
Universität Ulm
Abt. Datenbanken und Informationssysteme

Leiter: Prof. Dr. P. Dadam

Schema Evolution
in Process Management Systems

DISSERTATION
zur Erlangung des Doktorgrades Dr. rer. nat.

der Fakultät für Informatik
der Universität Ulm

vorgelegt von

STEFANIE BEATE RINDERLE
aus Memmingen
Oktober 2004

2

Amtierender Dekan: Prof. Dr. H. Partsch

Gutachter: Prof. Dr. P. Dadam
Prof. Dr. F. Schweiggert

Tag der Promotion: 21. Dezember 2004

1

Preface

This thesis has been written during my work as a team member of the Department of Databases
and Information Systems (DBIS) at the University of Ulm. The motivation for working on
the project ”Schema Evolution in Process Management Systems” stems from the fundamental
approaches on e.g., process design, dynamic process changes, and distributed process execution
already conducted within the ADEPT project as well as from experiences with many practical
projects.

First of all, I thank my supervisor Prof. Dr. Peter Dadam for his guidance and support
throughout my whole ”thesis process”. The fruitful discussions with him exceedingly contributed
to make this thesis a success. Especially his enormous knowledge on related work and his
problem–oriented view (”What’s the message?”) saved me from missing the red line. Finally,
he always motivated me in being able to do anything I want.

Furthermore, I thank Prof. Dr. Franz Schweiggert who accepted to act as second referee.
His comments on my work and the discussion with him were very important for my work and
motivating for me.

Special thanks go to Dr. Manfred Reichert. The numerous discussion with him always
helped me in proceeding with the content of my work. It was a pleasure to work with him
on our diverse publications. His indefatigable effort to improve the quality of publications is
admirable. I also thank him for proofreading my thesis.

I also want to thank the whole DBIS team for helping and motivating me during my whole
time at the department. The friendly and collaborative atmosphere largely contributed to feel
happy during working hours. Finally thanks go to all students who contributed to this work
(especially Markus Lauer for the implementation of the proof–of–concept prototype, the fruitful
discussion, and the proofreading of the algorithms).

My best thanks go to my parents Evi and Hermann Rinderle, my brother Matthias, my sister
Julia, and my partner Oliver. Their love and support have made this work possible.

Danke!

Abstract

Continuously arising new trends in information technology and developments at the (e–business)
market let companies crave for automated business process support. Process management systems offer
the promising possibility to (electronically) define, control, and monitor business processes. However, if
this technology shall be applicable in practice it must be possible to change running business processes
even at runtime. Basically, such process changes can take place at two levels – the process type level
and the process instance level. If a process type is modified a new version of the respective process type
schema is created. Then, at minimum, the process instances running according to the old process type
schema version must be able to finish without being disturbed. However, this simple versioning approach
is only sufficient for short–running business processes. For long–running ones like, for example, car leasing
contracts or medical treatment processes which may last from 3 up to 5 years, it must be possible to
apply the process type changes to the collection of running process instances as well but without causing
inconsistencies or errors in the sequel. Apart from process schema evolution and change propagation a
flexible process management system must also enable instance–specific (ad–hoc) changes, for example, if
exceptional situations occur. If then a process type change takes place the challenging question arises
how to adequately deal with the interplay of process type and process instance changes.

Subject of this work is a formal framework for the comprehensive support of process type and process
instance changes in respective management systems. Based on this framework it is possible to propagate
process type changes to running process instances and to migrate compliant process instances to the
changed process type schema afterwards. Thereby, a main goal is to provide a correct, efficient, and
usable solution. Furthermore, process type change propagation can even be conducted at the presence of
individually modified process instances.

For this, a formal foundation and respective algorithms are developed. We differentiate between
process instances which still run according to the process type schema they were created on (unbiased

process instances) and process instances which have been individually modified (biased process instances).
The fundament of our approach is the formal framework for the migration of unbiased process instances
to a changed process type schema. Thereby we present a formal and comprehensive correctness criterion
as well as routines to efficiently check this criterion. Furthermore, we provide algorithms to automatically
adapt process instance states when migrating these instances to the changed process type schema. To be
able to adequately handle biased process instances we differentiate between two kinds of them – those ones
for which their bias is disjoint with the process type change and those ones for which their bias overlaps

the process type change. For process instances with disjoint bias we provide an adequate extension of our
general correctness criterion not only covering state–related but also structural correctness. In addition,
we present quickly to check structural conflict tests what contributes to the efficient applicability of
the presented approach. Finally, we present an adequate migration strategy for process instances with
disjoint bias. For process instances with overlapping bias we introduce a classification ranging from
equivalent changes to changes with minor overlap. For all these classes of overlapping changes we provide
migration strategies. These include the automatic re–linking of process instances to the changed process
type schema and the necessary structural and state–related adaptations. All concepts presented have
been implemented in a powerful proof–of–concept prototype.

Contents

1 Introduction 11

1.1 Process Management Systems . 12

1.2 Adaptive Process Management Systems . 13

1.2.1 Challenges Of Process Schema Evolution 14

1.2.2 Vision And Big Picture . 17

1.3 Aims and Organization of this Work . 20

2 Related Work 25

2.1 Schema Evolution in Database Management Systems 25

2.2 Challenges for Approaches Dealing With
Process Schema Evolution . 25

2.3 Process Meta Models of Approaches Dealing With
Process Schema Evolution . 26

2.3.1 Approaches With True-Semantics . 27

2.3.2 Approaches With True–/False-Semantics 29

2.4 Approach Classification and Dynamic Change Correctness 31

2.4.1 Classification and Problem Framework . 31

2.4.2 Approaches based on Graph Equivalence 33

2.4.3 Approaches Based on Trace Equivalence 41

2.4.4 Other Approaches . 47

2.5 Exterminating Dynamic Change Problems - A Comparison 48

1

CONTENTS 2

2.6 Change Scenarios and Their Realization
in Existing Approaches . 50

2.6.1 Changes of Single Process Instances . 50

2.6.2 Process Type Changes and Change Propagation 54

2.7 Summary . 54

3 Background Information 56

3.1 Process Meta Model . 57

3.1.1 Buildtime Aspects – Well-Structured Marking Nets 57

3.1.2 Runtime Aspects – Unbiased and Biased Process Instances 60

3.2 Change Operations on Well-Structured Marking Nets 64

3.2.1 Change Primitives . 64

3.2.2 Basic and High–Level Change Operations 64

3.2.3 Change Transactions . 66

3.3 Summary . 66

4 Migrating Unbiased Process Instances 69

4.1 Challenges When Migrating Unbiased Instances 70

4.2 Towards a Loop–Tolerant and Data–Flow–Consistent
Correctness Criterion . 72

4.3 On Efficient Compliance Checking . 80

4.3.1 Motivation . 80

4.3.2 Compliance Conditions for Control and Data Flow Changes 83

4.4 Adapting Process Instance Markings After Migration 93

4.4.1 Initial Determination Of Newly To Evaluate Activities And Edges 95

4.4.2 Marking Adaptation Algorithm . 97

4.5 Coping with Non-Compliant Instances . 101

4.6 Summary . 102

5 Migrating Biased Process Instances 104

CONTENTS 3

5.1 Challenges for Migrating Biased Process Instances 105

5.2 A Formal Framework for Disjoint and Overlapping Changes 109

5.3 A General Correctness Criterion . 113

5.4 On Designing Structural Conflict Tests . 117

5.4.1 Structural Conflicts When Applying Change Primitives 118

5.4.2 Structural Conflicts When Applying Basic Change Operations 125

5.4.3 Structural Conflicts When Applying Change Transactions 126

5.5 Migrating Process Instances with Disjoint Bias 135

5.6 Summary . 139

6 Migrating Process Instances with Overlapping Bias 140

6.1 Advanced Migration Issues – Challenges . 141

6.2 On Classifying Concurrent Changes . 144

6.3 A Formalism Based on Graph Isomorphism . 149

6.4 Structural and Operational Approaches . 150

6.4.1 Structural Approaches . 151

6.4.2 Operational Approach . 155

6.5 Hybrid Approach . 158

6.5.1 Purging Change Logs . 159

6.5.2 Anchor Sets and Order Sets . 161

6.6 Migration Strategies and Change Projections . 170

6.6.1 Subsumption and Partially Equivalent Changes 171

6.6.2 On Selecting Migration Strategies for Overlapping Process Changes . . . 173

6.6.3 On Optimizing Migration Strategies for Overlapping Process Changes . . 178

6.6.4 Determining the Degree of Overlap Based on Projections 182

6.7 Decision Rules and Calculating Bias . 188

6.7.1 Decision Rules . 188

6.7.2 Calculating Bias ∆I(S′) and ∆T (SI) for Compliance Checks 192

6.8 Summary . 193

CONTENTS 4

7 Proof–Of–Concept Prototype 198

7.1 Architectural Considerations . 199

7.2 Demonstrating a Complete Example . 202

7.3 Summary and Outlook . 208

8 Summary 210

Bibliography 217

A Abbreviations 227

B Definitions and Functions 228

C Proofs 232

C.1 Proof (Theorem 1) . 232

C.2 Proof (Theorem 3) . 234

C.3 Proof (Theorem 4) . 238

C.4 Proof (Theorem 6) . 239

C.5 Proof (Theorem 8) . 241

C.6 Proof (Theorem 9) . 243

C.7 Proof (Proposition 1) . 245

C.8 Proof (Proposition 2) . 248

C.9 Proof (Theorem 10) . 249

C.10 Proof (Theorem 11) . 251

D Algorithms 254

Zusammenfassung 264

List of Figures

1.1 Separating Process Logic and Application Code Within PMS 12

1.2 Order Process . 14

1.3 Biased Order Process Instance . 18

1.4 Our Vision Of Adaptive Process Management . 19

1.5 Scenario 1: Migration of Unbiased Process Instances 20

1.6 Scenario 2: Migration of Biased Process Instances 22

2.1 Meta Models of Approaches Supporting Adaptive Processes 27

2.2 Marked Petri Net Before and After Transition Firing 28

2.3 Instance Execution for Models with True–/False–Semantics 29

2.4 Classification of Approaches Along the Applied Correctness Criteria 31

2.5 Basic Idea of Trace and Graph Equivalence . 32

2.6 Five Typical Problems Regarding Dynamic Process Change 34

2.7 Graph Equivalence When Hiding Activities . 34

2.8 Dynamic Change Bug . 35

2.9 Inheritance Preserving Change . 36

2.10 Correctness Checking and Marking Adaptations in [118, 127] 37

2.11 Criteria 2 and 3 [135, 136] Applied to Typical Change Problems 39

2.12 Typical Change Problems in MILANO [1] . 40

2.13 Pre-Change Criterion and SCOC [39] Applied to Typical Change Problems . . . 43

2.14 Checking Compliance by Replaying the Complete Execution History [26] 45

5

LIST OF FIGURES 6

2.15 Migration Conditions of TRAMs . 47

3.1 Process Schema Represented by a WSM Net (Abstract Example) 58

3.2 State Transitions and Marking/Execution Rules 61

3.3 Process Type Schema and Process Instances (Abstract Example) 62

3.4 Change Primitives, Basic and High–Level Operations, and Transactions [87] . . . 64

4.1 Change Scenario 1: Unbiased Instances . 70

4.2 Different History Views . 75

4.3 Process Instance With Data Flow History (Example) 76

4.4 Process Type Change and Effects on Running Process Instances (Example) . . . 77

4.5 Linearization And Projection Approaches . 78

4.6 Process Type Schema and Instance Management (Simplified) 82

4.7 Compliance Checks for Insertion of Activities (Abstract Example) 84

4.8 Compliance Checks for Insertion of Sync Edges (Abstract Example) 87

4.9 Order–Changing Operation (Example) . 88

4.10 Markings Adaptations (Example) . 94

4.11 Marking Adaptations When Changing A Selection Code (Example) 100

4.12 Principle Of Delayed Migration . 102

4.13 Migrating Unbiased Process Instances . 103

5.1 Migrating Biased Process Instances (Example) 106

5.2 Concurrent Process Type and Instance Changes (Example) 107

5.3 Migration Process at a Glance . 108

5.4 Concurrent Changes With Different Overlap Effects 111

5.5 Moving Same Activity To Same Target Position (Example) 113

5.6 Migrating Process Instances with Disjoint Bias 114

5.7 Incompatibility of Drugs (Example) . 115

5.8 Activity Net Containing Isolated Activity Node 119

5.9 Conflicting Control Flow Primitives . 120

LIST OF FIGURES 7

5.10 Deleting All Necessary Write Accesses on Instance Data (Example) 121

5.11 Concurrent Data Flow Changes Resulting in Correct Schema 123

5.12 Deleting Write Accesses on Data Read by Newly Inserted Activity (Example) . . 123

5.13 Indication of a Potential Data Flow Conflict . 124

5.14 Instance–Specific Schema Containing Deadlock–Causing Cycle (Example) 126

5.15 Insertion of Sync Edges on Process Type and Instance Level 128

5.16 Deadlock When Concurrently Applying insertBetweenNodeSets Operation . . . 130

5.17 Overlapping Loops Blocks . 131

5.18 Sync Link Crossing Boundary Of A Loop Block 133

5.19 Process Type Change and Instance Migration . 136

5.20 Migrating Compliant Instance To S′ . 138

6.1 Migrating Process Instances with Overlapping Bias 141

6.2 Disjoint and Overlapping Process Type and Instance Changes 142

6.3 Concurrent Changes with Different Degrees of Overlap 147

6.4 Context–Dependent Insert Operations . 148

6.5 Determining the Greatest Common Divisor (Examples) 152

6.6 Application of Structural Approach to Concurrent Activity Insertion 154

6.7 Application of the Structural Approach to Concurrent Activity Shifting 155

6.8 Noisy Process Change Log(Example) . 156

6.9 Equivalent Process Type and Instance Changes (Example) 157

6.10 Approaches for Detecting Degree of Overlap Between Concurrent Changes 158

6.11 Basic Principle of Purging Change Logs . 159

6.12 Purging a Change Log . 161

6.13 Insertion and Moving in Different Context . 162

6.14 Insertion and Moving in Different Order . 165

6.15 Different Aggregated Order . 168

6.16 Determining Degree of Overlap Between Process Changes 170

6.17 Subsumption and Partially Equivalent Changes 172

LIST OF FIGURES 8

6.18 Migrating Instances with Equivalent Bias . 174

6.19 Migrating Instances with ∆T ≺ ∆I . 175

6.20 Migrating Instances with ∆I ≺ ∆T . 177

6.21 Migrating Instances with Partially Equivalent Changes 177

6.22 Partially Equivalent Changes . 179

6.23 Changes with Conflicting Context . 184

6.24 Context–Destroying Changes . 185

6.25 Applying Optimized Migration Strategies . 187

6.26 Determining Degree of Overlap Between Concurrent Changes 189

6.27 Context–Destroying Type Change . 191

6.28 Calculating Instance–Specific Change (1) . 194

6.29 Calculating Instance–Specific Change (2) . 195

7.1 System Architecture of Proof–Of–Concept Prototype 200

7.2 Migrating Unbiased Process Instances (Abstract Level) 202

7.3 Migrating Unbiased Process Instances (Screenshot Prototype) 203

7.4 Migrating Unbiased Process Instances (Screenshot Migration Report) 204

7.5 Disjoint Changes: Deadlock–Causing Cycle (Abstract Level) 205

7.6 Disjoint Changes: Deadlock–Causing Cycle (Screenshot Prototype) 206

7.7 Disjoint Changes: Missing Input Data (Abstract Level) 207

7.8 Disjoint Changes: Missing Input Data (Screenshot Prototype) 207

7.9 Equivalent Changes (Abstract Level) . 208

7.10 Equivalent Changes (Screenshot Prototype) . 209

8.1 The Business Process Life Cycle [123] . 214

8.2 Changing Process Management Components – The Big Picture 216

C.1 Important Sets of a Process Schema Referring to ninsert 233

List of Tables

2.1 Examples of Migration Conditions in TRAMs(cf. [67]) 46

2.2 Comparison of Process Meta Models, Correctness Criteria and Marking Adaptation 49

2.3 Comparison by Means of 5 Typical Change Problems (cf. Figure 2.6) 49

3.1 A Selection of Change Primitives in ADEPT . 65

3.2 Basic Change Operations in ADEPT (1) . 67

3.3 Basic And High–Level Change Operations in ADEPT (2) 68

4.1 Effect of Used View on Execution History on Compliance Checking 74

4.2 Compliance Conditions for Attribute–Changing, Nesting and Complex Changes . 93

4.3 Initial Activity And Edge Sets for Re–Evaluation of Instance Markings 96

5.1 Possible Structural Conflicts Between Concurrently Applied Changes 118

6.1 Decision Rules for Partially Equivalent Process Type and Instance Changes (1) . 196

6.2 Decision Rules for Partially Equivalent Process Type and Instance Changes (2) . 197

A.1 List of Abbreviations . 227

B.1 A Selection of Important Functions Based On WSM Nets [87] 228

9

10

Chapter 1

Introduction

For companies and large organizations the computerized support of their business processes be-
comes more and more important. Examples of such business processes include leasing contracts,
customer orders, and medical treatment processes. For traditional application systems (e.g.,
enterprise resource planning systems) as well as for rapidly evolving e-business applications
(e.g., e–procurement, supply chain management) a comprehensive process support is heavily
desired by users [44, 31]. The same holds for technologies supporting enterprise application in-
tegration, which crave for business process integration as the glue for orchestrating distributed,
heterogenous applications [3, 77]. Such process–aware information systems (PAIS) [125] shall
allow explicit definition of the process logic, actively coordinate the execution and monitor-
ing of processes, integrate distributed application components in a robust and secure manner,
provide worklists to users, and be completely integrated with respect to documentation and
authorization [52, 83, 139].

However, any computerized support of business processes without a vision for flexibility is
short–sighted and expensive [88]. In practice, PAIS have to be adapted much more frequently
than purely function–oriented information systems [32, 58]. Such process adaptations become
necessary, for example, when new laws come into effect, optimizations or re–design of business
processes take place [46, 110], or reactions on current market trends are required [44]. Doing
so it is crucial to realize the necessary process changes and the adaptations of supporting PAIS
very quickly, if need be even within a few days or hours. Ideally, it should be also possible to
migrate the already running ”old” business cases (i.e., process instances) – where desired and
semantically reasonable – to the new process schema [26, 39, 100, 104, 118, 136].

Unfortunately, today’s information systems either lack more comprehensive process support
or business processes are implemented in an extremely unflexible way. Frequently, process
control is directly coded within the application programs what makes application development
as well as program maintenance very complex and error–prone. When implementing a new
process type (e.g., the handling of a customer order), additional programming effort becomes
necessary. Likewise future process changes cause immense costs for customizing the software.

11

CHAPTER 1. INTRODUCTION 12

Thus, IT departments which are already burdened with a high maintenance mortgage will run
into massive problems.

1.1 Process Management Systems

Today a transition from data–centered to process–aware systems takes place [23]. The current
trend towards service–oriented software architectures [3] increases the need for flexible applica-
tion service composition. This trend is reflected at the conceptual level as well as at the system
level. At the conceptual level, languages for process-oriented composition of (web) services like,
for example BPEL4WS [5, 29] and BPML [84, 8] are developed. At the system level, new
middleware systems like Microsoft BizTalk [79], IBM Websphere Choreographer [63], and SAP
Netweaver [108] are to serve as platforms for the realization of these (service) flows.

The trend towards orchestration and choreography of service flows has revitalized the idea of
process and workflow management [35, 74, 125, 122, 130]. Characteristic to Process Management
Systems (PMS)1 is the separation of process logic and application code, i.e., the logic of the
supported processes (e.g., control and data flow between tasks) is explicitly modeled within the
PMS and is not ”hidden” within the program code (cf. Figure 1.1). Usually for this, graph–
based languages like Petri Nets [1, 39, 118], UML Activity Charts [36], and Activity Nets [73]
are used.

administer make
appointment

educate
patient

prepare
patient

call
patient

examine
patient

make
report

read
report

Application Programs
/ Activities

Application Programs
/ Activities

Data Management
Prozess Execution

Data Management

Process Management System
Process Execution /
Process Monitoring

Process Execution /
Process Monitoring

Data Management
Prozess Execution

Data Management

Process Management System
Process Execution /
Process Monitoring

Process Execution /
Process Monitoring

Data Management
Process Execution

Data Management

Process Management System
Process Execution /
Process Monitoring

Process Execution /
Process Monitoring

Figure 1.1: Separating Process Logic and Application Code Within PMS

In PMS for each process type T (e.g., purchase order handling) a process type schema S
has to be generated and deposited within the PMS. In general, several process type schemes of
a process type T may exists which comply to different versions of T . A process type schema

1We consciously avoid to use the term ”Workflow Management Systems” due to its multiple meanings. We
also want to achieve a higher degree of generality using the term ”Process Management Systems” instead.

CHAPTER 1. INTRODUCTION 13

describes different aspects of a business process like control and data flow, actor assignments, or
exception handling procedures (e.g., to jump backward in the flow in case of semantic failure).
Furthermore, it is possible to assign application programs to single process steps (the so called
activities) which are then executed during runtime. Based on a process type schema, process
instances I1, . . . , In can be created and started which are controlled by the PMS during their
whole life time. The time span during which a process instance is active ranges from a few
minutes up to several years as, for example, usual for car leasing processes. Process instances
are executed, managed, and monitored by the PMS. The PMS coordinates the execution of
process activities, offers upcoming activities within worklists to users, starts the associated
application programs (with proper input data), and observes whether the activities are worked
in due time.

The extraction of the process logic from its ”hard–wiring” within application programs offers
promising perspectives. Since the PMS takes over process control the development of applica-
tions becomes much easier. Due to the explicit modeling of the process logic the future system
behavior can be evaluated in a very early stage such that design errors may be detected even be-
fore the application components are implemented. For the same reasons future process changes
and associated adaptations of the application systems are principally simplified. If the appli-
cation functions have been carefully implemented once, one may change the order of activities
or insert new activities without concerning existing program modules. Another advantage of
separating process logic from application programs is the reusability of process support func-
tions, i.e., it is not necessary to newly implement these function for every process type or PAIS
respectively.

1.2 Adaptive Process Management Systems

Despite the described perspectives of PAIS, PMS still lack widespread acceptance in practice.
Today’s process management technology is rather weak with respect to dynamic process changes.
However, the reasons mentioned before force any company to change their business processes
ever more frequently [1]. Therefore, a critical challenge for the competitiveness of any enterprise
is its ability to quickly react to business process changes [37, 61, 98, 120, 127].

Basically, in PMS changes can take at two levels – the process type or the process instance
level [133] (cf. Figure 1.2). Process type changes become necessary, for example, to adapt
the PMS to optimized business processes or to new laws [91, 118]. In particular, applications
supporting long–running processes (e.g., handling of leasing contracts or medical treatments)
and the process instances controlled by them are affected by such type changes [89, 91]. As
opposed to this, changes of single process instances (e.g., to insert, delete, or shift single process
steps) often have to be carried out in an ad–hoc manner in order to deal with an exceptional
situation, e.g., a sudden circulatory collaps of a patient or evolving process requirements [88, 87].

CHAPTER 1. INTRODUCTION 14

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

a) Process Type Level:

letter

!

b) Process Instance Level:

Process Type
Change

order form

Instance 4

Instance 3

Instance 2

Instance 1

Users

Instance n

 Step is worked on
 Step is completed

Process Schema S

Figure 1.2: Order Process

1.2.1 Challenges Of Process Schema Evolution

Process type changes are handled by modifying the respective process type schema S based on
which a collection of process instances I1, . . . , In is running (cf. Figure 1.2). Of course, it is
important that the modification of a correct process type schema S again results in a correct
process type schema S′. Thereby a process type schema is denoted as being correct if it satisfies
the correctness constraints set out by the underlying process meta model, i.e., the formalism to
describe the business processes, e.g., Petri Nets. Examples for such constraints are the bipartite
graph structure for Petri Nets [118] or the acyclic graph structure for Activity Nets [73]. This
static schema correctness [26], for example, can be preserved by the applied change operations
themselves. Examples for process meta models offering change operations preserving schema
correctness are Flow Nets [117, 118] and ADEPT [87, 88].

From a static point of view, process schema evolution can be compared to the evolution of
database schemes [95] which mainly happens at a static level as well; i.e., how to map data types,
data structures, and integrity constraints of the ”old” database schema to the respective data
types, data structures, and integrity constraints of the ”new” database schema (in a semantics–

CHAPTER 1. INTRODUCTION 15

preserving way).

This point of view is fundamental but not sufficient for practical purposes. After changing
process type schema S we also have to deal with process instances I1, . . . , In running according
to S. Different strategies for this so called dynamic process schema evolution have been proposed
in the workflow literature [105, 107]. The first ”sledgehammer” method is to cancel all running
process instances I1, . . . , In and to re–start them according to the new process type schema S′. Of
course, this strategy causes an immense loss of work and would usually not be accepted by users.
Therefore, at minimum, we claim that process instances I1, . . . , In started according to process
type schema S can be finished according to S without being interrupted. This strategy can be
implemented by providing adequate versioning concepts [67]. These concepts must ensure that
future process instances are executed according to new process type schema S′ whereas already
running process instances are carried out according to the ”old” schema version S. This simple
strategy may be sufficient for processes of short duration. However, it raises grave problems in
conjunction with long–running processes as common, for example, within clinical or engineering
environments [20, 32]. Due to the resulting mix of process instances which run according to
old process type schema S and those which run according to new process type schema S′, a
chaos within the production or the offered services may occur. Furthermore, an execution of
process instances according to the old process type schema may be not acceptable if laws or
business rules (e.g., clinical guidelines) are violated [112]. If these problems are not solved in
a comprehensive way, companies can become even more inflexible when using PMS as their
manual organization was before.

For these reasons it is quite important to be able to apply process type schema changes to
running process instances I1, . . . , In as well. We call this scenario the propagation of process
type schema changes to running process instances or – in other words – the migration of the
(”old”) running process instances to the changed process type schema. Note that the number
of running process instances I1, . . . , In may be very large; in environments like hospitals or
telecommunication companies, for example, n > 10.000 may easily hold [16, 57].

To better understand the challenge of propagating a process type schema change to running
process instances one can compare a running process instance with an application program
[134]. This program is currently executed and consists of several procedures. These steps can
be successively executed (sequential execution), can be situated within if–then–else conditions
(alternative branchings), or can be even executed in parallel threads. Process schema evolution
can then be compared to manipulating the running program by inserting one or more procedures,
deleting procedures, or changing the order of procedures in the midst of program execution. In
particular, the changes have to be carried out by maintaining a correct program execution (e.g.,
correct parameter provision) for all possible execution alternatives.

Supporting the propagation of process type schema changes to running process instances, but
without causing inconsistencies and errors in the sequel, is an extremely important task if PMS
shall become really successful in practice. Today’s commercial PMS lack an adequate support
of process schema evolution. They either forbid the propagation of process type schema changes

CHAPTER 1. INTRODUCTION 16

to running process instances (e.g., MQSeries Workflow) or they allow inconsistencies and even
system crashes after change propagation (e.g., Staffware) [78]. As a consequence, in practice,
process descriptions are often split into a series of smaller, short-running process fragments that
are maintained as separate schemes and correlated through application data at runtime [48].
Such a fragmented representation, however, does not provide a natural view of the process and
is also unfavorable in other respects. In particular, it does not abolish the need for dynamic
instance migrations (even if techniques such as late binding [33] are applied). Altogether the
weak support of dynamic process changes is one of the major reasons why today’s PMS are not
fully accepted by users.

Consequently, it is crucial for PMS to enable process type change propagation to running
process instances and the correct migration of the compliant process instances afterwards. This
raises the following challenges:

1. Completeness: Process designers must not be restricted, neither by the used process
meta model nor the offered change operations. Therefore, a process meta model ought to
provide a complete set of control and data flow constructs, e.g., allowing the designer to
model sequences, parallel/alternative branchings, and loops [37]. For practical purposes,
at minimum, change operations for inserting and deleting activities as well as control/data
dependencies between them are required. Furthermore, it must be able to combine change
primitives to define complex changes, e.g., to modify the order of activities.

2. Correctness: The ultimate ambition of any adaptive PMS must be correctness of dy-
namic changes [98]; i.e., introducing changes to the runtime system without causing incon-
sistencies or errors (like deadlocks or improperly invoked activity programs). Therefore,
adequate correctness criteria are needed. These criteria must not be too restrictive, i.e.,
no process instance should be needlessly excluded from applying a dynamic change.

3. Efficient Compliance Checks: Assume that we have found an appropriate correctness
criterion for deciding on compliance of process instances with a changed process type
schema. Then the challenging question is how to ensure this criterion efficiently. This is
especially important for large-scale environments with hundreds up to thousands of running
process instances [57]. The question behind is somewhat comparable to serializability of
database transactions (correctness criterion). At runtime, serializability is not ensured by
trying to find an equivalent serial execution for the schedule under consideration. Instead,
efficient concurrency control mechanisms like two–phase locking or optimistic methods
have been developed [30, 68].

4. Usability: The migration of process instances to a changed process type schema must
not require expensive user interactions. Firstly, such interactions lead to delays within
process instance executions. Secondly, users (e.g., designers or process administrators)
must not be burdened with the job to adapt process instances to changed process type
schemes. Complex process structures and extensive state adaptations quickly overstrain
them. Therefore it is crucial to find methods to automatically determine those process

CHAPTER 1. INTRODUCTION 17

instances to which the process type change can be correctly applied. Furthermore, in
sequel, it must be possible to automatically migrate these process instances to the changed
process type schema.

Fulfilling challenges 1 – 4 is essential for the applicability and practicability of any adaptive
PMS. However, the approaches presented in the workflow literature have disregarded one or
more of these aspects so far.

1.2.2 Vision And Big Picture

The comprehensive support of process instance migrations to a changed process type schema
along the stated challenges 1 – 4 is an important milestone on the way towards flexible and
adaptive process management. However, process schema evolution alone is not sufficient in order
to offer fully flexible PMS. The reason is that in addition to changes at the process type level
(cf. Figure 1.2), it must be possible to modify single process instances as well (cf. Figure 1.3).
Such process instance changes are often carried out in an ad–hoc manner in order to deal with
an exceptional situation, e.g., an unforeseen correction of the inventory information in an order
process [112] as depicted in Figure 1.3. In the following, we denote such individually modified
process instances as biased process instances since their logical execution schema deviates from
the process type schema they were derived from. Respectively, process instances which have not
yet undergone an invidual change are called unbiased process instances.

In the literature process type and instance changes have been an important research topic for
several years [1, 26, 37, 39, 67, 96, 98, 104, 118, 136]. However, there are only few adaptive PMS
which support both kinds of changes in one system [65, 88, 100, 101, 136]. All of them (except
ADEPT) have in common that once a process instance has been individually modified (i.e., it
possesses an instance-specific schema), it cannot longer benefit from process type changes; i.e.,
changes of the process type schema they were originally created from. In WASA2 [136], for
example, a process instance change is carried out by deriving a new schema version to which the
process instance is migrated. In the sequence, this instance is excluded from further adaptations
of its original schema version at the process type level. However, doing so is not sufficient in many
cases, especially in connection with long-running processes. Think of, for example, a medical
treatment process which is normally executed in a standardized way for every patient. Assume
that due to an unforeseen reaction an additional drug is given to a certain patient. However,
this deviation from the standard process must not imply that this special process instance (and
therefore the respective patient) is excluded from further process optimizations. Therefore, it
must be possible to propagate process schema changes at the type level to such biased process
instances as well.

Our vision is to master all possible kinds of process changes within a PMS in a correct and
automatic manner. The basic case is to be able to migrate unbiased process instances to a
changed process type schema obeying the four challenges described in Section 1.2. In addition,
this thesis treats the interplay of process type and process instance changes. Note that process

CHAPTER 1. INTRODUCTION 18

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

a) Process Type Level:

letter

!

b) Process Instance Level:

Process Type
Change

order form

Instance 4

Instance 3

Instance 2

correct
inventory

Biased Instance 1

Users

Instance n

 Step is worked on
 Step is completed

Process Schema S

Figure 1.3: Biased Order Process Instance

instance changes and process type changes work on the same process schemes and can therefore
be considered as concurrent changes on these schemes which may interfere with each other.

Concurrently applied process type and process instance changes raise many challenging is-
sues. One of the most important ones is being able to distinguish between process instances
for which their particular bias is disjoint with the process type change and process instances
for which their particular process instance change and the process type change overlap. Dis-
joint means that process type and process instance change have totally different effects on the
underlying process schema. This is the case, for example, if they work on different ”regions”
of the same process schema (for example, process type and process instance change as depicted
in Figure 1.3). As opposed to this, process type and process instance changes overlap if they
(partially) have the same effects on the underlying process schema. This is, for example, the
case if some process instances have anticipated a future process type schema change in conjunc-
tion with a flawed process modeling. If then, subsequently, the respective process type schema
change is applied to these process instances this may cause conflicts between the overlapping
process type and process instance changes (e.g., if the same activities are deleted).

CHAPTER 1. INTRODUCTION 19

Why is it so important to differentiate between process instances having a disjoint bias and
process instances having an overlapping one? As we will see in the sequel the correct handling of
a particular process instance (when migrating it to a changed process type schema) depends on
whether it has no bias, a disjoint bias, or an overlapping one. In other words, in order to be able
to find and offer adequate migration strategies we have to be able to detect the different kinds
of process instances. The resulting migration strategy comprises the re–linking of a process
instance to the new type schema as well as the necessary state and structure adaptations.

E
fficien

cy

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

Process Type Level:

letter

! Process Type
Change

order form

Process Schema S

 Process Instance
Level:

Instance 4

Instance 3

Instance 2
 data

enquiry

Biased Instance 1

Instance n

 Step is worked on
 Step is completed

Interplay

propagate

C
o

m
p

le
te

n
es

s

Correctness

Usability

Figure 1.4: Our Vision Of Adaptive Process Management

Of course, any solution for migrating biased process instances to a modified process type
schema must further fulfill challenges 1 – 4 (cf. Figure 1.4). If we are able to find adequate
solutions we achieve our aim of a PMS fully supporting users in any change they carry out. In
detail, this means to provide adequate correctness criteria which are applicable for the migra-
tion of unbiased as well as for the migration of biased process instances. In order to be able
to deal with a multitude of running process instances it is necessary to find methods to quickly
and efficiently ensure the stated correctness criteria for both cases, unbiased and biased process
instances. Furthermore, usability of an adaptive PMS depends on whether it is able to automat-
ically migrate unbiased and biased process instances or not, i.e., without costly and cumbersome
user interactions. In addition, meaningful messages have to be generated which, for example,

CHAPTER 1. INTRODUCTION 20

report and explain the classification of particular process instances to users. Furthermore, users
must be able to exclude (certain) process instances from migration if desired. Finally, users
should be also able to choose between different migration strategies.

Altogether, a solution fitting in our vision of adaptive process management releases users from
the possibly rigid corset they are pressed in by current systems. If this comes true the advantages
of PMS become so mind–blowing that they will finally make their expected breakthrough in
practice.

1.3 Aims and Organization of this Work

Aim of this work is to develop a formal framework for the support of process type and process
instance changes within PMS which does not only consider the single aspects of process changes
in a separated manner but also analyzes their interactions. Thereby, we follow the four chal-
lenges set out in Section 1.2, namely completeness of the solution, system correctness, efficient
implementation of the presented concepts at the logical and physical level, and user–friendly
realization of the solution. More precisely, this thesis addresses the following questions.

Scenario 1: Migration of Unbiased Process Instances: Consider Figure 1.5. Process
schema S is changed by inserting new activity control shipment. The challenging question is
how to treat the process instances running on S. In the present scenario these instances have
not been individually modified, i.e., they are unbiased.

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

letter
Process Type

Change

order form

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

letter order form

Process Schema S Process Schema S’

Instance 4

Instance 3

Instance 2

Instance 1

Instance n

?

?

?
?

Process Instance Level:

 Step is worked on
 Step is completed

Figure 1.5: Scenario 1: Migration of Unbiased Process Instances

CHAPTER 1. INTRODUCTION 21

The support of Scenario 1 poses the following questions:

• How can we ensure that the migration of unbiased process instances to a changed process
type schema is done correctly? In particular, what kind of correctness criteria can serve
as basis for respective compliance checks without unnecessarily restricting expressiveness
of the used process meta model or completeness of the offered change operations?

• Can we find methods to quickly and efficiently decide on compliance criteria in order to
avoid interruption of process instance executions for a longer time?

• How can we automatically and efficiently adapt (compliant) process instances when mi-
grating them to the changed process type schema?

• How do we deal with non–compliant process instances, i.e., process instances which cannot
be migrated to the changed process type schema according to the correctness criterion?

Scenario 2: Migration of Biased Process Instances: Consider Figure 1.6. Process schema
S is changed by inserting new activity control shipment. All depicted process instances have
been already modified by previous ad hoc changes, Instance 1 by deleting activity confirm order,
Instance 2 by inserting activity control shipment, and Instance 3 by inserting activities control
shipment and send reminder. Thereby the instance change for Instance 1 is disjoint with the
process type change since they work on totally different ”regions” of the underlying process
schema. By contrast, the instance changes for Instance 2 and Instance 3 overlap with the
process type change since they have (partially) the same effects on the underlying process type
schema.

The challenges arising for Scenario 2 can be summarized as follows:

• How can we appropriately define the notions of disjoint and overlapping process type and
process instance changes?

• How can we efficiently determine whether process type and process instance changes are
disjoint or overlapping?

• Which criteria are sufficient to guarantee correctness when migrating biased process in-
stances to a changed process type schema? In particular, can we extend the compliance
criteria found for unbiased process instances (cf. Scenario 1) in order to fit for biased
process instances as well? Can we even find a general correctness criterion for all kinds of
process instances?

• How can we efficiently check extended compliance for biased process instances, e.g., are
there methods which avoid to lock process instances for a longer time?

• How can we classify overlapping process changes according to their particular degree of
overlap (equivalent, partially equivalent, etc.)?

CHAPTER 1. INTRODUCTION 22

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

letter
Process Type

Change

order form

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

letter order form

Process Schema S Process Schema S’

?

