Concurrent Engineering: A Global Perspective
CE95 Conference

Towards the Boundary of Concurrency

R. Ortiz
Daimler Benz AG, Research Center Ulm, 89013 Ulm, Germany

P. Dadam
University of Ulm, Faculty of Computer Science, 89069 Ulm, Germany

Abstract

The support of highly concurrent engineering work
proposed in this paper is achieved by means of an
Event - Condition - Action (ECA) rule - based
synchronization component. Process and product
information are managed in a database according to
the Concurrency Model, a semantical process and
product data model. The definition of ECA rules allows
the active database to recognize conflicts at run-time
and to execute pre-defined conflict solving actions.
Thus a high degree of concurrency can be achieved
without demanding fixed workflows. The Concurrency
Model approach supports the explicit control of
workflows and data flows, concurrent access to data
and control of redundancy. Scheduling decisions and
cost evaluation for project planning and control are
supported by the simulation capabilities of our
approach.

1 Introduction

In our research project, the wiring design domain
was defined as a test case for the support of engineering
activities with a high degree of concurrency. This
means that we aim to allow of a large number of tasks
to run simultaneously with high overlap of underlying
product data and time. High concurrency has gained
little attention up to now by work in the Concurrent
Engineering research field. Up to now, there is no
distinction between the simultaneous work of two
designers with little overlap of data and time and the
concurrent design of an engineering device by several
engineers, where the involved persons start their work
nearly at the same time manipulating almost the same
data. In the first case there is a low number of
conflictive data manipulation. The second case is an
example of highly concurrent work, characterized by a
high complexity of the synchronization mechanism,
needed.

191

Existing approaches to support concurrency, like
workflow management in Computer Supported
Cooperative Work and the definition of design spaces
do not adequately reflect the nature of the engineering
domain. They are based on a priori distinctions among
synchronous and asynchronous tasks. But complex
engineering processes are multi-causal. This means that
they enforce a continuous redefinition what the
problem and what the goals are. Therefore, it is
impossible to fix the problem solving steps and their
schedule in advance. In addition, it is difficult and
often also impossible to decompose design problems
and their solutiohs to completely independent sub-
problems which can be pursued separately [1]. Whether
some special case of engineering work must be
performed synchronously or not, can only be
determined at run-time according to the concrete
situation described by means of the "current" product
and process data. Thus deterministic approaches are not
powerful enough to support high concurrency [2].
Instead, an autonomous synchronization component is
required which recognizes conflicts and starts
resolution strategies at run-time, if necessary.

The next section describes the electrical desxgn
domain in aircraft engineering. In section 3, the
requirements of simultaneity for this particular area as
well as the boundaries for the concurrency of
engineering work are evaluated. Section 4 presents the
characteristics of the proposed semantical process and
product data model, the so-called Concurrency Model,
which is the basis of our approach. Conflict recognition
and resolution using Event-Condition-Action rules as
well as the information requirements for rule checks are
addressed in section 5. Section 6 discusses the
functional components of the Concurrency Model
approach, their role in an integrated framework
architecture, and the current implementation status.
Finally, in section 7 the obtained conclusions and open
research issues are addressed.

2 The Aircraft Engineering Domain

Today, product development activities for aircraft
engineering are alread: performed concurrently to
some extent. This is doue based on the principle of
geometrical and functional design spaces (see figure 1).
Working on design spaces means the geometrical
division of the product in different parts (design spaces)

with pre-defined interfaces. Later, during the real

simultaneous work phase each engineer (or engineering
team) works on the product specification within its
individual design space. This is followed by the post-
defining phase within which the integration of the
individual design spaces into the final global design is
performed [3,4,5]. The reduction in development time
obtained by this principle is carried out at the expense
of limiting the autonomy of engineer decisions to just
one design space. Optimization is only possible within
the pre-defined design spaces. The modification of
interfaces between different design spaces causes parts
of the design to become obsolete or incorrect during an
intermediated period of time [6]. This problem is
increased due to the fact that the work teams involved
are usually distributed geographically and are using
heterogeneous software systems such that the data
exchange among systems has often to be performed by
paper or by primitive data exchange interfaces with loss
of data and semantics.

In addition, processes in the environment under
consideration are very complex. They can be described
as hierarchically structured activity trees in which
dependencies among activities can span several
subtrees [7]. The process knowledge is usually not
centralized but distributed among several persons. The
effects of different scheduling decisions are therefore
difficult to estimate in advance.

