
Change Support in Process-Aware

Information Systems - A Pattern-Based

Analysis

Barbara Weber a,∗, Stefanie Rinderle-Ma b Manfred Reichert c

aDepartment of Computer Science, University of Innsbruck,
Technikerstraße 21a, 6020 Innsbruck, Austria

bInst. Databases and Information Systems, Ulm University, Germany
cInformation Systems Group, University of Twente, The Netherlands

Abstract

In today’s dynamic business world the economic success of an enterprise increas-
ingly depends on its ability to react to changes in its environment in a quick and
flexible way. Process-aware information systems (PAIS) offer promising perspectives
in this respect and are increasingly employed for operationally supporting business
processes. To provide effective business process support, flexible PAIS are needed
which do not freeze existing business processes, but allow for loosely specified pro-
cesses, which can be detailed during run-time. In addition, PAIS should enable
authorized users to flexibly deviate from the predefined processes if required (e.g.,
by allowing them to dynamically add, delete, or move process activities) and to
evolve business processes over time. At the same time PAIS must ensure consis-
tency and robustness. The emergence of different process support paradigms and
the lack of methods for comparing existing change approaches have made it difficult
for PAIS engineers to choose the adequate technology. In this paper we suggest a
set of changes patterns and change support features to foster the systematic com-
parison of existing process management technology with respect to process change
support. Based on these change patterns and features, we provide a detailed analysis
and evaluation of selected systems from both academia and industry. The identified
change patterns and change support features facilitate the comparison of change
support frameworks, and consequently will support PAIS engineers in selecting the
right technology for realizing flexible PAIS. In addition, this work can be used as a
reference for implementing more flexible PAIS.

Key words: Workflow-Management, Process-Aware Information Systems,
Patterns, Process Change, Process Flexibility

1

1 Introduction

In today’s dynamic business world the economic success of an enterprise in-
creasingly depends on its ability to react to changes in its environment in a
quick and flexible way [22]. Causes for these changes can be manifold and in-
clude the introduction of new laws, market dynamics, or changes in customers’
attitudes. For these reasons, companies have recognized business agility as a
competitive advantage, which is fundamental for being able to successfully
cope with business trends like increasing product and service variability, faster
time-to-market and business-on-demand.

Process-aware information systems (PAIS), together with service-oriented com-
puting, offer promising perspectives in this respect, and a growing interest in
aligning information systems in a process- and service-oriented way can be
observed [15,68,79]. In contrast to data- or function-centered information sys-
tems (IS), PAIS are characterized by a strict separation of process logic and
application code. In particular, most PAIS describe the process logic explic-
itly in terms of a process model providing the schema for process execution.
Usually, the core of the process layer is build by a process management sys-
tem (PMS), which provides generic functionality for modeling, executing, and
monitoring processes. This approach allows for a separation of concerns, which
is a well established principle in computer science for increasing maintainabil-
ity and reducing cost of change [13]. In many cases changes to one layer can be
performed without affecting the other layers. For example, modifying the ap-
plication service which implements a particular process activity does usually
not imply any change to the process layer as long as interfaces remain stable,
i.e., the external observable behavior of the service remains the same. In addi-
tion, changing the execution order of process activities or adding new activities
to the process can, to a large degree, be accomplished without touching any
of the application services.

The ability to efficiently deal with process changes has been identified as one
of the critical success factors for any PAIS [37,27,26]. Through the above
described separation of concerns, in principle, PAIS facilitate changes signif-
icantly. According to a recent study conducted among several Dutch compa-
nies, however, enterprises are reluctant to change PAIS implementations once
they are running properly [47]. High complexity and high cost of change are
mentioned as major reasons for not fully leveraging the potential of PAIS. To
overcome this problem flexible PAIS are needed enabling companies to cap-
ture real-world processes adequately without leading to a mismatch between

∗ Corresponding author.
Email addresses: Barbara.Weber@uibk.ac.at (Barbara Weber),

stefanie.rinderle@uni-ulm.de (Stefanie Rinderle-Ma),
m.u.reichert@cs.utwente.nl (Manfred Reichert).

2

computerized processes and those running in reality [61,27]. In particular, the
introduction of a PAIS must not lead to rigidity and must not freeze existing
business processes [10]. Instead, authorized users must be able to flexibly de-
viate from the predefined processes as required (e.g., to deal with exceptions)
and to evolve PAIS implementations over time (e.g., to continuously adapt
the underlying process models to process optimizations). Such changes must
be possible at a high level of abstraction without affecting consistency and
robustness of the PAIS [49].

1.1 Problem Statement

The need for flexible and easily adaptable PAIS has been recognized by both
academia and industry and several competing paradigms for addressing pro-
cess changes and process flexibility have been developed (e.g., adaptive pro-
cesses [43,2,78], case handling [69], declarative processes [39], and late binding
and modeling [2,59,23,21]). However, there is still a significant lack of methods
for systematically comparing the change frameworks provided by existing pro-
cess support technologies. This makes it difficult for PAIS engineers to assess
the maturity and the change capabilities of those technologies, often resulting
in wrong decisions and expensive misinvestments.

To make PAIS better comparable, workflow patterns have been introduced
[67]. Respective patterns offer promising perspectives by providing a means
for analyzing the expressiveness of process modeling tools and languages in
respect to different workflow perspectives. In particular, proposed workflows
patterns cover the control flow [67,55], the data flow [53], and the resource
perspective [54]. Obviously, broad support for workflow patterns allows for
building more flexible PAIS. However, an evaluation of a PAIS regarding its
ability to deal with changes needs a broader view. In addition to build-time
flexibility (i.e., the ability to pre-model flexible execution behavior based on
advanced workflow patterns), run-time flexibility has to be considered as well
[44]. Run-time flexibility is to some degree addressed by the exception han-
dling patterns as proposed in [56]. These patterns describe different ways for
coping with the exceptions that might occur during process execution (e.g.,
activity failures or non-availability of a particular service). Patterns like Roll-
back or Redo allow users to deal with such exceptional situations by changing
the state of a running process (i.e., its behavior); usually, they do not affect
process structure. In many cases, changing the observable behavior of a run-
ning instance is not sufficient, but the process structure has to be adapted as
well [44]. In addition, exception handling patterns cover changes at the process
instance level, but are not applicable to process schema changes.

Consequently, the existing patterns have to be extended by a set of patterns

3

suitable for providing a comprehensive evaluation of run-time flexibility as
well. In addition, a PAIS’s ability to deal with changes does not only depend
on the expressiveness of the used process modeling language and the respective
change framework, but also on the features provided by the PAIS to support
these changes. Expressiveness only allows making statements whether a par-
ticular change can be conducted or not. For example, it provides information
on whether or not additional process activities can be added or existing ac-
tivities can be deleted. However, it does not give insights into how quickly
and easily such process changes can be accomplished and whether consistency
and correctness are ensured at all time. For example, many of the proposed
change frameworks require the user to perform changes at a rather low level
of abstraction by manipulating single nodes and edges. This does not only re-
quire a high level of expertise, but also slows down the entire change process.
In addition, not all of the PAIS supporting dynamic process changes ensure
correctness and robustness afterwards, which might lead to inconsistencies,
deadlocks or other flaws [73]. Again, methods for a systematic comparison
of these frameworks in respect to their ability to deal with changes would
facilitate the procedure of selecting an appropriate PAIS.

1.2 Contribution

During the last years we have studied processes from different application
domains (e.g., healthcare [27], automotive engineering [35], logistics [80], pro-
curement [60], and finance). Further, we elaborated the flexibility and change
support features of numerous tools and approaches. Based on these experi-
ences, in this paper, we propose a set of changes patterns and change support
features to foster the comparison of existing approaches with respect to their
ability to deal with process changes. Thereby, we focus on control flow changes,
and omit issues related to the change of other process perspectives. The ex-
tension towards other process aspects (e.g., data flow or resources) constitutes
complementary work and is outside the scope of this paper.

Change patterns allow for high-level process adaptations at the process type
as well as the process instance level. They allow assessing the expressiveness
of change frameworks. Change support features, in turn, ensure that changes
are performed in a correct and consistent way, change traceability is enabled,
and process changes are facilitated for users. Another contribution constitutes
the evaluation of selected approaches from both industry and academia based
on the proposed change patterns and change support features.

This paper provides a significant extension of the work we presented in [73].
While in [73] the proposed patterns have been only described very briefly
and informally, this paper provides an in-depth description of all identified

4

change patterns. To obtain unambiguous patterns descriptions, in addition,
we enhance their description with a formal specification of their semantics
independent of the concrete process meta model they operate on. The dis-
cussion of how change patterns can be applied has been also considerably
extended. Finally, we include additional patterns and change support features
in our comparison framework and we extend the evaluation to a larger set of
approaches and tools. Further, this work can be seen as a reference for imple-
menting adaptive and more flexible PAIS. In analogy to the workflow patterns
initiative [67], we expect further systems to be evaluated over time and ven-
dors of existing PAIS are expected to extend their current PAIS towards more
complete change pattern and change feature support.

Section 2 summarizes background information needed for the understanding
of this paper. Section 3 describes 18 change patterns sub-dividing them into
adaptation patterns and patterns for changes in predefined regions. The formal
semantics of these patterns is provided by Section 4. Section 5 deals with 7
crucial change support features. Taking these change patterns and features,
Section 6 evaluates different approaches. Section 7 presents related work. We
conclude with a summary and outlook in Section 8.

2 Background Information

In this section we describe basic concepts and notions used in this paper.

2.1 Basic Notions

A PAIS is a specific type of information system which provides process support
functions and allows for the separation of process logic and application code.
For this purpose, at build-time the process logic has to be explicitly defined
based on the constructs provided by a process meta model (e.g., Workflow
Nets [65], WSM Nets [48]). At run-time the PAIS then orchestrates the pro-
cesses according to their defined logic and allows integrating users and other
resources. Workflow Management Systems (e.g., Staffware [15], ADEPT [43],
WASA [78]) and Case-Handling Systems (e.g., Flower [15,69]) are typical tech-
nologies enabling PAIS.

In a PAIS, for each business process to be supported (e.g., booking a business
trip or handling a medical order), a process type represented by a process
schema S has to be defined. For one particular process type several process
schemes may exist representing the different versions and the evolution of this
type over time. In the following, a single process schema corresponds to a

5

directed graph, which comprises a set of nodes – representing process steps
(i.e., activities) or control connectors (e.g, XOR-Split, AND-Join) – and a set
of control edges between them. Control edges specify the precedence relations
between the different nodes. Furthermore, activities can either be atomic or
complex. While an atomic activity is associated with an invokable application
service, a complex activity contains a sub process or, more precisely, a reference
to a sub process schema S ′. This allows for the hierarchical decomposition of
process schemes.

Most of the patterns introduced in this paper are not only applicable to atomic
or complex activities, but also to sub process graphs with single entry and
single exit node (also denoted as hammocks in graph literature [82]). In this
paper, we use the term process fragment as a generalized concept covering
atomic activities, complex activities (i.e., sub processes) and hammocks (i.e.,
sub graphs with single entry / exit node). If a pattern is denoted as being
applicable to a process fragment, it can be applied to all these objects.

The above described meta model is shown in Fig. 1, whereas an abstract
example of a process schema based on this meta model is given in Fig. 2.
As a graphical illustration we use the BPMN notation [38]. In Fig. 2 process

Fig. 1. Basic Notions - Process Meta-Model

schema S1 consists of six activities and two control connectors: Activity A is
followed by activity B in the flow of control, whereas activities C and D can be
processed in parallel. Activities A to E are atomic, and activity F constitutes a

6

complex activity (i.e., sub process with own process schema S2). The region
of the process schema containing activities B, C, D and E as well as the control
connectors AND-Split and AND-Join constitutes an example for a hammock,
i.e., process sub graph with single entry and single exit point. The term process
fragment covers all of the above mentioned concepts and can either be an
atomic activity (e.g., activity A), an encapsulated sub process like process
schema S2, or a hammock (e.g., the sub graph consisting of activities B, C, D,
E and the two connector nodes). Based on process schema S, at run-time new
process instances can be created and executed. Regarding process instance I1

from Fig. 2, for example, activity A is completed and activity B is activated.
Generally, a large number of instances, all being in different states, might run
on a particular process schema.

Process Instance Level

Process Type Level

Completed Activated

Fig. 2. Core Concepts - An Example

2.2 Process Flexibility

To deal with evolving processes, exceptions and uncertainty, PAIS must be
flexible. This can either be achieved through structural process adaptations
(cf. Fig. 3) or by allowing for loosely specified process models, which can be
refined by users during run-time according to predefined criteria (cf. Fig. 4).

Process Adaptation. In general, process adaptations can be triggered and
performed at two levels – the process type and the process instance level (cf.
Fig. 3) [49]. Process schema changes at the type level (in the following called
schema evolution) become necessary to deal with the evolving nature of real-
world processes (e.g., to adapt them to legal changes). Such a schema evolution
often necessitates the propagation of respective changes to ongoing process in-
stances (with respective type), particularly if these instances are long-running.
For example, let us assume that in a patient treatment process, due to a new

7

legal requirement, patients have to be educated about potential risks before a
surgery takes place. Let us further assume that this change is also relevant for
patients for which the treatment has already been started. In such a scenario,
stopping all ongoing treatments, aborting them and re-starting them is not a
viable option. As a large number of treatment processes might be running at
the same time, applying this change manually to all ongoing treatment pro-
cesses is also not a feasible option. Instead efficient system support is required
to add this additional information step to all patient treatments for which
this is still feasible (e.g., if the surgery has not yet started). Ad-hoc changes of
single process instances, in turn, are usually performed to deal with exceptions
or unanticipated situations, resulting in an adapted instance-specific process
schema [43,78,32]. The effects of such ad-hoc changes are usually instance-
specific, and consequently do not affect any other ongoing process instance. In
a medical treatment process, for example, a patient’s current medication may
have to be discontinued due to an allergic reaction of this particular patient.

Changes at the Process Type Level

Process Schema S‘

Schema Evolution

Process Schema S

Process Instance I1

Change
Propagation

Changes at the Process Instance Level

Instance
Change

Process Instance I2

Process Instance I3

Process Instance I1

Process Instance I2

Process Instance I1 Process Instance I1

Fig. 3. Process Adaptation

In-built Flexibility. Flexibility can be also achieved by leaving parts of the
process model unspecified at build-time and by adding the missing information
during run-time (cf. Fig. 4) [2,39,59,23,21]. This approach is especially useful
in case of uncertainty as it allows deferring decisions from build-time to run-
time, where more information becomes available. For example, when treating
a cruciate rupture for a particular patient we might not know in advance which
treatments will be exactly performed in which execution order. Therefore, this
part of the process remains unspecified during build-time and the physician
decides on the exact treatments at run-time.

8

Parts of the process model are specified during run-time

Process Schema S

Run-Time
Specification

Fragments for B+
Process Instance I2

Process Instance I1

Fig. 4. In-built Flexibility

3 Change Patterns

In this section we describe 18 characteristic patterns we identified as being
relevant for control flow changes in PAIS (cf. Fig. 6). Adaptations of other
process aspects (e.g., data or resources) are outside the scope of this paper,
but are addressed in our complementary work on change patterns. Like de-
sign patterns in software engineering, change patterns aim at reducing system
complexity [16] by raising the level of abstraction for expressing changes in
PAIS. The change patterns described in this paper constitute solutions to
commonly occuring changes in PAIS. As an example consider the insertion of
an additional process fragment into a given process schema. Most of our pat-
terns have been identified based on several case studies investigating changes
of real-world processes in different domains (cf. Section 1.2). Furthermore, we
have analysed change facilities offered by existing PAIS-enabling technologies
to complete the set of relevant change patterns.

We divide the change patterns into two major categories: adaptation patterns
and patterns for changes in predefined regions. Thereby, adaptation patterns
allow for structural process adaptations, whereas patterns for changes in pre-
defined regions allow for in-built flexibility (cf. Section 2.2).

Adaptation Patterns allow structurally modifying a process schema at the
type or instance level by using high-level change operations (e.g., to add an
activity in parallel to another one) instead of low-level change primitives (e.g.,
to add a single node or delete a single edge). Though process adaptations can
be performed using low-level change primitives as well, these primitives are not
considered as real change patterns due to their lack of abstraction. Generally,
adaptation patterns can be applied to the whole process schema, i.e., the
region to which the adaptation pattern is applied can be chosen dynamically.
Therefore, adaptation patterns are well suited for dealing with exceptions.

Patterns for Changes in Predefined Regions. By contrast, patterns for
changes in predefined regions do not enable structural process adaptations,
but allow process participants to add information regarding unspecified parts
of the process model (i.e., its process schema) during run-time. For this pur-
pose, the application of these patterns has to be anticipated at build-time.

9

This can be accomplished by defining regions in the process schema where po-
tential changes may be performed during run-time. As process schema changes
or process schema expansions can only be applied to these predefined regions,
respective patterns are less suited for dealing with arbitrary exceptions [43].
Instead they allow for dealing with situations where, due to uncertainty, deci-
sions cannot be made at build-time, but have to be deferred to run-time. Fig.
5 gives a comparison of these two major pattern categories.

 Adaptation Pattern Patterns in Changes to
Predefined Regions

Structural Process Change YES NO

Anticipation of Change NO YES

Change Restricted to Predefined Regions NO YES

Application Area Unanticipated exceptions,
unforeseen situations

Address uncertainty by deferring
decisions to run-time

Fig. 5. Adaptation Patterns vs. Patterns for Changes in Predefined Regions

Fig. 6 gives an overview of the 18 patterns described in detail in the follow-
ing. For each pattern we provide a name, a brief description, an illustrating
example, a description of the problem it addresses, a couple of design choices,
remarks regarding its implementation, and a reference to related patterns. In
particular, design choices allow for parametrizing change patterns keeping the
number of distinct patterns manageable. While the deletion of such a process
fragment constitutes a change pattern, a design choice allows parametrizing
whether the pattern can be applied to atomic activities, complex activities
or hammocks (cf. Section 2). Design choices not only relevant for a particu-
lar pattern, but for a set of patterns, are described only once for the entire
set. Typically, existing approaches only support a subset of the design choices
in the context of a particular pattern. We denote the combination of design
choices supported by a particular approach as a pattern variant.

3.1 Adaptation Patterns

Adaptation patterns allow users to structurally change process schemes. In
general, the application of an adaptation pattern transforms a process schema
S into another process schema S ′. For doing so two different options exist,
which can be both found in existing systems (cf. Section 6).

On the one hand, structural adaptations can be realized based on a set of
change primitives like add node, remove node, add edge, remove edge, and
move edge. Following this obvious approach, the realization of a particular
adaptation (e.g., to delete an activity or to add a new one) usually requires the
application of multiple change primitives. To specify structural adaptations

10

Adaptation Patterns

Patterns for Changes to Predefined Regions

AP7: Inline Sub Process

AP6: Extract Sub Process

Adding / Removing Levels

AP14: Copy Process Fragment

AP5: Swap Process Fragment

AP4: Replace Process Fragment

AP3: Move Process Fragment

Moving / Replacing Fragments

AP2: Delete Process Fragment

AP1: Insert Process Fragment

Adding / Deleting Fragments

Change Transition Conditions
AP13: Update Condition

AP12 Remove Control Dependency

AP11: Add Control Dependency

AP10: Embed Process Fragment in Conditional Branch

AP9: Parallelize Activities

AP8: Embed Process Fragment in Loop

Adapting Control Dependencies

PP4: Multi-Instance Activity

PP3: Late Composition of Process Fragments

PP2: Late Modeling of Process Fragments

PP1: Late Selection of Process Fragments

Fig. 6. Change Patterns Overview

at this low level of abstraction, however, is a complex and error-prone task.
Further, when applying a single change primitive, soundness of the resulting
process schema (e.g., absence of deadlocks) cannot be guaranteed. Therefore,
for more complex process meta models it is not possible to associate formal pre-
/post-conditions with the application of single primitives. Instead, correctness
of a process schema has to be explicitly checked after applying the respective
set of primitives. A detailed discussion on how change complexity and cost of
change are affected when using change primitives is given in Section 3.3.

On the other hand, structural adaptations can be based on a set of high-
level change operations (e.g., to insert process fragment between two sets
of nodes), which abstract from the concrete schema transformations to be
conducted. Instead of specifying a set of change primitives the user applies
one or few high-level change operations to realize the desired process schema
adaptation. Approaches following this direction often associate pre- and post-
conditions with the high-level operations, which allows to guarantee soundness
when applying the respective operations [43,8]. Note that soundness will be-
come a fundamental issue if changes are to be applied by end-users or – even
more challenging – by automated software components (i.e., software agents
[49,36]). For these reasons we only consider high-level operations as adaptation
patterns; more precisely, an adaptation pattern comprises exactly one high-
level operation. Its application to a process schema will preserve soundness of
this schema if certain pre-conditions are met. A detailed discussion on how

11

change complexity is reduced when applying adaptation patterns is given in
Section 3.3.

In total, 14 out of the 18 identified patterns can be classified as adaptation
patterns. In the following all 14 adaptation patterns are described in detail (cf.
Fig. 6). Adaptation patterns AP1 and AP2 allow for the insertion (AP1) and
deletion (AP2) of process fragments in a given process schema. Moving and
replacing fragments is supported by adaptation patterns AP3 (Move Process
Fragment), AP4 (Replace Process Fragment), AP5 (Swap Process Fragment)
and AP14 (Copy Process Fragment). Pattern AP6 and AP7 allow adding or
removing levels of hierarchy. Thereby, the extraction of a sub process from a
process schema is supported by AP6, whereas the inclusion of a sub process
into a process schema is supported by AP7. AP8-AP12 support the adapta-
tion of control dependencies: embed an existing process fragment in a loop
(AP8), parallelize a process fragment (AP9), embed an existing process frag-
ment in a conditional branch (AP10), and add / remove control dependencies
(AP11, AP12). Finally, pattern update of transition conditions (AP13) allows
for changes in the transition conditions.