Process Instance Level:

 Step is worked on
 Step is completed

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

letter order form

confirm
order

pack
goods

get
order

ship
goods

take
goods

letter order form

Instance 1:

Instance 2:

?

Disjoint Process Type and Process Instance Changes

Overlapping Process Type and Process Instance Changes

confirm
order

pack
goods

get
order

control
shipment

ship
goods

take
goods

letter order form

send
reminder

Instance 3:

?

Overlapping Process Type and Process Instance Changes

Figure 1.6: Scenario 2: Migration of Biased Process Instances

• For which degrees of overlap between process type and process instance changes, an au-
tomatic treatment is possible (e.g., if the bias of a particular instance has anticipated the
process type change)? What are reasonable default strategies for these cases?

• For degrees of overlap between process type and process instance changes for which no
(default) migration strategy can be determined: can we find decision rules in order to ease
their handling for users?

• How can we adequately guide users through the migration process? In particular, which
cases have to be reported?

• How can we deal with non–compliant process instances? Which are the different kinds of
non–compliance and what are adequate solutions?

CHAPTER 1. INTRODUCTION 23

• How can we implement the concepts for adaptive process management in a reasonable
way? Which possibilities do we have for additional optimizations at the physical level?

All these challenges are not only a point of how to technically realize an adaptive PMS. In
fact, these questions demand theoretical foundations and concepts. Since the mentioned aspects
depend on each other they determine the order for the organization of this work.

In Chapter 2 we discuss related work on adaptive process management. Thereby, we firstly
establish a classification of the different approaches along their specific process meta model and
the theoretical foundations of their concepts for adaptive process management. Secondly, we
introduce five typical problems in conjunction with process changes. Along these problems we
discuss the different approaches and show their specific strengths and limitations. After this
we present further comparisons between the different approaches before we offer a detailed dis-
cussion about the different aspects of dynamic process changes. These considerations comprise
ad–hoc change and process schema evolution in research prototypes as well as in commercial
systems and ”newer” paradigms as, for example, case handling [126]. From this related work dis-
cussion different approaches and suggestions for correctness criteria in conjunction with adaptive
processes are extracted. They serve as basis for the further considerations.

Chapter 3 summarizes important background information about the used process meta model
used in this thesis. In detail, we introduce WSM Nets as a process description language to define
process schemes and show how process instances can be started, executed, and individually
modified based on WSM Nets. Furthermore we present a set of change operations and change
transactions offered to users in our prototype.

Chapter 4 provides a complete solution for the migration of unbiased process instances to a
changed process type schema. We start with a detailed discussion of the particular challenges
in this context. Then we have a look on existing correctness criteria (cf. Chapter 2) and choose
one of them as the basis for our further considerations. However, we adapt and extend this
correctness criterion in order to overcome its limitations. After this we present precise compliance
conditions based on which it is possible to quickly and efficiently ensure the imposed correctness
criterion (we also formally prove this). To release users from the burden of manually adapting
instance states when migrating compliant instances to the changed process type schema we
provide respective algorithms. These algorithms automatically adapt process instance markings
for all kinds of applicable changes with linear complexity. Finally, we discuss several approaches
how to deal with non–compliant process instances and we sketch their particular strenghts and
limitations. Chapter 4 finishes with a summary of the presented results.

In Chapter 5, firstly the challenges arising in the context of migrating biased process instances
to a changed process type schema are presented. One extremely important challenge is to be able
to distinguish between process instances with disjoint and process instances with overlapping
bias. Based on the particular kind of process instances the further migration strategy depends.
Therefore we provide the formal framework for dividing the set of biased process instances into
those with disjoint bias and those with overlapping bias. This formal framework is based on
the theoretical notions of process trace equivalence and process schema isomorphism. In the

CHAPTER 1. INTRODUCTION 24

remainder of this chapter we deal with the correct migration of process instances with disjoint
bias. Therefore we firstly establish an adequate correctness criterion which is a generalization of
the correctness criterion introduced for the migration of unbiased process instances in Chapter
4. We present methods to quickly verify the extended parts of the general correctness criterion
which are also formally proven. Finally, the strategy for migrating process instances with disjoint
bias to a changed process type schema is given together with automatic adaptation methods. A
summary closes Chapter 5.

Chapter 6 deals with advanced migration issues; i.e., how to migrate process instances for
which their bias overlaps with the process type change. Therefore, firstly, the challenges arising in
this context are discussed. In order to adequately meet these challenges it is fundamental to find a
further classification of process instances for which their bias and the process type change overlap.
This classification is carried out along the particular degree of overlap between respective process
type and process instance changes. However, determining this degree of overlap is far away from
being trivial, and so we have to discuss different approaches ranging from structural ones to
operational approaches as well as a specific combination (hybrid approach) between them. In
this context, we present a very interesting method to purge noisy information from change logs.
Doing so we obtain a canonical representation of change logs which is useful input for the final
classification of process instances. Furthermore, we show that the determination of the degree
of overlap between process type and process instance changes becomes too rough if we use whole
change logs as basis. Therefore we introduce the concept of change log projections which reflect
the different types of changes. Together with these projections and the hybrid approach we
are able to formally define the different degrees of overlap between process type and process
instance changes. Along the particular degree of overlap we present sophisticated migration
strategies which can be automatically (and correctly) applied if users want to do so. For those
cases for which no automatic migration strategy can be deposited within the PMS we state
meaningful decision rules which support users in finding the right treatment of the ”handish–
to–deal” process instances. Finally, we present algorithms which calculate the remaining bias
after propagating a process type change to the respective process instance. Chapter 6 end with
a summary of the presented results.

In Chapter 7, we present our proof–of–concept prototype which implements and demon-
strates the theoretical results of this work. We start with introducing the architecture of this
system and explain the different components. After this, a complete example for process change
management is presented at an abstract level. In this context, we also show how this example is
implemented within the prototype. This example ranges from the migration of unbiased process
instances over the migration of process instances with disjoint bias to the migration of process
instances with overlapping bias. In particular, we show how efficiently the prototype works
when checking compliance and when adapting unbiased and biased process instances. Finally,
we close this chapter with a summary.

Chapter 8 summarizes the results of this work and gives an outlook on continuative aspects
like semantical issues and changes of other components of the PAIS (e.g., the organization
model).

Chapter 2

Related Work

2.1 Schema Evolution in Database Management Systems

Obviously, there are similarities between schema changes in PMS [26, 100, 104, 118] and in
database management systems (DBMS) (e.g., [4]). The underlying problems are similar if con-
siderations are restricted to the mapping of schema elements (activity nodes, control/data flow
edges) from the old to the new schema. These static adaptations can be compared to database
operations at the schema level, like CREATE/DROP/ALTER TABLE. Such database schema adapta-
tions become necessary, for example, in conjunction with schema integration in distributed and
federated databases [14, 28, 30]. This aspect has been analyzed for a long time and is well under-
stood in the meantime [4, 85, 28, 30, 69]. Process schema evolution, however, raises additional
orthogonal issues. If changes at the process type level shall be applied at the process instance
level as well, one has to consider that process instances may be in different states when a schema
change propagation takes place. Depending on their current state and on the applied change
operations, a migration to the new schema may then be possible or not. For deciding which
instances are compliant with the new schema and can therefore be migrated to it, sound and
efficient solutions are required. Furthermore, we have to deal with concurrent schema changes
at the process type and the process instance level in order to provide an appropriate process
change management.

2.2 Challenges for Approaches Dealing With
Process Schema Evolution

Propagating changes of the process type schema to already running process instances has been a
field of interest in the literature [1, 26, 39, 67, 104, 118, 136] for a longer time. In the following we
present the existing approaches and discuss how far they lead towards a correct and manageable
support for process schema evolution as claimed in the introduction. In detail we compare the

25

CHAPTER 2. RELATED WORK 26

approaches along the following aspects:

1. Completeness: Users should not be unnecessarily restricted, neither by the applied pro-
cess meta model nor the offered change operations. Therefore, expressive control/data flow
constructs must be provided [37]. For practical purposes, at minimum, change operations
for inserting and deleting activities as well as control/data dependencies between them are
needed.

2. Correctness: The ultimate ambition of any adaptive approach must be correctness of
dynamic changes [1, 26, 39, 67, 88, 104, 118, 136]. More precisely, we need adequate
correctness criteria to check whether a process instance I is compliant with a changed
process type schema or not; i.e., whether the respective change can be correctly propagated
to I without causing inconsistencies or errors (like deadlocks or non–conform data flows).
These criteria must not be too restrictive, i.e., no process instance should be needlessly
excluded from being adapted to a process schema change.

3. Change Realization: Assuming that a dynamic change can be correctly propagated to
an instance I (along the stated correctness criteria), it should be possible to automatically
migrate I to the new schema. In this context, one challenge is to correctly and efficiently
adapt instance states.

4. Interplay Between Process Type and Instance Changes: To support really flexible
PMS it must be possible to do both, process schema evolution and ad hoc modifications
of single process instances. Furthermore, it is not sufficient to forbid the propagation
of process schema changes to already modified (biased) process instances. Therefore an
important challenge for any flexible PMS is to adequately support the interplay between
process type and process instance changes.

In the following, we provide a classification of actual approaches based on the operational
semantics of the underlying process meta models and on the kind of correctness criteria applied
for dynamic process changes (Sections 2.3 + 2.4). Section 2.4 also introduces a selection of
typical dynamic change problems and discusses strengths and weaknesses of the approaches when
dealing with these problems. A detailed comparison of the different approaches is presented in
Section 2.5. We sketch important change scenarios and existing approaches in Section 2.6 and
close with a summary in Section 2.7.

2.3 Process Meta Models of Approaches Dealing With
Process Schema Evolution

Current approaches supporting adaptive processes are based on different process meta models.
Very often, the solutions offered by them are dependent on the expressiveness as well as on the
formal and operational semantics of the used formalism. Figure 2.1 summarizes process meta

CHAPTER 2. RELATED WORK 27

models for which adaptive process solutions have been realized. According to [60] we classify
those meta models with respect to their operational semantics and how they represent process
instance states.

The first strategy uses only one type of (control flow) token passing through each pro-
cess instance (True-Tokens). The other strategy is based on two types of tokens – True- and
False-Tokens. Simplistically, True-Tokens trigger activities that are to be executed next and
False-Tokens describe skipped activities. Formalisms which solely use True-Tokens include, for
example, Petri-Nets [1, 39, 118] (cf. Section 2.3.1). Approaches which, in addition, use False-
Tokens to represent skipped activities or skipped execution branches can be found in the area of
graph-/activity-based meta models [26, 67, 88, 104, 136] (cf. Sect. 2.3.2). They can be further
divided according to the way they represent the tokens. One possibility is to gain them from
execution histories [26], with log events like activity start and activity completion. Alterna-
tively, special (model-inherent) activity markings, which represent a consolidated view on the
execution histories, can be used [88, 104, 136].

Approaches Dealing With Adaptive Processes»»»9 XXXz
Models with True-Semantics

? WF Nets [118, 127]
? Flow Nets [38, 39, 40]
? MILANO [1, 2]

Models with True/False-Semantics
»»»9 XXXz

Case1: Using Execution
Histories
? WIDE [26]
? TRAMs [66, 67]

Case2: Model-Inherent Markings
? WASA2 [135, 136]
? Breeze [103, 104]
? ADEPT/WSM-Nets [88, 91, 96, 100]

Figure 2.1: Meta Models of Approaches Supporting Adaptive Processes

In the following, for each approach shown in Figure 2.1, we sketch the basic formalism
used for process modeling and execution together with its structural and dynamic properties.
This background information is useful for better understanding the criteria applied by these
approaches to guarantee dynamic change correctness (cf. Sect. 2.4).

2.3.1 Approaches With True-Semantics

All models with True–Semantics summarized in Figure 2.1 are based on Petri Nets [94, 102].
Figure 2.2.a shows a (marked) Petri Net for which the (True) token signals that activity C (called
transition in this context) is ready to fire. The marked Petri Net resulting after completion of C
is depicted in Figure 2.2.b. From this example the essence of models with True–Semantics can
be deduced: After firing of transition C it can be seen which activities are currently activated
(namely activity F) but it is not clear which firing sequence has led to the current marking.

Now we introduce the basic formalisms for the different models with True–Semantics (cf.
Figure 2.1).

WF Nets: A WF Net [118] is a labeled place/transition net N = (P, T, F, l) representing

CHAPTER 2. RELATED WORK 28

A

B

D E

C

F

A

B

D E

C

F

C fires

transition

place

token

a) Marked Petri Net Before Transition Firing: b) Marked Petri Net After Transition Firing:

Figure 2.2: Marked Petri Net Before and After Transition Firing

a control flow schema (cf. Figure 2.10). Thereby, P denotes the set of places, T the set of
transitions, F ⊆ (T × P) ∪ (P × T) the set of directed arcs, and l the labeling function, which
assigns a label to each transition. Data flow issues are not considered. A WF Net must have
one inital place i and one final place f . In [118] a sound WF Net has to be connected, safe, and
deadlock free as well as free of dead transitions. Furthermore, sound WF Nets always properly
terminate, i.e., the end state – which contains one token in f and no other tokens – is always
reachable. The behavior of a process instance is described by a marked WF net (N,m) with
marking function m and associated firing rules. A transition t is enabled if each of its input
places contains a token. If t fires, all tokens from its input places are removed and to each output
place of t a token is added.

Flow Nets: The operational semantics of Flow Nets [39] is comparable to (safe) WF Nets
but with one major difference: Places can be equipped with more than one token. Process
instances I1 and I2 as depicted in Figure 2.13(1) would actually run on the same process schema
but being distinguished by tokens of different color. In this thesis, for presentation purposes, we
separate I1 and I2 into two marked Flow Nets.

Chautauqua [40] offers an implementation where Flow Nets are generalized to Information
Control Networks (ICN). An ICN bases process enactment on instance-specific data tokens.
Different process instances are again distinguished by coloured tokens and are controlled by the
same ICN.

MILANO Nets: Another Petri-Net-based approach is offered by MILANO [1, 2]. As op-
posed to WF Nets and Flow Nets the expressiveness of MILANO Nets is restricted to marked,
acyclic Free-Choice Petri Nets (so called Net Models (NM)). Data flow is not explicitly consid-
ered. A NM S can be mapped to a Sequential Model (SM) (cf. Figure 2.12(1)) which represents
global states and state transitions of S. Thus, SM corresponds to the reachability graph of S.

Interestingly, the above approaches abstract from internal activity states, i.e., they only
differentiate between activated and non-activated transitions. As we will see later, this coarse
classification may be unfavorable in conjunction with certain kind of dynamic changes.

CHAPTER 2. RELATED WORK 29

NS = Activated NS = Running

NS = Skipped NS = Completed

 B

A

C

F

D
 E

 B

A

C

F

D
 E

XOrSplit XOrJoin

Skipped Branch

Completion of C

Execution History:

Π = <SA, EA, SB, EB, SC>

a) Process Instance Before Completion of C: b) Process Instance After Completion of C:

Execution History:

Π = <SA, EA, SB, EB, SC, EC>

Figure 2.3: Instance Execution for Models with True–/False–Semantics

2.3.2 Approaches With True–/False-Semantics

As opposed to the above approaches, the following process meta models distinguish between
different states an activity may go through. Regarding the example depicted in Figure 2.2 we
cannot distinguish whether activity C is only activated (and therefore offered in worklists) or
is already worked on. As shown in Figure 2.3.a this distinction is possible for models with
True–/False–Semantics (here activity C is actually running).

Figures 2.2 and 2.3 illustrate the main difference between models with True–Semantics and
models with True–/False–Semantics: For models with True–/False–Semantics we always know
the previous process instance execution, in particular which branches have not been chosen for
execution (cf. Figure 2.3.a) what is actually not the case for models with True–Semantics (cf.
Figure 2.2.b).

Basically, there are two possibilities to represent process instance states using a True–/False–
Semantics (cf. Figure 2.1): The first one is to maintain an execution history ΠS

I = < e0, . . . , ek >
for each instance I with ei ∈ {(Sa, <var, val>∗), (Ea, <var, val>∗)} (cf. Figure 2.3). Thereby
Sa corresponds to the event of starting activity a and Ea to the event of completing activity a.
For each started activity X the values of process data elements read by X and for each completed
activity Y the values of data elements written by Y are logged.

The other possibility is to use model–inherent markings1 (cf. Figure 2.3). Generally, the
initial status of an activity is set to NotActivated. It changes to Activated when all precon-
ditions are met. Either the activity execution is then started automatically or corresponding
worklist entries are generated. When starting the activity execution the activity status changes
to Running. Finally, at successful termination, status passes to Completed. In addition, some
of the models assign status Skipped to activites belonging to non-selected execution branches.

1Note that often an execution history ΠS
I is stored in addition.

CHAPTER 2. RELATED WORK 30

Case 1: Approaches Using Execution Histories

WIDE Graphs: WIDE [26] uses an activity-based process meta model which allows the
modeling of sequential, parallel, conditional, and iterative activity executions (examples for
WIDE graphs are depicted in Figure 2.14). A process schema has to meet several constraints
to be correct: First there must be a path from the start activity to all other activities and the
end activity has to be reachable from all of them. The other constraints refer to the correct
use of splits and joins. Furthermore, each process schema S is associated with a set of global
process variables whose values may be read or written by activity instances during runtime. A
particular process instance I is described by its schema S and its execution history ΠS

I . As
opposed to the following approaches, WIDE only logs activity completion events.

TRAMs Graphs: In TRAMs [66] – in contrast to other graph-/activity-based approaches
– control flow is not realized by control edges (cf. Figure 2.15). Instead, it is described in a
declarative way by using conditions for starting/finishing activities. Process schema correct-
ness is preserved by invariants, i.e., schema-related conditions which must be fulfilled. Data
flow is explicitly specified by connecting output and input parameters of subsequent activities.
TRAMs logs status changes (start and end events of activities) in the execution history ΠS

I of
the respective instance I.

Case 2: Approaches Using Model Inherent Markings

WASA2 Activity Nets: WASA2 [135] uses an activity-based meta model. A process
schema S = (VS , CS , DS) is a tuple with sets of activity nodes VS , control connectors
CS ⊂ VS × VS , and data connectors DS ⊂ VS × VS (cf. Figure 2.11). Similar to TRAMs,
the flow of data is modeled by connectors which map output and input parameters of subse-
quent activities. A process schema S is correct iff all input parameters are correctly mapped onto
a type-conform output parameter and the graph structure is acyclic, i.e., loops are excluded.
A process instance I is described by an instance graph I = (VI , CI , DI) whose state is denoted
by model-inherent activity markings. WASA2 distinguishes between markings NotActivated,
Activated, Running, Completed, and Skipped.

Breeze Activity Nets: Similar to TRAMs and WASA2, Breeze [104] uses model-inherent
activity markings. A process schema is described by a directed acyclic graph W =<N, F> with
finite set of activity nodes N and flow relation F ⊆ N ×N . It is possible to model sequences,
parallel/conditional branchings and complex activities. Process data is described by a set of
WF variables. A process schema is correct if there is a unique initial node ni and a unique final
node nf , and for all n ∈ N there is a path from ni to nf via n. Breeze also ensures correct data
provision of invoked activities.

Comparing the above formalisms we can find many differences. For example, only WF Nets,
Flow Nets, and WIDE Graphs allow the modeling of loops. Data flow issues are factored out
by WF Nets and MILANO Nets. While WIDE only logs end entries of activities, the execution
histories in TRAMs store the start entries of activities as well.

CHAPTER 2. RELATED WORK 31

none

g
ra

p
h

 e

q
u

iv
al

en
ce

tr

ac
e

eq

u
iv

al
en

ce

basis for
correctness criteria

execution
information for
compliance checking

WF Nets

Flow Nets
WIDE
Breeze

WSM Nets

TRAMs

complete
execution

WASA2

consolidated
 view

MILANO

predictive
model-inherent
markings

Figure 2.4: Classification of Approaches Along the Applied Correctness Criteria

2.4 Approach Classification and Dynamic Change Correctness

In this section, we present a classification of the approaches introduced in Section 2.3. It is
based on the correctness criteria applied in conjunction with dynamic process changes. This
classification is fundamental for better understanding the different solutions as well as their
strengths and limitations. At this point, we do not make a difference between changes of single
instances and adaptations of a collection of instances (e.g., due to a process type change). Instead
we focus on fundamental correctness issues related to dynamic process changes.

In the following, let S be a process schema and let I be a process instance based on S.
Assume that S is transformed into another correct schema S′ by applying change ∆. What
schema correctness exactly means depends on the structural and dynamic correctness properties
of the used process meta model (cf. Sect. 2.3). Examples are the maintenance of the bipartite
graph structure for Petri Nets or the maintenance of the acyclic graph structure for Activity
Nets.

2.4.1 Classification and Problem Framework

Figure 2.4 presents a two-dimensional classification: The first dimension (marked on the vertical
axis) is grouped by the kind of correctness criteria the different approaches are based on. The
second dimension (marked on the horizontal axis) indicates on which information the different
approaches check their particular correctness criterion. Regarding the first dimension, we dis-
tinguish between approaches founding their correctness criteria on process graph equivalence –
WF Nets, MILANO Nets, and WASA2 Activity Nets – and approaches with correctness criteria
based on process trace equivalence – Flow Nets, WIDE Graphs, Breeze Activity Nets, TRAMs

CHAPTER 2. RELATED WORK 32

ΠS
I1 = <SA, EA>

ΠS
I2 = <SA, EA, SB, EB, SC, EC>

Process Schema S: Process Schema S’:

Schema Change '

Process Instance I1:

Process Instance I2:

trace producible on S’

ΠS’
I1 = <SA, EA>

A B C D A

B

C

D

A B C D

A B C D

subgraph

A subgraph of S’

ΠS’
I2 = <SA, EA, SB, EB, SC, EC>

trace producible on S’

subgraph

A B C no subgraph of S’

Figure 2.5: Basic Idea of Trace and Graph Equivalence

Graphs, and ADEPT WSM-Nets. The core idea of graph equivalence is either to compare the
respective process schema before and after the change [118] or to map the process instance
(sub)graph of I reflecting its previous execution to the changed process schema S′ [1, 136].
Consider Figure 2.5. For process instance I1 the depicted subgraph contains already completed
activity A. Since this graph is also a subgraph of changed process schema S′ schema change ∆
is applicable to I1. By contrast, the respective subgraph for process instance I2 consisting of
completed activities A,B, and C is not a subgraph of S′. Consequently, approaches based on
graph equivalence (e.g. [136]) would reject the application of ∆ to I2.

Generally, trace equivalence focuses on the work done by I so far [26, 67, 104]. If it could
have been achieved on S′ as well, I can be migrated to S′. For example, the execution histories
of process instances I1 and I2 (cf. Figure 2.5) are also producible on changed process schema
S′. Note that in the case of process instance I2 trace equivalence is less restrictive than graph
equivalence.

As a special kind of trace equivalence is proposed by Flow Nets [39]: Here, a predictive
approach is offered where, in addition, future instance execution on the changed schema is taken
into account.

Regarding the second dimension of our classification (marked by the horizontal axis in Figure
2.4), approaches can be further distinguished depending on how they check their particular
correctness criterion. Some of them consider complete history information of respective instances
[26] whereas others use a consolidated view of previous instance execution [67, 100].

We show how the approaches from Figure 2.4 ensure correctness in conjunction with dynamic
process changes. In addition, for comparison purposes, we discuss the approaches along the five
problems depicted by Figure 2.6. These problems are very typical in the context of dynamic
changes and therefore provide a good basis for comparing existing approaches.

CHAPTER 2. RELATED WORK 33

(1) Changing the Past Problem. This problem corresponds to the rule of thumb not to ”change
the past of an instance”. Neglecting this rule may lead to inconsistent instance states (e.g.,
livelocks or deadlocks) or missing input data of subsequent activity executions. Consider,
for example, Figure 2.6(1). The insertion of activity X before already completed activity
B changes the past of process instance I. One consequence could be that X is not exe-
cuted, therefore would not write data element data, and in the following Y would not be
correctly supplied with input data.

(2) Loop Tolerance Problem. This problem refers to an approach’s ability to correctly and
reasonably deal with changes on loop structures (see Figure 2.6(2)). In particular, ap-
proaches should not needlessly exclude instances from migrating to a new schema solely
based on the fact that the respective changes affect loops.

(3) Dangling States Problem. This problem arises in conjunction with approaches not distin-
guishing between activated and started activities (see Figure 2.6(3)). As a consequence,
very often such approaches either forbid the deletion of activated activities (i.e., activities
put into user worklists but not yet started) – what is too restrictive – or they allow the dele-
tion of such activities – what may lead, in case of already started activities, to loss of work.

(4) Order Changing Problem. This problem refers to the correct adaptation of instance mark-
ings when applying order changing operations like parallelization, sequentialization, and
swapping of activities (see Figure 2.6(4)).

(5) Parallel Insertion Problem. This problem may arise when inserting a new parallel branch.
Concerning Petri Nets, for example, after such a change we may have to insert additional
tokens to avoid deadlocks in the sequel (see Figure 2.6(5)). The Order Changing and the
Parallel Insertion problems are closely related to the dynamic change bug (cf. Figure 2.8)
as it has been presented in [118].

In the following we refer to these characteristic problems as the dynamic change problems,
and we show how the different approaches supporting adaptive workflows deal with them.

2.4.2 Approaches based on Graph Equivalence

The approaches discussed in this section base their particular correctness criteria on graph
equivalence. These approaches can be further subdivided into approaches which do and which
do not use instance execution histories for checking compliance.

CHAPTER 2. RELATED WORK 34

A B C

X Y

data I on S:

A B C D

Y I on S:

A B C D

I on S:

1) Changing the Past (CP) 2) LT: Loop Tolerance 3) DS: Dangling States

COMPLETED

A

B

C

DA B C D

I on S: I on S’?

A B C D

Y
I on S:

A B C D

I on S’?

4) OC: Order Changing Problem 5) PI: Parallel Insertion Problem

Correctness Criteria Based Problems

Marking Adaptation Problems

Parallelizing B and C

Inserting parallel branch

loop_back

C activated or started?

Figure 2.6: Five Typical Problems Regarding Dynamic Process Change

2.4.2.1 Approaches Not Requiring Instance Execution Information

WF Nets: Informally, the core idea of the approach presented in [118] is as follows: An
instance I on schema S (represented by a marked WF Net) is compliant with the modified
schema S′ := S + ∆, if S can be mapped to S′ (or vice versa) after applying special operators
to S, S′, or both (graph equivalence). One example is depicted in Figure 2.7: Process schema
S can be mapped to process schema S′ if we hide newly inserted activity X in S′.

A X B A B

Process Schema S: Process Schema S’:

Hiding X

Figure 2.7: Graph Equivalence When Hiding Activities

By contrast, for the process schema change depicted in Figure 2.8 no mapping between S and
S′ can be found, neither by hiding nor by blocking activities. Accordingly, for process instance
I no corresponding marking on changed process schema S′ can be found. This phenomenon
arising in conjunction with order–changing operations is called the dynamic change bug.

More precisely, an instance I on schema S (represented by a marked WF Net) is compliant
with the modified schema S′ := S + ∆, if S and S′ are related to each other under given
inheritance constraints; i.e., either S is a subclass of S′ or vice versa. In this context, the

CHAPTER 2. RELATED WORK 35

D A B C

C

A D

B
Process Instance I:

C

A D

B
Process Schema S: Process Schema S’:

?
dynamic change bug

Figure 2.8: Dynamic Change Bug

following two kinds of basic inheritance constraints are provided [118]: A schema S is a subclass
of another schema S′ if one cannot distinguish the behaviors of S and S′ (1) either when only
executing tasks of S which are also present in S′ or (2) when arbitrary tasks of S are executed
but only effects of those tasks are taken into account which are present in S′ as well. Thus,
inheritance constraint (1) works by blocking and inheritance constraint (2) works by hiding a
subset of tasks of S. More precisely, blocking of tasks means that these tasks are not considered
for execution. Hiding tasks implies that the tasks are renamed to the silent task τ . (A silent
task τ has no visible effects and is used, for example, for structuring purposes.) One example is
depicted in Fig. 2.10(1) where the newly inserted activities X and Y are hidden by labeling them
to the silent task τ . In addition, further inheritance constraints can be achieved by combining
hiding and blocking of process tasks. Based on these inheritance constraints we can state the
following correctness criterion:

Correctness Criterion 1 (Compliance Under Inheritance Relations) Let S be a process
schema which is correctly transformed into another process schema S’. Then instance I on S is compliant
with S’ if there is a mapping between S and S’ under inheritance constraints (for a more formal definition
see [118]).

The challenging question is how to ensure Criterion 1. In [118] van der Aalst and Basten
present an elegant way by providing special change operations which automatically preserve
one of the presented inheritance relations between the original and the changed schema. These
change operations comprise additive and subtractive changes or, more precisely, the insertion
and deletion of cyclic structures, sequences, parallel and alternative branches. Let therefore
again schema S be transformed into schema S′ by change ∆. In order to check whether ∆ is an

CHAPTER 2. RELATED WORK 36

A B S:

A B

X Æ W

Y Æ W

S’:

Nc

Figure 2.9: Inheritance Preserving Change

inheritance preserving change and therefore S and S′ are related under inheritance (cf. Criterion
1) the authors define precise conditions with respect to S and S′.

As an example take the insertion of a cyclic structure Nc into S (resulting in S’) where Nc

and S have exactly one place in common (see Fig. 2.9). Then it can be ensured that S′ is a
subclass of S when hiding X and Y in Nc.

As it can be seen from Figure 2.10(1), using Criterion 1 it is possible to change already passed
process regions (Changing the Past Problem). One problem in this context is to correctly adapt
control flow tokens. By using anonymous tokens (i.e., excluding data tokens) the problem is
simplified.

Using inheritance relations as described above restricts the set of applicable changes to
additive and subtractive ones. More precisely, there is no adequate inheritance relation based
on hiding or blocking activities when applying an order-changing operation. Consequently, the
Order Changing Problem (cf. Figure 2.6) is factored out. Nevertheless, van der Aalst and
Basten [118] offer an original and very important contribution by ensuring compliance for many
practically relevant changes without need for accessing instance data.

After having decided whether an instance I on S is compliant with S′ or not (cf. Criterion
1), we need rules to adapt the marking of I on S′. For this purpose, [118] provides transfer rules
based on inheritance relations (cf. Definition 1). After inserting activities, cyclic structures or
alternative branches, necessary marking adaptations are realized by directly mapping tokens of
S onto S′. The insertion of parallel branches is more complicated since in some cases we have
to insert additional tokens to avoid deadlocks. One example is given in Figure 2.10(5) where we
add one token to an input place of the parallel join transition.

CHAPTER 2. RELATED WORK 37

5) PI: Transfer rules insert new control tokens to avoid deadlocks in the sequel

A B C

A B C D

progressive
transfer rule

X

 A B C D

I3 on S: I3 on S’: Transfer Rule

2) LT: Approach is loop-tolerant

A C

3) DS: Model-inherent problem

I2 on S: I2 on S’:

4) OC: Order changing operations explicitly excluded by this approach

Woflan 2.2.:
Inheritance Checker

A X
� W B Y

� W C

data transfer rule

hiding X
hiding Y

1) CP: Inheritance Transformation Rules allow changes of the past

I1 on S: I1 on S’:

 A B C

B activated or running?

inserting activities X and Y

WF Nets

Figure 2.10: Correctness Checking and Marking Adaptations in [118, 127]

Taking our classification provided in Section 2.2 the approach presented by [118] can be
estimated as follows:

1. Completeness: Data flow issues as well as order changing operations are not considered.

2. Correctness: A formal criterion based on graph equivalence is provided. Furthermore,
for the allowed changes, there are automatic rules for adapting markings when migrating
process instances to the changed process type schema.

3. Change Realization: Checking inheritance of arbitrary process schemes is PSPACE-
complete [118]. However, a diagnosis tool called Woflan has been developed [118, 128, 129]
to automatically decide inheritance rules for two given schemes.

4. Interplay Between Process Type and Process Instance Changes: This aspect is
not taken into account.

CHAPTER 2. RELATED WORK 38

2.4.2.2 Approaches Using Complete Execution Information

WASA2 Activity Nets: WASA2 [127, 135, 136] also uses graph equivalence to state formal
correctness for dynamic changes. As opposed to WF Nets WASA2 additionally takes instance
information into account. More precisely, the execution state of an instance is described by its
purged instance graph which is derived from original schema S by deleting all activities which
have not been started yet and by removing all associated control and data edges.

Formally, a mapping m : VI 7→ VS′ between process instance I = (VI , CI , DI) and pro-
cess schema S′ = (VS′ , CS′ , DS′) assigns to every instance node n ∈ VI a unique schema node
m(n) ∈ VS′ . With this, the following correctness criterion based on valid mappings between
instance and schema graph can be stated:

Correctness Criterion 2 (Valid Mapping) Let I = (VI , CI , DI) be a purged process instance
graph derived from process schema S = (VS , CS , DS). Let further ∆ be a change which correctly trans-
forms S into another process schema S′ = (VS′ , CS′ , DS′). Then: I is compliant with S’ iff a valid
mapping m: VI 7→ V ′

S exists; i.e.,
(∀ i’, j’ ∈ VS′ with ∃ (i’, j’) ∈ CS′ ∃ i, j ∈ VI : i’ = m(i), j’ = m (j) ∧ (i, j) ∈ CI) and vice versa ∧

(∀ k’, l’ ∈ VS′ with ∃ (k’, l’) ∈ DS′ ∃ k, l ∈ VI : k’ = m(k), l’ = m (l) ∧ (k, l) ∈ DI) and vice versa

Intuitively, a process instance I can be migrated to a changed process schema S′ if each
completed activity of I is also contained in S′ and all control and data dependencies existing in
I have counterparts in S′ (cf. Figure 2.11(5)). Criterion 2 can be paraphrased using the notion
of schema prefixes [135] which leads to Criterion 3.

Correctness Criterion 3 (Schema Prefix) Let I = (VI , CI , DI) be a purged process instance
graph derived from process schema S = (VS , CS , DS). Let further ∆ be a change which transforms S into
another process schema S′ = (VS′ , CS′ , DS′). Then: I is compliant with S’ iff I is a prefix of S’, i.e.,
VI ⊆ VS′ , CI ⊆ CS′ , DI ⊆ DS′ and ∀ (p,q) ∈ (CS′ − CI) ∪ (DS′ −DI): q 6∈ VI .

Instance graph I4 from Figure 2.11(5) is a prefix of S′ but I3 in Figure 2.11(4) is not. From
Figure 2.11(1) we can see that Criteria 2 + 3 prohibit changes of already passed graph regions.
Thus, correct data provision of activities and consistent instance states are guaranteed. Since
WASA2 Activitiy Nets are acyclic (cf. Section 2.3.2) the Loop Tolerance Problem (cf. Figure 2.6)
is not present. Details about how Criteria 2 + 3 can be checked and instances be adapted to the
changed schema have not been available. However, a powerful prototype exists. Interestingly,
for some cases Criteria 2 + 3 are too restrictive regarding the Order Changing Problem (cf.
Figure 2.6). An example is depicted in Figure 2.11(4) where I3 could be smoothly migrated to
S′ but no valid mapping between I3 and S′ exists.

Finally, we classify this approach according to the challenges introduced in Section 2.2:

1. Completeness: WASA2 Activity Nets are to be acyclic, i.e., loop structures are not
allowed.

CHAPTER 2. RELATED WORK 39

1) CP: Valid Mapping and Schema Prefix Criteria forbid changes of the past

I1 on S:

 A B C

A X B Y D

S’:
purged instance graph of I1

not a prefix of S’ no valid mapping can be found

2) LT: WASA2 process schemata are acyclic Æ problem is factored out

3) DS: is not present due to distinction of not started and started activities

 A B C
 A C

 S t arted

N otSt arted

I2 on S: I2 on S’:

4) OC: Valid Mapping and Prefix Criteria too restrictive reg. order changing operations

 A B C D

A

B

C

D

I3 on S: S’

not a prefix of S’ no valid mapping can be found

5) PI: no problem

A B C D

A

X

B C D

I4 on S: I4 on S’:

prefix of S’

valid mapping m:

m(AS) = m(AS’), m(BS) = m(BS’),
m((AS Æ BS)c) = m((AS Æ BS’)c),

WASA2 Activity Nets

Figure 2.11: Criteria 2 and 3 [135, 136] Applied to Typical Change Problems

2. Correctness: A formal criterion based on graph equivalence is provided. However, this
criterion is too restrictive in conjunction with order–changing operations.

3. Change Realization: It is not clear whether the correctness criterion is actually checked
by graph mappings or if there are more efficient methods. Furthermore, no methods for
marking adaptations after process instance migrations are provided.

4. Interplay Between Process Type and Process Instance Changes: This approach
allows both, process type and process instance changes within one system. However, it
is not possible to propagate process type changes to already modified (biased) process
instances.

MILANO Nets [1, 2]: Only a special class of schema transformations is considered, namely
parallelization, sequentialization, and swapping of activities [1]. In doing so, special constraints
(summarized by the Minimal Critical Specification (MCS)) are obeyed for the underlying Se-
quential Model (cf. Sect. 2.3). For these restricted changes the following correctness criterion

CHAPTER 2. RELATED WORK 40

1) CP: Instances in unsafe states are postponed until they are in a safe state again

A B

B A
A

B

B

A

unsafe state
I1 on S (time t1)

A B

I1 on S (time t2 > t1)

I1 on S’ (time t2)

sequential models (SM) for S and S’

2) LT: Underlying net models acyclic Æ problem is factored out

3) DS: Model-inherent problem (cf. WF Nets)
4) OC: Approach offers solely order-changing operations but without providing marking
adaptation rules

 A B C D

A

B

C

D

I2 on S: I2 on S’:
marking adaptations??

5) PI: Parallel Insertion is not provided by MILANO Æ problem factored out

Activities A and B have
been swapped!

SM SM’ MILANO Nets

Parallelizing B and C

Figure 2.12: Typical Change Problems in MILANO [1]

is provided:

Correctness Criterion 4 (Safe States) Let S be a process schema and I an instance on S. Let
further ∆ be a change which transforms S into another correct process schema S’. Then: I is compliant
with S’ if I is not in an unsafe state on S regarding S’. A state of S is unsafe regarding S’ if this state is
not present in S’.

