
A Classification of Multi-Database Languages

Markus Tresch *

IBM Almaden Research Center
650 Harry Road (K55/801)
San Jose, CA 95120, USA
tresch@almaden.ibm.com

Marc H. Scholl

University of Ulm
Faculty of Computer Science

D-89069 Ulm, Germany
scholl@informatik.uni-ulm.de

Abstract

This paper defines a formal classification of multi-
database languages into five levels of database integra-
tion with increasing degree of global control and de-
creasing degree of local autonomy. First, the funda-
mental interoperability mechanisms are identified for
each of these levels. Their consequences on local au-

t o n o m y as well as implementation draw-backs are dis-
cussed. Second, various multi-database languages are
classified into these categories. In addition to o u r

own language COOL ~, other proposals are analyzed,
including SQL *Net, Multibase, Superviews, VODAK,
Pegasus, and O*SQL.

1 Introduct ion

Novel data-intensive information systems are char-
acterized by cooperating (autonomous and heteroge-
neous) database systems and therefore increasingly re-
quire openness of database management systems for a
cooperation with other services, be they data mana-
gers or other service providers. Hence, the area of in-
teroperable multi-database systems (MDBSs) has at-
tracted a lot of recent attention. Practical solutions
typically consist of several DBMSs that are loosely in-
tegrated via data extraction - data conversion - data
upload cycles. This requires extensive and error-prone
application programming, yet guarantees only a mini-
mum of data consistency. The challenge for future
cooperative systems is to provide flexible and scalable
mechanisms to support system-controlled interaction
among different data management systems.

A wide variety of problems need to be solved in or-
der to make MDBSs work: data model transformation,

*Work done while at Faculty of Computer Science, Univer-
sity of Ulm, Germany.

An extended version of this paper is available as Technical
Report UIB 94-07 from the same university.

schema integration, MDBS query languages and opti-
mization, MDBS transaction management, and data
and application migration. This paper concentrates
on MDBS language aspects for integration of data
(schema and instance level) from different component
databases. We concentrate on homogeneous multi-
databases, separating the issue of data model trans-
formation, and assuming that all schemas have been
transformed into a uniform data model.

Multi-database systems are built up of several
component database systems (CDBS) managing lo-
cal component databases DB1, DB2,. . . . An MDBS
is supposed to provide global operations (queries and
updates) on objects stored in different CDBSs consis-
tently, while CDBSs should continue autonomous pro-
cessing of local operations. The structure of each DBi
is given by a component schema and the structure of
the multi-database is given by the global (federated)
schema [15]. h federation dictionary (FD) contains
(meta) information about the distribution and inte-
gration of schemas.

The contribution of this paper is a classification
of MDBS languages into five integration levels rang-
ing from loosely coupled databases, through three
levels of federated DBMSs, to fully integrated, dis-
tributed DBMSs. These levels are separated by the
way how objects in CDBSs that represent "the same"
real world entity can be identified and tied together in
the MDBS. They are also a measure for the degree of
autonomy that component systems have to give up as
the price for tighter cooperation.

In Section 2, we review the basic interoperability
mechanisms. In Section 3, we define the classification
into five levels of MDBS integration. The database
language COOL* [12, 14] is used as a platform, where
all constructs are given sound and formal semantics.
However, the classification is data model/language in-
dependent. In Section 4, we classify and compare
various current related MDBS languages accordingly

195
0-8186-6400-2/94 $4.00 © 1994 IEEE

by mapping some of the proposed constructs to their
COOL* counterparts. Section 5 gives an outlook to
future work.

2 Basic Interoperabi l i ty Mechani sm

In an MDBS, entity objects (objects of the real
world) are to be distinguished from proxy objects (their
approximation in one database) [5]. One particular
entity object can be represented by multiple proxy ob-
jects in different component databases.