Fig. 7 describes two general design choices, which are valid for all adapta-
tion patterns and which can be used for their parametrization. Additional
design choices, only relevant in the context of a specific adaptation pattern,
are provided with the detailed descriptions of the respective patterns (cf. Fig.
8-21). The design choices of Fig 7 are shortly described in the following. First,
each adaptation pattern can be applied at the process type and/or process
instance level (cf. Fig. 2). If an adaptation pattern is supported at the process
type level, users may edit the respective process model at build-time using a
graphical process editor and a high-level change operation implementing the
respective pattern. In principle, adaptation patterns can be simulated based
on change primitives. However, support for adaptation patterns at the process
type level facilitates process modeling by raising the level of abstraction and
by reducing complexity (cf. Section 3.3). In case that a respective pattern is
also applicable to the process instance level, run-time changes of single in-
stances can be accomplished. Second, adaptation patterns can operate on an
atomic activity, an encapsulated sub process or a hammock (cf. Fig. 7).

In the following all identified patterns are described in detail.

Adaptation Pattern AP1: Insert Process Fragment. The Insert Process
Fragment pattern (cf. Fig. 8) can be used to add process fragments to a process
schema. In addition to the general design choices described in Fig. 7, one
major design choice for this pattern (Design Choice C) describes the position
at which the new process fragment is embedded in the respective schema.
There are systems which only allow users to serially insert a process fragment
between two directly succeeding activities [25]. By contrast, other systems

12

General Design Choices for Adaptation Patterns

A. What is the scope of the pattern?
1. The respective patterns can be applied at the process instance level
2. The respective patterns can be applied at the process type level

B. Where does the change pattern operate on?
1. On an atomic activity
2. On a sub process
3. Or on a hammock

Design Choice B (illustrated for adaptation pattern AP1)

Complex Activity

Atomic Activity Hammock

Process Instance I

Fig. 7. General Design Choices for Adaptation Patterns

follow a more general approach allowing the user to insert new fragments
between two sets of activities meeting certain constraints [43]. Special cases
of the latter variant include the insertion of a process fragment in parallel to
another one (parallel insert) or the additional association of the newly added
fragment with an execution condition (conditional insert).

Adaptation Pattern AP2: Delete Process Fragment. The Delete Pro-
cess Fragment pattern can be used to remove a process fragment (cf. Fig 9). No
additional design choices are needed for this pattern. Fig. 9 depicts alternative
ways in which this pattern can be implemented. The first implementation op-
tion is to physically delete the respective process fragment, i.e, to remove the
corresponding nodes and control edges from the process schema. The second
implementation option replaces the fragment by one or more silent activities
(i.e., activities without associated action). In the third implementation option
the fragment is embedded in a conditional branch with condition FALSE (i.e.,
the fragment remains part of the schema, but will not be executed).

Adaptation Pattern AP3: Move Process Fragment. The Move Process
Fragment pattern (cf. Fig. 10) allows users to shift a process fragment from its
current position to a new one. Like for the Insert Process Fragment pattern,
an additional design choice specifies the way the fragment can be re-embedded
in the process schema afterwards. Though the Move Process Fragment pattern
could be realized by the combined use of AP1 and AP2 (Insert/Delete Pro-
cess Fragment) or be based on change primitives, we introduce it as separate
pattern since it provides a higher level of abstraction to users.

13

Pattern AP1: INSERT Process Fragment

Description A process fragment X is added to a process schema S.

Example For a particular patient an allergy test has to be added to his treatment process due
to a drug incompatibility.

Problem In a real world process a task has to be accomplished which has not been modeled
in the process schema so far.

Design Choices
(in addition to
those described in
Fig. 7)

C. How is the new process fragment X embedded in the process schema?

1. X is inserted between 2 directly succeeding activities (serial insert)

2. X is inserted between 2 activity sets (insert between node sets)

a) Without additional condition (parallel insert)

b) With additional condition (conditional insert)

serialInsert

parallelInsert

conditionalInsert

Implementation This adaptation pattern can be realized by transforming the high level insertion
operation into a sequence of low level change primitives.

AND-Split AND-Join

XOR-Split XOR-Join

Fig. 8. Insert Process Fragment (AP1) pattern

Adaptation Pattern AP4: Replace Process Fragment. This pattern
supports the replacement of a process fragment by another one (cf. Fig. 11).
Like the Move Process Fragment pattern, this pattern can be implemented
based on patterns AP1 and AP2 (Insert/Delete Process Fragment) or be di-
rectly based on change primitives.

Adaptation Pattern AP5: Swap Process Fragments. The Swap Process
Fragment pattern (cf. Fig. 12) allows users to swap a process fragment with
another one. The process fragments to be swapped do not have to be directly
connected. This adaptation pattern can be implemented based on pattern
AP3 (Move Process Fragment), the combined use of patterns AP1 and AP2
(Insert/Delete Process Fragment), or change primitives.

Adaptation Pattern AP6: Extract Sub Process. The pattern Extract
Sub Process (AP6) allows users to extract an existing process fragment from
a process schema and to encapsulate it in a separate sub process schema (cf.
Fig. 13). This pattern can be used to add a hierarchical level to simplify a

14

Pattern AP2: DELETE Process Fragment

Description A process fragment is deleted from a process schema S.

Example For a particular patient a planned computer tomography must not be
performed in the context of her treatment process due to the fact that
she has a cardiac pacemaker, i.e., the computer tomography activity
has to be deleted.

Problem In a real world process a planned task has to be skipped or deleted.

Implementation Several options for implementing this pattern exist:

(1) The fragment is physically deleted (i.e., corresponding activities
and control edges are removed from the process schema based on
change primitives)

(2) The fragment is replaced by one or more silent activities (i.e.,
activities without associated actions)

(3) The fragment is embedded in a conditional branch with condition
false (i.e., the fragment remains part of the schema, but is not
executed)

Fig. 9. Delete Process Fragment (AP2) pattern

process schema or to hide information from process participants. If no direct
support for pattern AP6 is provided a possible workaround looks as follows:
The new process schema representing the extracted sub process has to be
created manually. As a next step the respective process fragment must be
copied to the new process schema and be removed from the original one. In
addition, an activity referencing the newly implemented sub process must be
added to the original schema and required input and output parameters must
be manually mapped to the sub process (not considered in detail here). The
implementation of pattern AP6 can be based on graph aggregation techniques
[7].

15

Pattern AP3: MOVE Process Fragment

Description A process fragment is moved from its current position in process schema S
to another position within the same schema.

Example Usually employees may only book a flight after it has been approved by the
manager. Exceptionally, for a particular process the booking of a flight
shall be done in parallel to the approval activity; consequently the book
flight activity has to be moved from its current position in the process to a
position parallel to the approval activity.

Problem Predefined ordering constraints cannot be completely satisfied for a set of
activities.

Design Choices
(in addition to those
described in Fig. 7)

C. How is the additional process fragment X embedded in S?

1. X is inserted between 2 directly succeeding activities (serial
move)

2. X is inserted between 2 activity sets (move between node sets)

a) Without additional condition (parallel move)

b) With additional condition (conditional move)

Implementation This adaptation pattern can be implemented based on patternsAP1 and AP2
(insert / delete process fragment) or based on change primitives.

Related Patterns Swap adaptation pattern (AP5)

serialMove

parallelMove

conditionalMove

S S’

S S’

S S’

Fig. 10. Move Process Fragment (AP3) pattern

Adaptation Pattern AP7: Inline Sub Process. As opposed to pattern
AP6 (Extract Process Fragment), the pattern Inline Sub Process (AP7) allows
users to inline a sub process schema into the parent process, and consequently
to flatten the hierarchy of the overall process (cf. Fig. 14). This might be-
come necessary in case a process schema is divided into too many hierarchical
levels or for improving the structure of a process schema. If no direct sup-
port for pattern AP7 is provided a couple of manual steps will be required as
workaround. First the process fragment representing the sub process has to
be copied to the parent process schema. In a next step the activity invoking

16

Pattern AP4: REPLACE Process Fragment

Description A process fragment is replaced by another process fragment in process
schema S.

Example For a particular patient a planned computer tomography must not be
performed in the context of her treatment process due to the fact that she
has a cardiac pacemaker. Instead of the computer tomography activity, the
X-ray activity shall be performed for a particular patient.

Problem A process fragment is no longer adequate, but can be replaced by another
one.

Implementation This adaptation pattern can be implemented based on patterns AP1 and AP2
(insert / delete process fragment) or based on change primitives.

S S’

Fig. 11. Replace Process Fragment (AP4) pattern

Pattern AP5: SWAP Process Fragment

Description Two existing process fragments are swapped in process schema S.

Example Regarding a particular delivery process the order in which requested goods
shall be delivered to two customers has to be swapped.

Problem The predefined ordering of two existing process fragments has to be
changed by swapping their position in the process schema.

Implementation This adaptation pattern can be implemented either based on pattern AP3
(move process fragment), on the combined use of patterns AP1 and AP2
(insert / delete process fragment) or based on change primitives.

Related Patterns Move Process Fragment (AP3)

S S’

Fig. 12. Swap Process Fragment (AP5) pattern

the sub process has to be replaced by the previously copied process fragment.
Further, input and output parameters of the sub process have to be manually
mapped to the newly added activities.

Adaptation Pattern AP8: Embed Process Fragment in Loop. Using
this pattern an existing process fragment can be embedded in a loop to allow

17

Pattern AP6: EXTRACT Process Fragment to Sub Process

Description From a given process schema S a process fragment is extracted and
replaced by a corresponding sub process.

Example A dynamically evolving engineering process has become too large. To
reduce complexity the process owner extracts activities related to the
engineering of a particular component and encapsulates them in a separate
sub process.

Problem Large process schema. If a process schema becomes too large, this pattern
will allow for its hierarchical (re-)structuring. This simplifies maintenance,
increases comprehensibility, and fosters the reuse of process fragments.

Duplication across process schemes. A particular process fragment appears
in multiple process schemes. If the respective fragment has to be changed,
this change will have to be conducted repetitively for all these schemes.
This, in turn, can lead to inconsistencies. By encapsulating the fragment in
one sub process, maintenance costs can be reduced (see figure below).

Implementation To implement pattern AP6 graph aggregation techniques can be used.
When considering data aspects as well, variables which constitute input /
output for the selected process fragment have to be determined and must be
considered as input / output for the created sub process.

Related Patterns Inline Sub Process (AP7)

S1 S1’

S2 S2’

S3

Fig. 13. Extract Sub Process (AP6) pattern

for the repeated execution of the respective fragment (cf. Fig. 15). This pat-
tern can be realized based on patterns AP1 (Insert Process Fragment), AP11
(Add Control Dependency) and AP12 (Remove Control Dependency). How-
ever, pattern AP8 offers the advantage that the number of operations needed
for accomplishing such a change can be reduced (cf. Section 3.3).

Adaptation Pattern AP9: Parallelize Process Fragments. This pat-
terns enables the parallelization of process fragments which were confined to
be executed in sequence (cf. Fig. 16). If no direct support for this pattern is
provided, it can be simulated by combining patterns AP11 and AP12 (Add /
Remove Control Dependency) or by using pattern AP3 (Move Process Frag-

18

Pattern AP7: INLINE Sub Process

Description A sub process to which one or more process schemes refer is dissolved.
Accompanying to this the corresponding sub process graph is directly
embedded in the parent schemes.

Example The top level of a hierarchically structured engineering process only gives a
rough overview of the product development process. Therefore, the chief
engineer decides to lift current structure of selected sub processes up to the
top level.

Problem Too many hierarchies in a process schema: If a process schema consists of
too many hierarchy levels the inline sub process pattern can be used to
flatten the hierarchy.

Badly structured sub processes: If sub processes are badly structured the
inline pattern can be used to embed them into one big process schema,
before extracting better structured sub-processes (based on AP6).

Implementation The implementation of this adaptation pattern can be based on other
adaptation patterns (e.g., AP1). When considering data aspects as well, the
data context of the sub process and its current mapping to the parent process
have to be transferred to the parent process schema.

Related Patterns Extract Process Fragment to Sub Process (AP6)

S
S’

S1

Fig. 14. Inline Sub Process (AP7) pattern

ment). However, a separate pattern allows users to accomplish such a change
more effectively.

Adaptation Pattern AP10: Embed Process Fragment in Conditional
Branch. Using this pattern an existing process fragment can be embedded
in a conditional branch, which will be only executed if certain conditions are
met (cf. Fig. 17). AP10 can be implemented based on patterns AP1 (Insert
Process Fragment), AP11, and AP12 (Add / Remove Control Dependency).

Adaptation Pattern AP11: Add Control Dependency. When applying
this adaptation pattern a control edge (e.g., for synchronizing the execution
order of two parallel activities) is added to the given process schema (cf. Fig.
18). As opposed to the low-level change primitive add edge, the added control
dependency shall not violate soundness (e.g., no deadlock causing cycles).
Therefore, approaches implementing AP11 usually ensure that the use of this
pattern meets certain pre- and post-conditions. Further, the newly added edge

19

Pattern AP8: Embed Process Fragment in Loop

Description Adds a loop construct to a process schema in order to surround an existing
process fragment

Example Regarding the treatment process of a particular patient a lab test shall be not
only performed once (as in the standard treatment process), but be repeated
daily due to special risks associated with the patient.

Problem A process fragment is actually executed at most once, but needs to be
executed recurrently based on some condition.

Implementation This adaptation pattern can be implemented based on Patterns AP1 (insert
process fragment), AP11 and AP12 (add / remove control dependency).
Alternatively, implementation can be based on change primitives.

Related Patterns Embed Process Fragment in Conditional Branch (AP10)

S S’ condition condition

Fig. 15. Embbed Process Fragment in Loop (AP8) pattern

Pattern AP9: PARALLELIZE Process Fragments

Description Process fragments which have been confined to be executed in sequence so
far are parallelized in a process schema S.

Example For a running production process the number of resources is dynamically
increased. Thus, certain activities which have been ordered sequentially so
far can now be processed in parallel.

Problem Ordering constraints predefined for a set of process fragments turn out to be
too strict and shall therefore be removed.

Implementation This adaptation pattern can be implemented based on Patterns AP11 and
AP12 (add / remove control dependency) or based on change primitives.

S’ S

Fig. 16. Parallelize Process Fragments (AP9) pattern

can be associated with attributes (e.g., transition conds) when applying AP11.
Another parameterization of AP11 will become necessary if different kinds of
control dependencies (e.g., loop backs, synchronization of parallel activities)
have to be considered.

Adaptation Pattern AP12: Remove Control Dependency. Using this

20

Pattern AP10: Embed Process Fragment in Conditional Branch

Description An existing process fragment shall be only executed if certain conditions
are met.

Example So far, in company XY the process for planning and declaring a business
trip has required travel applications for both national and international trips.
This shall be changed in such a way that respective travel applications are
only required for an international trip.

Problem A process fragment shall only be executed if a particular condition is met.

Implementation This adaptation pattern could be implemented based on patterns AP1 (insert
process fragment), AP11, and AP12 (add / remove control dependency) or
based on change primitives.

Related Patterns Embed Process Fragment in Loop (AP9)

 S S’ condition condition

Fig. 17. Embed Process Fragment in Conditional Branch (AP10) pattern

Pattern AP11: Add Control Dependency

Description An additional control edge (e.g., for synchronizing the execution order of
two parallel activities) is added to process schema S.

Example For a running production process the number of resources is dynamically
decreased. Thus, certain activities which were ordered in parallel now have
to be processed in sequence.

Problem An additional control dependency is needed in process schema S.

Related Patterns Remove Control Dependency (AP12)

S S’

Fig. 18. Add Control Dependency (AP11) pattern

pattern a control dependency and its attributes can be removed from a process
schema (cf. Fig. 19). Similar considerations as for pattern AP11 can be made.

Adaptation Pattern AP13: Update Condition. This pattern allows users
to update transition conditions in a process schema (cf. Fig. 20). Usually, an
implementation of this pattern has to ensure that the new transition condition

21

Pattern AP12: Remove Control Dependency

Description A control edge is removed from process schema S.

Example Assume that for a medical treatment procedure test A has to be finished
before test B may be started. In an emergency situation, however, these two
tests shall be performed in parallel in order to quickly treat the patient.

Problem An existing control dependency is not needed anymore in process schema S.

Related Patterns Parallelize Process Fragments (AP9)

S S’

Fig. 19. Remove Control Dependency (AP12) pattern

is correct in the context of the given process schema. For instance, it has
to be ensured that all workflow relevant data elements, which the transition
condition refers to, are present in the process schema.

Pattern AP13: Update Condition

Description A transition condition in the process schema is updated.

Example In a loan approval process, currently, the manager has to approve a loan if
the amount is larger than 50.000 Euro. Starting from January next year only
loans above 100.000 Euros will have to be approved by the manager.

Problem A transition condition has to be modified as it is no longer valid.

Related Patterns Embed Process Fragment in Loop (AP8), Embed Process Fragment in
Conditional Branch (AP10)

 S S’

Fig. 20. Update Condition (AP13) pattern

Adaptation Pattern AP14: Copy Process Fragment. The Copy Pro-
cess Fragment pattern (cf. Fig. 21) allows users to copy a process fragment.
In contrast to pattern AP3 (Move Process Fragment) the respective process
fragment is not removed from its initial position.

22

Pattern AP14: COPY Process Fragment

Description A process fragment X is copied from its current position in process schema
S to another position of the same schema S.

Example In a reviewing process the papers to be reviewed are sent with the reviewing
instruction to the respective reviewers after the submission phase has
closed. As the reviewing instructions were erroneous they have to be re-sent
to all reviewers.

Problem A process fragment has to be executed once more.

Design Choices
(in addition to those
described in Fig. 7)

C. How is the additional process fragment X embedded in the process
schema?

1. X is inserted between 2 directly succeeding activities (serial insert)

2. X is inserted between 2 activity sets (insert between node sets)

a) Without additional condition (parallel insert)

b) With additional condition (conditional insert)

Implementation This adaptation pattern can be implemented based on Pattern AP1 (insert
process fragment) or by using change primitives.

Related Patterns Insert adaptation pattern (AP1), Move adaptation pattern (AP5)

 S S’

Fig. 21. Copy Proces Fragment (AP14) pattern

3.2 Patterns for Changes in Predefined Regions

The applicability of adaptation patterns is not restricted to a particular pro-
cess part a priori. By contrast, the following patterns predefine constraints
concerning the parts that can be changed or expanded. At run-time changes
are only permitted within these parts. In this category we have identified 4
patterns: Late Selection of Process Fragments (PP1), Late Modeling of Pro-
cess Fragments (PP2), Late Composition of Process Fragments (PP3), and
Multi-Instance Activity (PP4).

Pattern for Predefined Change PP1: Late Selection of Process Frag-
ments. The Late Selection of Process Fragments pattern (cf. Fig. 22) allows
selecting the implementation of a particular process activity at run-time either
based on predefined rules or user decisions (Design Choice A). At build-time
only a placeholder activity is provided, which is substituted by a concrete
implementation (i.e., an atomic activity or sub process) during run-time (De-
sign Choice B). The activity implementation is selected before the placeholder

23

activity is enabled or when it is enabled (Design Choice C).

Pattern for Predefined Change PP2: Late Modeling of Process Frag-
ments. The Late Modeling of Process Fragments pattern (cf. Fig. 23) offers
more freedom and allows modeling selected parts of the process schema at run-
time. Design Choice A specifies, which building blocks can be used for late
modeling. Building blocks can either be all process fragments from the repos-
itory (without any restrictions), a constraint-based subset of the fragments
from the repository, or newly defined activities or process fragments. Design
Choice B (cf. Fig. 7) describes whether the user may apply the same mod-
eling constructs during build-time or whether more restrictions apply. Late
modeling can take place upon instantiation of the process instance, when the
placeholder activity is enabled, or when a particular state in the process is
reached (Design Choice C). Depending on the pattern variant users start late
modeling with an empty template or they take a predefined template as a
starting point and adapt it as required (Design Choice D).

Pattern for Predefined Change PP3: Late Composition of Process
Fragments. The Late Composition of Process Fragments pattern (cf. Fig.
24) enables the on-the fly composition of process fragments from the process
repository, e.g., by dynamically introducing control dependencies between a
predefined set of fragments. The Interleaved Routing pattern [79,55], which
has been described as one of the workflow patterns, can be seen as a special
implementation of PP3. It allows for the sequential execution of a set of ac-
tivities, whereby the execution order is decided at run-time and each process
fragment has to be executed exactly once. Like in PP3 decisions about the
exact control flow are deferred to run-time. However, PP3 does not make any
restrictions on how often a particular activity is executed.

Pattern for Predefined Change PP4: Multi-Instance Activity. The
Multi-Instance Activity pattern does not only constitute a change pattern,
but ia workflow pattern as well [67]. This pattern allows for the creation of
multiple activity instances during run-time. The decision how many activity
instances are created can be based either on knowledge available at build-time
or on some run-time knowledge. We do not consider multi-instance activities of
the former kind as change pattern as their use does not lead to change. For all
other types of multi-instance activities the number of instances is determined
based on run-time knowledge which can or cannot be available a-priori to the
execution of the multi-instance activity. While in the former case the number
of instances can be determined at some point during run-time, this is not
possible for the latter case. Multi-Instance Activities are considered as change
patterns as their usage allows delaying the decision on the number of instances
to be created for a particular activity to the run-time (cf. Fig. 25). A detailed
description of this pattern can be found in [67].

24

Pattern PP1: Late Selection of Process Fragments

Description For particular activities the corresponding implementation (activity
program or sub process model) can be selected during run-time. At build-
time only a placeholder is provided, which is substituted by a concrete
implementation during run-time.

Example For the treatment of a particular patient one of several different sub-
processes can be selected depending on the patient’s disease.

Problem There exist different implementations for an activity (including sub-
processes), but for the selection of the respective implementation run-time
information is required.

Design Choices A. How is the selection process done?

1. Automatically based on predefined rules
2. Manually by an authorized user
3. Semi-automatically: options are reduced by applying some

predefined rules; user can select among the remaining options

B. What object can be selected?

1. Atomic activity
2. Sub process

C. When does late selection take place?

1. Before the placeholder activity is enabled
2. When enabling the placeholder activity

Process
Type
Level

Process
Instance
Level

+

Pattern PP1

selection of fragment based on
rules of user decisions

IF …. THEN
ELSE IF
ELSE …

Implementation By selecting the respective sub process or activity program, a reference to it
is dynamically set and the sub-process or activity program is invoked.