Potential states of S and S′ can be determined by constructing their Sequential Models
(reachability graphs). An example for an instance with unsafe state is depicted in Figure 2.12(1).
For such cases MILANO postpones instance migration until the instance will be in a safe state
again. Doing so cultivates the Changing the Past Problem (cf. Figure 2.6). The Loop Tolerance
and the Parallel Insertion Problems cannot be evaluated since the underlying process schemes
are acyclic and parallel insertion is not supported (cf. Section 2.3.1). Parallelization of activities
is always allowed, but no details are given how to adapt instance markings in this context (cf.
Figure 2.12(5)).

Taking our classification provided in Section 2.2 the MILANO approach can be estimated
as follows:

CHAPTER 2. RELATED WORK 41

1. Completeness: The expressiveness of this approach is strongly restricted by claiming
acyclic process schemes and neglecting data flow issues. Furthermore, only certain order
changing operations are allowed.

2. Correctness: A formal correctness criterion is provided.

3. Change Realization: This approach neither gives any idea how to ensure its correctness
criterion nor how to actually adapt markings after migrating process instances to a changed
process schema.

4. Interplay Between Process Type and Process Instance Changes: This aspect is
not considered.

2.4.3 Approaches Based on Trace Equivalence

In this section we discuss approaches which base dynamic change correctness on trace equivalence
(cf. Figure 2.4).

2.4.3.1 Predictive Approaches

Flow Nets offer a first approach based on trace equivalence [38, 39]. In [39], process instance
changes on S are carried out by substituting the marked sub-net N1 of S, which is affected by
∆, by another marked sub-net N2, which reflects the modifications set out by ∆. Thereby, N1

is referred to as the old and N2 as the new change region (cf. Figure 2.13(4)). As the authors
point out, the selection of the change regions cannot be fixed. Roughly, the old change region
is defined as the smallest marked sub-net containing all activities affected by ∆.

For the following considerations, please remember that ī denotes the initial and f̄ the final
marking of S (cf. Section 2.3.1). Furthermore, we formally define the FiringSequenceSet (FSS)
of a schema S as follows: Let m and m′ be two markings on S. Then FSS(S,m, m′) is the set
of all possible firing sequences leading from m to m′ on S.

Correctness Criterion 5 (Pre-Change Firing Sequence) Let I be an instance on process schema
S with marking m and let ω ∈ FSS(S, ī, m). Let further ∆ be a change which transforms S into another
correct process schema S’ and let m’ be the resulting marking of I on S’. Then I is compliant with S’ iff
• FSS(S, m, f̄) 6= ∅ =⇒ FSS(S’, m’, f̄) 6= ∅
• ∀ω′ ∈ FSS(S’, m’, f̄) =⇒ (ω′ ∈ FSS(S, m, f̄) ∨ ωω′ ∈ FSS(S’, ī, f̄))

Criterion 5 presupposes that the marking m′ resulting from the migration of instance I to
the changed schema S′ is known. Then starting from m′ it has to be verified that all firing
sequences ω′ leading from m′ to the terminal marking on S′ are either producible on S starting
from m as well (cf. Figure 2.13(1)) or firing sequence ω leading to m on S can be continued

CHAPTER 2. RELATED WORK 42

on S′ by ω′ (cf. Figure 2.13(2)). Criterion 5 is very interesting in the context of the Changing
the Past Problem (cf. Figure 2.6): On the one hand it allows ”pure” changes of the past (cf.
Figure 2.13(1),i). On the other hand, it forbids changes which affect both already passed regions
and regions which will be entered in the sequel (cf. Figure 2.13(1),ii). Whether Criterion 5 is
loop tolerant or not depends on the definition of the pre-change firing sequence ω (cf. Figure
2.13(2)).

Regarding the Order Changing Problem (cf. Figure 2.6) the authors present two kinds
of change operations and a special change class, the Synthetic Cut-Over Change (SCOC)2.
Applying SCOC, the old change region N1 is maintained in S′ together with N2 (for an example
see Figure 2.13(4)); i.e., S′ contains two versions of the modified subnet. How this ”fusion” of
old and new change region is carried out depends on the applied change. In [39] two change
scenarios – Upsizing and Downsizing – are introduced. Upsizing means that N2 can ”do more”
than N1, i.e., the set of all valid firing sequences on N1 is a subset of all valid firing sequences on
N2. Downsizing is the dual counterpart of upsizing, i.e., N2 can ”do less” than N1. For example,
Figure 2.13(4) shows an upsizing. In this case, the SCOC can be constructed by sticking N1 and
N2 together over flow-jumpers (cf. Figure 2.13(4)). Flow-jumpers are transitions, which map
each marking of N1 to a marking of N2 [38]. This way of constructing the SCOC in conjunction
with upsizing operations is correct regarding Criterion 5. In the other case – downsizing – the
SCOC is constructed by merging N1 and N2 over one output place, i.e., instances with tokens
in N1 are further executed according to the old net.

We can summarize the above discussion as follows:

1. Completeness: Regarding the expressiveness of Flow Nets and the offered change oper-
ations there is no restriction.

2. Correctness: A formal criterion is provided.

3. Change Realization: The authors do not explain how to check the correctness criterion.
For special change operations the approach offers the SCOC for adapting process instance
markings when migrating to the changed process schema. However, due to the complexity
of this method it cannot be used in practice. There are no marking adaptation methods
for all other change operations.

4. Interplay Between Process Type and Process Instance Changes: This topic is
not taken into account.

2.4.3.2 Using Complete History Information

WIDE Graphs: A widely-used correctness property is the compliance criterion introduced by
[26]. Intuitively, change ∆ of schema S can be correctly propagated to process instance I on S

2The method of constructing SCOC is also applied in the area of reconfigurable high–level Petri Nets [6]. Here,
different variants of a process a pre–modeled by using the SCOC method

CHAPTER 2. RELATED WORK 43

1) CP: Pre-Change Firing Criterion allows changes of the past (i) but not “mixed” changes (ii)

i) changes of the past

 A B C

 A X B C

I1 on S with marking m: I1 on S’ with marking m’:

Z = <A, B>

ii) “mixed” change, i.e., this change affects the past as well as the future

 A B C

 A X B Y C

I2 on S with marking m: I2 on S’ with marking m’:

Z = <A, B>

2) LT: If approach is loop tolerant depends on the definition of pre-change firing sequence Z

 A B C

F

 A X B C

F

I3 on S with marking m: I3 on S’ with marking m’:

Z1 = <A, B, O, A >
reduced view Z2 = <A >

2nd iteration

3) DS: Model-inherent problem (cf. WF Nets)

4) OC: Upsizing and Downsizing can be solved using the Synthetic Cut Over Change (SCOC)

 A B C D

 A B C D

A

B

C

D

I4 on S with marking m: I4 on SCOC with marking m:

flow jumper

5) PI: How to determine marking m’ on the changed net?

old change region N1

new change region N2

N1

Flow Nets

Z’ = <C> � FSS(S, m, f)

Z’ = <Y, C> � FSS(S, m, f) � ZZ’ = <A, B, Y, C> > � FSS(S’, i, f)

 Z’ = <X, B, C> � FSS(S, m, f)

 Z1Z’ = <A, B, O, A, X, B, C> � FSS(S’, i, f)

reduced view: Z2Z’ = <A, X, B, C> � FSS(S’, i, f)

Not considered as correct!

Figure 2.13: Pre-Change Criterion and SCOC [39] Applied to Typical Change Problems

CHAPTER 2. RELATED WORK 44

if and only if the execution of I, taken place so far, can be ”simulated” on the modified schema
S′ as well. Since WIDE works with a history-based execution model, compliance is based on
trying to replay the execution history ΠS

I of instance I on the changed schema S′. Formally:

Correctness Criterion 6 (Compliance Criterion) Let S be a process schema and I be a process
instance on S with execution history ΠS

I . Let further S be transformed into another schema S’ by change
operation ∆. Then I is compliant with S’ if ΠS

I can be replayed on S = S + ∆ as well, i.e., all events
stored in ΠS

I could also have been logged by an instance on S’ in the same order as set out by ΠS
I .

Criterion 6 forbids changes of the past (cf. Figure 2.14(1)). However, using execution
histories as defined in WIDE (cf. Section 2.3.2) is too restrictive in conjunction with loops, i.e.,
it is not loop tolerant as can be seen from Figure 2.14(2). Obviously, ΠS

I2 cannot be produced
on S′. Therefore, I2 is excluded from migration to S′ though there would be no problems when
proceeding execution of I2 based on S′. Since [26] gives no information about how to check
Criterion 6, we assume that compliance is ensured by trying to replay the whole execution
history on the changed schema. Thus, we get the necessary marking adaptations automatically
when checking compliance without additional effort. However, doing so causes an overhead due
to the possibly extensive volume of history data which is normally not kept in main memory
[67, 82, 121].

Taking our classification provided in Section 2.2 the WIDE approach can be estimated as
follows:

1. Completeness: In WIDE, there are no restrictions regarding the expressiveness of the
meta model and the offered change operations.

2. Correctness: WIDE introduces compliance as correctness criterion. Based on the par-
ticular representation of execution histories in WIDE this criterion is too restrictive in
conjunction with loops. Furthermore, there might be problems with dangling states since
execution histories in WIDE only contain End entries (representing activity completions).

3. Change Realization: Checking compliance and adapting process instance markings are
realized by replaying execution histories on the changed process schema. The complexity is
O(n∗m) where n corresponds to the number of activities of the respective process schema
and m to the number of process instances.

4. Interplay Between Process Type and Process Instance Changes: Since WIDE
does not support changes of single process instances no solutions for the interplay of process
type and process instance changes are provided.

Similarily, several other approaches [104, 115] exist which propose correctness criteria based
on instance execution information. In [115], firstly, the region of the process schema is detected
which is affected by the change (change region). Then for each process instance it is checked

CHAPTER 2. RELATED WORK 45

1) CP: Compliance Criterion prohibits changes of the past

A B C D

A X B Y C A B C

S: S’:

I1 on S: 3I1
S
 = ((Estart), (EA), (EB, <d1, ‘ok’>)) cannot be produced on S’

VarsS = {d1} VarsS’ = {d1, d2}

2) LT: Compliance Criterion in conj. with WIDE-representation of execution histories is too

restrictive on conjunction with loops

A B C D

A B C D X

S: S’: VarsS = {d1, d2}
d2>0

d2<0

VarsS’ = {d1, d2}

I2 on S: 3I2
S
 = ((Estart), (EA), (EB, <d1, ‘Smith>), (EC, <d2, -4>), (EA)) cannot be produced on S’

3) DS: is present since histories on this approach only contain end entries of activities

A B C A C

S:

I3 on S: 3I3
S
 = ((Estart), (EA)) I3 on S’: 3I3

S’
 = ((Estart), (EA))

S’: B activated or already running?

4) OC: no problem

A

B

C

D

VarsS = {d1, d2}

I4 on S’: 3I4
S’

 = ((Estart), (EA), (EB, <d1, ‘Doe’>),

 (EC, <d2, 3>))

S: S’:

I4 on S’: 3I4
S’

 = ((Estart), (EA), (EB, <d1, ‘Doe’>),

 (EC, <d2, 3>))

)

5) PI: no problem

WIDE Graphs

start/end activity
And split/join

Xor join

Xor split

loop back

Figure 2.14: Checking Compliance by Replaying the Complete Execution History [26]

CHAPTER 2. RELATED WORK 46

Table 2.1: Examples of Migration Conditions in TRAMs(cf. [67])
Change ∆ Migration Condition for Instance I
Insertion of Activity A none
Modifying start condition scA of Activity A (SA /∈ ΠS

I) ∨ (SA ∈ ΠS
I ∧ scA holds)

Deletion of Activity A SA /∈ ΠS
I

Insertion of read (write) data edge for Act. A SA /∈ ΠS
I (EA /∈ ΠS

I)
Underline: ΠS

I denotes execution history of I on S; SA/EA: start/end event of activity A

whether a process instance has already reached the change region or not. If not the respective
instance is estimated as being compliant. The complexity for determining the change region
is O(n4 ∗ (n!)2) (where n denotes the number of activities contained in the respective process
schema). However, the author does not give any hint how to concretely migrate compliant
process instances, i.e., methods for adapting process instances are missing.

2.4.3.3 Using a Consolidated View on the Execution History

TRAMs [66, 67] uses Criterion 6 as well. However, replaying each history entry of an instance on
the changed schema is considered as too inefficient, especially when a large number of instances
has to be migrated. Therefore, TRAMs provides migration conditions based on which compliance
of a process instance with the changed schema can be checked more efficiently (cf. Table 2.1).

Due to the declarative control flow definition and the absence of explicit control edges, the
insertion of activities is a complex change; i.e., first a new activity node A is inserted and
then it is embedded into the control flow by setting the start conditions of A (”incoming edges”)
and the intended successors (”outgoing edges”). Figure 2.15(1) depicts the aggregated migration
conditions for the insertion of two activities and a data dependency between them. Figure 2.15(4)
shows the parallelization of activities. To our best knowledge TRAMs Graphs are acyclic and
consequently the Loop Tolerance Problem cannot be decided on.

The discussion of TRAMs can be summed up as follows:

1. Completeness: It is not clear whether TRAMs supports loop constructs or not.

2. Correctness: TRAMs uses the compliance criterion as introduced in WIDE. Due to the
representation of execution histories in TRAMs the use of the compliance criterion would
be also too restrictive in conjunction with loops.

3. Change Realization: TRAMs states explicit compliance conditions based on which the
compliance criterion can be ensured. Since these conditions are based on history scans the
complexity is O(n ∗m) as in WIDE (where n corresponds to the number of activities of

CHAPTER 2. RELATED WORK 47

1) CP: Migration Conditions (cf. Table 1) prohibit changes of the past

 A

SC: TRUE

B

SC: done(A)

C

SC: done(B)

S:

' = (insertAct(X), insertAct(Y), modSC(X, done(A)), modSC(B, done(B)),
modSC(Y, done(B)), modSC(C, done(B)), insertDataElem(d2),
insertDataEdge(X, d2, write) insertDataEdge(Y, d2, read)) S’:

I1 on S: 3I1
S
 = ((SA), (EA)), (SB), (EB, <d1, 4>)) MCfinal: (SB � 3I1 and done(X)) = FALSE

A

SC: TRUE

X

SC: done(A)

B

SC: done(X)

Y

SC: done(B)

C

SC: done(Y)

2) LT: To our best knowledge TRAMs process schemes are acyclic Æ problem is factored out

3) DS: no problem since TRAMs distinguishes between start and end events in histories

4) OC: no problem

 A

SC: TRUE

B

SC: done(A)

C

SC: done(B)

D

SC: done(C)

A
SC: TRUE

B
SC: done(A)

C
SC: done(A)

D
SC: done(B) and

done(C)

' = (modSC(C, done(B)), modSC(D, done(B) and done(C)))

S: S’:

I2 on S: 3I2
S
 = ((SA), (EA)), (SB), (EB), (SC), (EC)) MCfinal: (SC � 3I2 and done(A)) = TRUE

5) PI: no problem

TRAMs Graphs

control edge
data edge

Figure 2.15: Migration Conditions of TRAMs

the process schema and m to the number of process instances). How markings are adapted
after migrating process instances to the changed process schema is not explained.

4. Interplay Between Process Type and Process Instance Changes: TRAMs does
not address changes of single process instances. Therefore there are no results regarding
the interplay between process type and process instance changes.

2.4.4 Other Approaches

The Petri Net based approaches discussed so far have in common that they use anonymous tokens
which represent the control flow. In the Petri Net literature, there are many suggestions on using
tokens which are enriched with further information, e.g., about time constraints [83, 114]. One
of these extended Petri Net models are Funsoft Nets [34] which use typed tokens to represent
control as well as data flow. However, the inherent problems of models with True Semantics are
still present for such high–level Petri Nets.

A rule–based approach is offered by ULTRAflow [41]. The authors focus on modification of
the implementation and meta data of process activities. To handle instance access on changed
specifications in a consistent manner special synchronization methods have been developed. To

CHAPTER 2. RELATED WORK 48

reduce complexity several important change operation types like, for example, delete operations
are factored out in ULTRAflow. Therefore this approach is interesting but due to the restricted
set of change operations offered to users it is not suitable for practical applications.

MOKASSIN [53, 54] uses an object–oriented approach. Changes are realized by encapsu-
lating change primitives within the process instances, i.e., the process instances themselves are
responsible for ensuring correctness and consistency when carrying out changes. Furthermore,
MOKASSIN tries to provide compliance by offering a fine–granular versioning concept. However
the authors give no idea how compliance can be concretely ensured.

An approach based on state charts is presented in [43]. However, only process schema changes
without considering their propagation on running process instances are analyzed.

Reflective approaches [9, 37] offer process languages based on which processes as well as meta
processes describing the processes themselves can be defined. In SPADE [9], reflective process
language SLANG allows to model meta processes like, for example, a meta process describing the
different steps of a process change. If a process is changed (within a special editor) the change
meta process is started. This is done by initializing the meta process with a special token which
contains all relevant information for each process instance to be migrated. However, the authors
give no idea how to adapt instance markings after their migration to the changed process schema.

2.5 Exterminating Dynamic Change Problems - A Comparison

As can be seen from Table 2.2 all presented approaches are based on formal correctness criteria.
Obviously, there is a trade-off between complexity of the used process meta model and the
flexibility offered by the system during runtime. The more powerful the process meta model is
the more complex dynamic process changes are to handle. Agostini and De Michelis [1] have
realized this in a very early stage and therefore vote to keep the process meta model as simple
as possible in order to achieve a maximum of flexibility. For this reason, for example, loops
cannot be modeled in MILANO, but must be handled dynamically (via backward jumps) if
needed. Furthermore, MILANO limits adaptability to control flow changes, while data flow
is managed at the level of single activities. Obviously, this simplifies the users’s view on the
process. However, in general, control flow changes cannot be treated in a isolated manner and
independently from data flow and other process aspects.

Furthermore, Table 2.2 gives a comparison of the different approaches regarding compliance
checking and marking adaptations. In [118], an elegant way for checking compliance as well
as for automatically adapting instance markings is presented. WASA2 [136] does not explicitly
provide compliance checks. We assume that a valid mapping (cf. Definition 2) is determined
by comparing nodes, control flow and data flow edges of the purged instance graph for each
instance. Though both, replaying whole execution history (WIDE) and checking migration
conditions (TRAMs) can be done with the same complexity, generally, there is a giant different
in real effort. The reason is that one has to cope very likely with large amount of log data

CHAPTER 2. RELATED WORK 49

Table 2.2: Comparison of Process Meta Models, Correctness Criteria and Marking Adaptation
Expressiveness Completeness Formal Compliance Marking

general loops DF of Changes Criteria Checks Adaptations
WF Nets + + n.a. − + X X
WASA2 + n.a. + + + n.a. n.a.

MILANO ∼ n.a. n.a. − + n.a. n.a.
Flow Nets + + + + + n.a. O(en)

WIDE + + + + + X O(n) +
Breeze 0 n.a. + + 0 n.a. n.a.
TRAMs + n.a. + + 0 X O(n) n.a.

DF: data flow; n.a.: ”not addressed”; ∼: ”simplicity issues”; n: # activities in process schema

Table 2.3: Comparison by Means of 5 Typical Change Problems (cf. Figure 2.6)
1) CP 2) LT 3) DS 4) OC 5) PI

WF Nets possibly critical + possibly critical + +
WASA2 prevented − prevented 0 +

MILANO possibly critical − possibly critical + −
Flow Nets possibly critical ? possibly critical + +

WIDE prevented − possibly critical + +
Breeze prevented − ? + +
TRAMs prevented − prevented + +

+: ”problem not present”; −−: problem present or factored out”; ?: ”no statement possible”

[67] which is usually not kept in primary storage. However, by replaying the complete history
information on the changed schema [26] we get the necessary instance markings for free.

Table 2.3 compares the different approaches from Figure 2.1 with respect to their ability to
solve the dynamic change problems (cf. Figure 2.6).

1) Changing the Past Problem: From Figure 2.3 it can be seen that all Petri-Net based
approaches with True-Semantics (WF Nets, MILANO Nets, and Flow Nets) allow changes of
already passed regions of an instance. As mentioned in Section 2.4 doing so may cause two
problems – incomplete input data when invoking activities and inconsistent instance execution.
Such problems have been partially factored out in the presented approaches since data flow is
not considered. As an example take instance I1 on S′ in Figure 2.10(1). Obviously, the newly
inserted activity X will never be executed, i.e., the execution state of I1 is not clearly defined.
Assume that WF Nets do not exclude data flow and therefore activities X and Y can be inserted
with the data dependency between them (see Figure 2.10(1)). This change would be considered
as insertion of a parallel branch (projection inheritance) and a token be added to place data,
but with unclear data semantics. Interestingly, this problem is excluded by Flow Nets since
common changes of the past and the future are forbidden (cf. Figure 2.13(1),ii). Therefore, only
the problem of inconsistent instance execution states remains.

CHAPTER 2. RELATED WORK 50

2) Loop Tolerance Problem: Many of the presented approaches use acyclic process models
whereby problem LT is factored out. The exclusion of loops, however, is out of touch with
practical requirements. As discussed in Section 2.4, it depends on the exact definition of the
pre-change firing sequence (cf. Criterion 5) whether Flow Nets are loop-tolerant or not. Anyway,
applying Criterion 6 on basis of execution histories as offered in WIDE or TRAM is too restrictive
in conjunction with loops.

3) Dangling States Problem: This problem of being unable to distinguish between activated
and running activities is mainly present in Petri-Net based approaches. Transitions usually
represent real-world tasks and consume a certain piece of time. If one of them is deleted the
challenging question is how to handle in-progress work associated with this transition. One ex-
ception is WIDE where the special representation form of execution histories, more precisely the
storing of End events, may lead to the dangling states problem as well. In contrast, approaches
which explicitly differ between activity states Activated and Running like WASA2 and TRAMs
take care of this and ensure that running activities are not disturbed by dynamic changes.

4) Order-Changing Problem: This problem appears in conjunction with correctness criteria
where certain process instances are needlessly excluded from migrating to the changed schema.
As shown in Section 2.4.2.2, strict graph equivalence is too restrictive in certain cases.

5) Parallel-Insertion Problem: This problem refers to the necessary marking adaptations
when inserting a parallel branch such that no deadlocks occur. The only Petri-Net based ap-
proach which presents concrete adaptation rules in this context is offered by WF Nets. The
suggested strategies ensure a correct control flow in the sequel. However, with respect to data
flow, semantics of the newly inserted tokens remains unclear.

2.6 Change Scenarios and Their Realization
in Existing Approaches

In the previous sections emphasis has been put on fundamental correctness issues related to
dynamic process changes. So far it has been circumstantial whether a single process instance or
a collection of instances is subject to change. In this section we have a closer look at different
change scenarios and related requirements. We provide a short categorization of adaptive re-
search process engines which includes Chautauqua [40], WASA2 [136], Breeze [104], and ADEPT
[88]. In addition, we consider the respective approaches followed by AgentWork [80], EPOS [75],
and DYNAMITE [49] as well as the flexibility support offered by commercial process manage-
ment tools.

2.6.1 Changes of Single Process Instances

Adaptations of single process instances become necessary when exceptional situations occur
or the structure of a process dynamically evolves. Both scenarios can be found, for example,

CHAPTER 2. RELATED WORK 51

in hospital and engineering environments [49, 80]. Besides state-related correctness properties
instance-specific changes pose several challenging issues. In particular, change predictability
influences the way how process instances are adapted during runtime. Regarding evolving pro-
cesses, for example, necessary changes and their scope are often known at buildtime [49, 75, 80].
Consequently, respective adaptations can be pre-planned and automated. In contrast ad-hoc
changes have to be applied as response to unforeseen exceptions [88]. Usually, user interac-
tion becomes necessary in order to define the respective runtime change. Of course, we cannot
always see process instance changes in terms of black and white, but the distinction between
pre-planned and ad-hoc change contributes to classify existing approaches.

2.6.1.1 Approaches Supporting Ad-hocInstance Changes

In Breeze and WASA2, instance changes can be defined by the use of a graphical process editor.
Using a process editor for change definition, however, is only conceivable for expert users. If
changes shall be definable by end users as well, application-tailored user interfaces must be
offered to them. Obviously, this requires comprehensive programming interfaces. Only few
approaches provide such interfaces [88, 136]. ADEPT, for example, offers a change API which
enables change definition on WSM Nets at a high semantic level, e.g., to jump forward in the flow
or to insert a new step between two sets of activities [88]. Very important in this context is to
ensure that none of the guarantees which have been achieved by formal checks at buildtime are
violated due to the ad hoc change. Note that this does not only require compliance checks and
marking adaptations, but also checks with impact to correctness properties of the process schema
itself (e.g. regarding data flow). Therefore ADEPT uses well-defined correctness properties for
process models, formal pre- and postconditions for change operations, and advanced change
protocols [88].

2.6.1.2 Approaches Supporting Pre-Planned Instance Changes

Application–specific support for automatic process changes is provided by AgentWork [80, 81],
DYNAMITE [49], and EPOS [75], but may be realizable on top of adaptive PMS like WASA2,
ADEPT, or InConcert as well. The overall aim is to reduce error-prone and costly manual process
adaptations. In order to realize automatic process adaptations, firstly, the PMS must be able
to detect logical failures in which process instance changes may become necessary. Secondly, it
must determine necessary adaptations, identify the instances to be adapted, correctly introduce
the change to them, and notify respective users. This poses many additional issues ranging from
the consistent specification of pre-planned changes at buildtime up to their concrete realization
during runtime. Existing approaches supporting automatic process instance changes can be
classified according to different criteria. The most important one concerns the basic method
used for automatic failure detection and for change realization. We distinguish between rule-
based, process-driven, and goal-based approaches:

CHAPTER 2. RELATED WORK 52

Rule-based approaches use ECA (Event/Condition/Action) models to automatically de-
tect logical failures and to determine necessary process changes. However, most of them limit
adaptations to currently executed activities [25, 27]. In contrast, AgentWork [80, 81] enables
automatic adaptations of the yet unexecuted regions of running process instances as well. Basic
to this is a temporal ECA rule model which allows to specify adaptations at an abstract level
and independently of concrete process models. When an ECA rule fires, temporal estimates
are used to determine which parts of the running process instance are affected by the detected
exception. Respective process regions are either adapted immediately (predictive change) or - if
this is not possible - at the time they are entered (reactive change).

Goal-based approaches formalize process goals (e.g., process outputs). In ACT [17],
necessary instance adaptations (e.g., substituting the failed activity by an alternative one) are
automatically performed if an activity failure leads to a goal violation. EPOS [75], in addition,
automatically adapts process instances when process goals themselves change. Both approaches
apply planning techniques (e.g., [18, 138]) to automatically ”repair” processes in such cases.
However, current planning methods do not provide complete solutions since important aspects
(e.g., treatment of loops) are not considered.

Process-driven approaches restrict the possible variants of process schemes as well as
process changes in advance. DYNAMITE, for example, uses graph grammars and graph reduc-
tion rules for this [49]. Automatic adaptations are performed depending on the outcomes of
previous activity executions. Interestingly, process-driven as well as goal-based approaches have
been primarily applied in the field of engineering workflows [19]. Both DYNAMITE and EPOS
provide build-in functions to support dynamically evolving process instances. Another approach
using graph grammars is Obligations [22]. Here a process instance graph consists of different,
overlaying ”sheets”. Process instances can be changed by adding or removing sheets.

Instance-specific changes pose several other challenges. For example, one must decide on the
duration of an instance change. Concerning loop-related adaptations, ADEPT differentiates
between loop-permanent and loop-temporary changes [88]. The latter are only valid for the
current loop iteration. The handling of such temporary changes is not trivial since permanent
changes must not depend on them in order to avoid potential errors. AgentWork [80, 81] even
follows a more advanced approach by allowing rule designers to specify temporal constraints
indicating how long process adaptations shall be valid.

2.6.1.3 Ad-hoc Changes in Commercial Tools

Production PMS like WebSphere MQ Workflow [51] and Staffware [111] provide powerful process
support functions but tend to be very inflexible [78]. Particularly, ad-hoc changes of running
process instances are not supported. Unlike these PMS, engines such as TIBCO InConcert,
SERprocess, and FileNet Business Process Manager allow on-the-fly adaptations of in-progress
instances [42, 55, 109]. For example, users may dynamically insert or delete activities for a given

CHAPTER 2. RELATED WORK 53

instance in such a way that the past of this instance cannot be changed.3 Though these PMS
provide high flexibility, they have failed to support end users in an appropriate way. Particularly,
they do not adequately support them in defining changes and in dealing with potential side-
effects resulting from them (e.g., missing input data of an activity due to the deletion of a
preceding step). Since one cannot expect from the end user to cope with such problems, this
increases the number of errors and therefore limits the practical usability of respective PMS.

Case handling systems like FLOWer (Pallas Athena) [119, 126] try to address flexibility issues
from another viewpoint. Unlike traditional PMS, case handling provides a higher operational
flexibility and aims at avoiding dynamic changes. More precisely, users are allowed to inspect,
add or modify data elements before activities, which normally produce them, are started. Con-
sequently, the decision about which activities can be executed next is based on the available
data rather than on information about the activities executed so far. Since FLOWer allows
to distinguish between optional and mandatory data elements, a broad spectrum of processes
can be covered with this data-driven approach. FLOWer also enables the definiton of causual
dependencies between activities. The question remains, whether this mixed view on processes
(process-driven, data-driven) contributes to completely avoid dynamic changes. Furthermore,
the case handling paradigm does not solve the problem of process schema evolution, i.e., the
propagation of process type schema changes to running process instances and their correct mi-
gration afterwards.

2.6.1.4 Flexibility By Design

There are several approaches where the process type schema only constitutes a skeleton roughly
describing the process. The actual process structure is then specified by the user (more or less
assisted by the PMS) and kept in instance–specific schemes.

Sadiq et al use so called ”pockets of flexibility” [76, 107]. These are containers which are
plugged into certain places of the process type schema. The containers comprise several activities
and constraints imposed on them. If a process instance execution reaches a place where a
container has been plugged in the current actor has to model the process consisting of the
provided activities and obeying the imposed constraints. This concept has been implemented
within the lightweight workflow engine Chameleon. It can import workflow templates modeled
by use of the workflow editor FlowMake. Though this concept is interesting it is too restrictive
regarding the possible change operations (i.e., it is only possible to add activities).

Another approach motivated by a practical application, i.e, the container transportation
domain is presented in [11]. The process type schemes (representing basic tours) are only
modeled as skeletons. If a process instance should be created firstly an optimal tour is figured
out by applying certain algorithms of the operational research area (within the optimization
engine). This optimal route is then fed into the system by ad-hoc changing the pre–modeled
skeleton respectively.

3In order to avoid undesired side-effects on other cases, for each instance a private schema is kept.

CHAPTER 2. RELATED WORK 54

2.6.2 Process Type Changes and Change Propagation

Process schema changes at the type level may become necessary, for example, to adapt business
processes to a new law or to realize process optimizations. In case of long running processes
we are confronted with the problem of how to migrate a potentially large number of process
instances I1, ..., In running on the old schema S to the new schema S′. Basically, things seem
to be the same as for dynamic changes of single process instances. However, in addition, we are
confronted with the problem that the process type change may have to be propagated to process
instances whose current execution schema SI := S + ∆ does not completely correspond to S (due
to a previous instance change ∆). To exclude such instances from migrating to the new schema
S′, however, is out of touch with reality, particularly in case of long-running flows. Interestingly,
none of the process engines supporting process type changes and change propagation has dealt
with this problem so far. In WASA2, for example, individually modified instances cannot be
further adapted to later type changes. Chautauqua [40] even does not support changes of single
instances at all, since instances of a particular type are always connected to the same Flow Net.

Usually, commercial PMS/WfMS do not allow change propagation to in-progress instances
when a process schema is modified at the type level. Instead, simple versioning concepts are
used to ensure that already running instances can be finished according to the old schema. One
exception is offered by Staffware [111]. However, there are several critical aspects arising in this
context. For example, running activities can be deleted without any user information. If the
deleted activity is finished the returned results are lost. Furthermore, Staffware suffers from the
Changing the Past Problem (cf. Section 2.4) which may lead to missing input data and activity
program crashs at runtime. Finally, Staffware is by far too restrictive (e.g., insertions before
activated tasks are forbidden).

2.7 Summary

In this chapter we have elaborated the requirements for a comprehensive support of process
schema evolution – completeness, correctness, change realization, and interplay between process
type and process instance changes. Along these criteria and along typical problems arising
in conjunction with process changes we have discussed approaches from research as well as
commercial process technology which provide support for adaptive processes. And what is
missing?

Almost all approaches fail with respect to completeness. They either restrict the expres-
siveness of the used process meta model, e.g., by forbidding loop constructs or neglecting data
flow issues, or they factor out certain change operations. As a consequence, there is no com-
prehensive support regarding process changes when applying these approaches. Therefore it is
indispensable to use a comprehensive process meta model supporting, e.g., loop constructs and
data flow issues and to avoid the restriction of the set of offered change operations.

The main emphasis has been put on correctness criteria since they provide the basis for any

CHAPTER 2. RELATED WORK 55

adaptive PMS. However, many of the suggested correctness criteria are too restrictive. They
exclude process instances from migration to the changed process schema although there would be
no inconsistencies or errors in the sequel. The challenge is to find correctness criteria which are
not too restrictive on the one hand and which on the other hand support a comprehensive process
meta model; i.e., the correctness criteria have to work in conjunction with process constructs
neglected so far (see above) as well as in conjunction with all kinds of change operations.

The biggest gap between the offered approaches and practice diverges in conjunction with
the concrete change realization. More precisely, most approaches do not provide any methods to
(efficiently) check their correctness criteria. Regarding automatic process instance adaptation
after migration to the changed process type schema most approaches either lack any methods
for doing so or the offered methods are not practicable at all. In summary, the user is burdened
with deciding whether a process instance is compliant with the changed process schema or not.
This has to be done for a multitude of running process instances by deciding on correctness
criteria. Afterwards users have to manually adapt markings for a possibly large number of
process instances. Therefore in this thesis we release users from this complex task by offering
methods for automatically deciding on compliance of process instances and for adapting markings
after migration of process instances to the changed process type schema. Furthermore we provide
an implementation of the presented concepts what is missing in most approaches.

But even if all limitations discussed above are overcome an adaptive PMS will be only
accepted in practice if it supports all kinds of process changes; i.e., a PMS has to allow ad
hoc changes of single process instances as well as changes of process types. If this requirement
is taken seriously it has to be ensured that both kind of changes – process type and process
instance changes – harmonize when occuring in interplay. In particular, it has to be possible
to propagate a process type change to already ad hoc modified process instances. None of the
presented approaches has dealt so far with respective questions like the support of disjoint or
overlapping changes on process type and process instance level. In this thesis, a framework for
supporting the interplay between process type and process instance changes is developed.

Chapter 3

Background Information

In this chapter we formally define the fundamental aspects for our further considerations.
Thereby, we use Well–Structured Marking Nets (WSM Nets) [87, 88] as language to describe
process schemes. By doing so we benefit from the expressiveness of this meta model which allows
to model e.g., sequences, parallel and alternative branchings, loops, and data flow. Furthermore
it offers a complete set of change operations to transform a WSM Net S into another WSM Net
S′ [87]. Altogether, using WSM Nets we avoid to restrict users from the beginning as many
other approaches do (cf. Section 2).

WSM Nets are attributed, serial–parallel graphs with additional synchronization links. They
cover all relevant aspects regarding process modeling like, for example, control flow, data flow,
and time. We show under which constraints WSM Nets can be considered as being correct,
i.e., can serve as a basis for correct process execution. Based on WSM Nets process instances
can be started and executed. The execution state of a process instance is described by well–
defined instance markings and the associated execution histories. To add flexibility to our
approach we provide a comprehensive set of change operations on WSM Nets. We augment these
change operations with precise formal pre– and post–conditions which ensure the transformation
between WSM Nets under preserving the correctness constraints.

The formal framework capturing WSM Nets, process instances, and the possibility for
changes has been established in [87]. In [87], main focus was put on the development of a
expressive and usable process meta model as well as on ad–hoc changes of single process in-
stances. In this work, we extend this fundamental approach towards process schema evolution
and its various challenges.

Though we use WSM Nets to clarify the presented results our approach can be easily trans-
ferred to other process meta models with True/False semantics as well. How this transfer turns
out for Activity Nets [73], for example, has been presented in [91].

56

CHAPTER 3. BACKGROUND INFORMATION 57

3.1 Process Meta Model

In this section, we formally define all relevant buildtime and runtime aspects of our process meta
model.

3.1.1 Buildtime Aspects – Well-Structured Marking Nets

In this work we use WSM Nets as process meta model (as for example applied in the ADEPT
project [88]) and the change operations based on them. For the following discussion we will
use a set–based definition of WSM Nets which facilitates the definition of change operations on
WSM Nets. However, a WSM Net can be also graphically described. An example of a WSM
Net is depicted in Figure 3.1 together with a summary of the used symbols and their specific
semantics.

The following definition of WSM Nets is restricted to control and data flow issues since this is
sufficient for the following considerations and does not overwhelm the reader with unnecesseray
details. For control flow modeling a block–structured process model is chosen. As opposed to
process models with strict block structuring WSM Nets show some extensions (e.g., synchroniza-
tion of parallel branches). Using WSM Nets for process modeling, data flow is established by
defining global data elements and connecting them to activities via read and write data edges.
A read (write) data edge thereby denotes a read (write) access of an activity on the respective
data element.

Definition 1 (WSM Net) A tuple S = (N, D, NT, CtrlE, SyncE, LoopE, DataE, DP, EC)
is called a WSM Net if the following holds:

• N is a set (bag)1 of activities

• D a set of process data elements

• NT: N 7→ {StartFlow, EndFlow, Activity, AndSplit, AndJoin,
XOrSplit, XOrJoin, StartLoop, EndLoop}

NT assigns to each node of the WSM Net a respective node type.

• The set of control edges CtrlE ⊂ N × N is a precedence relation

• The set of synchronization edges SyncE ⊂ N × N is a precedence relation between activities
of parallel branches

• LoopE ⊂ N × N × (LoopCond ∪ {Undefined}) is a set of loop backward edges with asso-
ciated loop condition

1In this work, bags are defined as finite multi–sets of activities (comparable to the definition of bags in [118]).

