation.succ(A) (pred(B)) denotes the set of direct successors
(predecessors) of the taskA.

Insertion Choice

An intermediate step between a nodeA and its successorsMbefore= {A}, Mafter = succ(A)

(A may be a split node of arbitrary type)

An intermediate step preceding the execution of a taskA Mbefore= pred(A), Mafter = {A}
A new branch of a parallel branching with split nodeSp Mbefore= {Sp}, Mafter = {J}

and join nodeJ

A new task without any additional synchronization Mbefore= {STARTFLOW}, Mafter = {ENDFLOW}

Finally, for the implementation of client applications and worklist handlers a correspond-
ing set of (generic) API calls is offered to application programmers. The provided functions
can also be used to obtain information about the context in which the insertion is applied.

Application. The insert operation described covers a broad spectrum of applications, and
it allows a variety of user-friendly operations. Some of them are summarized in Table 2.

The insert operation also serves as the basis for composing higher-level operations. For
example, several instantiations of the same task type (dynamic task) can be realized by the
repetitive use of this change operation. Its generality also provides the basis for thead hoc
definition of WFs: a WF starts with a single stop node between the start and the end node of
the WF graph, and it may be dynamically extended by the repetitive application of the insert
operation presented. As a last interesting aspect, we use the insert operation for internal
exception handling as well. For example, if the deletion of a taskX leads to incomplete
or missing parameter data of succeeding, data-dependent tasks, a corresponding provider
task, taking over the data links fromX, may be plugged into the graph and be synchronized
with these tasks (see Section 3.2)

These examples demonstrate that our approach is able to support a large variety of
different application scenarios. In the next section we sketch other change operations and
some interesting issues related to them.

3.2. Overview of other change operations

As said before, ADEPTflex comprises a set of basic change operations which allow autho-
rized users to add tasks to a WF, to delete tasks from a WF, to skip the execution of tasks,
to jump forward to WF regions which have not yet been activated, to serialize tasks that
were previously allowed to run in parallel, and to perform backward operations on a WF
graph (incl. the undoing of temporary changes). Due to space limitations we must omit a
presentation of the whole set of operations here. In the following, we therefore only deal
with some interesting issues related to the deletion of tasks and to the dynamic modification
of premodeled task sequences.

Dynamic deletion of tasks. Individual tasks or task sequences may have to be skipped
or removed when the conditions for their execution become unnecessary. Of course, the



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

114 REICHERT AND DADAM

deletion of tasks should not always be allowed. Firstly, nodes which are an integral part of
the WF structure (e.g., the start node of the WF) must not be deleted at all. Secondly, WF
designers may customize a WF schema in order to disallow the deletion of individual tasks
or tasks from specific WF regions.

The deletion of a taskX of a running WF instance is only possible, ifX is either in the state
ACTIVATEDorNOT ACTIVATED. In the former case, the work items associated withX are
removed from the corresponding worklists. Tasks in the stateRUNNING, COMPLETED,
FAILED, or SKIPPEDmay not be deleted.

Concerning the adjustment of the control flow graph, the delete operation is realized by
substituting a null task (see Section 3.1) for the task to be deleted. This approach can be
handled in a simple and effective manner, as the node of the deleted task and its associated
(control) edges are still part of the WF structure. As we will see in Section 4, this also
facilitates the undoing of task deletions.

When a taskX is deleted, its associated auxiliary services and data links must be removed
from the setS and from the setDF. This might lead to missing or incomplete input
data of succeeding data-dependent steps and therefore to a violation of the rule DF-1 (cf.,
Section 2.3).

Let N∗ ⊂ succ(X)7 denote the set of tasks whose input parameters are not completely
supplied due to the deletion ofX. The following exception handling policies can be applied
in ADEPTflex to deal with such cases and to regain a correct and consistent WF graph:

• Concomitant deletion of tasks from the setN∗, which, in turn, may require the deletion
of other tasks fromN (cascading delete).

• Dynamic insertion of a provider taskXprox into the flow of control (withMafter = N∗).
Xprox takes over the data links of the deleted task, and it must be completed before any
task of the setN∗ may be triggered.

• Dynamic addition of corresponding provider services (i.e., dynamically generated forms)
to the setsSprec

n , n ∈ N∗ (see Section 3.1)—this must not lead to the violation of the rule
DF-2!

• Abortion of the delete operation.

Of course, these policies may be used in combination with each other. In order to relieve
users from performing the necessary adjustments of the data flow schema “manually”,
ADEPT supports the specification ofsuccess dependenciesbetween succeeding tasks. If a
taskX is deleted from the WF graph at run-time, all succeeding tasks which are success-
dependent onX are deleted as well. This, in turn, may lead to the cascading deletion of other
tasks. Concerning the flow of data this approach does not require any additional exception
handling, if for each task the set of its success-dependent steps corresponds to that of its
data-dependent steps. Note, that this approach is similar to the concept ofspheres of control
proposed in (Davis Jr., 1978; Leymann, 1995), but it is applied here to the structure of the
WF.

Changing task sequences at run-time.As mentioned in the introduction section, changes
of premodeled task sequences frequently become necessary in exceptional situations. Since
WF designers are generally not capable to predict all possible deviations in advance,



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 115

Figure 11. Parallelization of tasks, that were previously constrained to be executed serially, due to ajump forward
operation.

operations are required that allow users to dynamically skip the execution of tasks, with or
without finishing them later, or to work on tasks of which the execution conditions are not
yet satisfied.

Example 10. As an example, take the WF graph depicted in figure 11(a), and assume that
an authorized user wants to jump forward to taskG and to proceed with the flow of control
at this node, although the ingoing edges of this task have not yet been marked. Assume
further, that the stepsD, E, andF have to be finished or worked on concurrently, but they
must be completed before taskJ may be triggered. In order to achieve this, the WF graph
must be restructured as shown in figure 11(b). Note, that this restructuring leads to the
parallelization of tasks that were previously constrained to be executed serially.