Pre-defining %‘q&
Phase y
Interface « , = Interface
definition * v * definition
Simultaneous Al e
Work [I >
Design Design Design
space | space |l space lll
Integration of share
Post-defining i
Phase -
W -

Figure 1 The design spaces principle

192

Wiring design differs from other areas in the domain
of aircraft engineering. In comparison to the other
disciplines, wiring design runs mainly sequentially and
is therefore time-intensive and expensive. Because
nearly each aircraft has a different device
configuration, electrical design and manufacturing have
the character of individual production. Important
aspects are that the electrical equipment (cabling) is
affecting several design spaces and has also a lower
priority than other design disciplines such as hydraulic.
For these reasons fixing of electrical interfaces among
design spaces can not be done during the pre-definition
phase. They are defined.iteratively during progress of
work [8). This trial-and-error methodology causes a
high number of- iterations and aborts. Planning and
execution of electrical engineering must therefore
embody a high degree of flexibility. Exchanged
electrical data are often saved redundantly such that
global control of data acmality is very difficult to
achieve. Drawings and lists are used as common
"language" in this domain, which are usually not
exposed in a preliminary state. This means that
engineers often have to wait for data from other sources
although they could proceed to a certain degree based
on preliminary information. ;

Due to activity duration as well as the type of data

. (complex objects) the classical locking mechanisms of

(central or distributed) database systems cannot be
applied satisfactorily in this area. Advanced
engineering database technology, communication
mechanisms, and system support of cooperative
engineering work are therefore required.

3 The Boundary of Concurrency

We want to improve concurrency support in the
engineering domain described above. But first we must
handle the question: Is there a boundary for the
concurrency of engineering work? That is, how much
concurrency can be introduced into an engineering
process? To answer this "pointing-the-way" question
we want to go into an imaginary engineering world: -

In our imaginary world, there is a higher number of
engineers involved in the development of an aircraft
than today. We enter into a design office and look at
the display of some engineer who is working on the
specification of an electrical device, e.g. the wiring of a
video equipment. Looking at the display of some other
engineer we notice that he is also working on the same
design. Even many more engineers are working on it.
Modifications carried out by some designer are tracked
back to the affected design activities in real time,

although the dependencies among the tasks are not
obvious (e.g. there can be a dependency between the
type of an electrical device and the allowed wire type).
Whenever a conflict occurs the persons involved are
automatically asked for interaction to resolve the
conflict using an integrated communication facility.

Two engineers are simultaneously moving the same
three-dimensional point. Both point movements are
accepted partially and integrated in the resultant point
position (see figure 2). But such a 3D point like in
figure 2, is not limiting the concurrency. Two engineers
can change the same axis value of a point at the same
moment and both changes can be valid (e.g. if the real
number given by a user is the top limit and the other
user inputs a smaller value). But there are neither
closed design spaces nor a fixed workflow definition.
The engineers do not have to wait for locked data, and
just one version of the video equipment results finally.
Engineers finish a task within minutes for which a team
in the real world of today would need many hours. The
end solution is not the addition of propositions done by
each engineer but it is an optimal combination of them.
In this imaginary world, the boundary of concurrency is
the atomic data type of the semantical data model.
Such atomic data types are almost the simple data types
integer, real, string, etc.

Two important conclusions can be drawn from this
mental excursion: Firstly, a data manipulation that
seems to be conflict free at first glance (like the change
of an electrical device and of the used wire type) could

User 1

User 2

B

— . e
- —
—
L
-
.
2

- — Conflict?- - =
. A1=A27"

generate an unexpected conflict. Secondly, the
simultaneous data changes supposed to generate a
conflict, e.g. when two engineers simultaneously move
the same point, can be completely free of conflicts.

We asked the question whether the engineers in
practice would accept to work with an information
system supporting such a broad range of concurrency.
There are profound occupational and sub-occupational
differences in the way in which work groups share
space and structure activities. Such occupational groups
whose developments of physical objects are shared in
posted drawings or sketches (e.g. artists, architects,
mechanical and electrical engineers) tend to prefer
open work spaces. Other occupational groups like
software engineers, academics and writers prefer
generally private workspaces with fewer intrusions and
interruptions [9]. We, therefore, are quite confident to
achieve a good acceptance of our highly concurrent
engineering environment, once it is being tested in the
wiring design practice.