CHAPTER 3. BACKGROUND INFORMATION 58

Process Schema S represented by a WSM-Net:

NT = NodeType

… A

E

D

C

B

sc1
 (default)

sc2

M

d1 d 2 d 3

G

F

H

LS

LE
 J

N

L K

(E, d3, read) � DataE

NT=StartLoop
 NT=EndLoop

(E, M) � CtrlE

(A, d1, write) � DataE

(D, L) � SyncE

(LS, LE) � LoopE

A � N with NT(A) = Activity

A � N with NT(A) = AndSplit

A � N with NT(A) = AndJoin

A � N with NT(A) = XOrSplit

A � N with NT(A) = XOrJoin

A

A

A

A

A

d d � D

e � CtrlE

e � SyncE

e � LoopE

e � DataE

Figure 3.1: Process Schema Represented by a WSM Net (Abstract Example)

• DataE ⊆ N × D × {read, write} is a set of read/write data links between activities and
data elements

• DP : N 7→ N ∪ {Undefined} denotes the decision parameter which is associated to an
alternative branching

• SC : CtrlE 7→ SelCode∪{Undefined} denotes the selection code associated with a control
edge.

Thus, a process schema is represented by attributed, serial-parallel process graphs with
additional synchronization links. As an example consider Figure 3.1. The depicted WSM Net
S contains a parallel branching with AndSplit A and corresponding AndJoin M . This parallel
branching contains an alternative branching with XOrSplit B and XOrJoin E as well as a loop
construct with loop start node LS and loop end node LE . Furthermore, synchronization link

CHAPTER 3. BACKGROUND INFORMATION 59

(D, L) sets out an order relation between activities D and L. There are three data elements d1,
d2, and d3. Activity A, for example, writes data element d1 what is expressed by data write
edge (A, d1, write) and activity C reads data element d2 what is expressed by read data edge
(C, d2, read).

Solely based on Definition 1 it is still possible to model WSM Nets which lead to an unde-
sired behaviour at runtime like, for example, deadlock–causing cycles or missing input data. We
explicitly forbid WSM Nets containing structural inconsistencies by imposing certain correct-
ness constraints on them. A WSM Net S is (structurally) correct if the following constraints
(1) – (7) hold [87, 88]:

Definition 2 (Correctess of a WSM Net) Let S = (N, D, NT, CtrlE, SyncE, LoopE, DataE)
be a WSM Net. Then S is a (structurally) correct WSM Net if and only if the following con-
straints (1) – (7) hold:

(1) S has a unique start node Start (NT (Start) = StartFlow) and a unique end node End
(NT (End) = EndFlow).

(2) Except for nodes Start and End each activity node of S has at least one incoming and one
outgoing control edge e ∈ CtrlE.

(3) Let Sblock := (N, CtrlE, LoopE) be the subgraph of S which represents a projection on the
activities, control edges, and loop edges of S. Then Sblock has to be structured following
a block concept, for which control blocks (sequences, branchings, loops) can be nested but
must not overlap.

(4) Let Sfwd = (N, CtrlE, SyncE) be the subgraph of S which represents a projection on the
activities, control edges, and sync edges of S. Then Sfwd has to be an acyclic graph, i.e.,
the use of control and sync edges must not lead to deadlock-causing cycles.

(5) Sync links must not cross the boundary of a loop block; i.e., an activity from a loop block
must not be connected with an activity from outside the loop block via a sync link (and vice
versa).

(6) For activities for which a mandatory input parameter is linked to a global data element
d ∈ D it has to be ensured that d will be always written by preceding activities at runtime
independently of which execution path will be chosen.

(7) Parallel write accesses on data elements (and consequently lost updates on them) do not
take place.

Obeying constraints (1) – (7) WSM Nets offer an expressive and usable way to define process
schemes and to serve as adequate basis for process execution at runtime.

CHAPTER 3. BACKGROUND INFORMATION 60

3.1.2 Runtime Aspects – Unbiased and Biased Process Instances

Taking a correct WSM Net S, new process instances can be created and started. Logically, each
process instance I is associated with an instance-specific schema SI := S + ∆I (for unbiased
instances ∆I = ∅ and consequently SI = S holds). An example of unbiased and biased process
instances is depicted in Figure 3.3. Similar to firing rules in Petri Nets, the marking of a process
instance is determined by well defined marking and execution rules (cf. Rules 1, Appendix B).
Logically, for each process instance its own marking is captured by a marking function MSI

=(NSSI , ESSI). It assigns to each activity n its current status NS(n) and to each control, sync,
and loop edge its marking ES(e). These markings are determined according to well defined
marking rules [87, 88], whereas markings of already passed regions and skipped branches are
preserved (except loop backs). Concerning data elements, different versions of a data object
may be stored, which is important for the context-dependent reading of data elements and the
handling of (partial) rollback operations. Formally:

Definition 3 (Process Instance) A process instance I is defined by a tuple
(S, ∆I , MSI , V alSI , ΠSI

I) where

• S = (N, D, NT, CtrlE, SyncE, ...) denotes the process schema I was derived from. We
call S the original schema of I.

• ∆I comprises instance-specific changes opI
1, . . . , op

I
m that have been applied to I so far. We

call ∆I the bias of I. Schema SI := S+∆I (with SI = (NI , DI , NT, CtrlEI , SyncEI , . . .)),
which results from the application of ∆I to S, is called the instance–specific schema of I.

• If ∆I = ∅ and consequently SI := S holds then we call I an unbiased process instance.

• If, in contrast, ∆I actually comprises instance–specific changes (i.e., ∆T 6= ∅) then we call
I a biased process instance.

• MSI = (NSSI , ESSI) describes activity and edge markings of I:
NSSI : NI 7→ {NotActivated, Activated, Running, Completed, Skipped}
ESSI : (CtrlEI∪SyncEI∪LoopEI) 7→ {NotSignaled, TrueSignaled, FalseSignaled}2

(Instance marking MSI = (NSSI , ESSI) is determined using the ADEPT marking and
execution rules as defined in Rules 1).

• ValSI is a function on DI . It reflects for each data element d ∈ DI either its current value
or the value UNDEFINED (if d has not been written yet).

• ΠSI
I = < e0, . . . , ek > is the execution history of I. e0, . . . , ek denote the start and end

events of activity executions. For each started activity X the values of data elements read
by X and for each completed activity Y the values of data elements written by Y are logged.
Formally:

2The particular activity and edge states are explained in the following.

CHAPTER 3. BACKGROUND INFORMATION 61

��������� �������

�	
���� ��
������

����
��

���

�

���
����� ���
�����
enable

disable

start

resume

suspend

skip

skip

skip

finish

Marking and Execution Rules (exemplarily)

execution marking

�

all incoming edges are signaled

X X �
finishing X

X X

�

AndJoin

X X � X X

� X X �
sel_code=1

X

1

2

1

2

X

XOrJoin

� X X �

EndLoop

true

false
 loopcond=true

�
true

false

AndSplit

XOrSplit

Figure 3.2: State Transitions and Marking/Execution Rules

ei ∈ {Start(di
1,vi

1),...,(d
i
n,vi

n)(<activity>, <It>), End(di
1,vi

1),...,(d
i
m,vi

m)(<activity>, <sc|lc>)}
Tuple (dµ

i , vµ
i) thereby describes a read or write access of eµ on data element dµ

i with
associated value vµ

i .

Figure 3.2 illustrates the possible state transitions of an activity. For each activity, its status
is initially set to NotActivated. It is changed to Activated when all preconditions for its
execution are met. If this is the case, the activity is becomes an executable task and inserted as
a work item into user worklists. When selecting this work item for execution its activity status
changes to Running. The corresponding work items are then removed from other user worklists
and an application component associated with this activity is started. At successful termination
of this component execution, activity status passes to Completed. Otherwise, if the scheduler
recognizes that this activity cannot be selected for execution any longer, its status will change
to Skipped (e.g., activity D of instance I1 in Fig. 3.3b).

Edges are initially marked with NotSignaled. During process execution their status either
changes to TrueSignaled or FalseSignaled. Finally, if a loop condition evaluates to true, the
marking of the corresponding edge (∈ LoopE) is changed to TrueSignaled (cf. Fig. 3.2) and
the markings of all activities/edges of the loop body are reset to their initial state. Otherwise
the loop is left whereas the actual markings of the loop body remain. An overview about
the particular state transitions and a sketch of the marking and execution rules (cf. Rules 1,
Appendix B) are given in Figure 3.2.

Figure 3.3.b depicts unbiased process instance I1 to which no instance–specific bias has been
applied so far. In contrast, Figure 3.3.d shows biased process instance I2 for which instance–
specific bias ∆I2 has deleted activities H and N .

Given a process instance I with particular instance marking MSI it is important for our
further considerations to define whether this marking is a correct instance marking on instance–
specific schema SI or not.

CHAPTER 3. BACKGROUND INFORMATION 62

c) Execution History (I1 on S):

START(A), END(A(d1,2), (d2,4)),
START(B(d1,2)), START(LS, 1

st it),
END(LS), START(K), END(K),
END(B, sc1),
START(F), END(F), START(G),
END(G), START(H), END(H),
START(N), END(N), START(J),
END(J), START(LE),
END(LE, TRUE),
START(Ls, 2

nd it), END(LS),
START(C(d2,4)), END(C(d3,”ok”)),
START(L), END(L), START(E(d3,”ok”)),
START(F), END(F), START(G),
END(G), START(H), END(H)

ET=LOOP_E

a) Process Type Level:

b) Process Instance Level:

Process Schema S:

 A

E

D

C

B

sc1
 (default)

sc2
 M

d 1

d 2

d 3

G

F

H

L S

L E
 J

N

L K

Unbiased Process Instance I1:

A

E

D

C

B

M

G

F

H

L S
 L E

 J

N

L K

2 nd iteration

NS = NodeState
NS = Activated

NS = Skipped

NS = Running

 NS = Completed

ES = EdgeState
ES = TrueSignaled

ES = FalseSignaled

d) Biased Process Instance I2 (Based on S):

A

E
D

C

B

M

G

F

H

L S

L E
 J

N

L K

'I2 = (deleteActivity(S, H), deleteActivity(S, N))

1st iteration

Figure 3.3: Process Type Schema and Process Instances (Abstract Example)

CHAPTER 3. BACKGROUND INFORMATION 63

Definition 4 (Correctness of a Process Instance Marking) Let I = (S, ∆I , MSI , . . .) be
a process instance with (correct) instance–specific schema SI = (NI , DI , CtrlEI , SyncEI , . . .),
i.e., SI is a correct WSM Nets (cf. Definition 2). Let further Start be the start node of
SI (i.e., Start ∈ NI , NT (Start) = StartFlow) and let MSI

0 = (NSSI
0 , ESSI

0) be the initial
marking of I, i.e., NSSI

0 (Start) = Activated, ∀n ∈ N\ {Start}: NSSI
0 (n) = NotActivated,

∀e ∈ (CtrlEI ∪ SyncEI ∪ LoopEI): ESSI
0 (e) = NotSignaled. Then:

MSI is a correct instance marking if and only if MSI can be reached from MSI
0 by applying

the ADEPT marking and execution rules (cf. Rules 1, Appendix B), i.e.,
∃ < e0, . . . , ek > (ei ∈ {Start(n), End(n)}, n ∈ NI)

with MSI
0 [e0 >, MSI

1 , . . . , [ek > MSI
k =: MSI 3

From Definition 4, a necessary but not sufficient property of a correct process instance
marking can be derived.

Lemma 1 (Correctness Property for Process Instance Markings) Let
I = (S, ∆I , MSI , . . .) be a process instance based on a (correct) WSM Net S = (N, D, . . .).
Marking MSI has been achieved by applying the ADEPT marking and execution rules (cf. Rules
1, Appendix B). Then for MSI = (NSSI , ESSI) the following condition holds:

∀n ∈ N with NSSI (n) ∈ {Activated, Running, Completed, Skipped} =⇒
(∀ n∗ ∈ pred∗(S, n): NS(n∗) ∈ {Completed, Skipped})

(A formal proof of Lemma 1 is provided in [87].) Altogether, a process instance I is correct
if its instance–specific schema is a correct WSM Net (structural correctness) and the instance–
specific marking MSI is a correct marking according to Definition 4 (state–related correctness).
Formally:

Definition 5 (Structural and State-Related Correctness of a Process Instance) Let
I = (S, ∆I , MSI , V alSI , H) be a process instance based on a WSM Net S. Then:
I is a correct process instance if and only if instance schema SI := S + ∆I is a correct WSM
Net according to Definition 2 and marking MSI is a correct marking according to Definition 4.

Claiming structural correctness for process instances is important in order to avoid un-
desired system behaviour due to scenarios like deadlock–causing cycles or missing input data.
State–related correctness aims at a correct execution behaviour, i.e., avoiding undesired instance
states.

3Thereby M [e > M ′ means that starting with marking M event e can take place resulting in marking M ′.

CHAPTER 3. BACKGROUND INFORMATION 64

Basic Change Primitives

Æ Activity Node and Edge Sets, Attributes, …

High - Level

Change Operations

(insertBetweenNodeSets , …)

High - Level

Change Primitives

(serialInsert , parallelInsert , …)

Change Transaction

 Change Primitives

Æ Activity Node and Edge Sets, Attributes, …

High - Level

Change Operations

(insertBetweenNodeSets , …)

High - Level

Change Primitives

(serialInsert , parallelInsert , …)

High - Level

Change Operations

(insertBetweenNodeSets , …)

Basic

Change Operations

(serialInsert , parallelInsert , …)

Change Transaction

Figure 3.4: Change Primitives, Basic and High–Level Operations, and Transactions [87]

3.2 Change Operations on Well-Structured Marking Nets

In our approach we distinguish between different semantical levels when defining changes (cf.
Figure 3.4). The fundament thereby is built by change primitives which are simple changes
without formal pre– and post–conditions. Based on these change primitives, basic and high–
level change operations can be defined. The correct applicability of these change operations is
ensured by preserving special pre– and post–conditions. The set of high–level change operations
is offered to application programmers and users to facilitate the change process itself. Finally,
an ordered sequence of basic and high–level change operations can be captured within a change
transaction. i.e., atomicity is guaranteed by the PMS when applying this sequence of operations.

3.2.1 Change Primitives

Change Primitives build the basis for the definition of other change operations, i.e., all basic
and high–level change operations can be mapped onto a set of change primitives (cf. Figure
3.4). An example change primitive is the insertion of an activity node without embedding it
into the process context. Further examples are the insertion or the deletion of single control
edges. Change primitives are applied to a process schema and afterwards structural correctness
of the resulting process schema (cf. Definition 1) has to be checked, e.g., checks on the presence
of deadlock–causing cycles have to be carried out. Table 3.1 gives an overview about the change
primitives used in our process meta model [87].

3.2.2 Basic and High–Level Change Operations

Generally, change primitives are not directly offered to application programmers or users since
their application may be error–prone and difficult. Therefore to offer more convenience, in
our approach, pre–defined change operations have been developed. These basic and high–level
change operations are augmented with formal pre- and post-conditions such that users do not

CHAPTER 3. BACKGROUND INFORMATION 65

Table 3.1: A Selection of Change Primitives in ADEPT

Change Primitive prim Effects on Process Schema S
Applied to Schema S

addNodes(S, nodeLabels) adds activity nodes with identifiers from nodeLabels to N
N∗ := N∪ nodeLabels

deleteNodes(S, nodeLabels) deletes activity nodes with identifiers in nodeLabels from N
N∗ := N\ nodeLabels

setNodeAttr(S, nodeLabel, attr, val) sets activity attribute attr of activity node nodeLabel to value val
addCtrlEdges(S, CtrlEdgeSet) adds CtrlEdgeSet to CtrlE

CtrlE∗ := CtrlE∪ CtrlEdgeSet

deleteCtrlEdges(S, CtrlEdgeSet) deletes CtrlEdgeSet from CtrlE
CtrlE∗ := CtrlE\ CtrlEdgeSet

setEdgeAttr(S, edge, attr, val) sets edge attribute attr of edge egde to value val

addDataElements(S, dataLabels, dom, defaultVal) adds dataLabels to D whereby domain dom and
default value defaultVal are assigned to the new data elements
D∗ := D∪ dataLabels

deleteDataElements(S, elementSet) deletes set of data elements elementSet from D
D∗ := D\ elementSet

addDataEdges(S, dataEdges) adds set of data edges dataEdges to DataE
DataE∗ := DataE∪ dataEdges

deleteDataEdges(S, dataEdges) deletes set of data edges dataEdges from DataE
DataE∗ := DataE\ dataEgdes

have to care about correctness issues. Tables 3.2 and 3.3 summarize important basic change
operations applicable on WSM Nets [87].

Example (Basic Change Operation): Consider Figure 4.1. ∆T is a basic change operation. It
serially inserts activity X into S by automatically embedding X between activities A and B.

By combining basic change operations high–level change operations can be built like, for
example, insertion of activities between two given activity node sets. These high–level change
operations are offered to the user in order to provide changes at a high semantical level. Table 3.3
shows examples for such complex operations: Operation
insertBetweenNodeSets(S, X,Mbefore,Mafter) inserts new activity X between activity sets
Mbefore and Mafter. Therefore, firstly, basic change operation
parallelInsert(S, X,minBlock(Mbefore,Mafter)) is carried out whereby
minBlock(Mbefore, Mafter) (cf. Table B.1, Appendix B) denotes the minimal control block
containing all activities in Mbefore and Mafter. Then the desired order relations are set out
by inserting sync edges with source activity contained in Mbefore and destination activity X

CHAPTER 3. BACKGROUND INFORMATION 66

as well as by inserting sync edges with source activity X and destination activity contained
within Mafter. Another high–level operation is insertLoopEdge(S, (A,B), lCond). It inserts a
loop block around an existing control block with start activity A and end activity B. In detail,
this operation is carried out by inserting an empty loop block directly before A (by applying
basic operations serialInsertLoopBlock(S, c pred(S, A), A, lCond)) and afterwards moving con-
trol block (A,B) from its current position to the position between the newly inserted start node
LS and end node LE (by applying basic operation moveBlock(S, (A,B), LS , LE)). The correct
application of high–level change operations directly results from the correct application of the
used basic change operations [87].

3.2.3 Change Transactions

To offer full flexibility it must be possible to carry out arbitrary combinations of changes from all
levels depicted in Figure 3.4. When, for example, inserting two activities and a data dependency
between them, it is often desired to apply either all of these change operations or none of them
(atomicity). In order to achieve this, the respective change operations must be carried out within
the same change transaction ∆. For our purposes it is sufficient to define a change transaction4

∆ = (op1, . . . , opn) as an ordered series of basic and high–level change operations opi (cf. Tables
3.2 and 3.3) [87].

3.3 Summary

In this section, we have introduced WSM Nets as a language to describe process schemes. WSM
Nets are attributed, serial–parallel graphs with additional synchronization links and cover all
relevant aspects like control and data flow. Furthermore, we defined how process instances can
be started and executed on the basis of WSM Nets. Thereby we have distinguished between
unbiased process instances – still running according to the process schema they were started on –
and biased process instances. The latter are denoted as biased since they have already undergone
an instance–specific change (bias). Finally, we introduced a change framework capturing changes
on different semantical levels. Thereby the set of offered (basic) change operations is complete.
The respective proof can be sketched as follows: Given two arbitrary (correct) WSM Nets S
and S′ there is always a sequence of change operations ∆ = op1, . . . , opn whose application to S
results in S′.

4In the following, we use terms change transaction or change for short

CHAPTER 3. BACKGROUND INFORMATION 67

Table 3.2: Basic Change Operations in ADEPT (1)

Basic Change Operation ∆ Effects on Process Schema S
Applied to Schema S

Additive Change Operations

serialInsertActivity(S, X, A, B) insertion of activity X between directly succeeding
activities A and B

parallelInsertActivity(S, X, (b, e)) insertion of activity X parallel to control block with
start node b and end node e

branchInsertActivity(S, X, split, join, selcode) insertion of activity X within a new branch
(with selection code selcode) into an alternative branching
with XOr-Split split and XOr-Join join

serialInsertBlock(S, block, A, B) serial insertion of control block block between
activities A and B

serialInsertLoopBlock(S, lCond, A, B) serial insertion of (empty) loop block (LS , LE)
between activities A and B (inclusive loop backward edge
with loop condition lCond)

parallelInsertBlock(S, block, (b, e)) insertion of control block block parallel to control block
with start node b and end node e

parallelInsertLoopBlock(S, lCond, (b, e)) serial insertion of (empty) loop block (LS , LE) parallel to
control block with start node b and end node e
inclusive loop backward edge with loop condition lCond

branchInsertBlock(S, block, split, join, selcode) insertion of control block block within a new branch
with selection code selcode into an alternative branching
with XOr-Split split and XOr-Join join

branchInsertLoopBlock(S, lCond, split, join, selcode) insertion of (empty) loop block (LS , LE) (with
loop condition lCond) within a new branch
with selection code selcode into an alternative branching
with XOr-Split split and XOr-Join join

insertSyncEdge(S, src, dest) insertion of a sync edge linking two activities src and dest
situated within parallel execution paths

Subtractive Change Operations

deleteActivity(S, X) deletes activity X from schema S
deleteBlock(S, block) deletes control/loop block block from schema S
deleteSyncEdge(S, edge) deletes edge ∈ SyncE from schema S

CHAPTER 3. BACKGROUND INFORMATION 68

Table 3.3: Basic And High–Level Change Operations in ADEPT (2)

Basic Change Operation ∆ Effects on Process Schema S
Applied to Schema S

Order-Changing Operations

serialMoveActivity(S, X, A, B) moves activity X from current position
to position between directly succeeding activities A and B

parallelMoveActivity(S, X, (b, e)) moves activity X from current position
parallel to control block with
start node b and end node e

branchMoveActivity(S, X, split, join, selcode) moves activity X within a new branch
with selection code selcode into an alternative branching
with XOr-Split split and XOr-Join join

serialMoveBlock(S, block, src, dest) moves control/loop block block from current
position to position between activities src and dest

parallelMoveBlock(S, block, (b, e)) moves control block block parallel to control block
with start node b and end node e

branchMoveBlock(S, block, split, join, selcode) moves control block block within a new branch
with selection code selcode into an alternative branching
with XOr-Split split and XOr-Join join

Attribute Changing Operations

changeActivityAttribute(S, X, attr, nV) changes current value of attribute attr of activity X to nV
changeEdgeAttribute(S, edge, attr, nV) changes current value of attribute attr

of edge ∈ CtrlE ∪ SyncE to nV

Nest and Unnest Operations

nestBlock(S, ctrlBlock, X) nests control block ctrlBlock as a sub process
”under” new activitiy node X

unnestBlock(S, X) unfolds sub process deposited ”under” activity node X

Data Flow Change Operations

addDataElements(S, . . .), deleteDataElements(S, . . .), addDataEdges(S, . . .), deleteDataEdges(S, . . .)
Thereby theses data flow change operations are directly mapped onto their counterpart in Table 3.1.

High–Level Change Operation ∆ Effects on Process Schema S
Applied to Schema S

insertBetweenNodeSets(S, X, Mbefore, Mafter) insertion of activity node X between
activity node sets Mbefore and Mafter

insertLoopEdge(S, (A, B), lCond) insertion of embracing loop block around existing
control block with start node A and end node B inclusive
loop backward edge with loop condition lCond

Chapter 4

Migrating Unbiased Process
Instances

In this chapter, we consider unbiased process instances, i.e., process instances which have not
been individually modified and which therefore still run according to the process schema they
were started on, e.g., process instances I1 and I2 still running on their original schema S (cf.
Figure 4.1). In large–scale environments hundreds up to thousands of such unbiased instances
with same process type, being in different execution states, may be concurrently running [57].
Therefore it is crucial to efficiently decide on whether a process type change can be correctly
propagated to unbiased process instances or not. Furthermore, it is indispensable to provide
advanced algorithms to automatically and efficiently adapt state markings when migrating re-
spective instances to the changed process type schema. In this thesis, we present a comprehensive
approach which enables process schema evolution in conjunction with all kinds of process con-
structs and change operations (e.g., loops, data flow issues, and order–changing operations). In
addition, our approach includes methods based on which it is possible to efficiently decide on
whether a process instance can be correctly migrated to the changed process type schema or
not. Finally, we provide algorithms for automatically adapting markings after migrating process
instances to the changed process type schema.

This chapter is organized as follows: In Section 4.1 general challenges of migrating unbi-
ased process instances to a changed process type schema are discussed. Section 4.2 provides a
correctness criterion based on which it can be decided whether an unbiased process instance is
compliant with a changed process type schema or not. In Section 4.3 we present methods to
efficiently ensure compliance and provide algorithms to automatically adapt instance markings
after their migration to the changed process type schema in Section 4.4. Finally, this chapter
ends with a short outlook on dealing with non–compliant process instances (cf. Section 4.5) and
a summary of the presented results (cf. Section 4.6).

69

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 70

Process Type Level:

Process Type Schema S: Process Type Schema S’:

Process Instance Level:

Process Instance I1 on Schema S:

Type Change 'T = serialInsertActivity(S, X, A, B)

applying 'T

Execution History of I1 on S: 3I1(S) = (START(A), END(A))

A B C

X

A B CX

Completed Activated TrueSignaled

Correct Process Instance I1 on Schema S’:

Process Instance I2 on Schema S:

applying 'T

Execution History of I2 on S: 3I2(S) = (START(A), END(A), START(B), END(B))

Incorrect Process Instance I2 on Schema S’:

newly activated deactivated

Figure 4.1: Change Scenario 1: Unbiased Instances

4.1 Challenges When Migrating Unbiased Instances

In the following let S be a process type schema (represented by a correct WSM Net) and I be
an unbiased process instance running according to S (cf. Definition 3). Let further ∆T be a
process type change transforming S into another (correct) process type schema S′.

At first, to motivate our solution approach we repeat and precise the general challenges for
the support of adaptive processes (cf. Section 2.2).

1. Completeness: Users should not be unnecessarily restricted, neither by the applied pro-
cess meta model nor the offered change operations. In particular, important modeling
concepts like loops or data flows must not be discounted only to reduce complexity as has
been the case in many existing approaches (cf. Section 2). Therefore, we offer expressive
control and data flow constructs as well as a complete set of change operations to the user
(cf. Section 3).

2. Correctness: The key to success when migrating unbiased process instances to a changed
process type schema is to find a generally applicable correctness criterion (as, for example,
serializability is a correctness criterion for handling concurrent transactions in database
management systems). Based on this criterion it should be possible to decide whether a
process instance I is compliant with a changed process type schema S′ or not; i.e., whether
process type change ∆T can be correctly propagated to I without causing inconsistencies
or errors (like deadlocks or improperly invoked activity programs) in the sequel. More

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 71

precisely, it must be ensured that after propagating type change ∆T to I this process
instance is again a correct instance on changed process schema S′ according to Definition
5. For unbiased instances structural correctness of the respective instance schema S is
guaranteed by the applicability of type change ∆T to process type schema S and therewith
to the instance schema as well. However, things are not that easy when dealing with the
second part of Definition 5 – state–related correctness. In this case, we need a criterion
for guaranteeing state–related correctness, i.e., to ensure that resulting marking MS′ of
I on S′ is a correct and consistent marking on the changed process type schema S′ as
well. However, what correct marking means in this context has been already described in
Definition 4.

Example 4.1 (Change Propagation): Figure 4.1 depicts a process type schema S and two
process instances I1 and I2 running on S. For I1 activity B is activated whereas for I2

activity C is activated. If now process type change ∆T is applied to S (by inserting activity
X between activities A and B) the challenging question is how to determine whether ∆T

can be correctly propagated to I1 and I2 or not.

Propagating type change ∆T to instance I1 results in a correct marking on S′ (activation
of the newly inserted activity X and deactivation of the previously activated activity B).
In contrast, the propagation of ∆T to I2 has to be forbidden since the marking of instance
I2 becomes incorrect after migrating to changed process schema S′: Activity X is inserted
with status Activated (cf. Rules 1, Appendix B) but followed by an already completed
activity B – this offends against Lemma 1 (cf. Section 3.1.2). This definition also complies
with the intuitive understanding of a correct process execution: In case of instance I2 on
S′ there are two possibilities to proceed the execution of I2: either we finish activity C
what results in an inconsistent final status of I2 or we undo / redo activity B.

For approaches storing information about previous instance execution, Criterion 6 (as
introduced in Section 2.4.2.2) provides a good basis for ensuring correct instance markings
after propagating a process type change. More precisely, an unbiased process instance is
said to be compliant with a changed process type schema if the execution history of this
instance can be produced on the changed process type schema as well. For example, the
execution history of instance I1 (cf. Figure 4.1) can be replayed on changed type schema
S′ resulting in a correct instance marking for I1 on S′. In contrast, the execution history
of I2 cannot be reproduced on changed type schema S′ since the execution history does
not contain an entry for newly inserted activity X. Consequently, an incorrect marking
would result for I2 when applying ∆T in an uncontrolled manner.

As already discussed in Chapter 2, applying this restrictive compliance criterion (as, for
example, proposed by [26]) suffers from substantial limitations, e.g., unnecessary restric-
tiveness regarding the use of loop constructs or lost updates in conjunction with data flow
changes. Fundamentally, the compliance criterion itself does not cause these problems,
but the particular view on the underlying execution history, i.e., the kind of information
provided by the particular history representation. Figuratively, the compliance criterion
can be seen as a ”hull” where different forms of execution histories can be plugged in. The
particular view on the used execution history then leads to different kinds of limitations

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 72

when applying the compliance criterion. Therefore it is crucial to find a special view on
execution histories based on which compliance becomes a comprehensive correctness cri-
terion; i.e., the criterion should work in conjunction with each kind of change operation
applied to each kind of process construct. In our approach, therefore, we introduce the so
called loop–tolerant and data–flow–consistent view on execution histories.

3. Efficient Compliance Checks: Assume that compliance based on loop-tolerant execu-
tion histories constitutes an adequate correctness criterion for deciding on compliance of
unbiased instances with a changed process type schema. Then the challenging question is
how to ensure this criterion efficiently. As discussed in Section 2.4.3.2, in many cases, it is
very expensive to replay execution histories for a multitude of process instances. Therefore
it is crucial for us to provide easily and quickly to check compliance conditions. These con-
ditions are based on the actual state of the respective process instance and which consider
the applied change semantics. As already mentioned above, this problem is similar to the
serializability problem in database management systems. A given schedule of interleaved
executed transactions is considered as being correct, if and only if there exists at least one
serial (i.e., non–interleaved) execution of these transactions which leads – when starting
from the same database state – to the same final state. – It would be very unefficient and
also not practicable to directly use this criterion for controlling the concurrent execution
of transactions. Instead, highly efficient concurrency control methods have been developed
which enforce by construction that the resulting schedules are serializable. Applying these
routines dramatically increases efficiency and so do our compliance conditions.

4. Change Realization: Assume that process type change ∆T can be correctly propagated
to instance I (along the stated loop–tolerant compliance criterion). Then it should be pos-
sible to automatically migrate I to changed process type schema S′, i.e., without requiring
expensive user interactions. In this context, one challenge is to correctly and efficiently
adapt instance states. Doing so is a very important job in order not to overstrain users
as it is for example the case when they must build up the Synthetic Cut Over Change as
introduced in Section 2.4.3.1.

4.2 Towards a Loop–Tolerant and Data–Flow–Consistent
Correctness Criterion

Core of each approach supporting process schema evolution is a criterion based on which it can
be decided whether a process instance I is compliant with a changed process type schema S′

or not. There are correctness criteria in the literature but as shown in Section 2.4 they suffer
from restrictiveness. Either they restrict users regarding the use of process constructs, e.g., by
neglecting loops or data flow issues, or they only allow a subset of change operations. In this
section, we provide a correctness criterion which works in conjunction with each kind of change
operation based on arbitrary process schemes.

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 73

For the sake of completeness we first provide a formal definition concerning the notion of
compliance for unbiased process instances with the changed process type schema:

Definition 6 (Compliance of Unbiased Process Instances) Let S be a correct process type
schema and I = (S, MS , V alS, ΠS

I)1 be an unbiased process instance on S. Let further S be
transformed into another correct schema S’ by process type change ∆T . Then: I is compliant
with S’ if and only if the application of ∆T to I again results in a correct process instance
I = (S’, MS′, . . .) (according to Definition 5).

The challenge is to find an adequate criterion for deciding about compliance of unbiased
instances with a modified schema. As discussed in the previous section the compliance criterion
introduced in Section 2 fully exploits the possibilities of approaches with True/False semantics
with respect to compliance; i.e., it does not restrict compliance considerations to the actual
state of a process instance (like for example Petri Net based approaches do) but also uses the
information about previous instance execution. We adapt this thinking and use this compliance
criterion as basis for our approach:

Correctness Criterion 7 (Compliance Of Unbiased Process Instances) Let the assump-
tion be as in Definition 6. Then: I is compliant with S’ if execution history ΠS

I can be replayed
on S′ := S + ∆ as well, i.e., all events stored in ΠS

I could also have been logged by an instance
on S’ in the same order as set out by ΠS

I .

As discussed in the previous section it is essentially important on which form of execution
history the application of Criterion 7 is based. With other words we can see Criterion 7 as a
”hull” in which different representation forms (views) of execution history ΠS

I can be plugged
in. Now the challenging question is what kind of view on ΠS

I is the best.

A first possibility is to use a ”minimal” view on ΠS
I which only stores End events (for finishing

activities, cf. Figure 4.2). However, doing so may lead to three nasty problems – dangling states,
data inconsistencies, and restrictiveness in conjunction with loops (cf. Table 4.1). The dangling
states problem (cf. Section 2.4.1) results from neglecting Start entries in ΠS

I . However, without
considering Start entries in ΠS

I we cannot distinguish between activities in state Activated and
those in state Running. As a consequence, for example, it is possible to insert a new activity
(with state NotActivated) before an already running one This, in turn, leads to an inconsistent
execution state of the respective instance (cf. Lemma 1, cf. Section 3.1.2). To overcome this
problem we need view on ΠS

I logging both, Start and End events2. We call this history view the
1Note that SI := S holds for unbiased process instances.
2If we, in turn, use a view on ΠS

I only storing Start events and neglecting End events we cannot distinguish
between running and already finished activities. Using this history view may lead to inconsistencies in conjunction
with data flow changes. The reason is that using such a Start view on ΠS

I it is not possible to decide whether
the concerned activity has only executed its read accesses (when starting the activity) or has already executed
its write accesses as well (when finishing the activity). Since this special history view is not common we obstain
from further details here.

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 74

Table 4.1: Effect of Used View on Execution History on Compliance Checking

View on Execution History: Resulting Limitations in Conjunction
ΠS

I =< e0, e1, . . . , ek > with With Compliance Checking

(1) End Representation:2

ei = END(X) (i) Dangling States Problem (cf. Section 2.4.1)
(i = 0, . . . , k) (ii) Inconsistencies in Conj. with Data Flow Changes

(iii) Restrictiveness in Conj. with Loops

(2) Start / End Representation):
ei ∈ {START(X), END(X)} (ii) Inconsistencies in Conj. with Data Flow Changes
(i = 0, . . . , k) (iii) Restrictiveness in Conj. with Loops

(3) Data–Flow–Consistent Representation (ADEPT):
ei ∈ {START(<X, readVal>), END(<X, writeVal>) (iii) Restrictiveness in Conj. with Loops
(i = 0, . . . , k)

(4) Reduced Representation:
Projection ΠS

I red of ΠS
I on acyclic none of described problems

process graphs (cf. Def. 7)

Start / End representation on ΠS
I =< e0, e1, . . . , ek > (with ei ∈ {Start(X), End(X)},

X ∈ N ; i = 0, . . . , k, cf. Figure 4.2). Based on the Start / End representation Criterion 7
exterminates the dangling states problem.

Using the Start / End representation of ΠS
I it can be correctly decided whether a process

instance is compliant with a changed process type schema or not. This follows directly from
Definition 4: If ΠS

I =< e0, . . . , ek > can be replayed on changed process type schema S′ it
establishes a firing sequence MS′

0 [e0 > MS′
1 , . . . , [ek > MS′

k =: MS′ starting from initial marking
MS′

0 on S′ and resulting in (correct) marking MS′ . Unfortunately, as can be seen from Table 4.1
this representation form is still knotted with several limitations. In the following we illuminate
these limitations and provide a further representation form of ΠS

I to overcome these problems.

First of all, the Start / End representation form of ΠS
I is not always suitable when consid-

ering data flow changes as the following example shows:

Example 4.3.a (Inconsistent Read Data Access Using Start / End Representation of ΠS
I): We

consider the process instance depicted in Figure 4.3. Activity C currently has state Running
and therefore has already read data value 5 of data element d1. Assume now that due to a
modeling error read data edge (C, d1, read) is deleted and new read data edge (C, d2, read) is
inserted afterwards. Consequently, C should have read data value 2 of data element d2 (instead
of data value 5). This inconsistent read behavior may lead to errors in the sequel, if for example
the execution of this instance is aborted and therefore has to be rolled back. However, using
the Start / End representation form of ΠS

I , this erroneous case would not be detected. As a
consequence, this instance would be classified being compliant with the changed process type
schema.

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 75

Process Instance I on Schema S:

Views on Execution History 3I(S):

(1) End Representation:

Execution History of I on S: 3I(S) = (End(A), END(LS), End(B), End(C), End(LE), End(LS), End(B))

(2) Start / End Representation:

 Execution History of I on S: 3I(S) = (Start(A), End(A), Start(LS), End(LS), Start(B), End(B),

Start(C), End(C), Start(LE), End(LE), Start(LS), End(LS),
Start(B), End(B), Start(C))

(3) Data-Flow Consistent Representation:

 Execution History of I on S: 3I(S) = (Start(A,1), End(A), Start(LS,1), End(Ls), Start(B,1),

End(B)(d, 5), Start(C,1)(d,5) , End(C), Start(LE,1),
End(LE, lc=TRUE), Start(LS,2), End(LS), Start(B,2),

 End(B)(d,2), Start(C,2)(d,2))

(4) Reduced Representation:

Execution History of I on S: 3I(S) = (Start(A,1), End(A), Start(LS,2), End(LS), Start(B,2),
End(B)(d,2), Start(C,2)(d,2))

Completed Running TrueSignaled

A B C LS LE D

d
2nd iteration

 lc

Figure 4.2: Different History Views

For this reason we need an adapted form of the Start / End representation of ΠS
I which

also incorporates data flow aspects. Fortunately, execution histories as defined in our approach
already contain adequate information. More precisely, according to Definition 3 an execution
history in ADEPT is defined as

ΠS
I = {e0, . . . , ek} with

ei ∈ {Start(di
1,vi

1),...,(di
n,vi

n)(<activity>, <It>),
End(di

1,vi
1),...,(di

m,vi
m) (<activity>, <sc|lc>)}.

