
On Measuring Process Model Similarity based
on High-level Change Operations

Chen Li1, Manfred Reichert1, and Andreas Wombacher2

1 Information System group, University of Twente
P.O.Box 217, 7500 AE Enschede, The Netherlands

{lic,m.u.reichert}@cs.utwente.nl
2 Database group, University of Twente

P.O.Box 217, 7500 AE Enschede, The Netherlands
a.wombacher@utwente.nl

Abstract. For various applications there is the need to compare the
similarity between two process models. For example, given the as-is and
to-be models of a particular business process, we would like to know how
much they differ from each other and how we can efficiently transform
the as-is to the to-be model; or given a running process instance and
its original process schema, we might be interested in the deviations
between them (e.g. due to ad-hoc changes at instance level). Respective
considerations can be useful, for example, to minimize the efforts for
propagating the schema changes to other process instances as well. All
these scenarios require a method to measure the similarity or distance
between two process models based on the efforts for transformation. In
this paper, we provide an approach using digital logic to evaluate the
distance and similarity between two process models based on high-level
change operations (e.g. to add, delete or move activities). In this way,
we can not only guarantee that the transformation results in a sound
process model, but also ensure that the efforts are minimized.

1 Introduction

Business world is getting increasingly dynamic, requiring from companies to con-
tinuously adapt their Process-Aware Information Systems (PAIS) [6] in order to
cope with the frequent and unprecedented changes in their business environ-
ment [23, 25]. Organizations and enterprises need to continuously Re-engineer
their Business Processes (BPR), i.e. they need to be able to flexibly upgrade
and optimize their business processes in order to stay competitive in their mar-
ket. Furthermore, PAIS should allow for process flexibility, i.e., they should allow
users to deviate from the standard process model at the instance level if required.
Finally, organizational learning should be supported by analyzing these process
instance deviations. The latter provides useful information about the past which
can be utilized by a company to evolve and optimize its business processes and
supporting PAIS [17].

The pivotal research on process flexibility over the last years [3–5] has pro-
vided the foundation for dynamic process change to reduce the cost of change

II

in PAIS. In this context, business process flexibility denotes the capability to
reflect externally triggered change by modifying only those aspects of a process
that need to be changed, while keeping the other parts stable, i.e., the ability
to change or evolve the process without completely replacing it [4]. When com-
paring two process models, we would like to be able to calculate their minimal
difference based on high level changes so that if we need to transform one model
to another, efforts can be reduced and the transformation can go smoothly (i.e.
we do not need to re-implement the new process model from scratch, but only
apply these high level changes either at process type or process instance level).

Several approaches like ADEPT [5], WASA [10] or TRAM [9], have emerged
to enable full lifecycle support in PAIS (for an overview see [7]). All these systems
support ad-hoc deviations at the instance level and record them in change logs.
Thus, they provide additional information when compared to traditional PAISs
which only record execution logs.

1.1 Problem Statement

Based on the two assumptions that: (1) process models are block-structured and
(2) all activities in a process model have unique labels, this paper deals with the
following research question:

Given two process models S and S′, how much do they differ from each other
in terms of high-level change operations? And what is the minimal effort, i.e.
the minimal number of change operations needed to transform S into S′?

Clearly, our focus is on minimizing the number of changes necessary to trans-
form process model S into process model S′. However, soundness of the resulting
process model should be also not sacrificed. When modifying a process model, we
apply the high-level change operations as introduced by the ADEPT method [5]
to guarantee soundness. By considering high-level change operations, we can dis-
tinguish ourselves from traditional similarity measures like graph isomorphism
[2] or sub-graph isomorphism [24], which only consider basic change primitives
like the insertion or deletion of single nodes and edges. At process type level,
answering this question will lead to better cost efficiency when performing BPR,
since the efforts to implement the corresponding changes in the supporting PAIS
is minimized. At process instance level, answering this question can reduce the
efforts to propagate the process type changes to the running instances [7, 18];
or when there are thousands of instances, the derived differences between the
original process model and each process instance can be used as a set of pure
and concise logs for process mining [17].

1.2 Contribution

Previous work on ADEPT [5] has provided the technical foundation for users to
flexibly change process models at both the process type and the process instance
level. For example, users may dynamically insert, delete or move an activity [5]
at these two levels. In addition, snapshot differential algorithms [1], known from
database technology, can be used as a fast and secure method to detect the

III

change primitives (e.g. concerning differences of the activities or control flow
edges) needed to transform one process model into another.

Based on the ADEPT framework and snapshot differential algorithm, this
paper applies Digital Logic in Boolean Algebra [20] to provide a new method to
transform a process model to another based on high-level change operations. This
method does not only minimize the number of changes needed in this context,
but also guarantees soundness of the changed process model, i.e. the process
model remains correct when applying a high-level change operation. Our paper
also provides the two measures of process distance and process similarity based
on high-level change operations. Such measures can be used to determine how
difficult it is to transform a process model into another, and how different two
process models are.

The remainder of this paper is organized as follows: Section 2 introduces
backgrounds needed for the understanding of this paper. In Section 3, we dis-
cuss reasons and difficulties for deriving high-level change operations. Section 4
describes an approach to detect the changes between two block-structured pro-
cess models, and Section 5 discuss related work. The paper concludes with a
summary and outlook in Section 6.

2 Backgrounds

A process model S = (N, E, . . .) ∈ P is defined as a Well-Structured Marking
(WSM) Net [5]. P stands for all the possible process models. N constitutes a set
of activities ai associated to S and E is a set of control edges linking all these
activities. To limit the scope, we assume process models to be block structured.
A detailed description and correctness issues of WSM Nets are out of the scope
of this paper, (see [22]).

