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Abstract. Today'’s workflow management systems (WF}8re only applicable in a secure and safe manner

if the business process (BP) to be supported is well-structured and there is no need for ad hoc deviations
run-time. As only few BPs are static in this sense, this significantly limits the applicability of current workflow
(WF) technology. On the other hand, to support dynamic deviations from premodeled task sequences must |
mean that the responsibility for the avoidance of consistency problems and run-time errors is now complete
shifted to the (naive) end user. In this paper we present a formal foundation for the support of dynamic structur
changes of running WF instances. Based upon a formal WF model (ADEPT), we define a complete and minim
set of change operations (ADEf}) that support users in modifying the structure of a running WF, while
maintaining its (structural) correctness and consistency. The correctness properties defined by ADEPT are use
determine whether a specific change can be applied to a given WF instance or not. If these properties are violat
the change is either rejected or the correctness must be restored by handling the exceptions resulting from
change. We discuss basic issues with respect to the management of changes and the undoing of temporary cha
at the instance level. Recently we have started the design and implementation of fdd&T the ADEPT
workflow engine, which will make use of the change facilities presented in this paper.
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1. Introduction

Process-oriented workflow management systems (W4 {B2orgakopoulos et al., 1995;
Hsu, 1995; Leymann and Altenhuber, 1994) offer a promising approach for the developme
of business applications that directly follow the execution logic of the underlying busines:
process (BP). The separation of the applications control structures from the implementatic
of its task programs contributes to simplify and to speed up application development, ar
enables the run-time system to assist users in coordinating and scheduling the tasks of a
Current process-oriented WFMSs are applicable in a reliable and secure manner or
if the BP to be supported is well-structured and there is no need for ad hoc deviations
dynamic extensions at run-time (see, Barthelmess and Wainer, 1995; Ellis et al., 199
Siebert, 1996; Reichert and Dadam, 1997a). As only few BPs are static in this sens
this significantly limits the benefit and the applicability of current workflow (WF) technol-
ogy. As an example, consider BPs from the clinical domain (see, Reichert et al., 1991
1997b), where it is often not convenient and cost-effective to capture all possible tas
sequences in advance. There are several reasons for this: firstly, there are many W
whose planning and execution overlalyiiamically evolving Wyor which are completely
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specified at run-time (ad hoc WF); secondly, unplanned events and exceptions frequen
occur leading ta@d hoc deviations from the preplanned WIExceptions cover cases such
as requests to deviate from standard processes due to an external event (e.g., in cas
an acute emergency), failed tasks (e.g., when prerequisites for a medical intervention ¢
violated), incomplete or erroneous information in task inputs and outputs (e.g., incomplet
medical orders), or situations that arise from mismatches between the real processes witl
the organization and their computerized counterparts (e.g., due to incomplete or faull
WF specifications or due to organizational changes) (Strong and Miller, 1995; Meyel
1996). Since WF designers are generally not capable to predict all possible exceptio
and events beforehand and to capture them in the design of a WF, the WFMS does r
always have sufficient knowledge to handle these situations alone. Instead, user invol
ment is required in order to resolve exceptions and to deal with unplanned events. Henc
the resulting requirements are far more challenging than those faced by standard trans
tion technology and advanced transaction models (Worah and Sheth, 1997; EImargarm
1992).

A basic step towards more flexibility is the effective and efficient support of ad hoc
modifications and well-aimed extensions of processes during their execution. So a WFM
must provide functions for adding or deleting tasks as well as whole task blocks and fc
changing predefined task sequences, e.g., by allowing users to skip tasks, with or withc
finishing them later, to work on tasks although the conditions for their execution are no
yet completely satisfied, or to serialize two tasks that were previously allowed to run ir
parallel. Ad hoc changes may also concern single attributes of a WF object (e.g., a tasl
Examples are the reassignment of a task or the modification of a task’s deadline. As the
changes are less critical to handle than structural changes, we do not consider them furtl
in this paper.

1.1. Problem description

To allow users to deviate from premodeled task sequences of a WF at run-time is a two-ed
sword. On the one hand, it captures the natural freedom of process participants to wo
on a BP and to deal with exceptional situations and unplanned events. On the other hat
unrestricted changes to the structure of along-running program—possibly in the midst of i
execution—make it difficult to have the system behave in a predictable and correct manne
For this reason, supporting dynamic WF changes must not mean that the responsibili
for the avoidance of consistency problems or run-time errors is now completely shifted t
the naive end user or to the application programmer. Instead, correctness and consistel
criteria are required in order to enable the run-time system to adequately assist users
applying structural changes. That is, the system should guarantee that all consister
constraints that have been ensured prior to a dynamic change are also ensured after the
WEF instance has been modified.

First of all, this requires that all types sfructural dependencidsetween tasks (e.g.,
control, data, and temporal dependencies) are taken into consideration when the WF instal
is restructured. Otherwise, changes such as the deletion or the addition of a task may ca
severe inconsistencies (e.g., unintended lost updates) or even run-time errors (e.g., progt
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crashes due to the invocation of task modules with invalid or missing parameters). Chang
must consider the state of the WF instance, too. For example, it should not be possik
to delete a task or to change its attributes if it was already completed. Convenient rule
which should not appear as too restrictive to users, must be defined in order to avoid :
improper and uncontrolled use of change operations. Finallysdourity reason& must

be possible to restrict the use of change operations to selected users, or user roles, to spe
WF types or regions of a WF graph (e.g., a single task), to certain states of a WF, or to ar
combination of them.

Normally, several instances of a specific WF type are active at the same time. As chang
of different kinds may be applied to these instances during their execution, several issu
must be addressed. First of all, WF instances of the same type (i.e., the same starti
schema) may have to be represented by diffeexetution graphs Secondly, the run-
time system must manage changes of different nature concerning their durability. This
especially important for long-running processes where applied changes may be perman
or temporary.Permanent changesust be preserved until completion of the process. By
contrastfemporary changesiay have to be undone if the control of the WF is passed back
to a previous point of control (e.g., when a new iteration of loop is entered). Consequenth
a technical challenge is how to represent and manage these different types of chang
and how to undo temporary changes in a correct manner. This requires sophisticat
mechanisms for change management and a close integration of change operations w
other core services of the WFMS. Finally, changes should be made “on the fly” without los
of run-timeperformanceand without disturbing process participants not actively involved
in the change.

In summary, dynamic structural changes represent serious interventions into the conti
of a WF, which cannot be handled without extensive system support. In providing suppo
for dynamic WF changes, whether for the process administrator or, in some form, for th
process participants, it is crucial that these facilities will be manageable and usable in
proper and secure manner.

1.2. Contribution of this paper

In this paper we present a formal foundation for the support of dynamic changes of runnir
WF instances. We concentrate on structural changes and on related modification operatio
Implementation issues, e.g., concerning the transactional execution of changes, are outs
the scope of this paper. Fundamental to our approach is a conceptual, graph-based \
model (ADEPT) which has a formal foundation in its syntax and (operational) semantics.
Based on this model we develogamplete and minimal set of change operatiaisch
support users in modifying the structure of running WF instances, while preserving thei
correctness and consisten@YDEPT,). If a change leads to the violation of correctness
properties, itis either rejected or the correctness of the WF graph (e.g., concerning the flc
of data) must be restored by handling the exceptions resulting from the change (possik
leading to concomitant changes). Furthermore, we show how temporary and permane
structural changes of WF instances are managed and which precautions must be mad:
enable the run-time system to undo temporary changes in case of backward operations.
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The contribution of this paper is demonstrating the principle feasibility of our approach
and giving some insights into fundamental research issues related to dynamic WF chang
This includes the following three results:

e we demonstrate the suitability of our WF model for WF specification and for the suppor
of dynamic structural changes,

e we show how even complex, dynamic structural changes can be applied to a WF instan
during its execution and which precautions must be made to do this in a secure and corre
manner,

e we discuss technical challenges and possible solutions concerning the management
temporary as well as permanent changes.

At this point we have a prototype running that supports the basic concepts and the chan
operations presented in the following. For the remainder of the paper we concentrate on
hoc structural changes applied to individual WF instances. We do not explicitly conside
changes at the schema lewld their propagation to WFs whose execution started with the
old schema (see Casati et al., 1996; Ellis et al., 1995). However, many of the present
concepts can also be applied to this type of change.

Section 2 gives an overview of the ADEPT WF model. In Section 3 we present ¢
complete and minimal set of change operations which can be used to modify the structu
of a WF during its execution. Section 4 addresses issues concerning the managemen
changes and their undoing in case of backward operations. Section 5 discusses rela
work. We conclude with a summary, an overview of related issues not addressed withi
this paper, and an outlook on future work in Section 6.

2. Fundamentals of the ADEPT workflow model

A variety of WF description languages have been discussed in the literature. Some |
them are based on formal models such as high level Petri nets (Ellis and Nutt, 1993; Ell
et al., 1995; Kreifelts et al., 1991; Leymann and Altenhuber, 1994), state- and activity
charts (Wodtke and Weikum, 1997), temporal logic (Manna and Pnueli, 1992; Attie et al.
1993), or process algebra (Hennessy, 1989). One strength of these formal approact
lies in the offered mechanisms for specifying, analyzing, and verifying the properties o
static WF structures, e.g., regarding state transitions, deadlocks, or the reachability
states. Adequate mechanisms for modifying these structures at run-time, however, ¢
missing for the most part (cf., Ellis et al., 1995). To support dynamic WF changes we
plead for the use of a formal model, too. For several reasons we do not believe that tt
general-purpose models mentioned above do build the right basis for this. Firstly, the
generality makes the analysis of more complex WF models extremely costly (cf., Hofstec
et al., 1996), which may cause a significant overhead when complex structural chang
become necessary at run-time. Secondly, for the effective support of users—possibly no
computer experts—in performing dynamic changes, a WF model must allow an intuitive
and structured representation of a BP, which is hard to achieve with these models.
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The ADEPT model presented in this section follows a more structured approach. Esse
tial for the specification and for the execution of WFs is the concepywimetrical control
structures which is well-known from structured programming (cf., Reinwald, 1993): task
sequences, branchings (with different split and join semantics), and loop backs are spe
ified as symmetrical blocks with well-defined start and end nodes. These blocks may t
arbitrarily nested, but they are not allowed to overlap, i.e., the nesting must be regular. |
addition, ADEPT provides support for the synchronization of tasks from parallel branche
of a WF graph. A detailed description of the ADEPT model is beyond the scope of this
paper. We restrict our considerations to the basic concepts provided for the specification
the control and data flow of a WF. Other important aspects, e.g., the modeling of tempor:
and organizational aspects and mechanisms for their dynamic adaptation are describec
(Grimm, 1997; Hensinger, 1997; and Kirsch, 1996).