Generally, it should be possible to pass the control or to jump forward to a nodentarget

which may not yet have been activated (NS= NOT ACTIVATED). ADEPTflex supports
different policies for dealing with uncompleted tasks, preceding the nodentarget in the flow
of control, when such a jump operation is performed:

M = {n | n ∈ pred(ntarget) ∧ NSn ∈ {NOT ACTIVATED, ACTIVATED, RUNNING}}

Tasks from this set may be aborted, omitted, or as in our example be further worked on.
For the latter case, their execution must be synchronized with successors ofntarget. In our
example, all tasks fromM = {D, E, F} must be completed before the nodend = J may
be activated.

Finally, changes of premodeled task sequences may lead to an incorrect data flow schema
if no further precautions are taken. The rules presented in Section 2.3 contribute to identify



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

116 REICHERT AND DADAM

such cases and to provide adequate mechanisms for exception handling. Due to lack of
space this aspect cannot be discussed here. We conclude that more user-friendly operations,
providing elegant and efficient support for dynamic structural changes, can be based on the
presented operations.

4. Change management

Several instances of a specific WF type may be active at the same time. As changes of
different kinds may have been applied to them, several aspects must be considered:

• WF instances of the same type, i.e., the same starting schema, must be (logically) repre-
sented by different WF graphs.

• Changes, that are applied to an individual WF instance, may depend on previous changes
of that WF.

• Structural WF changes may require concomitant modifications in order to preserve the
correctness and the consistency of the WF graph (see Section 3); the necessary graph
adaptations must be carried out within the same transaction in order to allow forward
recovery in the presence of failures.

• It must be possible to undo structural changes of a WF under certain conditions.

For the management of structural WF changes, it makes a big difference whether an
applied change must be preserved until the completion of the WF (permanent change), or
whether it is only of temporary nature (temporary change). This division is particularly
important for the support of long-running BPs, where changes may affect WF regions that
are entered several times, e.g., due to loop iterations or due to the partial rollback of a WF.
If a task is inserted into the body of a loop, for instance, it must be specified whether this
insertion should only be valid for the current iteration of the loop or for following iterations
as well. In the first case, the added task is executed at most once, and the (structural)
change must be undone before the next iteration of the loop is entered (i.e., the inserted task
must be removed together with its associated data links and services). For the remainder
of this section, we simplistically assume that the durability of a change—temporary vs.
permanent—can be specified at the time it is applied to the WF instance.

4.1. Change history

Ideally, the undoing of temporary changes and the necessary adjustments of the WF graph
should be completely handled at the system level without costly user interactions. In order
to achieve this, the run-time system must have precise information about previously made
changes. In our approach, we maintain the following information for each WF instance5:

• a WF graphPall reflecting the currentstructureand the currentstateof 5. This graph
considers all changes that have been applied to the WF instance, temporary as well as
permanent ones.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 117

• a WF graphPperm which has resulted from applying permanent changes to the starting
schema of5. Temporary changes as well as the state of5 are not considered by this
graph.

• a change history C, which is used analogously to the WF’s execution history: it records
data on all changes, that have been applied to5, in a chronologically ordered list. These
data may later be used to undo changes. Each history entry contains the following
information: (1) thetypeof the change operation, e.g., insertion or deletion of a task
(incl. its call parameters); (2) thedurability of the change (temporary vs. permanent);
(3) theinitiator of the change; (4) thestart regionof the change, i.e., a set of nodes that is
used by the run-time system to decide whether the (temporary) change must be undone
or not when a backward operation is applied (see below); (5) the list ofconcomitant
modifications, e.g., addition of auxiliary services or cascading deletion of data-dependent
tasks (see Section 3); (6) the list ofchange primitives(incl. their call parameters) that
were applied to perform the change; each change operation is mapped to a set of graph
modifications primitives such as the addition or deletion of individual nodes, edges, data
elements, or data links.8

The execution of a WF is based on the graphPall. Logically, this graph must be kept for
each WF instance, as different kinds of ad hoc changes may be applied to WF instances of
the same type (i.e., with the same starting schema). We require the additional graphPperm

in order to ensure that permanent changes remain correct when temporary modifications
are undone. For example, a permanently inserted task must not be data-dependent on a
temporarily inserted one. Otherwise, the undoing of the temporary insertion leads to an
incorrect data flow schema, which may cause severe run-time errors. In order to avoid such
dependencies, the application of a permanent change to a WF instance requires additional
checks, which can be based upon the graphPperm (see below).

4.2. Applying temporary and permanent changes

The introduction of temporary and permanent changes to a WF instance5 requires different
procedures. In order to perform atemporary change ct , we must check whether it can be
applied toPall while maintaining the correctness and consistency of this WF graph (cf.,
Section 3). If unresolvable exceptions occur, the change operation is aborted. Otherwise,
ct is applied toPall, and a corresponding entry is added to the change historyC. Note, that
a temporary change may be based on previously made temporary changes as well as on
permanent changes. In addition, it may consider the state of the WF (cf., Section 3.1).

The introduction of apermanent change cp requires additional checks. First of all, we
must verify that the application ofcp to Ppermdoes not violate the correctness of this graph.
In contrast to temporary changes, this verification is performed independently from the state
of 5 as well as from temporarily applied changes. Otherwisecp may be based on wrong
assumptions, which might cause severe problems when the state of5 is reset or when a
temporary change is undone due to a backward operation. As an example, take the insertion
of the taskX in figure 10 (cf., Example 9); as this change makes use of a previously made
routing decision, it can only be applied temporarily. Generally, if the changecp is correct



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

118 REICHERT AND DADAM

with respect toPperm, we must also check its applicability to the graphPall. If both checks
are successful,cp is applied toPall as well as toPperm, and a corresponding entry is added
to the change historyC.