Another important issue is whether meaningful
results of simultaneous engineering work are possible
without the definition of design spaces or fixed
workflows. Experiments in three dimensional computer
aided design showed that concurrent editing is not
chaotic due to the intervention of social protocols [10].

“Therefore the définition of goals for each engineering

activity as well as the run-time control of work should
be sufficient to guarantee successful engineering work.

- — -
- emm w — E— o —

Figure 2 Working at the boundary of concurrency

193

Due to the fact that the goals of concurrent
engineering (shorter time to market, reduced
development costs and increased product quality [11])
are by far reached in the imaginary world outlined
above, efforts on the Concurrent Engineering area
should be pursued more ambitiously.

Summarizing the discussion above it can be said that
highly concurrent engineering processes are
characterized as follows:

O The (final) limit of concurrency is the atomic data
type of the semantical product data model.

O There is not a fixed, pre-defined course of activities
and steps.

O Changes are propagated immediately to concerned
activities.

O Conflicts are recognized and resolved when they
occur.

0O Users are isolated from synchronization work.

The next sections show the proposed mechanisms
for concurrency control of our approach. These
concepts are based on the assumption that there exists a
conflict recognition and conflict resolution expertise
which is applicable to the semantical process data and
product data model. This knowledge can be applied at
run-time to recognize which activities have to run
synchronously and to start conflict resolving strategies
if necessary.

4 Concurrency Model Data Contents

The formal representation of the process data has a
special meaning for the support of simultaneous work.
The term "process model" is being used since years to
reflect this fact. But the representation of highly
concurrent activities reflects substantially more aspects
than the concepts of the classic process modelling
theory. For this reason we introduced the term
Concurrency Model that means the formal
representation of a highly concurrent engineering
process from a semantical point of view. We grouped
the information contents of the Concurrency Model into
three sub-models, namely the Extended Product Data
Model, the Semantical Representation Model and the
Semantical Process Model. These models will be
illustrated in the following sections. Another important
model is the Product Data Model which does not need
to be altered for the implementation of our approach.
Instead, we only introduce references from the
Extended Product Data Model to the traditional one.

194

4.1 Extended Product Data Model

There is much product information required for the
support of highly concurrent engineering work which is
not sufficiently reflected by the product data models
used today [12]. To ensure that product data stay
“clean" of such information and to avoid that the
product data model has to be altered, we defined an
extension of the product data model, the so-called
Extended Product Data Model. This extension also
contains references to data stored according to the
product data model.

Through the support of further types of information
the semantics of the application domain can be more
adequately reflected. Thus the concurrency control
capabilities of the engineering environment can be
extended. Some examples of the additionally
introduced information are: parametrical dependencies
of product data (e.g. the length of a cylinder A is 2
times its diameter), quality stages of product data like
preliminary, pre-released and released (e.g. the current
value of the diameter of A is pre-released, its length is
preliminary), range of values (e.g. the diameter of B
must have a value between 25 and 30 mm), data
versioning items (e.g. the current attribute values of C
form its version 3), and the history of value changes in

. .product data (diameter of D had the values 26, 29 and

28 mm) [13]. The Extended Product Data Model also
reflects the hierarchical product structure according to
the application terminology, e.g. a video equipment
consists of video player, screens, wires, etc.

4.2 Semantical Representation Model

This model was introduced because of the high
number of existing methodologies for describing
processes and protocols. The suitability of selected
representation forms has been analyzed in the context
of our approach. The result of this study was that there
exists no single model reflecting all significant process
aspects, but rather different views at the process. Each
view plays a useful role in the representations of
process related information. The view concept means
that process data are managed in a database according
to a semantical model. Representations of this data are
derived dynamically and (partly) automatically from
data stored in the process database (see figure 3).
Usually not all aspects are exposed in every view.
Instead, each view concentrates on certain aspects.

Figure 3 Process views as abstractions of process data

Different representation techniques have to be
supported but the process viewer should also be
extendible. Adequate representation forms are domain
specific. For our studied case we decided to support
process data representations in form of bar diagrams,
net plans, data flow diagrams, hierarchy trees, and high
level petri-nets.

Users never work directly with data of the
semantical representation model but use logical views
instead. According to the incremental modelling
approach the person responsible for the project
definition starts using a selected modelling technique.
The input data are transferred later into the global
schema of the process database. These data can be
afterwards transformed into the next view, upon which
further project aspects can be defined and entered.