At this tuple (dµ
i , vµ

i) describes a read (write) access of eµ on data element dµ
i with associated

value vµ
i (i = 0, . . . , k) if the respective activity is started (completed). We call this view on

ΠS
I the data–consistent representation of ΠS

I (cf. Table 4.1 and Figure 4.2). Using the data–
consistent representation of ΠS

I the problem sketched in Example 4.3.a is overborne as the
following example shows.

Example 4.3.b (Consistent Read Data Access Using Data–Consistent Representation of ΠS
I)

Again consider the scenario described by Example 4.3.a. Assume that the data–consistent form
of ΠS

I is used instead of the Start / End representation. Then we obtain that the intended

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 76

A B C D

d1 d2

/

5 5
2

?

d3

write data
edge

read data edge

value of data object

1

Events START(A) END(A) START(B) END(B) START(C)

written data
elements

- (d1,5)
(d2,1)

- (d2,2) -

read data
elements

- - - - (d1,5)

a) Process Instance I b) Data-Consistent Representation of
 Execution History 3I

S

/
/

Completed Running TrueSignaled

'T = (deleteDataEdge(C, d1, read),
addDataEdge(C, d2, read))

Figure 4.3: Process Instance With Data Flow History (Example)

data flow change ∆T (deleting data edge (C, d1, read) and inserting data edge (C, d2, read)
afterwards) cannot be correctly propagated to the depicted instance I. The reason is that the
entry Start(C)(d1,5) of ΠS

I cannot be reproduced on the changed type schema.

When using the data–consistent representation of execution history ΠS
I one drawback re-

mains: Process instances might be excluded from migrating to the changed schema though this
migration would not lead to inconsistencies or errors in the sequel. More precisely, if Criterion
7 is solely based on the data–consistent representation of ΠS

I we exclude actually compliant
process instances (as non–compliant). This undesired behaviour occurs if the intended process
type change affects loop constructs as the following example shows:

Example 4.4.b (Restrictiveness in Conjunction With Loops Using Data–Consistent Represen-
tation of ΠS

I) Consider process type schema S, initially consisting of a nested loop block with
one external and one internal loop as depicted in Figure 4.4. Assume that new activities plan
blueprint and prepare presentations (with one data dependency between them) shall be
added to process type schema S. This change can be easily accomplished in a correct and consis-
tent manner at the process type level. Assume that instance I is described by (data–consistent)
execution history ΠS

I shown in Figure 4.4b. Following Criterion 7 the intended change could not
be propagated to I since no history entries for plan blueprint and prepare presentations
have been written within the first (completed) iteration of the external and the internal loop
within ΠS

I . Hence, I is considered as non–compliant with the new schema. Consequently, only
process instances, which are in the first iteration of both – the internal and the external loop –
could be adequately treated in this case.

From a practical viewpoint, however, in most cases it will be too restrictive to prohibit change
propagation for in-progress or future loop iterations only because their previous execution is not
compliant with the new schema. Think of, for example, medical treatment cycles running for
months or years. Every PMS which does not allow propagating such schema changes (e.g., due

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 77

identify
requirements

present
internally present

externally
meet

customer

requirements

plan
blueprint

prepare
presentations

blueprint plan

 a) Process Type Schema S:
 data element

„MAIL ADVERTISING“

data value

w
ri

te
s read

s

optimization required

further requests

Nested loop block:

External loop with start node customer meeting
and end node external presentation
Internal loop with start node requirements and
end node internal presentation

b) Execution History 3I
S of Process Instance I:

<START(meet customer, 1st it), END(meet customer),
START(identify requirements, 1st it),

END(identify requirements(requirements, “MAIL ADVERTISING”)),

START(develop blueprint(requirements, “MAIL ADVERTISING”)), END(develop requirements),
START(present internally), END(present internally, optimization required = FALSE),
START(present externally), END(present externally, further requests = TRUE),
START(meet customer, 2nd it), END(meet customer),
START(identify requirements, 2nd it),

END(identify requirements(requirements, “TV advertising”))>

c) Reduced Execution History 3I
S

red of Process Instance I:

<START(meet customer, 2nd it), END(meet customer),
START(identify requirements, 2nd it),

END(identify requirements(requirements, “TV advertising”))>

develop
blueprint

loop back

loop back

 Process Type Level:

 Process Instance Level:

Figure 4.4: Process Type Change and Effects on Running Process Instances (Example)

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 78

to the development of a new medical drug) to already running instances (e.g., related to patients
expecting an optimal treatment) would not be accepted by the medical staff. Therefore it is
stringently necessary to improve the data–consistent representation of ΠS

I in order to exterminate
its current restrictiveness in conjunction with loops. The key to solution is to come into the
position to differentiate between completed and future executions of loop iterations. From a
formal point of view there are two possibilities. The first approach (linearization approach) is
to logically treat loop structures as being equivalent to respective linear sequences. Doing so
allows us to apply Criterion 7 (with full history information). However, this approach has an
essential drawback – the explosion of the graph size. An example for this problem is depicted
in Figure 4.5a. Here the linearization of a small loop construct (containing a sequence with
three activities) already leads to a fairly swelled process graph. The problem becomes even
worse when considering nested loop constructs as depicted in the second example in Figure
4.5b. For constructing the linearized graph we have to know the number of iterations for inner
loop constructs which can be only done by consulting history information.

a) Instance I on S Containing Unnested Loop Construct:

Linearization Approach (Example 1)

 Projection on
Relevant Parts

b) Instance I on S Containing Nested Loop Construct:

Linearization Approach
(Example 2)

linearized graph cannot be exactly
determined

Projection on Relevant Parts

A B C… …

loopE � LoopE

3rd iteration

A

 B
 A

 B
 C

 …
 A

 B
 C

C D

l oopE � LoopE

3rd actual iteration

G

A B E F

l oopE � LoopE
 4th actual iteration

l oopE � LoopE
 6 rd iteration

A B C… …

C D

GA B E F

Completed Activated TrueSignaled

Figure 4.5: Linearization And Projection Approaches

Due to these drawbacks we have adopted another approach which works on a projection
on relevant history information, i.e., it maintains the loop construct but restricts the necessary
evaluation to the relevant parts of the execution history. What does projection on relevant

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 79

information exactly mean? Relevant information in conjunction with loops and compliance
checking concerns the actual marking of a loop body hiding all information about previous loop
iterations. Note that relevant information also includes the last marking of already finished
loops. Two examples for maintaining the actual marking of a loop body as relevant information
are depicted in Figure 4.5. The challenging question is how to determine the desired projection
on the actual marking of loop bodies. A solution is to logically discard all those entries from
the execution history which have been produced by another loop iteration than the actual one
(if the loop is still executed) or the last on (if the loop execution has been already finished). We
call this logical view on the execution history the reduced execution history. It can be formally
defined as follows:

Definition 7 (Reduced Execution History ΠS
I red) Let S = (N, D, . . .) be a process type

schema. Let further I be a process instance running according to S with (data–consistent) exe-
cution history ΠS

I =< e0, . . . , ek > with

ei ∈ {Start(di
1,vi

1),...,(di
n,vi

n) (<act>, <It>), End(di
1,vi

1),...,(di
m,vi

m)(<act>, <sc|lc>)}
(i = 0, . . . , k, act ∈ N).

(In conjunction with loop executions there may be several entries for one activity.) – The
reduced execution history ΠS

I red is obtained as follows:

1. In the absence of loops ΠS
I red is identical to ΠS

I .

2. Otherwise, it is derived from ΠS
I by discarding all history entries related to other loop

iterations than the last one (completed loop) or the actual iteration (running loop).

Formally:

ΠS
I red := ΠS

I ;

forall loop constructs (LS , LE) in S do

if ∃ex ∈ ΠS
I red with ex = Start(LS, i), i > 0 ∧

6 ∃ey ∈ ΠS
I red with ey = Start(LS, i+1)

then discard all entries e = Start(n, µ) and E = End(n, µ) respectively from ΠS
I red with:

n ∈ (c succ∗(S, LS) ∩ c pred∗(S, LE)) ∪ {LS , LE} ∧ µ < i

Example 4.4.c (Reduced Execution History): Figure 4.4c depicts the reduced execution history
derived from the execution history shown in Figure 4.4b. Since the inner as well as the outer
loop are actually executed we have to discard all entries produced by already finished iterations
according to Definition 7. More precisely, for the given instance this means to logically discard
all entries produced by the first iteration of the outer loop construct.

In summary, applying Criterion 7 based on the reduced representation form of an execu-
tion history ΠS

I red yields the desired behavior: it does not needlessly exclude instances from

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 80

migrating to a changed process type schema, guarantees consistency in conjunction with data
flow changes, and exterminates the dangling states problem. Furthermore, in conjunction with
reduced execution histories Criterion 7 is valid for all process execution models which store infor-
mation about previous execution of process instances, i.e., process meta models with True/False
semantics. Examples include Activity Nets as used by WebSphere MQ Workflow [73], and the
process meta models applied in BREEZE [104] and WASA2 [136]. A transfer of the compliance
framework for WSM–Nets to a compliance framework for Activity Nets can be found in [91].

4.3 On Efficient Compliance Checking

Let again S be a (correct) process type schema and I1, . . . , Im process instances (with execution
histories ΠS

I1
, . . . , ΠS

Im
) running according to S. Let further ∆T be a process type schema which

transforms S into another (correct) type schema S′.

4.3.1 Motivation

In the previous section we provided a logical correctness criterion (cf. Criterion 6) to be able to
decide on whether instances I1, . . . , Im are compliant with S′ or not. The challenging question
we want to answer in this section is how to ensure this criterion for a possibly large number
of running process instances (for example in a medical environment or the financial sector
m > 10.000 may easily hold [57]). At first glance, an obvious solution is to replay the execution
histories of all running process instances on the changed process type schema and – if this is
possible – to check afterwards whether the resulting instance marking is consistent (cf. Definition
4). However, doing is so is by far too restrictive for the following reasons:

1. Already the volume of a single execution history ΠS
Ik

may be large. The reason is that
besides Start and End events for started and completed activities further information
is logged within ΠS

Ik
like, for example, actor assignments and time stamps (see e.g.,

[62, 82, 121]). In ADEPT, for example, a single history entry typically comprises, at
present, information like event type (Short, 2 Bytes), activity identifier (Long, 8 Bytes),
actor assignment (Long, 8 Bytes), time stamp (Long, 8 Bytes), iteration counter (Short,
2 Bytes), and selection code (Short, 2 Bytes). Therewith each history entry has a size of
30 Bytes. Consider now a process type schema comprising 20 activities with 10 activities
being embedded into a loop construct. In case that this loop construct is executed 5 times
in the average, 10.000 running process instances would produce an execution history size
of approximately 35 MB.

2. In most PMS execution histories are not kept in main memory but are only written to
external storage (cf. Figure 4.6). Then they are processed later on by other tools, like,
e.g., performance analysis tools. Only in case of crash recovery or if ”semantic rollback”
(by performing compensation activities [72, 103]) is to be done, the PMS will access these

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 81

data again. As these cases occur rather seldom, re–reading the data from external storage
does not cause any serious harm. – This picture would change very much if execution
history information is used for compliance checking. Then for every process instance an
access on external storage becomes necessary which may cause performance problems.

One of the few approaches to think about performance in conjunction with replaying whole
execution histories is TRAMs [67] (cf. Section 2). Although this approach is restricted in
several directions a very important suggestion is to exploit the semantics of the applied change
operations in order to achieve more efficient compliance checks.

Example (Compliance Checking in TRAMs [67]): Let S be a (correct) process type schema and
I a process instance running according to S with execution history ΠS

I . Let further ∆T be a
process type change which deletes activity X from S and thereby transforms S into another
(correct) type schema S′. Then TRAMs identifies I as compliant with S′ if there is no Start
entry for activity X in ΠS

I .

This example shows that dependent on which change operation is performed only a special
part of the (respective) execution history must be considered for compliance checks. We want
to incorporate this idea of exploiting the semantics of the applied change operations in our
approach. However, compliance checking in TRAMs is still based on execution history scans.
As discussed above accesses on external storage may cause performance problems, especially
in conjunction with a a large number of running process instances. Therefore, we develop
methods which avoid expensive history scans by basing compliance checking on the model–
inherent markings of our process meta model (cf. Section 3.1.2). Furthermore, our approach is
comprehensive, i.e., for every applicable change operation a respective compliance condition is
provided.

As mentioned above, we want to avoid access on history data if possible. Instead it would
be very desirable to find a compact representation for execution histories. Fortunately, our
process meta model offers a memory–based marking approach where activity markings represent
a consolidated and compact view on the execution history of a particular process instance. At
this, the process instance markings represent the actual state of the respective instance execution
and therefore perfectly correspond to the reduced form of the underlying execution history.

Example 4.6 (Consolidated View on Execution History) Figure 4.6 depicts the two possibilities
to represent the execution state of process instance I3, i.e., the execution history and the con-
solidated instance markings. Please note that the instance markings represent the actual state
of I3 and therefore the unnecessary information about previous loop iterations contained in the
execution history of I3 are not present.

Altogether, our compliance checking approach, the so called compliance conditions on in-
stance markings approach, is based on two pillars – exploiting the semantics of the applied
change operations and process instance markings representing a consolidated view on history
data. By doing so, we are able to provide an approach which in the average requires only two
comparison operations in contrast to complexity of O(n) for replaying or scanning the whole

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 82

Instance Execution Schema of Instance I1

Management Process Type Schemes

Buffer

B

C

D

E LELs A

B

C

D

E LE Ls A

…

Instance Data Template Data

Process Instance Markings Process Type Schemes

M
ain

 M
em

o
ry

L
o

g
ical

 E
xecu

tio
n

 L
ayer

Markings I1

 I2

A LS B C D E LE

 � � �

A LS B C D E LE

 � � �

…

Cache

Management of Process Instance Data

♦ Process type versions and

associated process
schemes (internally stored
as version tree)

♦ Activity templates (with

associated application
components)

A

B

C

D E

B

C

D

E LELs A

Process Types:
T1:

Process Instances:

Markings

User, Agents

Execution History of I3 (simplified):

START(A,1), END(A,1), START(Ls,1), END(LS,1), START(B,1),
END(B,1), START(C,1), START(D,1), END(D,1), END(C,1),
START(E,1), END(E,1), START(LE,1), END(LE,1), START(Ls,2),
END(LS,2), START(B,2), END(B,2), START(C,2), START(D,2),
END(D,2), END(C,2), START(E,2), END(E,2), START(LE,2),
END(LE,2), START(Ls,3), END(LS,3), START(B,3), END(B,3),
START(C,3), START(D,3), END(D,3), END(C,3), START(E,3),
END(E,3), START(LE,3), END(LE,3), START(Ls,4), END(LS,4),
START(B,4), END(B,4), START(C,4), START(D,4), END(D,4),
END(C,4), START(E,4), END(E,4), START(LE,4), END(LE,4),
START(Ls,5), END(LS,5), START(B,5), END(B,5), START(C,5),
START(D,5), END(D,5), END(C,5), START(E,5), END(E,5),
START(LE,5), END(LE,5), START(Ls,6), END(LS,6), START(B,6),
END(B,6), START(C,6), START(D,6), END(D,6), END(C,6),
START(E,6), END(E,6), START(LE,6), END(LE,6),…

T2:

P
ersisten

ce L
ayer

Markings I1

I2

 I3

A LS B C D E LE

 � � �

A LS B C D E LE

 � � �

A LS B C D E LE

 � � �

Figure 4.6: Process Type Schema and Instance Management (Simplified)

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 83

execution history information (cf. Table 2.2). In addition, the necessary marking information is
kept in main memory what offers additional advantages with respect to an efficient implemen-
tation. The reason is that doing so results in significantly less accesses on secondary memory.
Futhermore, for all provided compliance conditions we formally show that they obey Criterion
7 based on the reduced representation form of execution histories.

4.3.2 Compliance Conditions for Control and Data Flow Changes

The ability to efficiently check compliance is indispensable for the flexible and efficient support
of processes by a PMS. Regarding existing approaches, as shown in Section 2, it remains pretty
vague how and at which costs compliance can be checked in conjunction with a large number of
running process instances. Thus, in our approach we provide efficient and precise conditions on
instance markings to ensure Criterion 7 for all possible kinds of changes operations.

4.3.2.1 Compliance Conditions for Additive Change Operations

We start with compliance conditions for the insertion of new activities, control edges, and sync
edges. (Note that the addition of a new activity is always accompanied by the insertion of
associated control or sync edges, which embed this activity into the process schema context.)

Theorem 1 (Compliance Conditions When Inserting Activities) Let S = (N, D, NT,
CtrlE, SyncE, LoopE, DataE) be a correct process type schema (represented by a WSM–Net) and
I be a process instance on S with reduced execution history ΠS

I red and with marking
MS = (NSS , ESS). Assume further that change operation ∆ transforms S into a correct process
type schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE’) by inserting an activity ninsert

(with associated control and sync edges) into S,
i.e., ∆ = [serial|parallel|branch]InsertActivity(S, ninsert, . . .) (cf. Table 3.2).

Then:

I is compliant with S’ ⇔
∀ n ∈ {x ∈ N | (ninsert, x) ∈ (CtrlE’ ∪ SyncE’)}:

NS(n) ∈ {NotActivated, Activated, Skipped} ∨
ninsert is inserted into an already skipped branch of an XOR-branching

A formal proof of Theorem 1 is given in Appendix C (cf. Proof C.1). Informally, for adding
activities, compliance can be always guaranteed if all (direct) successors of the newly inserted
activity ninsert are actually marked as Activated, NotActivated, or Skipped. In this case they
have not yet written any entry into the execution history. Interestingly, the same applies when
inserting activities into already skipped branches.

Example 4.7 (Compliance Conditions for Insertion of New Activities) A new activity X is serially
inserted between actvities C and F into the process type schema depicted in Figure 4.7. Instance

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 84

Process Type Level:

Process Type Schema S: Process Type Schema S’:

Process Instance Level:

Process Instance I1 on Schema S:

'T = serialInsertActivity(S, X, C, F)

applying 'T

X

Completed Activated TrueSignaled

Correct Process Instance I1 on Schema S’:

A

C

D E

G B F

A

C X

D E

G B F

A

C

D E

G B F

A

C X

D E

G B F

 NS(F) = NotActivated �

I1 compliant with S’

A

C

D E

G B F

Process Instance I2 on Schema S:

NS(F) = Completed �

I2 not compliant with S’

Figure 4.7: Compliance Checks for Insertion of Activities (Abstract Example)

I1 is compliant with the changed process type schema S′ according to Theorem 1 since the
direct successor of X in S′ (namely F) has state NotActivated. In contrast, instance I2 is not
compliant with S′ since F is already in execution state Completed.

Similar to the insertion of single activities we can state compliance conditions for the insertion
of whole control blocks:

Theorem 2 (Compliance Conditions When Inserting Control / Loop Blocks) Let S =
(N, D, NT, CtrlE, SyncE, LoopE, DataE) be a correct process type schema (represented by a
WSM–Net) and I be a process instance on S with reduced execution history ΠS

I red and with mark-
ing MS = (NSS , ESS). Assume further that change operation ∆ transforms S into a correct
process type schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE’) by inserting a control
(loop) block cBlockinsert = (b, e) (lBlockinsert = (b, e)) (with associated control and sync edges)
into S,

i.e., ∆ ∈ {[serial|parallel|branch]InsertBlock(S, cBlockinsert, . . .),
[serial|parallel|branch]InsertLoopBlock(S, lCond, . . .)} (cf. Table 3.2).

Then:

I is compliant with S’ ⇔
∀ n ∈ {x ∈ N | e → x ∈ (CtrlE’ ∪ SyncE’)}:

NS(n) ∈ {NotActivated, Activated, Skipped} ∨
cBlockinsert (lBlockinsert) is inserted into an already skipped branch of an XOR-branching

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 85

Though no application program or manual action is associated with a loop start or loop end
node these nodes write entries into ΠS

I red, e.g., loop start nodes write the iteration counter and
loop end nodes the result of evaluating the loop condition. These effects on ΠS

I red are reflected
by the compliance conditions given in Theorem 2.

Theorem 2 can be proven in an analogous manner as Theorem 1. The reason is that we can
logically transform newly inserted control (loop) block cBlockinsert (lBlockinsert) into a complex
activity (for example by applying the nest–operation; cf. Table 3.2). Note that the compliance
condition is satisfied for all activities in cBlockinsert (lBlockinsert) if it is fulfilled for end activity
e.

Theorem 3 (Compliance Conditions When Inserting Control And Sync Edges) Let
S = (N, D, NT, CtrlE, SyncE, LoopE, DataE) be a correct process type schema (represented
by a WSM–Net) and I be a process instance on S with reduced execution history ΠS

I red and
with marking MS = (NSS , ESS). Assume further that change operation ∆ transforms S into a
correct process type schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE).

(a) ∆ inserts a control edge ctrlE = nsrc → ndest into S,
i.e, ∆ = addCtrlEdge(S, ctrlE) (cf. Table 3.1). Then:

I is compliant with S’ ⇔
NS(ndest) ∈ {NotActivated, Activated, Skipped} ∨
[NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed} with

(∃ei = End(nsrc), ej = Start(ndest) ∈ ΠS
I red ∧i < j)]

(b) ∆ inserts a sync edge syncE = nsrc → ndest into S (nsrc and ndest ordered parallel so far),
i.e., ∆ = insertSyncEdge(S, syncE) (cf. Table 3.2). Then:

I is compliant with S’ ⇔
[NS(ndest) ∈ {NotActivated, Activated, Skipped}] ∨
[NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed} with

∃ei = End(nsrc), ej = Start(ndest) ∈ ΠS
I red ∧ i < j))] ∨

[NS(nsrc) = Skipped ∧ NS(ndest) ∈ {Running, Completed}) with
∀ n ∈ Ncritical with NS(n) 6= Skipped:

∃ei = Start(ndest), ej = End(n) ∈ ΠS
I red with j < i),

where Ncritical = (c pred∗(S, nsrc) ¬ c pred∗(S, ndest))
and c pred∗(S, n) denotes all direct/indirect predecessors of n in S
concerning control edges]

For a formal proof of Theorem 3 we refer to Proof C.2 in Appendix C. Concerning the
insertion of a single control or sync edge, compliance can be always ensured if the target node
of the respective edge has not been started yet. This is a sufficient condition for guaranteeing
compliance, but it is not always necessary. In a few cases additional information from the

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 86

reduced execution history may be required to decide on compliance.

Example 4.8 (Compliance Conditions for Insertion of New Sync Egdes) As an example take
process type schema S from Figure 4.8. Assume that sync edge D → F is inserted into S.
Obviously, instance I1 is compliant with S′ since destination node F of the newly inserted sync
edge has node state Activated. Regarding process instance I2 we see that the source node D
is skipped and the target node F is completed. According to Theorem 3, in this situation, I2 is
only compliant with the new schema if and only if B has written its end entry before the start
entry of F into the execution history (Ncritical = {B} ∧ NS(B) 6= Skipped). This condition
cannot be verified by analyzing the marking of I2. In turn, the information about the execution
order between B and F for I2 has to be extracted from the execution history ΠI2 of I2. We can
see from ΠI2 depicted in Figure 4.8 that F was started before B. Consequently, the insertion of
sync edge D → F cannot be propagated to I2.

Inserting ”normal” control edges seems to make not much sense at the moment since in-
serting of activities is already accompanied by the insertion of respective ”embedding” control
edges. Nevertheless, insertion and deletion of control edges is important when order–changing
operations take place (cf. Section 4.3.2.3). The respective compliance conditions are given in
Theorem 6.

4.3.2.2 Compliance Conditions for Subtractive Change Operations

Of course, delete operations are very important for practical purposes as well, e.g., activities
may have to be skipped (and therefore the associated control and sync edges embedding the
respective activity into the process context be deleted). Thus we provide Theorem 4 which
summarizes the compliance conditions for delete operations:

Theorem 4 (Deletion of Activities/Control Edges/Sync Edges) Let
S = (N, D, NT, CtrlE, SyncE, LoopE, DataE) be a correct process type schema (represented
by a WSM–Net) and I be a process instance on S with reduced execution history ΠS

I red and
with marking MS = (NSS , ESS). Assume further that change operation ∆ transforms S into a
correct process type schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE).

(a) ∆ deletes an activity ndelete from S (including the re-linking of control edges),
i.e., ∆ = deleteActivity(S, ndelete) (cf. Table 3.2). Then:

I is compliant with S’ ⇔
NS(ndelete) ∈ {NotActivated, Activated, Skipped}

(b) ∆ deletes a control or sync edge edge = (nsrc, ndest) from S,
i.e., ∆ = delete[Ctrl|Sync]Edges(S, edge) (cf. Table 3.1 + 3.2). Then:

I is compliant with S’

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 87

B

C

D

F

E

A H

G

B

C

D

F

E

A H

G

Process Type Level:
Process Type Schema S: Process Type Schema S’:

Process Instance Level:

Process Instance I1 on Schema S:

'T = insertSyncEdge(S, (D,F))

applying 'T

Correct Process Instance I1 on Schema S’:

NS(F) = NotActivated �

I1 compliant with S’

Process Instance I2 on Schema S:

NS(F) = Completed � � ei = Start(F), ej = End(B) with i < j

 � I2 not compliant with S’

B

C

D

F

E

A H

G

B

C

D

F

E

A H

G

B

C

D

F

E

A H

G

Completed Activated TrueSignaled

Skipped FalseSignaled

Execution History (I2 on S):

ΠI

S = (START(A), END(A), START(B), START(F), END(F),
 END(B), START(C), END(C), START(G), END(G))

Figure 4.8: Compliance Checks for Insertion of Sync Edges (Abstract Example)

A formal proof for Theorem 4 is given in Appendix C (cf. Proof C.3). For delete operations
compliance checks can be always performed solely on basis of activity markings. Intuitively, only
those activities of a process instance I can be dynamically deleted which have not yet written
any entry into the execution history. This is the case if the node marking of the activity to
be deleted is NotActivated, Activated, or Skipped. Concerning control / sync edges their
deletion is uncritical with respect to the compliance of process instances with the resulting
process schema. Note that order relations between the source and end activity nodes of deleted
edges are abolished. Therefore the previous execution can be replayed on the changed schema.

The following theorem comprises the compliance conditions for deleting control blocks.

Theorem 5 (Deletion of Control Blocks) Let S = (N, D, NT, CtrlE, SyncE, LoopE, DataE)
be a correct process type schema (represented by a WSM–Net) and I be a process instance on S
with reduced execution history ΠS

I red and with marking MS = (NSS , ESS). Assume further that

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 88

 C
 B

 A
 D

 A B C D

Process Schema S: Process Schema S’:
�

T = serialMoveActivity(S, B, C, D)

I1 on S:

I2 on S:

 A B C D

 A B C D

 C
 B

 A
 D

CtrlE�T
del = {(A, B), (B, C), (C, D)},

CtrlE�T
add = {(A, C), (C, B), (B, D)}

non-compliant

Completed Activated TrueSignaled

migrate

migrate

Figure 4.9: Order–Changing Operation (Example)

change operation ∆ transforms S into a correct process type schema
S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE) by deleting control block
cBlockdelete = (begin, end) from S, i.e., ∆ = deleteBlock(S, cBlockdelete) (cf. Table 3.2).
Then:

I is compliant with S’ ⇔
NS(begin) ∈ {NotActivated, Activated, Skipped}

Similar to the insertion of control blocks for the deletion of control blocks we can argue
that the respective proof can be mapped onto the proof for deleting activities if cBlockdelete is
nested to an activity. In contrast, the compliance conditions are only fulfilled for all actvities of
cBlockdelete if they are satisfied for activity begin.

4.3.2.3 Compliance Conditions for Order–Changing Operations

Order–changing operations like moving an activity nmove from its current position to position
(src, dest) are carried out by applying a sequence of edge insertion and deletion operations. Note
that nmove is not deleted (and then inserted at its new position). Therefore the data context of
nmove is preserved. More precisely, control or sync edges are deleted to unhinge nmove from its
current position in S and to break open the new position. Afterwards nmove has to be woven into
the process context again. Here new control edges are inserted to close the gap of the previous
position of nmove and to embed nmove between src and dest.

Example 4.9.a (Order–Changing Operation) In Figure 4.9 activity B is moved to position be-
tween C and D. This order–changing operation ∆T is realized by deleting a set of existing
control edges CtrlEdel

∆T
= {(A,B), (B,C), (C, D)} and by inserting a set of new control edges

CtrlEadd
∆T

= {(A,C), (C,B), (B, D)}.
Since a move operation actually consists of the composed application of deleting and inserting

edges, intuitively, the compliance condition of the respective move operation is fulfilled if the
compliance conditions of the single edge operations are fulfilled (cf. Theorems 3 + 4). Since
deletion of sync / control edges has no impact on compliance (cf. Theorem 4) only compliance

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 89

conditions for inserting control edges have to be aggregated to find the desired compliance
condition, formally:

Theorem 6 (Moving Activities) Let S = (N, D, NT, CtrlE, SyncE, LoopE, DataE) be a cor-
rect process type schema (represented by a WSM–Net) and I be a process instance on S with re-
duced execution history ΠS

I red and with marking MS = (NSS , ESS). Assume further that change
operation ∆ transforms S into a correct process type schema
S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE) by moving activity nmove from its cur-
rent position to its new position within S′ 3. Thereby ∆ adds set of control edges

CtrlEadd
∆T

= {(n1, n2)|n1 ∈ c pred(S, nmove), n2 ∈ c succ(S, nmove)} ∪
{(n1, nmove)|n1 ∈ c pred(S′, nmove)} ∪

{(nmove, n2)|n2 ∈ c sucee(S′, nmove)}
i.e., ∆ = [serial|parallel|branch]moveActivity(S, nmove, . . .) (cf. Table 3.3). Then:

I is compliant with S’ ⇔
∀(nsrc, ndest) ∈ CtrlEadd

∆T
:

NS(ndest) ∈ {NotActivated, Activated, Skipped} ∨
[NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed} with

(∃ei = End(nsrc), ej = Start(ndest) ∈ ΠS
I red ∧ i < j)]

A formal proof of Theorem 6 can be found in Appendix C (cf. Proof C.4). For insertion
of control edges into CtrlEadd

∆T
we claim that each destination activity must be NotActivated,

Activated, or Skipped. In order to move an activity nmove, at first, we have to fill the ”gap”
resulting from unhinging nmove from its former context, i.e., we insert a control edge between
the direct predecessor(s) and successor(s) of nmove in S. Secondly, nmove has to be embedded
into the process context by inserting new control edges between all direct predecessor of nmove

within S′ and nmove as well as between nmove and all direct successors of nmove in S′.

Example 4.9b (Compliance Condition When Moving Activities) Consider Figure 4.9. For in-
stances I1 and I2 the activity markings of activities B,C and D have to be checked according
to Theorem 6. Instance I1 is compliant with S′ since B is Activated and C and D are still in
state NotActivated. In contrast, instance I2 is not compliant with S′ since B has been already
completed.

ADEPT offers additional operations to move whole control blocks (cf. Table 3.3). Obviously,
moving blocks could be also achieved by individually moving each single activity of the respective
block. However, the [serial|parallel|branch]MoveBlock(S, . . .) operations often better suit to
the users’ intention since they may lose overview when moving each single activity, especially
for large control blocks.

Operations [serial|parallel|branch]MoveBlock(S, block, . . .) work like the respective opera-
tions for moving activities: First, control block block = (b, e) is unhinged from its current context

3Note that the static correctness of process schema S′ is guaranteed by the post–conditions of the applied
move operation (cf. Table 3.2)

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 90

by deleting all incoming edges of start activity b and all outgoing edges of end activity e. Then
(b, e) is reembedded at its new position by inserting control edges between all direct predecessors
of start activity b and b as well as between end activity e and all of its direct successors.

Theorem 7 (Moving Blocks) Let S = (N, D, NT, CtrlE, SyncE, LoopE, DataE) be a correct
process type schema (represented by a WSM–Net) and I be a process instance on S with reduced
execution history ΠS

I red and with marking MS = (NSS , ESS). Assume further that change oper-
ation ∆ transforms S into a correct process type schema
S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE) by moving control / loop block block = (b, e)
from current position to its new position within S′ by adding set of control edges

CtrlEadd
∆T

= {(n1, n2)|n1 ∈ c pred(S, b), n2 ∈ c succ(S, e)} ∪
{(n1, b)|n1 ∈ c pred(S’, b)} ∪ {(e, n2)|n2 ∈ c succ(S, e)}

i.e., ∆ = [serial|parallel|branch]MoveBlock(S, block, . . .) (cf. Table 3.3). Then:

I is compliant with S’ ⇔
∀(nsrc, ndest) ∈ CtrlEadd

∆T
:

NS(ndest) ∈ {NotActivated, Activated, Skipped} ∨
[NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed} with

(∃ei = End(nsrc), ej = Start(ndest) ∈ ΠS
I red ∧ i < j)]

We abstain from a formal proof for Theorem 7. Again this operation can be mapped to
the respective operation for moving single activities by nesting control / loop block (b, e) to a
complex activity (which can then be moved to the respective position within S′). Note that
for moving control / loop blocks start activity b as well as end activity e have to be taken into
account.

4.3.2.4 Compliance Conditions for Data–Flow Changes

Changes of the data flow may become necessary in conjunction with control flow schema changes
(e.g., removing associated data edges of an activity to be deleted) or may have to be applied
independently in order to re-link data edges or data elements (e.g., if errors in the modeled flow
of data have to be corrected). To modify the data flow schema, our approach offers operations
for adding and deleting data elements as well as data edges.

Taking the compliance property from Criterion 7, all conditions set out for control flow
changes (cf. Theorem 1 – 6) must be further fulfilled. Additionally, it is required that each
started or finished activity (of the respective process instance) would have read and each fin-
ished activity would have written the same data element values also on the new schema. The
compliance of a process instance in case of data flow changes can be easily checked based on the
following conditions.

Theorem 8 (Compliance Conditions For Data Flow Changes) Let S = (N, D, NT, CtrlE,
SyncE, LoopE, DataE) be a correct process type schema (represented by a WSM–Net) and I be a

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 91

process instance on S with reduced execution history ΠS
I red and with marking MS = (NSS , ESS).

Assume further that change operation ∆ transforms S into a correct process type schema S’ =
(N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE).

(a) ∆ inserts a data element d into S, i.e., ∆ = addDataElements(S, {d}, . . .). Then:

I is compliant with S’.

(b) ∆ deletes a data element d from S, i.e., ∆ = deleteDataElements(S, {d}, . . .). Then:

I is compliant with S’ ⇔
No read or write access on d by an activity with state Running or Completed

(c) ∆ inserts or deletes a read edge (d, n, read),
i.e., ∆ ∈ {addDataEdges(S, {(d, n, read)}), deleteDataEdges(S, {(d, n, read)}}. Then:

I is compliant with S’ ⇔ NS(n) ∈ {NotActivated, Activated, Skipped}
(d) ∆ inserts or deletes a write edge (d, n, write),

i.e., ∆ ∈ {addDataEdges(S, {(d, n, write)}), deleteDataEdges(S, {(d, n, write)}}. Then:

I is compliant with S’ ⇔ NS(n) 6= Completed

(for all data flow operations see Table 3.3)

A formal proof can be found in Appendix C (cf. Proof C.5). To explain how Theorem 8
works we provide the following example:

Example 4.3.c (Compliance Conditions for Data Flow Changes) Consider Figure 4.3 where type
change ∆T cannot be applied to instance I according to Theorem 8. The reason is that activity
C is Running and therefore already has read data element d1. Consequently re–linking the data
access of C to d2 would be prohibited what complies to the desired behavior in this case.

As already mentioned, data flow adaptations also become necessary in conjunction with
the insertion and deletion of activities. In this case, the conditions of Theorem 8 are already
met if the state conditions of the according node insertion or deletion operations are fulfilled
(cf. Theorem 1 and 4). Similar to the aggregated compliance conditions for order–changing
operations concerning data flow changes, the conditions for using complex operations arise from
the aggregation of the conditions of basic change operations (cf. Section 4.3.2.5).

4.3.2.5 Further Changes Operations

For the following kinds of change operations like attribute–changing, nesting, and high-level
(complex) changes we informally provide their particular compliance conditions but abstain
from presenting formal proofs. The reason is that we want to achieve completeness of com-
pliance conditions regarding possible kinds of changes on the one hand but avoid unnecessary

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 92

recapitulation of already presented concepts and proofs on the other hand. Again let S be a
(correct) process type schema and I an unbiased process instance with reduced execution history
ΠS

I red and with marking MS = (NSS , ESS) on S. Let further ∆T be a process type change
transforming S into another (correct) schema S′.

Attribute–Changing Operations: Basically, we distinguish between changes of activity at-
tributes, i.e., working assignments and edge attributes like selection codes or priorities [87]. Let
first ∆T change attribute attr of activity X to value val. Then the running instance I is com-
pliant with S′ if and only if NS(X) ∈ {NotActivated, Activated, Skipped} holds (cf. Table
4.2). Exemplarily, let activity X be a patient preparation step and the respective actor assign-
ment be ”role = Nurse”. Then we can change this actor assignment until activity X is selected
by a nurse and therefore its state changes to Running. As a consequence X writes a Start entry
with actor assignment ”role = Nurse” into ΠS

I red which would be not producible on S′ if the
actor assignment attribute is changed. Please note that it is possible to change attributes like
actor assignments even if the respective activity is activated and already distributed into work
lists. The reason is that based on our marking adaptation algorithm presented in the following
section we ”flag” the respective activity as newly to evaluate and re–distribute it to worklists
according to the new working assignment. If ∆T changes an attribute of edge = (nsrc, ndest)
we claim that ndest ∈ {NotActivated, Activated, Skipped}. This leads to a very interesting
marking adaptation process (cf. Algorithm 2): if we change the selection code of an outgoing
edge of an XOr-Split we eventually have to check whether the completed deadpath elimination
is still correct or has to be adjusted.