We assume that a process change is accomplished by applying a sequence
of change operations to a given process model S over time [5]. Such change
operations modify the initial process model by altering the set of activities and/or
by changing their order relations. Thus, each application of a change operation
to a process model results in another process model. In this context, we define
high-level change operations on a process model as follows:

Definition 1 (Change in Process Model). Let P be the set of possible pro-
cess models and C the set of possible process changes. Let S, S′ ∈ P be two process
models, let ∆ ∈ C be a process change, and let σ = 〈∆1,∆2, . . . ∆n〉 ∈ C∗ be a
sequence of process changes performed on initial process model S. Then we can
define:

– S[∆〉S′ iff ∆ is applicable to S and S′ is the process schema resulting from
the application of ∆ to S.

– S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ = Sn+1, and Si[∆〉Si+1

with i = {1, . . . n}.
Examples of high-level change operations and their effects on a process model
are depicted in Table 1. Issues concerning the correct use of these operations and

IV

Table 1. Examples of High-Level Change Operations on Process Schemas

Change Operation opType subject paramList
∆ Applied to S
insert(S, X, A,B, [sc]) insert X S, A,B, [sc]
Effects on S: inserts activity X between activity sets A and B.
It is a conditional insert if [sc] is specified (i.e. [sc] = XOR)

delete(S, X, [sc]) delete X S, [sc]
Effects on S: deletes activity X from S, i.e. X turns into a silent
activity. [sc] is specified ([sc] = XOR) when we block the branch
with X, i.e. the branch which contains X will not be activated

move(S, X, A,B, [sc]) move X S, A,B, [sc]
Effects on S: moves activity X from its original position to
another position between activity sets A and B. (it is a conditional
insert if [sc] is specified)

replace(S, X, Y) replace X Y
Effects on S: replaces activity X by activity Y

related pre/post conditions are described in [5]. If some additional constraints are
met, the high-level change operations depicted in Table 1 are also applicable at
the process instance level (e.g. to deal with exceptional situations [18]). Although
the depicted change operations are discussed in relation to the ADEPT meta
model (see [5] for details), they are generic in the sense that they can be easily
transferred to other meta models as well, (e.g. Petri Nets) [18]. We are referring
to ADEPT in this paper since it covers by far most high-level change operations
and change pattens respectively when compared to other approaches [25].

In our context, a trace t on process model S denotes a valid execution se-
quence t ≡< a1, a2, . . . , ak > of activities ai ∈ N on S according to the control
flow defined by S. All the traces process model S can produce are summarized in
set TS . Finally, t(a ≺ b) is denoted as precedence relationship between activities
a and b in trace t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b. Here, we only
consider traces composing ’real’ activities, but no events related to silent activ-
ities (i.e. activity nodes which contain no operation and exist only for control
flow purpose). The reason of why not considering silent activities is given later
(c.f. Section 4.4). At this stage, we consider two process models as being the
same if they are trace equivalent, i.e. S ≡ S′ iff TS ≡ TS′ . The stronger notion
of bi-similarity [26] is not considered at this stage.

3 high-level change operations

3.1 Complementary Nature of Change and Execution Logs

Change logs and execution logs document different run time information on
process instances and are not interchangeable. Even when the original process
model is given, it is not possible to convert the change log of a process instance
to its execution log or vice-verse. As an example, take the original model of a
patient treatment process as depicted in Figure 1a): a patient is admitted to a

V

hospital, where he first registers, then receives treatment, and finally pays.
Assume that, due to an occurring emergency situation, for one particular patient,
we want to first start the treatment of this patient and allow him to register
during treatment. To represent this exceptional situation in the process model
of the respective instance, the needed change would be to move activity receive
treatment from its current position to a position parallel to activity register.
This leads to a new model S′ (S[σ〉S′) and the corresponding change log is σ =<
move(S, reveive treatment, admitted, pay) >. Meanwhile, the execution log
for this particular instance is then {admitted, receive treatment, register,
pay} (as numbers indicate in the Figure 1b). If we only have process model S and
its execution log, it is not possible to determine this change because the process
model which can produce such execution log is not unique (for example, a process
model with the four activities contained in four parallel branches could produce
this execution log as well). On the contrary, it is generally not possible to derive
the execution log from a change log, because the execution behavior of S′ is also
not unique (for example, a trace < admitted, register, receive treatment,
pay > is also producible on S′). Consequently, change logs provide additional
information compared to pure execution logs.

3.2 Why High-level Change Operations?

After showing the importance of changes, in this section we discuss why we
need high level change operations rather than change primitives (i.e. low-level
changes at edge and node level). Left side of Figure 2 shows original process
model S which consists of a parallel branching, a conditional branching and a
silent activity τ (depicted as empty node) connecting these two blocks. Assume
that two high-level change operations are applied to S resulting in two models
S1, S2: ∆1 moves activity C from its current location to the position between
activities A and B, which leads to S1 (i.e. S[∆1〉S1 with ∆1 = move(S, C,A,B));
∆2 moves activity A to the position between activities B and C, i.e. S[∆2〉S2

with ∆2 = move(S, A,B,C). Figure 2 additionally depicts the change primitives,
representing snapshot differences between the model S and the models S1 and
S2, respectively.

receive treatmentAdmitted a) S: original process model b) S’: final execution & change
1 32 4register pay registerreceive treatment pay AND-SplitAND-Join1 A possible execution orderAdmitted