4.3. Undoing temporary changes

Up to now we have described how changes are managed and how they are put into effect.
In the following, we sketch the necessary steps for undoing temporary changes (i.e., for
removing them from the WF graphPall) when the control of the WF is passed back to a
previous tasknrestart. Due to lack of space we will restrict our considerations to the dynamic
insertion and deletion of tasks (cf., Section 3) and to their undoing.

Important points for the decision which changes must be undone and which not are the
durability of the change (temporary vs. permanent) and theirstart regions, which are kept
with each entry of the change historyC. The start region of an insert operation is defined
by the setMbefore (cf., Section 3.1), whereas the start region of a delete operation consists
of the null task replacing the removed task (cf., Section 3.2). For simplification, we require
that a temporary change must be undone if each node of its start region is in a final state
(NS ∈ {COMPLETED, SKIPPED, FAILED}), and if it is contained within the backward
region. The backward region comprises those nodes from the graphPall whose state must be
reset due to the backward operation. In case of a loop iteration, it corresponds to the nodes
of the loop body (see Section 2.2), whereas the backward region of a rollback operation
comprises those successors ofnrestartwhich are in a state different fromNOT ACTIVATED
(cf., Section 2.1).

There is no problem to find the corresponding entries in the change historyC and to
undo the modifications associated with them. However, this simple approach would not
yield to a satisfactory solution; other temporary changes may exist which have been based
on these modifications and which are therefore dependent on them, but whose start region
is not covered by the backward region. These dependent changes must be undone, too,
in order to preserve the correctness ofPall. Note, that dependencies between temporary
changes are quite usual and may be explicitly desired by users. They therefore must be
taken into account when temporary changes are undone. With this in mind and based on
the assumptions made, the following steps must be performed when a backward operation
is applied:

1. Find the first entryc1 in C that must be undone due to the backward operation; that is,
the oldest entry of the change history whose start region is covered by the backward
region. If no such entry exists inC, omit the following two steps.

2. TraverseC in inverse order (i.e., beginning with the latest change) untilc1 is reached.
For each visited entry remove the corresponding change (temporary as well as perma-
nent) from the WF graphPall; a change is removed by undoing the previously applied
modification primitives in reversed order.

3. Now traverseC in forward direction beginning withc1. If a visited entrye corresponds
to a permanent change, we reapply it toPall.9 In case of a temporary change, first
of all, we check whether its start region is covered by the backward region. If that



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 119

is the case, the change is not redone, ande is removed fromC. Otherwise, we try
to redo the change onPall by making use of the information stored with the corre-
sponding change entry (incl. information on concomitant changes). If the correctness
and the consistency ofPall cannot be preserved (e.g., due to dependencies on other re-
moved changes), the redo will not be performed, and the initiator of the change will be
informed.

Example 11. Taking the graph depicted in figure 12(a), we illustrate the principle feasibil-
ity of this approach. Figure 12(b) shows the same WF graph after the flow has proceeded,
the two nodesN∗ andN∗∗ were temporarily inserted into the graph (together with the data
elementd and corresponding data links), and the nodeF was permanently deleted. Fig-
ure 12(d) shows the resulting graph after applying a backward operation and after undoing
the temporary changes. Although its start region{H} is not contained within the backward
region, the changec(2)

t is undone, too, since it is dependent onc(1)
t .

Figure 12. Undoing temporary changes after a failure edge has been signaled. (The entries of the change history
C that precede the arc↓ correspond to the changes currently applied to the graphPall.)



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

120 REICHERT AND DADAM

The assumptions made in this section may be relaxed. For example, in some cases it is
desirable to preserve a temporary change when a rollback operation is applied, but to undo
it when a new iteration of a loop is entered. As a last interesting aspect, the use of a change
history contributes to increase the user friendliness of the system, since structural changes
can be undone (UNDO of structural changes) by the user (e.g., the initiator of the change),
as long as they have not yet influenced the execution of the WF, and as long as no further
changes have been based upon them.

In summary, the support of dynamic structural changes make great demands on the WF
engine and on change management. In this paper we have concentrated on conceptual
issues related to dynamic WF changes. There are a variety of important implementation
issues, that we have not addressed, but which are of high importance for the management
of dynamic changes at the workflow enactment level: the internal representation and the
persistent storage of WF instances (i.e., the underlying data structures), the transactional
execution of (possibly long-running) change operations, WF recovery, the synchronization
of concurrent change transactions, the resolution of conflicting implementation goals (e.g.,
performance vs. flexibility), or dynamic changes of WFs which are controlled by different
distributed WF servers name a few examples.

5. Related work

It is widely recognized that state-of-the-art WF technology does only provide rudimentary
support for exception handling and for dynamic structural changes of running WF instances
(see, Barthelmess and Wainer, 1995; Ellis et al., 1995; Reichert et al., 1997a; Sheth and
Kochut, 1997; Siebert, 1996). Both, in research and in commercial WFMSs, several
directions can be made out that try to overcome these limitations. These approaches focus
on

• the provision of services for exception handling and for ad hoc structural changes
• the support of WF designers in modifying the schema of a WF and in propagating the

applied changes to already running WF instances that started with the old schema (WF
schema evolution)

• the integration of WFMSs with groupware technology to combine formal and well-
structured processes with informal group processes.

5.1. Exception handling and ad hoc structural changes in WFMSs

We are mainly interested in process-oriented WF technology as opposed to e.g., Lotus
Notes or Groupflow (Nastansky and Ott, 1996). Current process-oriented WFMSs like
FlowMark (Leymann and Altenhuber, 1994) or DOMINO (Kreifelts et al., 1991), however,
do only address a small part of the issues discussed in this paper. Although most of them
allow online modification of task/staff definitions or the exchange of program modules
during WF execution, they are rather weak with respect to exception handling and dynamic
structural changes. Several approaches exist which address these issues. The proposals



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 121

made by HOON (Han et al., 1996), ProMInanD (Vogel and Erfle, 1992), ObjectFlow
(Hsu and Kleissner, 1996), WIDE (Casati et al., 1997), MOBILE (Heinl et al., 1996), and
DYNAMITE (Heimann et al., 1996) are worth mentioning.