4.3 Semantical Process Model

The Semantical Process Model is the core of the
concurrency control in the presented approach. It
describes the dependencies among the different steps of
the overall process, é.g. data flow dependencies, time
constraints, hierarchical relationships, etc. Activity
classes have been determined as abstractions of
comparable work phases. Activity states (in-work,

195

resumed, restored, committed, aborted, etc.) as well as
stage transitions have been also integrated into this
model. A distinction between individual work (tasks)
and collaborative work (interactions) was carried out.
Common forms of interaction have also been defined.
References among engineering activities and product
data were introduced by the definition of data inputs
and outputs for each activity. Further information
contents are the factors time and cost for each activity
type, which was introduced to support simple financial
analyses.

An extract of the semantical process model is shown
in figure 4. The employed notation is called EXPRESS-
G, which was developed as part of the data exchange
format STEP [14]. EXPRESS-G serves to build
semantical data models through the definition of entity
types, represented as rectangles in figure 4. Entity types
are described by named attributes, which are drawn as
thin lines among rectangles. Attributes must belong to a
specific type shown by the small circles at the end of
thin lines. The min-max numbers following the
attribute name express the cardinality constrains of the
attributes. There are also aggregated types in
EXPRESS-G, which allow to define further constraints
for attributes, e.g. in figure 4 a "process" has the
attribute "phase" which is a "set" of activities.

-

. ' activity process |
. . Input| output """ o— S o e e 0 A e e e
\ — : | phase S[1:7] l : :
extended_product_model. y visualization | semanucal_reprcscn.tauon_
: product_data ' | from to S [1:7] ; model.process_view '
-------- |_---_-- ' I‘_-_--------.---'
' I

Figure 4 Semantical process model

EXPRESS also supports inheritance of attributes
between entity types by the use of hierarchical
relationships. Multiple inheritance as well as recursive
attribute definition are also supported. References
among models are represented as ovals placed into
rectangles. The name of the referenced schema is
placed into this rectangle followed by a dot and the
name of the referenced entity type.

Figure 4 shows a global perspective of the
Semantical Process Model. There are entities from type
"“process" which have an attribute "phase" (a set of
activities) and "visualization" (a set of views). There
are also data flows from one activity to another one
containing collections of data which are references to
the extended product data model. Activities are further
described by inputs and outputs which are also
references to the extended model. The attribute
representation of entity view allows to define
references to the semantical representation model.

5 Conflict Recognition and Resolution

Conflict resolution plays a central role in achieving
support of simultaneous work. As described above,
existing mechanisms for concurrency support are either
based on a resolving possible conflicts in advance or on
fixing of the point in time for conflict resolution in
advance. Our approach is based on Klein's and Lu's
[15] assumption that there is a rich collection of
domain-independent conflict recognition and resolution
expertise which can be identified in advance and
applied at run-time. The separation of the conflict
knowledge from the execution code allows an easier
definition and update of the expertise as well as the
reconstruction of system decisions. Due to the
procedural nature of the process expertise we decided
to experiment with the representation of knowledge in
form of Event-Condition-Action (ECA) rules. Once the
framework implementation is completed we will

196

evaluate this representation form which has been
improved to reflect the conflict expertise of this domain
[16].

ECA rules are also stored in the database according
to the Concurrency Model described in the previous
section. Rule checking takes place using the stored
process and product data. The synchronization
component of the active database observes changes on
data and activates the knowledge manager based on the
data manipulations that can be associated with a
conflict (see figure 5). The knowledge manager
searches for ECA rules matching the event. For all
rules matching in the event part, the condition part

- (which is a logical expression) is verified. If the result

of the condition check is "True" the action part of the
rule is communicated to the synchronization
component which starts the conflict resolution
executing the predefined action.

notifications

events | ®

Synchronizer

Application

3

calls

+ Manipulation

:I-J.;t::: flows
=

actions
ECA-rules

Khowledge manager

Database
condition che

Figure 5 Rule check procedure

Figure 6 shows three examples of representative
ECA rules. The first ome is applied if the
synchronization component detects that some new
activity is being started. The activity identifier is
passed on to the knowledge manager. This component

finds the rule referring to the current event (activity
begins) and starts to check the condition body. In this
case the data types which were defined as input of the
concerned activity are identified and a request for
instances of these data types is sent to the database. In
case that there are not "enough" input data available,
another query is generated which identifies the
activities with corresponding output data types. If some
predecessor activity is still running, the synchronization
component receives a request to start the action part
and the required information to execute the action (in
this case the identifiers of involved activities and a
description of the data which causes the conflict). The
synchronizer starts the required conflict solving action.
This means, it informs the predecessor activity about
the conflict. The synchronizer then waits for an answer
which can contain either data in some quality state or
even an assumption of additionally required time. The
answer is subsequently sent to the activity to be started.