Fig. 1. change log and execution log is not interchangeable

VI

delEdge(StartFlow,A); delEdge(A,B); delEdge(B,C); addEdge(B,A); addEdge(A,C); addEdge(StartFlow,B)
delEdge(A,B); delEdge(B,C); delEdge(B,D); delEdge(C, τ); delEdge(D,τ); delEdge(t,E); delEdge(τ, F}; delNode(τ); addEdge(A,C); addEdge(C,B); addEdge(B,D); addEdge(D,E); addEdge(D,F); updateNodeType(D, XorSplit); updateNodeType(B, empty);GBA

C

D

E

F

DA C
E

F
B G

B
A C

D

E

F
G

Change Primitives
Change Primitives

∆1=Move (S, C, A, B)
S1: model after change ∆1

∆2=Move (S, A, B, C)

S[∆1>S1

S[∆2>S2
S: original process model S2: model after change ∆2AND-SplitAND-Join XOR-SplitXOR-Join

Fig. 2. high-level change operation compared with change primitive

When compared to change primitives, using high-level change operations like
’move’ or ’insert’ offers the following advantages:

1. High-level change operations, as supported by ADEPT, guarantee soundness:
i.e., the application of a high-level change operation on a sound model S
results in another sound model S′ [5]. This also applies to our example
from Figure 2. By contrast, when applying one single change primitive (e.g.
deleting an edge in S), soundness cannot be guaranteed anymore. Generally,
if we delete any of the edges in S, the resulting process model will not be
necessarily sound.

2. High-level change operations provide richer syntactical meanings than change
primitives. Generally, a high-level change operation is built upon a set of
change primitives which collectively represent a semantic modification of a
process model. As example, take ∆1 from Figure 2. This high-level change
operation requires 15 change primitives for its realization (deleting edges,
adding edges, deleting the silent activity, and updating the node types).

3. An important aspect, not discussed so far, concerns the number of change
operations needed to transform a process model S into a target model S′.
For example, we need only one move operation to transform S to either S1 or
S2. However, when using change primitives, migrating S to S1 necessitates
15 changes, while the second change ∆2 can be realized based on 6 change
primitives. This simple example shows that change primitives do not provide
an adequate means to determine the difference between two process models.
Thus the number of the change primitives cannot represent the efforts for
process model transformations.

3.3 The Challenge to Derive High-level Change Operations

After sketching the benefits coming with high-level change operations, this sec-
tion discusses challenges of Deriving them. When comparing two process models,

VII

S’(∆1>S’’S(∆1>S’∆1= Delete (S, B) ∆2= Delete (S’, C) delEdge(A,B), delEdge(B,C), addEdge(A,C), delNode(B)delEdge(C,D), addEdge(A,D), delEdge(A,C), delNode(C)S(σ>S’’
σ =< Delete (S, B), Delete (S, C) > delEdge(A,B), delEdge(B,C), delEdge(C,D),addEdge(A,D), delNode(B)delNode(C)

S’’ A D

S’ A C D

S A B C D

Fig. 3. undetectable change primitives

the change primitives needed for transforming one model into another can be
easily determined by performing two snapshots and a delta analysis on them
[1]. An algorithm to minimize the number change primitives has been given in
[11]. However, when trying to derive the high-level change operations needed for
model transformation, several challenges occur. Consider Figure 3 as example:

1. When performing two delete operations on S, i.e. ∆1 = delete(S, B) and
∆2 = delete(S, C), we obtain a new model S′′ with S[σ〉S′′ with σ =<
∆1,∆2 >, as well as an undetectable intermediate model S′ with S[∆1〉S′
and S′[∆2〉S′′. When examining the change primitives corresponding to each
high-level change operation, we need to first add edge (A,C) after the first
delete operation ∆1, and remove this edge (A,C) when applying the sec-
ond delete operation ∆2. However, when performing a delta analysis for
the original process model S and the resulting process model S′′, the two
change primitives (addEdge(A,C) introduced by the first delete operation
and delEdge (A,C) introduced by the second delete operation) jointly have
no effect on the resulting process model S′′ so that they cannot be detected
by snapshot analysis. Consequently, deriving high-level change operations
from change primitive would be challenging because the change primitives
required for every high-level change will not always appear in the snapshot
differences between the original and resulting models (like in Figure 3, none
of the two sets of change primitives associated to ∆1 or ∆2 are a sub-set of
the set of change primitives associated with σ).

2. Even when there is just one high-level change operation, it remains difficult
to derive it with a delta algorithm. For example, in Figure 3, the delta
algorithm shows that when transforming S to S1, 15 change primitives need
to be applied to the original model S. However, the depicted change can be
also realized by just applying one high level move operation to S.

VIII

4 Detecting The Minimal Number Of High-level Change
Operations

In this section, we introduce our method to detect the minimal number of change
operations needed to transform a given process model S into another model S′.
As example, consider the process models S and S′ in Figure 4.

4.1 General Description of our Method

As mentioned in Section 1, the key issue of this work is to minimize the number
of change operations needed to transform a process model S to another model
S′. In this context, let N and N ′ be the two sets of activities based on which
S and S′ are defined. Generally, three steps are needed (cf. Figure 4) to realize
this minimal transformation:
1. ∀ai ∈ N \ N ′: delete all activities being present in S, but not in S′. As

depicted in our example from Figure 4, this first step transforms S to Ssame

(cf. Figure 4b).
2. ∀ai ∈ N

⋂
N ′: move all activities being present in both models to the lo-

cations as reflected by S′. As depicted in our example from Figure 4, this
second step transforms Ssame to S′same (cf. Figure 4c).