Let oi and o i be two proxy objects from different
CDBSs, representing the same (real world) entity ob-
ject. Due to local autonomy, the OID domains of
different CDBSs are pairwise disjoint, such that no
two proxy objects from different CDBSs can be the
same (identical). Object integration requires mech-
anisms to integrate proxy objects oi, oj, if they rep-
resent the same entity object, such that the MDBS
treats them as one single object in global queries and
updates. OIDs are not adequate to globally identify
objects, since they are internal representations within
one CDBS. Entity objects can only be globally identi-
fied by characterizing values ("value identifiability" -
a generalization of identification keys from relational
systems).

One approach would be to link local proxies via
translation tables maintained in the federation dic-
tionary. We formalize this by functions with special
semantics ("the same"), defining a global MDBS in-
tegrity constraint, which is known to the global query
and update operations. Such partial, injective, single-
valued functions are called sameij [14]:

define func t ion sameij : object / - -* ob j ec t j

same-functions are inter-database functions with do-
main o b j e c t / i n database DBi and range ob jec t j in
database DBj, and returning for a given DBi-proxy
object the "same" DBj-proxy object (if any). Hav-
ing same-functions, global object identity can now be
defined:

Def in i t ion 1. (Global object identity) The global
object identity of multi-database objects ol, o2 is de-
fined as =gt : o b j e c t × o b j e c t --. boo l where

O1 =gl 02

(3i : objecti(ol) A objecti(o2) A 01 -~'i 02)
V (3sameij : ob jec t i --* ob jec t j :

objecti (ol) A objectj (02) A 02 =j samei.j (Ol)).

From now on, two objects are the same, if they stem
from the same CDBS and are identical in it, or if they

have been defined (by the user/DBA) to be the same
using same-functions.

The goal of schema integration is to find out what
the common (structural) parts in the local schemas are
and to define correspondences among them. Our mat-
ter of concern is not to find another schema integra-
tion methodology for resolving structural and seman-
tic conflicts. Rather we are interested in identifying
(and later classifying) the necessary basic abstraction
mechanisms for elementary database integration. It is
quite common to most object models, that databases
contain a meta database with objects representing ev-
ery schema element of the application schema. In
COOL* for example, objects of the meta database rep-
resent persistent variables, functions, types, classes,
and views. As for "ordinary" object integration, we
use same-functions for schema integration, but now
applied on schema objects of the meta database (see
Section 3.2 for an example).

same-functions are to be understood as the ba-
sic, data model independent abstraction mechanism
for object and schema integration, used within this
paper. Schema integration methodologies/strategies
[2], can be implemented using same-functions as base
technology. Instead of same-functions, one may al-
ternatively think of global query expressions or rela-
tions (tables) mapping between objects from differ-
ent CDBSs. Concrete implementation alternatives for
such same-functions for different data models are dis-
cussed in the next section.

3 Five Levels of M D B S Integration
We now formally define a classification of MDBS

languages into five levels of database integration with
increasing degrees of global control and decreasing de-
grees of local autonomy. This classification refines [15]
that distinguishs between losely and tightly coupled
database systems only.

Integration level 0 represents non-integrated
MDBSs. This is the weakest form of database coup-
ling, where component systems are fully autonomous.
Neither objects, nor schemas are integrated. Level 0
is a kind of ad hoc data "integration". Global trans-
action managemen t allows to process objects from dif-
ferent CDBSs within one global transaction: each in-
dividual query/update statement works on only one
CDBS.

Level IV represents fully integrated (maybe physi-
cally distributed) databases. Participating component
systems completely lost their local autonomy. Though
objects might be physically distributed, these systems
have one single logical database schema. Distribution

196

is therefore logically transparent.
In between these two extremes, levels I, II, and III

describe federated database systems (FDBS). They
are the most challenging architectures, because on the
one hand, their objects and schemas are subject to
some global control, and on the other hand, parti-
cipating CDBSs have retained some local autonomy.
In the sequel, we focus on these levels, i.e., on fed-
erated object database systems. Though we use the
COOL* multi-database language for illustration pur-
poses, the conceptual ideas can be transferred to other
languages.