Related Patterns Late Modeling of Process Fragments (PP2)

Fig. 22. Late Selection of Process Fragments (PP1)

3.3 Complexity of Changes

In contrast to change primitives change patterns allow reducing cost of process
adaptation. In the following we show exemplarily how the effects of applying

25

Pattern PP2: Late Modeling of Fragments

Description Parts of the process schema have not been defined at build-time, but are
modeled during run-time for each process instance. For this purpose,
placeholder activities are provided, which are modeled and executed during
run-time. The modeling of the placeholder activity must be completed before
the modeled process fragment can be executed.

Example The exact treatment process of a particular patient is composed out of existing
process fragments at run-time.

Problem Not all parts of the process schema can be completely specified at build time.

Design Choices A. What are the basic building blocks for late modeling?
1. All process fragments from the repository can be chosen.
2. A constraint-based subset of the process fragments from the

repository can be chosen.
3. New activities or process fragments can be defined.

B. What is the degree of freedom regarding late modeling?
1. Same modeling constructs and change patterns can be applied as for

modeling at the process type level. Which of the adaptation patterns
are supported within the placeholder activity is determined by the
expressiveness of the modeling language.

2. More restrictions apply than for modeling at the process type level.
C. When does late modeling take place?

1. When a new process instance is created.
2. When the placeholder activity is instantiated.
3. When a particular state in the process (preceding the instantiation of

the placeholder activity) is reached.
D. Does the modeling start from scratch?

1. Starts with an empty template.
2. Starts with a predefined template which can then be adapted.

Implementation After having modeled the placeholder activity with the editor, the fragment is
stored in the repository and is then deployed. Then, the process fragment is
dynamically invoked as a sub process. The assignment of the respective
process fragment to the placeholder activity is done through late binding.

Related Patterns Late Selection of Process Fragments (PP1)

Pattern PP2
How to realize
activity B for

process instance
I1?

+
Set of Activities Set of Constraints

T without S
U requires X

Fig. 23. Late Modeling of Process Fragments(PP2)

a change pattern instead of respective change primitives can be determined.

We use the edit distance to measure the number of operations minimally re-
quired to transform a process schema S to a process schema S ′ [33]. Operations

26

Pattern PP3: Late Composition of Process Fragments

Description At build-time a set of process fragments is defined out of which a concrete
process instance can be composed at run time. This can be achieved by
dynamically selecting fragments and adding control dependencies on the fly.

Example Several medical examinations can be applied for a particular patient. The
exact examinations and the order in which they have to be performed are
defined for each patient individually.

Problem There exist several variants of how process fragments can be composed. In
order to reduce the number of process variants to be specified by the process
engineer during build time, process instances are dynamically composed out
of fragments.

Pr. Fragments for
Schema S

Pattern PP3Process
Type
Level

Process
Instance
Level

How should the
execution of
instance I1
proceed?

empty template

Fig. 24. Late Composition of Process Fragments (PP3)

can either be low-level change primitives (e.g., the insertion and deletion of
nodes and edges) or high-level adaptation patterns. By calculating the edit
distance the effects of transforming one process schema to another one can
be evaluated. In general, when transforming schema S to S ′ using high-level
change operations instead of change primitives the edit distance can be short-
ened (cf. Fig. 26). The effects of using adaptation patterns instead of change
primitives can be calculated by comparing the edit distance for transform-
ing S to S’ with and without adaptation patterns support. Fig. 26 indicates
that change patterns allow decreasing the complexity of change by providing
high-level change operations. The original process model at the left hand side
illustrates a process schema consisting of a single activity A. Assume that a
process change should be accomplished inserting an additional activity B in
parallel to activity A. Change pattern AP1 (Insert Process Fragment) (Design
Choice B2) provides the high-level change operation parallelInsert (S, B,

A, A) which allows users to insert activity B parallel to A in process schema S.
Applying the respective change pattern the user just has to specify a couple
of parameters. Internally, this requires 9 change primitives. A new parallel

27

Pattern PP4: Multi Instance Activity

Description This pattern allows for the creation of multi instances of the respective
activity during run-time.

Example The scanning activity has to be repeated until all parcels are scanned. The
number of parcels is not known at build-time.

Problem A particular activity has to be executed several times. The number of
instances that has to be created is not known at build-time.

Process
Type
Level

Process
Instance
Level

Pattern PP4

Fig. 25. Multi-Instance Activity (PP4)

block as well as activity B have to be added to the process schema: Add(Node
(B), Add(AND-Split) and Add(AND-JOIN). Further, both edges of the origi-
nal schema have to be moved: MoveEdge((Start, A),(Start, AND-Split))

and MoveEdge((A, End),(AND-Join, End)). Finally, 4 new edges have to be
added to the new schema: AddEdge(AND-Split, A), AddEdge(AND-Split,

B), AddEdge(A, AND-Join) and AddEdge(B, AND-Join). In this example, the
transformation of the original process schema into the new version requires 9
change primitives resulting in an edit distance of 9. Using adaptation pattern
Insert Process Fragment, from the perspective of the user, 8 operations can
be saved as the entire transformation can be accomplished with 1 high-level
change operation.

Fig. 27 depicts the edit distance for selected adaptation patterns and process
schemes respectively. This is done exemplarily for ADEPT2 [45] and YAWL
[12]. Depending on the structure of process schema S the implementation
of an adaptation pattern with change primitives can result in different edit
distances. The edit distance also depends on the used process meta model and
the used tool. Note that in this paper we only consider control flow. If data
dependencies have to be taken into account as well, the benefits of employing
high-level change operations will become even greater [43].

28

Change Patterns Change Primitives

parallelInsert (S, A, B)

Add Node (A)
Add Node (AND-Split)
Add Node (AND-JOIN)

Move Edge ((Start, A), (Start, AND-Split))
Move Edge ((End, A), (AND-Join, End)

Add Edge (AND-Split, A)
Add Edge (AND-Split, B)
Add Edge (A, AND-Join)
Add Edge (B, AND-Join)

Change Requires
1 High-Level Change Operation

Change Requires
9 Change Primitives

Graph-Edit Distance = 1 Graph-Edit Distance = 9

Insert A parallel to B

Fig. 26. Change Patterns versus Change Primitives

Although the graph-edit distance does not allow for quantifying how much
time is needed to accomplish a respective change it allows assessing its com-
plexity. For both process type and instance level changes, patterns speed up
the change process by reducing the efforts for conducting a respective change
through raising the level of abstraction. In case of ad-hoc changes not only
cost of change can be reduced, but changes also become more applicable for
end users as complexity of change is hidden from them.

4 Semantics of Change Patterns

To ground pattern implementation as well as pattern-based analysis of PAIS
on a solid basis we provide a formal semantics for adaptation patterns (AP1
– AP14). Furthermore, we discuss the semantics of patterns for changes in
predefined regions (PP1 – PP4).

4.1 Basic Notions

First of all, we introduce basic formal notions needed for the following consid-
erations. In workflow literature, for example, the formal description of control
flow patterns has been based on Petri Nets [67]. Therefore these patterns have
an inherent formal semantics. Regarding change patterns, in turn, we aim at
a formal description which is independent of a particular process meta model
(e.g., Workflow Nets [65], WSM Nets [48], or Activity Nets [28]). To achieve

29

Cost of Change for Selected Scenarios

Transformation S to S’ ADEPT2 YAWL
 AP1 – Insert Process Fragment
 Design Choice C[1]

1 Change Pattern

SerialInsert(S, C, A, B)

3 Change Primitives

AddNode(A)
MoveEdge((A,B),(C,B))
AddEdge(A,C)

AP1 – Insert Process Fragment
 Design Choice C [2a]

1 Change Pattern

ParallelInsert(S, D, A, B)

3 Change Primitives

AddNode(E),
AddEdge(A,E),
AddEdge(E,B)

AP1 – Insert Process Fragment
 Design Choice C [2a]

1 Change Pattern

ParallelInsert(S, D, A, B)

9 Change Primitives

AddNode(B),
AddNode(AND-Split),
AddNode(AND-Join),
MoveEdge((Start, A), (Start, AND-Split)),
MoveEdge((A, End), (AND-Join, End)),
AddEdge(AND-Split, A),
AddEdge(AND-Split, B),
AddEdge(A, AND-Join),
AddEdge(B, AND-Join)

AP2 – Delete Process Fragment

1 Change Pattern

Delete (S, B)

2 Change Primitives

RemoveNode(B)
AddEdge(A,End)

(edges are deleted automatically)

AP2 – Delete Process Fragment

1 Change Pattern

Delete (S, C)

3 Change Primitives

RemoveNode(B),
ChangeSplitToNon(XOR-Split),
ChangeJoinToNon(XOR-Join)

Remark: ChangeSplitToNon and ChangeJoinToNon
constitute additional change primitives as being supported by
YAWL

Fig. 27. Cost of Change - Comparison

this, we base the formal description of change patterns on the behavioral se-
mantics of the modified process schema before and after its change. One way to
capture behavioral semantics is to use execution traces [64]. For this purpose,
first of all, we provide some preliminary definitions.

Definition 1 (Execution Trace) Let PS be the set of all process schemes
and let A be the total set of activities (or more precisely activity labels) based
on which process schemes S ∈ PS are specified (without loss of generality
we assume unique labeling of activities in the given context). Let further QS

30

denote the set of all possible execution traces producible on process schema
S ∈ PS. A particular trace σ ∈ QS is then defined as σ = < a1, . . . , ak >
(with ai ∈ A, i = 1, . . . , k, k ∈ N) where the temporal order of ai in σ
reflects the order in which activities ai were completed over S 1 .

Furthermore, we define the following two functions:

• tracePred(S, a, σ) is a function which returns all activities within process
schema S completed before the first occurence of activity a within trace σ.
Formally: tracePred: S × A × QS 7→ 2A with

tracePred(S, a, σ) =

∅ if a 6∈ {σ(i) | i ≤ |σ|}

(σ(i) denotes the ith item in σ, cf. F ig. 29)

{a1, . . . , ak} if σ =< a1, . . . , ak, a, ak+1, . . . , an >

∧ aj 6= a ∀j = 1, ..., k

• Analogously, traceSucc(S, a, σ) denotes a function which returns all activi-
ties within process schema S completed after the last occurence of activity a
in trace σ. Formally: traceSucc: S × A × QS 7→ 2A with

traceSucc(S, a, σ) =

∅ if a 6∈ {σ(i) | i ≤ |σ|}

{ak+1, . . . , an} if σ =< a1, . . . , ak, a, ak+1, . . . , an >

∧ aj 6= a ∀j = k + 1, ..., n

Function tracePred (traceSucc) determines the predecessors (successors) of
the first (last) occurence of a certain activity within an execution trace; i.e.,
those activities which precede (succeed) the considered activity due to a loop
back are not taken into consideration. Fig. 28 shows a process schema with
two loops, an example of a corresponding execution trace, and the sets result-
ing from the application of functions tracePred and traceSucc in different
context.

A B D EC F

σ = <A1, B1, C1, D1, B2, C2, D2, E1, C3, D3, B3, C4, D4, E2, C5, D5, E2, F1>
tracePred(C, σ) = {A, B}; traceSucc(C, σ) = {D, E, F}
tracePred(E, σ) = {A, B, C, D}; traceSucc(E, σ) = {F}

Xn: nth occurence of X in

Fig. 28. Functions tracePred and traceSucc applied to execution trace

1 A particular activity can occur multiple times within a trace due to loopbacks.

31

In addition to Definition 1, Fig. 29 contains useful notions which facilitate the
formalization of the change patterns in the sequel.

Let σ =< a1, . . . , an >∈ QS be an execution trace on process schema S. Then:

|σ|: cardinality of σ

σ(i) = ai: ith item in trace σ

x ∈ σ ⇐⇒ ∃ i ≤ |σ| with σ(i) = x

B ⊆ σ ⇐⇒ ∀ b ∈ B: b ∈ σ

σ−X → discard all items from σ which belong to set X

Example: σ−{a1,an} = < a2, . . . , an−1 >

σ+
X → discard all items from σ not belonging to set X

example: σ+
{a1,an} = < a1, an >

Fig. 29. Useful notions based on Def. 1

4.2 Adaptation Pattern Semantics

Based on the meta model independent notions given in Definition 1 and Table
29 we now describe the formal semantics of the different adaptation patterns
(cf. Fig. 30 – Fig. 35). Note that the given formal specifications do not contain
any constraints which are specific for a particular meta model (e.g., preserving
the block-structure for BPEL flows or WSM nets [49] after changes). This has
to be achieved separately by, for example, associating change operations with
meta model-specific formal pre- and post-conditions to be met when applying
them to a particular process schema. The specifications given in the following
contain generally valid pre-conditions where necessary. For example, a node
can only be deleted if it is present in the original process schema (cf. AP2;
Delete Activity). In the following we explain the formal semantics of selected
change patterns. A complete formalization is given in Fig. 30 – 35.

4.2.1 Discussion of Design Choices

In the following, we abstract from design choices A and B (cf. Fig. 7) since
they do not affect the formal semantics of the change patterns as defined by
us.

• Regarding design choice A (Pattern Scope – instance / type level), for ex-
ample, adaptation pattern AP2 (Delete process fragment) could be imple-

32

Formalization Context: Without loss of generality we restrict the scope of our formalization to

adaptation patterns being applied to (atomic) activities and assume unique labelling of activities within

a process schema. Let QS denote the set of all execution traces producible on process schema S. Let

further op be an adaptation pattern transforming process schema S into S’. Finally, let x denote the

activity being manipulated (e.g., inserted, deleted, moved, or replaced) due to the application

of op. For pattern formalization we use the notions introduced in Definition 1 and Table 29.

AP1: Insert Activity Preliminaries: op = Insert(S, x, A, B) 7→ S’ where A and B denote
activity sets between which x shall be inserted

Semantics:

(1) Process schema S does not contain a node with label x. Process
schema S contains activity sets A and B.

(2) ∀ µ ∈ QS′ : ∃ σ ∈ QS with µ−{x} = σ and vice versa

Considered design choices C[1,2a]: (3) ∀ µ ∈ QS′ with A ⊆ µ (i.e., all nodes of A contained in µ):

(Serial Insert, Parallel Insert) {µ+
A∪B∪{x}(i) | i = ν, . . . , ν + |A| − 1} = A for ν ∈ N

=⇒

µ+
A∪B∪{x}(ν + |A|) = x ∧

{µ+
A∪B∪{x}(i) | i = ν + |A|+ 1, . . . , ν + |A|+ |B|} = B

Considered design choice C[2b]: (3’) ∀ µ ∈ QS′ with x ∈ µ:

(Conditional Insert) µ+
A∪B∪{x}(ν + |A|) = x =⇒

{µ+
A∪B∪{x}(i) | i = ν, . . . , ν + |A| − 1} = A ∧

{µ+
A∪B∪{x}(i) | i = ν + |A|+ 1, . . . , ν + |A|+ |B|} = B

AP3: Move Activity Preliminaries: op = Move(S, x, A, B) 7→ S’ where A and B de-
note the activity sets between which x is moved from its current
position in schema S.

Semantics:

(1) Process schema S contains a node with label x. Process schema
S contains activity sets A and B.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with σ−{x} = µ−{x} and vice versa

Considered design choices C[1,2a]
(Serial Insert, Parallel Insert):

Condition (3) of AP1 (Insert Activity)

Considered design choice C[2b]
(Conditional Insert):

Condition (3’) of AP1 (Insert Activity)

AP14: Copy Activity Preliminaries: op = Copy(S, x, x’, A, B) 7→ S’ where A and B
denote the activity sets between which the copied activity x is
inserted and x’ denotes the new label for this activity (note that
we assume unique labelling).

Semantics:

(1) Process schema S contains a node with label x and no node
with label x’. Process schema S contains activity sets A and B.

(2) ∀ µ ∈ QS′ : ∃ σ ∈ QS with µ−{x′} = σ and vice versa

Considered design choices C[1,2a]
(Serial Insert, Parallel Insert):

Condition (3) of AP1 (Insert Activity)

Considered design choice C[2b]
(Conditional Insert):

Condition (3’) of AP1 (Insert Activity)

Fig. 30. Semantics of Adaptation Patterns AP1, AP3, and AP14 (Group 1)

33

Formalization Context: see Fig. 30

AP2: Delete Activity Preliminaries: op = Delete(S, x) 7→ S’

Semantics:

(1) Process schema S contains one node with label x.

(2) ∀ µ ∈ QS′ : x 6∈ µ

(3) ∀ µ ∈ QS′ : ∃ σ ∈ QS with µ = σ−{x} ∧

∀ σ ∈ QS : ∃ µ ∈ QS′ with σ−{x} = µ

Fig. 31. Semantics of Adaptation Pattern AP2 (Group 2)

Formalization Context: see Fig. 30

AP4: Replace Activity Preliminaries: op = Replace(S, x, y) 7→ S’

Semantics:

(1) Process schema S contains a node with label x, but does not
contain any node labelled y.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with |σ| = |µ| ∧

µ(i) =

{
σ(i) if σ(i) 6= x

y if σ(i) = x

and vice versa

Alternatively:

(2’) ∀ σ ∈ QS : ∃ µ ∈ QS′ with |σ| = |µ| ∧ σ−{x} = µ−{y}

∧ (σ(k) = x for k =⇒ µ(k) = y)

and vice versa

AP5: Swap Activities Preliminaries: op = Swap(S, x, y) 7→ S’

Semantics:

(1) Process schema S contains one node with label x and one node
with label y.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with |σ| = |µ| ∧

µ(i) =

σ(i) if σ(i) 6∈ {x, y}

x if σ(i) = y

y if σ(i) = x

and vice versa

Alternatively:

(2’) ∀ σ ∈ QS : ∃ µ ∈ QS′ : with |σ| = |µ| ∧ σ−{x,y} = µ−{x,y}

∧ (σ(k) = x =⇒ µ(k) = y)

and vice versa

Fig. 32. Semantics of Adaptation Patterns AP4 and AP5 (Group 3)

mented in a different way for the process type and the process instance level;
e.g., replacing the activity to be deleted by a silent activity at instance level,

34

Formalization Context: see Fig. 30

AP8: Embed Process Fragment in
Loop

Preliminaries: op = Embed in Loop(S, P, cond)7→ S’ where P de-
notes the set of activities to be embedded into a loop and cond
denotes the loop backward condition.

Semantics:

(1) The sub graph on P induced by S has to be connected and
must be a hammock, i.e., have single entry and single exit node.

(2) QS ⊂ QS′

(3) ∀ µ ∈ QS′ : Let µ′ be the execution trace produced by
discarding all entries of activities in P (if existing) from µ except
the entries of one arbitrary loop iteration over P. Then µ′ ∈ QS
holds.

AP10: Embed Process Fragment in
Conditional Branch

Preliminaries: op = Embed in Cond Branch(S, P, cond))7→ S’
where P denotes the set of activities to be embedded into a con-
ditional branch and cond denotes the associated condition.

Semantics:

(1) The sub graph on P induced by S has to be connected and
must be a hammock, i.e., have single entry and single exit node.

(2) QS′ ⊆ QS
(3) ∀ σ ∈ QS : σ−P ∈ QS′ (if cond = FALSE is possible)

Fig. 33. Semantics of Adaptation Patterns AP8 and AP10 (Group 4)

while physically deleting it at type level. Furthermore, the applicability of
change patterns at instance level additionally depends on the state of the
respective instances [50]. This, however, does not influence the formal se-
mantics of pattern AP2 when defining it on basis of execution traces.
• Regarding design choice B (Is the change pattern applied to an atomic

activity, sub process, or hammock?), we assume that sub processes as well as
hammocks 2 can be encapsulated within a complex activity. Then the formal
semantics defined for the application of adaptation patterns to activities can
be easily transferred to design choices B[2] and B[3] as well (cf. Fig. 7). Thus,
in the following, we refer to activities instead of process fragments.

In summary, design choices A and B are common for all adaptation patterns,
but we can abstract from them in most cases when defining a formal pattern
semantics. Design choices relevant in the context of particular patterns, how-
ever, do influence the formal semantics of these patterns. Therefore, we take
respective design choices into account when formalizing patterns.

For patterns AP6 (Extract Sub Process), AP7 (Inline Sub Process), and AP8
(Embed Process Fragment in Loop), design choice B is of importance since
AP6 and AP7 are applied to sub processes and AP8 to process fragments
respectively.

2 A hammock refers to a sub graph with single ”entry” and single ”exit” node.

35

Formalization Context: see Fig. 30

AP9: Parallelize Activities Preliminaries: op = Parallelize(S, P) 7→ S’ where P denotes the
set of activities to be parallelized.

Semantics:

(1) Within schema S, the sub graph induced by P constitutes a
sequence with single entry and single exit node.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with σ = µ (i.e., QS ⊂ Q′S)

(3) ∀ p, p′ ∈ P : ∃ µ1, µ2 ∈ QS′ with

(p ∈ tracePred(S’, p′, µ1) ∧ p′ ∈ tracePred(S’, p, µ2))

(assuming that the sequence defined by P can be enabled in S)

AP11: Add Control Dependency Preliminaries: op = Add Ctrl Dependeny(S, x, y) 7→ S’

Semantics:

(1) Process schema S contains one node with label x and one node
with label y and there is no control dependency between x and y.

(2) ∀ µ ∈ QS′ : ∃ σ ∈ QS with µ = σ (i.e., QS′ ⊂ QS)

(3) ∀ µ ∈ QS′ with {x,y} ⊆ µ: x ∈ tracePred(S’,y,µ)

(i.e., x always precedes y in S’)

AP12: Remove Control Depen-
dency

Preliminaries: op = Remove Ctrl Dependeny(S, x, y) 7→ S’

Semantics:

(1) Schema S contains one node with label x and one node with
label y and there exists a control dependency x → y.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with σ = µ (i.e., QS ⊂ Q′S)

(3) ∀ µ ∈ QS′ with {x,y} ⊆ µ:

(x ∈ tracePred(S’, y, µ) ∨ y ∈ tracePred(S’, x, µ))

(i.e., x and y can be executed in parallel in S’)

AP13: Update Condition Preliminaries: op = Update Ctrl Dependeny(S, x, y, newCond) 7→
S’ where newCond denotes the (transition) condition of control
edge x→ y in S’ after update.

Semantics:

The semantics of op depends on the relation between the old con-
dition oldCond (on S) and the updated one newCond (on S’):

(1) oldCond =⇒ newCond: ∀ µ ∈ QS′ for which transition con-
dition newCond evaluates to TRUE: ∃ σ ∈ QS with µ = σ

(2) newCond =⇒ oldCond: ∀ σ ∈ QS for which transition condi-
tion oldCond evaluates to TRUE: ∃ µ ∈ QS′ with µ = σ

(3) Otherwise, for all traces σ ∈ QS there exists a trace µ ∈ QS′

for which the following holds: If we produce projections for σ and
µ by discarding all entries which belong to the conditional branch
with the updated condition, these projections are equal.