2.1. Workflow modeling

In this section we informally introduce the basic modeling concepts offered by ADEPT.
A WF schemaomprises a set ahsksandcontrol as well asdata dependencigsetween
them. We restrict our considerationssimple tasksi.e., activities which cannot be further
divided and of which the execution is requested by external (not necessarily human) agen

Flow of control. We represent a WF'’s control flow as a directed, structured grspl).
Tasks are abstracted as a set of naddgf different typesNT) and control dependencies
between them as a set of directed edge®f different typesET). The use of nodes and
edges has to meet the restrictions which we describe in the following. Each WF schema h
auniguestart nodgNT= STARTFLOW, and ithas a uniquend nodéNT= ENDFLOW).

The start node has no predecessor, and the end node has no successor. All other nddes fro
must be preceded and succeeded by at least one nodsediential executioof two tasks

is modeled by connecting them with a control edg& £ CONTROLE). The modeling of
branchess depicted in figure 1. Branches start with a split node, and they are synchronize
symmetrically at a unique join node. ADEPT supports three types of brancpargllel
processing(AND-split/AND-join), conditional routing(OR-split/OR-join), andparallel
branching with final selectiofAND-split/OR-join). The routing decision of eonditional
branching(see figure 1(b)) may either be value-based or is made by users. In the latter ca
all successors of the split node are triggered when it fires. As soon as one of these taxs

=N
*@‘ Al
& |
I:ﬂ AND- OR- AND- OR-
split split join join

Figure 1L (a) Parallel processing, (b) conditional branching, and (c) parallel branching with final selection.
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is selected for execution, the work items of the others are removed from the correspondir
worklists. This allows us to model situations where several tasks are activated, but only or
of them may be executed. When the split node péeallel branching with final selection
(see figure 1(c)) fires, all successor branches are triggered, and they may be worked
concurrently. In contrast to a parallel processing, the flow may proceed at the join noc
as soon as one of the branches is completed. Depending on their current state the task
the other branches are then removed from the corresponding worklists, aborted, or undol
Undoing a branch does not necessarily lead to the execution of compensation tasks. In ¢
case, the corresponding tasks are reset in their state (see Section 2.2), and their effect:
data elements of the WF (see below) are undone. As an important extension, more th
one branch may be completed. In this case the “winner” must be selected by an authoriz
user before the flow can proceed.

Up to now we have only considered non-cyclic WF graphs. In ADEPT, the repetitive

execution of a set of tasks can be modeled by the useopk Like a branching, a loop
corresponds to a symmetrical block with a unique start ndbile=£ STARTLOOPand a
unigue end nodeNT = ENDLOOB which are connected by a loop ed@I(= LOOP_E).
In addition, the end node is associated with a loop condition, which is evaluated each tin
the node is triggered. As we will see in Section 4, the use of loops raises some challengi
issues in connection with dynamic changes. When inserting a new task into a loop’s bod
for instance, it must be clear whether this insertion should only be valid for the curren
iteration of the loop or for following iterations as well.

To take provisions for task failures already at the modeling level, ADEPT provides &
second type of backward edgefadlure edge(ET = FAILURE_E) connects a taskjure
with a preceding node..siart At run-time, the edge signals if the execution of the t&glre
fails. Asaconsequence, all nodes succeedifgg+(incl. Nrestar) and precedingsaiiure (iNcl.
Nailure) are resetin their state. In contrast to a loop iteration, the effects of the correspondir
tasks on the data elements of the WF instance (see below) are undone. Afterwards the fl
proceeds with the execution Bf.s: Note that the symmetrical structuring and the regular
nesting do not apply to failure edges, as a task may have several outgoing failure edg
possibly linking it with nodes from different branches of a preceding parallel branching
Another restriction must be added: If the nodgartis contained within a loop’s body (or
within a branch with OR-join), this body (branch) must also contain the mgglge. As
the use of failure edges is therefore not always possible in connection with these contr
structures, also we support the dynamic rollback of WFs. Generally, the state of a WF ¢z
be reset to an arbitrary previous state.

The expressive power of the control structures presented so far is not sufficient for tk
modeling of WFs with long-running, concurrent executions. To support synchronization:
of tasks from different branches of a parallel processing, two typggamwhronization edges
(sync edges) are supported:

e A “soft” synchronizationn; — n, (ET = SOFT.SYNCE) is used to specify delay
dependencyetween the two tasks; andn,, i.e., n, may only be executed if is
either completed or if it cannot be triggered anymore. This type of synchronization doe
therefore not necessarily require the successful completian. of
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NT: node type

ET: edge type
NT = ENDLOOP

NT = STARTFLOW - NT=ENDFLOW

Loop Condition C

Figure 2 Example of a simple WF model.

e Onthe other hand, a“strict” synchronization— n, (ET=STRICTSYNCE) between
n; andn, requires thah; must be successfully completed befoees allowed to start.
A strict synchronization may be used to synchronize tasks from a conditional branchin
with tasks from a parallel branching with final selection.

The use of sync edges has to meet certain constraints in order to avoid redundant cc
trol dependencies between tasks, cycles, or even termination problems of the WF. In a
case, only nodes from different branches of a parallel processing (with AND-join) may be
synchronized by the use of sync edges. Furthermore, a sync edge may not connect a n
from inside a loop bod¥ with a node not contained withiB.

Example 1 Figure 2 shows an example for the use of a soft synchronization: theltesk
triggered whert is completed anét is either completed or skipped (i.e., the corresponding
branch is not selected for execution).

Flow of data. The input and the output data of tasks and the flow of data between then
are an important functional aspect of a WFMS. Nevertheless, the modeling of the data flo
and the exchange of structured data between the tasks of a WF are often poorly suppor
in today’s WFMSs (Sheth et al., 1996). This leaves significant complexity to applicatior
developers, and it makes itimpossible to provide system support for verifying the correctne
of a data flow schema or for adjusting it when structural changes are applied to a WF. |
our model, the exchange of data between tasks is based on global WF variables: a V
schema is associated with a set of data elemBmsere each elemedte D has a unique
identifierid® and a domairdonf. The data flow between tasks is defined by connecting
their parameters with elements frdin For simplification, the input (output) parameters of
the WF schema are logically treated as the output (input) parameters of its start (end) noc

In practice, there are often great differences in the format and in the representation
data which is the output of one task and the input to another. In order to avoid hard-wire
adjustments within task modules, each task node N can be associated with a set of
so-called auxiliary serviceS,. The execution of these services is closely connected to the
execution of the task. An auxiliary servisee S, := S'° U §Uis either triggered when
nis started§ € S'°°) or when it is terminateds(e U9, and it therefore does not appear
as a separate work item in any worklist. Services from theS$ét may also be used to
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request incomplete or missing input data of a task from the user initiating it, which ha:
turned out to be important in our context (see Section 3). Furthermore, a t{atso the
application program associated with it) may only be executed after all servicesffom
have been successfully completed. On the other hand, if a task fails or if it is undone, tf
effects of its associated services on global data elements are undone as well.

Definition 1 (Data flow schema) Let (N, E) be the control flow graph of a WF scherRa
and letD denote a finite set of data elements associated®uithet furtherPAR$X) denote
the set of parameters associated with the task or the seX\jleAR$ X) := INPAREX) U
OutPAR$X)]. A data link dfbetween a parametgar® and a data elememt® is then
described by the 4-tuple:

df = (d*, n", par®’, accessmodé)

with

deD,neN U s(s:: Ush), par®’, ¢ PARSnY),

neN

accessmodd’ € {read, write}

The set of all data linkBF, connecting task or service parameters with global data element:
from D, is called thedata flow schemaf P.

The data links connecting service parameters with data elementffrimmm a key part
of P’s data flow schema. The intuitive meaning of a li@k n, p, read) € DF is that the
value of p € INPARSN) is read fromd when the task is started. On the other hand, the
data link(d, n, p, write) expresses that the value of the output paramgtetOutPAR $n)
is written intod after the successful completionrmof In Section 2.3 we introduce properties
for the correctness of a data flow schema; these properties constitute the basis for detect
possible exceptions resulting from a change and for adjusting the data flow schema wh
the WF is restructured.

With respect to data management we follow an approach similar to that described i
(Reuter and Schwenkreis, 1995). When a task (or service) updates a data eleitent
current value is not overwritten. Instead a new version is created, which may be access
by succeeding tasks and services. This allows us to restore previous values of data eleme
in case of a partial rollback, and it makes it possible for tasks from different branches ¢
a parallel processing (with OR-/AND-join) to work on different copies of the same data
element.

Example 2 An example for a simple data flow schema is depicted in figure 3 [Note, that
the output parameter (input parameter) of the start node (end node) corresponds to the in
parameter (output parameter) of the WF]. Assume@laas read access to the data element
d; Although the tasikC may writed; beforeG is started, this value would not be visible to
G. G may only access that value df written by the start node of the flow. Generally, a
task may only read those values of a data element which have been written by a task or
a service preceding it in the flow of control.
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d, d; d; “d__ dataelement NT: node type
i pas | --» datalink ET: edge type

(d4, STARTFLOW, par4, write),

(d1, B, parz, read), (di, C, pars, write),
(de, B, pary, write), (ds, C, pars, write),
(ds, D, pars, write), (ds, H, parz, read),
NT = STARTFLOW NT = ENDFLOW (d3, ENDFLOW, pars, read)

}

Figure 3 Example of a simple data flow schema.

In summary, a WF schenfa is described by a 5-tuplé\(, E, S, D, DF) with finite and
non-empty setdN of tasks andce of directed edges between ther.denotes the set of
services preceding or succeeding the execution of td3ldenotes the set of data elements
andDF defines the set of data links connecting task and service parameters with elemer
from D.

2.2. Workflow execution

The state of a WF instance is one of the major criteria for deciding whether a specifi
structural change can be applied to it or not. As an example, consider the deletion of
task which should not be allowed if the task was already completed. Furthermore, afte
applying structural changes to a WF graph, concomitant changes of the states of its noc
and edges may become necessary in order to proceed with the flow of control. The state
a newly inserted task, for instance, may have to be changed depending on the states of
predecessors.