Han et al. (1996) suggest a Petri net based model (HOON) for adaptive WFs. The basic
idea is to use mechanisms for later binding of software components and WF models, which
may be dynamically and hierarchically combined at run-time. HOON does not support
dynamic changes in the narrower sense. Structural changes of a WF model are not possible
after it has been bound to a net’s transition. The authors do also not talk about correctness
issues.

ProMInanD is a representative of WFMSs based on the object migration model (see,
Karbe et al., 1990). A WF, together with its definition, is regarded as an object (“electronic
circulation folder”) which is sent from user to user according to the modeled control flow.
Only the user who is currently in charge of the folder may change the flow, e.g., by adding an
intermediate task. A potential weakness is the simplicity of the used WF model—parallel
and iterative executions are not explicitly supported—and the lack of a clear theoretical
basis. The offered change operations consider only the control flow, but they ignore other
structural components of the WF specification. The data flow is limited to the exchange of
files between tasks, so that the WFMS has minimal control over it. This leaves significant
complexity to application programmers, who themselves must ensure the correctness the
data flow when the WF is restructured.

A comparable functionality is offered by ObjectFlow (Hsu and Kleissner, 1996) which
uses a constrained Petri net based model. Users may temporarily change the course of the
flow or add intermediate tasks. In addition, ObjectFlow supports dynamic tasks, i.e., the
multiple concurrent instantiation of the same task type at a specific point of the WF. A
limited mechanism for exception handling is offered: the actions which are necessary to
handle abnormal events have to be explicitly modeled as additional paths in the WF graph.
When a user detects an exception, he must abort active tasks and modify the flow structure
to transfer the control to the exception handling path. This approach may lead to complex
WF models as the offered modeling constructs are not high-level (Ellis and Nutt, 1993).

The WIDE WF model offers a trigger-based approach for exception handling (Casati et al.,
1997). Exception handlers (EHs) can be installed to handle events such as the cancellation
of a task or the break of the normal flow. In contrast to ObjectFlow and ProMInanD, the WF
may proceed while the exception is handled. For each type of exception WIDE provides a
default EH (e.g., for user notification), which may be overwritten by the WF programmer.
However, it lies in the responsibility of programmers to avoid inconsistencies and errors,
which complicates application development and may introduce new errors and exceptions
into the model.

The MOBILE WF model (Heinl et al., 1996) allows the use of incomplete sub-process
models at predefined points (i.e., nodes) of the WF. Incomplete models are described in
terms of goals as well as partially defined process patterns, and they must be completed at
run-time. The authors do not indicate how users are supported in changing an incomplete
model and which operations are available. Correctness issues are also not addressed.

A more competitive approach is offered by DYNAMITE (Heimann et al., 1996). DY-
NAMITE aims at the support of the software development process, which is often highly



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

122 REICHERT AND DADAM

dynamic and for which the planning and the execution of tasks may overlap. DYNA-
MITE uses dynamic task nets, which are built and modified incrementally during process
execution. Formally, task nets are based on a graph rewriting system. The tasks which
shall be dynamically added to a task net must be predefined in a process schema. This
significantly limits the dynamics of this approach. Operations for changing task sequences
and for deleting tasks are not available, and correctness issues are not discussed by the
authors.

The same holds fortransactional WFs, whose emphasis and strength lie in different areas
such as reliability or forward recovery in the presence of failures (Alonso et al., 1996; Attie
et al., 1993; Kamath and Ramamritham, 1995; Hsu, 1993, 1995; Worah and Sheth, 1997).
Transactional WFs apply concepts of advanced transaction models (Elmargarmid, 1992);
they are, therefore, pretty good in handling task failures or abnormally terminated WFs
(e.g., Eder and Liebhart, 1995). Concepts like “spheres of compensation” (Leymann,
1995; Davis Jr., 1978) will further contribute to simplify and to speed up application
development and to make WF applications more reliable. However, transactional WFs
do only meet a small part of the issues discussed in this paper. As the WF engine will
generally not have the knowledge to detect and to handle all possible failures and exceptions
alone, dynamic changes typically require user involvement. Besides this, transactional WFs
must address issues concerning the transactional execution of structural changes and their
synchronization.

5.2. WF schema evolution

There are few approaches which address correctness issues in connection with dynamic
structural changes. Notable exceptions come from (Ellis et al., 1995; Casati et al., 1996).
In contrast to ADEPTflex, which concentrates on ad hoc changes of individual WF instances,
these approaches deal withchanges of the WF schemaand their propagation to running WF
instances whose execution started with the old schema. Although the support for both types
of changes is a complex and yet unsolved problem and many related issues can be identified,
in some respects ad hoc modifications are much more intricate and problematic, as they
may have to be performed by end users. Like ADEPTflex, both approaches are based on a
conceptual WF model. However, they restrict their considerations to dynamic changes of
the control flow; other relevant aspects are left aside.

Ellis et al. (1995) propose a mathematical model, which is based on constrained Petri
nets. A change corresponds to the replacement of a subnet of the WF graph by a new
subnet; it is said to be correct if afterwards the corresponding WF instances can either be
executed according to the old schema or to the new one. The emphasis and strength of this
approach lie in its formal foundation. Casati et al. (1996) address the problem of WF schema
evolution from a static as well as from a dynamic point of view. In contrast to Ellis et al.
(1995) they go in line with our approach. Dynamic structural changes are based on a set of
modification primitives whose application does not violate the given correctness criteria.
The proposed change primitives, however, offer only a limited semantics when compared
to our approach. The strength rather lies in the variety of policies offered for managing the
evolution of running WF instances (including support for version management). Formal



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 123

criteria are introduced in order to determine which WF instances can be transparently
migrated to the new version.