Fig. 34. Semantics of Adaptation Patterns AP9, AP11, AP12, and AP13 (Group 5)

4.2.2 Formal Semantics of Adaptation Patterns

In the following we explain the formal semantics of the 14 adaptation patterns
AP1 – AP14 as presented in Fig. 30 – 35. For this, we group adaptation pat-
terns with similar or related formalization. As example, take the first group
consisting of adaptation patterns AP1 (Insert Activity), AP3 (Move Activity),

36

Formalization Context: see Fig. 30

AP6: Extract Sub Process Preliminaries: op = Extract(S, P, x) 7→ S’ where P denotes the set of
activities to be extracted and x denotes the label of the activity which
substitutes the sub graph induced by P on S’.

Semantics:

(1) The sub graph on S induced by P has to be connected and must
be a hammock, i.e., have single entry and single exit node.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with µ−{x} = σ−P ∧

∀ µ ∈ QS′ : ∃ σ ∈ QS : σ−P = µ−{x}

(3) Let z denote the single exit node of the sub graph induced by P.

Then: ∀ σ ∈ QS with σ−
P\{z}(k) = z: ∃ µ ∈ QS′ with µ(k) = x

(4) Let P denote the set of all execution traces over the sub graph
induced by P and let further π ∈ P. Then:

∀ µ ∈ QS′ with µ(νi) = x (i = 1, . . . , n, νi ∈ N):

∃ σ ∈ QS with

σ(k) =

= µ(k) k = 1, . . . , ν1 − 1,

= µ(k − j ∗ |π|+ j) k = νj + |π|, . . . , νj+1 − 1 ∧

k = νn + |π|, . . . , |µ|+ n ∗ (|π| − 1)

= π(l) k = νi + l − 1

where j = 1, . . ., n-1; l = 1, . . . , |π|

AP7: Inline Sub Process Preliminaries: op = Inline(S, x, P) 7→ S’ where P denotes the set of
activities to be inlined into S’ and x denotes the label of the activity
which substitutes the sub graph induced by P on S.

Semantics:

(1) The sub graph on S induced by P has to be connected and must
be a hammock, i.e., have single entry and single exit node.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with µ−{P} = σ−x ∧

∀ µ ∈ QS′ : ∃ σ ∈ QS : µ−{x} = σ−P

(3) Let z denote the single exit node of the sub graph induced by P.

Then: ∀ µ ∈ QS′ with µ−
P\{z}(k) = z: ∃ σ ∈ QS with σ(k) = x

(4) Let P denote the set of all execution traces over the sub graph
induced by P and let further π ∈ P. Then:

∀ σ ∈ QS with σ(νi) = x (i = 1, . . . , n, νi ∈ N):

∃ µ ∈ QS′ which can be built according to the construction of σ
in condition (4) for pattern AP6 (Extract Sub Process).

Fig. 35. Semantics of Adaptation Patterns AP6 and AP7 (Group 6)

and AP14 (Copy Activity) which are all (more or less) based on the insertion
of an activity at a certain position (activity insertion for AP1, activity deletion
and insertion for AP3, and activity insertion with re-labelling for AP14).

Group 1: Patterns AP1 (Insert Activity), AP3 (Move Activity), and AP14
(Copy Activity): The basic adaptation pattern for this group is AP1: op =

37

Insert(S, x, A, B) 7→ S’ where A and B denote activity sets between which x
shall be inserted. Then, formal pattern semantics is as follows (see Fig. 30):

(1) Process schema S does not contain a node with label x. Further, S contains
activity sets A and B.
(2) ∀ µ ∈ QS′ : ∃ σ ∈ QS with µ−{x} = σ and vice versa

Considered design choices C[1,2a] (Serial Insert, Parallel Insert):

(3) ∀ µ ∈ QS′ with A ⊆ µ (i.e., all nodes of A contained in µ):

{µ+
A∪B∪{x}(i) | i = ν, . . . , ν + |A| − 1} = A for ν ∈ N

=⇒
µ+
A∪B∪{x}(ν + |A|) = x ∧
{µ+

A∪B∪{x}(i) | i = ν + |A|+ 1, . . . , ν + |A|+ |B|} = B

When formalizing the semantics of an adaptation pattern, first of all, we
present necessary preconditions for the application of the particular pattern
(as far as these constraints are meta model independent). Then we describe
the effects resulting from the application of the pattern. To stay independent
of a certain meta model, the latter is accomplished based on execution traces;
i.e., we describe the relation between traces producible on schema S and on
schema S’ (resulting from the application of the change pattern to S).

Regarding pattern AP1, (1) formalizes generic pre-conditions for inserting
an activity; e.g., the activity to be inserted must not yet be present in S. (2)
defines the relation between execution traces on old schema S and new schema
S’. For each execution trace σ on S there exists a corresponding execution
trace µ on S’ for which µ−{x} = σ holds (i.e., when discarding newly inserted
activity x from µ, this trace equals σ (and vice versa)). This expresses the
close relation between traces producible on S and S’. It further indicates that
execution traces on S’ may additionally contain x whereas those on S do not.
Regarding the position of newly inserted activity x, for design choice C[1]
(Serial Insert) (cf. Fig. 8), predecessor set A and successor set B between
which the new activity is inserted contain exactly one activity. As can be seen
from Fig. 30, we present different formalizations for design choices C[1,2a]
(Serial and Parallel Insert) and C[2b] (Conditional Insert).

For design choice C[1,2a] (Serial and Parallel Insert) the following conditions
for newly inserted activity x in traces µ on S’ hold: If all nodes of predecessor
set A are contained in a trace µ on S’, then also the entries of x and B are
present in µ. When projecting µ onto the entries of activity set A ∪ B ∪ {x}
(i.e., µ+

A ∪ B ∪ {x}), then the entry of x is positioned directly after all entries of
A and the entries of B directly succeed the entry of x. This condition has to
be modified in case of a conditional insert, since the presence of entries of A
in µ on S’ does not imply the presence of x. Thus, the respective modification
of condition (3) turns out as follows:

38

Considered design choice C[2b] (Conditional Insert):

(3’) ∀ µ ∈ QS′ with x ∈ µ:

µ+
A∪B∪{x}(ν + |A|) = x

=⇒
{µ+

A∪B∪{x}(i) | i = ν, . . . , ν + |A| − 1} = A ∧
{µ+

A∪B∪{x}(i) | i = ν + |A|+ 1, . . . , ν + |A|+ |B|} = B

This condition implies that if x is present in µ on S’ then also the entries of
predecessor set A and successor set B are contained in µ on S’. Furthermore,
based on the projection of µ onto the entries of activity set A ∪ B ∪ {x}
(i.e., µ+

A ∪ B ∪ {x}), the entries of A are positioned directly before x and the
entries of B are directly succeeding the entry of x.

Similarly, the formal semantics for AP3 (Move Activity) can be defined (cf.
Fig. 30). Conditions (3) and (3’) which describe the position of x in µ (on
S’) are equal to the ones presented for AP1. However, there is a different
pre-condition for AP3 (Move Activity). Here, x must be present in S in order
to be moved afterwards (1). The relation between execution traces on S and
S’ is also different from AP1 (Insert Activity): Traces on S as well as traces
on S’ might contain x but at different positions. Therefore we claim that the
projections of these traces (i.e., the traces where x will be discarded if present)
have to be equal.

Finally, pattern AP14 (Copy Activity) is also related to AP1 (Insert Activity).
Again the position of copied (and re-labelled) activity x’ can be formalized
by conditions (3) and (3’) as for AP1 (Insert Activity). Similar to AP3 (Move
Activity) the activity to be copied must be present in S (1). Additionally,
labels of the activity to be copied and the copied activity must be different
from each other and no activity with new label must be already contained in
S (2). Copying an activity x (with new label x’) can be seen as inserting x’ at
the respective position. Therefore, the relation between traces on S and S’ can
be defined as for AP1, but based on x’; i.e., when discarding copied activity
x’ from µ (on S’), then there exists an equal trace σ on S.

Group 2: Pattern AP2 (Delete Activity): The second group contains only one
adaptation pattern since its formalization does not directly relate to any other
pattern. Consider op = Delete(S, x) 7→ S’ with formal semantics:

(1) Process schema S contains one node with label x.

(2) ∀ µ ∈ QS′ : x 6∈ µ

(3) ∀ µ ∈ QS′ : ∃ σ ∈ QS with µ = σ−{x} ∧
∀ σ ∈ QS : ∃ µ ∈ QS′ with σ−{x} = µ

When deleting activities, first of all, the process schema has to contain a node

39

with label x. As an effect resulting from the application of this pattern, all
execution traces µ on S’ must not contain x. Finally, for all traces σ on S we
can find an equal trace on S’ if x is discarded from σ (and vice versa). Note
that (2) and (3) explain best the effects of the Delete pattern.

Group 3: Patterns AP4 (Replace Activity) and AP5 (Swap Activities): Here
we illustrate AP5 (Swap Activities) since it ”contains” the formalization for
AP4 (Replace Activity). Reason is that a swap between activities x and y can
be (logically) seen as replacing x by y and y by x. The formal semantics of op
= Swap(S, x, y) 7→ S’ turns out to:

(1) Process schema S contains one node with label x and one with label y.
(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with |σ| = |µ| ∧

µ(i) =

σ(i) if σ(i) 6∈ {x, y}

x if σ(i) = y

y if σ(i) = x

and vice versa

Alternatively we can formulate (2) as follows:

(2’) ∀ σ ∈ QS : ∃ µ ∈ QS′ : with |σ| = |µ| ∧ σ−{x,y} = µ−{x,y}
∧ (σ(k) = x =⇒ µ(k) = y)

and vice versa

To be swapped, activities x and y have to be both contained in process schema
S (1). The relation between trace σ on S and corresponding trace µ on S’ can
be formalized in two ways. In both cases, for all traces σ on S, there exists a
corresponding trace µ on S’ for which the cardinality of σ and µ are equal. Re-
garding the positions of the swapped activities x and y, we can explicitly state
that for all traces σ on S, a trace µ on S’ can be found such that all entries of
µ are equal to entries of σ except at positions of x and y where the entries are
swapped; i.e., at the position of x in σ, µ contains y and vice versa (2). Alterna-
tively, for all traces σ on S there exists a corresponding trace µ on S’ for which
the projections of σ and µ resulting from discarding x and y are equal (2’).
Furthermore, µ contains the entry of y at the position of x in σ and vice versa.

Group 4: Patterns AP8 (Embed Process Fragment in Loop) and AP10 (Em-
bed Process Fragment in Conditional Branch): As a first characteristics, we
formalize the relation between QS and QS′ for op = Embed in Loop(S, P,
cond)7→ S’ (AP8). If the number of loop iterations is finite (i.e., the set of ex-
ecution traces on a process schema containing loops is finite too), QS ⊂ QS′

40

holds (1). Reason is that for all traces σ on S a trace µ on S’ can be found
with σ = µ but not vice versa (due to the possibly iterative execution of
the new loop). To find a more specific characterization of the relation between
QS and QS′ , for all traces µ on S’ we construct a certain trace projection
µ′ as follows: All entries of activities in P (if existing) are discarded from µ
except the entries of one arbitrary loop iteration; i.e., µ is projected onto a
”loop-free” version of itself. Obviously, the resulting trace µ′ is a trace on S
(i.e., µ′ ∈ QS).

For pattern op = Embed in Cond Branch(S, P, cond)) 7→ S’ (AP10), first of
all, QS′ ⊆ QS holds(1). Reason is that due to the newly inserted conditional
branch only a subset of traces might be generated on S’ when compared to
S. Furthermore, the relation between traces on S and traces on S’ can be
defined more precisely; i.e., for all traces σ on S, its projection resulting from
discarding all entries of P from σ is contained in the set of traces on S’ (2).

Group 5: Patterns AP9 (Parallelize Activities), AP11 (Add Control Depen-
dency), AP12 (Remove Control Dependency), and AP13 (Update Condition):
Patterns AP9, AP11, and AP12 are possibly changing the execution orders of
activities in S.

We describe AP9: op = Parallelize(S, P) 7→ S’ in detail, since AP12 (Re-
move Control Dependency) can be seen as a special case of AP9 and AP11
(Add Control Dependency) is the reverse operation to AP12. AP13 (Update
Condition) is explained at the end of this pattern group.

The formal semantics of AP9 follows as:

(1) Within schema S, the sub graph induced by P constitutes a sequence with

single entry and single exit node.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with σ = µ (i.e., QS ⊂ Q′S)

(3) ∀ p, p′ ∈ P : ∃ µ1, µ2 ∈ QS′ with

(p ∈ tracePred(S’, p′, µ1) ∧ p′ ∈ tracePred(S’, p, µ2))

(assuming that the sequence defined by P can be enabled in S)

As a prerequisite, all activities to be parallelized must be ordered in sequence
(1). As a basic characterization of pattern AP9, the set of traces on S is a
subset of the set of traces on S’ (2) since traces on S’ might contain entries
reflecting a sequential order of P, too, but also any other execution order re-
garding activities from P (3). More precisely, every pair of activities contained
in trace µ on S’ is ordered in parallel in the new schema. For pattern AP12 (Re-
move Control Dependency), the formal semantics of AP9 can be specialized
by formalizing it for 2 activities.

For AP11 (Add Control Dependency), the conditions of AP12 hold in reverse
direction, i.e., the execution order is made stricter on S’ such thatQS′ becomes

41

a subset of QS . For op = Update Ctrl Dependeny(S, x, y, u cond) 7→ S’
(AP13) we can define the following formal semantics:

(1) oldCond =⇒ newCond: ∀ µ ∈ QS′ for which transition condition newCond

evaluates to TRUE: ∃ σ ∈ QS with µ = σ

(2) newCond =⇒ oldCond: ∀ σ ∈ QS for which transition condition oldCond

evaluates to TRUE: ∃ µ ∈ QS′ with µ = σ

(3) Otherwise, for all traces σ ∈ QS there exists a trace µ ∈ QS′ for which the

following holds: If we produce projections for σ and µ by discarding all entries which

belong to the conditional branch with the updated condition, these projections are

equal.

More precisely, we can derive a statement about the relation of traces between
S and S’ if we know the relation between old and updated condition ((1) or
(2)). For (3), the projections of σ and µ can be easily accomplished based on,
for example, block-structured process meta models.

Group 6: Patterns AP6 (Extract Sub Process) and AP7 (Inline Sub Process):
These adaptation patterns are the counterpart of each other. Thus, in the
following we illustrate AP6 (Extract Sub Process), the formal semantics of
AP7 (Inline Sub Process) follows directly. Consider op = Extract(S, P, x) 7→
S (AP6). The particular challenge of formalizing AP6 lies in the connection
between traces µ on S’ and traces σ on S where the entries of activities of P
might have to be inlined ”instead of” the entry of x (if activities of P are exe-
cuted). This is especially difficult in connection with loops (possibly multiple
execution of x). We present the formal semantics of AP6 in the following and
explain it afterwards:

(1) The sub graph on S induced by P has to be connected and must be a hammock,
i.e., have single entry and single exit node.

(2) ∀ σ ∈ QS : ∃ µ ∈ QS′ with µ−{x} = σ−P ∧
∀ µ ∈ QS′ : ∃ σ ∈ QS : σ−P = µ−{x}

(3) Let z denote the single exit node of the sub graph induced by P.
Then: ∀ σ ∈ QS with σ−P\{z}(k) = z: ∃ µ ∈ QS′ with µ(k) = x

(4) Let P denote the set of all execution traces over the sub graph induced by P
and let further π ∈ P. Then:
∀ µ ∈ QS′ with µ(νi) = x (i = 1, . . . , n, νi ∈ N):
∃ σ ∈ QS with

σ(k) =

= µ(k) k = 1, . . . , ν1 − 1,

= µ(k − j ∗ |π|+ j) k = νj + |π|, . . . , νj+1 − 1 ∧

k = νn + |π|, . . . , |µ|+ n ∗ (|π| − 1)

= π(l) k = νi + l − 1

42

where j = 1, . . ., n-1; l = 1, . . . , |π|

First, the relation between σ on S and µ on S’ can be formalized as follows: For
all σ on S we can find a trace µ on S’ for which the projections resulting from
discarding all entries of sub process P from σ and discarding the entry of x
from µ are equal (1). The interesting question is how to determine the position
of x on S’ when extracting P from S. For this, we ”contract” trace σ on S by
discarding all entries of activities in P except the one of single exit entry z (2).
Then we can find a trace µ on S’ for which the position of the ”contracted”
trace σ determines the position of x in µ. The other direction (i.e., how to
determine the positions of activities in P on S) which is very important in the
context of AP7 (Inline Sub Process) as well, is more challenging. We solve this
by constructing a trace σ on S for all µ on S’. First the position(s) of x in µ
is (are) determined (ν1, ..., νn). This might be more than one position in the
context of loops (i.e., if x is embedded within a loop construct and possibly
executed several times). Then the activities of P are inserted at this (these)
position(s) within σ (3). The remaining part of σ can be constructed using
the entries of µ, only the positions have to be shifted accordingly.

4.3 Semantics of Patterns for Predefind Changes

To formalize the semantics of predefind change patterns PP1 (Late Selection
of Process Fragments) and PP2 (Late Modeling of Fragments) similar con-
siderations can be made as for adaptation pattern AP7 (Inline Sub Process).
Pattern op = Inline(S, x, P) 7→ S’ changes process schema S into process
schema S’ by inlining the sub process induced by activity set P, i.e., the sub
process to be inlined is given in advance (cf. Fig. 35). For pattern PP1 (Late
Selection of Process Fragments) and PP2 (Late Modeling of Fragments) also a
sub process is to be inlined. Contrary to AP7, for PP1 a sub process has to be
chosen from a repository first and for PP2 the sub process has to be specified
before inlining. However, at the moment the sub process is either chosen or
specified, the formal semantics of PP1 and PP2 can be defined as for AP7.

For PP3 (Late Composition of Process Fragments), its formal semantics de-
pends on knowledge of the process designer’s decision on which process frag-
ments to chose and how to compose them. If this knowledge is at hand, traces
µ on S’ could be constructed by composing the execution traces on the par-
ticular fragments in the given order. However, this might become difficult in
connection with parallelism.

Finally, for PP4 (Multi Instance Activity), the formal semantics can be defined
if the number of instantiations is known. Then traces µ on S’ contain k entries
of multi instance activity x at the position where x would be executed on S.

43

In this section we have formally defined the semantics for the adaptation pat-
terns and (informally) for the patterns for changes in predefined regions. To
stay independent of a certain meta model we have based our formalization on
execution traces. However, with additional knowledge of meta model proper-
ties, some of the formalizations will become much easier. We have also showed,
for which patterns runtime information is necessary in order to specify their
formal semantics.

5 Change Support Features

So far, we have introduced a set of change patterns, which can be used to
accomplish changes at the process type or process instance level. However,
simply looking at the supported patterns and counting their number is not
sufficient to analyze how well a system can deal with process change. In addi-
tion, change support features must be considered to make change patterns use-
ful in practice (cf. Fig. 36). Relevant change support features include process
schema evolution, version control and instance migration, change correctness,
change traceability, access control, change reuse, and concurrency control. As
illustrated in Fig. 36 the described change support features are not equally
important for both process type level and process instance level changes. Ver-
sion control, for instance, is primarily relevant for changes at the type level
(T), while change reuse is particularly useful at the instance level (I) [52].

Change Support Features
Change Support Feature Scope Change Support Feature Scope

Data Consistency (1) F1: Schema Evolution, Version Control and
Instance Migration

T
F3: Traceability & Analysis I + T

No version control – Old schema is overwritten Logging of High-Level Change Operations (1)
Running instances are canceled (1) Logging of Change Primitives (2)
Running instances remain in the system (2) Annotation of Changes (3)

Version control Change Mining (4)
Co-existence of old and new instances without instance
migration (3)

F4: Access Control for Changes I+T

Uncontrolled migration of all process instances (4) Changes in general can be restricted to authorized users (1)
Controlled migration of compliant process instances (5) Application of single change patterns can be restricted (2)

F2: Correct Behavior of Process Instance after
Change

I+T Authorizations can depend on the object to be changed (3)

 F5: Change Reuse I
Control Flow (Deadlock free) (2)

Change Support Features
Change Support Feature Scope* Change Support Feature Scope

F3: Correctness of Changes I + T F1: Schema Evolution, Version Control and
Instance Migration

T
F4: Traceability and Analysis I + T

No version control – Old schema is overwritten 1. Traceability of changes
1. Running instances are canceled 2. Annotation of changes
2. Running instances remain in the system 3. Change Mining

Version control F5: Access Control for Changes I+T
3. Co-existence of old/new instances, no instance migration 1. Changes in general can be restricted to authorized users
4. Uncontrolled migration of all process instances 2. Application of single change patterns can be restricted
5. Controlled migration of compliant process instances 3. Authorizations can depend on the object to be changed

F2: Support for Instance-Specific Changes I F6: Change Reuse I
1. Unplanned Changes F7: Change Concurrency Control I+T
 a. Temporary 1. Uncontrolled concurrent changes
 b. Permanent 2. Concurrent changes are prohibited
2. Preplanned Changes
 a. Temporary

3. Concurrent changes of structure and state of a particular
process instance controlled by PAIS

 b. Permanent 4. Concurrent changes at the type and the instance level

* The scope of a particular change feature can either be the process type level (T) and/or the process
instance level(I)

Fig. 36. Change Support Features

44

5.1 Schema Evolution, Version Control and Instance Migration

To support changes at the process type level, version control for process
schemes should be supported (cf. Fig. 36). In case of long-running processes,
in addition, controlled migration of already running instances from the old
to the new process schema version, might be required. In this subsection we
describe different options existing in this context (cf. Fig. 37-39).