3. ∀ai ∈ N ′ \ N : insert those activities being present in S′, but not S. As
depicted in Figure 4, the third step transforms S′same to S′ (cf. Figure 4d).

Insertions and deletions deal with changes of the set of activities and we can
hardly do anything here to reduce efforts (i.e. the number of required high-level
insert/delete operations): New activities (ai ∈ N ′ \ N) must be added and ob-
solete activities (aj ∈ N \ N ′) must be deleted. The focus of minimality can
therefore be shifted to the use of the move operation, which changes the struc-
ture of a process model, but not its set of activities. Since a move operation
logically corresponds to a delete followed by an insert operation, we can trans-
form Ssame to S′same by maximal n = |N ⋂

N ′| move operations. Reason is that
n move operations correspond to deleting all activities and then inserting them
back to their new positions. So n would be the maximal number of change oper-
ations needed to transform one process model into another, with the same set of
activities (Ssame and S′same in our example from Figure 4). However, this would
be not in line with our goal of minimality. To measure the complete transforma-
tion from S to S′, we formally define process distance and process similarity as
follow:
Definition 2 (Process distance & process similarity.).

Let S, S′ ∈ P be two process models. Let N and N ′ be two sets of activities
based on which S and S′ are defined. Let further σ = 〈∆1, ∆2, . . . ∆n〉 ∈ C∗ be a
sequence of change operations transforming S into S′ (i.e. S[σ〉S′). Then the dis-
tance between S and S′ is given by d(S,S′) = min{|σ| |σ ∈ C∗∧S[σ〉S′}. Further-

more, the process similarity between S and S′ then equals to 1− d(S,S′)
|N |+|N ′|−|N ⋂

N ′| .
i.e. the similarity equals ((maximal number of changes - minimal number of
changes) / maximal number of changes).

IX

4.2 Determining Required Activity Deletions and Insertions

To accomplish Step 1 and Step 3 of our method, we have to deal with the
change of the activity set when transforming S to S′. It can be easily detected
by applying existing snapshot algorithms [1] to both S and S′. As described in
Section 4.1, as first step we need to delete all activities ai ∈ N \N ′ contained in
S, but not in S′. Regarding our example from Figure 4, we therefore can derive
as our first high-level change operation ∆1 = delete(S, X). Similarly, activities
contained in S′, but not in S, are to be inserted in Step 3 of our method, after we
moved the shared activities to their respective position in S′ (S′same respectively).
The parameters of the insert operation, i.e. the predecessors and successors of
the inserted activity, are just like how they appear in S′. In this way, we obtain
the last two change operations for our example: Insert(S, Y, StartFlow, {A, B})
and Insert(S, Z, D, E).

4.3 Determining Required Move Operations to Deal With
Structure Changes

In this section, we focus on Step 2 of our method, i.e. to transform two process
models with same activity set using move operations. Here, we can ignore the
activities not contained in both S and S′ (they have already been handled in
Section 4.2). We therefore consider the two process models Ssame and S′same

respectively, as depicted in Figure 4.

Determine the Order Matrix of a Process Model One key feature of the
ADEPT change framework is to maintain the structure of the unchanged parts
of a process model [5]. For example, if we delete an activity, this will neither
influence the successors nor the predecessors of this activity, and also not their
control relationships. To incorporate this feature in our approach, rather than

S: original process model S’: destination process model
E

D
B C

A Z

F

GY

C

E

X

D

F

GBA

C

E

A

D

F

GB

Ssame: original model with shared activities S’same: destination model with shared activitiesA
C

B
E

F

GD

Step1: delete
Transform
S to S’

Step2: move
Step3: inserta)b) c)d)

Fig. 4. Three steps to transform S into S′

X

only looking at direct predecessor successor relationships between two activities
(i.e. control flow edges), we consider the transitive control dependencies between
all pairs of activities; i.e. for every pair of activities ai, aj ∈ N

⋂
N ′, ai 6= aj ,

their execution order compared to each other is examined. Logically, we check
the execution orders by considering all traces a process model can produce. The
results can be formally described in a matrix An×n with n = |N ⋂

N ′|. Four
types of control relations can be identified (cf. Def. 3):

Definition 3 (Order Matrix). Let S ∈ P be a process model with N =
{a1, a2, . . . , an}. Let further TS denote the set of all traces producible on S.
Then, matrix An×n is called order matrix of S with Aij representing the rela-
tion between different activities ai,aj ∈ N iff:

– Aij = ’1’ iff (∀t ∈ TS with ai, aj ∈ t ⇒ t(ai ≺ aj))
If for all traces containing activities ai and aj, activity ai always appears
BEFORE aj, we will denote Aij as ’1’, i.e., ai is a predecessor of aj in the
flow of control.

– Aij = ’0’ iff (∀t ∈ TS with ai, aj ∈ t ⇒ t(aj ≺ ai))
If for all traces containing activity ai and activity aj, activity ai always
appears AFTER aj, then we will denote Aij as a ’0’, i.e. ai is a successor
of aj in the flow of control.

– Aij = ’*’ iff (∃t1 ∈ TS , with ai, aj ∈ t1 ∧ t1(ai ≺ aj)) ∧ (∃t2 ∈ T , with
ai, aj ∈ t2 ∧ t2(aj ≺ ai))
If there exists at least one trace in which ai appears before aj and at least
one other trace in which ai appears after aj, we will denote matrix element
Aij as ’*’, i.e. ai and aj are contained in different parallel branches.