The second example in figure 6 is a time trigged
rule. The synchronization component observes that the
pre-defined latest end time for an activity is reached.
This event is further communicated to the knowledge
manager together with the identifier of the activity.
Later, the knowledge manager generates a database
request for the current status of that activity. If the
control of the activity shows that it is still running, the
action part is communicated to the synchronizer. This
component sends a commit request notification for the
user on that activity. He can end the work task or he
can answer with an assumption of the additional
required time. In case this time is "too" long the
synchronization component starts a new resource
allocation, for example through the creation of a sub-
task to be carried out separately.

The last example we want to handle here is applied
when the active database obtains an update request.
This event is noticed by the synchronizer, which
communicates it to the knowledge manager for rule
checking. A database query determines if such a
request coming from another activity has already been
accepted. In this case the identifier for the activity that
is performing an update at present as well as a
reference to the data instances is passed on to the
synchronizer. This component starts the cooperation
groupware and provides the data which causes the
conflict. The users involved can interact using this
software and can negotiate about a commonly accepted
value for the data which are causing the conflict.

197

Event Condition Action
succesor activity| input instances | predecessor
begins missed notification
latest end activity on further ressource
time reached run allocation
update request | data already negotiation

in write start

Figure 6 Selected examples of ECA rules

Two types of rules can be identified in the conflict
expertise: Rules that are case independent or general
rules, and the case specific or special rules [17].
General rules are always known at the knowledge
manager side. The special rules for the related case
have to be entered before or during process execution
to ensure that the specific process can be performed. To
avoid that an important special rule remains undefined
and that there are rules mutually eliminating each
other, a process simulation must be started before the
real process begins. Of course, a simulation can not
analyze all possible cases, and therefore process
deadlocks are nevertheless possible. For this reason,
strategies for product and process data recovery have to
be also improved. Process simulation can reveal that

- there are not sufficient instances of the semantical

process model to ensure successful process control. In
this case the synchronization component generates a
list of information demands to be entered into the
database before the process starts. If some information
is unknown, the synchronization component releases a
process start and later, by progress of work the
information demand is addressed again.

As an ‘"emergency exit', some tasks of the
synchronization component can be suspended
temporally by the project administrator. In this case the
process control uses the conventional process
management components, this means without the
automatic execution of system actions. This status
remains until a new consistent execution plan is
formulated. The knowledge management system must
have an explanation component which shows on
demand which rules have led to a certain decision. We
expect the number of general rules to be not more than
100. The number of project specific rules are expected
to be even smaller.

6 Functional Architecture

In this section we want to outline the functional
requirements for the implementation of the
Concurrency Model approach. This catalogue can be
used as a basis for further framework implementations.
At present, an implementation is being done at the
University of Ulm, partially using standard application
software and existing software development tools.
Figure 7 shows the required functional blocks, which
are handled in detail in this section. The description of
the framework components bases on the functions to be
provided by the modules.

6.1 Data Repositories

The product data will be stored in a database
according to the product data model. In an initial phase
we are using a product data model that contains only
electrical design related information. At present, the
product database will store data only from one
application program, namely SchematiX1l. In the
future we will implement a standardized product data
model according to the ISO standard STEP (Standard
for the Exchange of Product Model Data) [14]. Thus,
also data from other applications can be stored in the
product data repository. The exchange of product data
between the Concurrent Engineering framework and
other external systems will also be improved by the
neutral data model. Concurrency related information
will be also stored in this repository according to the
Concurrency Model described in section 4.

Figure 7 Functional system blocks

198

6.2 Concurrency Model

This component has been already discussed in detail
in section 4 and will not be handled again at this point.