How to integrate dynamic structural changes at the schema level with ad hoc changes at
the instance level is an outstanding research issue. When looking at the proposal made by
Ellis et al. (1995), for example, it is implicitly assumed that the execution of all instances of
a specific WF type is based on the same net. This assumption cannot be maintained when
ad hoc structural changes at the instance level must be considered, too. The proposals made
in Section 4 can be considered as a first step towards a solution of this problem.

5.3. Integration of WF technology with groupware approaches

Several proposals have been made to combine formal and well-structured processes with
informal group processes. Communication-oriented models are based on a speech act con-
versation model (Winograd and Flores, 1986) which reduces organizational processes to
networks of commitment loops between process participants. Other approaches follow
goal-based models (e.g., Blumenthal and Nutt, 1995) or use circulation folders (Karbe
et al., 1990). All these approaches share the disadvantage that the achieved flexibility is
paid by a harder formalization of even simple, repetitive processes.

Other research groups try to combine the advantages offered by WF technology with
those of groupware (GW) systems by supporting unstructured activities at specific points
of a WF (e.g., Antunes et al., 1995; Blumenthal and Nutt, 1995; Sheth and Kochut, 1997;
Weber et al., 1997). A group task corresponds to a node in the WF graph. Details of the
work to be done, however, are only described in terms of goals or guidelines. This approach
can be used in combination with our model. Addressed issues include the integration of
WFMSs with GW technology, the exchange of data between them, and the management of
contextual information (Blumenthal and Nutt, 1995; Weber et al., 1997). Several authors
doubt the suitability of this approach (Heinl et al., 1996; Siebert, 1996). As a potential
disadvantage they consider the “break” between structured and unstructured parts of work
resulting from the combined use of WF with GW technology. Important features such as
auditing, rollback, security or consistency may be lost when unstructured group tasks are
not controlled by the WFMS.

6. Summary and outlook

In this paper we have concentrated on issues regarding dynamic structural changes of WF
instances during their execution. We have argued that such changes are rather the norm
in computerized processes and that their adequate support will form a key part of process
flexibility in future WFMSs. We have shown that the dynamic change problem has many
facets and is therefore a worthwhile area of study.

We have introduced the basic concepts of the ADEPT WF model. We demonstrated
its suitability for the (precise) specification of WFs, the verification, and testing of the
correctness of WF specifications, and the execution of WFs. We have argued that the
ADEPT model offers a good compromise for the trade-off between the expressive power of
a WF model and the complexity of the algorithms needed for model checking, especially



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

124 REICHERT AND DADAM

when contrasting it with general-purpose models such as Petri nets. We believe that this is
crucial for the efficient support of complex dynamic structural changes.

The ADEPTflex model which is based upon ADEPT has been presented and itsadequacy
with respect to dynamic structural changes has been demonstrated. ADEPTflex comprises a
completeandminimalset of change operations which ensure thecorrectnessandconsistency
of the resulting WF graph byconstruction. Taking the dynamic addition of tasks as an
example, we have demonstrated that the correctness properties of the ADEPT model and
the set of preconditions defined for each type of change operation constitute a good basis
for this. We have discussed how to deal with changes that cannot meet the correctness
criteria. We believe that neither hard-wired mechanisms nor hand-made solutions would
be satisfactory in practice. Instead we have proposed a more flexible approach, offering
several policies for dealing with the exceptions resulting from a change. We have compared
our model with other WF models, and we have shown that the semantics offered by the
change facilities of ADEPTflex captures those of other models by far. Finally, we have
addressed issues regarding the management of temporary as well as permanent changes
and the undoing of temporary changes when backward operations are applied.

The work presented in this paper has been well-motivated by a variety of organizational
studies and analyses of processes from the clinical domain (Kuhn et al., 1994; Meyer,
1996; Reichert et al., 1996) where ad hoc changes and dynamically evolving WFs are
rather usual and exceptions do frequently occur. We also implemented complex processes
from the University’s Women Hospital by applying current WF technology (Reichert et al.,
1997b). As a result, today’s WFMSs offer perspectives, but they are far away from providing
the flexibility needed by clinical users. The role of application developers and end users
in handling exceptions and in changing the structure of WFs is not well-understood and
therefore poorly integrated with today’s WFMSs.

For the future, however, we believe that WF technology has the potential to lead to a
completely different kind of application programming. The development of even complex
distributed application systems may reduce to the reuse of premodeled process templates
from a repository, the customization of these templates, and the insertion of the applica-
tion components in the style of plug-and-play. To be broadly applicable, however, future
WF technology must provide a high flexibility in user assistance and more human-centric
approaches that include an integral support for exception handling and dynamic structural
changes.

Although some progress has been achieved, a lot has to be done. Besides the topics
addressed in this paper, some specific areas that warrant further attention (and on which we
are currently working on) are

• the support of simultaneous changes on individual WF instances
• the application of dynamic changes to WFs whose schema is decomposed into several

parts that may be kept and controlled by different WF servers (e.g., Bauer and Dadam,
1997; Wodtke and Weikum, 1997)

• the “intelligent” support of WF ensembles, i.e., dynamically evolving collections of more
or less loosely coupled WFs. The requirements which can be identified here are far more
challenging than those faced by concurrency control in standard database technology
(Heinlein and Dadam, 1997)



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 125

• the development of general concepts for the integration of dynamic structural changes at
the schema level (e.g., Casati et al., 1996; Ellis et al., 1995) with changes at the instance
level (as proposed in this paper)

• the provision of “intelligent” interfaces for application programmers and for end users;
adding only functionality to current WF technology without understanding how the pro-
grammer or the end user will be able to utilize it will certainly not be helpful. In any case,
dynamic changes should be possible at the minimum cost to application programmers as
well as end users.