– Aij = ’-’ iff (¬∃t ∈ TS : ai ∈ t ∧ aj ∈ t)
If there exists no trace containing both activity ai and aj, we will denote
Aij as ’-’, i.e. ai and aj are contained in different branches of a conditional
branching.

We re-visit our example from Figure 4. The order matrices of Ssame and S′same

are shown in Figure 5. The main diagonal is empty since we do not compare
an activity with itself. As one can see, elements Aij and Aji can be derived
from each other. If activity ai is a predecessor of activity aj , (i.e. Aij = 1), we
can always conclude that Aji = 0 holds. Similarly, if Aij ∈ {’*’,’-’}, then we
will obtain Aji = Aij . As a consequence, we can simplify our problem by only
considering the upper triangular matrix A = (Aij)j>i.

Under certain constraints, an order matrix A can uniquely represent the
process model, based on which it was built on. This is stated by Theorem 1.
Before giving this theorem, we need to define substring of trace:

Definition 4 (Substring of trace).
Let t and t′ be two traces. We define t a sub-string of t′ iff [∀ai, aj ∈ t,

t(ai ≺ aj) ⇒ ai, aj ∈ t′ ∧ t′(ai ≺ aj)] and [∃ak ∈ N : ak /∈ t ∧ ak ∈ t′].

Theorem 1. Let S, S′ ∈ P be two process models, with same set of activities
N = {a1, a2, . . . , an}. Let further TS, TS′ be the related trace sets and An×n,

XI

A′n×n be the order matrices of S and S′. Then S 6= S′ ⇔ A 6= A′, if (¬∃t1, t′1 ∈
TS : t1 is a substring of t′1) and (¬∃t2, t′2 ∈ TS′ : t2 is a substring of t′2).

According to Theorem 1, a process model S and order matrix A is a one-
to-one mapping if the substring constraint is satisfied. A detailed discussion of
the sub-string restriction is given further in Section 4.4. A proof of Theorem 1
can be found in [27]. Thus, when comparing two process models, it is sufficient
to compare their order matrices (cf. Def. 3), since a order matrix can uniquely
represent the process model. This also means that the differences of two process
models can be related to the differences of their order matrices. If two activities
have different execution order in two process models, we define the notion conflict
as follows:

Definition 5 (Conflict). . Let S, S′ ∈ P be two process models with same set of
activities N . Let further A and A′ be the order matrices for S and S′ respectively.
Then: Activities ai and aj are conflicting iff Aij 6= A′ij. We formally denote this
as C(ai,aj). CF := {C(ai,aj) | Aij 6= A′ij}, then corresponds to the set of all
existing conflicts.

Figure 5 marks up differences between our two order matrices in grey. The
set of conflicts is as follows: CF = {C(A,B), C(C,D), C(C,F), C(D,E), C(D,F),
C(E,F)}.

Optimizing the Conflicts To come from Ssame to S′same, we have to eliminate
conflicts between them by applying move operations. Obviously, if there is no

Execution order Matrix Ssame Execution order Matrix S’same

A BAB The first group of activities and conflicts

C D E FCDEF The second group of activities and conflicts
Fig. 5. the execution order matrices of Ssame and S′same in Figure 4

XII

conflict for the two process models Ssame and S′same, they are identical. Every
time we move an activity from its current position in Ssame to the position it has
in S′same, we can eliminate the conflicts this activity has with other activities. For
example, consider activity A in Figure 4. If we move activity A from its position
in Ssame (preceding B) to its new position in S′same (A and B are contained in
two different branches of a conditional branching block), then we can eliminate
conflict C(A,B). Shown in the order matrices, moving activity A requires two
steps. First, set the elements in the first row and first column of An×n (which
corresponds to activity A) to empty, since A is moved away. Second, reset these
elements according to the new order relation of A, when compared to the other
activities from S′same. So every time we move an activity, we are able to change
the value of its corresponding row and column in the order matrices, i.e., we
change these values corresponding to the original model to the values compliant
with the target model. By doing this iteratively, we can change all the values
and eliminate all the conflicts so that we could achieve the transformation from
Ssame to S′same.

A none-optimal solution to transform the processes would be to move all the
activities contained in the conflicts in CF , from their positions in Ssame to the
positions they have in S′same. Regarding our example from Figure 5, to apply
this straightforward method, we would need to move activities A, B, C, D, E and F
from their positions in Ssame to the ones in S′same. However, this naive method
is not in line with our goal to minimize the number of applied change operations.
For example, after moving activity A from its current position in Ssame to the
position it has in S′same, we do not need to move activity B anymore, because
after this change operation, there are no activities with which activity B still has
conflicts.

Digital logic in Boolean algebra [20] helps to solve this minimization prob-
lem. Digital logic constitutes the basis for digital electronic circuit design and
optimization. In this field, engineers face the challenge to optimize the internal
circuit design given the required input and output signals. To apply such a tech-
nique in our context, we consider each process activity as an independent input
signal and we want to design a circuit which can cover all conflicts defined by CF
(cf. Def 5). If activity ai conflicts to activity aj , we can either move one of them
or both of them from the positions they have in Ssame to the ones they have
in S′same. Doing so, the conflict will not exist any more. Reason is that every
time we move an activity from the position it has in Ssame to the position it
has in S′same, we reset the corresponding row and column of this activity in the
order matrix. A conflict can be interpreted as a digital signal as follows: when
the two input signals ai and aj are both ”true”(this means we do not move
activity ai and aj), we cannot solve the conflict and the ’circuit’ shall give an
output signal of ”false”, (i.e. aiaj = 0). If we apply this to all conflicts in CF , we
will obtain all the ”false” signals. Meanwhile, the ”circuit” should be able to tell
us what will result in a ”true” output, (i.e. the negative of all ”false” signals).
This ”true” output represents which activities we need to move. Regarding our

XIII

example from Figure 5, given the set of conflicts CF , our logic expression then
is: AB + CD + CF + DE + DF + EF.