If a PAIS provides no version control, either the process designer will have to
manually create a copy of the process schema (to be changed) or this schema
will be overwritten (cf. Fig. 37). In the latter case, running process instances
can either be withdrawn from the run-time environment or, as illustrated
in Fig. 37, they remain associated with the modified schema. Depending on
the execution state of the instances and on how changes are propagated to
instances progressed too far, this missing version control can lead to incon-
sistent states and, worst case, to deadlocks or other run-time errors [49]. As
illustrated in Fig. 37 schema S has been modified by inserting activities X and
Y. Regarding, instance I1 this change is uncritical as it has not yet entered
the change region. However, instance I2 would be in an inconsistent state
afterwards as instance schema and execution history do not match [49].

Type change overwrites schema S

Process Schema S’

Schema Evolution

Process Schema S

Process Instance I1

Change
is propagated to

all running
process instances

Schema is overwritten (a)

Process Instance I2

Process Instance I1

Process Instance I2

Instance I2 is in inconsistent state

Insert(S,X,A,B)
Insert(S,X,C,AND-Join)

AND-Split AND-Join

Fig. 37. Missing Version Control

By contrast, if a PAIS provides explicit version control two support features
can be differentiated: running process instances remain associated with the old
schema version, while new instances will be created based on the new schema
version [8,50]. This approach leads to the co-existence of process instances
belonging to different schema versions (cf. Fig. 38). Alternatively, a controlled
migration of a (selected) collection of already running process instances to the
new process schema version is supported (cf. Fig. 39).

45

The first option is shown in Fig. 38 where the already running instances I1,
I2 and I3 remain associated with schema S1, while new instances (I4-I5) are
created from schema S ′ (co-existence of process instances of different schema
versions). By contrast, Fig. 39 illustrates the controlled migration of selected
process instances. Only those instances (I1 and I2) are migrated to the new
process schema version which are compliant 3 with S ′. Thereby, instance I1 can
be migrated without any state adaptations, whereas for instance I2 activity X

has to be enabled instead of activity B. Instance I3 remains running according
to S. If instance migration is accomplished in an uncontrolled manner (as it
is not restricted to compliant process instances) inconsistencies or errors will
result. Nevertheless, we treat the uncontrolled migration of process instances
as a separate design choice since this functionality can be found in several
existing systems (cf. Section 6).

Type change results into a new version of schema S

Process Schema S’

Schema Evolution
at time tevolution

Process Schema S

Process Instance I1

Co-existence of instances of different schema versions (b)

Process Instance I2

Process Instance I3

Process Instance I4

Process Instance I5

Old instances remain with schema S
Instances created from S (before tevolution) Instances created from S’ (after tevolution)

Insert(S,X,A,B)
Insert(S,X,C,AND-Join)

AND-Split AND-Join

Fig. 38. Version Control - Co-existence of different schema versions

5.2 Other Change Support Features

Support for Instance-Specific Changes (Change Feature F2). To deal
with exceptions PAIS must support unplanned changes at the process instance
level either through high-level changes in the form of patterns (cf. Section 3)
or through low-level primitives. To deal with uncertainty, PAIS must allow
keeping parts of the model unspecified during build-time and deferring the
concretisation of the respective part to run-time. The effects resulting from

3 A process instance I is compliant with process schema S, if the current execution
history of I can be created based on S (for details see [49]).

46

Type change results into a new version of schema S

Process Schema S‘

Schema Evolution

Process Schema S

Process Instance I1

Propagation
of compliant

process instances
to schema S’

Instance Migration (c)

Process Instance I2

Process Instance I3

Process Instance I1

Process Instance I2

Non-compliant instances

Migration of compliant process instances to S’

Insert(S,X,A,B)
Insert(S,X,C,AND-Join)

AND-Split AND-Join

Fig. 39. Version Control - Change Propagation

instance-specific changes can be permanent or temporary. A permanent in-
stance change remains valid until completion of the instance (unless it is un-
done by a user). By contrast, a temporary instance change is only valid for a
certain period of time (e.g., the current iteration of a loop) (cf. Fig. 40).

C. What is the validity period of the change?

1. The change can be of temporary nature
The change can be of permanent nature

1st loop iteration

2nd loop iteration

1st loop iteration

2nd loop iteration

Process Instance I
Temporary Change

Process Instance I
Permanent Change

Fig. 40. Permanent and Temporary Changes

Correctness of Change (Change Feature F3). The application of change
patterns must not lead to run-time errors (e.g., activity program crashes due
to missing input data, deadlocks, or inconsistencies due to lost updates or
vanishing of instances). In particular, different criteria [49] have been intro-

47

duced to formally ensure that process instances can only be updated to a new
schema if they are compliant with it [78,8,50]. Depending on the used process
meta model, in addition, (formal) constraints of the respective formalism (e.g.,
concerning the structuring of the the process schemes) have to be taken into
account as well when applying process changes to a particular process schema.

Traceability and Analysis of Changes (Change Feature F4). For adap-
tation patterns the applied changes have to be stored in a change log as change
patterns and/or change primitives [51]. While both options allow for traceabil-
ity, change analysis and change mining [20] become easier when the change
log contains high-level information about the changes as well. Regarding pat-
terns for changes in predefined regions, an execution log is usually sufficient
to enable traceability. In addition, logs can be enriched with more semantical
information, e.g., about the reasons and the context of the changes [52]. Fi-
nally, change mining allows for the analysis of changes, for example, to support
continuous process improvement [20].

Access Control for Changes (Change Feature F5). The support of
change patterns leads to increased PAIS flexibility. This, in turn, imposes
security issues as the PAIS becomes more vulnerable to misuse [72,14]. There-
fore, the application of changes at the process type and the process instance
level must be restricted to authorized users. Access control features differ
significantly in their degree of granularity. In the simplest case, changes are
restricted to a particular group of people (e.g., to process engineers). More ad-
vanced access control components [72] allow defining restrictions at the level of
single change patterns (e.g., a certain user is only allowed to insert additional
activities, but not to delete activities). In addition, authorizations can depend
on the object to be changed (e.g., a process schema or a process instance).

Change Reuse (Change Feature F6). In the context of unplanned instance-
specific changes ”similar” deviations (i.e., combinations of one or more adapta-
tion patterns) can occur more than once [32,76,77,33]. As it requires significant
user experience to define changes from scratch, change reuse should be sup-
ported. To support this changes they have to be annotated with contextual
information (e.g., about the reasons for the deviation) and be memorized. This
contextual information can be used for retrieving similar problem situations,
and therefore ensures that only changes relevant for the current situation are
presented to the user [52,33,75]. Regarding patterns for changes in predefined
regions, reuse can be supported by making historical cases available to the
user and by saving frequently re-occurring instances as templates [31].

Change Concurrency Control (Change Feature F7). A PAIS which
supports instance-specific process adaptations (cf. Feature F2) should be able
to cope with concurrent changes as well. Concurrent changes of a particular
process instance may include both adaptations of its structure and its state.

48

For example, two users might want to apply different ad-hoc changes to a
particular process instance at the same time. If this is done in an uncontrolled
manner, severe errors or inconsistencies (e.g., deadlock-causing cycles) can oc-
cur (Option 1). Or the execution of a process instance proceeds (i.e., the state
of the respective instance changes) while an ad-hoc change is concurrently
applied to this instance. Here we have to ensure that the state change does
not violate state constraints required for the correct application of the ad-hoc
change (or at least the ad-hoc change has to be prohibited in such cases).

For these reasons, change concurrency control becomes an indispensable fea-
ture of any flexible PAIS. The easiest way to avoid respective conflicts is to
prohibit concurrent changes at all (Option 2). This can be achieved, for ex-
ample, by holding exclusive locks on a process instance when changing its
structure and/or its state (e.g., an instance must then not proceed while ap-
plying an ad-hoc change to it). Though this approach is easy to implement, it
is usually too strict due to the long-term locks required (e.g., when a change
is defined interactively by a user). A more flexible approach allows for con-
current changes of the structure or state of a process instance, and further
ensures that this does not lead to errors or inconsistencies afterwards (Option
3). Both, pessimistic and optimistic techniques can be applied in this context
to control such concurrent instance changes and to ensure their correctness.

Finally, we have to deal with ”concurrent” changes at the process type and the
process instance level. For example, assume that an instance-specific change
is applied to process instance I, which was originally created from process
schema S. Assume further that later process schema S evolves to S ′ due to a
change at the process type level. Then, the challenging question is whether the
process type change can be propagated to I as well. Though I has undergone
an instance-specific change this should not mean that it must not migrate to
the new schema version S’ (particularly not if I is long-running). Note that
respective considerations only have to be made for systems supporting both
changes at the process type and the process instance level (Option 4).

6 Change Patterns and Change Support in Practice

In this section we evaluate approaches from both academia and industry re-
garding their support for change patterns and change features (cf. Fig. 41-43).
For academic approaches the evaluation is mainly based on a comprehensive
literature study. In cases where it was unclear whether a particular pattern
or feature is supported, the respective research groups were additionally con-
tacted. This has provided us with valuable insights into the implementation of
change patterns and change features in respective approaches. In detail, the
evaluated approaches (in alphabetical order) are ADEPT2 [43,48,45,42,18],

49

CAKE2 [32,33], CBRFlow [52,77,75], HOON [23], MOVE [21], Pockets of
Flexibility (PoF) [59,31,58], WASA2 [78], WIDE [8,9], Worklets/Exlets [2,1,3],
and YAWL [12]. As CBRFlow and ADEPT2 have been integrated within
the ProCycle project [77] both systems have been evaluated together. The
Worklets/Exlets approach has been evaluated together with YAWL as it has
been integrated as a service for YAWL to foster its flexibility.

In respect to commercial systems only such systems have been considered for
which we have both hands on experience and a running system installed in
our labs. This has allowed us to test the change patterns and change features.
We consider the case-handling system Flower [69] and the workflow manage-
ment system Staffware [15] as commercial systems for the present evaluation.
Evaluation results are presented in Fig. 41-43. These figures are only meant
as a summary of our evaluation results. An in-depth description of each of the
evaluated approches can be found in Appendix A.

If a change pattern or change support feature is not supported at all, the
respective table entry will be labeled with ”-” (e.g., no support for adap-
tation patterns AP4 and AP5 is provided by ADEPT2). Otherwise, a table
entry describes the exact pattern variants as supported by listing available de-
sign choices. For instance, consider the evaluation of the ADEPT2 system for
adaptation pattern AP6 in Fig. 41. The string ”A[1,2], B[3]” indicates that
ADEPT2 supports the extraction of process fragments (AP6) with Design
Choices A and B. As described in Fig. 7, ADEPT2 supports the respective
pattern at the process type and the process instance level (Design Choice A).
In addition, the pattern can be applied to hammocks (Design Choice B). As an-
other example take change pattern PP1 (Late Selection of Process Fragments)
as supported in the Worklet/Exlet approach [2,1]. In Fig. 43 the string ”A[1,2],
B[1,2], C[2]” indicates that this change pattern (cf. Fig. 22) is supported by
the Worklet/Exlet approach with Design Choices A, B and C. Further, it in-
dicates the exact options available for every design choice. For example, for
design choice A, Options 1 and 2 are supported. Taking the description from
Fig. 22 this means that the selection of the activity implementation can be
done automatically (based on predefined rules) or manually by a user.

If no design choice exists for a supported change pattern, the respective table
entry is simply labeled with ”+” (e.g., support of change pattern PP4 by
WIDE). Finally, partial support is labeled with ”◦” (e.g., the Worklet/Exlet
approach supports change feature F3 partially).

50

6.1 Adaptation Patterns Support

Fig. 41 and 42 show, which change primitives and adaptation patterns are
supported by the evaluated systems. Table 41 focuses on structural changes
at the process type level, i.e., on changes which can be performed in the
process editor of the respective system when defining or adapting a process
structure. Table 42, in turn, provides the evaluation results considering the
use of change patterns or change primitives at the process instance level. For
a detailed description of the evaluated approaches we refer to Appendix A.

Generally, an adaptation pattern will be only considered as being provided,
if the respective system supports the pattern directly, i.e., based on a single
high-level change operation instead of a set of change primitives. As adapta-
tion patterns can always be ”simulated” by means of a set of basic change
primitives (e.g., CAKE2 or WASA2), missing support for adaptation patterns
does not necessarily mean that no changes can be performed. However, the
support of high-level change operations allows introducing changes at a higher
level of abstraction and consequently hides a lot of the complexity associated
with process changes from the user. Therefore changes can be performed in a
more efficient and less error prone way (see also Section 3.3). Further, certain
adaptation patterns (e.g., AP3 or AP4) could be implemented by applying
a combination of the more basic ones (e.g., AP1, AP2, AP10 and AP11).
Again, a given approach will only qualify for an adaptation pattern, if it sup-
ports this pattern directly (i.e., it offers a single change operation for realizing
the respective adaptation pattern). For instance, providing support for pat-
terns AP1 (Insert Process Fragment) and AP2 (Delete Process Fragment)
allows implementing pattern AP3 (Move Process Fragment) in a straightfor-
ward way. However, moving activities by using adaptation patterns AP1 and
AP2 in combination with each other is more complicated when compared to
the direct application of adaptation pattern AP3. Moreover, this leads to less
meaningful change logs. In addition, to qualify as an adaptation pattern its
application must not be restricted to predefined regions in the process.

Table 41 shows that all evaluated systems allow for process type modifications.
Thereby, most systems only provide support for change primitives, i.e., they
allow modifying an existing process schema by adding or deleting nodes and
edges. An additional primitive which allows users to move edges is provided
by CAKE2 and YAWL. The only systems offering adaptation patterns sup-
port at the process type level are ADEPT2 and WIDE. Table 42 shows that
process instance modifications are supported by rather few systems. CAKE2
and WASA2 allow for structural run-time adaptations at the instance-level
through change primitives (i.e., by adding or removing nodes and edges re-
spectively). ADEPT2 provides support for a wide range of adaptation patterns
at the process instance level. Both the Worklet/Exlet approach and Flower

51

support a limited spectrum of ad-hoc changes: the Worklet/Exlet approach
allows for the replacement of activities (AP4), whereas Flower allows for the
deletion of activities (AP2).

C
ha

ng
e

Pa
tte

rn
 S

up
po

rt
at

 th
e

Pr
oc

es
s T

yp
e

Le
ve

l

A
ca

de
m

ic

C
om

m
er

ci
al

Pr

im
iti

ve
 /

Pa
tt

er
n

A

D
E

PT
2

/ C
B

R
Fl

ow

C
A

K
E

2
H

O
O

N

M
O

V
E

Po

F
W

A
SA

2
W

ID
E

Y

A
W

L
 +

W

or
kl

et
s /

E

xl
et

s
Fl

ow
er

St

af
fw

ar
e

Pr
oc

es
s A

da
pt

at
io

n

C
ha

ng
e

Pr
im

iti
ve

s
PR

1
–

A
dd

 N
od

e
–

+
+

+
+

+
+

+
+

+

PR
2

–
R

em
ov

e
N

od
e

–
+

+
+

+
+

+
+

+
+

PR
3

–
A

dd
 E

dg
e

–
+

+
+

+
+

+
+

+
+

PR
4

–
R

em
ov

e
E

dg
e

–
+

+
+

+
+

+
+

+
+

PR
5

–
M

ov
e

E
dg

e
–

+
–

–
–

–
–

+
–

–
A

da
pt

at
io

n
Pa

tt
er

ns

A
P1

 –
 In

se
rt

 F
ra

gm
en

t
A

[1
, 2

],
B

[1
,2

,3
],

C
 [1

, 2
]

–
–

–
–

–
A

[2
],

B
[1

],
C

[1
,2

]
–

–
–

A
P2

 –
 D

el
et

e
Fr

ag
m

en
t

A
[1

, 2
],

B
[1

,2
,3

]
–

–
–

–
–

A
[2

],
B

[1
]

–
–

–

A
P3

 -
M

ov
e

Fr
ag

m
en

t
A

[1
, 2

],
B

[1
,2

,3
],

C
[1

,2
]

–
–

–
–

–
–

–
–

–

A
P4

 –
 R

ep
la

ce
 F

ra
gm

en
t

–
–

–
–

–
–

A
[2

],
B

[1
]

–
–

–

A
P5

 –
 S

w
ap

 F
ra

gm
en

t
–

–
–

–
–

–
–

–
–

–

A
P6

 –
 E

xt
ra

ct
 F

ra
gm

en
t

A
[1

,2
],

B
[3

]
–

–
–

–
–

–
–

–
–

A
P7

 –
 In

lin
e

Fr
ag

m
en

t
A

[1
,2

],
B

[2
]

–
–

–
–

–
–

–
–

–

A
P8

 –
 E

m
be

d
Fr

ag
m

en
t i

n
L

oo
p

A
[1

,2
],

B
[1

,2
,3

]
–

–
–

–
–

–
–

–
–

A
P9

 –
 P

ar
al

le
liz

e
A

ct
iv

iti
es

A

[1
,2

],
B

[1
,2

,3
]

–
–

–
–

–
–

–
–

–

A
P1

0
- E

m
be

d
Fr

ag
m

en
t i

n
C

on
di

tio
na

l B
ra

nc
h

–
–

–
–

–
–

A
[2

]
–

–
–

A
P1

1
–

A
dd

 C
on

tr
ol

 D
ep

en
de

nc
y

A
[1

,2
]

–
–

–
–

–
–

–
–

–

A
P1

2
–

R
em

ov
e

C
on

tr
ol

D

ep
en

de
nc

ie
s

A
[1

,2
]

–
–

–
–

–
–

–
–

–

A
P1

3
–

U
pd

at
e

C
on

di
tio

n
A

[1
,2

]
–

–
–

–
–

A
[2

]
–

–
–

A
P1

4
–

C
op

y
Fr

ag
m

en
t

–
–

–
–

–
–

–
–

–
–

Fig. 41. Adaptation Patterns Support at the Process Type Level

52

C
ha

ng
e

Pa
tte

rn
 S

up
po

rt
at

 th
e

Pr
oc

es
s I

ns
ta

nc
e

Le
ve

l

A
ca

de
m

ic

C
om

m
er

ci
al

Pr

im
iti

ve
 /

Pa
tt

er
n

A
D

E
PT

2
/ C

B
R

Fl
ow

C

A
K

E
2

H
O

O
N

M

O
V

E

Po
F

W
A

SA
2

W
ID

E

Y
A

W
L

 +

W
or

kl
et

s /

E
xl

et
s

Fl
ow

er

St
af

fw
ar

e

Pr
oc

es
s A

da
pt

at
io

n

C
ha

ng
e

Pr
im

iti
ve

s
PR

1
–

A
dd

 N
od

e
–

+
–

–
–

+
–

–
–

–
PR

2
–

R
em

ov
e

N
od

e
–

+
–

–
–

+
–

–
–

–
PR

3
–

A
dd

 E
dg

e
–

+
–

–
–

+
–

–
–

–
PR

4
–

R
em

ov
e

E
dg

e
–

+
–

–
–

+
–

–
–

–
PR

5
–

M
ov

e
E

dg
e

–
+

–
–

–
–

–
–

–
–

A
da

pt
at

io
n

Pa
tt

er
ns

A

P1
 –

 In
se

rt
 F

ra
gm

en
t

A
[1

, 2
],

B
[1

,2
,3

],
C

[1
,2

]
–

–
–

–
–

–
–

–
–

A
P2

 –
 D

el
et

e
Fr

ag
m

en
t

A
[1

, 2
],

B
[1

,2
,3

]
–

–
–

–
–

–
–

A
[2

],
B

[1
]

–

A
P3

 -
M

ov
e

Fr
ag

m
en

t
A

[1
, 2

],
B

[1
,2

,3
],

C
[1

,2
]

–
–

–
–

–
–

–
–

–

A
P4

 –
 R

ep
la

ce
 F

ra
gm

en
t

–
–

–
–

–
–

–
A

[1
],

B
[1

]
–

–

A
P5

 –
 S

w
ap

 F
ra

gm
en

t
–

–
–

–
–

–
–

–
–

–

A
P6

 –
 E

xt
ra

ct
 F

ra
gm

en
t

A
[1

,2
],

B
[3

]
–

–
–

–
–

–
–

–
–

A
P7

 –
 In

lin
e

Fr
ag

m
en

t
A

[1
,2

],
B

[2
]

–
–

–
–

–
–

–
–

–

A
P8

 –
 E

m
be

d
Fr

ag
m

en
t i

n
L

oo
p

A
[1

,2
],

B
[1

,2
,3

]
–

–
–

–
–

–
–

–
–

A
P9

 –
 P

ar
al

le
liz

e
A

ct
iv

iti
es

A

[1
,2

],
B

[1
,2

,3
]

–
–

–
–

–
–

–
–

–

A
P1

0
- E

m
be

d
Fr

ag
m

en
t i

n
C

on
di

tio
na

l B
ra

nc
h

–
–

–
–

–
–

–
–

–
–

A
P1

1
–

A
dd

 C
on

tr
ol

 D
ep

en
de

nc
y

A
[1

,2
]

–
–

–
–

–
–

–
–

–

A
P1

2
–

R
em

ov
e

C
on

tr
ol

D

ep
en

de
nc

ie
s

A
[1

,2
]

–
–

–
–

–
–

–
–

–

A
P1

3
–

U
pd

at
e

C
on

di
tio

n
A

[1
,2

]
–

–
–

–
–

–
–

–
–

A
P1

4
–

C
op

y
Fr

ag
m

en
t

–
–

–
–

–
–

–
–

–
–

Fig. 42. Adaptation Patterns Support at the Process Instance Level

6.2 Support for Patterns for Changes in Predefined Regions

Table 43 shows how patterns for changes in predefined regions are supported
by the evaluated approaches.

53

Pattern PP1 (Late Selection of Process Fragment) is supported by 3 distinct
systems (HOON, Worklets/Exlets and Staffware). Similar support is offered
by CAKE2, MOVE and PoF, which provide support for pattern PP2 (Late
Modeling of Process Fragment). While MOVE and CAKE2 offer the end user
the whole expressiveness of the modeling environment, PoF facilitates model
construction by introducing modeling constraints. Validation ensures that the
lately modeled process fragment is compliant with the constraints [59]. Pattern
PP3 is not supported by any of the evaluated systems. Nevertheless, the Late
Composition of Process Fragment is listed as a distinct pattern as it constitutes
a typical strategy for dealing with changes, which we have identified in our
case studies [27,35,80,60]. Finally, the Multi-Instance Activity pattern PP4 can
be found in WIDE, YAWL, Flower and Staffware.