3 .1 L e v e l I : C o m p o s i t i o n

Integration level I is called schema composition. It
is the elementary process to combine multiple CDBSs
DBi into one composite schema GDB, and is therefore
the foundation for establishing a federated database
system. Schema composition places only minimal re-
quirements on the degree of integration between par-
ticipating systems. It just imports the names of all
schema elements from CDBSs and makes them glob-
ally available. The type and class systems of the local
databases are combinded, without establishing con-
nections between composite systems. As an anchor,
basic data types of component systems are assumed
to be identical. 1 This ensures that at least values of
elementary data types can be compared between com-
ponent systems. Local object type and class hierar-
chies of the CDBSs are then put together - in a so far
trivial way - by defining a new global top type (the
common supertype of all local root types) and a new
global top class (the common superclass of all local
root classes).

In COOL* for example, names of persistent vari-
ables, functions, types, classes, and views are made
globally available. 2

EXAMPLE 1: Consider a university environment,
where data about students are stored in a library
database LibDB, a student database StudDB, and an
employee database EmplDB. The following COOL*
statements compose these three CDBSs into one global
schema UnivDB:

de f ine d a t a b a s e UnivDB
i m p o r t LibDB, StudDB, EmplDB

end .

1 The internal representations of integer, string, boolean, ...
are identical, or alternatively, an equivalence preserving trans-
formation exists.

Sin the sequel, we use the naming convention that schema
components are suffixed by "@" and the name of the local
schema. For example, class Books in LibDB has as globally
unique name "BooksOLibDB".

A global hierarchy of object types is created with a
new top type objeet@GDB, of wich all top types
of the CDBSs (ob jee t@DBi) are made direct sub-
types. COOL* has a type lattice, therefore, a new
bot tom type bot tom@GDB is made common sub-
type of all local bot tom types. Similar, a global
class hierarchy is established, with the top element
Objeets@GDB as common superclass to all local top
classes Objects@DBi. For other data models, the ef-
fect will be similar. ~>

Schema composition creates a global meta schema
as well. This is the meta schema of GDB and has the
structure of the union of the meta schemas of each
DBi. Though the concrete meta schema depends on
the used data model, the idea of a composite meta
schema remains unchanged for any other approach.

Once two (or more) schemas are composite, queries
can be formulated that involve multiple CDBSs. Re-
call composition UnivDB from Example 1. Since com-
position made basic data types and name spaces glob-
ally available, comparing names of customers (from
LibDB) with names of students (from StudDB) is le-
gal. Hence, the following valid nested query selects
those customers being students as well:

seleet[l~ ~seleet[name(c) = name(s)](s : Students)]
(c :Customers)

Unfortunately, the possibilities of inter-database
queries are very limited up to now. E.g., the following
more elegant solution of the same query is not allowed:

select[c E Students](c : Customers)

Since objects of class Students are of type "student"
and the type of c is "customer" and the two types
"student" and "customer" are not (yet) related, the
selection predicate c E Students would be rejected by
the MDBS type checker.

Schema composition (Level I) is not yet "real
database integration". No same-functions exist and
no two objects can be the same (identical), unless they
originate from the same DBi. Furthermore, type and
class systems are integrated only at the very top level.

3.2 Level I I : V i r t u a l Integrat ion

Level II is called virtual integration and forms the
next increased degree of database cooperation. Views
(derived/computed classes, external schemas [13]) can
now be used to build a uniform, virtual interface over
multiple databases. Views spanning CDBSs define
persistent links between component systems and/or
combine classes from different systems.

197

A federation dictionary (FD) is now required
to store global information. However, since co-
operation is restricted to virtual integration, the
federation dictionary contains meta data, that is,
instance-independent information only, e.g., defini-
tions of multi-database views (i.e. queries). Instance-
dependent information, like e.g. object identifiers
(OIDs) or object values, must not yet be stored in the
federation dictionary, forming the main restriction of
integration level II and preventing from tight coop-
eration. In COOL* for example, the e x t e n d query
operator defines new functions, derived by a query ex-
pression. This possibility can be used to define a view,
connecting two CDBSs. E.g. the following view stores
together with each employee (of EmpIDB) the books
(of LibDB), that she/he lent, defining new function
lbooks:

define v iew Employees as
extend[lbooks :=select[name(e) = name(lent(b))]

(b: Books)](e: Employees)

Inter-database link lbooks from EmpIDB to LibDB is
made persistent, and the definition of the link (the
query) is stored in the global FD.