The complexity for optimizing the logic expression is NP-Hard [20]. Therefore
it is advantageous to reduce the size of the problem. Concerning our example,
we can cut down the optimization problem into two groups: one with activities A
and B, and conflict C(A,B); another one with activities C, D, E and F and conflicts
{C(C,D), C(C,F), C(D,E), C(D,F), C(E,F)}.

Such a division can be achieved in O(n) time in the following three steps. Step
1: List all the conflicting activities, and set every activity as a group. Step 2: If
conflicting activities ai and aj (i.e. C(ai,aj)) are contained in two different groups,
merge these two groups. Step 3: Repeat Step 2 for all conflicts in CF . After these
three steps, we can divide the activities as well as the associated conflicts into
several groups. Regarding our example, the optimization problem can be divided
into two sub-optimization problems: AB and CD + CF + DE + DF + EF. We depict
this in the two small matrices in Figure 5.

Optimizing logic expression has been discussed intensively in Discrete Math-
ematics. Therefore we omit details here and refer to Karnaugh map [20] and
Quine-McCluskey algorithm [20]. We have implemented the latter in our proof-
of-concept prototype. Regarding our example in Figure 4, the two optimiza-
tion results are: AB = Ā + B̄ for the first group, and CD + CF + DE + DF + EF =
D̄F̄ + C̄ĒF̄ + C̄D̄Ē for the second group. We can interpret this result as follows.
For the second group, either we move activities D and F, or we move activities
C, E and F, or we move activities C, D and E from their position in Ssame to the
positions they have in S′same. Based on this, we can transform Ssame to S′same,
since all conflicts are eliminated. As can be seen from the order matrices, if
we change the value of the corresponding rows and columns of these activities
in Ssame, we can turn Ssame into S′same. As we want to minimize the number
of change operations, we can draw the conclusion that activities D and F must
be moved. Same rule applies to the result of the first group. However, there is
no difference to move either A or B, since both operations count as one change
operation. Here, we arbitrarily decide to move activity B.

So far we have determined the set of activities to be moved. The next step is
to determine the positions where the activities need to be moved to. Operation
move(S, X,A,B, [sc]) will be independent from other move operations (i.e. it
does not matter in which order to move the respective activity) if its direct
predecessors A and direct successors B do not belong to the set of activities
to be moved. Regarding our example from Figure 4, activity F satisfies this
condition since its predecessor C and successor G are not moved. If this had not
been the case, we would have to introduce silent activities to put the moved
activity to its corresponding place in S′same. For example, if we want to first
move B to its position in S′same, we will have to introduce a silent activity after
B and before C and E. Only in this way, we can change the execution order of B
to what it appears in S′same. However, such silent activity will be not required
if we first move activity D to the position it has in S′same. A detailed discussion

XIV

C

E

A

D

F

GB

Ssame S’sameMove(S,D,{A,B}, {C,E})
move(S,B, Startflow, D, XOR)

Move(S, F, C, G)a)b) c)d) A
C

B
E

F

GD

A
E

B
C

F

GD

C

E

A B

F

GD

Fig. 6. Process models after every move operation

is out of the scope here; we refer readers to the reduction rules introduced with
the ADEPT method [5].

According to the position the moved activities have in S′same, we can deter-
mine the parameters (i.e. the predecessors, successors and conditions) for every
move operation. In S′same, activity D has predecessors A and B, and successors E
and C. So one move operations therefore is: move(S, D,{B,A},{C,E}). Similarly,
we obtain the other two move operations: move(S, B,StartFlow,D,XOR) and
move(S, F,C,G). The intermediate process models resulting after every move op-
eration is shown in Figure 6. When comparing order matrices for each model in
Figure 6, it becomes clear that every move operation changes the values of the
row and the column corresponding to the moved activity.

4.4 Silent Activities

A silent activity is an activity which does not contain any operation or action,
and which only exists for control flow purpose. There are two reasons why we
do not consider silent activities in our similarity measure:

1. The appearance of a silent activity can be random. We can add or remove
silent activities without changing the behavior of the process model. For
example, we can replace a control flow edge in a process model by one silent
activity or even a block of silent activities without influencing the behavior
of the process model.

2. The existence of a silent activity also depends on other activities and is
subject to change as other activities change. As example consider Figure 2.
When applying change operation ∆1 to S, the silent activity τ is automati-
cally removed after activity C is moved away.

However, there is one exception for which we need to consider silent activities.
Consider the two process models S1 and S2 as depicted in Figure 7. If we ignore

XV

TS2 = {ABC, AC}TS1 = {ABC} S2S1 A B C A C

B

A C

B

D TS3 = {AC}S3S4 A CTS2 = {ABC, ADC}

Insert(S1, τ, A, C, XOR)delete(S4, D, XOR) delete(S4, D)replace(S2, τ, D) delete(S2, B) insert(S3, B, A, C, XOR)Insert(S3,B,A,C)
Fig. 7. The influence of silent activity

the silent activity τ (depicted as an empty node) in S2, and derive the order
matrix of process model S2, it will be the same as the one of S1. Obviously, the
two process model are not equivalent since the trace sets producible by them are
not identical. More precisely, TS2 contains one additional trace when compared
to TS1 . In general, if one process model can produce additional traces, which
are the sub-string of other traces (cf. Def.4), there must be some silent activities
we cannot ignore. Or if the direct predecessor and direct successor of one silent
activity constitute XORsplit and XORjoin, we can also not ignore this silent
activity (cf. S2 in Figure 7).