ADEPT is based on a well-defined operational semantics to support this. The state
a WF instance is defined by the current marking of its nodes and edges, by the valu
stored for its data elements (possibly in different versions), and by its execution histon
The state of a single tagkis described by the current markitNS' of its node(NS' €
{NOT_ACTIVATED ACTIVATED RUNNING COMPLETED FAILED, SKIPPED), the
total numbeit" of its previous executions, and relevant data about them. Finally, each edg
e of a WF execution graph is in one of the stae$ € {NOT_SIGNALED FALSE SIG
NALED, TRUE. SIGNALED. When a WF instance is created, the graph of its starting
schemakll, E, S, D, DF) is initialized. The state of all nodes is setN®@T_ACTIVATED
and all edges are markedd®T_SIGNALED Furthermore, the WF's input data are stored
in the corresponding data elements.

When the WF is started, the start node of its graph is marked@¥PLETED and
its outgoing control edge is set TRUE SIGNALED Each time an edga; — n, (of
arbitrary type) is marked, the state of its destination noglés reevaluated according
to the execution rulesdefined by ADEPT. Executions rules describe the conditions un-
der which a node may be activated, i.e., routed to the corresponding worklists. If th
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4

NS = ACTIVATED
NS = COMPLETED

<

* ES=TRUE_SIGNALED
ES = FALSE_SIGNALED

o

NT : node type
ET : edge type

Loop Condition C

Figure 4. Application of execution and signaling rules in connection with a loop.

noden, corresponds to an AND-join, for instance, it is set to the sFEFIVATEDIf

the following conditions are met, is marked alNOT_ACTIVATEDand all ingoing con-
trol edges(ET=CONTROLE) are marked a§RUE.SIGNALED Furthermore, all sync
edgesn — ny, ne N with ET= STRICTSYNCE must be marked aBRUE. SIGNALED

and all sync edges — nz, ne N with ET = SOFT.SYNCE must be marked as either
TRUE SIGNALEDor FALSE SIGNALED(see Section 2.1). Corresponding execution rules
exist for all node types of a WF (incl. the start and the end nodes of loops).

The completion of a task leads to the signaling of its outgoing control as well as of its
outgoing sync edges. The marking of edges follows well-defsigtaling ruleswhich are
based on the operational semantics of the different control structures. Upon successful co
pletion of an AND-split node, for example, all outgoing edges are SERtdE SIGNALED
This, in turn, may trigger the activation of succeeding tasks, and so on. On the other han
a task is skipped if it cannot be activated anymore. That is the case, for example, if th
task belongs to a branch of a conditional branching that has not been chosen for executit
or if an ingoing sync edge of the task (WilHT = STRICTSYNCE) has been marked as
FALSE SIGNALED When a task node is marked 8KIPPED its outgoing edges are set
to FALSE SIGNALED which may lead to the skipping of succeeding nodes.

Finally, a WF instance terminates successfully when the ingoing control edge of its en
node is set td RUE. SIGNALED We omit further details and present two examples instead.

Example 3 Figure 4 shows the use of the execution and signaling rules in connection witl
a loop. AfterE was completed and the loop conditiGnwas evaluated tdRUE the loop
edge is set td RUE SIGNALED(see figure 4(a)). This, in turn, triggers the execution of
the start node of the loop, whereupon the states of all nodes and edges of the loop’s bo
(incl. the loop’s end node and the loop edge) are reseCaiscactivated (see figure 4(b)).

Example 4 As a second example, consider figure 5(a). Assume that upon receiving
node termination event frorB its outgoing control edg8 — C signalsTRUEand the
edgeB — D signalsFALSE This, in turn, leads to the reevaluation of the no@eand

D, which are activated respectively skipped. After skippihgts outgoing control as well
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- ET: edge type

« NS=ACTIVATED v NS =COMPLETED ® ES=TRUE_SIGNALED
» NS =RUNNING % NS = SKIPPED o ES=FALSE_SIGNALED

Figure 5 Synchronizing nodes from different branches of a parallel processing.

as its outgoing sync edges are seEAdSE SIGNALED Consequently, the state Gf is
reevaluated, and it is set &CTIVATED(see figure 5(b)).

2.3. Correctness and consistency properties

As motivated in Section 1, formal criteria are needed to identify the possible exception
resulting from a structural WF change and to provide support for handling them. In thi:
section we give an overview of some of the correctness properties defined by ADEPT. W
focus on the flow of data. Properties regarding the correctness of the control flow are on
sketched at the beginning of this section.

Flow of control. A control flow graph(N, E) must meet certaiconstraintsin order to
ensure the correct execution of the WF at run-time. Each nodeN must be reachable
from the WF'’s start node. Thatis, there is a valid sequence of sighaling events leading fro
the initial marking of the WF graph to the activationrofsee Section 2.2). Furthermore, we
require that from every reachable state of the WF a final state can be reached, i.e., there |
valid sequence of signaling events leading from the current marking of the WF graph to th
activation of its end node. For non-cyclic WF graphs, which are based on task sequenc
and symmetrical branchings, these properties are satlsfiednstruction This does not
always apply to a WF graph whose control structures contain backward or sync edges. F
example, the use of sync edges should not lead to cycles or termination problems of tl
flow. The presentation of conditions under which a grégh E) satisfies these properties
and algorithms for their analysis are outside the scope of this paper.

Flow of data. In the following, we simplistically assume that for the correct execution
of an actionA (i.e., a task program or an auxiliary service assigned to a task) all input
parameters must be supplied, and that after its successful completion all output paramet
are written. ADEPT imposes a set of restrictions which govern the nature of a correc
data flow schema. For each data lsk € DF (cf., Definition 1) the domains ad' and
par?” must be type compatible. In addition, each parameter of an action must appear
exactly one data linkif € DF2. In order to avoid the invocation of actions with missing
or incomplete input data the following constraint has to be added:
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Rule DF-1. LetP=(N, E, S, D, DF)be the schema of a WF. Fore N U Slet V"
denote the set of all valid action sets (incl. tasks fidras well as services fror8) whose
elements precedein the flow of control and which are completed befaris started. For
ne NUS de D we then require:

Readgn,d) = (YV e V" :3In* e V : Writegn*, d))

The predicaté&readsn, d) (Writegn, d)) expresses that an input parameter (an output pa-
rameter) oh € N U Sis connected ta by a data linkd f € DF.

This rule ensures that all input parameters of an action are supplied before it may &
executed. Trivially, for a given task € N, NT" # STARTFLOWwhich reads a data
elementd, the rule DF-1 is satisfied il is written by the start node of the WF, or if it is
written by a preceding auxiliary servisee S'°°. Furthermore, this rule guarantees that
the output parameters of a WF (i.e., the input parameters of its end node) are complete
supplied. In order to avoid unintended lost updates of data elements a second constra
has to be made, which we describe only informally here. For details the interested read
is refered to Appendix A.

Rule DF-2. Tasks from different branches of a parallel processing (with AND-join) are
not allowed to have write access to the same data element, unless they are synchronizec
a sync edge.

Write-after-write conflicts might also occur if two succeeding tasks have write acces:
to the same data element and no read access occurs between them (see Appendix A)
(Hensinger, 1997) we present an algorithm for checking the correctness of a data flo
schema with respect to the rules DF-1 and DF-2. The algorithm makes use of the syr
metrical structuring of WF graphs, but it considers synchronizations between tasks fror
parallel branches as well. For a basic understanding, however, an example is more suital

Example 5 Inthe WF graph depicted in figure G,may read the data elemeitsandd,,
butitis not allowed to reads; ds is not written within all task sets ¢ = {{STARTFLOW

A, B, D, F}, {STARTFLOWA, B, F}}. The taskH, however, may read the data elements
d;, dp, andds as each of them is written within all task sets froffi = {{STARTFLOWA,

F, G, B, C, E}, {STARTFLOWA, F, G, B, D,E}} (cf., rule DF-1).G would not be allowed
to write d3 as this data element may be written by the concurrent@a&K., rule DF-2).

Of course, the constraints upon which the definitions of the rules DF-1 and DF-2 ar:
based must be relaxed in several respects. In our current implementation we follow a mo
flexible approach that distinguishes between optional and mandatory task parameters. St
extensions are important as not always all input parameters of a task are necessarily requi
for the correct processing of the task program. We further distinguish between paramete
that can be supplied by a corresponding auxiliary service and those that cannot. We enri
interface descriptions with semantic information about parameters, and we provide suppc
for referenced data (e.g., documents or database objects). Finally, concurrent write ope
tions to the same data element must be allowed under certain conditions (e.g., in connect
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with data elements of typBETor LIST). For simplification, we omit these extensions for
the remainder of the paper.

Note, that structural changes of a WF may violate the presented rules if no furthe
precautions are made. The deletion of a task, for instance, is accompanied by the delet
of the data links connecting its output parameters with elements BonThis, in turn,
may lead to missing parameter data for succeeding steps and therefore to a violation
rule DF-1. On the other hand, the dynamic insertion of a task and the addition of new da
links connecting its output parameters with elements fidmay lead to lost updates and
therefore to the violation of rule DF-2. We will come back to this in Section 3.

2.4. Adequacy of the ADEPT model

At first glance, the ADEPT model seems to be somewhat limited when compared to oth
WF models. Thesstructural limitationsare deliberated, as they offer advantages in several
respects: The use of symmetrical control structures provides the basis for a syntax-drivi
design of WF's (cf., Kirsch, 1996) and for an efficient analysis of structural properties
of a BP model (cf., Hensinger, 1997). We believe that this is crucial for the support o
dynamic WF changes, especially if we want to ensure that applied changes are correct.
our experience, ADEPT offers a good compromise for the trade-off existing between th
expressive power of a WF model on the one hand, and the complexity of model checkin
on the other hand. With respect to clinical BPs (by nature these processes are probal
much more complex than the BPs found in many other application areas) it has prove
that the modeling power of ADEPT is adequate. Note, that for the specification of mort
complex BPs, sync edges, failure edges, or null tasks (cf., Section 3) are very helpful. |
addition, we are working on extensions of the ADEPT WF model (e.g., regarding concept
for the support of time and time dependencies) which will further increase its modeling
power.