We believe that dynamic WFs are a field that would benefit by more intense study by the
research community. During the last years, we have developed a series of small prototypes
each of which concentrating on a single aspect like the modeling component, support
of temporal constraints, and support of dynamic changes in order to better understand
end-user related issues as well as implementation aspects (Blaser, 1996; Grimm, 1997;
Hensinger, 1997; Kirsch, 1996). Recently we have started the design and implementation
of ADEPTworkflow, the ADEPT workflow engine, which will integrate the features described
above within one system.

Appendix A

Correctness of a data flow schema

Definition A.1(Successor funtion). We define

succ: N → P(N)

with

succ(n) = {n′ ∈ N | ∃e ∈ E : e = n → n′ ∧
ETe ∈ {CONTROLE, SOFT SYNCE, STRICT SYNCE}}

succ: N → P(N)

with

succ(n) = {n′ ∈ N | n′ ∈ succ(n) ∨ (∃n′′ ∈ succ(n) : n′ ∈ succ(n′′))}
succ(n) comprises the set of all direct successors of the noden ∈ N, i.e., the set of nodes
which are the destination of a control or of a sync edge with sourcen. succdenotes the
transitive closure of this function.succ(n) comprises those tasks of the WF graph that
are reachable fromn by following control as well as sync edges. On the other hand, the
set succc(n) ⊆ succ(n) comprises those nodes fromN which are reachable fromn by
following only control edges. As the meaning of the corresponding predecessor functions
and their transitive closures is intuitive, we omit their definition here.

Example A.1. In the WF graph shown in figure 3 we have

succ(B) = {C, D, E, G, H, ENDFLOW}, succc(B) = {C, D, E, H, ENDFLOW}.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

126 REICHERT AND DADAM

Rule DF-2. Let P = (N, E, S, D, DF) be the schema of a WF. Forn1, n2 ∈ N with
Writes(n1, d) ∧ Writes(n2, d) we require

(1) (n1 ∈ succ(n2) ∨ n2 ∈ succ(n1)) or
(∃ ns ∈ N: ns is OR-join∧ ns ∈ M := (succc(n1) ∩ succc(n2)) ∧ ∀n ∈ M, n 6= ns :
n ∈ succc(ns))

(2) n2 ∈ succ(n1) ⇒ ∃n3 ∈ (succ(n1) ∩ pred(n2)) ∪ {n2} with Reads(n3, d)

Simplistically, we have omitted write operations of elements fromS in the presentation of
this rule. If n1 andn2, which have write access to the same data element, do not succeed
each other in the flow of control, they must belong to different branches of a branching with
an (inner) OR-joinns (cf., Rule(1)). Therefore, tasks from different branches of a parallel
processing (with AND-join) may not have write access to the same data element, unless
they are serialized by the use of a sync edge. Rule (2) aims at avoiding write-after-write
conflicts of succeeding tasks.

Appendix B

Correctness of a graph substitution when adding new tasks

Theorem B.1 (Syntactical correctness and termination behavior after adding a new
task). Let (N, E) be the syntactically correct control flow graph of a WF schema P, for
which(1) every node n∈ N is reachable from P’s start node and for which(2) from every
reachable state a final state can be reached. Furthermore let Mbefore, Mafter ⊂ N be two
disjoint sets with
(I1) ∀nb ∈ Mafter, ∀na ∈ Mbefore: nb ∈ succ(na) i.e., for all na ∈ Mbefore, nb ∈ Mafter we

require that na precedes nb in the flow of control
(I2) The region covered by the nodes from the set

Mbefore∪ Mafter ∪ (succ(Mbefore) ∩ pred(Mafter)) may only contain complete loop con-
trol structures

Then, the application of the presented insert algorithm to add a new task X between the
sets Mbeforeand Mafter (cf., Section3.1) results in a syntactically correct control flow graph
(N ′, E′) again, which also satisfies the properties(1) and(2).

Proof sketch: We sketch the idea for the proof of this theorem without considering
reduction rules. On the whole, the insert operation substitutes a (logical) blockB of the
graph(N, E) by a symmetrical block, namely a parallel branching with the inserted task
X andB as its branches. The symmetrical structuring of the graph is, therefore, preserved
and the insertion of the null tasks does not influence the termination behavior of the WF.
The restrictions for the use of sync edges (see Section 2.1) are further satisfied as the added
edges do only synchronize tasks from different branches of a parallel branching (namely
the taskX with tasks fromB), do not synchronize a node contained within a loop body
with the inserted taskX (because of condition (I2)) and do not lead to cycles or termination
problems. The latter is guaranteed by the ordering of tasks from the setsMbeforeandMafter



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 127

(because of condition (I1)). Based on this and on the properties (1) and (2), which are
valid for the starting graph(N, E), one can easily show that(N ′, E′) also satisfies these
properties. Note that only sync edges of the typeET= SOFT SYNCE are used. 2

Acknowledgments

We are grateful to Clemens Hensinger, Thomas Bauer, Christian Heinlein, and Birgit
Schultheiß for numerous interesting discussions on topics related to our research.

Notes

1. ADEPT stands forApplicationDevelopment Based onEncapsulated PremodeledProcessTemplates.
2. This does not necessarily mean that the value of an input parameter cannot be aggregated from the values of

several data elements (cf., Blaser, 1996).
3. This algorithm must be extended if a user wants to insert a new task between the start (or end) node of a loop

and an arbitrary node contained within the loop’s body.
4. B is defined as follows: It contains all nodes fromMbefore∪ Mafter (excl. the start node and the end node of

the WF graph), and it has a unique start/end node. Furthermore, if any node—except the end node—fromB
corresponds to the start node of a loop, the loop’s end node must also be contained withinB, (and vice versa).
The same constraints apply to branchings.