Figure 7 shows several process model transformations based on high level
change operations. Here we can identify the difference between the two types
of deletion: delete(S4, D) and delete(S4, D,XOR) (cf. Figure 7). The former one
turns an activity into a silent one (transforming S4 into S2), while the latter
one blocks the branch which contains activity D (transforming S4 to S1). When
a branch is blocked, we do not allow the activities of the branch to become
activated [14, 5]. Since process models S1 and S2 have same order matrix, purely
comparing order matrices (cf. Section 4) would not be sufficient in the given
situation. Reason is that an order matrix does not uniquely represent a process
model, since the sub-string constraint (cf. Def.4) in Theorem 1 is violated. To
extend our method such that it can uniquely represent a process model without
the sub-string constraint, we must consider these special silent activities (i.e.
a silent activity which has direct predecessor of XORsplit and direct successor
of XORjoin) as well. They will appear in the order matrix and their execution
orders compared with other activities will be documented.

However, the existence of a silent activity is still very much dependent on
other activities, including the scenario described above. For example, if we delete
activity B in S2 as depicted in Figure 7, we will transform S2 into S3, i.e. the
silent activity will be simultaneously deleted when activity B is deleted. We can
identify this situation by either examining the process model or the order matrix.
In the process model, a silent activity τ can be automatically deleted if there is
another silent activity τ ′ which is contained in the same block but in another

XVI

Figure 2 Figure 4
S S1 S2 S Ssame S'same S'

S 0 / 100% 1 / 86% 1 / 86% 4 / 50% 3 / 57% 3 / 57% 5 / 44%
Figure 2 S1 0 / 100% 2 / 71 % 4 / 50% 3 / 57% 3 / 57% 5 / 44%

S2 0 / 100% 5 / 38% 4 / 42% 3 / 57% 5 / 44%
S 0 / 100% 1 / 88% 4 / 50 % 6 / 40%

Figure 4 Ssame 0 / 100% 3 / 57% 5 / 44%

S'same 0 / 100% 2 / 78 %
S' 0 / 100%

Fig. 8. The distances and similarities of different process models

conditional branch (e.g. transforming S2 to S3 Figure 7). In the order matrix,
we can automatically remove a silent activity τ if there is another silent activity
τ ′ which has the same order relations to the rest of the activities as τ has.

In general, when a silent activity has an XORsplit as direct predecessor and
an XORjoin as direct successor, we need to consider this silent activity when
computing the order matrix of a process model. However, these silent activities
can automatically been deleted when changing the process model. This requires
us to perform additional checks on the process model or order matrix (as de-
scribed above) after every change operation.

4.5 Summary

Taking our example from Figure 4, to transform S into S′ (S[σ〉S′), the fol-
lowing six change operations are required: σ = {delete(S, X), move(S, F,C,G),
move(S, D,{A,B},{C;E}), move(S, B,StartFlow,D,XOR), insert(S, Y,StartFlow,{A,B}),
insert(S, Z,D,E) }. The distance between the two process models is six, and the
similarity is 0.4 (cf. Def.2).

To illustrate our method and these numbers in more detail, we compare the
distances and similarities between seven process models discussed so far: S, S1

and S2 in Figure 2 as well as S, Ssame, S′same and S′ in Figure 4. The distance
and similarity of two process models are specified as distance/similarity in each
corresponding cell in Figure 8. As the transformation is commutable, we only fill
in the upper triangle matrix. Taking Figure 8, we can conclude the following:

1. Changing the activity set always leads to changing distance. For example,
d(Sn,S′same) always equals d(Sn,S′) + 2, where Sn stands for a process model
other than S′ or S′same in Figure 8. Reason is that S′ contains two unique
activities Y and Z when compared to S′same, while the rest are identical.

2. If three process models S, S′, and S′′ have the same set of activities, d(S,S′′) ≤
d(S,S′) + d(S′,S′′) will hold. It is also easy to understand this because some
activities could be moved twice when transforming S into S′ and S′ into S′′.

XVII

5 related work

Various papers have studied the process similarity problem and provided some
useful results [12–14, 21]. In graph theory, graph isomorphism[2] and sub-graph
isomorphism [24] are often used to measure the similarity between two graphs.
Unfortunately, these measures usually only examine edges and nodes and cannot
catch the syntactical issues of a PAIS. In the database field, the delta-algorithm
[1] is used to measure the difference between the two models. It extends the
above mentioned approaches by assigning attributes to edges and nodes [11].
Still, it can only catch change primitives, and will further run into problems
when catching the high-level change operations (as described in Section 3). In
the fields of Petri-nets and state automata, similarity based on change is difficult
to measure since these formalisms are not very tolerant for changes. Inheritance
rules [14] are one of the very few techniques given to show the transformation of
a process model described as Petri-net. Trace equivalence is commonly used to
compare whether two process models are similar or identical [26]. In addition,
bisimulation [14, 15] extends trace equivalence by considering stronger notions.
Also based on traces, [12] assign weights to each trace based on execution logs
which reflect the importance of a certain trace. Respective techniques are applied,
for example in genetic process mining [13]. The edit distance [21] is also used to
measure the difference between traces; the sum of them represents the differences
of two models. Some similarity measures use two figures (precision and recall)
to evaluate the difference between process models S1 to S2 [12, 16]. However,
this asymmetric way might lead confusion since it is therefore not commutable.
None of these approaches measures the similarity by a unique and commutative
figure, based on the effort for change.