6.3 Database System and Concurrency
Control Subsystem

For data management a standard database system
has been integrated into the framework architecture.
The concurrency control subsystem supports advanced
concurrency control mechanisms like nested
transactions and save-points which are used by the
synchronization component. Versioning capabilities for
product and process data have also to be provided by
the database system. In our prototype implementation
we are using ONTOS, a development of ONTOS Inc.
USA, which satisfies most of the database related
requirements. Direct access by the user to data stored in
the database is not allowed. Instead, data manipulations
are only possible through functions of a component
with a user interface (the application programs, the
groupware, the process visualizer, the simulation tool,
and the knowledge manager).

. 6.4 Synchronization Component

Another functional software category im our
Concurrent Engineering approach is the synchronizer of
engineering activities. During the start of an activity
this component starts the required application programs
and provides the input data. The main function of this
component is to observe modifications of product and
process data and to activate the knowledge manager if
events occur which can generate a conflict. Actions for
conflict solving suggested by the knowledge manager
are started by this component. The synchronizer also
communicates with users when a commitment of an
activity, output data, or assumptions concerning
additionally required time must be requested.

6.5 Knowledge Manager

The function of this module is the support of input,
update, and verification of the conflict expertise. The
knowledge manager serves also as an inference engine
which decides which rules must be applied by a given
trigger. The required information for rule checking is
contained either in the Concurrency Model, in the
product data repository, or in the concurrency data
repository. Therefore, the knowledge manager must
also communicate with the database asking for product
and process data, but also for meta data defined in

terms of the Concurrency Model. There are different
intelligent system building tools that are being analysed
for the implementation of this component. The
implementation phase of the knowledge manager is
planned for the end of 1995.

6.6 Application Programs
The definition and update of product data take place

in the application programs such as computer aided
design software. For our prototype we are integrating

the electrical CAD system SchematiX11l, a
development of the Australian software house
Softsmiths Pty. Ltd. This system stores data

continuously in ASCII files, one for each electrical
schema. The product data contents of this ASCII file
can then be stored in the database. Data which is
required on the application program side is checked out
from the database and written into an ASCII file so that
it can be read by SchematiX11.

Because the achievable degree of concurrency
depends on the frequency of data transfer from the
application program to the database, the CAD system
should update this file frequently. Another important
issue is how often changes should be propagated or
should become visible in other concerned applications
programs. There are three alternatives for change
propagation from the application to the database and
from the database to other involved activities [18]: (1)
broadcast all changes, (2) refresh periodically, and (3)
refresh on demand. Option 1 was excluded because we
are integrating standard application programs whose
source program code is not available to us. We,
therefore, decided to apply a combination of options 2
and 3. The synchronisation component waits during a
pre-defined length of time that the user saves data into
the ASCII file. When this time is exceeded a save
request is sent. If there are changes that should be
propagated to other application programs a "save-and-
close" request is sent to the user. Saved data are then
combined with data from the other application by the
merge mechanism discussed below. Afterwards, the
users can re-load the file.

6.7 Version Management Tool

This framework component handles the different
versions of ASCIH files updated by the concurrent
activities. Its main function is to support the selection
of instances from two or more object versions and to

199

store them into a new one. The necessity for such a
merge component has often been addressed in the
literature [2,4,13,15,19], but there are until yet not
significant advances on this research area. The mapping
of logical representation to the merge of physical files
has to be developed individually. The semantics of the
application expresses the areas that are subject of
changes. Non-conflicting areas ca be changed
simultaneously. The version merge tool must be able to
identify the modified parts and to update the master
copy accordingly.

We defined a simple merge procedure to experiment
with. This mechanism to combine data contained in the
files A and B can be sketched as follow (see figure 8):
For each object O, in file A, find an object O, in file B
with the same object ID like O, or find an object O, in
B with the same data type as O, whose attributes are
comparable to those of O, Find the difference (A)
between O, and O, based on the attribute values that are
not equal in both objects. For each attribute of A select
a value using the semantics of data, e.g. check whether
the attribute was defined as a field (see section 4) or
whether some activity has a higher priority than the
other ones. In case no selection can be carried out, ask
»somebody" to do it. The selected attribute values of A
are then added to the object O, which is now defined as

- the merged object. Then O, is added to the merged file.