At integration level II, proxy objects from different
CDBSs representing the same real world entity can be
integrated. For any two component databases DBi
and DBj, a query expression is given that determines
for a DBi-object the corresponding DBj-object (if
any). In COOL* for example, derived same-functions
(cf. Definition 1) from DBi to DBj are possible at
level II, by using e x t e n d views, similar to the above
lbooks example.

EXAMPLE 2: To integrate objects of class
Students@StudDB with objects of class Employ.
ees@EmplDB, if they have identical names, a same-
function is defined by the following view: 3

define v iew Students as
extend[samestudDB,EmplDB : = pick(

select[name(e) = name(s)](e : Employees))]
(s : Students) <>

We now focus on schema integration, that is,
defining correspondences between schemas of differ-
ent CDBSs. We make use of the fact that every
schema element is represented by an object in the meta
database (cf. Section 2). In COOL*, e.g. functions are
unified by defining a same-function from meta type

3 The p ick operator does a set collapse, re turning the object
from a singleton. It re turns undefined if the set is empty, and
raises a run- t ime excpetion if the set contains more than o n e
object .

function@DBi to meta type]unction@DBj. After
that, the multi-database language treats these two in-
tegrated functions as ff they where one single global
attribute. 4

EXAMPLE 3: To unify functions name@StudDB and
name@EmplDB, the following same-function is de-
fined on the composite meta schema of UnivDB:

define v iew Functions@StudDB
as extend[samestudDB,SmplDB := pick(

select~fname(f) = name A fname(g) = name]
(g: Functions@EmplDB))]

(f : Functions@StndDB)

fname(f) is a meta function, returning the name of a
function, represented by meta object f . (>

Now, all prerequisites for virtual CDBS integration
are defined:

EXAMPLE 4: Local schemas are composite by im-
porting LibDB, StudDB, and EmplDB. Then, class
Students is extended with a same-function, and meta
class Functions@StudDB is extended to integrate
name@StudDB and name@EmplDB properties. Fi-
nally, view Persons defines a union over the extended
classes Students@StudDB and Employees@EmplDB,
spanning multiple CDBSs.

define schema UnivDB as
i m p o r t LibDB, StudDB, EmplDB;
def ine view Students@StudDB as

e x t e n d ...; / / s e e Example 2
def ine view Funetions@StudDB as

e x t e n d ...; / / s e e Example 3
define v iew Persons as Students@StudDB

u n i o n Employees@EmplDB;
end .

The extent of view Persons is the union of the base
class objects. Customer objects and student objects
having equal names are defined through the same-
function to represent the same real world object, and
will therefore appear only once in the union view. The
type of a union view is given by the intersection of
the base class functions. Since types of Students and
Employees are disjoint, except for integrated functions

4Notice tha t , 1. not only the unification of functions, bu t of
any meta object , representing variables, types, classes, or views,
is possible; 2. the signatures of schema e l e m e n t s t o be unified
must be compatible, t ha t is, they must have same n a m e s a n d
structures; 3. unifying schema elements my cause value conflicts,
t ha t is, two a t t r ibutes e.g. may be unified though they have
different local values. The discussion of these issues is out of
the scope of this paper; we refer to [14].

198

name@StudDB and name@EmpiDB, there is one sin-
gle function, name, applicable to these objects. O

3.3 Level III: Real Integration

Level III is called real integration and forms the
next increased degree of database cooperation without
the need of completely giving up local CDBS auton-
omy. The use of the FD is enhanced to store instance-
dependent information (e.g. object values, OIDs). This
does not say that all objects from CDBSs are copied
into the FD. As a consequence, CDBSs are loosing
further autonomy, since they must inform the MDBS
upon local updates (e.g. object deletion), in order to
insure that copies of values/OIDs are deleted in the
FD as well (cf. consistency of multiple representa-
tions).