6 Summary and OutLook

We have provided a method to quantitatively measure the distance and similarity
between two process models based on the efforts for model transformation. High-
level change operations are used to evaluate the similarity since they guarantee
soundness and also provide more meaningful results. We further applied digital
logic in boolean algebra so that the number of change operations required to
transform process model S into process model S′ is minimized.

Some additional work is needed to enrich our knowledge on process similar-
ity. As a first step, we will extend our method so that it will be able to measure
the similarity between process models using additional constitutes (e.g., syn-
chronization and loopback edges [5]). The next step will be to incorporate data
flow, temporal constraints, and resources, so that the similarity measure can be
further applied to practice.

References

1. W.Labio , H.Garcia-Molina: Efficient Snapshot Differential Algorithms for Data
Warehousing. 22th Int. Conf. on Very Large Data Bases. pp 63-74, 1996

XVIII

2. L.Babai ,P.Erdös, S.M.Selkow: Random Graph Isomorphism. SIAM Journal of
Computation 9, pp 628-634, 1980

3. P.Balabko, A.Wegmann, A.Ruppen and N.Clement: Capturing design rationale
with functional decomposition of roles in business processes modeling. Software
Process: Improvement and Practice. 10(4):379-392, 2005.

4. I Bider: Masking flexibility behind rigidity: Notes on how much flexibility people
are willing to cope with. CAiSE’05 Workshop, pp 7-18, 2005.

5. M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of Work-
flows Without Losing Control. Journal of Intelligent Information Systems, 10(2):93–
129, 1998.

6. M.Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede: Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology.Wiley
& Sons, 2005.

7. S.Rinderle, M.Reichert and P.Dadam. Correctness Criteria for Dynamic Changes
in Workflow Systems - A Survey. Data and Knowledge Engineering, 50(1):9-34,
2004.

8. S.Rinderle, B.Weber, M.Reichert and W.Wild: Integrating Process Learning and
Process Evolution-A Semantics Based Approach. BPM’05, pp 252-267,2005.

9. M.Kradolfer and A.Geppert: Dynamic workflow schema evolution based on work-
flow type versioning and workflow migration. CoopIS’99, pp 104-114, 1999

10. M.Weske: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. HICSS-34, 2001.

11. S.Rinderle, M.Jurisch and M.Reichert: On Deriving Net Change Information From
Change Logs CThe DELTA-LAYER Algorithm. BTW’07, pp364-381,2007

12. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters: Pro-
cess Equivalence: Comparing Two Process Models Based on Observed Behavior.
BPM’06, LNCS 4102, pp 129-144. 2006.

13. A.K.A. de Medeiros, A.J.M.M. Weijters and W.M.P. van der Aalst. Genetic Process
Mining: A Basic Approach and its Challenges. BPM’05 Workshops , LNCS 3812
pp 203-215. 2006.

14. W.M.P. van der Aalst and T. Basten:Inheritance of Workflows: An Approach to
Tackling Problems Related to Change. Theoretical Computer Science, 270(1-2):125-
203, 2002

15. R.J. van Glabbeek and W.P. Weijland: Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555-600, 1996.

16. S.S. Pinter and M. Golani: Discovering Workflow Models from Activities’ Lifespans.
Computers in Industry, 53(3):283-296, 2004.

17. C.W. Günther, S. Rinderle, M. Reichert, and W.M.P. van der Aalst: Change
Mining in Adaptive Process Management Systems. CoopIS’06, LNCS 4275, pp
309-326. 2006.

18. M.Reichert, S.Rinderle and P.Dadam: On the common support of workflow type
and instance changes under correctness constraints. CoopIS’03, LNCS 2888, pp
407-425, 2003.

19. T.H.Cormen, C.E.Leiserson, R.L.Rivest and C.Stein: Introduction to Algorithms,
Second Edition. MIT press, 2001, pp 549-552

20. S.Brown and Z.Vranesic: Fundamentals of Digital Logic with Verilog Design.
McGraw-Hill, 2003

21. A.Wombacher and M.Rozie: Evaluation of Workflow Similarity Measures in Service
Discovery. Service Oriented Electronic Commerce. pp 51-71, 2006

22. S.Rinderle: Schema Evolution in Process Management Systems. Ph.D thesis, Univ.
of Ulm, 2004

XIX

23. D.M. Strong and S.M. Miller: Exceptions and exception handling in computerized
information processes. ACM Trans on Information Systems, 13(2):206-233, 1995

24. E. B.Krissinel and K.Henrick: Common subgraph isomorphism detection by back-
tracking search. Softw. Pract. Exper. 34(6):591-607, 2004

25. B.Weber and S.B.Rinderle and M.Reichert: Change Patterns and Change Support
Features in Process-Aware Information Systems. CAiSE 2007, LNCS 4495. pp 574-
588. 2007

26. J.Hidders, M.Dumas, W. M.van der Aalst, A. H. ter Hofstede, and J.Verelst. When
are two workflows the same?. 2005 Australasian Symposium on theory of Comput-
ing - Vol 41. ACM vol. 105. 3-11. 2005

27. C.Li, M.Reichert, A.Wombacher. Process Similarity Based on High Level Change
Operations. CTIT Technical Report, University of Twente, The Netherlands.