All Objects O, and O, that could not be matched are
also included in the merged file. The core of our merge
mechanism is the match of the objects among the files,
this means to find out which objects in file A should be
compared with objects in file B. But also the
semantical selection of attribute values plays a central
role. This merge procedure is being implemented at the
present. Some simple tests have shown that most of the
correct data contents of the files to be merged can be
selected successfully.

match create
file A file B Objectd Objectf file C

Figure 8 The merge procedure

6.8 Interaction Groupware

Traditionally, a discussion about some product or
process characteristics is performed by two or more
engineers working together in the same room having a
drawing in front of their eyes. Each engineer can
observe the progress of work and can also integrate it
into his work. But the complexity of the engineering
work has substantially increased. Cooperative work is
not anymore a simple meeting of two or more experts.
The interaction component should provide the same
data view to all participants, regardless whether they
work in the same room or not. Each party should have a
mouse pointer in the groupware window. There must be
also possible to interchange textual data or voice during
the interaction.

In our implementation objects are not locked when
they are being changed by an engineer. Instead, we use
coloured representations to differentiate among: (1)
data being manipulated in activity A but not involved
in the conflict, (2) comparable data but from activity B,
(3) data involved on the conflict, (4) data being
changed by activity A at the moment, (5) data being
changed by activity B, and finally, (6) data that are
being changed simultaneously at the moment. This
implementation will be based on a toolkit called
Groupkit [20], a development of the University of
Calgary. There is a high number of possible interaction
forms, e.g. delegation, discussion, rejection, proposal,
brainstorming, voting, etc. [21]. To reduce the
complexity by the implementation of this component
classes of interactions with comparable or even same
behaviour will be built. For each class a set of
cooperative steps can be defined and implemented in
form of an interaction protocol.

6.9 Process Visualizer

For the purpose of visualization of process data
stored in the concurrency data repository, the process
vizualisation tool must also be provided. This
component is being implemented at present on the base
of Gassner's [22] concept for process model transfer.
The visualizer will consist of a model editor, a
semantics enquirer, a meta data enquirer, and an
explanation component. An important problem is the
placement of the graphical elements within a view.
Because to the complexity of placement algorithms, it
will be possible for the user to influence the placement
or to ask a complete new placement proposal [23].

200

6.10 Process Simulation Tool

By introducing financial aspects into the
Concurrency Model the implications of cost and time
by a given project plan can be examined by a process
simulation tool [24]. We also intend to implement such
a simulator into the framework. This component
provides the ability to examine different variations of
the project plan as well as the implications of probable
engineering iterations. Changes on any activity flow
parameter can be estimated using the simulation tool.

7 Conclusions

The definition of fixed workflows does not reflect
the "chaotic" approach that characterizes the real
engineering world. Trying to determine a priori
whether two or more parallel working activities must
be performed synchronously or asynchronously is only
possible by using methodologies that limit the engineer
in his work. Therefore, only sub-optimal solutions can
be achieved in this way. The demand for coordinated,
synchronous work must be recognized at run-time when
a conflict appears. The simultaneous manipulation of a
small data type (like an integer) does not need
necessarily to generate a conflict. Analogously

- ‘conflicts caused by the parallel manipulation of two

data types that can be independent from one other and
should therefore be handled at the semantical data
model level, '

At the beginning, we described a visionary world
that should be pursued to achieve significant advances
in the concurrent engineering research area. This world
is characterized by the atomic data type of the
semantical product model as boundary of concurrency.
Further characteristics are the non-deterministic process
definition, run-time propagation of changes, run-time
conflict recognition and resolution, and isolation of
users from synchronization aspects. This imaginary
world can partly become real using an advanced
semantical process and product data model. The
existence of rules applicable to this semantical model
has been established. Thus the framework can activate
rule checks and determine applicable conflict solving
actions.

There are several open research issues in the area of
high concurrency: e.g. how to avoid negative cascading
effects; how to evaluate, model or express chances and
(financial) risks; how to optimize the representation of
the process data; which error and exception handling
mechanisms can be used; how to achieve object
recognition during version merge, etc.

8

Acknowledgements

Several useful suggestions and comments were
provided by Dr. Johann Krammer and Dr. Josef
Vilsmeier (Daimler-Benz Aerospace AG) as well as by
Thomas Beuter and the team of students (University of
Ulm). We would also like to thank Dr. Dieter Haban
(head of the department CIM, Daimler-Benz Research
Center Ulm) for his continuous support.