3. Dynamic structural changes of workflows

Based upon the ADEPT model we have developed a set of operations (ARERMich
serves as the framework for dynamic structural changes of WFs. The main emphasis
designing these operations was putconrectnesandconsistencyssues: The application
of a change operation to a specific WF instance must result in a WF with a syntacticall
correct schema and with a “legal” state, i.e., the change should not cause inconsistencies
run-time errors. Furthermore, the set of change operations shootihggeteandminimal
inthe sense of being able to realize each possible form of correct and consistent restructur
of a WF graph—with “minimal” we mean, that the number of change operations neede
to achieve completeness should be kept as minimal as possible. Other design goals, wh
we do not discuss in detail in this paper, concefficiencyandsecurityissues as well as
ease of use

In summary, ADEP{ex comprises operations for inserting tasks as well as whole task
blocks into a WF graph, for deleting them, for fast forwarding the progress of a WF
by skipping tasks, for jumping to currently inactive parts of a WF graph, for serializing
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tasks that were previously allowed to run in parallel (and vice versa), and for the dynami
iteration and the dynamic rollback of a WF respectively of a WF region (incl. the undoing of
temporary changes). These operations, in turn, provide the basis for implementing highe
level operations such as the replacement of a certain WF region by a new oniaséite
operationshall serve as an illustrative example, and it will be discussed in more detail ir
Section 3.1. The other operations are sketched in Section 3.2.

3.1. Dynamic insertion of tasks

The addition of a new task to a WF during its execution may become necessary due
several reasons. The support of dynamically evolving WFs, unplanned events and missi
or incomplete data name a few examples. The dynamic addition of a task to a WF |
somewhat comparable to the addition of a hew procedure to a program in the midst «
its execution. When a task is inserted into a WF graph, new nodes and edges (includir
data links) must be added while maintaining the correctness and consistency of the W
Current state-of-the-art systems do not provide a sufficient level of flexibility and consistenc
with respect to this operation. Typically, they allow the addition of an activity only upon
completion of a task and before the activation of its successors (e.g., Hsu and Kleissn
1996; Casatietal., 1996; Vogel and Erfle, 1992). Issues concerning data integrity are mos
ignored, leading to the problems mentioned in the introduction section. For the flexible
support of BPs a more generic approach is required. Generally, it should be possible

o to add new tasks or even premodeled task blocks to a WF at any point of time during it
execution

e to synchronize the execution of an inserted task with the execution of other tasks frot
the WF graph

e toinsert tasks into WF regions which have not yet been entered

¢ to dynamically map the parameters of the added task to existing or to newly generate
data elements

There is no problem to provide an operation for inserting a new task as a direct predeces:
(or successor) of a given node, for adding a task as a new branch between a split node anc
corresponding join node, and so on. However, this would not yield to a satisfactory solutior
as it does not reconcile with our design goals minimality and ease of use. Supporting tt
dynamic addition of tasks raises the challenge to firgingle genericoperation that is
completan the sense of being able to realize each possible form of insertion. Obviously
the addition of atask as a direct successor of another taskis too weak to meet the requireme
presented above. We therefore follow a more generic approach: a ned, tagjether with
associated serviceSy, data element®yx, and data linkDFx, may be inserted into the
graph of a WF instance by synchronizing its execution with two nodeMigigreandMager:

The execution oK is triggered as soon as all tasks from theMgisoreare either completed
or cannot be worked on anymore, i.e., the tasks definelllkyre delay the execution of
X. This allows us to synchroniz¥ with (preceding) tasks from different branches of the
WEF graph. On the other hand, tasks frigqer may only be activated after completing
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process instance 1] insert X process instance 11
before inserting X between Mpeore aNd Marter after inserting X
P=(N, E, S, D, DF) P'=(N' E' S' D', DF)

NS: N — NodeState insert(IT, X, Mbetore, Maner, Sx, Dx, DFx) NS" N' - NodeState
ES'E - EdgeState —— T~ Esieo EdgeState
(Mbetore, Mater <N )

, % insert(IZ, X, {A}, {C}, 4, 4, {(dX,par,read)})
=

» NS=RUNNING

Figure 6 Dynamic insertion of a new task (together with associated auxiliary servicgg data elementBy,
and data linkDF x) between two task setdpefore aNd Mafter-

The addition of a new task transforms the schela, S D, DF) and the stata\S ES
of the WF to a new schemdl(, E/, S, D', DF,) and a new stateNS, ES) (see figure 6).
Such a graph transformation must result in a WF with a syntactically correct schema (inc
the flow of data) and with a legal state. In order to ensure this, several constraints regardil
the definition of the setMpefore Matter, Dx, Sx, andDF x as well as the structure and the
state of the WF must be made. Before we discuss them in detail, we sketch the steps whi
become necessary when inserting a new task into a WF graph. First of all, we concentre
on the restructuring of the control flow. Afterwards we discuss relevant issues regardin
the adjustment of the data flow.

Graph substitution® In the following, let (N, E) be the syntactical correct control flow
graph of a WF instance. The following steps must be carried out in order to insert a ne!
task X between the two node sdtefore aNA Magter:

1. Find the minimal, closed subgrah< (N, E) that contains all nodes fromlyefore U
Mafter. L€t Npegin denote the start node, and te},q denote the end node of B.

2. Insert an AND-split node; as a direct predecessor of the naugyn and insert a
corresponding AND-join node;, as a direct successor of the naggy. Both,n; as well
asny, are supposed to be null taSKNT = NULL), i.e., task nodes without associated
actions. When embedding the nodle(n;) into the WF graph, it takes over the input
(output) firing behavior and the ingoing (outgoing) control edges of the ngg@(Nend).

3. Insert a new node, representiXg as a branch between the nodgsand n,, and
synchronizeX with the tasks fromMpefore aNd Mager. That is, for eactB € Mpefore™
{STARTFLOWadd a sync edgB — X, and for eachA € Mase,~{ENDFLOW, add a
sync edgeX — A (with ET = SOFT.SYNCE).

4. Apply reduction rules and reevaluate the state of nodes and edges (see below).

As already mentioned, the application of these steps must lead to a syntactically co
rect WF graph. To ensure this, the following constraints must be made: Firstly, for al
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. Insert X between {C, D} and {F}
Ve =M, ={C,D}, M,,, = {F}
b) 1. Find the minimal block, containing B [ |B F
C,D,and F
T Nbegin n Nend

2. Insert ny and n; before / after the block.
Insert X between ns and n, and syn-

chronize it with C, D, and F.
nz

X |

c)

NT=NULL

Figure 7. Insertion of a new task between two sets of nodes.

Na € Mpefore Nb € Matter the noden, must precedeay, in the flow of control. Secondly, the
region covered by the nodes betwddpeiore aNd Myser (incl. nodes from these sets) may
only contain complete loop control structures. Finally, to avoid the insertion of unnecessat
synchronization edges, nodes frdfiaesore (Matter) Should not succeed each other in the flow
of control. One can show, that the insertion of a new task does not violate the syntactic
correctness of the grapgiN, E) and does not lead to termination problems if these condi-
tions are satisfied. For further details the interested reader is refered to Appendix B. W
omit them here and present an example instead.

Example 6 The example depicted in figure 7 shows how a tdsk inserted between two
sets of nodes. First of all, the minimal block that contains all nodes from tHEs&, F}

is determined (see figure 7(b)). In the next step, a split madeepresenting a null task,

is inserted between the predecesAand the start nod8 of the block. In the same way

a corresponding join nod® is added. FinallyX is inserted as a new branch betwesgn
andn,, and it is synchronized with the nod€s D, andF by adding the soft sync edges

C - X,D — X,andX — F (see figure 7(c)). One can easily see that the symmetrical
structuring of the WF graph is preserved and that the insertion of the sync edges does r
influence the termination behavior of the WF (cf., Section 2.3).

The example further shows that null tasks and sync edges might be added to the W
graph which are not necessarily required to achieve the desired execution semantics. Th
nodes and edges may be removed from the resulting graph by applying a set of well-defin
reduction rules. Examples for such rules are depicted in figure 8. Reduction rules may |
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Reduction Rule 1 Reduction Rule 2
ﬁ = l
L Af ~— B =} — 8|
NT = NULL NT = NULL
Reduction Rule 3 Reduction Rule 4
= —aF =
NT =NULL NT =NULL

Reduction Rule 5 .
—I& e3> =

Reduction Rule 6

X

Figure 8 Examples of reduction rules.

applied to the null tasks originating from the insertion of a task and to their direct successo
and predecessors. Their application does not change the WF's execution behavior, i.e.,
set of valid task sequences remains unchanged. The effect of their application to the W
from figure 7(c) is shown in figure 7(d).

State constraints. The applicability of the insert operation depends on the state of the
WEF graph, too. In order to avoid the insertion of a new task as a predecessor of an alrea
running or terminated task, we require that all elements fhdg, must be in one of the
statesNOT_ACTIVATEDor ACTIVATED If a taskn € Mgger has already been activated,
i.e., routed to worklists, the corresponding work items are removed from these worklist
before the insertion takes place. The nodes fidpaiore May be in an arbitrary state.

After adding new nodes and edges to a WF graph its state must be reevaluated. TI
reevaluation is based on the execution and signaling rules presented in Section 2.2. Whet
a newly inserted task is activated immediately or not depends on the current state of tl
WEF graph. The former is the case if at insertion time all nodes fidyiore are in a final
state (i.e., COMPLETEDor SKIPPED. Note, that the insertion of a new task does not
necessarily mean that it will be activated for sure. If the task is inserted into a region o
the WF graph that has not yet been entered, its execution may depend on future routil
decisions.

Example 7 As a simple example, consider the graph shown in figure 9, and assume th:
a new taskX shall be inserted between the AND-sglitand its corresponding AND-join
G. Using the presented graph substitution steps, applying reduction rule 6 (cf., figure 8
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Insert X between D and G

= Mbdom = {D}l Mnﬂer = (G}

1. Find the minimal block containing
Dand G

2. Insert n1 and nz before / after the
block. Insert X as a new branch
between nq and nz, and
synchronize it with D and G.