Nest and Unnest Operations: Propagating nest or unnest operations to running instances
is always uncritical regarding compliance. The reason is that we only change the view on
the process not the control or data flow themselves. Consequently, logically, there is always a
common flat representation of the respective process type and instance schemes based on which
the respective execution histories can be arbitrarily transferred.

High–Level (Complex) Change Operations: Generally the compliance conditions of high–
level or complex change operations are fulfilled if the compliance conditions of the applied basic
or high–level change primitives are fulfilled. Of course, these conditions may overlap such that
several optimizations are conceivable.

As an example, in Table 4.2 we provide the compliance conditions for complex change oper-
ation insertBetweenNodeSets(S,X, Mbef , Maft) which inserts activity X between activity sets
Mbef and Maft. Informally this change works by first inserting X into parallel position to a
minimal control block containing Mbef and Maft. Afterwards the desired order dependencies
between activities in Mbef and X as well as between X and activities in Maft are set out by
inserting respective sync edges. Altogether, we apply a parallel insertion operation and several
insertions of sync edges. If we look at the compliance condition given in Table 4.2 we see that
the insertion operations demands that all direct successors via control and sync edges in S′ have
to be in states NotActivated, Activated, or Skipped. This conditions already comprise the
conditions for inserting sync edges between X and activities in Maft. For inserting sync edges

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 93

Table 4.2: Compliance Conditions for Attribute–Changing, Nesting and Complex Changes

Change Operation ∆ Compliance Conditions

Attribute Changing Operations

changeActivityAttribute(S, X, attr, val) I is compliant with S ⇐⇒
NS(X) ∈ {NotActivated, Activated, Skipped}

changeEdgeAttribute(S, edge, attr, val) I is compliant with S ⇐⇒
NS(ndest) ∈ {NotActivated, Activated, Skipped}

where edge = (nsrc, ndest)

Nest and Unnest Operations

nestBlock(S, ctrlBlock, X) I is compliant with S
unnestBlock(S, X) I is compliant with S

High–Level Change Operations

insertBetweenNodeSets(S, X, Mbef , Maft) I is compliant with S ⇐⇒
∀ n ∈ {x ∈ N | X → x ∈ (CtrlE’ ∪ SyncE’)}:

NS(n) ∈ {NotActivated, Activated, Skipped}
insertLoopEdge(S, (A, B), lCond) I is compliant with S ⇐⇒

NS(A) ∈ {NotActivated, Activated, Skipped}

between activities in Mbef and X we have to claim teh conditions of Theorem 3 for X. However
new activities are always inserted with state NotActivated (and are re–evaluated if need be)
by what the conditions of Theorem 3 for X are already fulfilled.

For high–level operation insertLoopEdge(S, . . .) the compliance conditions are dominated
by the compliance conditions for inserting the empty loop block (LS , LE) (cf. Section 3.2).
The reason is that the respective condition claims that NS(A) ∈ {NotActivated, Activated,
Skipped}. For moving (A,B) between LS anbd LE we get that the destination activities of
newly added control edges contained in CtrlEadd

∆ = {(LS , A), (B, LE), (LE , c succ(S, B))} should
all have states in {NotActivated, Activated, Skipped} or – if they are already running or
finished and the respective source activity is also completed – they should have written their
history entries after the history entries of the source nodes (cf. Theorem 7). These claims are
already fulfilled by claim NS(A) ∈ {NotActivated, Activated, Skipped}: LE is inserted with
state NotActivated and since NS(A) ∈ {NotActivated, Activated, Skipped} the same must
hold for the successors of A (cf. Definition 4), in particular for B and its direct successors.

4.4 Adapting Process Instance Markings After Migration

At this stage we are able to quickly and efficiently decide whether a running process instance is
compliant with a changed process type schema or not. As we have already discussed in Section

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 94

2.4 it is also indispensable to provide methods to automatically adapt instance markings after
migration to the changed schema. As we have also shown there are actually approaches dealing
with adaptive processes which burden the user with adapting instance markings. An example
is the Synthetic Cut Over Changes proposed by Ellis et al [39] which forces the user to generate
and distribute instance markings within a very complex Petri Net (cf. Figure 2.13). Obviously,
doing so cannot be expected of the user in practice.

Therefore in our approach we have developed an algorithm to automatically adapt instance
markings after migration to the changed schema. This algorithm must obey two fundamental
claims: First, it has to output correct instance markings on the changed type schema according to
Definition 4. We formally prove that this correctness claim is properly fulfilled by our algorithm
(cf. Theorem 9). Second the marking adaptation algorithm has to work efficiently. The reason
is that based on the particular situation the necessary marking adaptations may turn out very
extensive. Thereby, generally, the effort of instance marking adaptations depends on the kind
and scope of the change. Except initialization of newly inserted nodes and edges, no adaptations
will become necessary if execution of has not yet entered the change region.

 A B C

 A B X C

Process Schema S: Process Schema S’:
�

T = serialInsertActivity(S, X, B, C)

Process Instance I1 on S

Process Instance I2 on S

 A B C

 A B C

 A B X C

 A B X C

Completed Activated TrueSignaled

Figure 4.10: Markings Adaptations (Example)

An example is depicted in Figure 4.10 where in-
stance I1 has not yet entered the process area
where activity X is inserted into. In other cases
more extensive marking adaptations may be re-
quired. An activity X, for example, may have
to be deactivated if new control edges are in-
serted with X as target activity. This is the case
for instance I2 in Figure 4.10 where activity C
has to be reset from state Activated to state
NotActivated end therefore has to be removed
from respective work lists. Conversely, newly in-
serted activity X is evaluated to Activated and
immediately offered in work lists.

Even more complex marking adaptation scenarios arise if activities are, for example, inserted
into already skipped branches. The most effort has to be spent if the selection codes of edges
with an XOr-Split as source activity are changed (cf. Section 4.3.2.5). As a result whole
branches have to be reset and other branches may undergo further deadpath–eliminations. An
example is shown in the following section.

We now describe how markings can be automatically and efficiently adapted when migrating
compliant instances. Initially, we can restrict marking evaluations to those nodes and edges,
which constitute the context of a change region. We sketch how these sets can be determined
for selected change primitives as well as for complex changes. Based on this, we present an
algorithm which correctly calculates new markings for compliant instances.

For the following considerations again let S be a (correct) process type schema and I an unbi-

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 95

ased process instance with reduced execution history ΠS
I red and with marking MS = (NSS , ESS)

on S. Let further ∆T be a process type change transforming S into another (correct) schema
S′ and I be compliant with S′ (cf. Criterion 7 and compliance conditions of Section 4.3.2).

4.4.1 Initial Determination Of Newly To Evaluate Activities And Edges

Generally, when migrating a process instance I to a changed process schema S′ only those
activities and edges should be re–evaluated for which state adaptations are possibly necessary,
i.e., we avoid to analyze activities and edges which are not involved into type change ∆T at all.
More precisely, we have to determine activity set Ncheck and edge set Echeck for which the state
has to be newly evaluated on S′. We call these sets the inital activity and edge sets. Table 4.3
summarizes the intial activity and edge sets for the particular change operations.

When inserting new activity X (including context edges) we have to re–evaluate the states
of all direct successors of X and all incoming control edges of X to avoid inconsistent markings
in the following (cf. Table 4.3). A re–evaluation of X is only necessary if one of the incoming
edges of X can be marked as TrueSignaled or FalseSignaled. Similarly when inserting a new
control block (b, e) we intially re–evaluate the states of all incoming edges of start node b. It is
possible that further activities of control block (b, e) have to be re–marked, for example, if the
whole control block has to be skipped. Similarly to insertion of activities, we have to consider
the direct successors of end node e of the control block what is reflected in Ncheck(∆T). When
inserting a new control edge (nsrc, ndest) again the edge itself and its destination node ndest have
to be newly evaluated. Evaluating ndest is also necessary if the control edge itself is marked as
NotSignaled. It this case possibly the activation of ndest has to be reset due to an insertion of
another edge.

If we delete an activity X we first remove all incoming and outgoing edges of X and then
bypass the arising ”hole” with a respective number of control edges. With this consideration
Ncheck(∆T) and Echeck(∆T) for deleting activities directly follow (cf. Table 4.3). (Analogously,
Ncheck(∆T) and Echeck(∆T) result for the deletion of control blocks.)

Moving an activity X from its current position to its new position within S′ can be either
seen as a sequence of edge change operations (cf. Section 4.3.2.3) or – logically – as the combined
application of deleting X and the afterwards insertion of X at the respective position within
S′. For both cases we have to check the states of all direct successors of X for the original and
the resulting position (Ncheck(∆T)). Furthermore, it is necessary to take all incoming edges of
X at the new position and the edges bypassing the ”hole” at the original position into account
(Echeck(∆T)).

The most ”tricky” re–evaluations may result for attribute–changing operations. For changes
on attributes of activity X it may be necessary to re–distribute X to work lists if working
assignments are changed (cf. Table 4.3). In this case we ”flag” Ncheck(∆T) with the instruction
to check necessity of re–distribution. If we change the selection code of edges it may be necessary
to re–activate already skipped branches of an alternative branching and to skip other branches

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 96

Table 4.3: Initial Activity And Edge Sets for Re–Evaluation of Instance Markings

Applied Change Operation ∆ Initial Activity And Edge Sets

Inserting Activity X Ncheck(∆) := {n ∈ N |(X, n) ∈ E′}
(including context edges) Echeck(∆) := {(nsrc, ndest) ∈ E′|ndest = X}

Inserting Control Block (b, e) Ncheck(∆):={n ∈ N ′|(e, n) ∈ E′}
with start node b and end node e Echeck(∆):={(nsrc, ndest) ∈ E′|ndest = b}

Inserting Control or Sync Edge (nsrc, ndest) Ncheck(∆) := {ndest}
Echeck(∆) := {(nsrc, ndest)}

Deleting Activity X Ncheck(∆) := {n ∈ N |(X, n) ∈ E}
(including deletion and Echeck(∆) := Eadd

insertion of context edges) (Eadd := E′ \ E)

Deleting Control or Sync Edge (nsrc, ndest) Ncheck(∆) := {ndest}

Deleting Control Block (b, e) Ncheck(∆) := {n ∈ N |(e, n) ∈ E}
with start node b and end node e Echeck(∆) := Eadd

(including deletion and
insertion of context edges) (Eadd := E′ \ E)

Moving Activity X Ncheck(∆):= {n ∈ N ′|(X, n) ∈ E′} ∪
to new position in S′ {n ∈ N |(X, n) ∈ E}
(including context edges) Echeck(∆):={(nsrc, ndest) ∈ E′|ndest = X} ∪

{(n1, n2) ∈ E′|(n1, X), (X, n2) ∈ E}

Moving Block block = (b, e) Ncheck(∆):= {n ∈ N ′|(e, n) ∈ E′} ∪
to new position in S′ {n ∈ N |(e, n) ∈ E}
(including context edges) Echeck(∆):={(nsrc, ndest) ∈ E′|ndest = b} ∪

{(n1, n2) ∈ E′|(n1, b), (e, n2) ∈ E}

Changing Attribute attr of Activity X to new value nV al
if attr = wAss with wAss is Ncheck(∆) := {(X, ”r”)}

working assignment attribute of X Echeck(∆) := ∅
else Ncheck(∆) := ∅

Echeck(∆) := ∅

Changing Attribute attr of edge (nsrc, ndest) to new value nV al
if attr = sc and nsrc = split Ncheck(∆) := ∅

with sc selection code Echeck(∆):={(nsrc, n) ∈ alternative branch in E′}
and split XOr-Split of
an alternative branching

else Ncheck(∆) := ∅, Echeck(∆) := ∅

Inserting New Loop Block (n1, n2) Ncheck(∆):={n ∈ N ′|(n2, n) ∈ E′}
with start node n1 and end node n2 Echeck(∆):={(nsrc, ndest) ∈ E′|ndest = n1}

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 97

Algorithm 1 (Determining Ncheck(∆) and Echeck(∆) For Change Transaction ∆)
input

∆ := (op1, . . . , opn): Applied change transaction ∆ consisting
of change operations op1, . . . , opn;

output
Ncheck(∆) and Echeck(∆): Sets of newly to evaluate activities / edges;

begin
Echeck(∆) = ∅; Ncheck(∆) = ∅; //Initialization
for i:=1 to n do //Aggregation

Ncheck(∆):=Ncheck(∆) ∪ Ncheck(opi);
Echeck(∆):=Echeck(∆) ∪ Echeck(opi);

done
Echeck(∆):=Echeck(∆) ∩ E’;
Ncheck(∆) := Ncheck(∆) ∩ N;

end

in contrast. To be able to do so we add all outgoing edges of the respective XOr-Split to
Echeck(∆T) as starting point for re–evaluation.

How can we determine Ncheck(∆T) and Echeck(∆T) for a change transaction
∆T := (op1, . . . , opn)? One would guess that we get the desired sets by unifying Ncheck(opi)
and Echeck(opi) for all applied change operations opi(i = 1, . . . , n). However this is not always
the case since the particular change operations opi can be based on each other. In particular,
effects of opi may be (partially) overrided by precedent change operations op1, . . . , opi−1 . Algo-
rithm 1 incorporates this aspect as follows: Echeck(∆T) is determined by unifying Echeck(opi) for
all applied change operations whereby those edges are removed which are not present in the new
schema S′. In fact these edges have been produced but have been also removed again by sub-
sequent operations. Regarding Ncheck(∆T) only those actitivites have to be taken into account
which were present in original schema S. (The following algorithm works by only evaluating
newly inserted activities if an incoming edge has been also newly marked.) Altogether, Algo-
rithm 1 only determines the necessary activity and edge sets to be re–evaluated and therefore
the input of Algorithm 2 is kept minimal.

4.4.2 Marking Adaptation Algorithm

Let S = (N, D,CtrlE, SyncE, LoopE, . . .) be a (correct) process type schema which is trans-
formed into another (correct) process schema S′ by applying change transaction
∆T := (op1, . . . , opn). Let further Ncheck(∆T) and Echeck(∆T) be as determined by Algorithm
1. Then Algorithm 2 determines the new activity and edge markings MS′ = (NSS′ , ESS′) of a
compliant process instance I on S after its migration to S′. In essence, this algorithm is based
on the ADEPT marking and execution rules (cf. Figure 3.3d) and Rules 1). Starting point are

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 98

the inital sets of newly to evaluate activities and edges (cf. Table 4.3 and Algorithm 1). If need
be, Algorithm 2 carries out cascading re–evaluations, e.g., if a deadpath elimination has to be
executed or already skipped branches have to be reset.

How Algorithm 2 works is illustrated by the following examples:

Example 4.10 (Marking Adaptations When Inserting An Activity): For type change ∆T as
depicted in Figure 4.10 we get Ncheck(∆T) = {C} and Echeck(∆T) = {(B, X)} according to Table
4.3. Starting from this for instance I2 Algorithm 2 first re–marks (B, X) to TrueSignaled and
adds X to Ncheck(∆T). Then C is taken from Ncheck(∆T) and reset to NotActivated (doing
so is accompanied by removing entries of C from work lists). Finally, the state of X is set
to Activated (and entries of X are distributed to work lists) since incoming edge (B,X) is
TrueSignaled. Then Algorithm 2 breaks with a correct marking of I2 on S′ as depicted in
Figure 4.10.

Example 4.11 (Marking Adaptations When Changing A Selection Code): Type Change ∆T

changes the selection code of edge (B, D) from former transition condition sc1 : x > 5 to
sc1 : x > 8 (cf. Figure 4.11). Consider running instance I: Activity A has already written
value 6 to data element x. Therefore when completing XOr-Split B transition condition sc1 :
x > 5 has been evaluated to true and therefore edge (B, D) is marked with TrueSignaled.
In contrast the default branch is skipped. Regarding compliance conditions of Table 4.2 I
is compliant with S′ since NS(D) = Activated. Therefore we are allowed to apply ∆T to
I. But how to adapt markings of I on S′? First of all we determine Ncheck(∆T) = ∅ and
Echeck(∆T) = {(B,C), (B, D)} according to Table 4.3. Based on this Algorithm 2 works like
follows: We first fetch (B,C) from Echeck(∆T) and find that ESS′(B,C) has to be re–evaluated
to TrueSignaled. Therefore we add destination activity C to Ncheck(∆T). Then we take (B, D)
from Echeck(∆T) and reset its marking to FalseSignaled applying the ADEPT marking and
execution rules. In turn we add destination activity D to Ncheck(∆T). Afterwards we analyze
activity C which has to be re–marked as Activated. As a consequence we add outgoing edge
(C,E) to Echeck(∆T). In contrast, D has to be skipped and also outgoing edge (D, E) is added to
Echeck(∆T). Now we have to turn back to Echeck(∆T). (C, E) has to be reset to NotActivated
applying the ADEPT marking rules whereas (D,E) has to be marked as FalseSignaled. Since
states of both edges have changed we add their destination activity D to Ncheck(∆T). For D no
re–evaluation is necessary and finally Algorithm 2 finishes with correct marking of I on S′ as
depicted in Figure 4.11.

Using Algorithms 1 and 2 reduces complexity of marking adaptations compared to ap-
proaches using reachability analysis or – in most cases – compared with replaying the whole
execution history. Algorithm 1 has to be applied only one time per change operation whereas
Algorithm 2 has to be excuted for each compliant process instance. Complexity of Algorithm
2 is restricted by O(n) whereby n is the number of activities in S′. In addition, compliance
checks need at most O(n) for each running instance. However, in most cases we can restrict
compliance checks and re–evaluations of markings to a small subset of activities and edges of S

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 99

Algorithm 2 (Re–Evaluation of Process Instance Markings After Migration)
input

NSS, ESS: Current Activity and Edge Markings of I on S;

Ncheck(∆T), Echeck(∆T): Sets of newly to evaluate activites and edges;

output

NSS′, ESS′: Newly calculated Activity and Edge Markings of I on S’;

begin

//Initialization of ESS′;

forall e ∈ E’ do
if e ∈ E then //edge has been already present in E:=(CtrlE ∪ SyncE ∪ LoopE);

ESS′(e) := ESS(e);

else //initialize edge with NotSignaled;

ESS′(e) := NotSignaled;

done

// Initialization of NSS′

forall n ∈ N’ do
if n ∈ N then //activity has been already present in N;

NSS′(n) := NSS(n);

else // initialize activity with NotActivated;

NS′ := NotActivated;

done
// Re-Evaluation of Activities in Ncheck(∆T) and Edges in Echeck(∆T)
repeat

while Echeck(∆T) 6= ∅ do
Fetch edge e = (nsrc, ndest) from Echeck(∆T);

Check whether ESS′(e) = TrueSignaled or ESS′(e) = FalseSignaled by

applying ADEPT marking rules on e - if so adapt edge marking respectively;

if marking of e has been changed then
Ncheck(∆T) := Ncheck(∆T) ∪ {ndest};

endif
done
while Ncheck(∆T) 6= ∅ do

Fetch element n from Ncheck(∆T);
if n = (n̄, "r") do //working assignment has been changed (cf. Table 4.3)

re-distribute activity n̄ to work lists;

else //n is "normal" activity

if NSS′(n) ∈ {Activated, NotActivated} then

check whether n should be marked with NSS′(n) ∈ {NotActivated, Activated, Skipped}
by applying ADEPT execution rules on n - if so adapt marking respectively;

if NS′(n) has been set to Skipped then
Echeck(∆T) := Echeck(∆T) ∪ {e = (nsrc, ndest) ∈ E′|nsrc = n}

endif
endif

if NSS′(n) = Skipped then

check whether n should be marked with NSS′(n) ∈ {NotActivated, Activated}
by applying ADEPT execution rules on n - if so adapt marking respectively;

if NS′(n) has been set to {NotActivated, Activated} then
Echeck(∆T) := Echeck(∆T) ∪ {e = (nsrc, ndest) ∈ E′|nsrc = n}

endif
endif

done
until Echeck(∆T) = ∅ and Ncheck(∆T) = ∅

end

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 100

B

C

D

F

E

A H

G

Process Type Level:
Process Type Schema S: Process Type Schema S’:

Process Instance Level:

Process Instance I on Schema S:

applying 'T

Correct Process Instance I on Schema S’:

NS(D) = NotActivated � I compliant with S’

B

C

D

F

E

A H

G

B

C

D

F

E

A H

G

B

C

D

F

E

A H

G

Completed Activated TrueSignaled

Skipped FalseSignaled

'T = changeEdgeAttribute(S, (B, D),sc1, “x>8”)

sc1: x>5

sc2:
default

x x

sc1: x>8

sc2:
default

x = 6

Figure 4.11: Marking Adaptations When Changing A Selection Code (Example)

or S′ respectively. This is even the case if changes work on different parts of the process schema
what is an immense improvement to approaches like [39] for which the analysis regions comprise
the unified region of all applied changes (cf. Figure 2.13).

Finally, it can be formally shown that the application of Algorithm 2 on compliant instances
results in a correct instance marking according to Definition 4. The reason is that the marking
resulting from applying Algorithms 1 and 2 is equal to the marking which results from replaying
the (reduced) execution history of I on S′. The latter is a correct marking on S′ according to
Criterion 7. Formally:

Theorem 9 (Correctness of Marking Adaptation Approach) Let S be a process type
schema and I an unbiased process instance running on S with instance marking MS = (NSS,
ESS) and execution history ΠS

I . Let further ∆T be a process type change which transforms S into
another (correct) process schema S′ and let I be compliant with S’. Then the instance mark-
ings resulting from replaying ΠS

I on S’, i.e., MS′
replay = (NSS′

replay, ESS′
replay) conincides with the

marking resulting from applying Algorithms 1 + 2, i.e., MS′
adapt = (NSS′

adapt, ESS′
adapt). Formally:

NSS′
replay = NSS′

adapt ∧ ESS′
replay = ESS′

adapt

For a formal proof of Theorem 9 we refer to Proof C.6 in the appendix.

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 101

4.5 Coping with Non-Compliant Instances

Now we are able to decide whether a process instance is compliant with a changed process type
schema or not. If so we can automatically adapt instance markings. However the interesting
question remains how to deal with non–compliant process instances. Of course, at minimum
it is required that non–compliant instances can finish their execution according to the original
process schema they were started on or migrated to. However, there are approaches which try
to bring non–compliant instances back to a compliant form.

Breeze [104, 106] first groups process instances with respect to their compliance with the
changed schema. For non-compliant instances the compliance graph is constructed which serves
to migrate these instances to the changed schema as well. The compliance graph consists of three
parts: The first parts corresponds to the subgraph of the respective schema which reflects the
execution state up to which compliance is given; e.g., when deleting an activity X the first part
results as the subgraph ”until” X. The second part acts as a bridge between the original and
the changed process schema, i.e., it consists of compensation activities for those activities which
have been executed ”too far” for compliance. In this case all running or completed successors
activities of X would be rolled back. The last part of the compliance graph consists of that
subgraph of the changed schema remaining after removing the first part and the compensated
activities. Altogether, in this approach a non–compliant instance is partially rolled back into a
compliant state and then executed according to the changed schema. An obvious drawback of
this approach is that it is not always possible to find compensating activities, i.e., to adequately
roll back non–compliant instances.

Bichler et al. [21] propose to extend the set of non–compliant process instances by a partial
rollback as well. This approach raises similar problems as discussed for Breeze.

An alternative approach to deal with non–compliant instances is not to bring these in-
stances back to a compliant form but to wait until they are compliant again. More precisely,
we distinguish non–compliant instances into instances, which can never be migrated (”never-
more-compliant instances”) and others, which only fail because the current execution of a loop
iteration has proceeded too far. The latter instances then become a candidate for migration
when the loop enters its next iteration (”re-compliant instances”).

Re–compliant instances. In particular, the marking of a loop is reset if a loop back takes place
such that Criterion 7 will be satisfied with delay. Thus, process instances which are not compliant
according to their actual loop iteration may become re–compliant when another loop iteration
takes place and therefore can be migrated to the new schema with delay (delayed migration).
As shown in Figure 4.12, re-compliant instances can be held as ”pending to migration” until the
loop condition is evaluated.

The treatment of re-compliant instances, which is especially important in conjuntion with
long-running processes, is not as trivial as it looks like at first glance. At first, if an instance
contains nested loops there can be several events (loop backs) to trigger the execution of a
previously delayed migration. Furthermore, the interesting question remains how to deal with

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 102

 t = 1: t = 3:

S

I1 I2 I3

loop_edge

S’

t = 2:

S
�

 S’

M1

I3 I1 (migrated)

I2 (pending M1)

I3 I1 (migrated)

I2 (delayed migration)

Event Condition Action

Loop_Back ES(loop_edge) = TRUE_SIGNALED migrate I2 to S’

Figure 4.12: Principle Of Delayed Migration

pending instances if further schema changes take place.

An alternative approach supporting delayed migrations of non-compliant instances is offered
by Flow Nets [39]. Even if an instance I on S is not compliant with S′ within the actual
iteration of a loop, a delayed migration of I to the new change region is possible when another
loop iteration takes place. As an example consider Figure 2.13(2). In case of a loop back the
token is passed to the initial place of the loop. If then the process type change is applied to I
the resulting firing sequence can be also a firing sequence on S′. Consequently, I is said to be
compliant with S′ again.

4.6 Summary

The approach presented in this chapter fulfills all challenges set out for the migration of unbiased
process instances to a changed process type schema as depicted in Figure 4.13. We have presented
a compliance criterion based on which it can be decided whether a running process instance can
be migrated to a changed process type schema or not. We have discussed that the quality of
Criterion 7 depends on the kind of execution history used. To achieve a maximum of quality in
our approach we use the so called reduced representation for execution histories. Doing so, we
exterminate the dangling states problem introduced in Section 2.4.1 and any data inconsistenices.
Furthermore, we are not too restrictive in conjunction with loops. To efficiently check the
compliance criterion we have provided precise and easy to check compliance conditions based on
which complexity of compliance checks can be dramatically reduced. Finally we have presented
an algorithm which automatically adapts instance markings after migration to the changed
schema.

A very important additional remark is that the results presented in this section can be easily
transferred to other process meta models as well. In [91] we have presented a complete framework
for Activity Nets as used for example in Websphere MQ Workflow [73]. Activity Nets also use

CHAPTER 4. MIGRATING UNBIASED PROCESS INSTANCES 103

Migrating Unbiased Process Instances
P� Comprehensive

Correctness Criterion
P� Efficient Compliance

Checks
P� Automatic Instance

Migration

Process Type Level

Process Instance Level

�

�

�

Figure 4.13: Migrating Unbiased Process Instances

model–inherent markings and consequently belong to approaches with True/False-Semantics (cf.
Figure 2.1). The only adaptations compared to the compliance conditions in this work have been
made due to the fact that Activity Nets use only one kind of edges, namely control edges, and
have to be acyclic (what reduces complexity on the one hand but restricts the expressiveness of
the process models on the other hand).

Chapter 5

Migrating Biased Process Instances

To provide a fully flexible PMS it is indispensable to support changes at both the process type
level and the level of single process instances. As discussed in Section 2 both kinds of changes
have been an important research topic in the process management literature [118, 1, 26, 37, 39,
67, 104, 88, 96, 136] for several years. However, there are only few adaptive PMS which support
both kinds of changes in one system [65, 136]. All of them have in common that once an instance
has been individually modified (i.e., it possesses an instance-specific process schema), it cannot
longer benefit from process type changes; i.e., changes of the type schema they were originally
created from. In [65], changes of process type schemes as well as changes of single process
instances are supported but they are not considered in interplay. In WASA2 [136], for example,
a change of a single instance is carried out by deriving a new schema version to which the instance
is migrated. Afterwards, this instance is excluded from further adaptations of its original schema
version at the process type level. However, doing so is not sufficient in many cases, especially
in conjunction with long-running processes as, for example, patient treatment processes in a
clinical environment. In such environments ad hoc modifications of a single instances become
necessary, e.g., due to a life–threading situation. However, it is also usual that the treatment
process itself has to be adapted (on type level), e.g., if new documentation guidelines come into
effect. In fact, it must be possible to propagate such process schema changes at the type level
to biased instances as well. Therefore, in this chapter, we establish a (formal) framework which
enables us to adequately support the interplay between concurrent1 process type and instance
changes.

The remainder of this chapter is organized as follows: We start with a discussion of challenges
arising in conjunction with concurrent process changes in Section 5.1. In Section 5.2 we provide
a formal framework which enables us to differentiate between disjoint and overlapping changes.
This is followed by providing a compliance criterion for process instances with disjoint bias (cf.

1The considered process instance changes take place before the process type change occurs. However, we
denote these process type and process instance changes as concurrent since they work on the same underlying
process schema.

104

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 105

Section 5.3), structural conflicts test (cf. Section 5.4) and a discussion of migrating process
instances with disjoint bias to a changed process type schema (cf. Section 5.5). We close this
chapter with a summary of the presented results (cf. Section 5.6).

5.1 Challenges for Migrating Biased Process Instances

To give an idea which challenges arise in conjunction with concurrent process type and process
instance changes we first provide some illustrating examples.

Example 5.1 (Basic Scenario: Migrating Unbiased And Biased Instances): Consider the example
from Figure 5.1 where type change ∆T serially inserts activity X between subsequent activities
C and D. Assume that we want to propagate ∆T to running process instances I1 and I2. I1 is an
unbiased instance whereas I2 is a biased instance with instance–specific change (bias) ∆I2 . ∆I2

has inserted activity Y between D and E resulting in instance schema SI2 := S +∆I2 . For both
instances it is necessary to check the state–related compliance conditions stated in Section 4.3.2.
For unbiased instances performing these state–related compliance checks are already sufficient.
For biased instances (like I2), additionally we have to ensure that the resulting instance–specific
schema (S+∆I2)+∆T obeys the correctness constraints set out for WSM Nets (cf. Definition 2,
Section 3.1.1). Intuitively, if the resulting instance–specific schema after applying process type
and process instance changes is structurally correct no structural conflicts between these changes
have been occured. An example for such structural conflicts are deadlock–causing cycles which
may appear if sync edges are inserted by both, process type and process instance changes in an
uncontrolled manner.

The migration of unbiased instance I2 is depicted in Figure 5.1. It can be done without
any problems because neither structural nor state–related conflicts have occured. However, such
unproblematic instance migrations are rather scarce. Often conflicts between process type and
process instance changes occur as the following example shows:

Example 5.2.a (Overlapping Process Type and Process Instance Changes) Consider Figure 5.2.a
where type change ∆T and instance change ∆I both delete same activity D from original process
schema S. In general, we call such changes having the same effects on the original process schema
overlapping changes. But what is the challenge when dealing with overlapping process changes?
Remember that, in general, our goal is to propagate process type changes to as many running
process instances as possible. Therefore we also want to propagate ∆T to process instance I
with overlapping instance–specific change ∆T (bias) as depicted in Figure 5.2.a. However, doing
so is not possible in the given case since activity D, which is to be deleted by ∆T is no longer
present in SI := S + ∆I . Consequently, ∆T cannot be applied to SI .

We give a second example to show which further conflicts may arise in conjunction with
concurrent process type and process instance changes.

Example 5.2.b (Deadlock Causing Cycle As Structural Conflict) Have a look at Figure 5.2.b
where this time type change ∆T inserts two new activities X and Y into different branches of a

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 106

A

X C

D Y

F B E

A

C

D Y

F B E

A

X

D

C

F B E

A

C

D

F B E

Process Type Level:
Process Type Schema S: Process Type Schema S’:

Process Instance Level:

Instance I1 on S:

'T = serialInsertActivity(S, X, B, C)

migrate

Completed Activated TrueSignaled

Instance I1 on S’I1 = S’:

Instance I2 on SI2 := S + 'I2 Instance I2 on (S + 'I2) + 'T

A

C

D

F B E

A

X

D

C

F B E

'I2 = serialInsertActivity(S, Y, D, E)

migrate

u
n

b
ia

se
d

b

ia
se

d

Figure 5.1: Migrating Biased Process Instances (Example)

parallel branching and a sync link (X, Y) between them. Prior to ∆T instance–specific change
∆I has inserted a sync link (F, C) between activities F and C into S. Obviously, ∆T and ∆I

work on different elements of the original process type schema S and therefore have totally
different effects on it. For such disjoint process type and process instance changes it is always
possible to apply ∆T to SI resulting in instance–specific schema (S + ∆I) + ∆T for I on S′.
However, (S + ∆I) + ∆T may not be a correct WSM Net (cf. Definition 2) as it is the case
for the given example. The reason is that (S + ∆I) + ∆T contains a structural inconsistency,
namely the deadlock–causing cycle X → Y → E → F → C → D → X.

As illustrated by the above examples different conflicts between concurrent process type
and process instance changes may occur. Either they (partially) have the same effects on the
underlying process schema or they cause structural inconsistencies within the resulting instance–
specific schema. In detail we have to deal with the following challenges:

1. Disjoint ←→ Overlapping Changes: As it can be seen from Examples 5.2.a and 5.2.b
there are process type and instance changes which overlap (i.e., which have (partially) the
same effects on original schema S) and changes which are disjoint (i.e., which have totally
different effects on original schema S). Both kinds of concurrent changes, overlapping and
disjoint changes, require a totally different handling. The reason is that for overlapping
changes it may be even not possible to apply type change ∆T to instance–specific schema
SI = S + ∆I (cf. Example 5.2.a) whereas for disjoint changes this is always possible (cf.

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 107

'T = insertPlace(S, D, E) 'T = insertPlace(S, D, E)

Completed Activated TrueSignaled

A

C

E F

H B G

A

C D

E F

H B G

A

C D

E F

H B G

'T not applicable to SI!

a) Process Type Schema S: Process Type Schema S’:

Process Instance I on SI := S + 'I

'T = deleteActivity(S, D)

b) Process Type Schema S: Process Type Schema S’

Process Instance I on SI := S + 'I: Process Instance I on (S + 'I) + 'T:

A

C D

E F

H B G

A

C D

Y E

H B G

X

F

'T = (serialInsertActivity(S, X, D, G), serialInsertActivitiy(S, Y, B, E),
insertSyncEdge(S, (X, Y))

'I = (insertSyncEdge(S, (F, C))

A

C D

E F

H B G

A

C
 D

Y
 E

H
 B

 G

X

F

=

ET = SyncE

DEADLOCK!!

'I = deleteActivity(S,D)

migrate

Figure 5.2: Concurrent Process Type and Instance Changes (Example)

Criterion 8, Section 5.3) but the resulting schema (S + ∆I) + ∆I may contain structural
errors like deadlock–causing cycles (cf. Example 5.2.b).

In order to chose the right migration strategy for dealing with disjoint changes on the one
hand and overlapping changes on the other hand, we first must be able to detect whether
process type and process instance changes are disjoint or overlap. For disjoint changes,
for example, we apply the so called standard migration strategy whereas for overlapping
changes we choose one of the advanced migration strategies (cf. Figure 5.3). To be able to
detect whether concurrent changes are disjoint or overlap it is necessary to find adequate
formal definitions. These definitions, in turn, provide an adequate formal underpinning
for further considerations.

2. Correctness: As shown by Example 5.1.b, propagating process type change ∆T to
instances with (disjoint) instance–specific change may lead to structural inconcistencies
within the resulting instance–specific schemes. Examples are deadlock causing cycles (cf.
Example 5.2.b) or missing input data for activities executed in the sequel. Therefore, it
is indispensable to find a correctness criterion which maintains the state–related claims
of Criterion 7 but also incorporates structural correctness of resulting instance–specific
schemes after propagating a process type change. In the following, therefore we will pro-

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 108

Process Type / Schema Level

Process Instance
Level

 Unbiased Instances Biased Instances Compliant
Unbiased
Instances

Compliant
Biased
Instances

E
xe

cu
ti

o
n

 S
ch

em
a

(l
o

g
ic

al
 r

ep
re

se
n

ta
ti

o
n

!)

running on S running on S + 'I(S)

running on S’

running on S’ + 'I(S’)

State-related Compliance
MIGRATION / RE-LINKING

ADVANCED
MIGRATION

Structural +
State-related
Compliance

before migration:

S
insertActivity(…)

after migration:

Non-Compliant

Unbiased Instances

still running on S

old version S
'T = {insertActivity(…)}

new version S’

Non-Compliant

Biased Instances

X X X

still running on S + 'I(S)

C
la

ss
if

ic
at

io
n

 o
f

In
st

an
ce

s ' T
 a

nd
 '

I
D

is
jo

in
t

STANDARD

MIGRATION

' T
 a

nd
 '

I
O

ve
rl

ap

State-related

Compliance

Figure 5.3: Migration Process at a Glance

vide an appropriate generalization of Criterion 7 (cf. Section 4.2).

3. Efficient Structural Compliance Checks: In Section 4.3.2 precise conditions to effi-
ciently decide on state–related compliance have been elaborated. For biased process in-
stances an appropriate compliance criterion must ensure state–related correctness further
on but must also incorporate structural correctness. Since checking structural correctness
increases complexity of ensuring compliance we urgently need extended checking routines
to stay efficient for biased process instances as well. Therefore in the following we present
respective structural conflict tests which quickly indicate whether there will be structural
inconsistencies within resulting instance–specific schemes after propagation of a process
type change or not.

4. Instance Adaptations: If compliant unbiased process instances are migrated to changed
process type schema S′ marking adaptations become necessary (cf. Section 4.4). Of course,
respective state adaptations are required for compliant, biased process instances I as well
when migrating them to changed type schema S′ = S + ∆T . In addition, we actually
have to ”produce” instance–specific schema (S + ∆I) + ∆T for each compliant and biased
process instance I in order to apply ∆T on SI = S + ∆I . However, doing so may turn
out to be very expensive, especially at the presence of a large number of biased process
instances. Furthermore, from (S + ∆I) + ∆T we cannot derive which instance–specific
change ∆I(S′) remains for I on S′, i.e., what the bias of I on S′ is. Therefore, we introduce

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 109

commutativity as an important property of concurrent process changes. Commutativity
allows us to (logically) transform instance–specific schema (S + ∆I) + ∆T into instance–
specific schema S′I := (S +∆T)+∆I = S′+∆I . Doing so saves us from applying ∆T to SI

and clearly shows that new instance–specific change ∆I(S′) of I on S′ remains unalteredly
the same as ∆I(S) for I on S. These results will be summarized within an appropriate
migration approach, the so called standard migration (cf. Figure 5.3).