5. We have adopted this notion from (Casati et al., 1996). A null task does not correspond to any action in the
real world. After a null task has been triggered, its outgoing edges are marked immediately.

6. The setpred(X) corresponds to the transitive closure of nodes precedingX in the flow of control (cf., Appendix
A). Simplistically, we have omitted write operations from elements ofS in the definition of this set.

7. succ(X) ⊆ N comprises those nodes that are reachable fromX by following control as well as sync edges (cf.,
Appendix A).

8. Note, that these primitives modify the setsN, E, S, D andDF. Generally, their individual application to a WF
graph does not preserve its syntactical correctness and consistency.

9. There are rare cases in which it is not possible to redo a permanent change. Due to lack of space we do not
discuss this aspect here.

References

Alonso, G., Agrawal, D., Abbadi, A.El., Kamath, M., G¨unthör, R., and Mohan, C. (1996). Advanced transaction
models in workflow contexts.Proc. 12th Int. Conf. on Data Engineering. New Orleans, Louisiana: IEEE
Computer Society Press.

Antunes, P., Guimaraes, N., Segovia, J., and Cardenosa, J. (1995). Beyond formal processes: Augmenting work-
flow with group interaction techniques.Proc. Conf. on Organizational Computing Systems. Milpitas, CA: ACM
Press.

Attie, P.C., Singh, M.P., Sheth, A., and Rusinkiewicz, M. (1993). Specifying and enforcing intertask dependencies.
Proc. 19th Int. Conf. on Very Large Databases. (pp. 134–145). Dublin, Ireland: Morgan Kaufmann Publishers.

Barthelmess, P. and Wainer, J. (1995). Workflow systems: A few definitions and a few suggestions.Proc. Conf.
on Organizational Computing Systems. (pp. 138–147). Milpitas, CA: ACM Press.

Bauer, Th. and Dadam, P. (1997). A distributed execution environment for large-scale workflow management
systems with subnets and server migration.Proc. 2nd IFCIS Conf. on Cooperative Inf. Sys.(pp. 99–108).
Kiawah Island, South Carolina, USA: IEEE Computer Society Press.

Blaser, R. (1996). Composing Processes by the Reuse of Application Components (in German). Masters Thesis,
University of Ulm, Germany.

Blumenthal, R. and Nutt, G.J. (1995). Supporting unstructured workflow activities in the bramble ICN system.
Proc. Conf. on Organizational Computing Systems. (pp. 130–137). Milpitas, CA: ACM Press.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

128 REICHERT AND DADAM

Casati, F., Ceri, S., Pernici, B., and Pozzi, G. (1996). Workflow evolution.Proc. 15th Int. Conf. on Conceptual
Modeling. (pp. 438–455). Cottbus, Germany: Springer.

Casati, F., Grefen, P., Pernici, B., Pozzi, G., and S´anchez, G. (1997). WIDE Workflow Model and Architecture.
Technical Report, University of Milano, Italy.

Davis Jr., C.T. (1978). Data Processing Spheres of Control,IBM Systems Journal, 17, 179–198.
Eder, J. and Liebhart, W. (1995). The workflow activity model WAMO.Proc. 3rd Int. Conf. on Cooperative Inf.

Sys.(pp. 87–98). Vienna, Austria.
Ellis, C.A. and Nutt, G.J. (1993). Modeling and enactment of workflow systems.Proc. 14th Int. Conf. on Appli-

cation and Theory of Petri Nets. (pp. 1–16). Chicago, WA: Springer.
Ellis, C.A., Keddara, K., and Rozenberg, G. (1995). Dynamic change within workflow systems.Proc. Conf. on

Organizational Computing Systems. (pp. 10–21). Milpitas, CA: ACM Press.
Elmargarmid, A.K. (Ed.) (1992).Database Transaction Models for Advanced Applications, Morgan Kaufmann

Publishers.
Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An Overview of Workflow Management,Distributed

and Parallel Databases, 3, 119–153.
Grimm, M. (1997). ADEPTtime—Dealing With Temporal Dependencies in Flexible WFMSs (in German). Masters

Thesis, University of Ulm, Germany.
Han, Y., Himminghofer, J., Schaaf, T., and Wikarski, D. (1996). Management of workflow resources to support

runtime adaptability and system evolution.Proc. Int. Conf. on Practical Aspects of Knowledge Management.
Basel, Switzerland.

Heimann, P., Joeris, G., Krapp, C., and Westfechtel, B. (1996). DYNAMITE: Dynamic task nets for software
process management.Proc. 18th Int. Conf. Software Engineering. (pp. 331–341). Berlin, Germany.

Heinl, P., Schuster, H., and Stein, K. (1996). Behandlung von Ad-hoc-Workflows im MOBILE workflow-
modell.Proc. Softwaretechnik in Automation und Kommunikation—Rechnergesttzte Teamarbeit. (pp. 229–242).
Munich, Germany.

Heinlein, C. and Dadam, P. (1997). Interaction Expressions—A Powerful Formalism for Describing Inter-
Workflow Dependencies. Technical Report No. 97–04, Department for Computer Science, University of Ulm,
Germany.

Hennessy, M. (1989).Algebraic Theory of Processes, Cambridge: The MIT Press.
Hensinger, C. (1997). ADEPTflex—Dynamic Modification of Workflows and Exception Handling in WFMSs (in

German). Masters Thesis, University of Ulm, Germany.
Hofstede, A., Orlowska, M., and Rajapaks, J. (1996). Verification problems in conceptual workflow specifications.