3. Apply reduction rule 6 and reevaluate the
workflow’s state

a NS =ACTIVATED ® ES=TRUE_SIGNALED
» NS =RUNNING o ES=FALSE_SIGNALED
v NS = COMPLETED

® NS = SKIPPED

Figure 9 Adding a new task between the AND-spliD and its corresponding AND-joifs.

and reevaluating the WF's state, the expected result is obtained (see figure 9(c)). No
that it is possible to ad&X as a new branch betweé@handG, although the successors of
the AND-split D, the nodesE andF, have already been completed respectively started.
Furthermore, looking at the WF graph from figure 9(a), a new ¥askay not be inserted
between the noded andE. In order to insert a new task betweBrandF, first of all, the
execution ofF would have to be aborted by the user.

Adjusting the data flow schema. As already mentioned, a new taXkmay be “plugged”
into a WF graph, together with associated data elemBrtsauxiliary servicesSx, and
data linksDF x. So when a tasK is added to the WF schengdl, E, S, D, DF), this does
not only lead to the modification of the control flow gragth, E) and of its state, but also it
generally requires extensions of the sBtsSandDF. In any case, it must be ensured that
the resulting WF schem@\’, E’, S, D’, DF’) meets the correctness properties defined in
Section 2.3.

All input parameters of the newly inserted tasknust be supplied before it may be exe-
cuted (cf., rule DF-1). A simple approach to achieve this would be to request the necesse
input data from the user initiating. For this, X has to be connected with a preceding
provider services (see Section 2.3), whose output parameters logically correspoX to
input parameters. In our current prototype implementation such a service is supported |
the dynamic generation and the dynamic processing of an electronic form, which make
use of the interface description &f. The procedure depicted in Table 1 shows how the
setsDy, Sx, andDFx might be adapted in order to obtain a syntactically correct data flow
schema satisfying rule DF-1.

Obviously, if the original WF scheméN, E, S, D, DF) satisfies the rule DF-1, this
also applies to the schenidl’, E’, S, D', DF') with S' := SU S¢, D’ := D U Dy, and
DF’' := DF UDF¥. In practice, however, this simple approach would not always yield to a
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Table 1 Adjusting a data flow schema by adding new data links.

Dx :=@; DFx := @;
create a provider service s with OutPARS(s) := ;
for all par € InPARS(X)do
create data element dp with (/d%  1d?V d € DU Dx) A (dom® = dom™):
Dx := Dx U {dp}
create parameter p with (Id° = IdP?" A domP = domP?" A dir? = “OUT"):
OutPARS(s) := OutPARS(s) U {p}
DFx:= DFx U {(dp, s, p, write), (dp, X, par, read)}
end

Sx =S = {s}

satisfactory solution, since unnecessary and redundant data entries may result in the cot
of a WF execution, potentially leading to data inconsistencies. For a more intelligen
support, it must also be possible to dynamically map parameters of the inserted task
already existing data elements fran This raises a variety of challenging issues with
respect to dynamic parameter mapping, which can only be sketched here. First of all, tl
data element€yx C D to which X's input parameters may potentially be mapped must be
identified. According to rule DF-1 (cf., Section 2.3), we obtain

Cx ={d e D|VV e VX:3n* € V: Writegn*, d)}.

Example 8 As an example, consider the WF graph depicted in figure 3. Assume that :
task X should be inserted between the no@eandC. Then we obtaiftCx = {d;, ds}.

Note, that the definition of the s€y is independent from the state of the WF. This
ensures that all data elementd®f are supplied wheliX is activated, independently from
previously made routing decisions. On the other hand, there are scenarios in which it wou
be useful to relax this assumption and to consider the state of the WF as well; that is, -
extend the set of data elements to which input parameters Xronay be linked to

Cy=CxU{d e D|3n*epred(X): NS" = COMPLETEDA Writegn*, d)}®

Example 9 As an example, take the insertion shown in figure 9, and assum® tisat
the only task that writes the data elemédpte D. SinceB is completed at the timX is
added, we havd; € C%. Input parameters frorX may therefore be potentially mapped
to d;, although this data element is not contained in theCsefsee figure 10). Following
this approach, it might become necessary to undo the insertignmtase of a backward
operation. As we will see in Section 4, in this context it makes a big difference wh¥ther
should be executed at most ontenporary insertiopy or whether the insertion should be
valid until completion of the WFgermanent insertion
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NS = ACTIVATED
NS = RUNNING
NS = COMPLETED
NS = SKIPPED

ES = TRUE_SIGNALED
ES = FALSE_SIGNALED

o e x v )

d data element
----p  data-link

Figure 10 Linking an inserted task to existing data elements.

The seCx (or Cy) only describes which data elements may be considered when input pa
rameters oK are mapped to elements frdin A specific input parametgy € INPARSX)
may be linked to a data elemetite Cx (ord e Cg), only if their domains correspond
to each other. Of course, this purely syntactical approach would be insufficient in practic
and would leave significant complexity to the user. A more sophisticated approach whic
aims at the semi-automatic mapping of parameters to data elements is presented in (Bla:
1996). Basic to it is a controlled vocabulary which is used for the naming of data element
and task parameters (respectively the data structures they are built upon). The vocabul
is organized as a semantic network and considers semantic relationships between the ¢
cepts, upon which data elements and parameters are built. In (Blaser, 1996) we also d
with the problem of heterogeneous structures and formats of parameter data from differe
tasks.

Similar reflections must be made regarding linkages of the output parameters of &
inserted task to existing or newly inserted data elements. In order to avoid unintended lo
updates, an output parameter may be linked to a data element, only if the rule DF-2 is furth
satisfied. In the WF graph shown in figure 10, for instance, the output parameters of tt
newly inserted tasik may not be mapped to the data elemeint

Further issues. So far we have concentrated on correctness and consistency issues r
garding the dynamic addition of a task to the graph of a WF instance. For the sake ¢
completeness, some important aspects, which are not further addressed in this paper, h
to be mentioned.

Firstof all, in our experience it has turned out to be important to allow process participant
to fix a date or a deadline for the execution of the inserted task. The necessary extensic
for this are described in (Grimm, 1997).

Secondly, for security reasons, ADERJT allows WF designers (as well as selected
process participants) to restrict the use of the insert operation to specific WF types or W
categories, to selected users or user roles, to specific regions of a WF graph (e.g., a t:
block), to selected WF states, to specific activity types or categories, or to any combinatic
of them. Generally, also we do not require that the user who adds a task to a WF mu
subsequently work on it. This provides additional flexibility to process participants, as the
are allowed to add tasks to a WF of which the execution may be explicitly or implicitly
delegated to other process participants. This requires a powerful meta model for capturi
organizational entities and relationships between them.
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Table 2 Examples for the use of the insert operatieucgA) (pred(B)) denotes the set of direct successors
(predecessors) of the tagk

Insertion Choice

An intermediate step between a nofl@nd its successorsMpefore = {A}, Mafter = SUCT A)
(A may be a split node of arbitrary type)

An intermediate step preceding the execution of a fask Mpefore = pred(A), Master = {A}

A new branch of a parallel branching with split no8e Mefore= {SP, Magter = {J}
and join nodeJ

A new task without any additional synchronization Mpefore = {STARTFLOW}, Magter = {ENDFLOW}

Finally, for the implementation of client applications and worklist handlers a correspond
ing set of (generic) API calls is offered to application programmers. The provided function:
can also be used to obtain information about the context in which the insertion is applied

Application. The insert operation described covers a broad spectrum of applications, an
it allows a variety of user-friendly operations. Some of them are summarized in Table 2.

The insert operation also serves as the basis for composing higher-level operations. F
example, several instantiations of the same task tgipeamic taskcan be realized by the
repetitive use of this change operation. Its generality also provides the basis &k ltloe
definition of WFs a WF starts with a single stop node between the start and the end node «
the WF graph, and it may be dynamically extended by the repetitive application of the inse
operation presented. As a last interesting aspect, we use the insert operation for inter
exception handling as well. For example, if the deletion of a tddkads to incomplete
or missing parameter data of succeeding, data-dependent tasks, a corresponding prov
task, taking over the data links fro¥, may be plugged into the graph and be synchronized
with these tasks (see Section 3.2)

These examples demonstrate that our approach is able to support a large variety
different application scenarios. In the next section we sketch other change operations a
some interesting issues related to them.

3.2. Overview of other change operations

As said before, ADEPqE« comprises a set of basic change operations which allow autho-
rized users to add tasks to a WF, to delete tasks from a WF, to skip the execution of tas}
to jump forward to WF regions which have not yet been activated, to serialize tasks thz
were previously allowed to run in parallel, and to perform backward operations on a Wk
graph (incl. the undoing of temporary changes). Due to space limitations we must omit
presentation of the whole set of operations here. In the following, we therefore only dec
with some interesting issues related to the deletion of tasks and to the dynamic modificatic
of premodeled task sequences.

Dynamic deletion of tasks. Individual tasks or task sequences may have to be skipped
or removed when the conditions for their execution become unnecessary. Of course, t
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deletion of tasks should not always be allowed. Firstly, nodes which are an integral part «
the WF structure (e.g., the start node of the WF) must not be deleted at all. Secondly, W
designers may customize a WF schema in order to disallow the deletion of individual tas}
or tasks from specific WF regions.

The deletion of atasK of a running WF instance is only possibleXfs either in the state
ACTIVATEDor NOT_ACTIVATED In the former case, the work items associated Witire
removed from the corresponding worklists. Tasks in the REGNNING COMPLETED
FAILED, or SKIPPEDmay not be deleted.

Concerning the adjustment of the control flow graph, the delete operation is realized b
substituting a null task (see Section 3.1) for the task to be deleted. This approach can
handled in a simple and effective manner, as the node of the deleted task and its associs
(control) edges are still part of the WF structure. As we will see in Section 4, this alsc
facilitates the undoing of task deletions.

When atasK is deleted, its associated auxiliary services and data links must be remove
from the setS and from the seDF. This might lead to missing or incomplete input
data of succeeding data-dependent steps and therefore to a violation of the rule DF-1 (c
Section 2.3).

Let N* c stucc(X)” denote the set of tasks whose input parameters are not completel
supplied due to the deletion &f. The following exception handling policies can be applied
in ADEPT;ex to deal with such cases and to regain a correct and consistent WF graph:

e Concomitant deletion of tasks from the $¢t, which, in turn, may require the deletion
of other tasks fronmN (cascading delete).

¢ Dynamic insertion of a provider tasKpox into the flow of control (withMaser = N*).

Xprox takes over the data links of the deleted task, and it must be completed before ar
task of the seN* may be triggered.

e Dynamic addition of corresponding provider services (i.e., dynamically generated forms
to the sets$y"®°, n € N* (see Section 3.1)—this must not lead to the violation of the rule
DF-2!

e Abortion of the delete operation.