Pattern PP1 (Late Selection of Process Fragment) as well as pattern PP2 (Late
Modeling of Process Fragment) allow for the realization of parts of the function-
ality of adaptation pattern AP1 through workarounds (e.g., HOON, MOVE,
PoF). Generally, a placeholder activity can be positioned between two frag-
ments or parallel to an existing one in the process schema. By substituting this
placeholder activity during run-time with a concrete (sub) process fragment,
in principle, a partially pre-planned serial and a parallel insertion becomes
possible (cmp. Design Choice D[1,2] of pattern AP1). However, the insertion
is restricted to the placeholder activity. Furthermore, these approaches do not
allow for structural (ad-hoc) changes of a process fragment once it has been
instantiated, unless this fragment itself contains placeholder activities.

6.3 Change Support Features in Practice

Table 43 shows the evaluation results regarding the change support features
described in Section 5. As the evaluation shows, Feature F1 (Schema Evo-
lution, Version Control and Instance Migration) is only partially supported.
Only half of the evaluated systems provide any versioning support at all (i.e.,
ADEPT2, WASA2, WIDE, YAWL, Flower and Staffware). As missing version-
ing support requires users to overwrite an existing schema in case of process
type level changes or to save the modified schema with a new name, practical
applicability is limited. Flower, allows for the overwriting of a process schema
in addition to co-existence of process instances. In case ongoing instances are
not removed from the system, applying this feature can lead to undesired
behaviour. In connection with process schema evolution the controlled propa-
gation of changes to ongoing instances is only considered in ADEPT2, WASA2
and WIDE. Further, Staffware offers a feature for propagating changes to all
ongoing instances. As instance migration cannot be restricted to compliant
instances, the usage of this feature might lead to inconsistencies or deadlocks
having the same effect than overwriting a process schema.

54

Feature F2 (Support for Instance-Specific Changes) is provided by most ap-
proaches in some form. However, unplanned changes through adaptation pat-
terns are only supported by ADEPT2, Flower and the Worklet/Exlet ap-
proach. While ADEPT2 has realized most adaptation patterns, Flower re-
stricts ad-hoc modifications to the deletion of activities. Further, the Worklets
/ Exlet approach only supports replacement of activities. In addition, CAKE2
and WASA2 allow for unplanned changes using change primitives. In addi-
tion, preplanned changes are supported by CAKE2, HOON, MOVE, PoF,
YAWL / Worklets / Exlets, Flower and Staffware. For a detailed description
of the change primitives and the change patterns supported by the respective
approaches we refer to Fig. 42.

While feature F3 (Correctness of Changes) is supported quite well by most
of the evaluated academic approaches, the Worklet/Exlet approach only pro-
vides partial support for it. Both commercial systems Staffware and Flower
do not provide formal correctness criteria for schema evolution and instance
migration, which can lead to inconsistencies and deadlocks under certain cir-
cumstances. This especially holds for the overwriting of process schemes in
Flower and the instance propagation in Staffware.

Feature F4 (Traceability and Analysis of Changes) is supported by all eval-
uated systems. However, most of them only provide simple execution and/or
change logs and do not enhance these logs with further information like the
context of a change and the reasons for it. Change annotations are only avail-
able in ADEPT2/CBRFlow and CAKE2. First approaches towards change
mining are supported by ADEPT2 for which a plugin for the process mining
tool ProM [40] has been developed.

Feature F5 (Access Control for Changes) is supported by most approaches
through a simple role concept. Several systems additionally allow for a more
fine-grained definition of access rights. For instance, ADEPT2/CBRFlow [72],
HOON, PoF, the Worklets/Exlets approach, Flower [69] and Staffware allow
for specifying distinct authorizations for each pattern. In addition, all these
approaches also allow for object dependent authorizations as well. This feature
further supported by MOVE and WIDE.

Support for Feature F6 (Change Reuse) is only provided in ADEPT2 / CBR-
Flow, CAKE2, PoF and the Worklets/Exlets approach. In ADEPT2/CBRFlow
case-based reasoning (CBR) techniques are used for retrieving instance-specific
changes which have occurred previously in a similar context [75,77]. CAKE2
also uses CBR for change retrieval and considers structural as well as contex-
tual information [32]. The retrieval component of the PoF approach is primar-
ily based on structural information [30]. Finally, the Worklets/Exlet approach
supports the reuse of Worklets through selection rules [2].

55

Most evaluated systems provide support for Feature F7 (Change Concurrency
Control) and control change concurrency by the engine. For approaches, which
only provide support for changes to predefined regions, concurrency control
can be easily achieved as changes are local to the placeholder activities (e.g.,
HOON, MOVE, PoF, Worklets/Exlets and Staffware). Therefore, changes to
different placeholder activities can be performed concurrently. In the context
of structural process adaptations concurrency control becomes more compli-
cated. ADEPT2 and CAKE2 allow for concurrent changes and control concur-
rency by the PAIS [43,32]. In contrast, WASA2 prohibits concurrent changes
and requires the entire process instance to be locked. Similarly, Flower does
not allow users to work on the same case simultaneously and therefore pro-
hibits concurrent changes as well [46]. Concurrency of process type and process
instance changes is only addressed by ADEPT2.

6.4 Summary of Evaluation Results

Our pattern-based evaluation of selected approaches shows thatno single sys-
tem exists which supports all change patterns and change features in an inte-
grated way (cf. Fig. 41-43). In particular, none of the approaches provides a
holistic change framework considering both adaptation patterns and patterns
for changes in predefined regions at both the process type and the instance
level. ADEPT2 and WIDE score well in respect to adaptation patterns, but
lack support for changes to predefined regions. WASA provides good support
for ad-hoc changes using change primitives, but does not consider changes to
predefined regions and high-level change operations. CAKE2 supports struc-
tural changes at the instance level and changes to predefined regions, but does
not consider process type changes and only supports change primitives.

An integrated change framework considering both adaptation patterns and
patterns for changes in predefined regions would allow addressing a much
broader process spectrum and a larger variety of process flexibility scenarios.
While patterns for changes in predefined regions provide support for dealing
with uncertainty by providing more flexible models, adaptation patterns allow
for structural changes which cannot be preplanned. In addition, they make
changes more efficient, less complex, and less error-prone through providing
high-level change operations.

The evaluation also shows a trade-off between expressiveness of the used pro-
cess meta model and support for structural process adaptations. For instance,
the adaptive process management system ADEPT2 has been designed with
the goal to support structural process adaptations [43]. To allow for an ef-
ficient implementation of the respective patterns, restrictions on the process
modeling language have been made. Similar restrictions in terms of expres-

56

A
ca

de
m

ic

C
om

m
er

ci
al

Pr

im
iti

ve
 /

Pa
tt

er
n

A
D

E
PT

2
/

C
B

R
Fl

ow

C
A

K
E

2
H

O
O

N

M
O

V
E

Po

F
W

A
SA

2
W

ID
E

Y

A
W

L
 +

W

or
kl

et
s /

E

xl
et

s
Fl

ow
er

St

af
fw

ar
e

In
-B

ui
lt

Fl
ex

ib
ili

ty

Pa
tt

er
ns

 fo
r

C
ha

ng
es

 in
 P

re
de

fin
ed

 R
eg

io
ns

PP

1
–

L
at

e
Se

le
ct

io
n

of

Fr
ag

m
en

ts

–
–

 A
[1

,2
],

B
[1

,2
],

C
[2

]
–

–
–

–
A

[1
,2

],
B

[1
,2

],
C

[2
]

–
A

[1
,2

],
B

[1
,2

],
C

[2
]

PP
2

–
L

at
e

M
od

el
in

g
of

Fr

ag
m

en
ts

–

A
[1

],
B

[1
],

C
[2

,3
],

D
[1

]
–

A
[1

],
B

[1
],

C
[3

],
D

[1
,2

]
A

[1
,2

],
B

[2
],

C
[2

],
D

[1
,2

]
–

–
–

–
–

PP
3

–
L

at
e

C
om

po
si

tio
n

of

Fr
ag

m
en

ts

–
–

–
–

–
–

–
–

–
–

PR
4

–
M

ul
ti-

In
st

an
ce

 A
ct

iv
ity

–

–
–

–
–

–
+

–
+

+

C
ha

ng
e

Su
pp

or
t F

ea
tu

re
s

A
ca

de
m

ic

C
om

m
er

ci
al

Fe

at
ur

e
A

D
E

PT
2

/
C

B
R

Fl
ow

C

A
K

E
2

H
O

O
N

M

O
V

E

Po
F

W
A

SA
2

W
ID

E

Y
A

W
L

 +

W
or

kl
et

s /

E
xl

et
s

Fl
ow

er

St
af

fw
ar

e

C
ha

ng
e

Fe
at

ur
es

F1

 –
 S

ch
em

a
E

vo
lu

tio
n,

 V
er

si
on

C

on
tr

ol
 a

nd
 In

st
an

ce
 M

ig
ra

tio
n

3,
 5

1

1
1

1
3,

 5

3,
 5

3

1,
 2

, 3

3,
 4

F2
 –

 S
up

po
rt

 fo
r

In
st

an
ce

-
Sp

ec
ifi

c
C

ha
ng

es

1a
,b

1b

, 2
b

2a

2a

2b

1b

2b

1a
,b

, 2
a,

b
1b

, 2
b

2b

F3
 –

 C
or

re
ct

ne
ss

 o
f C

ha
ng

es

+
+

+
+

+

+
+

°
–

–
F4

 -
 T

ra
ce

ab
ili

ty
 &

 A
na

ly
si

s
1,

 2
, 3

1,

 2

1
1

1
1

1
1

1
1

F5
 –

 A
cc

es
s C

on
tr

ol
 fo

r
C

ha
ng

es

1,
 2

, 3

–
1,

 2
, 3

1,

 3

1,
 2

, 3

1
1,

 3

1,
 2

, 3

1,
 2

, 3
*

1,
 2

, 3

F6
 -

C
ha

ng
e

R
eu

se

+
+

–
–

+
–

–
+

–
–

F7
 -

C
ha

ng
e

C
on

cu
rr

en
cy

C

on
tr

ol

3,
 4

3

3
3

3
2

no
t

ap
pl

ic
ab

le

3
2

3
(*

) F
lo

w
er

 su
pp

or
ts

 O
pt

io
n

2
an

d
3

of
 fe

at
ur

e
F4

 o
nl

y
fo

r p
ro

ce
ss

 in
st

an
ce

 c
ha

ng
es

, b
ut

 n
ot

 fo
r p

ro
ce

ss
 ty

pe
 c

ha
ng

es

Fig. 43. Change Features in Practice

siveness also hold for the other approaches supporting structural adaptations
like CAKE2, WASA and WIDE. On the other hand, YAWL is a reference
implementation for the workflow patterns and therefore allows for a high de-
gree of expressiveness [12]. However, structural adaptations have not yet been

57

addressed in YAWL and their implementation would be significantly more
difficult compared to ADEPT2 due to the higher expressiveness. However,
the integration of Worklets/Exlets with YAWL has shown that patterns for
changes in predefined regions can be easily integrated also for highly expressive
process modeling languages.

In addition to change patterns, change features are needed to make changes
applicable in practice: correctness of changes, traceability and analysis of
changes, authorization, change reuse, and concurrency control. Our evaluation
has shown that deficits in respect to change features exist in several systems.
Especially correctness of changes is not always guaranteed.

7 Related Work

Patterns were first used by Alexander to describe solutions to recurring prob-
lems. In particular, he applied patterns to describe best practices in archi-
tectural design [4]. Patterns also have a long tradition in computer science.
Gamma et al. applied the same concepts to software engineering and described
23 design patterns [16].

In the area of workflow management, patterns have been introduced for analyz-
ing the expressiveness of process modeling languages [67,55]. In this context,
control flow patterns describe different constructs to specify activities and
their ordering. In addition, workflow data patterns [53] provide different ways
for modeling the data aspect in PAIS, and workflow resource patterns [54]
describe how resources can be represented and utilized in workflows. Further-
more, patterns for describing service interactions and process choreographies
were introduced [5]. Finally, a formalization of workflow patterns based on
pi-calculus has been provided [41].

The introduction of workflow patterns has had significant impact on the de-
sign of PAIS and has contributed to the systematic evaluation of PAIS and
process modeling and execution languages like BPEL [55], BPMN [81], EPC
[55] and UML [57]. However, to evaluate the powerfulness of a PAIS regarding
its ability to deal with changes, the existing workflow patterns are important,
but not sufficient. In addition, a set of patterns for dealing with the aspect of
process change is needed. Although, support for the aforementioned workflow
patterns allows reducing the need for modifying process instances during run-
time, they require flexibility to be entirely in-built into the process model. By
contrast, the patterns for changes to predefined regions as proposed in this
paper allow deferring decisions from build- to run-time to be better able to
deal with uncertainty. In addition, adaptation patterns will allow for struc-
tural modifications of the process if unanticipated exceptions occur or business

58

processes evolve over time.

When evaluating the ability of PAIS to deal which process change, the degree
to which workflow patterns are supported provides an indication on how com-
plex the change framework under evaluation is. In general, the more expressive
the process modeling language is (i.e., the more control flow and data patterns
are supported), the more difficult and complex changes become.

In [56] exception handling patterns, which describe different ways for cop-
ing with exceptions, are proposed. In contrast to change patterns, exception
handling patterns like Rollback only change the state of a process instance
(i.e., its behavior), but not its schema (i.e., its structure). These patterns are
therefore well suited for dealing with expected and less complex situations.
However, unanticipated situations might additionally require structural adap-
tations [44]. The change patterns described in this paper modify both the
observable behavior of a process instance and its process structure. There-
fore, they are particularly suited for coping with unanticipated exceptions. In
addition, change patterns can also be applied at the process type level de-
creasing the efforts needed for accomplishing a particular change. To provide
a complete evaluation framework regarding flexibility in PAIS expected and
unexpected exceptions as well as schema evolution must be considered in an
integrated way. Therefore, the existing exception handling patterns should be
complemented with a set of change patterns.

In many cases exception handling requires the combined use of several excep-
tion handling patterns and therefore might result in rather complex exception
handling routines. The Exlet approach [1,3] addresses this problem by allowing
for the combination of different exception handling patterns to an exception
handling process called Exlet. In general, Exlets are executed in parallel to
the process instance to be modified and can be reused when a similar excep-
tion occurs again. Exlets allow ”simulating” several of the adaptation patterns.
However, as Exlets are executed independently of the process instance without
structurally modifying it, end-users have to deal with suspending and resum-
ing process instances when synchronization is required. In contrast, change
patterns hide this complexity from end-users by providing high-level change
operations.

The aforementioned approaches focus in their evaluations on expressiveness.
Thom et al. have shown that patterns can additionally be used for facilitating
process modeling [63,62]. They propose a set of 9 patterns for business func-
tions (e.g., approval, notification) and show that by using these patterns the
efforts for creating a process model can be decreased significantly [63]. Like
these semantical patterns speed up process modeling, change patterns allow
reducing the efforts of accomplishing process changes (cf. Section 3.3).

59

Most systems considered by our evaluation model business processes in a pro-
cedural or imperative way. The only exception constitutes the pockets of flexi-
bility (PoF) approach [59], which uses a combination of imperative and declar-
ative process modeling. The process itself is modeled in an imperative way,
however, the placeholder activities are specified in a declarative way based
on constraints. Other approaches relying on declarative specifications, which
have not been considered in our evaluation, are MOBILE [24] and DECLARE
[39,66]. For instance, DECLARE uses linear temporal logic as an underlying
formalism to model business processes. Instead of requiring process modelers
to specify how the process should be executed, they only have to state what
should be done by the process during run-time resulting in more flexibility.
By using declarative approaches changes definitely become less frequent, how-
ever, run-time modifications still can be an issue (e.g., a particular constraint
might have to be violated for a particular process instance due to an unfore-
seen situation). Further, constraints themselves may evolve over time, which
raises the challenge of propagation changes to ongoing instances. A promising
approach towards this direction is offered by DECLARE [39], which aims at
integrating these aspects. Another challenging issue concerns maintenance of
constraint-based process models, particularly in case of large constraint sets.

There exist other frameworks focusing on the comparison of specific aspects
related to process change. For instance, the work presented in [49] provides a
framework for elaborating the strengths and weaknesses of adaptive PAIS (e.g.,
ADEPT2, WASA2, WIDE) along typical dynamic change problems. Main em-
phasis of this work is on investigating formal process properties (e.g., proper
termination) and correctness criteria (e.g., compliance) in connection with
process changes. In addition, [29] compares graph-based and rule-based lan-
guages along the dimensions of flexibility, adaptability, dynamism, complexity,
and expressiveness.

There exist several approaches targeting at the automatic handling of process
exceptions (e.g., activity failures or deadline expiry). Some of these approaches
[34,17,6,36] also apply structural adaptations to respective process instances
to deal with the exceptions. For this, they use the adaptation patterns offered
by existing systems. In ADEPT2, for instance, respective patterns are not only
accessible via a process editor, but can be also invoked via a powerful API
(application programming interface). Several approaches have utilized this to
implement advanced agents for automated exception handling [34,17,6,36].

8 Summary and Outlook

In this paper we proposed 18 change patterns and 7 change support features.
In combination they allow assessing the power of a particular change frame-

60

work for PAIS. In addition, we evaluated selected approaches and systems
regarding their ability to deal with process change. We believe that the in-
troduction of change patterns complements existing workflow patterns and
allows for more meaningful evaluations of existing systems and approaches,
particularly if flexibility is an issue. In combination with workflow patterns
the presented change framework will enable (PA)IS engineers to choose a pro-
cess management technology which meets their flexibility requirements best
(or to realize that no system satisfies all these requirements). Our work will
make the comparison of change frameworks much simpler and allow (PA)IS
engineer to easily assess whether vendors really hold what they promise in
respect to process changes and process flexibility. Our evaluation shows that
currently none of the evaluated systems provides a holistic change framework
supporting all kind of changes in an integrated way. However, in analogy to
workflow patterns we expect vendors of existing PAIS to evaluate their PAIS
along these criteria and to extend their current systems towards better support
for process changes.

Our future work will include the identification and the design of change pat-
terns for aspects other than control flow (e.g., data or resources) and patterns
for more advanced adaptation policies (e.g., the accompanying adaptation of
the data flow when introducing control flow changes). In addition, we plan to
include additional systems and approaches in our evaluation. Further, we are
currently working on a reference implementation, which will provide support
for all 18 change patterns and 7 change support features. Based on this refer-
ence implementation we plan to complement our work on change patterns with
several experiments, e.g., to measure the efforts for changing process schemes
either based on change patterns or change primitives.

Acknowledgements. We would like to thank Shazia Shadiq, Michael Adams,
Matthias Weske, Yanbo Han, Mirjam Minor, Daniel Schmalen, Hajo Reijers, Sheetal
Tiwari, Ulrich Kreher and Peter Dadam for their valuable feedback regarding the
evaluation of the described approaches. In addition, we would like to thank Shazia
Shadiq and Michael Adams for the many fruitful discussions, which helped us to
significantly improve the quality of this paper.

References

[1] M. Adams, A. ter Hofstede, D. Edmond, W. M. v. d. Aalst, Dynamic
and extensible exception handling for workflows: A service-oriented
implementation., Tech. Rep. BPM-07-03, BPMcenter.org (2007).

[2] M. Adams, A. ter Hofstede, D. Edmond, W. van der Aalst, A Service-Oriented
Implementation of Dynamic Flexibility in Workflows., in: Proc. Coopis’06, 2006.

61

[3] M. Adams, A. ter Hofstede, W. van der Aalst, D. Edmond, Dynamic, Extensible
and Context-Aware Exception Handling for Workflows., in: Proc. CoopIS’07 (to
appear), 2007.

[4] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language, Oxford
University Press, New York, 1977.

[5] A. Barros, M. Dumas, A. ter Hofstede, Service Interaction Patterns., in: Proc.
BPM’05, 2005.

[6] S. Bassil, R. K. Keller, P. G. Kropf, A workflow-oriented system architecture
for the management of container transportation, in: Proc. BPM’04, 2004.

[7] R. Bobrik, M. Reichert, T. Bauer, View-based process visualization, in: Proc.
BPM’07, 2007.

[8] F. Casati, Models, semantics, and formal methods for the design of workflows
and their exceptions., Ph.D. thesis, Milano (1998).

[9] F. Casati, S. Ceri, B. Pernici, G. Pozzi, Workflow evolution, Data and
Knowledge Engineering 24 (3) (1998) 211–238.

[10] P. Dadam, M. Reichert, K. Kuhn, Clinical workflows - the killer application for
process-oriented information systems?, in: Proc. BIS’00, 2000.

[11] W. Deiters, V. Gruhn, The funsoft net appoach to software process
management., Int’l Journal of Software Engineering and Knowledge Engineering
4 (2) (1994) 229–256.

[12] W. V. der Aalst, A. ter Hofstede, YAWL: Yet Another Workflow Language.,
Information Systems 30 (4) (2005) 245–275.

[13] E. Dijkstra, A Discipline of Programming., Prentice-Hall, 1976.

[14] D. Domingos, A. Rito-Silva, P. Veiga, Authorization and access control in
adaptive workflows., in: ESORICS 2003, 2003.

[15] M. Dumas, A. ter Hofstede, W. van der Aalst (eds.), Process Aware Information
Systems, Wiley Publishing, 2005.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[17] M. Golani, A. Gal, Optimizing Exception Handling in Workflows Using Process
Restructuring, in: Proc. BPM’06, 2006.

[18] K. Göser, M. Jurisch, H. Acker, U. Kreher, M. Lauer, S. Rinderle-Ma,
M. Reichert, P. Dadam, Next-generation Process Management with ADEPT2.,
in: Demo Proc. BPM’07, 2007.

[19] V. Gruhn, Validation and verification of software process models., Ph.D. thesis,
University of Dortmund (1991).

[20] C. Günther, S. Rinderle, M. Reichert, W. van der Aalst, Change Mining in
Adaptive Process Management Systems, in: Proc. CoopIS’06, 2006.

62

[21] J. Hagemeyer, T. Hermann, K. Just, S. Rüdiger, Flexibilität bei Workflow-
Management-Systemen, in: Software-Ergonomie ‘97, 1997.

[22] M. Hammer, S. Stanton, The Reengineering Revolution – The Handbook,
Harper Collins Publ., 1995.

[23] Y. Han, Software Infrastructure for Configurable Workflow Systems., Ph.D.
thesis, Univ. of Berlin (1997).