In general, schema integration at integration level
III is not any more limited to views. In COOL* for
example, stored inter-database functions are now al-
lowed.

EXAMPLE 5: Consider again MDBS UnivDB. An
inter-database function favourite_book from S t u d D B
to LibDB can be defined, which is not derived by a
query, but stored explicitely and needs therefore the
enhanced FD to store its values:

define func t ion f avourite_book :
s tudent@StudD B ---* book@Lib D B

A special case of that are stored same-functions. O

Notice, that this gives really advanced possibili-
ties, since we do not need to know a query to retrieve
same objects from other CDBSs. This was not possi-
ble at level II.

Additional global schema augmentation possibili-
ties of level III are: (i) object types, that are subtypes
of different CDBSs and therefore contain functions
from multiple CDBSs, (ii) classes that are subclasses
from different CDBSs, and (iii) variables that can hold
objects from multiple CDBSs as values. These global
schema augmentations are only visible to the MDBS
and are not known to CDBSs. Not only MDBS queries
respecting the global object identity are available, but
general updates, spanning multiple CDBSs are possi-
ble as well.

In COOL* for example, there is a generic update
operation gain[t](o), adding object type t to object o
[12]. As long as type t and object o stem from the
same database, the gain operation works as in one
centralized database. However, if o and t are from dif-
ferent databases, the semantics becomes unclear, since

an object can usually not get a type from an other
database. One realization of this gain operation for
MDBSs might work such that a same object o' of o
is created in the database where type t is defined and
a local gain operation is performed, making o' an in-
stance of t.

This realization maps the multi-database gain op-
eration to a sequence of operations, that can be exe-
cuted within one single CDBS. Since an object o' of
DBj is assigned to be the same object as o of DBi,
stored same-functions are needed, that are only pos-
sible at level III or higher.

It is important to understand, that the above global
gain operation cannot be implemented, using derived
(Level II) same-functions. To be even more general,
although the above realization of gain is just one pos-
sible way of how to do it, we argue, that there is no
other realization of such an operation in any other
language, that can be done, using virtual (Level II)
mechanisms exclusively.

3 .4 S u m m a r y

Table 1 gives a comparison of the main character-
istics of integration levels 0 to IV. Notice, that mixed
levels of integration may coexist, where e.g. some ob-
jects/classes are virtually integrated, whereas others
are really integrated. A language is called "of level
n", if it contains at least one mechanism of level n and
none of level n+l .

4 C l a s s i f i c a t i o n o f I n t e r o p e r a b i l i t y

M e c h a n i s m s

We now concentrate on the use of the above
classification in order to compare related multi-
database approaches. For this purpose, we selected
a couple of (well known) multi-database languages
(SQL*Net, Multibase, Superviews, VODAK, Pegasus,
and 0*SQL) and identified their main static (schema)
and dynamic (operational/language) interoperability
mechanisms. According to that, these languages are
classified into level I, II, or III.

4.1 connect-to-Statement of Oracle
SQL*Net and I N G R E S / S t a r

With special software packages, like e.g. Oracle
SQL*Net [111 or INGRES/Star [4], many relational
database system products allow for the definition of
connections between multiple database systems, mak-
ing distribution of data more transparent.

After establishing connections to mul-
tiple databases, by a CONNECT TO <database> state-
ment for example, queries can join tables from differ-
ent component databases. However, the join predicate

199

Table 1: Five Levels of Multi-Database Integration

M u l t i - D B S F e d e r a t e d D B S D i s t r . D B S
Level 0 Level I] Level H [Level I I I Level I V

, ,y

logical schemas schemas schemas schemas schemas
schema not composite virtually really completely

integration integrated integrated integrated integrated
proxy- fully derived stored one set
objekt disjoint same- same- of objects

unification sets of objects functions functions only
global query global restricted queries updates as in
and update transactions global using global using global central
operations operations object identity object identity DBS
federation not used for used for not
dictionary necessary instance-independent instance-dependent available

(FD) information only information too

is only allowed to compare between basic data types,
which follows directly from that only these basic data
types are integrated over CDBSs. Therefore, connect-
to-statements are equivalent to schema composition
and hence to integration level I.