5.2 A Formal Framework for Disjoint and Overlapping Changes

In the previous section we have informally introduced the notions of disjoint and overlapping
process changes. In this section, we give formal definitions of these concepts which serve as
theoretical underpinning for the following considerations. First of all, we abstract from whether
changes are carried out at the type or at the instance level. More precisely, we base our consid-
erations on two arbitrary changes ∆1 and ∆2 concurrently applied on the same schema S.

In the following, let S be a (correct) process schema and ∆1 and ∆2 two change transactions
which transform S into another (correct) process schema S1 and S2 respectively (notation:
S1 := S + ∆1 and S2 := S + ∆2). Generally, disjointness and overlapping are two special
relations between two changes of the same schema. The challenging question is how to relate
changes to each other. This can be either done

1. by directly comparing ∆1 and ∆2 or by

2. by correlating their effects on the original schema S. Effects of ∆1 and ∆2 on S, in turn,
are reflected by the resulting process schemes S1 and S2. Consequently, a way to find a
relation between changes ∆1 and ∆2 is to find a relation between resulting schemes S1

and S2.

In the workflow literature several (equivalence) relations between process schemes have been
discussed [117, 118, 59, 128]. Aalst and Basten [118], for example, use branching bisimilarity
as equivalence relation. In this context, Basten has proven that branching bisimiliarity is an
equivalence relation indeed [12]. There are several other notions of equivalence between process
schemes as pointed out in [59]. In [113], Glabbeek and Goltz provide a very nice classification of
semantic equivalences based on the basic notions of bisimulation and trace equivalence. Another
approach to provide semantic equivalence of process schemes is described in [43]. This work
supports semantic–preserving transformations to maintain the semantical meaning of a process
schema before and after the change.

The challenging question is which equivalence relation from the research area is best suited
for determining the relation between concurrent changes on the same process schema. Note that
so far the equivalence relations mentioned above have been used to compare process schemes.
In this thesis we use them in order to compare the changes leading to different process schemes.

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 110

Since it is sufficient to compare the behavior of process schemes we base our further consid-
erations on trace equivalence [113, 59, 98]. Claiming graph equivalence would be too restrictive
since we want to abstract from silent/null activities within our approach.

Definition 8 (Trace Equivalence Between WSM Nets) Let S1 and S2 be two WSM Nets.
S1 and S2 are equivalent with respect to their possible traces (formally: S1 ≡trace S2) if and only
if each execution history ΠS1 (cf. Definition 3.1.2) producible on S1 can be generated on S2 as
well and vice versa.

Intuitively, two process schemes S1 and S2 are trace equivalent if each possible behavior of
S1 (represented by respective execution histories) can be simulated by process schema S2 and
vice versa.

Based on trace equivalence we now introduce an adequate definition for overlapping and
disjoint change transactions. Intuitively, two change transactions ∆1 and ∆2 overlap if they
have (partially) the same effects on the underlying process schema S. This is the case if ∆1 and
∆2 manipulate the same – already existing – elements of S or insert the same activities into S.
Overlapping effects on already existing elements of a process schema may result from subtractive,
order–changing, or attribute–changing operations (cf. Table 3.3). Subtractive changes that
overlap may affect the applicability of ∆1 on S2 and vice versa (cf. Figure 5.2.a). Overlapping
order–changing and attribute–changing operations may mutually override the effects of each
other.

Example 5.4.a (Overlapping Process Changes Overriding Their Effects) Consider Figure 5.4.a
where instance change ∆I has moved activity E from its current postion to position between C
and F and, in contrast, ∆T moves activity E to position between F and G. Propagating ∆T

on I results in instance–specific schema (S + ∆I) + ∆T which does not reflect instance–specific
change ∆I any longer. Therefore ∆T has overrided the effects of ∆I .

The challenging question is how to deal with the problems arising in conjuntion with two
arbitrary overlapping changes ∆1 and ∆2 on existing elements of a process schema S; namely
(a) destroyed applicability of ∆1 on S2 or ∆2 on S1 respectively and (b) overriding effects of
∆1 by ∆2 or vice versa. These problems can be avoided if change transactions ∆1 and ∆2 are
commutative. More precisely, changes ∆1 and ∆2 are commutative if applying ∆2 on S1 leads
to process schema S1 + ∆2 which is trace equivalent to process schema S2 + ∆1 resulting from
applying ∆1 on S2. Assuming commutativity, applicability of ∆1 on S2 and applicability of ∆2

on S1 are implicitly ensured (claim (a)). Furthermore, if S1 + ∆2 and S2 + ∆1 must be trace
equivalent ∆2 cannot override the effects of ∆1 on S and vice versa. Formally, commutativity
of change transactions can be defined as follows:

Definition 9 (Commutativity of Changes) Let S be a (correct) schema and ∆1 and ∆2

be two changes transforming S into (correct) schema S1 and S2 respectively. We call ∆1 and
∆2 commutative if the application of ∆1 to S2 and the application of ∆2 to S1 result in trace
equivalent schemes. Formally:

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 111

A

C

D

E G B F

A

C

D

E

G B F

A

C X

D E

G B F

X

Null

A

C X

D E

G B F

A

C

D

E G B F

b) Process Type Schema S: Process Type Schema S’:

Process Instance I on SI := S + 'I

'T = serialInsertActivity(S, X, C, F)

a) Process Type Schema S: Process Type Schema S’

Process Instance I (on S + 'I): Process Instance I on (S + 'I) + 'T:

'T = serialMoveActivity(S, E, F, G)

'I = (serialMoveActivity(S, E, C, F)

= Overrided Instance Change

A

C

D E

G B F

A

C X

D E

G B F

'I = serialInsertActivity(S, X, C, F)

Process Instance I on (S + 'I) + 'T:

Multiple Insertion
Æ desired?

migrate

A

C

D E

G B F

migrate

Completed Activated TrueSignaled

Figure 5.4: Concurrent Changes With Different Overlap Effects

∆1, ∆2 commutative ⇐⇒ (S + ∆1) + ∆2 ≡trace (S + ∆2) + ∆1

In general, commutativity is an important property in the context of concurrent changes in
cooperative applications. In [7], operations commute if the state changes on an object as well as
the values returned by the operations are independent of the order in which they are executed.
Wäsch and Klas claim that concurrent changes can be correctly applied to complex objects if
they are commutative. These changes are then carried out by merging their histories [131].

However, the commutativity property is not strong enough to also cover disjointness of
additive changes as, for example, insertions of new activities. In particular, commutativity does
not exclude the (undesired) multiple insertion of the same activity as the following example
shows:

Example 5.4.b (Multiple Insertion of Activities) Consider Figure 5.4.b where process instance

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 112

change ∆I as well as process type change ∆T both insert the same new activity X between
activities C and F into process schema S. Propagating ∆T to instance–specific schema SI

results in new instance–specific schema (S + ∆I) + ∆T which contains newly inserted activity
X twice. We call this phenomenon multiple insertion of activities. Usually, this would not
correspond to the user’s intention.

Regarding multiple insertion of activities one can ask under which conditions two activities
X1 and X2 are considered as equal (otherwise there would be no multiple insertion problem
ever). At this point, we abstract from realization details. Informally, two activities X1 and
X2 are equal (notation: X1 = X2) if and only if they have the same activity templates and
the same semantic identifier. Doing so corresponds to practical scenarios where often a set of
prefabricated activities is offered to the user to be plugged into a process template.

Altogether, disjoint changes have to be commutative and their sets of newly inserted activities
have to be disjoint. Formally:

Definition 10 (Disjoint and Overlapping Changes) Let S = (N, D, CtrlE, SyncE, ...) be
a WSM Net and ∆1 and ∆2 be two changes which transform S into WSM Nets S1 and S2 with
S1 = (N1, D1, CtrlE1, SyncE1, DataE1, ...) and S2 = (N2, D2, CtrlE2, SyncE2, DataE2, ...).
Then:

1. We denote ∆1 and ∆2 as disjoint (notation: ∆1∩∆2 = ∅) iff the following properties hold:

(a) ∆1 and ∆2 are commutative (cf. Def. 9)

(b) (N1 \N) ∩ (N2 \N) = ∅

2. We denote ∆1 and ∆2 as overlapping (notion: ∆1 ∩∆2 6= ∅) if they are not disjoint.

Regarding disjoint changes, Definition 10 explicitly excludes the multiple insertion of same
activities. At this point, one may ask how we deal with the multiple insertion of edges. However,
this problem is not existent since multiple insertion of same edges is (implicitly) forbidden by
Property (1). More precisely, commutativity of changes implies that ∆1 is applicable to S2 and
vice versa. Applicability of basic and high–level change primitives inserting new control, sync,
or data edges (cf. Tables 3.1 + 3.2) already includes the pre–condition that newly inserted edges
are not present in original schema S so far [87]. We illustrate this by applying Definition 10 to a
concrete scenario where process type change ∆T and a process instance change ∆I concurrently
work on the same original schema S:

Example 5.5 (Insertion of Same Control Edges:) Consider Figure 5.5 where both, process type
change ∆T and process instance change ∆I move activity B to position between activities C and
D. In the course of this change operation a number of control edges are deleted and inserted.
As it can be seen from Figure 5.5, some control edges have been inserted on both process type
and instance level. However, in this case, ∆T cannot be applied to instance–specific schema

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 113

Process Type Level:

Process Type Schema S: Process Type Schema S’:

Process Instance Level:

Instance I on Schema SI := S + 'I

'T = serialMoveActivity(S, B, C, D)

migrate

Instance I on Schema (S + 'I) + 'T:

'I = serialMoveActivity(S, B, C, D)

 A C D B

 A B D C

 A B D C

N’ \ N = �;

CtrlE’ \ CtrlE = {(A, C), (C, B), (B, D)}

 A B D C

NI \ N = �;

CtrlEI \ CtrlE = {(A, C), (C, B), (B, D)}

Completed Activated TrueSignaled

Figure 5.5: Moving Same Activity To Same Target Position (Example)

SI since, for example, control edge (C, B) is already present in SI . Consequently, ∆T and ∆I

are detected as being overlapping changes (cf. Definition 10) what corresponds to the intuitive
comprehension that ∆T and ∆I have overlapping effects on S.

As summarized in Figure 5.6 we have established a formal framework which enables us to
distinguish between disjoint and overlapping process type and process instance changes what is
essential to find adequate migration strategies in the following. The challenging question is how
to verify Definition 10 in order to quickly group the set of running biased process instances into
such instances with disjoint instance–specific change and such instances for which their instance–
specific change overlaps the respective type change. However, in anticipation of further results,
the distinction into process instances with disjoint and overlapping bias is still not sufficient.
In fact, we have to divide process instances with overlapping bias into subclasses along their
particular degree of overlap. Therefore we put approaches to decide on Definition 10 and to
carry out further classifications off. We present all approaches together in Chapter 6.

In the following, the standard migration case, i.e., migrating process instances with disjoint
instance–specific change to changed process schema S, with all its facets is presented. For the
remainder of this chapter, therefore we assume that process type and process instance changes
are disjoint (cf. Figure 5.6).

5.3 A General Correctness Criterion

Let S be a process type schema. Let further I be a process instance which has been started
based on S and which has been biased by instance–specific change ∆I resulting in instance–
specific schema SI := S + ∆I . Assume that process type change ∆T transforms S into another

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 114

Migrating Unbiased Process Instances

Migrating Biased Process Instances

Disjoint Process Type &
Process Instance Changes

Overlapping Process Type &
Process Instance Changes

P� Comprehensive
Correctness Criterion

P� Efficient Compliance
Checks

P� Automatic Instance
Migration

Distinction Between Disjoint and Overlapping
Process Type And Process Instance Changes

P� General Correctness
Criterion

P� Designing Structural
Conflict Tests

P� Automatic Instance
Migration

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

�

�

�

�

� Chapter 6

Figure 5.6: Migrating Process Instances with Disjoint Bias

process type schema S′ and let ∆T and ∆I be disjoint changes according to Definition 10, i.e.,
∆T ∩∆I = ∅. The question is how to decide for arbitrary S, ∆T , and ∆I whether I is compliant
with S′ or not.

At first, we need an appropriate correctness criterion based on which the above question
can be decided. As discussed in Section 5.1 an adequate criterion must incorporate the state–
related claims of Correctness Criterion 7 (cf. Section 4.2). However it must also capture the
structural correctness of the instance–specific schema (S + ∆I) + ∆T (i.e., the schema resulting
when propagating ∆T to SI) in order to avoid structural inconcistencies like deadlock–causing
cycles or incomplete input data for activity executions in the sequel. Correctness Criterion
8 presented in the following provides an adequate generalization of Correctness Criterion 7
[101, 91]. It comprises an application–neutral part (cf. claims 1 and 2 in Correctness Criterion
8) and an application–dependent part (cf. claim 3 in Correctness Criterion 8). At this, the
application–neutral part is the fundament for being able to manage process type and process
instance changes within a PMS and can be decided on without any further information about

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 115

Process Type Level:

Process Type Schema S: Process Type Schema S’:

Process Instance Level:

Biased Instance I on SI := S + 'I

'T = serialInsertActivity(S, newDrug, operate, aftercare)

propagate

Instance I on (S + 'I) + 'T:

'I = serialInsertActivity(S, allergyDrug, admit, examinate)

admit examinate operate aftercare

examinate

 aftercare
 newDrug

 operate admit

allergyDrug

 aftercare
 operate

 examinate admit

admit

 allergyDrug
 examinate

 newDrug
 operate

 aftercare

Incompatibility of Drugs!!

process type

change

Completed Activated TrueSignaled

Figure 5.7: Incompatibility of Drugs (Example)

the concerned applications. The application–dependent part requires the deposit of further
application information within the PMS as the following example shows:

Example 5.7 (Incompatibility Of Drugs): Look at the process depicted in Figure 5.7. Due to an
anaphylactic shock of the respective patient instance I was individually modified by inserting
activity allergyDrug between activities admit and examinate. After the introduction of a
medical drug newDrug the underlying process type schema S is changed by inserting activity
newDrug between activities operate and aftercare. Assume that this activity is medically not
compatible with allergyDrug due to an undesired drug interaction. Propagating this process
type change to the already modified instance I (∆T ∩∆I = ∅) would cause no problems regarding
structural and state related conflicts as it can be easily seen from Figure 5.7. But from a
semantical point of view, both process type and process instance change are non–compliant due
to the mentioned medical incompatibility between the two drugs.

Obviously, to solve problems of this kind we need additional semantical knowledge about
the changes to be applied. A short discussion about how to ensure semantical correctness based
on application information is given in Chapter 8. The main focus of this work, however, is put
on adequate handling of application–neutral aspects (since it provides the basis for any other
considerations on adaptive process management).

Correctness Criterion 8 (Compliance For Biased Process Instances) Let S be a cor-
rect process type schema and let I = (S, ∆I , . . .) be a (biased) process instance with current
instance execution schema SI := S + ∆I . Let further ∆T be a process type change which trans-

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 116

forms S into another correct process type schema S’. Assume that ∆T and ∆I are disjoint changes
according to Definition 10, i.e., ∆T ∩∆I = ∅. Then:

I is compliant with S’ ⇐⇒

1. Structural Correctness: (S + ∆I) + ∆T is a correct schema according to the structural
correctness constraints set out by the used process meta model (cf. Definition 2 for WSM
Nets); i.e., ∆T can be correctly applied to SI = (S + ∆I).

2. State-Related Correctness: I is compliant with (S+∆I)+∆T according to Correctness
Criterion 7; i.e., the execution history ΠS

I red of I can be produced on (S + ∆I) + ∆T as
well.

3. Semantical Correctness: ∆T and ∆I are semantically conflict–free.

Correctness Criterion 8 is valid for unbiased as well as for biased process instances. More pre-
cisely, it handles unbiased instances as a special case. For an unbiased process instance we obtain
(S + ∆I) + ∆T = (S + ∅) + ∆T = S′, whereby S′ is correct according to the assumption of Cor-
rectness Criterion 8 and, trivially, ∆T and ∆I = ∅ are semantically conflict–free. Consequently,
only state-related correctness has to be checked what exactly corresponds to Correctness Crite-
rion 7 (cf. Section 4.2), i.e., an unbiased instance I is compliant with a changed schema S′ if
its previous execution trace on S (with eliminated log entries of non–relevant loop iterations) is
also a possible execution trace on S′ (cf. Requirement 2 in Correctness Criterion 8).

Regarding Requirement 1 of Correctness Criterion 8 we first have to ensure that ∆T is
actually applicable to instance-specific execution schema SI := S + ∆I . Obviously, this pre–
condition is fulfilled since ∆T and ∆I are disjoint according to the assumption of Correctness
Criterion 8. The intuitive explanation is that all elements which are necessary to carry out type
change ∆T are still present in SI . The formal reason lies within Definition 9 since commutativity
of ∆T and ∆I implies that ∆T is applicable to SI .

Therefore target schema (S + ∆I) + ∆T can be produced. However, the resulting instance–
specific schema (S+∆I)+∆T may still contain control and data flow errors like deadlock-causing
cycles or missing input data (cf. Example 5.2.b). We therefore must analyze (S+∆I)+∆T with
respect to its structural correctness properties like, e.g., the absence of cycles (except loops) (cf.
Definition 2).

In the following we want to efficiently test and ensure that (S+∆I)+∆T does not contain any
control or data flow errors, i.e., to efficiently test that there are no structural conflicts between
process schema and process instance changes (cf. Requirement 2 of Correctness Criterion 8).
Obviously, an appropriate approach for this problem has to work for a large number of biased
process instances as well. A naive solution would be to simulate process type change ∆T on each
instance–specific schema SI ; i.e., to materialize instance–specific schema (S +∆I)+∆T for each
(biased) instance I and then to apply respective correctness checks on (S +∆I)+∆T . However,
this may result in a serious performance penalty caused by the expensive materialization of

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 117

(S + ∆I) + ∆T on the one hand and the subsequent complex control and data flow correctness
checks on (S + ∆I) + ∆T on the other hand. Again note that these two steps would have to be
applied to each biased instance to be migrated.

Therefore, in the following section, we show how expensive correctness tests (based on mate-
rialized schemes (S +∆I)+∆T for each biased instance I) can be avoided. The key idea behind
our approach is to detect potential control and data flow errors in S + (∆I) + ∆T solely based
on the applied changes ∆T and ∆I , and the original schema S. More precisely, we elaborate
quickly checkable conflict tests by exploiting the semantics of the applied changes ∆T and ∆I .
Respective conflict tests either yield that there would be definitely no control or data flow error
in schema (S + ∆I) + ∆T or they indicate that a possible structural conflict between ∆T and
∆I (potentially leading to such an error) may occur.

To check state–related correctness (cf. Requirement 2 of Correctness Criterion 8) the precise
compliance conditions developed in Section 4.3.2 can be used further on. More precisely, they can
be applied for checking state-related compliance of unbiased as well as of biased process instances
with a modified process type schema. The reason is that the application of the compliance
conditions is independent of the particular instance–specific schemes.

5.4 On Designing Structural Conflict Tests

In this section, we develop simple but effective tests for detecting potential conflicts between
concurrently applied control and/or data flow changes in order to satisfy Requirement 2 of
Criterion 8. At this, a first important result is that the number and kind of possible structural
conflicts between process type and process instance changes (which may result in incorrect WSM
Nets; cf. Definition 2) depend on the kind of applied change operations. Generally, the definition
of changes should be based on a set of change operations with precise semantics. In principle,
there are different possibilities for the design of this set of change operations. They range from
simple node/edge operations (change primitives) to change operations on a high semantical
level. In this section we show how the definition of concurrently applied changes influences the
handling of structural conflicts between them (cf. Table 5.1).

In the following sections, we present efficient conflict tests which rule out the different possible
structural conflicts between type change ∆T and instance change ∆I concurrently applied to
a process schema S. The motivation behind is the following: To exclude structural conflicts
between ∆T and ∆I reflected in structural inconsistencies within schema (S + ∆I) + ∆T a
solution would be to materialize (S + ∆I) + ∆T and to carry out possibly expensive correctness
checks. The other possibility is to provide conflict tests based on the existing information, i.e.,
based on changes ∆T and ∆I and process schema S. Doing so we prohibit materialization of
(S + ∆I) + ∆T and expensive correctness checks.

The remainder of this section is organized as follows: We start with control and data flow
conflicts in conjunction with the application of change primitives (cf. Section 5.4.1). Section

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 118

Table 5.1: Possible Structural Conflicts Between Concurrently Applied Changes

Semantical Level Of Applied Changes Possible Structural Conflicts
(Acc. To Contraints For WSM–Nets (cf. Def. 2))

1) Change Primitives op1, op2 (cf. Table 3.1)
• opi ∈ {addCtrlEdges(S, . . .), deleteCtrlEdges(S, . . .) → Isolated Activities (cf. Constraint 2)

addNodes(S, . . .)} → Overlapping Control Blocks (cf. Constraint 2)
• opi ∈ {addDataEdges(S, . . .), deleteDataEdges(S, . . .)} → Missing Input Data For Activity Execution

(cf. Constraint 2)
→ Lost Updates on Data Elements

(cf. Constraint 2)

2) Basic Change Operations op1, op2 (cf. Table 3.2)
• opi ∈ {insertSyncEdge(S, . . .)} → Deadlock–Causing Cycles (cf. Constraint 2)

3) Change Transactions ∆1, ∆2

• ∆i ∈ {insertSyncEdge(S, . . .), → Deadlock–Causing Cycles
serialInsertActivity(S, . . .))} (cf. Constraint 2)

• ∆i = insertBetweenNodeSets(S, . . .) → Deadlock–Causing Cycles (cf. Constraint 2)

• ∆i = insertLoopEdge(S, . . .) → Overlapping Loop Blocks (cf. Constraint 2)
→ Sync Links Crossing Loop Block Boundaries

(cf. Constraint 2)

(• ∆i arbitrarily choosen → Combination Of Possible Structural Conflicts)

5.4.2 presents structural conflict tests for the application of basic change operations and Section
5.4.3 provides tests for the application of high–level change operations and change transactions.

5.4.1 Structural Conflicts When Applying Change Primitives

The concurrent application of change primitives (e.g., to insert/delete control and data egdes)
to the same process schema may lead to several structural conflicts. Basically we can divide
them into control flow conflicts (e.g., isolated activities) and data flow conflicts (e.g., missing
input data for activity executions) (cf. Table 5.1).

The application of change primitives to a process schema does not (automatically) en-
sure correctness of the changed schema (cf. Section 3.2). Therefore change primitives are
applied and afterwards schema correctness is checked whereas change operations guarantee
schema correctness by formal pre–conditions. When applying, for example, change operation
serialInsertActivity(S,X, src, dest) neither newly inserted activity X nor context activities src
and dest can be isolated by this change since the applied high–level primitive cares for the cor-
rect embedding of X between src and dest. We will illustrate later on that this may not be

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 119

A B I H

C

G F

D

E

Process Type Schema S: Process Type Schema S’:

Process Instance I (on S + 'I): Process Instance I (on (S + 'I) + 'T):

A B I H

C

G F

D

E

A B I H

C

G F

D

E

A B I H

C

G F

D

E

Type Change

'T = (deleteCtrlEdge(S, (C, E)))

'I = (deleteCtrlEdge(S, (E, H)))
isolated

activity!!

 A B completed activated

Propagate Type Change

'T = (deleteCtrlEdge(S, (C, E)))

Figure 5.8: Activity Net Containing Isolated Activity Node

the case when executing the same change by applying change primitives. Therefore control flow
primitives like adding or deleting control edges are often not (directly) offered to the user in
order to design or change process schemes. Instead change operations with formal pre– and
post–conditions are provided (e.g., in WIDE [26], TRAMs [67], and ADEPT [87, 88]). Due
to this fact it is not stringently necessary to provide explicit conflict tests in conjunction with
control flow primitives in the following. However, we present some illustrating examples to alert
possible control flow conflicts to the reader. In particular, to establish a bridge to other process
meta models we present an example for change primitives applied on Activity Nets [73] leading
to isolated activity nodes [101]. It is a reasonable constraint for Activity Nets to forbid isolated
activity nodes due to their totally unclear execution semantics.

Control Flow Primitives:2 As it can be seen from Table 5.1 structural conflicts like isolated
activities and overlapping control blocks may occur after propagating ∆T to instance–specific
schema SI in an uncontrolled manner. Our first example shows the presence of an isolated
activity node within an Activity Net:

Example 5.8 (Activity Net Containing Isolated Activity Node): An example for an Activity Net
containing an isolated activity node after an uncontrolled application of concurrent process type
and process instance changes is depicted in Fig. 5.8: ∆T deletes control link (C,E) whereas ∆I

has already deleted control link (E, H) for instance I. The uncontrolled propagation of ∆T to
instance-specific schema SI = S + ∆I results in target schema (S + ∆I) + ∆T which contains
isolated activity node E.

Our next example again refers to WSM Nets (cf. Section 3.1.1). It shows overlapping
control blocks resulting when propagating type change ∆T to instance–specific schema SI in an
uncontrolled manner.

Example 5.9 (Overlapping Control Blocks): Consider Figure 5.9.a where process type change
2∆T , ∆I ∈ {addCtrlEdges(S, . . .), deleteCtrlEdges(S, . . .), addNodes(S, . . .)}

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 120

a) Applying Basic Change Primitives:
 Process Type Schema S’:

Process Type Schema S:

 A B C D

 A B C D

X

type change

'T = (addNodes(S, X),
addCtrlEdges(S, {(A, X), (X, C)})

Process Instance I on SI := S + 'I

 A B C D

Y

 A B C D

Y X

Process Instance I on (S + 'I) + 'T

'I = (addNodes(S, Y), addCtrlEdges(S, {(B, Y), (Y, D)})
Overlapping Control Blocks

b) Applying High-Level Change Primitives:

Process Type Schema S’:

Process Type Schema S:

 A B C D

 A B C D

X

Process Instance I on SI := S + 'I

 A B C D

Y

Process Instance I on (S + 'I) + 'T

type change

'T = parallelInsertActivity(S, X, (B, B))

'I = parallelInsertActivity(S, Y, (C, C))

propagate

propagate

D

Y B

X C

A

Completed Activated TrueSignaled

Figure 5.9: Conflicting Control Flow Primitives

∆T and process instance change ∆I both insert new activities X and Y respectively by applying
change primitives. Propagating ∆T to instance–specific schema SI results in overlapping control
blocks (A, C) and (B, D) what offends against the block–structure constraint for WSM Nets (cf.
Definition 2). In contrast, if ∆T and ∆I execute the insertions by applying basic change operation
parallelInsertActivity(S, . . .) (cf. Section 3.2) no overlapping control blocks are contained in
resulting instance–specific schema (S + ∆I) + ∆T (cf. Figure 5.9.b).

Example 5.9 shows that control flow conflicts in conjunction with change primitives can be
prohibited when using the respective change operations instead.

Data Flow Primitives:3 Though, in most cases, data flow changes are only carried out
accompanying control flow changes within a change transaction (cf. Section 4.3.2.4) ADEPT
allows the seperated application of data flow primitives in order to, for example, correct data
flow modeling errors. Therefore, we do not restrict our considerations to illustrating examples
but, furthermore, present easy to check data flow conflict tests in the following. Note that data

3∆T , ∆I ∈ {addDataEdges(S, . . .), deleteDataEdges(S, . . .)}

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 121

Process Instance I on (S + 'I) + 'T:

Process Instance I on SI:= S + 'I:

Process Type Schema S:
 type change

'T = (deleteActivity(S, A), deleteActvity(S, B),
deleteDataEdges(S, {(A, d1, write), (B, d1, read)}))

'I = (deleteActivity(S, D),
deleteDataEdge(S, {(D, d1, write)}))

A B C E F G

d1

C E F G

d1

missing input data

Process Type Schema S’:

Activated

propagate

A B C D E F

d1

G

C D E F G

d1

Figure 5.10: Deleting All Necessary Write Accesses on Instance Data (Example)

flow conflict tests have to be carried out in order to avoid data flow inconsistencies after applying
concurrent change transactions.

Our data flow constraints from Definition 2 forbid activities with missing input data and
lost updates on data elements. Respective inconsistencies may occur within (S + ∆I) + ∆T if
process instance and process type change both delete write data links on the same data element
read by other activities in the sequel as the following example shows:

Example 5.10 (Missing Input Data): An example is depicted in Figure 5.10 where ∆T and ∆I

delete write data links related to the same data element d1 which causes missing input data of
activity G in (S + ∆I) + ∆T .

However, materialization of (S+∆I)+∆T should be avoided. Note that the detection of data
flow conflicts based on materialized schema (S +∆I)+∆T may result in exponential complexity
[87]. Therefore, in the following we provide a formal proposition to exclude data flow errors for
(S + ∆I) + ∆T but without materializing (S + ∆I) + ∆T . This proposition allows to exclude
conflicts for a magnitude of instances solely on basis of ∆T and ∆I .

Proposition 1 (Avoiding Missing Input Data and Lost Updates) Let S be a WSM Net
and I be a biased instance with starting schema S and current execution schema
SI := S + ∆I = (NI , DI , NTI , CtrlEI , SyncEI , . . .). Assume that type change ∆T transforms S
into a correct schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...).
Then: Propagating ∆T to SI neither results in missing input data nor in lost updates if

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 122

∀ mDL1 = (d1, mode1, [”add”|”delete”]) ∈ AD(S, ∆T) ∪ DD(S, ∆T),
∀ mDL2 = (d2, mode2, [”add”|”delete”]) ∈ AD(S, ∆I) ∪ DD(S, ∆I)

with modei ∈ {read, write} (i = 1, 2):
d1 6= d2 ∨
mode1 = mode2 = read ∨
mDL1 = (d1, ”read”, ”delete”) ∨ mDL2 = (d2, read, ”delete”) (♣)

whereas

• AD(S, ∆T) := {(d, mode, ”add”)|∃(X, d, mode) ∈ DataE′ \DataE, X ∈ N , mode ∈ {read, write}}
• DD(S, ∆T) := {(d, mode, ”delete”)∃(X, d, mode) ∈ DataE \DataE′, X ∈ N , mode ∈ {read, write}}
• AD(S, ∆I) := {(d, mode, ”add”)|∃(X, d, mode) ∈ DataEI \DataE, X ∈ N , mode ∈ {read, write}}

• DD(S, ∆I) := {(d, mode, ”delete”)|∃(X, d, mode) ∈ DataE \DataEI , X ∈ N , mode ∈ {read, write}}

A conflict test based on Proposition 1 checks whether for each pair of data edges newly
inserted or deleted by ∆T and ∆I (resulting in (S +∆I)+∆T) either different data elements are
affected or only read data edges are manipulated, or at least one read data edge is deleted. If
only data accesses on different data elements are inserted into or deleted from S by ∆T and ∆I

the correctness of WSM–Nets S′ and (S + ∆I) + ∆T implies the correctness of (S + ∆I) + ∆T .
(For further details see Proof C.7 in Appendix C).

Example 5.11 shows two data flow changes which can be concurrently applied to process
schema S without causing data flow inconsistencies in the sequel. This result is correctly indi-
cated by evaluating condition (♣) of Proposition 1.

Example 5.11 (Concurrent Data Flow Changes Resulting In Correct Schema): Consider Figure
5.11 where both type change ∆T and instance change ∆I insert new activities X and Y respec-
tively with a read data link on data element d. Propagating ∆T to SI does not result in a data
flow inconsistency witin schema (S +∆I)+∆T . This result is correctly reported by a respective
test based on Proposition 1 since ∆T and ∆I insert a data link on same data element d but
both data links have mode read.

Now we show an example where the concurrent application of data flow changes ∆T and ∆I

leads to a data flow inconsistency within resulting schema (S + ∆I) + ∆I :

Example 5.12 (Missing Input Data): In Figure 5.12, ∆T deletes activities B and F together
with data edges (B, d2, write) and (F, d2, read). At the instance level, ∆I serially inserts
activity Y between activities D and E with a read data link connected to data element d2

(∆I = {addDataEdge(S, (Y, d2, read))}). Obviously, propagating ∆T to SI leads to the problem
of missing input data regarding newly inserted activity Y. Condition ♣ from Proposition 1
indicates this conflict since both process type and process instance change work on the same
data element d2 by deleting write data links and inserting new read data links for this data
element. Such critical instances can be easily detected by a test derived from Proposition 1.
Otherwise expensive data flow analyses on (S +∆I)+∆T would become necessary for all cases.

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 123

A Y C B

d

X D

Process Instance I on (S + 'I) + 'T:

Process Instance I on SI:= S + 'I:

Process Type Schema S:
 type change

'T = (serialInsertActivity(S, X, C, D),
addDataEdges(S, {(X, d, read)}))

'I = (serialInsertActivity(S, Y, B, C),
addDataEdges(S, {(Y, d, read)}))

Process Type Schema S’:

Activated

propagate

A C D B

d

A C X B

d

D

A Y C B

d

D

no data flow conflicts

Figure 5.11: Concurrent Data Flow Changes Resulting in Correct Schema

A B C D E F

d1 d2

A C D E

d2 d1

Process Instance I on (S + 'I) + 'T:

Process Instance I on SI:= S + 'I:

Process Type Schema S:

d2

A B C D Y E

d1

F A C D Y E

d1 d2

type change

'T = (deleteActivity(S, B), deleteActvity(S, F),
deleteDataEdge(S, {(B, d2, write), (F, d2, read)}))

'I = (serialInsertActivity(S, Y, D, E),
addDataEdge(S, {(Y, d2, read)}))

Process Type Schema S’:

missing input data

Activated

propagate

Figure 5.12: Deleting Write Accesses on Data Read by Newly Inserted Activity (Example)

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 124

A B

d

A C D B

d

Process Type Level:
Process Type Schema S:

Process Type Schema S’:

Process Instance Level:
Instance I on Schema SI := S + 'I

type change

'T = (deleteDataEdges(S, {(C, d, write), (D, d, read)}),

deleteActivity(S, C), deleteActivity(S, D))

propagate

Instance I on Schema (S + 'I) + 'T:

'I = (deleteDataEdges(S, {(E, d, write), (F, d, read)}),

deleteActivity(S, E), deleteActivity(S, F))

A C D B E F

d

A E F B

d

$'(S, 'T) � ''(S, 'T) = {(d, write, “delete”), (d, read, “delete”)}

$'(S, 'I) � ''(S, 'I) = {(d, write, “delete”), (d, read, “delete”)}

Completed Activated TrueSignaled

Figure 5.13: Indication of a Potential Data Flow Conflict

A conflict test based on Proposition 1 discovers potential data flow conflicts as, e.g., described
by Example 5.12. If a potential data flow conflict is indicated further checks become necessary
as the following example shows.

Example 5.13 (Indication Of A Potential Data Flow Conflict): Consider Figure 5.13 where ∆T

and ∆I both delete a write access on data element d. Due to condition (♣) of Proposition
1 a potential data flow conflict is indicated when propagating ∆T to instance–specific schema
SI . However, resulting instance–specific schema (S + ∆I) + ∆T would not contain a data flow
inconsistency according to the rules defined in Section 3.1.1.

If a potential data flow conflict is indicated though actually there is none the reason may
be that the number of write accesses on a data element d in original process schema S is larger
than two. Condition (♣) namely checks whether two write accesses on the same data element
are deleted when propagating ∆T to SI . Therefore, further checks become necessary. One
possibility is to materialize schema (S +∆I)+∆T and to apply the data flow correctness checks
presented in [87]. Nevertheless, Proposition 1 and the respective tests work fine in most cases
in order to quickly and efficiently detect data flow conflicts concurrent changes at the type and
instance level.

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 125

5.4.2 Structural Conflicts When Applying Basic Change Operations

According to Table 5.1 a serious problem which may arise from the uncontrolled propagation of
a process type change ∆T to a biased instance (on instance-specific schema SI := S + ∆I)4 is
the occurence of deadlock-causing cycles (for an example see Fig. 5.2.b). As mentioned before,
a naive solution would be to first materialize target schema (S +∆I)+∆T and then to carry out
respective cycle checks on (S+∆I)+∆T . Since these materialization and validation steps would
have to be applied for each biased instance I, this approach would cause severe performance
problems. Thus, our ambition is to perform an appropriate deadlock test based on information
given by the process type and instance changes themselves and the original process schema S.
A deadlock test satisfying these claims is given in Proposition 2 [101, 91]:

Proposition 2 (Basic Deadlock Prevention) Let S be a WSM Net and I be a biased in-
stance with starting schema S and execution schema SI := S+∆I = (NI , DI , CtrlEI , SyncEI , . . .).
Assume that type change ∆T transforms S into a correct schema S’ = (N’, D’, NT’, CtrlE’,
SyncE’, ...).

Then: (S + ∆I) + ∆T does not contain deadlock-causing cycles if the following condition holds:

∀ (s1, d1) ∈ AS(S, ∆T), ∀ (s2, d2) AS(S, ∆I):
d1 6∈ (pred∗(S, s2) ∪ {s2}) ∨ d2 6∈ (pred∗(S, s1) ∪ {s1}) (Ψ)

whereas

• AS(S, ∆T) := SyncE′ \ SyncE

• AS(S, ∆I) := SyncEI \ SyncE

For a formal proof of Proposition 2 see Proof C.8 in Appendix C.

By simply applying condition Ψ from Proposition 2 we can exclude deadlocks when prop-
agating a type change to a biased instance. Note that condition Ψ is based on the original
process type schema S. Consequently, an easy conflict test can be derived which avoids the
materialization of any other schema (SI or (S + ∆I) + ∆T). Based on simple graph algorithms
the respective test has complexity O(n).