9

(1]

(2]

3]

(41

(5]

[6]

(71

(8]

91

[10]

References

Smithers, T.; Troxell, W.: Design is intelligent
behaviour, but what is the formalism? In: Artificial
Intelligence EDAM, (1990) 4(2), 89-98

Prasad, B.; et al. Information management for
concurrent engineering - research issues. Concurrent
Engineering - Research and Applications, 1(1993) 3-20
Medland, A.J.; Janoes, A.: An approach to design
based upon functional logic. In: Proc. 7th. Design
Engineering Conference. Birmingham, UK, July 1984
Anderl, R.; Malle, B. Schmidt, M.: Concurrent
engineering based on a product data model. In: Proc.
3rd Conference on CALS and Information Management
in Europe, Paris, France, 1992

Grabowski, H.; Schmith, M.: Distributed Design -
Working in Design Spaces. In: Proc. Of the CAD’92 GI
Workshop. Berlin: Springer, 1992. In German
Schmith, R.F.: Concurrent design - development time
reduction through simultaneous design. In:
Konstruktion, 45(1993)145-151. Berlin: Springer, 1993
Krammer, J.: PEFF - Process chain optimization in the
aerospace industry. Internal report Daimler-Benz
Aerospace Corporation / LM, number 2. Sept. 1993. In
German

Schneider, P.; Ortiz, R.: Process chain integration using
a common data model. In: Proc. CIM European Annual
Conference 1994, Copenhagen, Denmark, Oct. 1994
Reder, S.; Schwab, R.G.: The temporal structure of
cooperative activity. In: Proc. ACM CSCW'90.
Portland, OR, USA, September 1990

Shu, L.; Flowers, W.: Teledesign: Groupware user
experiments in three-dimensional computer aided
design. In: Collaborative Computing, 1 (1994) 1-14

201

[11]

[12]

(13]

[14]

[15]

[16]

(17

(18]

[19]

120]

[21]

[22]

(23]

(24]

Albano, L.D.; Nam, P.S.. Axiomatic design and
concurrent engineering. In: Computer Aided Design,
Volume 26, Number 7, July 1994, 499-504

Biennier, F.; et al.: A hypermedia based model for
concurrent engineering. In: Concurrent Engineering -
Research and Applications, 1 (1995) 3-20

Kirsche, T.; et al.: Functionality and architecture of a
cooperative database system - A vision. In: Proc. 3rd
int. Conf. on Information and Knowledge Management,
CIKM'94. Gaithersburg, MD, USA. December 1994
STEP ISO 10303: Product data representation and
exchange. ISO TC184/SC4 N181. JAN93, 1993

Klein, M.; Lu S.C.Y.. Conflict resolution in
cooperative design. In: Anificial Intelligence in
Engineering 1989, Vol. 4, No. 4, 168-180

Krause, F.-L.; et al.: Implementation of technical rules
in a feature based modeller. In: Akman, V.; et al.:
Intelligent CAD Systems II - Implementation issues.
Berlin, New York: Springer, 1989

Delahaye, J.P.. Formal methods in artificial
intelligence. London: North Oxford Academic, 1988
Bean-Shaul 1.Z.; et al.: An architecture for multi-user
software development. In: Computing Systems, Vol. 6,
No. 2. Berlin, New York: Springer, 1993

Adams, E.W.: Object management in a CASE
environment. In: Proc. Of 11th Int. Conference on
Software Engineering. Computer Society Press, 1989
Greenberg, S.; Marwood, D.: Real-time groupware as a
distributed System - Concurrency control and its effect
in the interface. In: Proc. ACM CSCW’94. Chapel Hill,
NC, USA, October 1994

Diirr, M.: Coordination mechanisms for team work -
Model building and database support. Ph.D. - Doctoral
thesis at the University of Karlsruhe, Germany.
February, 1994. In German

Gassner, K.: Formalization and transfer of the
semantics of conceptual data models and process
models. Ph.D. - Doctoral thesis at the University of
Ulm, Germany, June, 1994. In German

Paulisch, F.N.. The design of an extendible graph
editor. Lecture Notes in Computing Science No.704.
Berlin, New York: Springer, 1993

Duffey, M.; et al.: Managing the product realization
process - A model to aggregate cost and time-to-market
evaluation. In: Concurrent Engineering - Research and
Applications, 1 (1993) 51-59

Concurrent Engineering

A Global Perspective

Conference Proceedings
1995 |

Concurrent Engineering
A Global Perspective

Sponsored by:

P -

P Concurrent Technologies Corporation