Of course, these policies may be used in combination with each other. In order to reliev
users from performing the necessary adjustments of the data flow schema “manually
ADEPT supports the specification sdiccess dependenciastween succeeding tasks. If a
task X is deleted from the WF graph at run-time, all succeeding tasks which are succes
dependent oiX are deleted as well. This, inturn, may lead to the cascading deletion of othe
tasks. Concerning the flow of data this approach does not require any additional exceptit
handling, if for each task the set of its success-dependent steps corresponds to that of
data-dependent steps. Note, that this approach is similar to the conspptoés of control
proposed in (Davis Jr., 1978; Leymann, 1995), but it is applied here to the structure of th
WF.

Changing task sequences at run-time As mentioned in the introduction section, changes
of premodeled task sequences frequently become necessary in exceptional situations. Si
WF designers are generally not capable to predict all possible deviations in advanc
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a)

~ NS =ACTIVATED

» NS =RUNNING

v NS = COMPLETED

* ES =TRUE_SIGNALED

b)

Figure 11 Parallelization of tasks, that were previously constrained to be executed serially, jumpmfarward
operation.

operations are required that allow users to dynamically skip the execution of tasks, with c
without finishing them later, or to work on tasks of which the execution conditions are no
yet satisfied.

Example 10 As an example, take the WF graph depicted in figure 11(a), and assume th:
an authorized user wants to jump forward to t@s&nd to proceed with the flow of control

at this node, although the ingoing edges of this task have not yet been marked. Assur
further, that the stepB, E, andF have to be finished or worked on concurrently, but they
must be completed before tadkmay be triggered. In order to achieve this, the WF graph
must be restructured as shown in figure 11(b). Note, that this restructuring leads to tt
parallelization of tasks that were previously constrained to be executed serially.

Generally, it should be possible to pass the control or to jump forward to amggle
which may not yet have been activateddS= NOT_ACTIVATED. ADEPT;ex Supports
different policies for dealing with uncompleted tasks, preceding the nggg:in the flow
of control, when such a jump operation is performed:

M = {n|n e pred(Nged A NS' € (NOT_ACTIVATED ACTIVATED RUNNING}

Tasks from this set may be aborted, omitted, or as in our example be further worked o
For the latter case, their execution must be synchronized with successiggefin our
example, all tasks frolM = {D, E, F} must be completed before the natg= J may
be activated.

Finally, changes of premodeled task sequences may lead to an incorrect data flow sche
if no further precautions are taken. The rules presented in Section 2.3 contribute to identi
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such cases and to provide adequate mechanisms for exception handling. Due to lack
space this aspect cannot be discussed here. We conclude that more user-friendly operati
providing elegant and efficient support for dynamic structural changes, can be based on 't
presented operations.

4. Change management

Several instances of a specific WF type may be active at the same time. As changes
different kinds may have been applied to them, several aspects must be considered:

o WF instances of the same type, i.e., the same starting schema, must be (logically) rep
sented by different WF graphs.

e Changes, that are applied to an individual WF instance, may depend on previous chang
of that WF.

e Structural WF changes may require concomitant modifications in order to preserve th
correctness and the consistency of the WF graph (see Section 3); the necessary gr:
adaptations must be carried out within the same transaction in order to allow forwar
recovery in the presence of failures.

e It must be possible to undo structural changes of a WF under certain conditions.

For the management of structural WF changes, it makes a big difference whether «
applied change must be preserved until the completion of the Mg{anent changeor
whether it is only of temporary naturée(mporary change This division is particularly
important for the support of long-running BPs, where changes may affect WF regions the
are entered several times, e.g., due to loop iterations or due to the partial rollback of a W
If a task is inserted into the body of a loop, for instance, it must be specified whether thi
insertion should only be valid for the current iteration of the loop or for following iterations
as well. In the first case, the added task is executed at most once, and the (structur
change must be undone before the next iteration of the loop is entered (i.e., the inserted te
must be removed together with its associated data links and services). For the remainc
of this section, we simplistically assume that the durability of a change—temporary vs
permanent—can be specified at the time it is applied to the WF instance.

4.1. Change history

Ideally, the undoing of temporary changes and the necessary adjustments of the WF gra
should be completely handled at the system level without costly user interactions. In ord
to achieve this, the run-time system must have precise information about previously mas
changes. In our approach, we maintain the following information for each WF insk&nce

e a WF graphP; reflecting the currengtructureand the currenstateof IT. This graph
considers all changes that have been applied to the WF instance, temporary as well
permanent ones.
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e a WF graphPyerm Which has resulted from applying permanent changes to the starting
schema offl1. Temporary changes as well as the stat&€ladre not considered by this
graph.

e achange history Cwhich is used analogously to the WF’s execution history: it records
data on all changes, that have been applidd,tm a chronologically ordered list. These
data may later be used to undo changes. Each history entry contains the followin
information: (1) thetype of the change operation, e.g., insertion or deletion of a task
(incl. its call parameters); (2) thaurability of the change (temporary vs. permanent);
(3) theinitiator of the change; (4) thstart regionof the change, i.e., a set of nodes that is
used by the run-time system to decide whether the (temporary) change must be undo
or not when a backward operation is applied (see below); (5) the lisbeomitant
modificationse.g., addition of auxiliary services or cascading deletion of data-dependen
tasks (see Section 3); (6) the listcfange primitivegincl. their call parameters) that
were applied to perform the change; each change operation is mapped to a set of gra
modifications primitives such as the addition or deletion of individual nodes, edges, dat
elements, or data links.

The execution of a WF is based on the graff Logically, this graph must be kept for
each WF instance, as different kinds of ad hoc changes may be applied to WF instances
the same type (i.e., with the same starting schema). We require the additionaPRgsaph
in order to ensure that permanent changes remain correct when temporary modificatio
are undone. For example, a permanently inserted task must not be data-dependent o
temporarily inserted one. Otherwise, the undoing of the temporary insertion leads to &
incorrect data flow schema, which may cause severe run-time errors. In order to avoid su
dependencies, the application of a permanent change to a WF instance requires additio
checks, which can be based upon the grBg, (see below).

4.2. Applying temporary and permanent changes

The introduction of temporary and permanent changes to a WF indibresguires different
procedures. In order to performt@mporary changecwe must check whether it can be
applied to Py while maintaining the correctness and consistency of this WF graph (cf.,
Section 3). If unresolvable exceptions occur, the change operation is aborted. Otherwic
c; is applied toP,y, and a corresponding entry is added to the change hi€toijote, that
a temporary change may be based on previously made temporary changes as well as
permanent changes. In addition, it may consider the state of the WF (cf., Section 3.1).
The introduction of gpermanent change,aequires additional checks. First of all, we
must verify that the application af, to P,erm does not violate the correctness of this graph.
In contrast to temporary changes, this verification is performed independently from the sta
of IT as well as from temporarily applied changes. Otherwjsenay be based on wrong
assumptions, which might cause severe problems when the sthtésafeset or when a
temporary change is undone due to a backward operation. As an example, take the insert
of the taskX in figure 10 (cf., Example 9); as this change makes use of a previously mad
routing decision, it can only be applied temporarily. Generally, if the chapge correct
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with respect toPperm, We must also check its applicability to the gray. If both checks
are successfut, is applied toPy as well as toPerm, and a corresponding entry is added
to the change historg.

4.3. Undoing temporary changes

Up to now we have described how changes are managed and how they are put into effe
In the following, we sketch the necessary steps for undoing temporary changes (i.e., fi
removing them from the WF grapRy) when the control of the WF is passed back to a
previous taskiesart Due to lack of space we will restrict our considerations to the dynamic
insertion and deletion of tasks (cf., Section 3) and to their undoing.

Important points for the decision which changes must be undone and which not are tt
durability of the change (temporary vs. permanent) and thtairt regions which are kept
with each entry of the change hista®y The start region of an insert operation is defined
by the setMyesore (Cf., Section 3.1), whereas the start region of a delete operation consist
of the null task replacing the removed task (cf., Section 3.2). For simplification, we require
that a temporary change must be undone if each node of its start region is in a final sta
(NS € {COMPLETED SKIPPED FAILED}), and if it is contained within the backward
region. The backward region comprises those nodes from the §apthose state must be
reset due to the backward operation. In case of a loop iteration, it corresponds to the noc
of the loop body (see Section 2.2), whereas the backward region of a rollback operatic
comprises those successorsipki,rwhich are in a state different frodOT_ACTIVATED
(cf., Section 2.1).

There is no problem to find the corresponding entries in the change hiStand to
undo the modifications associated with them. However, this simple approach would nc
yield to a satisfactory solution; other temporary changes may exist which have been bas
on these modifications and which are therefore dependent on them, but whose start reg
is not covered by the backward region. These dependent changes must be undone, 1
in order to preserve the correctnessRyf. Note, that dependencies between temporary
changes are quite usual and may be explicitly desired by users. They therefore must
taken into account when temporary changes are undone. With this in mind and based
the assumptions made, the following steps must be performed when a backward operati
is applied:

1. Find the first entry; in C that must be undone due to the backward operation; that is,
the oldest entry of the change history whose start region is covered by the backwa
region. If no such entry exists i@, omit the following two steps.

2. TraverseC in inverse order (i.e., beginning with the latest change) uati$ reached.

For each visited entry remove the corresponding change (temporary as well as perm
nent) from the WF graply;; a change is removed by undoing the previously applied
modification primitives in reversed order.

3. Now traverseC in forward direction beginning witl; . If a visited entrye corresponds
to a permanent change, we reapply itRg.° In case of a temporary change, first
of all, we check whether its start region is covered by the backward region. If thai
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is the case, the change is not redone, ansl removed fromC. Otherwise, we try

to redo the change oRy by making use of the information stored with the corre-
sponding change entry (incl. information on concomitant changes). If the correctnes
and the consistency d?,, cannot be preserved (e.g., due to dependencies on other re
moved changes), the redo will not be performed, and the initiator of the change will be
informed.