4 .2 M u l t i - D a t a b a s e V i e w s in M u l t i b a s e
and S u p e r v i e w s

Multibase [6] and Superviews [9] provide a uniform
retrieval interfaces (no updates) on top of multiple
database systems, using global views. Thus, both ap-
proaches correspond to integration level II.

Multibase integrates pre-existing databases via
view mappings, building global entity types out of lo-
cal attributes. Queries must be given, describing how
global entities and their values are derived from local
entities. One may, for example, define that two en-
tities with equal key value globally appear only once
(cf. proxy object integration).

Superviews describes virtual integration using a set
of integration operations. It does not provide a general
view mechanism based on a query language. Thus,
together with each integration operation, a transfor-
mation of global queries into queries of local classes is
defined.

Some integration operations are restricted in use.
E.g. the operation add, augmenting the global schema
with a new attribute. While this is a level III mech-
anism in general, (cf. Section 3.3), Superviews allows
only for adding attributes with constant values, which
is, in contrast, possible at integration level II, because
it can be realized storing instance-independent infor-
mation in the FD only.

4 .3 Generalizations of V O D A K

VODAK [10] integrates databases via generaliza-
tions over classes of multiple CDBSs. To support dif-
ferent semantic relationships between proxy objects

and attributes, multiple kinds of generalizations are
identified and enumerated. All of which are equiva-
lent to virtual integration and therefore to cooperaion
level II. Consider for example the following VODAK
role-generalization:

class TAXPAYING-EMPL

role-generalization-of:
UNIV-EMPL, COMP-EMPL

object correspondence rules:

UNIV-ENPL.SS# = COMP.EMPL.ID#

attributes: BORNON
identical: UNIV-EMPL->BIRTHDATE

COMP-EMPL->BIRTHDATE

end TAXPAYI~G-ENPL

To show, that this generalization is a level II mech-
anism, we sketch its reduction to (derived) same-
functions and a un ion view: First, a derived same-
function from CompEmpl c to UnivEmpl u is de-
fined, unifying objects with ss#(u) = id#(c), (cf.
Example 2). Second, functions birthdate@DB1 and
birthdate@DB2 are unified using a same-function on
the meta database (cf. Example 3). Finally, classes
are integrated by a un ion view TaxpayingEmpl, (cf.
Example 4), which is now equivalent to the above VO-
DAK generalization.

In COOL*, we require that functions to be unified
have identical names, wich is not necessary in VO-
DAK. However, renaming parts of a schema can be
done at level II (see Section 4.6 below).

4 .4 unifier- / image -Func t ions in Pegasus

Pegasus [1] internally describes type and object in-
tegration using two system functions: unifier(t) de-
fines for each CDBS type t exactly one unified type
of the global schema, image(o) returns for each lo-

200

cat object o at most one unified global object. 5 The
default assumption is unifier(t) = t and image(o) =
o and can be overriden by defining global inter-
database types. The following statement, for example,
integrates three local types NStud, EStud, WStud
from different CDBSs into one global type Student
(HOSQL syntax [1]):

CREATE TYPE Student
ADD UNDERLYING TYPES NStud, WStud, EStud

UNDER Student

(WStud. Image(x) AS SELECT s

FOREACH Student s WHERE ssn(s) = ssn(x))
(EStud. Image AS STORED)

Corresponding unifier and image functions are cre-
ated automatically by the system. For each underlying
type, unifier is set to Student, e.g. unifier(N Stud) =
Student. For NStud objects, image is the default
mapping image(o) = o. For WStud, it is a derived
mapping, given by a HOSQL SELECT expression.

So far, these are level II mechanisms. However, for
EStud the image function is a stored function, that is,
image(o) is undefined until an instance of Student is
assigned explicitely. As we know, this needs a feder-
ation dictionary storing instance-dependent informa-
tion and requires therefore integration level III.

Notify, that Pegasus is mainly a level II system (de-
rived unifier and image functions), except of some very
few mechanisms, like e.g. stored image functions, that
are of level III.

