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Abstract. Industry is increasingly demanding I'T support for large en-
gineering process structures consisting of hundreds up to thousands of
synchronized processes. In technical domains, such process structures are
characterized by their strong relation to the assembly of a product (e.g.,
a car); i.e., resulting process structures are data-driven. The strong link-
age between data and processes can be utilized for automatically creating
process structures as well as for (dynamically) adapting them at a high
level of abstraction. This paper presents the COREPROg;,, demonstra-
tor which enables sophisticated support for modeling, coordinating and
(dynamically) adapting data-driven process structures. COREPROgim
substantiates the COREPRO approach which provides a new paradigm
for the integration of complex data and process structures.

1 Introduction

In the engineering domain, the development of complex products (e.g., cars) ne-
cessitates the coordination of large process structures. Managing such structures,
however, is a complex task which is only rudimentarily supported by current
workflow technology [1]. Process structures often show a strong linkage with the
assembly of the product; i.e., the processes to be coordinated can be explicitly
assigned to the different product components. Further, synchronizations of these
processes are correlated with the relations existing between the product com-
ponents. We denote such process structures as data-driven. COREPRO utilizes
information about product components and their relations for modeling, coordi-
nating, and (dynamically) adapting process structures based on given (product)
data structures. For example, the assembly of a (product) data structure can be
used to automatically create the related process structure [2].

The adaptation of process structures constitutes a particular challenge. When
adding or removing a car component (e.g., a navigation system), for example,
the instantiated process structure has to be adapted accordingly; i.e., processes
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as well as synchronization relations between them have to be added or removed.
When changing a (product) data structure during runtime, in addition, the
running process structure must be adapted on-the-fly, but without leading to
faulty synchronizations (e.g. deadlocks). To cope with this challenge, again, our
approach takes benefit from the strong linkage between process structure and
(product) data structure. Data structure changes can be translated into con-
sistent adaptations of the corresponding process structure [3]. Thus, changes
of data-driven process structures can be introduced by users at a high level of
abstraction, which reduces complexity as well as cost of change significantly.
This paper sketches COREPROg;,, — a demonstrator enabling the model-
ing, enactment and (dynamic) adaptation of data-driven process structures. It
enhances the COREPRO p/o4eier, our first demonstrator supporting the manual
modeling of data-driven process structures [4]. COREPROg;,, has been realized
using the FEclipse Graphical Editing Framework. It implements an instantiation
concept for automatically creating data-driven process structures and a runtime
framework for simulating them [2,3]. Furthermore, COREPROg;,, translates
(dynamic) changes of currently processed data structures into corresponding
adaptations of the related process structures. Finally, consistency is checked to
ensure that dynamic adaptations result again in a sound process structure.

2 COREPRO Framework and Demo Description

The COREPRO modeling framework considers the sequence of states a (data)
object goes through during its lifetime. A car component, for example, passes
states like tested and released. Generally, state transitions are triggered when ex-
ecuting the processes which modify the respective object (e.g., test and release).
An object life cycle (OLC) then constitutes an integrated and user-friendly view
on the states of a particular object and its manipulating processes (cf. Fig. 1b).

Based on a collection of OLCs and their synchronizations, large process struc-
tures can be built. OLC state transitions do not only depend on the processes
associated with the respective object, but also on the states and state transitions
of other objects. As example consider a car prototype, which will be only tested
if all subsystems (e.g., engine, chassis and navigation system) are tested before.
By connecting the states of different OLCs, a logical view on the data-driven
process structure results (cf. Fig. 1d).

Five steps become necessary to create a data-driven process structure using
COREPROg;, (cf. Fig. 1). Step 1 deals with the specification of a domain-
specific data model, which defines object and relation types, and therefore consti-
tutes the schema for instantiating concrete (product) data structures. An object
type represents a class of objects within the data model (cf. Fig. 1a), which can
be instantiated multiples times (cf. Fig. 1c).

Step 2 (cf. Fig. 1b) is related to the modeling of OLCs. Internally, OLCs are
mapped to state transition systems whose states correspond to object states and
whose (internal) state transitions are associated with object-specific processes.
Non-deterministic state transitions are realized by associating different internal
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Fig. 1. Procedure for Creating Data-Driven Process Structures

state transitions with same source state and process, and by adding a process
result as condition (e.g., P2 with possible results 0 and 1 in Fig. 1b).

Step 3 deals with the state dependencies existing between the OLCs of dif-
ferent object types. In COREPRO, an OLC dependency is expressed in terms of
external state transitions between concurrently enacted OLCs (which together
form the process structure). Like an internal OLC state transition, an external
state transition can be associated with the enactment of a process. To benefit
from the strong linkage between object relations and OLC dependencies, external
state transitions are mapped to object relation types (cf. Fig. 1b).

Steps 4 + 5 are related to the instance level. COREPROg;,, allows to instan-
tiate different data structures based on a given data model (cf. Fig. 1c) and to
automatically create related process structures (cf. Fig. 1d). A data-driven pro-
cess structure includes an OLC instance for every object from the data structure.
Likewise, as specified in Step 3, for each relation in the data structure external
state transitions are added to the process structure; e.g., for every hasSubsystem
relation in the data structure from Fig. 1c, corresponding external state transi-
tions are added (cf. Fig. 1d).

As result we obtain an executable process structure describing the dynamic
aspects of the given data structure (cf. Fig. 1d). To ensure a correct dynamic
behavior, COREPROg;,,, allows for checking soundness of the process structure
based on the concepts described in [2].

When simulating data-driven process structures, COREPROg;,,, uses differ-
ent markings to reflect the current runtime status (cf. Fig. 2). We annotate states
as well as (internal and external) state transitions with respective markings. By
analyzing state markings, for example, we can immediately figure out whether
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Fig. 2. Simulation and Dynamic Change of Process Structure with COREPROsim

a particular state of a process structure has been already passed, is currently
activated, has been skipped, or has not been reached yet. Transition markings,
in turn, indicate whether the associated process has been started, skipped or
completed. The use of markings further eases consistency checking and runtime
status adaptations in the context of dynamic changes of process structures.

To cope with flexibility requirements of engineering processes, we allow users
(e.g., engineers) to perform dynamic process structure adaptations. In
COREPROg;m, this is accomplished by automatically translating changes of the
data structure (cf. Fig. 1c) into adaptations of the respective process structure
[3]. Removing an object, for example, leads to the removal of the related OLC.
Such dynamic adaptations must not violate soundness of the process structure.
To ensure this, COREPROg;,, constrains changes to certain runtime states (i.e.,
markings) of the process structure (cf. Fig. 2).

In summary, COREPROg;,, constitutes a powerful demonstrator realizing
the concepts developed in the COREPRO project [1-3]. It is currently applied
in the context of a case study in the automotive industry. In future, we will
extend the current prototype with extensive mechanisms for runtime exception
handling and integrate existing data sources and applications.
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