Example 11 Taking the graph depicted in figure 12(a), we illustrate the principle feasibil-
ity of this approach. Figure 12(b) shows the same WF graph after the flow has proceede
the two nodedN* andN** were temporarily inserted into the graph (together with the data
elementd and corresponding data links), and the néd&as permanently deleted. Fig-
ure 12(d) shows the resulting graph after applying a backward operation and after undoit
the temporary changes. Although its start rediblj is not contained within the backward
region, the change{z) is undone, too, since it is dependentcéjr\.

a)c=(")

1 2 3
b) €= (e, ¢, ¢, )

Temporary changes:
- insertion of N*
c®: insertion of N**

Permanent change:

®. qoloti T
Cp . deletion of F t i G fails and its failure
edge is signaled!

1 2] 3
c) C=( v ct( ), ct( ), cp( ))

P,y after applying the steps 1 and
2 of the presented a}lgorithm °
(Nrestat =B, ¢1 = Q( ))

i ‘backward region:
i M B, C, D, E, Four, G,N'}

d) C=(c,")

Py after applying step 3 of the
presented algorithm

P NS=RUNNING  “4NS=ACTIVATED wNS=COMPLETED [¥] NS =FAILED ® ES = TRUE_SIGNALED

Figure 12 Undoing temporary changes after a failure edge has been signaled. (The entries of the change histc
C that precede the arccorrespond to the changes currently applied to the gRaph
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The assumptions made in this section may be relaxed. For example, in some cases i
desirable to preserve a temporary change when a rollback operation is applied, but to un
it when a new iteration of a loop is entered. As a last interesting aspect, the use of a chan
history contributes to increase the user friendliness of the system, since structural chanc
can be undond/NDO of structural changgsy the user (e.qg., the initiator of the change),
as long as they have not yet influenced the execution of the WF, and as long as no furth
changes have been based upon them.

In summary, the support of dynamic structural changes make great demands on the V
engine and on change management. In this paper we have concentrated on concep
issues related to dynamic WF changes. There are a variety of important implementatic
issues, that we have not addressed, but which are of high importance for the managem
of dynamic changes at the workflow enactment level: the internal representation and tt
persistent storage of WF instances (i.e., the underlying data structures), the transactiol
execution of (possibly long-running) change operations, WF recovery, the synchronizatio
of concurrent change transactions, the resolution of conflicting implementation goals (e.c
performance vs. flexibility), or dynamic changes of WFs which are controlled by different
distributed WF servers name a few examples.

5. Related work

It is widely recognized that state-of-the-art WF technology does only provide rudimentan
support for exception handling and for dynamic structural changes of running WF instance
(see, Barthelmess and Wainer, 1995; Ellis et al., 1995; Reichert et al., 1997a; Sheth a
Kochut, 1997; Siebert, 1996). Both, in research and in commercial WFMSs, sever:
directions can be made out that try to overcome these limitations. These approaches foc
on

o the provision of services for exception handling and for ad hoc structural changes

e the support of WF designers in modifying the schema of a WF and in propagating th
applied changes to already running WF instances that started with the old schema (W
schema evolution)

o the integration of WFMSs with groupware technology to combine formal and well-
structured processes with informal group processes.

5.1. Exception handling and ad hoc structural changes in WFMSs

We are mainly interested in process-oriented WF technology as opposed to e.g., Lot
Notes or Groupflow (Nastansky and Ott, 1996). Current process-oriented WFMSs lik
FlowMark (Leymann and Altenhuber, 1994) or DOMINO (Kreifelts et al., 1991), however,
do only address a small part of the issues discussed in this paper. Although most of the
allow online modification of task/staff definitions or the exchange of program modules
during WF execution, they are rather weak with respect to exception handling and dynam
structural changes. Several approaches exist which address these issues. The propc
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made by HOON (Han et al., 1996), ProMInanD (Mogel and Erfle, 1992), ObjectFlow
(Hsu and Kleissner, 1996), WIDE (Casati et al., 1997), MOBILE (Heinl et al., 1996), and
DYNAMITE (Heimann et al., 1996) are worth mentioning.

Han et al. (1996) suggest a Petri net based model (HOON) for adaptive WFs. The bas
idea is to use mechanisms for later binding of software components and WF models, whi
may be dynamically and hierarchically combined at run-time. HOON does not suppor
dynamic changes in the narrower sense. Structural changes of a WF model are not possi
after it has been bound to a net’s transition. The authors do also not talk about correctne
issues.

ProMInanD is a representative of WFMSs based on the object migration model (se
Karbe et al., 1990). A WF, together with its definition, is regarded as an object (“electroni
circulation folder”) which is sent from user to user according to the modeled control flow.
Only the user who is currently in charge of the folder may change the flow, e.g., by adding &
intermediate task. A potential weakness is the simplicity of the used WF model—patralle
and iterative executions are not explicitly supported—and the lack of a clear theoretics
basis. The offered change operations consider only the control flow, but they ignore oth
structural components of the WF specification. The data flow is limited to the exchange c
files between tasks, so that the WFMS has minimal control over it. This leaves significar
complexity to application programmers, who themselves must ensure the correctness t
data flow when the WF is restructured.

A comparable functionality is offered by ObjectFlow (Hsu and Kleissner, 1996) which
uses a constrained Petri net based model. Users may temporarily change the course of
flow or add intermediate tasks. In addition, ObjectFlow supports dynamic tasks, i.e., th
multiple concurrent instantiation of the same task type at a specific point of the WF. 2
limited mechanism for exception handling is offered: the actions which are necessary t
handle abnormal events have to be explicitly modeled as additional paths in the WF grap
When a user detects an exception, he must abort active tasks and modify the flow structt
to transfer the control to the exception handling path. This approach may lead to comple
WF models as the offered modeling constructs are not high-level (Ellis and Nutt, 1993).

The WIDE WF model offers atrigger-based approach for exception handling (Casati et al
1997). Exception handlers (EHs) can be installed to handle events such as the cancellat
of atask or the break of the normal flow. In contrast to ObjectFlow and ProMInanD, the WF
may proceed while the exception is handled. For each type of exception WIDE provides
default EH (e.g., for user natification), which may be overwritten by the WF programmer.
However, it lies in the responsibility of programmers to avoid inconsistencies and errors
which complicates application development and may introduce new errors and exceptio
into the model.

The MOBILE WF model (Heinl et al., 1996) allows the use of incomplete sub-process
models at predefined points (i.e., nodes) of the WF. Incomplete models are described
terms of goals as well as partially defined process patterns, and they must be completec
run-time. The authors do not indicate how users are supported in changing an incomple
model and which operations are available. Correctness issues are also not addressed.

A more competitive approach is offered by DYNAMITE (Heimann et al., 1996). DY-
NAMITE aims at the support of the software development process, which is often highly
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dynamic and for which the planning and the execution of tasks may overlap. DYNA-
MITE uses dynamic task nets, which are built and modified incrementally during proces
execution. Formally, task nets are based on a graph rewriting system. The tasks whi
shall be dynamically added to a task net must be predefined in a process schema. T
significantly limits the dynamics of this approach. Operations for changing task sequenct
and for deleting tasks are not available, and correctness issues are not discussed by
authors.

The same holds fdransactional WFswhose emphasis and strength lie in different areas
such as reliability or forward recovery in the presence of failures (Alonso et al., 1996; Attie
et al., 1993; Kamath and Ramamritham, 1995; Hsu, 1993, 1995; Worah and Sheth, 199
Transactional WFs apply concepts of advanced transaction models (Elmargarmid, 199:
they are, therefore, pretty good in handling task failures or abnormally terminated WF
(e.g., Eder and Liebhart, 1995). Concepts like “spheres of compensation” (Leymant
1995; Davis Jr., 1978) will further contribute to simplify and to speed up application
development and to make WF applications more reliable. However, transactional WF
do only meet a small part of the issues discussed in this paper. As the WF engine w
generally not have the knowledge to detect and to handle all possible failures and exceptic
alone, dynamic changes typically require user involvement. Besides this, transactional W
must address issues concerning the transactional execution of structural changes and t
synchronization.

5.2. WF schema evolution

There are few approaches which address correctness issues in connection with dynat
structural changes. Notable exceptions come from (Ellis et al., 1995; Casati et al., 199¢
In contrastto ADEP{ex, Which concentrates on ad hoc changes of individual WF instances,
these approaches deal withanges of the WF scheraad their propagation to running WF
instances whose execution started with the old schema. Although the support for both typ
of changes is a complex and yet unsolved problem and many related issues can be identifi
in some respects ad hoc modifications are much more intricate and problematic, as th
may have to be performed by end users. Like ADER,Tboth approaches are based on a
conceptual WF model. However, they restrict their considerations to dynamic changes
the control flow; other relevant aspects are left aside.

Ellis et al. (1995) propose a mathematical model, which is based on constrained Pe
nets. A change corresponds to the replacement of a subnet of the WF graph by a ne
subnet; it is said to be correct if afterwards the corresponding WF instances can either |
executed according to the old schema or to the new one. The emphasis and strength of t
approach lie inits formal foundation. Casati et al. (1996) address the problem of WF schen
evolution from a static as well as from a dynamic point of view. In contrast to Ellis et al.
(1995) they go in line with our approach. Dynamic structural changes are based on a set
modification primitives whose application does not violate the given correctness criteric
The proposed change primitives, however, offer only a limited semantics when compare
to our approach. The strength rather lies in the variety of policies offered for managing th
evolution of running WF instances (including support for version management). Forma



ADEPT;ex—SUPPORTING DYNAMIC CHANGES 123

criteria are introduced in order to determine which WF instances can be transparent
migrated to the new version.

How to integrate dynamic structural changes at the schema level with ad hoc changes
the instance level is an outstanding research issue. When looking at the proposal made
Ellis et al. (1995), for example, it is implicitly assumed that the execution of all instances o
a specific WF type is based on the same net. This assumption cannot be maintained wt
ad hoc structural changes at the instance level must be considered, too. The proposals m
in Section 4 can be considered as a first step towards a solution of this problem.

5.3. Integration of WF technology with groupware approaches

Several proposals have been made to combine formal and well-structured processes w
informal group processes. Communication-oriented models are based on a speech act
versation model (Winograd and Flores, 1986) which reduces organizational processes
networks of commitment loops between process participants. Other approaches follo
goal-based models (e.g., Blumenthal and Nutt, 1995) or use circulation folders (Karb
et al., 1990). All these approaches share the disadvantage that the achieved flexibility
paid by a harder formalization of even simple, repetitive processes.