4 .5 m er ge -Opera t l on in O*SQL

O*SQL [7] is a comprehensive multi-database lan-
guage, providing e.g. functions and types spanning
multiple databases. They can be derived from an
O*SQL query expression, resulting therefore in a level
II integration. Whether stored inter-database func-
tions and types augmenting the global schema are
allowed as well is unclear from the available paper.
However, such possibilities are language extensions,
resulting in integration level III and further loss of lo-
cal CDBS autonomy.

In O*SQL, proxy objects are integrated by a merge-
operation. E.g., the expression merge :ol, :o2 unifies
objects ol and o2, and

select merge(ssO(e) e s)
for each Empl e Stud s where ss#(e) = ss#(s)

describes a kind of object-unifying join, integrating
employees and students with equal ss#. In both cases,

5The following constraint always applies o instance_of t =~
image(o) instance_of unifier(t).

a global table of "same" objects must be allocated
in the FD. Notice, that the semantics of the select
operation is not that of a derived same-function, since
the result is stored (materialized). The O*SQL merge-
operation is therefore a level III mechanism.

4 .6 D i s c u s s i o n - In format ion Capaci ty

We presented interoperability mechanisms of some
selected multi-database languages, as summarized in
Table 2. Of course, the enumeration of languages was
not complete. We considered those systems, focus-
ing in object and schema issues. Other approaches,
discussing for example mainly MDBS transactions, ar-
chitectures, or data model heterogeneity are not taken
into account yet.

Table 2: Selected Interoperability Mechanisms of In-
tegration Levels I - III

Level Concepts and Mechanisms

II

Ill

COOL* schema composition (Sect. 3.1)
Oracle SQL*Net [11], INGRES/Star [4]
connect to-statement
COOL* (Sect. 3.2), Superviews [9],
Multibase [6] MDBS-views
COOL* derived same-functions (Sect. 3.2)
VODAK generalizations [10]
Pegasus unifier-functions and
derived image-functions [1]
COOL* stored same-functions (Sect. 3.3)
COOL* update operations [12]
Pegasus stored image-functions [1]
O*SQL merge-operation [7]

One may ask, whether there isn't a general notion
on how to find out, what kind of mechanism is of what
particular integration level. It shows, that the key to
answer this question is change of information capacity
[3, 8].
Definition 2. (Information Capacity) The infor-
mation capacity :DBs is the set of all potential states
a database can take with given schema S.

The capacity of a database is therefore given by
its schema. Hence, changing the schema of a database
may directly have an impact on its capacity. We say, a
schema change is capacity preserving (CP) / augment-
ing (CA), if it does preserve / augment the information
capacity of the database.

For multi-databases, the global information capa-
city is given by the composite (global) schema, reached
by schema composition at integration level I. Any fur-
ther database (schema or object) integration mecha-
nism may now change this global information capacity.

201

An interoperability mechanism is of level II, iff it
preserves the information capacity of the global (com-
posite) database. Any kind of adding derived (virtual)
information, like MDBS views e.g. in COOL*, Super-
views, and Multibase, generalization of VODAK, de-
rived same-functions of COOL*, and derived unifier-
and image-functions of Pegasus, are CP mechanisms
and therefore of level II. Furthermore, adding at-
tributes with constant values (cf. Section 4.2), as well
as renaming schema elements (cf. Section 4.3) is CP.

An interoperability mechanism is of level III, iff it
augments the information capacity of the global (com-
posite) database. Any kind of adding stored and not
any more derived information is CA and therefore of
level III. Adding stored same-functions of COOL*,
stored image-functions of Pegasus, and the merge-
operation of O*SQL are examples of CA changes. Fi-
nally, most of the generic update operations of COOL*
(e.g. gain) are level III operations as well, because
they define implicitely new functions, and therefore
augment the global information capacity.