[24] S. Jablonski, K. Stein, M. Teschke, Experiences in Workflow Management for
Scientific Computing, in: Proc. DEXA ’97, 1997.

[25] B. Karbe, N. Ramsperger, Influence of Exception Handling on the Support of
Cooperative Office Work., in: Proc. IFIP WG 8.4 Conf. on Multi-User Interfaces
and Applications, 1990.

[26] K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer, B. Arpinar, J. Cardoso,
IntelliGEN: A Distributed Workflow System for Discovering Protein-Protein
Interactions, Distrib. Parallel Databases 13 (1) (2003) 43–72.

[27] R. Lenz, M. Reichert, IT Support for Healthcare Processes - Premises,
Challenges, Perspectives., Data and Knowledge Engineering (1) (2007) 39–58.

[28] F. Leymann, D. Roller, Production Workflow., Prentice Hall, 2000.

[29] R. Lu, S. Sadiq., A Survey on Comparative Modelling Approaches., in: In Proc.
BIS2007, 2007.

[30] R. Lu, S. Sadiq., On the Discovery of Preferred Work Practice through Business
Process Variants., in: Proc. ER2007 (to appear), 2007.

[31] R. Lu, S. W. Sadiq, Managing process variants as an information resource., in:
Proc. BPM06, 2006.

[32] M. Minor, D. Schmalen, A. Koldehoff, R. Bergmann, Structural adaptation of
workflows supported by a suspension mechanism and by case-based reasoning.,
in: Proc. WETICE’07, 2007.

[33] M. Minor, A. Tartakovski, R. Bergmann, Representation and Structure-based
Similarity Assessment for Agile Workflows., in: Proc. ICCBR’07, 2007.

[34] H. Mour ao, P. Antunes, Supporting effective unexpected exceptions handling
in workflow management systems, in: Proc. SAC’07, ACM Press, 2007.

[35] D. Müller, J. Herbst, M. Hammori, M. Reichert, IT support for release
management processes in the automotive industry., in: Proc. BPM’06, Vienna,
2006.

[36] R. Müller, U. Greiner, E. Rahm, AgentWork: A workflow system supporting
rule–based workflow adaptation., Data & Knowledge Engineering 51 (2) (2004)
223–256.

[37] B. Mutschler, M. Reichert, J. Bumiller, Why Process-Orientation is Scarce: An
Empirical Study of Process-oriented Information Systems in the Automotive
Industry., in: Proc. EDOC’06, 2006.

63

[38] Object Management Group, Business Process Modeling Notation Specification.

[39] M. Pesic, M. Schonenberg, N. Sidorova, , W. van der Aalst, Constraint-Based
Workflow Models: Change Made Easy., in: CoopIS’07 (to appear), 2007.

[40] Process Mining Research, www.processmining.org (2005).

[41] F. Puhlmann, M. Weske, Using the Pi-Calculus for Formalizing Workflow
Patterns., in: Proc. BPM’05, 2005.

[42] M. Reichert, Dynamic changes in workflow-management-systems., Ph.D. thesis,
University of Ulm, Computer Science Faculty, (in German) (2000).

[43] M. Reichert, P. Dadam, ADEPTflex – Supporting Dynamic Changes of
Workflows Without Losing Control., JIIS 10 (2) (1998) 93–129.

[44] M. Reichert, P. Dadam, T. Bauer, Dealing with Forward and Backward Jumps
in Workflow Management Systems, Software and System Modeling 1 (2) (2003)
37–58.

[45] M. Reichert, S. Rinderle, U. Kreher, P. Dadam, Adaptive Process Management
with ADEPT2., in: Proc. ICDE’05, 2005.

[46] H. Reijers, J. Rigter, W. van der Aalst, The case handling case., International
Journal of Cooperative Information Systems. 12 (3) (2003) 365—391.

[47] H. Reijers, W. van der Aalst, The Effectiveness of Workflow Management
Systems: Predictions and Lessons Learned., International Journal of
Information Management (5) (2005) 457–471.

[48] S. Rinderle, Schema evolution in process management systems, Ph.D. thesis,
University of Ulm (2004).

[49] S. Rinderle, M. Reichert, P. Dadam, Correctness Criteria for Dynamic Changes
in Workflow Systems – A Survey., Data and Knowledge Engineering 50 (1)
(2004) 9–34.

[50] S. Rinderle, M. Reichert, P. Dadam, Flexible support of team processes by
adaptive workflow systems., Distributed and Parallel Databases 16 (1) (2004)
91–116.

[51] S. Rinderle, M. Reichert, M. Jurisch, U. Kreher, On Representing, Purging,
and Utilizing Change Logs in Process Management Systems., in: Proc. BPM’06,
2006.

[52] S. Rinderle, B. Weber, M. Reichert, W. Wild, Integrating Process Learning and
Process Evolution - A Semantics Based Approach., in: Proc. BPM 2005, 2005.

[53] N. Russell, A. ter Hofstede, D. Edmond, W. van der Aalst, Workflow data
patterns, Tech. Rep. FIT-TR-2004-01, Queensland Univ. of Techn. (2004).

[54] N. Russell, A. ter Hofstede, D. Edmond, W. van der Aalst, Workflow resource
patterns, Tech. Rep. WP 127, Eindhoven Univ. of Technology (2004).

64

[55] N. Russell, A. ter Hofstede, W. van der Aalst, N. Mulyar, Workflow Control-
Flow Patterns: A Revised View., Tech. rep., BPMcenter.org (2006).

[56] N. Russell, W. van der Aalst, A. ter Hofstede, Exception Handling Patterns in
Process-Aware Information Systems, in: Proc. CAiSE’06, 2006.

[57] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, P. Wohed, On
the suitability of UML 2.0 activity diagrams for business process modelling, in:
Proc. APCCM ’06, 2006.

[58] S. Sadiq, W. Sadiq, M. Orlowska, Pockets of Flexibility in Workflow
Specifications., in: Proc. ER’01, 2001.

[59] S. Sadiq, W. Sadiq, M. Orlowska, A Framework for Constraint Specification
and Validation in Flexible Workflows, Information Systems 30 (5) (2005) 349 –
378.

[60] P. Stoll, E-Procurement - Basics, Standards, Practice (E-Procurement -
Grundlagen, Standards und Praxis), Ph.D. thesis, Diploma Thesis, University
of Ulm (2005).

[61] D. Strong, S. Miller, Exceptions and Exception Handling in Computerized
Information Processes., ACM–TOIS 13 (2) (1995) 206–233.

[62] L. H. Thom, A Pattern Based Approach for Business Process Modeling., Ph.D.
thesis, Universidade Federal do Rio Grande do Sul (2006).

[63] L. H. Thom, J. M. Lau, C. Iochpe, J. Mendling, Extending Business Process
Modeling Tools with Workflow Pattern Reuse., in: Proc. ICEIS’07, 2007.

[64] R. V. Glabbeek, U. Goltz, Refinement of actions and equivalence notions for
concurrent systems., Acta Informatica 37 (4–5) (2001) 229–327.

[65] W. Van der Aalst, The Application of Petri Nets to Workflow Management.,
The Journal of Circuits, Systems and Computers.

[66] W. van der Aalst, M. Pesic, DecSerFlow: Towards a Truly Declarative Service
Flow Language., Tech. rep., BPMcenter.org (2006).

[67] W. Van der Aalst, A. ter Hofstede, B. Kiepuszewski, A. Barros, Workflow
Patterns, Distributed and Parallel Databases 14 (1) (2003) 5–51.

[68] W. Van der Aalst, K. van Hee, Workflow Management, MIT Press, 2002.

[69] W. Van der Aalst, M. Weske, D. Grünbauer, Case handling: A new paradigm
for business process support., Data and Knowledge Engineering. 53 (2) (2005)
129–162.

[70] Wave-front BV, Flower 3 Designer’s Guide.

[71] B. Weber, M. Reichert, W. Wild, Case-Base Maintenance for CCBR-based
Process Evolution, in: Proc. ECCBR’06, 2006.

[72] B. Weber, M. Reichert, W. Wild, S. Rinderle, Balancing Flexibility and Security
in Adaptive Process Management Systems., in: Proc. CoopIS’05, 2005.

65

[73] B. Weber, S. Rinderle, M. Reichert, Change patterns and change support
features in process-aware information systems., in: Proc. CAiSE’07, 2007.

[74] B. Weber, S. Rinderle, W. Wild, M. Reichert, CCBR–Driven Business Process
Evolution., in: Proc. ICCBR’05, Chicago, 2005.

[75] B. Weber, W. Wild, R. Breu, CBRFlow: Enabling adaptive workflow
management through conversational cbr., in: Proc. ECCBR’04, 2004.

[76] B. Weber, W. Wild, M. Lauer, M. Reichert, Improving exception handling by
discovering change dependencies in adaptive process management systems., in:
Business Process Management Workshops 2006, 2006.

[77] B. Weber, W. Wild, M. Reichert, P. Dadam, ProCycle Integrierte
Unterstützung des Prozesslebenszyklus., KI-Zeitung (to appear).

[78] M. Weske, Workflow Management Systems: Formal Foundation, Conceptual
Design, Implementation Aspects., University of Münster, Germany, Habil
Thesis (2000).

[79] M. Weske, Business Process Management: Concepts, Methods, Technology.,
Springer, 2007.

[80] W. Wild, R. Wirtensohn, B. Weber, Dynamic engines a flexible approach to
the extension of legacy code and process-oriented application development., in:
Proc. WETICE’06, 2006.

[81] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell,
On the Suitability of BPMN for Business Process Modelling, in: Proc. BPM’06,
2006.

[82] F. Zhang, E. D’Hollander, Using Hammock Graphs to Structure Programs.,
IEEE Transactions on Software Engineering 30 (2004) 231–245.

A Evaluation Details

In the following the detailed evaluation results for each of the considered
approaches are discussed.

A.1 Evaluation Details: ADEPT2 / CBRFlow

ADEPT2 is a process management system which allows for the support of
dynamic change both at the process type and process instance level. In the
ProCycle project [77] ADEPT2 has been integrated with the case-based rea-
soning component of CBRFlow [75] to foster change annotation and reuse.

66

Support of Adaptation Patterns. ADEPT2 allows for structural process
changes using adaptation patterns. Generally, ADEPT2 enables such changes
at both the process type and the process instance level (Design Choice A[1,2]).
Supported adaptation patterns may operate on atomic activities, sub pro-
cesses, and hammocks (Design Choice B[1,2,3]). 4

In detail: In terms of adaptation patterns ADEPT2 supports the insertion
of process fragments (AP1) to a process schema or process instance schema
respectively. Respective fragments can be added serially, conditionally, or in
parallel (Design Choice C[1,2(a+b)]). Furthermore, it is possible to delete pro-
cess fragments (AP2) or to move them to another position (AP3). Adaptation
patterns AP4 (Replace Process Fragment) and AP5 (Swap Process Fragment)
are not directly supported by the current ADEPT2 system, but can be ”simu-
lated” based on adaptation patterns AP1, AP2, and AP3. With AP6 (Extract
Sub Process), AP7 (Inline Sub Process), and AP8 (Embed Process Fragment
in Loop) more complex patterns are supported as well. Adaptation pattern
AP9 (Parallelize Process Fragment) is implemented in ADEPT2 as a variant
of pattern AP3 (Move Process Fragment). Adaptation pattern AP10 (Embed
Process Fragment in Conditional Branch) is not directly supported, but can
be realized with AP1 and AP3. Finally, adaptation patterns AP11 (Add Con-
trol Dependency), AP12 (Remove Control Dependency), and AP13 (Update
Condition) are supported. Details about ADEPT2 change operations (e.g.,
formal semantics, implementation, etc.) can be found in [42,48].

It is important to mention that the block-structured modeling approach used
in ADEPT2 significantly facilitates the implementation and use of adaptation
patterns (for details see [43]).

Support of Patterns for Changes in Predefined Regions. ADEPT2
provides currently no support for patterns for changes in predefined regions.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). ADEPT2 enables advanced version control. If a process schema
is changed at the type level, a new process schema version is created. Further
it is checked which process instances can be correctly migrated to the new
schema version, and which instances remain running on the old schema version
(F1[3,5]). In this context, ADEPT2 uses a well-defined correctness criterion
for deciding on the compliance of process instances with a modified schema
version. This criterion is independent of the ADEPT2 process meta model and
is based on a relaxed notion of trace equivalence [50]. Particularly, it considers

4 There exist some restrictions in this context. For example, adaptation pattern
AP6 (Extract Process Fragment) is only applicable to an existing process fragment.
The use of adaptation pattern AP7 (Inline Sub Process), in turn, makes only sense
in connection with sub processes.

67

all kinds of control flow changes and works correctly in connection with loop
backs as well. To enable efficient compliance checks, for each high-level change
operation (or adaptation pattern respectively) ADEPT2 provides precise and
easy to check compliance conditions [50]. Finally, efficient procedures exist for
correctly adapting the states of compliant process instances when migrating
them to the new schema version.

Instance-Specific Changes (Change Feature F2). From the very be-
ginning, ADEPT2 has supported ad-hoc changes at the process instance level
[43]. These ad-hoc changes are based on the aforementioned adaptation pat-
terns (F2[1a+b]). In particular, the introduction of ad-hoc changes does not
lead to an unstable system behavior, i.e., none of the guarantees (e.g., absence
of deadlocks) achieved by formal checks at build-time are violated due to the
ad-hoc change at run-time. In ADEPT2 this is achieved based on well-defined
pre- and post-conditions for the supported adaptation patterns. Finally, when
introducing an ad-hoc change, all complexity associated with the adaptation
of instance states, the remapping of activity parameters, or the problem of
missing data is hidden from users. In general, structural changes in ADEPT2
can be applied in both a temporary or a permanent manner.

Correctness of Changes (Change Feature F3). One of the major design
goals of the ADEPT2 approach was to ensure correctness and consistency
when migrating process instances to a new process schema version or when
applying an ad-hoc change to a particular process instance [43,50]. This goal
has been achieved based on the aforementioned compliance rules as well as on
operation-specific pre- and post-conditions (F3[+]).

Traceability and Analysis (Change Feature F4). The ADEPT2 process
management system enables change traceability by maintaining comprehen-
sive change logs. These change logs comprise both syntactical and semantical
information about the performed process changes (F4[1,2]). While the former
captures data about the applied adaptation patterns and their parameteriza-
tions, the latter covers contextual knowledge about the changes (e.g., change
reason and change performer). ADEPT2 provides powerful support for main-
taining, purging, and utilizing such logs, and for annotating log entries [51].
In the ProCycle project [77], the ADEPT2 system has been integrated with
the conversational case-based reasoning component of CBRFlow [75]. Among
other things, this integration allows enriching change logs with contextual in-
formation [52,74,71]. In the MinADEPT project, first techniques and tools for
analyzing and mining change logs have been provided [20] (F4[3]).

Access Control (Change Feature F5). In respect to access control ADEPT2
allows restricting changes to authorized users (F5[1]). In addition, authoriza-
tions can be defined at the level of single adaptation patterns. For instance, a
particular user might be authorized to insert, but not delete activities (F5[2]).

68

Authorization can also depend on the object to be changed. For instance, a
particular user might be authorized to insert only selected activities (F5[3]).
A detailed description of the access control model, which has been developed
as part of the SecServ project, can be found in [72].

Change Reuse (Change Feature F6). The integration of ADEPT2 with
case-based reasoning techniques enables change reuse. Whenever an ad-hoc
modification becomes necessary the user is assisted in searching for similar,
previously performed changes, which he then can reuse [52,76,71]. If no change
reuse is possible, the user can specify a new ad-hoc modification using the pat-
terns provided by ADEPT2 (F6[+]).

Change Concurrency Control (Change Feature F7). ADEPT2 supports
concurrent changes of single process instances through optimistic concurrent
change techniques (F7[3]). In addition, ADEPT2 supports the propagation
of type changes to process instances, which have already been individually
modified (F7[4]) [48].

A.2 Evaluation Details: CAKE2

CAKE2 is a process management system, which has been recently developed
in the context of complex engineering processes (i.e., digital chip design). The
primary focus of CAKE2 is on instance-specific changes and late modeling.

Support of Adaptation Patterns. The CAKE2 approach [32,33] does not
provide any high-level change operations and consequently does not directly
support any of the adaptation patterns. Nevertheless, CAKE2 enables struc-
tural changes at the process instance level based on a set of change primitives
(Design Choice A[1]). Process type changes have not been addressed by CAKE
2. All change primitives can operate on atomic activities and sub processes
(Design Choice B[1,2]). In particular, CAKE2 supports change primitives PR1-
PR5 (i.e., insert, delete and move single nodes and edges).

Support of Patterns for Changes in Predefined Regions. CAKE2 al-
lows late modeling of process fragments. Thereby, the user can select process
fragments from the repository (Design Choice A[1]) and make use of the full
expressiveness of the process editor (Design Choice B[1]). The modeling can
be done any time before the placeholder activity gets enabled or upon enabling
(Design Choice C [2,3]). In general, the process modeling starts with an empty
template (Design Choice D [1]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). Currently schema evolution is not supported in CAKE2 (F1[1]).

69

In the application context CAKE2 is currently used missing version control is
not very critical. Process instances are distinct from each other, rather long
running, and are not derived from a process schema. However, when applying
CAKE2 in the context of repetitive processes this would constitute a problem.

Instance-Specific Changes (Change Feature F2). CAKE2 allows users
to perform unplanned ad-hoc changes with the process editor using change
primitives. Based on this all 14 adaptation patterns can be ”simulated” (Change
Feature F2[1b,2b]). In addition to unplanned changes, CAKE2 also provides
support for preplanned changes. In general, in CAKE2 changes are conducted
in a permanent manner.

Correctness of Changes (Change Feature F3). CAKE ensures correct-
ness of ad-hoc changes by only allowing for changes to not yet enabled parts
of a process instance (i.e., compliance of the process instance with the new
schema is guaranteed by construction). Parts which have been already exe-
cuted cannot be modified by ad-hoc changes (F3[+]).

Traceability and Analysis (Change Feature F4). Traceability is ensured
through process execution logs (F4[1]). In addition, CAKE2 supports the an-
notation of changes as cases. Thereby, context as well as information related
to the status of the process instance to be changed are recorded (F4[2]).

Access Control (Change Feature F5). Access control is currently not
addressed by CAKE2 (F5[-]).

Change Reuse (Change Feature F6). CAKE2 provides a CBR compo-
nent supporting the reuse of past process changes. Thereby, a case consists of
a problem description (i.e., the process before a revision including its context)
and a solution (i.e., the respective revision). For retrieving similar changes
context information and the status of the process instance to be modified are
taken into consideration (F6[+]) [33].

Change Concurrency Control (Change Feature F7). CAKE2 supports
concurrency of instance-specific changes through pessimistic locking (F7[3]).
The breakpoint mechanism provided by CAKE2 allows that only those parts
of a process instance, which have to be modified are suspended, while parallel
branches, not affected by the change, can proceed with their execution.

A.3 Evaluation Details: HOON

HOON [23] is a Petri-net based tool for modeling and executing well struc-
tured workflows. In particular, HOON provides support for the late selection

70

of process fragments.

Support of Adaptation Patterns. HOON [23] does not provide direct
support for any of the described adaptation patterns as changes are restricted
to placeholder activities and no high-level change operations are considered.

Support of Patterns for Changes in Predefined Regions. HOON en-
ables process flexibility by supporting late selection of process fragments, i.e.,
to select a respective activity implementation at run-time. Thus change pat-
tern PP1 is supported. In particular, this allows for the modification of not
yet instantiated sub processes. Regarding design choices, HOON is compa-
rable with the Worklet/Exlet approach. An activity implementation can be
selected in a fully automated way based on well-defined procedures and work-
flow run-time data (Design Choice A[1]), but can be also done manually by
users (Design Choice A[2]). The activity implementation refers to a sub pro-
cess consisting of one or more activities (Design Choice B[1+2]). The decision
which activity implementation shall be selected, is made after enabling the
placeholder activity (Design Choice C[2]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). HOON does not support structural changes of the ”toplevel”
process schema. In principle, the late selection support of HOON allows users
to dynamically add new activity implementations or to change existing ones
before associating them with a particular workflow activity during run-time.
Thus, the need for structural changes is lower when compared to process man-
agement systems like ADEPT2, WASA, or Staffware. The same consideration
also hold for all other approaches supporting late binding or late modeling.
However, when structural adaptations have to be accomplished, HOON re-
quires the modeler to overwrite the process schema or to save the process
schema as a new schema (F1[1]).

Instance-Specific Changes (Change Feature F2). Although HOON does
not support any of the adaptation patterns modifications of running process
instances become possible through late selection of process fragments (F2[2a]).
In general, these preplanned changes are performed in a temporary manner.
In terms of structural changes, HOON allows ”simulating” part of the func-
tionality described in AP1 through workarounds. Placeholder activities allow
inserting a process fragment into a running process instance by selecting an
activity implementation. Generally, a placeholder activity can be positioned
between two fragments or parallel to an existing one. By substituting this
placeholder activity during run-time with a concrete (sub) process fragment,
in principle, a serial and a parallel insertion can be ”simulated” (cmp. De-
sign Choice C[1,2] of pattern AP1). However, the insertion is restricted to the
placeholder activity, i.e., the position of the dynamically added activity in the
process schema has to be predefined at build-time. In addition, this approach

71

does not allow for (ad-hoc) changes of a process fragment once it has been
instantiated, unless this fragment itself contains placeholder activities.

Correctness of Changes (Change Feature F3). Correctness of changes
or, more precisely, correctness of newly defined or adapted process schemes
is ensured in HOON (through formal analysis of the respective HOON nets)
(F3[+]). If a particular activity implementation is not available, alternative
activity implementations will be automatically assigned, or the user will be
involved to manually choose an activity implementation.

Traceability and Analysis (Change Feature F4). Traceability of changes
is supported in HOON through execution logs (F4[1]). Change annotations and
change mining are not supported.

Access Control (Change Feature F5). Besides the automated selection
of activity implementations, HOON allows restricting changes to particular
users or user roles (F5[1]). Further, the set of process fragments that may
be selected for a placeholder activity can be restricted based on the used net
formalism (F5[2]). Generally, for each placeholder activity different kind of
authorizations can be realized (F5[3]).

Change Reuse (Change Feature F6). No change reuse is supported.