Proc. 15th Int. Conf. on Conceptual Modeling. (pp. 73–88). Cottbus, Germany: Springer.
Hsu, M. (Ed.) (1993). Special Issue on Workflow and Extended Transaction Systems,IEEE Bulletin of the Technical

Commitee on Data Engineering, 16(2).
Hsu, M. (Ed.) (1995). Special Issue on Workflow Systems,IEEE Bulletin of the Technical Commitee on Data

Engineering, 18(1).
Hsu, M. and Kleissner, C. (1996). ObjectFlow: Towards a Process Management Infrastructure,Distributed and

Parallel Databases, 4, 169–194.
Kamath, M. and Ramamritham, K. (1996). Bridging the gap between transaction management and workflow

management.Proc. NSF Workshop on Workflow and Process Automation Inf. Sys.Athens, Georgia.
Karbe, B., Ramsperger, N., and Weiss, P. (1990). Support of Cooperative Work by Electronic Circulation Folders,

SIGOIS Bulletin, 11, 109–117.
Kirsch, M. (1996). Design and Implementation of a Graphical Tool for the Modeling and Animation of Flexible

Workflows (in German). Masters Thesis, University of Ulm, Germany.
Kreifelts, T., Hinrichs, E., Klein, K.-H., Seuffert, P., and Woetzel, G. (1991). Experiences with the

DOMINO office procedure system.Proc. 2nd European Conf. on CSCW. (pp. 117–130). Amsterdam,
The Netherlands.

Kuhn, K., Reichert, M., Nathe, M., Beuter, T., and Dadam, P. (1994). An infrastructure for cooperation and
communication in an advanced clinical information system.Proc. 18th Symp. on Comp. in Med. Care. (pp. 519–
523). Washington: Hanley & Belfus, Medical Publisher.

Leymann, F. (1995). Supporting business transactions via partial recovery in workflow management systems.
Proc. Datenbanksysteme in Büro, Technik und Wissenschaft. (pp. 51–70). Dresden, Germany: Springer.



P1: SUD

Journal of Intelligent Information Systems KL558-01-Richert February 9, 1998 13:28

ADEPTflex—SUPPORTING DYNAMIC CHANGES 129

Leymann, F. and Altenhuber, W. (1994). Managing Business Processes as an Information Resource,IBM Systems
Journal, 33, 326–348.

Manna, Z. and Pnueli, A. (1992).The Temporal Logic of Reactive and Concurrent Systems-Specification, Springer.
Meyer, J. (1996). Requirements for Future WFMSs: Flexibility, Exception Handling and Dynamic Changes in

Clinical Processes (in German). Masters Thesis, University of Ulm, Germany.
Nastansky, L. and Ott, M. (1996). Teambasiertes Workflowmanagement und Analyse Prozeorientierter Teamar-

beit im Bereich Zwischen Kooperativer und Strukturierter Vorgangsbearbeitung.Technical Report, Workgroup
Computing Competence Center Paderborn, University of Paderborn, Germany.

Reichert, M., Kuhn, K., and Dadam, P. (1996). Process reengineering and process automation in clinical application
environments (in German).Proc. GMDS’96. (pp. 219–223). Bonn, Germany: MMV Medizin Verlag.

Reichert, M. and Dadam, P. (1997a). A framework for dynamic changes in workflow-management systems.
Proc. 8th Int. Workshop on Database and Expert Systems Applications. (pp. 42–48). Toulouse, France: IEEE
Computer Society Press.

Reichert, M., Schultheiß, B., and Dadam, P. (1997b). Experiences with the development of process-oriented
clinical application systems based on process-oriented workflow technology (in German).Proc. GMDS’97.
(pp. 181–187). Ulm, Germany: MMV Medizin Verlag.

Reinwald, B. (1993).Workflow-Management in Verteilten Systemen, Stuttgart: Teubner.
Reuter, A. and Schwenkreis, F. (1995). ConTracts—A Low-Level Mechanism for Building General-Purpose

Workflow Management Systems,IEEE Bulletin of the Technical Committee on Data Engineering, 18, 4–10.
Sheth, A., Georgakopoulos, D., Joosten, S., Rusinkiewicz, M., Scacchi, W., Wileden, J., and Wolf, A. (1996).

Report from the NSF Workshop on Workflow and Process Automation in Information Systems, Technical
Report No. UGA-CS-TR-96-003, University of Georgia.

Sheth, A. and Kochut, K. (1997). Workflow applications to research agenda: Scalable and dynamic work coordi-
nation and collaboration systems.Proc. of the NATO Advanced Study Institute on WFMSs and Interoperability.
Istanbul, Turkey.

Siebert, R. (1996). Adaptive workflow for the german public administration.Proc. 1st Int. Conf. on Practical
Aspects of Knowledge Management—Workshop on Adaptive Workflow. Basel, Switzerland.

Strong, D.M. and Miller, S.M. (1995). Exceptions and Exception Handling in Computerized Information Processes,
ACM Transactions on Inf. Sys., 13, 206–233.

Vogel, P. and Erfle, R. (1992). Backtracking office procedures.Proc. 15th Int. Conf. on Database and Expert
Systems. (pp. 506–511). Valencia, Spain: Springer.

Weber, M., Partsch, G., Scheller-Huoy, A., Schweitzer, J., and Schneider, G. (1997). Flexible real-time meeting
support for workflow management systems.Proc. 30th Int. Conf. on System Sciences. Maui, Hawaii: IEEE
Computer Society Press.

Winograd, T. and Flores, F. (1986).Understanding Computers and Cognition: A New Foundation For Design,
Norwood, NJ: Ablex Publishing Corporation.

Wodtke, D. and Weikum, G. (1997). A formal foundation for distributed workflow execution based on state charts.
Proc. Int. Conf. on Database Theory. Delphi, Greece.

Worah, D. and Sheth, A. (1997). Transactions in Transactional Workflows. In S. Jajodia and L. Kerschberg (Eds.),
Advanced Transaction Models and Architectures. Kluwer Academic Publishers.