5 Conc lus ion a n d O u t l o o k

The contribution of this paper is a formal classi-
fication of multi-database languages into five levels
with increasing strength of database integration and
decreasing degree of local autonomy. The utility of
this classification is twofold:

1. A designer of a new multi-database language is
able to understand, what kind of concepts and mech-
anisms he is allowed to include into his language, in
order to build a multi-database system of a particu-
lar, desired integration level. As a consequence, local
CDBS autonomy and the possibilities for designing
global query and update operations are well known.
COOL* e.g. is defined as a scalable MDBS language.

2. A multi-database language may be classified into
level I to IV according to the implemented concepts
and mechanisms. This is very helpful to understand
related work and to compare systems among each
other. We argued for example, that Pegasus and
O*SQL are mainly systems of integration level II (vir-
tual integration), however, they include some very few
concepts, making them finally level III systems (real
integration).

Future work will include other MDBS languages, as
well as the consideration of data model heterogeneity
and transaction mechanisms. Whereas we think, that
transaction mechanisms are orthogonal to the pre-
sented classification, it might be interesting to inves-
tigate, what kind of data model transformation mech-
anisms are possible at a particular integration level.

References
[1] R. Ahmed, e t . a]. An overview of Pegasus. In Proc.

3rd Int'l Workshop on Research Issues on Data En-
gineering (RIDE-IMS), Vienna, Austria, Apr. 1993.
IEEE Computer Society Press.

[2] C. Batini, M. Lenzerini, and S.B. Navathe. A compar-
ative analysis of methodologies for database schema
integration. ACM Computing Surveys, 18(4), Dec.
1986.

[3] It. HuH. Relative information capacity of simple rela-
tional database schemata. SIAM Journal of Comput-
ing, 15(3), 1986.

[4] Ingres Corp. INGRES/Star User's Guide, Release
6.4, Dec. 1991.

[5] W. Kent. The breakdown of the information model
in multi-database systems. A CM SIGMOD Record,
20(4), 1991.

[6] T. Landers and It.L. Itosenberg. An overview of multi-
base. In Proc. 2nd Int'l Syrup. on Distributed Data
Bases, Berlin, Germany, Sept. 1982. North-Holland.

[7] W. Litwin. O*SQL: a language for multidatabase in-
teroperability. In Proc. 1FIP DS-5 Semantics of In-
teroperable Database Systems, Lorne, Australia, Nov.
1992.

[8] It.3. Miller, Y.E. Ioannidis, and It. Itamakrishnan.
The use of information capacity in schema integration
and translation. In Proc. 19th lnt'l Conf. on Very
Large Data Bases (VLDB), Dublin, Irland, Aug. 1993.

[9] A. Morro. Superviews: virtual integration of multi-
ple databases. 1EEE Trans. on Software Engineering,
13(7), Jul. 1987.
E.J. Neuhold and M. Schrefl. Dynamic derivation of
personalized views. In Proc. 14th Int'l Conf. on Very
Large Data Bases (VLDB), Los Angeles, California,
Sept. 1988. Morgan Kaufmann.
Oracle Corp. SQL *Net TCP/IP User's Guide, Ver-
sion 1.2, Nov. 1989.
M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, and
M. Tresch. The COCOON object model. Technical
Report 193, ETH Ziirich, Dept. of Computer Science,
Dec. 1992.
M.H. Scholl, C. Laasch, and M. Tresch. Updatable
views in object-oriented databases. In Proc. 2nd Int'l
Conf. on Deductive and Object-Oriented Databases
(DOOD), Munich, Germany, Dec. 1991. Springer,
LNCS 566.
M.H. Scholl, H.-J. Schek, and M. Tresch. Object al-
gebra and views for multi-objectbases. In M.T. Ozsu,
U. Dayal, and P. Valduriez, editors, Distributed Object
Management. Morgan Kaufmann Publishers, 1994.
A.P. Sheth and J.A. Larson. Federated database sys-
tems for managing distributed, heterogeneuos, and
autonomous databases. ACM Computing Surveys,
22(3), Sept. 1990.

[10]

[11]

[12]

[13]

[14]

[15]

202

	quelle: Proc. Int'l Conf. on Parallel and Distributed Information Systems, PDIS '94, Austin, Texas, September 1994, pp. 195-202