Change Concurrency Control (Change Feature F7). As HOON re-
stricts changes to placeholder activities concurrency of changes can be easily
achieved. Changes to different placeholder activities can be performed concur-
rently (F7[3]).

A.4 Evaluation Details: MOVE

MOVE [11,19] is an approach comparable to HOON, which is based on high-
level petri-nets. In particular, MOVE provides support for the late modeling
of process fragments.

Support of Adaptation Patterns. MOVE does not provide direct sup-
port for adaptation patterns as changes are restricted to placeholder activities
and consequently have to be preplanned. All changes that can be performed
within the preplanned region are covered by change pattern PP2.

Support of predefined change patterns. Similar to the PoF approach
MOVE only allows for changes in restricted and predefined process areas
through late modeling (cf. Appendix 9.5). However, the MOVE approach is
less powerful in terms of supported design choices. In general, all activities

72

from the process repository can be chosen for late modeling (Design Choice
A[1]). In contrast to PoF, no additional constraints for model construction
can be defined. For modeling the placeholder activity the same constructs are
used than for defining the process schema (Design Choice B[1]). More pre-
cisely, modeling is based on a high-level Petri Net formalism (FunSoft Nets)
[11,19]. The late modelling is triggered when a particular state in the process
is reached (Design Choice C[3]). It can then be accomplished with the stan-
dard process editor either by starting from scratch (Design Choice D[1]) or by
loading a pre-modeled process template and adapting it (Design Choice D[2]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). The challenges related to process type changes and process
schema evolution are not addressed in MOVE (F1[1]).

Instance-Specific Changes (Change Feature F2). MOVE does not sup-
port any of the adaptation patterns directly. However, the functionality of
Adaptation Pattern 1 (Insert Process Fragment) can be partially ”simulat-
ing” (cf. Appendix 9.3). Support for preplanned changes is provided through
its late modeling capabilities (F2[2a]). These changes are performed in a tem-
porary manner.

Correctness of Changes (Change Feature F3). All process fragments
created by late modeling constitute FunSoft process models. Due to the use
of this Petri Net formalism, model correctness can be ensured based on con-
ventional model checking techniques [19] (F3[+]).

Traceability and Analysis (Change Feature F4). Process instances are
stored in the process repository. As no unplanned ad-hoc changes are sup-
ported this is sufficient for ensuring traceability (F4[1]). Change annotations
and change mining are not addressed.

Access Control (Change Feature F5). MOVE allows restricting changes
to particular users through assigning the placeholder activity to a specific role
(F5[1]). No further restrictions can be specified in MOVE. For different place-
holder activities different authorizations can apply (F5[3]).

Change Reuse (Change Feature F6). Change reuse is unsupported (F6[-
]).

Change Concurrency Control (Change Feature F7). Like in HOON
changes are restricted to placeholder activities. As changes are always local to
the placeholder activities, different placeholder activities can be concurrently
modified (F7[3]).

73

A.5 Evaluation Details: Pockets of Flexibility (PoF)

The core idea of this approach is to extend traditional process schemes by so
called Pockets of Flexibility (PoF). Essentially, a PoF constitutes a placeholder
activity (within a process schema) which can be substituted by a dynamically
modeled process fragment during run-time [59,58].

Support of Adaptation Patterns. The provision of adaptation patterns
is not in the focus of PoF. None of the described adaptation patterns is sup-
ported through high-level change operations and changes can only be applied
within preplanned regions.

Support of Predefined Change Patterns. The PoF approach enables
flexibility through change pattern PP2 (Late Modeling of Process Fragments)
[58,59]. Optionally, constraints can be defined regarding the selection of ac-
tivities as well as their ordering (Design Choice A[1,2]). Finally, for the late
modeling of a placeholder activity during run-time only a restricted set of mod-
eling elements is available, i.e., only sequential and parallel routing of added
activities is supported (Design Choice B[2]). This facilitates late modeling of
process fragments for end users and thus increases user acceptance.

Late modeling starts when the placeholder activity is instantiated (Design
Choice C[2]). Following this the user can define a corresponding process frag-
ment using a restricted set of modeling elements. Upon completion of late
modeling the newly defined process fragment is validated against the mod-
eling constraints and then instantiated. In this context the modeling of the
placeholder activity either can be done from scratch (Design Choice D[1]) or,
in case that the placeholder activity contains a predefined template, by ad-
justing this template (Design Choice D[2]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). The PoF approach does not address schema evolution. Instead,
the existence of placeholder activities allows users to individually specify parts
of the process model or even the whole process model during run-time. Though
this individualization reduces the frequency of structural changes of the pro-
cess model, the need for changing the ”core process” (i.e., the toplevel process)
cannot be completely discarded. As the PoF approach does not provide ver-
sioning control, schema modifications require the user to overwrite the existing
schema (F1[1]) or to save the modified process schema as a new schema.

Instance-Specific Changes (Change Feature F2). As aforementioned
the PoF approach does not offer direct support for any adaptation pattern.
However, like HOON and MOVE the PoF approach allows the partial re-
alization of the functionality described by adaptation pattern AP1 (Insert

74

Process Fragment) using placeholder activities (cf. Appendix 9.3). Changes
in preplanned regions can be performed through its late modeling support.
For late modeling a process editor based on change primitives is provided,
which allows for the validation of the modeled process fragment against ex-
isting modeling constraints. As PoF does not consider loops all changes are
permanent (F2[2b]).

Correctness of Changes (Change Feature F3). The PoF approach en-
sures change correctness as process fragments created by late modeling are
validated before they get instantiated (F3[+]).

Traceability and Analysis (Change Feature F4). Each process fragment
resulting from late modeling is stored in the process repository as process
variant [31,30]. An advanced querying interface for retrieving process variants
from this repository is offered. Thus, change traceability can be easily ensured
(F4[1]). Change annotations and change mining are outside the focus of the
PoF approach.

Access Control (Change Feature F5). Regarding access control the PoF
approach allows restricting changes to particular users by associating the
placeholder activity with a particular role (F1[1]). In addition, the PoF ap-
proach allows for the definition of constraints for the use of single activities
within a placeholder activity. Consequently, the kind of changes that may be
applied by an authorized user can be partially restricted (F1[2]). For each
placeholder activity different authorizations can apply (F1[3]).

Change Reuse (Change Feature F6). Change reuse is supported by pro-
viding a querying component for process fragments. So far, this component is
focusing on control flow [31,30].

Change Concurrency Control (Change Feature F7). Like in HOON
changes are restricted to placeholder activities. As changes are always local to
the placeholder activities, different placeholder activities can be concurrently
modified (F7[3]).

A.6 Evaluation Details: WASA2

Like ADEPT2, WASA2 constitutes an adaptive process management system
supporting both process type and process instance level changes.

Support of Adaptation Patterns. The design of high-level change opera-
tions was out of the scope of the WASA2 project. Thus, no direct support for
adaptation patterns is provided. However, WASA2 enables structural process

75

changes using change primitives. In particular, change primitives PR1-PR4
(i.e., insert/delete node, insert/delete edge) are supported. By using these
change primitives changes can be performed at both the process type and the
process instance level (Design Choice A[1,2]). All change primitives can oper-
ate on atomic activities and sub processes due to the object-oriented approach
followed by WASA2 (Design Choice B[1,2]).

Support of Predefined Change Patterns. No support for patterns for
changes in predefined regions is provided.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). WASA2 provides advanced support for version control of pro-
cess schemes: If a schema is changed, a new schema version is created. Further,
it is checked which process instances may migrate to the new schema version
based on a well-defined correctness criterion (Design Choice F1[3, 5]).

Instance-Specific Changes (Change Feature F2). In WASA2 unplanned
changes can be performed using a workflow editor and a set of change primi-
tives (F2[1b]). All changes are applied in a permanent manner.

Correctness of Changes (Change Feature F3). Correctness of dynami-
cally changed process instances is ensured by the mentioned correctness crite-
rion (F3[+]). Based on it both control and data flow correctness are guaran-
teed.

Traceability and Analysis (Change Feature F4). Traceability is ensured
as for every process instance its execution schema is known. In addition, exe-
cution logs are provided (F4[1]).

Access Control (Change Feature F5). Changes can be constraint by role-
based access control in WASA2. For example, only users with role process ad-
ministrator are authorized to conduct process type changes (F5[1]).

Change Reuse (Change Feature F6). Change reuse is not supported in
WASA2 (F6[-]).

Change Concurrency Control (Change Feature F7). WASA2 provides
change concurrency control by prohibiting concurrent changes (F7[2]). In case
of an instance-specific change the entire process instance is locked.

76

A.7 Evaluation Details: WIDE

WIDE [8,9] is one of the first workflow management systems supporting schema
evolution.

Support of Adaptation Patterns. Generally, WIDE enables the appli-
cation of adaptation patterns only at the process type level (Design Choice
A[2]). Thereby, the respective pattern operates on atomic activities (Design
Choice B[1]). In detail, WIDE supports the insertion of process fragments
(AP1) which can be added in a serial and conditional manner (Design choice
C[1,2(b)]). Furthermore, it is possible to delete existing process fragments
(AP2) or to replace them (AP4). The embedding of a process fragment in a
conditional branch (AP10) and the updating of conditions (AP13) are sup-
ported as well. Regarding adaptation patterns it is important to mention that
one design goal was minimality; i.e., a change operation will be only provided
if it cannot be realized by the combined use of a set of other change operations
[9]. Obviously, non-supported adaptation patterns (e.g., AP3 and AP5) could
be easily implemented in WIDE by the combined use of existing patterns. For
a more detailed description of the supported adaptation patterns see [8,9].

Support of Predefined Change Patterns. In terms of predefined change
patterns WIDE provides support for multi-instance activities (PP4) [8]. Thereby
the number of activity instances can be fixed during build-time or depend on
workflow relevant data which becomes available at run-time.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). In WIDE version control of process schemes is supported: When
a process schema is changed, a new process schema version is created (Design
Choice F1[3]). Further, it is checked which instances can migrate to the new
version according to the so called compliance criterion (Design Choice F1[5]).

Instance-Specific Changes (Change Feature F2). WIDE does not ad-
dress ad-hoc changes of process instances. Pre-planned changes are supported
through the Multi Instance Activity pattern. All changes pattern are supported
in a permanent way (F2[2b]).

Correctness of Changes (Change Feature F3). Correctness and consis-
tency of (compliant) process instances are guaranteed when migrating them
to a new process schema version (process schema evolution). For this, the
aforementioned compliance criterion is used (F3[+]) (for details see [9]).

Traceability and Analysis (Change Feature F4). The existence of pro-
cess schema versions ensures traceability of process type changes (F4[1]).
Change annotations and change mining are not addressed in WIDE.

77

Access Control (Change Feature F5. WIDE provides a role-based access
control model, which allows restricting access to authorized users. Authoriza-
tions can depend on the process schema to be changed (F5[1,3]).

Change Reuse (Change Feature F6). WIDE does not support change
reuse (F6[-]).

Change Concurrency Control (Change Feature F7). As WIDE does
not support any instance-specific changes, except for the Multi Instance Ac-
tivity pattern, this feature is no applicable.

A.8 Evaluation Details: YAWL/Worklets/Exlets

YAWL is an open source workflow engine implementing workflow patterns.
To increase flexibility the Worklet/Exlet approach has been implemented as
a service for YAWL. Essentially, a Worklet is a process fragment that acts
as a late-bound sub process for an enabled activity [2]. Exlets are exception
handling processes, which are invoked if specific events occur [1,3].

Support of Adaptation Patterns. The Worklet/Exlet approach provides
direct support for adaptation pattern AP4 (Replace Process Fragment). This
is based on the ability to substitute worklet-enabled activities with a process
fragment (see also PP1) [2]. The respective pattern can be applied at the
process instance level (Design Choice A[1]) and operates on atomic worklet-
enabled activities (Design Choice B[1]). Other adaptation patterns are not
supported directly, as no high-level change operations are provided. However,
certain unplanned ad-hoc changes can be realized by using change primitives
(see Change Feature F2).

Support of Predefined Change Patterns. Primarily, the Worklet/Exlet
approach enables process flexibility by supporting late selection of process frag-
ments, i.e., change pattern PP1 is provided [2]. In particular, process activities
can be associated with a Worklet selection service. Such a worklet-enabled ac-
tivity does not constitute a placeholder (in contrast to approaches like HOON,
PoF or MOVE), but a valid activity with standard implementation, which can
be (optionally) substituted by a whole process fragment (i.e., Worklet) dur-
ing run-time (if appropriate). If this does not happen, the worklet-enabled
activity will be executed as ”ordinary” task. In general, Worklets are selected
automatically following a rule-based approach (Design Choice A[1]). However,
if not appropriate the proposed selection can be rejected by users and another
Worklet can be chosen instead by (dynamically) adding a new selection rule
(Design Choice A[2]). A Worklet itself refers to a sub process fragment, con-

78

sisting of one or more activities; it is treated as a separate process instance
during run-time (Design Choice B[1,2]). Worklet selection takes place when
the worklet-enabled activity becomes activated (Design Choice C[2]).

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). The Worklet/Exlet approach itself does not address the prob-
lem of process type changes. However, it has been implemented as part of the
YAWL engine, which supports version control of process schemes. Thereby,
ongoing instances remain running on the old schema version until their com-
pletion, whereas the execution of new instances is based the new model version
(F1[3]). Note that late selection reduces the need for structurally changing the
toplevel process (i.e., the ”parent” schema).

Instance-Specific Changes (Change Feature F2). This approach pro-
vides support for unplanned as well as preplanned changes. As the selection
of Worklets depends on rules and Exlets are triggered by events changes can
be performed in a temporary and permanent manner (F2[1a+b,2a+b]).

Using Worklets parts of the functionality covered by adaptation pattern AP1
can be ”simulated” through its late selection concept. Thereby, similar con-
siderations hold than for HOON, MOVE and the PoF approach (cf. Appendix
9.3, Appendix 9.4 and Appendix 9.5, Change Feature F2).

Finally, the Exlet extension provides powerful exception handling mechanisms
which allow coping with both expected and unexpected exceptions [1,3]. Using
Exlets further adaptation pattern can be ”simulated” with workarounds. The
approach allows invoking exception handling processes at the occurrence of
particular events. The exception handling processes are thereby executed as
parallel threads of control. For example, to realize a serial insert of activity X
before activity B and after activity A an Exlet has to be invoked after A has
been completed, and B has to be suspended. After the completion of the Exlet
containing activity X, activity B can be resumed. However, through the lack
of high-level change operations changes can become very complex and might
therefore affect usability of the PAIS.

Correctness of Changes (Change Feature F3). All process fragments
in the Worklet repository are YAWL process models. If only Worklets are
used correctness of changes will be ensured through the inbuilt verification
and validation feature of the YAWL Process Editor. In case Exlets are used
in addition, proper termination of the process cannot always be guaranteed.
All compensatory Worklets launched from an Exlet are executed as distinct
process instances - thus deadlocks are not an issue. However, it is possible for
an Exlet to contain a primitive to suspend a process instance and to leave it
in that state (i.e. there is no subsequent un-suspend primitive in the Exlet).

79

Traceability and Analysis (Change Feature F4). Traceability is ensured
through maintaining a process log (F4[1]). Change annotation is supported
through annotating newly added rules with a description of the process in-
stance which triggered rule creation (F4[2]). Change mining is not supported.

Access Control (Change Feature F5). The Worklet/Exlet approach al-
lows restricting changes to particular users. The addition of rules can only
be accomplished by the administrator (F5[1]). Furthermore, the process frag-
ments that can be chosen with the Worklet selection service are restricted to
the Worklet repertoire of the respective worklet-enabled activity (F5[2]); i.e.,
for each worklet-enabled activity a repertoire (i.e., a collection) of Worklets is
maintained (F5[3]).

Change Reuse (Change Feature F6). The Worklet/Exlet approach sup-
ports the reuse of changes by supporting the incremental evolution of selection
rules. In addition, Worklets themselves may be reused in different Worklet
repertoires (F6[+]).

Change Concurrency Control (Change Feature F7). Like in HOON
and MOVE changes are restricted to placeholder activities. As changes are
always local to the placeholder activities, different placeholder activities can
be concurrently modified (F7[3]).

A.9 Evaluation Details: Flower

Flower is a process management system based on the case-handling paradigm.
Our evaluation of the Flower case handling system is based on Version 3.1 of
the software. Note that this evaluation only considers flexibility in respect to
control-flow aspects. Especially in the case of Flower this only provides a par-
tial picture of what the system can offer in terms of flexibility (e.g., dynamic
changes of role assignments or dynamically adding or deleting forms).

Support of Adaptation Patterns. Flower provides explicit support for
the Delete adaptation pattern (AP2) through skipping of process steps. No
other adaptation patterns are directly supported. The respective pattern can
be applied at the process instance level (Design Choice A[1]) and operates on
atomic activities (Design Choice B[1]).

Support of Predefined Change Patterns. Pattern PP4 (Multi-Instance
Activity) is supported through the concept of dynamic subplans. Like in Staffware
(cf. Appendix 9.10) and WIDE (cf. Appendix 9.7), the number of activity in-
stances can either be fixed during build-time or be defined based on process
relevant data, which becomes available at run-time.

80

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). Feature F1 is supported by Flower. First of all, Flower allows
for the co-existence of process instances of different schema versions (F1[3]).
In addition, Flower allows users with respective authorizations to overwrite
an existing process schema version. Thereby the user can remove all running
process instances from the system (F1[1]) or let them remain in the system
(F1[2]). However, according to the Flower Designer’s Guide [70] overwriting
a schema is not permitted for control-flow changes (e.g., adding or deleting
activities or changing the ordering of activities). The only exception is the
changing of guards. As Flower does not prohibit users from overwriting the
process schema after having changed the control flow, this can potentially lead
to inconsistencies. In summary, both options – removing running instances or
overwriting process schemes in an uncontrolled manner – do not provide a
satisfactory solution.

Instance-specific Changes (Change Feature F2). Flower provides sup-
port for unplanned changes through skipping of activities. In addition, moving
activities is indirectly supported. In particular, in Flower users will be en-
abled to perform a respective activity earlier as planned if all required input
data is available and certain other conditions are met. In addition, changes to
predefined regions are supported through the Multi-Instance Activity pattern
(F2[1b,2b]). Changes are thereby performed in a permanent manner.

Correctness of Changes (Change Feature F3). In general, correctness
cannot be ensured in all situations. Especially, when overwriting an existing
process schema this can lead to severe inconsistencies if ongoing instances are
not removed from the system (F4[1]).

Traceability and Analysis (Change Feature F4). Traceability is ensured
in Flower as the completed instances are maintained in the system (F5[1]).

Access Control (Change Feature F5). Flower allows restricting changes to
authorized users (F5[1]). For pattern AP2 (Delete Process Fragment) changes
can be restricted to a particular user role and activity (F5[2,3]). Process type
changes are possible for all authorized users.

Change Reuse (Change Feature F6). No change reuse is supported in
Flower (F6[-]).

Change Concurrency Control (Change Feature F7). In Flower concur-
rent changes are not possible as users are not allowed to work simultaneously
on the same case (F7[2]).

81

A.10 Evaluation Details: Staffware

Staffware is a widely used process management system. The evaluation of
Staffware is based on Version 10 of Staffware.

Support of Adaptation Patterns. Staffware does not support any of the
adaptation patterns with high-level change operations.

Support of Predefined Change Patterns Regarding predefined change
patterns Staffware provides support for pattern PP1 (Late Selection of Pro-
cess Fragments) and pattern PP4 (Multi-Instance Activity), which have been
recently introduced. The Late Selection of Process Fragments is supported
through the Graft Activity which is a feature of the Staffware Process Or-
chestrator as well. The selection of the activity implementation can either be
automated or be done manually by the user (Design Choice A[1,2]). The activ-
ity implementation refers to a sub process consisting of one or more activities
(Design Choice B[1+2]). The decision which activity implementation shall be
selected is made when the placeholder activity (i.e., the Graft Activity) is en-
abled (Design Choice C[2]). Pattern PP4 (Multi-Instance Activity), in turn, is
supported through the Dynamic Sub-Procedure Step, which is provided by the
Staffware Process Orchestrator. The number of activity instances can either
be fixed during build-time or be defined based on process relevant data, which
becomes available at run-time.

Schema Evolution, Version Control and Instance Migration (Change
Feature F1). In principle, through the support of change feature F1 process
type changes and instance migration are supported. In general, these changes
can be accomplished with the Staffware process editor, which only supports
low-level change primitives (e.g., the insertion and/or deletion of nodes and
control edges). With Staffware the co-existence of process instances of differ-
ent schema versions is possible (F1[3]). In addition, Staffware allows for the
migration of running process instances. However, such an instance migration –
through lack of a formal correctness criteria – cannot be restricted to a subset
of process instances. This might lead to severe process inconsistencies or even
deadlocks (F1[4]).

Instance-specific Changes (Change Feature F2). Staffware provides
support for unplanned changes, whereas no structural changes to the pro-
cess instance schema can be performed (F2[2b]). However, parts of adaptation
patterns AP1 can be realized through workarounds like in HOON, MOVE, or
PoF (cf. Sections 9.3). In addition, the Staffware Process Orchestrator pro-
vides exception handling facilities, which allow for back and forward jumps.

Correctness of Changes (Change Feature F3). Through the absence

82

of a formal process model and the lack of a formal correctness criterion for
instance migrations bad surprises during run-time cannot be avoided. When
testing the respective instance migration feature of Staffware in our lab, sev-
eral process instances ended up in deadlocks.

Traceability and Analysis (Change Feature F4). As no ad-hoc changes
are supported an audit trail is sufficient for traceability of process instances.
Additionally, version management of process schemes allows for traceability
of process type changes as well (F4[1]).

Access Control (Change Feature F5). In Staffware changes can be re-
stricted to authorized users (F5[1]). Everyone having access to the process
designer can change process schemes and perform instance migrations. In re-
spect to pattern PP1, further restrictions can be defined, e.g., regarding the
process fragments that can be selected for a placeholder activity (F1[2]). For
each placeholder activity different authorizations can apply (F1[3]).

Change Reuse (Change Feature F6). The reuse of changes is not sup-
ported in Stafftware (F6[-]).

Change Concurrency Control (Change Feature F7). Like in HOON,
MOVE and PoF changes are restricted to placeholder activities. As changes
are always local to the placeholder activities, different placeholder activities
can be concurrently modified (F7[3]).

83