Other research groups try to combine the advantages offered by WF technology wit
those of groupware (GW) systems by supporting unstructured activities at specific poin
of a WF (e.g., Antunes et al., 1995; Blumenthal and Nutt, 1995; Sheth and Kochut, 199°
Weber et al., 1997). A group task corresponds to a node in the WF graph. Details of th
work to be done, however, are only described in terms of goals or guidelines. This approa
can be used in combination with our model. Addressed issues include the integration
WFMSs with GW technology, the exchange of data between them, and the management
contextual information (Blumenthal and Nutt, 1995; Weber et al., 1997). Several author
doubt the suitability of this approach (Heinl et al., 1996; Siebert, 1996). As a potentia
disadvantage they consider the “break” between structured and unstructured parts of wc
resulting from the combined use of WF with GW technology. Important features such a
auditing, rollback, security or consistency may be lost when unstructured group tasks a
not controlled by the WFMS.

6. Summary and outlook

In this paper we have concentrated on issues regarding dynamic structural changes of \
instances during their execution. We have argued that such changes are rather the nc
in computerized processes and that their adequate support will form a key part of proce
flexibility in future WFMSs. We have shown that the dynamic change problem has man
facets and is therefore a worthwhile area of study.

We have introduced the basic concepts of the ADEPT WF model. We demonstrate
its suitability for the (precise) specification of WFs, the verification, and testing of the
correctness of WF specifications, and the execution of WFs. We have argued that tl
ADEPT model offers a good compromise for the trade-off between the expressive power
a WF model and the complexity of the algorithms needed for model checking, especiall
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when contrasting it with general-purpose models such as Petri nets. We believe that this
crucial for the efficient support of complex dynamic structural changes.

The ADEPTex model which is based upon ADEPT has been presented aadidtpiacy
with respect to dynamic structural changes has been demonstrated. ARE®Mprises a
completeandminimalset of change operations which ensuredigectnessindconsistency
of the resulting WF graph bgonstruction Taking the dynamic addition of tasks as an
example, we have demonstrated that the correctness properties of the ADEPT model &
the set of preconditions defined for each type of change operation constitute a good ba
for this. We have discussed how to deal with changes that cannot meet the correctne
criteria. We believe that neither hard-wired mechanisms nor hand-made solutions wou
be satisfactory in practice. Instead we have proposed a more flexible approach, offerit
several policies for dealing with the exceptions resulting from a change. We have compar:
our model with other WF models, and we have shown that the semantics offered by tt
change facilities of ADEPiE, captures those of other models by far. Finally, we have
addressed issues regarding the management of temporary as well as permanent char
and the undoing of temporary changes when backward operations are applied.

The work presented in this paper has been well-motivated by a variety of organization:
studies and analyses of processes from the clinical domain (Kuhn et al., 1994; Meye
1996; Reichert et al., 1996) where ad hoc changes and dynamically evolving WFs a
rather usual and exceptions do frequently occur. We also implemented complex process
from the University’s Women Hospital by applying current WF technology (Reichert et al.,
1997b). Asaresult, today’s WFMSs offer perspectives, but they are far away from providini
the flexibility needed by clinical users. The role of application developers and end uset
in handling exceptions and in changing the structure of WFs is not well-understood an
therefore poorly integrated with today’s WFMSs.

For the future, however, we believe that WF technology has the potential to lead to
completely different kind of application programming. The development of even comple»
distributed application systems may reduce to the reuse of premodeled process templa
from a repository, the customization of these templates, and the insertion of the applic:
tion components in the style of plug-and-play. To be broadly applicable, however, futur
WEF technology must provide a high flexibility in user assistance and more human-centti
approaches that include an integral support for exception handling and dynamic structut
changes.

Although some progress has been achieved, a lot has to be done. Besides the tor
addressed in this paper, some specific areas that warrant further attention (and on which
are currently working on) are

e the support of simultaneous changes on individual WF instances

e the application of dynamic changes to WFs whose schema is decomposed into seve
parts that may be kept and controlled by different WF servers (e.g., Bauer and Dadar
1997; Wodtke and Weikum, 1997)

o the “intelligent” support of WF ensembles, i.e., dynamically evolving collections of more
or less loosely coupled WFs. The requirements which can be identified here are far mo
challenging than those faced by concurrency control in standard database technolo
(Heinlein and Dadam, 1997)
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o the development of general concepts for the integration of dynamic structural changes
the schema level (e.g., Casati et al., 1996; Ellis et al., 1995) with changes at the instan
level (as proposed in this paper)

o the provision of “intelligent” interfaces for application programmers and for end users;
adding only functionality to current WF technology without understanding how the pro-
grammer or the end user will be able to utilize it will certainly not be helpful. In any case,
dynamic changes should be possible at the minimum cost to application programmers
well as end users.

We believe that dynamic WFs are a field that would benefit by more intense study by th
research community. During the last years, we have developed a series of small prototyg
each of which concentrating on a single aspect like the modeling component, suppc
of temporal constraints, and support of dynamic changes in order to better understal
end-user related issues as well as implementation aspects (Blaser, 1996; Grimm, 19
Hensinger, 1997; Kirsch, 1996). Recently we have started the design and implementatic
of ADEP Tuworkfiow, the ADEPT workflow engine, which will integrate the features described
above within one system.

Appendix A
Correctness of a data flow schema

Definition A.1(Successor funtion We define

succ: N — P(N)

with
sucdn) ={n""e N|3ecE: e=n—-n'A
ET® € {CONTROLE, SOFT_SYNCE, STRICTSYNCE}}
succ: N — P(N)
with

sucan) = {n' € N | n’ € sucgn) v (An” € sucgn) :n’ € stucen”))}

sucagn) comprises the set of all direct successors of the modeN, i.e., the set of nodes
which are the destination of a control or of a sync edge with sonrcgiccdenotes the
transitive closure of this functionsucan) comprises those tasks of the WF graph that
are reachable from by following control as well as sync edges. On the other hand, the
setsuce(n) € sucen) comprises those nodes frod which are reachable from by
following only control edges. As the meaning of the corresponding predecessor functior
and their transitive closures is intuitive, we omit their definition here.

Example A.1 In the WF graph shown in figure 3 we have

sucgB)={C, D, E, G, H, ENDFLOW, sucg¢(B) = {C, D, E, H, ENDFLOW,.
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Rule DF-2. Let P = (N, E, S, D, DF) be the schema of a WF. Fai, n, € N with
Writeg(ny, d) A Writeg(n,, d) we require

(1) (nyesucEny) Vv ny € SUCEN;)) OF
(3ns € N:ngis OR-joinANg € M := (SUCG(N1) NSUCG(N2)) AVN € M, n # ng :
n € Suce(ns))

(2) n, € SUCEN;) = Inz € (SUCEN1) N pred(ny)) U {ny} with Readsns, d)

Simplistically, we have omitted write operations of elements fi®in the presentation of
this rule. Ifn; andn,, which have write access to the same data element, do not succee
each other in the flow of control, they must belong to different branches of a branching witl
an (inner) OR-joimg (cf., Rule(1)). Therefore, tasks from different branches of a parallel
processing (with AND-join) may not have write access to the same data element, unle:
they are serialized by the use of a sync edge. Rule (2) aims at avoiding write-after-writ
conflicts of succeeding tasks.

Appendix B
Correctness of a graph substitution when adding new tasks

Theorem B.1 (Syntactical correctness and termination behavior after adding a new
task). Let(N, E) be the syntactically correct control flow graph of a WF schema P, for
which (1) every node re N is reachable from P’s start node and for whi) from every
reachable state a final state can be reached. Furthermore lgioM Masier C N be two
disjoint sets with
(I1) YNy € Magter, YNa € Mpgfore: Np € SUCEN,) i.€., for all Ny € Mpefore Np € Magter WE
require that n, precedes pin the flow of control
(I2) The region covered by the nodes from the set
MbpeforeU Magter U (SUCE Mpefore) N pred(Mager)) may only contain complete loop con-
trol structures
Then, the application of the presented insert algorithm to add a new task X between tt
sets Mefore@Nd Mysier (Cf., SectiorB.1) results in a syntactically correct control flow graph
(N’, E’) again, which also satisfies the propertiék) and(2).

Proof sketch: We sketch the idea for the proof of this theorem without considering
reduction rules. On the whole, the insert operation substitutes a (logical) Blatkhe
graph(N, E) by a symmetrical block, namely a parallel branching with the inserted task
X andB as its branches. The symmetrical structuring of the graph is, therefore, preserve
and the insertion of the null tasks does not influence the termination behavior of the WI
The restrictions for the use of sync edges (see Section 2.1) are further satisfied as the ad
edges do only synchronize tasks from different branches of a parallel branching (name
the taskX with tasks fromB), do not synchronize a node contained within a loop body
with the inserted task (because of condition4)) and do not lead to cycles or termination
problems. The latter is guaranteed by the ordering of tasks from th&lggts and Mser
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(because of condition {J). Based on this and on the properties (1) and (2), which are
valid for the starting grapliN, E), one can easily show thalN’, E") also satisfies these
properties. Note that only sync edges of the tigJe= SOFT.SYNCE are used. O
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Notes

1. ADEPT stands foApplication Development Based oBncapsulated Premodel@&tocessT emplates.

2. This does not necessarily mean that the value of an input parameter cannot be aggregated from the value
several data elements (cf., Blaser, 1996).

3. This algorithm must be extended if a user wants to insert a new task between the start (or end) node of a lo
and an arbitrary node contained within the loop’s body.

4. B is defined as follows: It contains all nodes fravthesore U Magter (€XCI. the start node and the end node of
the WF graph), and it has a unique start/end node. Furthermore, if any node—except the end nodd@—from
corresponds to the start node of a loop, the loop’s end node must also be containedwénd vice versa).

The same constraints apply to branchings.

5. We have adopted this notion from (Casati et al., 1996). A null task does not correspond to any action in tt
real world. After a null task has been triggered, its outgoing edges are marked immediately.

6. The sepred(X) corresponds to the transitive closure of nodes precedimghe flow of control (cf., Appendix
A). Simplistically, we have omitted write operations from elementS of the definition of this set.

7. sucg X) € N comprises those nodes that are reachable doy following control as well as sync edges (cf.,
Appendix A).

8. Note, that these primitives modify the s&tsE, S, D andDF. Generally, their individual application to a WF
graph does not preserve its syntactical correctness and consistency.

9. There are rare cases in which it is not possible to redo a permanent change. Due to lack of space we do
discuss this aspect here.
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