Example 5.14 (Simple Deadlock–Test): Consider Figure 5.14 where type change ∆T inserts a
sync edge between activities C and D and ∆I inserts a sync edge between activities E and B.
Obviously, propagating ∆T to instance–specific schema SI results in incorrect target schema
(S + ∆I) + ∆T containing the deadlock–causing cycle E → B → C → D → E. Applying
Proposition 2 before propagating ∆T detects this cycle: The set of newly inserted sync edges
for ∆T and ∆I are AS(S, ∆T) = {(C, D)} and AS(S, ∆I) = {(E, B)} respectively. Deploying
these sets to condition Ψ yields D 6∈ {A,D,E} ∨ B 6∈ {A,B, C} what results in contradiction.

4∆T , ∆I ∈ {insertSyncEdge(S, . . .)}

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 126

'T = insertPlace(S, D, E) 'T = insertPlace(S, D, E) Process Type Schema S: Process Type Schema S’:

Process Instance I on SI := S + 'I

type change

'T = insertSyncEdge(S, (C, D))

=

'I = insertSyncEdge(S, (E, B))

 B C

D

A F

E

 B C

D

A F

E

 B C

D

A F

E

 B C

D

A F

E

Process Instance I on (S + 'I) + 'T

DEADLOCK!!

propagate

Completed Activated TrueSignaled

Figure 5.14: Instance–Specific Schema Containing Deadlock–Causing Cycle (Example)

Note that a conflict test based on Proposition 2 would still not work fine if sync links are
inserted between also newly inserted activities. The reason is that the newly inserted activities
are ”unknown” in original schema S and therefore condition (Ψ) of Proposition 2 cannot be
evaluated. We provide respective methods to overcome this problem in Section 5.4.3 since
the insertion of sync links between newly inserted activities is carried out within a change
transaction.

5.4.3 Structural Conflicts When Applying Change Transactions

A change transaction is an ordered series of change primitives and (basic/high–level) change
operations. Let, for example, ∆T := (opT

1 , . . . , opT
n) and ∆I := (opI

1, . . . , op
I
k) be a process type

and a process instance change transaction applied to process schema S. In conjunction with
concurrent process type and instance change transactions we precede in three steps:

1. The single operations within a change transaction may be based on each other, i.e. op-
erations are based on elements manipulated by precedent operations. An example is the
insertion of a new sync link between activities previously inserted by the same change
transaction. We call such operations based on effects of previously applied operations
context–dependent changes. These context–dependent changes raise totally new and in-
teresting challenges for which we will provide solution approaches in Chapter 6. At this
point, our main goal is again to restrict necessary conflict analysis to information given by
∆T , ∆I and S even if ∆T and ∆I contain context–dependent change operations.

2. We provide tests for structural conflicts arising in conjunction with a special subset of

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 127

change transactions – high–level change operations. Strictly speaking, high–level change
operations like the insertion between activity sets or the insertion of embracing loop blocks
(cf. Table 3.3) are change transactions as well. The only difference to arbitrary change
transactions is that high–level change operations are offered to the user in a pre–defined
way whereas arbitrary change transactions must be composed by the user.

3. For arbitrary change transactions arbitrary combinations of structural conflicts may arise.
We present an illustrating example and shortly explain how to deal with concurrently
applied (arbitrary) change transactions.

5.4.3.1 Context–Dependent Change Transactions

Proposition 2 detecting deadlock–causing cycles works fine as long as only basic change oper-
ations inserting sync edges are applied. For this case, a respective test would be rated high
according to its efficient application to concurrent process type and process instance changes.
However, another important quality factor is the number of ”uncritical” instances I for which
conflicts between process type and instance changes can be definitely excluded. The deadlock
test derived from Proposition 2 is a ”good” test with respect to efficiency. However, it still scores
lower regarding the second quality factor. The reason is that for particular instance changes ∆I

this test indicates conflicts with type change ∆T although target schema (S +∆I)+∆T will not
contain any deadlock causing cycle as the following example shows:

Example 5.15.a (Inserting Sync Edges Not Leading to Deadlock–Causing Cycles): An example
is depicted in Figure 5.15: Instance change ∆I inserts a sync edge between activities C and F
(already contained in S) whereas type change ∆T inserts a sync edge between also newly inserted
activites X and Y . From the applied changes we derive AS(S, ∆T) = {(X, Y)} and AS(S, ∆I) =
{(C, F)} (cf. Proposition 2). The expression yielding from applying condition Ψ (cf. Proposition
2) to these sets cannot be evaluated due to the absence of activites X and Y in S. Consequently,
the respective conflict test is unable to exclude the occurence of a deadlock-causing cycle in S
although in fact there is none.

At first glance, it seems that we must materialize and validate target schema (S +∆I)+∆T

in order to overcome this problem. This approach, however, offends against the efficiency quality
factor. Fortunately, there is another solution avoiding materialization of (S + ∆I) + ∆T and
excluding deadlock conflicts for ”uncritical” instances.

Example 5.15.b (Transitive Order Relations Regarding Newly Inserted Sync Edges): Consider
again the example given in Figure 5.15: Here we cannot evaluate condition Ψ based on sync
edge (X, Y) since its source and destination activities have been newly inserted by ∆T as well.
However, the insertion of sync edge (X, Y) does not only set out the direct order relation ”X
before Y ” but also, for example, the transitive order relation ”D before E”. Since D and E are
present in S we are able to verify condition Ψ for a respective sync edge (D, E). Based on this
consideration we try to virtually re-link the actual sync edge (X, Y) to the virtual sync edge
(D, E). The challenge is to determine the virtual sync edge(s) based on which condition Ψ can

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 128

Process Type Schema S: Process Type Schema S’

Process Instance I on SI := S + 'I: Process Instance I on (S + 'I) + 'T:

A

C D

E F

H B G

A

C D

Y E

H B G

X

F

type change

'T = (serialInsertActivity (S, X, D, G),
serialInsertActivity (S, Y, B, E),

insertSyncEdge(S, (X, Y)))

'I = insertSyncEdge(S, (C, F))

sync edge

A

C D

E F

H B G

A

C
 D

Y
 E

H
 B

 G

X

F

Graph Reduction Rules!!

propagate

Completed Activated TrueSignaled

Figure 5.15: Insertion of Sync Edges on Process Type and Instance Level

be evaluated on S. Then – solely based on S – we can determine whether (S + ∆I) + ∆T will
contain a deadlock-causing cycle or not. From ∆T we know which activities have been inserted
and into which context they have been embedded (insertion context). For serially inserted
activities, for example, the insertion context includes the direct predecessor and successor of the
newly inserted activity. For the newly inserted activity X in Fig. 5.15, for example, insertion
context (D, G) includes the direct predecessor D of X in S’ and for the newly inserted activity
Y its insertion context (B, E) includes the direct successor E of Y in S′. Altogether, this is the
information we need for determining the virtual sync edges between activities present in S. In
our example (cf. Fig. 5.15) we get the virtual sync edge (D, E) instead of (X,Y).

Thus, the idea behind is to first transfer the order relations set out by the newly inserted
sync edges to starting schema S by applying ”virtual” graph reduction rules and then to apply
condition Ψ of Proposition 2 to the reduced graph. The respective graph reduction approach
applicable in connection with the composed insertion of activities and sync edges is given in
Algorithm 3:

Algorithm 3 (Graph Reduction Rules (Deadlock Prevention)) Let
S = (N, D, NT, CtrlE, SyncE, ...) be a WSM Net and ∆ be a change which transforms S into
a correct schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...). Let further

• AS(S, ∆) := SyncE′ \ SyncE and

• AA(S, ∆):= {(X, (src, dest)) | X ∈ N’, src, dest ∈ N, X serially inserted between src and
dest by ∆}.

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 129

GraphRed(N, AS(S, ∆), AA(S, ∆)) −→ (ASred(S, ∆))

ASred(S, ∆):=∅
forall (src, dest) ∈ AS(S, ∆) do

while src 6∈ N do
find (src, (pSrc, sSrc)) ∈ AA(S, ∆);
src := pSrc;

done
while dest 6∈ N do

find (dest, (pDest, sDest)) ∈ AA(S, ∆);
dest := sDest;

done
ASred(S, ∆) := ASred(S, ∆) ∪ {(src, dest)}

done

Algorithm 3 works by replacing the source (destination) nodes of the newly inserted sync
edges by their direct predecessors (successors) if these nodes have not been present in the original
schema S. If several activities are inserted in a row, Algorithm 3 iteratively replaces them by
their direct predecessors/successors until we find an adequate predecessor/successor also present
in S. In the following Proposition 3, condition Ψ of Proposition 2 is applied based on the graph
reduction of Algorithm 3. A deadlock test derived from this proposition fulfills both desired
quality factors: It is efficiently applicable based on original schema S and it does not indicate
deadlocks for target schema (S + ∆I) + ∆T , if (S + ∆I) + ∆T is actually deadlock-free.

Proposition 3 (Deadlock Prevention (2)) Let S be a WSM Net and I be a biased instance
with starting schema S and execution schema SI := S+∆I = (NI , DI , NT, CtrlEI , SyncEI , . . .).
Assume that type change ∆T transforms S into another correct schema
S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...). Let further ASred(S, ∆T) and ASred(S, ∆I) be the
sync edge reductions after applying Algorithm 3.

Then: (S +∆I) + ∆S does not contain deadlock-causing cycles iff the following condition holds:

∀ (s1, d1) ∈ ASred(S, ∆T), ∀ (s2, d2) ∈ ASred(S, ∆I):
d1 6∈ (pred∗(S, s2) ∪ {s2}) ∨ d2 6∈ (pred∗(S, s1) ∪ {s1}) (Ψ)

As already mentioned, the reduction rules of Algorithm 3 are necessary in order to transfer
the order relations set out by the newly inserted sync edges to the original schema S. As
decribed in Proposition 3, we apply Algorithm 3 to the sync edges and activities newly inserted
by ∆T and ∆I . Based on the resulting sets ASred(S, ∆T) and ASred(S, ∆I) condition Ψ from
Proposition 2 can be applied to S. Doing so saves us from expensive checks on (S + ∆I) + ∆T .

In general, graph reduction techniques must be applied in order to correctly detect conflicts
between context–dependent changes. Further examples are newly inserted read and write ac-

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 130

Process Type Schema S: Process Type Schema S’

Process Instance I on SI := S + 'I: Process Instance I on (S + 'I) + 'T:

type change

'T = insertBetweenNodeSets(S, X, {B}, {C})

'I = insertBetweenNodeSets(S, Y, {C}, {B})

DEADLOCK!!!

 B

C

A D

Null Null

B

C

A D

X

Null Null

B

C

A D

Y

Null Null

B

C

A D

X

Null Null

Y

propagate

Completed Activated TrueSignaled

Figure 5.16: Deadlock When Concurrently Applying insertBetweenNodeSets Operation

cesses of also newly inserted activities. For these examples similar techniques as Algorithm 3
can be developed in order to to cope with context–dependent data flow changes as well.

We do not discuss structural conflicts arising in conjunction with applying a predefined
high–level change operation (cf. Table 3.2).

5.4.3.2 Concurrent Application Of High–Level Change Operations

High–level operation insertBetweenNodeSets(S, X, Mbefore, Mafter) consists of the parallel in-
sertion of activity X and several insertions of sync links. These sync links are necessary to set
out the desired order between all activities from Mbefore and X as well as between X and all
activities from Mafter. If several activities are concurrently inserted at process type and process
instance level by this operation, cycles between them (via the respective sync links) may emerge
as Example 5.16 shows. Note that this is no ADEPT specific conflict. Similar problems may
also arise for Activity Nets [73] as, for example, used in IBM Websphere MQ Workflow.

Example 5.16.a (Cycles Due To The Insertion Of Activities Between Node Sets:) Consider
Figure 5.16 where type change ∆T insert activity X between activities B and C whereas instance
change ∆I insert activity Y between activities C and B. Propagating ∆T to instance–specific
schema SI leads to instance–specific (S + ∆I) + ∆T which contains the deadlock–causing cycle
X −→ C −→ Y −→ B −→ X via the newly inserted sync egdes.

To detect such deadlock–causing cycles when concurrently applying

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 131

Process Type Schema S: Process Type Schema S’

Process Instance I on SI := S + 'I: Process Instance I on (S + 'I) + 'T:

type change

'T = insertLoopEdge(S, B, C, lCond1)

'I = insertLoopEdge(S, C, D, lCond2)
Overlapping

Loop Blocks!!

 A C D B

 A B C LS LE D E

lCond1 = TRUE

 A LS C B D LE E

lCond2 = TRUE

A B LS LS C LE D

lCond1 = TRUE

E LE

lCond2 = TRUE

propagate

Completed Activated TrueSignaled

Figure 5.17: Overlapping Loops Blocks

insertBetweenNodeSet(S, . . .) operations again Algorithm 3 and Proposition 3 can be used
based on the set of newly inserted sync edges:

Example 5.16.b (Detecting Deadlock–Causing Cycles): For ∆T we obtain {(B, X), (X,C)} and
for ∆I we obtain {(C, Y), (Y, B)} as the set of newly inserted sync egdes. First we apply
Algorithm 3 in order to determine the reduced set of (virtual) sync edges based on S. Algorithm
3 yields reduced sets {(B, C), (B, C)} for ∆T and {(C,B), (C, B)} for ∆I . Putting these sets
into condition (Ψ) of Proposition 3 it can be easily seen that B ∈ {A,B} and therefore the
deadlock–causing cycle within (S + ∆I) + ∆T is detected.

As opposed to overlapping control blocks which may occur if basic change primitives are
concurrently applied in an uncontrolled manner (cf. Section 5.4.1) overlapping loop blocks may
also emerge if high–level change operation insertLoopEdge(S, . . .) is concurrently applied at
process type and process instance level. Overlapping control blocks are caused due to the fact
that no pre–conditions are checked if the respective basic control flow primitives are applied.
Overlapping loop blocks, however, can be considered as ”pure” structural conflicts which actually
could be not detected until (S +∆I)+∆T is materialized (except we find an appropriate conflict
test based on ∆T , ∆I and S in the following).

Example 5.17.a (Overlapping Loop Blocks): Please look at Figure 5.17 where ∆T and ∆I both
insert an embracing loop block inclusive loop backward edge around existing blocks (B, C)
and (C, D) respectively. Propagating ∆T to SI results in instance–specific schema (S + ∆I) +
∆T which contains overlapping loop blocks. Obviously, this offends against the correctness
constraints for WSM Nets (cf. Definition 2).

How can we determine such overlapping loop blocks within instance–specific schema (S +
∆I)+∆T without need to materialize it? Again key to success is to exploit the information given
by changes ∆T and ∆I . More precisely, based on the information given by ∆T and ∆I we can

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 132

determine which control blocks shall be newly embraced by loop constructs. Based on S then
it can be easily checked whether these newly embraced loop blocks overlap or not. Formally:

Proposition 4 (Overlapping Loop Blocks) Let S be a WSM Net and I be a biased instance
with starting schema S and execution schema SI := S+∆I = (NI , DI , NT, CtrlEI , SyncEI , . . .).
Assume that type change ∆T transforms S into another correct process schema
S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...).

Then: (S +∆I) + ∆S does not contain overlapping loop blocks iff the following condition holds:

∀ (begin∆I , end∆I) ∈ EmbracedLoopBlocks(S, ∆I), ∀ (begin∆T , end∆T) ∈ EmbracedLoopBlocks(S, ∆T):

begin∆T
∈ (begin∆I

, end∆I
) ⇐⇒ end∆T

∈ (begin∆I
, end∆I

)5(1)

whereas EmbracedLoopBlocks(S, ∆) := {{begin∆, end∆}∪ (succ∗(S, begin∆) ∩ pred∗(S, end∆))|
∃insertLoopEdge(S, begin∆, end∆, lC∆) ∈ ∆{}}6

To see how a respective conflict test based on Proposition 4 works we provide the following
example:

Example 5.17.b (Detecting Overlapping Loop Blocks): For type change ∆T and instance change
∆I as depicted in Figure 5.17 we obtain the following sets necessary for checking condition (1)
of Proposition 4: EmbracedLoopBlocks(S,∆T) = {{B,C}} and EmbracedLoopBlocks(S,∆I)
= {{C, D}}. As it can be easily seen B 6∈ {C, D} ∧ C ∈ {C, D} holds what violates condition
(1). Consequently, (S + ∆I) + ∆T would contain an overlapping loop block.

Generally, in block–structured meta models like BPEL4WS [5] or ADEPT [88], for example,
it is forbidden that sync links cross the boundaries of loop blocks. However, uncontrolled
propagation of complex process type changes to biased instances may result in such undesired
sync links as the following example shows:

Example 5.18.a (Sync Edge Crossing Loop Boundary): Please consider Figure 5.18 where type
change ∆T inserts an embracing loop block around existing control block (B, C) and instance
change ∆I inserts a sync link between activities C and D. Propagating ∆T to instance–specific
schema SI results in a structural inconcistency, i.e., sync link (C, D) crosses the boundary of
(new) loop block (B, C). Obviously, running instance I according to (S+∆I)+∆T may result in
an inconsistent execution state: If loop condition lCond1 evaluates to True the execution states
of activities B and C are reset to NotActivated. As a consequence, actually, edge marking
of sync link (C,D) should have to be reset to NotSignaled what would result in an incorrect
marking on (S + ∆I) + ∆T (cf. Definition 4).

Therefore, keeping the claim of avoiding materialization of (S + ∆I) + ∆T in mind, we now
present a method to decide whether (S + ∆I) + ∆T contains sync links crossing the boundaries

5The case where (begin∆T , end∆T) = (begin∆I , end∆I) holds is caught by the assumption that ∆T and ∆I

are disjoint
6∆{} denotes the set based representation of change ∆ := (op1, . . . , opn) which actually is an ordered series of

changes opi(i = 1, . . . , n), i.e., ∆{} := {op1, . . . , opn}

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 133

Process Type Schema S: Process Type Schema S’

Process Instance I on SI := S + 'I: Process Instance I on (S + 'I) + 'T:

type change

'T = insertLoopEdge(S, B, C, lCond1)

'I = insertSyncEdge(S, (C, D))

Outgoing Sync Edge
From Loop

propagate

 B C

D

A F

E

 B C

D

A F

E

 LS B

D

A F

C

E

G

LE

lCond1 = TRUE

 LS B

D

A F

C

E

G

LE

lCond1 = TRUE

Activated

Figure 5.18: Sync Link Crossing Boundary Of A Loop Block

of loop blocks based on the information given by ∆T and ∆I .

Proposition 5 (Sync Links Crossing Boundaries Of Loop Blocks) Let S be a WSM Net
and I be a biased instance with starting schema S and execution schema
SI := S + ∆I = (NI , DI , NTI , CtrlEI , SyncEI , . . .). Assume that type change ∆T transforms S
into a correct schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...).

Then: (S + ∆I) + ∆S does not contain sync links crossing the boundaries of loop blocks iff:

(∀(sI , dI) ∈ SyncEI \ SyncE, ∀(begin∆T
, end∆T

) ∈ EmbracedLoopBlocks(S,∆T):
{sI , dI} ∩ (begin∆T

, end∆T
) = ∅) ∧

(∀(sT , dT) ∈ SyncE′ \ SyncE, ∀(begin∆I
, end∆I

) ∈ EmbracedLoopBlocks(S, ∆I):
{sT , dT } ∩ (begin∆I

, end∆I
) = ∅) (∝)

whereas EmbracedLoopBlocks(S, ∆) := {{begin∆, end∆}∪ (succ∗(S, begin∆) ∩ pred∗(S, end∆))|
∃insertLoopEdge(S, begin∆, end∆, lC∆) ∈ ∆{}}

Informally, condition (∝) of Proposition 5 checks whether for all newly inserted sync links
and newly inserted embracing loop blocks source or destination activity of the sync link lies
within the respective loop block or not:

Example 5.18.b (Detecting Sync Links Crossing Loop Block Boundaries): Again look at Figure
5.18. Condition (∝) of Proposition 5 yields: For (C,D) ∈ SyncEI \ SyncE holds C ∈ {B, C}
and therefore a conflict of the respective type is indicated.

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 134

5.4.3.3 Concurrent Application Of Arbitrary Change Transactions

When concurrently applying arbitrary change transactions ∆T := (opT
1 , . . . , opT

n) and ∆I :=
(opI

1, . . . , op
I
k), all possible combinations between their single change operations opT

i (i = 1, . . . , n)
and opI

j (j = 1, . . . , k) may cause structural conflicts. Therefore, actually, we would have to
checks all n ∗ k combinations of single operations opi and opj in order to determine potential
structural conflicts (possibly together with respective graph reductions). However, based on
the knowledge summarized in Table 5.1 many change operations like deleting activities or sync
edges are totally uncritical regarding their concurrent application. Conversely, we can clearly
determine the set of potentially conflicting changes

ConfChanges := {serialInsertActivity(S, . . .), insertSyncEdge(S, . . .),
insertBetweenNodeSets(S, . . .),, addDataEdges(S, . . .),

deleteDataEdges(S, . . .) insertLoopEdge}.
Consequently, it is sufficient to restrict conflict test to those subsets of ∆T and ∆I which

are candidates to cause structural conflicts, i.e., which are contained in ConfChanges. Us-
ing this information we obtain ConfCand(∆T) := {opi ∈ ∆T {}|7 opi ∈ ConfChanges} for
process type change ∆T and ConfCand(∆I) := {opj ∈ ∆I{}| opj ∈ ConfChanges} for pro-
cess instance change ∆I . With this we reduce the number of necessary conflict checks to
|ConfCand(∆T)|∗|ConfCand(∆I)|. However, further optimization can be achieved by grouping
ConfCand(∆T) and ConfCand(∆I) into further sub–groups according to the type of structural
conflict they may cause, e.g., one possible sub–group in this context would be

ConfCycle(∆T) := {opi ∈ ∆T {}|opj ∈ {serialInsertActivity(S, . . .),
insertSyncEdge(S, . . .), insertBetweenNodeSets(S, . . .), }}.

Doing so only changes contained in sub–groups of the same type would have to be compared.

To top this discussion off, in the following, we provide an illustrating example for an arbitrary
process type change which inserts a new sync edge between newly inserted activities and also
deletes several data edges. The uncontrolled propagation of this type change transaction may
lead to different structural inconsistencies:

Example 5.19 (Structural Conflicts For Concurrently Applied Change Transactions): In Fig.
5.19 process type change ∆T transforms schema S into new schema version S′ by serially insert-
ing activites X and Y and by connecting them via a sync link (X,Y). Furthermore ∆T deletes
activities F and H together with their respective data links dL5 and dL6. Based on original
schema S two instances have been started. Instances I1 and I3 are biased and therefore run
according to their instance-specific schema SI1 and SI3 respectively whereas I2 is an unbiased
instance still running according to S. If now type change ∆T shall be propagated to these in-
stances we have to check structural as well as state-related compliance for the running instances.
Instance change ∆I1 has serially inserted two activites U and T and sync link (T, U) between

7∆{} denotes the set based representation of change ∆ := (op1, . . . , opn) which actually is an ordered series of
changes opi(i = 1, . . . , n), i.e., ∆{} := {op1, . . . , opn}

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 135

them. At first, the deadlock test derived from Proposition 3 is carried out to detect whether
target schema (S + ∆I1) + ∆T will contain a deadlock-causing cycle or not. After applying the
graph reduction rules of Algorithm 3 we obtain that (S + ∆I1) + ∆T will actually contain a
deadlock-causing cycle and therefore I1 cannot migrate to S′ (and remains running according
to S). For unbiased Instance I2 we only have to check state-related compliance as described in
Section 4.3.2. Since the previous trace of I2 can be replayed on S′, I2 is compliant with S′ and
therefore migrates to S′ by applying appropriate marking adaptation rules (cf. Section 4.3.2).
For instance–specific change ∆I3 tests on data flow conflicts become necessary since ∆T and ∆I3

both add and delete data edges (and therefore are possible candidates for data flow conflicts).
However, no graph reductions are necessary. The reason is that all activities are present in
original process schema S for which a data edge is added or deleted by ∆T or ∆I3 respectively.
Therefore we check condition (♣) of Proposition 1 and obtain that different data elements are
concerned by the relevant data flow change operations of ∆I3 and ∆T . Due to this fact and
based on the compliance conditions set out in Section 4.3.2 instance I3 is compliant with S′

regarding structure and state and can be therefore migrated to S′.

5.5 Migrating Process Instances with Disjoint Bias

Consider again Example 5.19 where process instance I3 has been determined as being compliant
with changed process type schema S′ regarding structure and state (cf. Criterion 7), i.e., the
resulting instance–specific schema (S+∆I3)+∆T does not contain structural inconsistencies and
the marking of I3 on S′ which results from applying Algorithm 2 is a correct instance marking
according to Theorem 9.

However, running (arbitrary) compliant process instance I according to its instance–specific
schema (S + ∆I) + ∆T is still not the desired behaviour. The reason is that in this situation I
cannot be considered as process instance running according to changed process type schema S′.
This can only be the achieved if we are able to (logically) transfer I from running on instance–
specific schema (S + ∆I) + ∆T to be based on instance–specific schema S′I := (S + ∆T) +
∆I = S′ + ∆I . Only if process instance I is executed according to instance–specific schema
S′I := (S + ∆T) + ∆I it can be considered as really migrated to changed process type schema
S′. Reassigning process instance I to changed process type schema S′ is very important since

• only then I may benefit from further process optimizations carried out on S′.

• doing so is key to an optimal internal management of process type and process instance
data.

How can we realize the (logical) transfer of process instance I from running on (S+∆I)+∆T

to process instance I running according to instance–specific schema (S + ∆T) + ∆I = S′ + ∆I?
Obviously, this transfer is possible if the order of applying ∆T and ∆I on original process
schema S is irrelevant according to resulting schemes (S + ∆I) + ∆T and (S + ∆T) + ∆I , i.e.,

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 136

A

C D

E F

H B G

d 1

d 2

d 3

d L 1
 d L 4

d L 6

Process Type Schema S: Process Type Schema S’ type change

'T = (serialInsertActivity(S, X, C, D), serialInsertActivity(S, Y, E, F), insertSyncEdge(S, (X, Y)),

deleteDataEdges(S, {dL6, dL7}), deleteActivity(S, F), deleteActivity(S, H))

A

C D

E F

H B G

d 1

d 2

d 3

d L 1
d L 2

d L 4

d L 5

d L 6

A

C X

E Y

D

B G

d 1

d 2

d L 1
d L 2

d L 4

Process Instance I1 (on SI1 = S + 'I1): 'I1 = (serialInsertActivity(S, U, B, C), serialInsertActivity(S, T, F, G),
insertSyncEdge(S, (T, U)))

A

U C

E F

H B G

D

T

d1 d2 d3

dL1
dL2

dL3 dL4

dL5

dL6

Structural Compliance:
$6(S, ∆I1) = {(T, U)}, $$(S, ∆I1) = {(U, (B, C)), (T, (F, G))}
Æ (Graph Red.) $6���(S, ∆I1) = {(F, C)}
$6(S, ∆T) = {(X, Y)}, $$(S, ∆T) = {(Y, (E, F)), (X, (C, D))}
Æ (Graph Red.)) $6���(S, ∆T) = {(C, G)}

C � pred*(S, C) �
(S + 'I1) + 'T will contain a deadlock-causing cycle

Process Instance I2 (on S):

A

C X

E Y

D

B G

d1 d2

dL1
dL2

dL3
dL4

Process Instance I3 (on SI3 = S + 'I3):

Structural Compliance:
AS(S, ∆I3) = ∅ ⇒ (S + 'I3) + 'T will not contain deadlock-causing cycle
∆T and ∆I3 concern different data elements ⇒ (S + 'I3) + 'T will not contain missing input data or lost updates
State-Related Compliance Æ migrate I3 to S’ + adapt markings

C D

E F

H Null G

d2 d3

dL3 dL4

dL5

dL6

C X

E Y

D

Null G

d2

dL3
dL4

 'I3 = (deleteDataEdges(S, {dL1, dL2}),
deleteActivity(S, A), deleteActivity(S, B))

propagate

migrate

Process Instance I on (S + 'I3) + 'T:

Process Instance I on S’I2:= S’:

Completed Activated TrueSignaled Running

dL1

dL1
dL2

dL3 dL4

dL5

dL6

dL2

dL3 #

dL5

dL6 dL1
dL2

dL3
dL4

dL3 dL4
dL6

dL5

dL3
dL4

dL1
dL2

dL3 dL4

dL5

dL6
dL1

dL2

dL3 dL4

Figure 5.19: Process Type Change and Instance Migration

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 137

(S + ∆I) + ∆T and (S + ∆T) + ∆I should be the ”same” instance–specific schemes. What does
the ”same” instance–specific schemes exactly mean? We have been already confronted with
this problem in Section 5.2 when thinking about an adequate equivalence relation on process
schemes. The key to solution is trace equivalence (cf. Definition 8). More precisely, two process
schemes are trace equivalent if and only if each possible trace on the one schema can be executed
on the other schema and vice versa. Trace equivalence therefore ensures behavioral equivalence
of instances. However, behavioural equivalence provides a sufficient basis for transferring the
execution of process instance I (running on instance–specific schema (S + ∆I) + ∆T so far) to
instance–specific schema (S +∆T)+∆I . More precisely, if (S +∆I)+∆T ≡trace (S +∆T)+∆I

holds process instance I on (S + ∆I) + ∆T can also be seen as an instance running according to
(S + ∆T) + ∆I .

In summary, the desired reassignment of process instance I to changed process type schema
S′ is possible if (S + ∆I) + ∆T ≡trace (S + ∆T) + ∆I holds. Obviously, this is the case if
process type change ∆T and process instance change ∆I are disjoint (cf. Definition 10) since
one necessary prerequisite for disjoint process type and process instance changes is that they
are commutative, i.e., (S + ∆I) + ∆T ≡trace (S + ∆T) + ∆I holds.

Therefore, an important conclusion is that for disjoint process type and process instance
changes the respective instances can be always reassigned to the changed process type schema
if they are compliant regarding structure and state (cf. Criterion 8). Formally:

Migration Strategy 1 (For Process Instances With Disjoint Bias) Let S be a (correct)
process type schema and I be a process instance which has been started according to S and has
been already biased by instance–specific change ∆I . Let further ∆T be a process type change
which transforms S into another (correct) process type schema S′. Assume that ∆T and ∆I are
disjoint changes according to Definition 10. Assume further that process instance I is compliant
with S′ regarding Criterion 8. Then process instance I can be reassigned to changed process type
schema S′ preserving instance–specific change ∆I on S’, i.e., I runs according to instance–specific
schema S′ + ∆I further on.

The validity of Migration Strategy 1 directly follows from the assumption that ∆T and ∆I

are disjoint.

Another interesting result which can be seen from Migration Strategy 1 is that instance–
specific change ∆I can be preserved on S′ if it is disjoint with ∆T . Note that this is not the case
if process type and process instance changes overlap. In the next chapter we will extensively
discuss how the new bias (based on changed process type schema S′) can be calculated according
to the particular degree of overlap between process type and process instance changes.

Finally, we illustrate the migration process for instances with disjoint bias by means of the
following example:

Example 5.20 (Migrating Process Instance With Disjoint Bias): Consider Figure 5.20 where
process instance I has been individually modified by instance–specific change ∆I . Obviously,

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 138

Process Type Schema S: Process Type Schema S’

'T = (serialInsertActivity(S, X, C, D), serialInsertActivity(S, Y, E, F), insertSyncEdge(S, (X, Y)),
deleteDataEdges(S, {dL6, dL7}), deleteActivity(S, F), deleteActivity(S, H))

A

C D

E F

H B G

d 1

d 2

d 3

d L 1
d L 2

d L 4

d L 5

d L 6

A

C X

E Y

D

B G

d1 d2

dL1
dL2

dL3
dL4

Process Instance I (on SI = S + 'I):

Structural Compliance Æ ok

⇒ S3* will not contain deadlock-causing cycle

⇒ S* will not contain missing input data or lost updates

State-Related Compliance Æ ok

C D

E F

H Null G

d2 d3

dL3 dL4

dL5

dL6

C X

E Y

D

Null G

d2

dL3
dL4

 'I3 = (deleteDataEdges(S, {dL1, dL2}),
deleteActivity(S, A), deleteActivity(S, B))

migrate

Process Instance I on S’I:= S’ + 'I:

C X

E Y

D

Null G

d2

dL3
dL4

Process Instance I on (S + 'I) + 'T:

Activated

Compliance Checks

dL1
dL2

dL3 dL4

dL5

dL6
dL1

dL2

dL3
dL4

dL3 dL4

dL5

dL6
dL3

dL4

dL3
dL4

Figure 5.20: Migrating Compliant Instance To S′

∆T and ∆I disjoint. Regarding structural compliance of instance–specific schema (S+∆I)+∆T

there will be no inconsistencies like deadlock causing cycles or missing input data for activity
executions. I is also compliant regarding its state and can therefore be correctly migrated to
S′. As we can see from Figure 5.20 instance–specific schema (S + ∆I) + ∆T is trace equivalent
with instance–specific schema S′I := (S +∆T)+∆I = S′+∆I . Consequently I can be migrated
to S′I := S′ + ∆I preserving instance–specific change ∆I on S′ (cf. Theorem 1).

CHAPTER 5. MIGRATING BIASED PROCESS INSTANCES 139

5.6 Summary

In this chapter we have provided formal definitions based on which it can be decided whether
concurrent changes are disjoint or overlapping. For disjoint process type and instance changes
a gerenal correctness criterion was introduced based on which state–related, structural, and
semantical compliance can be decided. In order to provide an efficient solution we have developed
several conflicts tests which quickly check whether there will be structural conflicts between
process type and process instance changes or not. To execute the migration of instances with
disjoint bias, commutativity was identified as necessary property of disjoint changes. The reason
is that due to commutativity instances can be reassigned to the changed process type schema
while preserving their original bias. Finally, the presented results can be transferred to other
process meta models as well. The design of the structural conflict tests depends on whether
change primitives are offered to users (as indicated by the example of isolated activity nodes for
Activity Nets) or change operations with formal pre– and post–conditions are used (e.g., WIDE
[26] and TRAMs [67]).

Chapter 6

Migrating Process Instances with
Overlapping Bias

The ability to migrate unbiased process instances to a changed process type schema is indispens-
able in practice (cf. Chapter 4). However, this migration support is still not sufficient since one
must also adequately deal with concurrent changes on business processes. More precisely, a fully
flexible PMS must be able to support the migration of biased instances to a changed process
type schema as well. As summarized in Figure 6.1, an approach for handling the migration of
process instances with disjoint bias to a changed process schema has been already presented in
Chapter 5. Thereby focus was put on providing a general correctness criterion (cf. Correctness
Criterion 8) and on (quickly) checking structural and state–related compliance. In this chap-
ter, we present a solution for dealing with the migration of biased process instances for which
instance–specific changes and type change overlap (cf. Figure 6.1). This imposes many new
challenges like the detection of the particular degrees of overlap and the provision of adequate
migration strategies.

The remainder of Chapter 6 is organized as follows: In Section 6.1, we introduce the general
challenges that arise when migrating process instances with overlapping bias. Section 6.2 pro-
vides a classification of concurrent changes along their particular degree of overlap. In Sections
6.3 and 6.4, we present and discuss different approaches to detect the particular degree of overlap
between process type and process instance changes. In Section 6.5 we then stick the strengths of
these approaches together to a hybrid approach. Section 6.6 summarizes the different migration
strategies along the particular degree of overlap and Section 6.7 provides a method to calculate
the new bias after migration. Finally, Section 6.8 summarizes the presented results.

140

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 141

Migrating Unbiased Process Instances

Migrating Biased Process Instances

Disjoint Process Type &
Process Instance Changes

Overlapping Process Type &
Process Instance Changes

P� Comprehensive
Correctness Criterion

P� Efficient Compliance
Checks

P� Automatic Instance
Migration

Distinction Between Disjoint and Overlapping
Process Type And Process Instance Changes

P� General Correctness
Criterion

P� Designing Structural
Conflict Tests

P� Automatic Instance
Migration

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

�

�

�

�

P� Change Classification Along Degree
of Overlap

P� Determining the Degree of Overlap
Between Changes

P� Selection of the Adequate Migration
Strategy

P� Optimization of Migration Strategies
P� Decision Rules
P� Automatic Bias Calculation

�

�

�

Figure 6.1: Migrating Process Instances with Overlapping Bias

6.1 Advanced Migration Issues – Challenges

As indicated above we want to present an approach to be able to adequately deal with over-
lapping process type and process instance changes (cf. Definition 10). To shortly repeat the
difference between disjoint and overlapping process changes consider the following example:

Example 6.2 (Disjoint And Overlapping Changes:) Look at Figure 6.2 where process type change
∆T deletes activity D and process instance change ∆I1 deletes activity H. Obviously, these
changes work on totally different elements of original process schema S and can therefore be
regarded as being disjoint. This corresponds to Definition 10 (cf. Section 5.2) of disjointness:
∆T and ∆I1 are commutative since (S +∆I1)+∆T ≡trace (S +∆T)+∆I1 holds and the activity
sets newly inserted by both changes are disjoint. In contrast, process type change ∆T and
process instance change ∆I2 overlap since both delete same activity D from original schema S.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 142

A

C D

E F

H B G

Process Instance I2 on SI2 := S + 'I2

'I2 = deleteActivity(S,D)

A

C

E F

H B G

A

C D

E F

H B G

A

C D

E F

H B G

Process Type Schema S: Process Type Schema S’:

Process Instance I1 on SI1 := S + 'I1

type change

'T = deleteActivity(S, D)

'I1 = deleteActivity(S,H)

A

C

E F

H B G

Process Instance I1 on S’I1 := S’ + 'I1

migrate

'T and 'I1 are disjoint, i.e., 'T � 'I1 = �

'T and 'I2 overlap, i.e., 'T � 'I2 z �

Completed Activated TrueSignaled

Figure 6.2: Disjoint and Overlapping Process Type and Instance Changes

Again this corresponds to Definition 10: ∆T and ∆I2 are not commutative since ∆T cannot be
applied to instance–specific schema SI2 and ∆I2 can also not be applied to changed process type
schema S′. Consequently, instance–specific schemes (S +∆I2)+∆T and (S +∆T)+∆I2 cannot
be produced and ∆T and ∆I2 are rated as overlapping.

When looking at our current definition of disjoint and overlapping process type and process
instance changes it strikes that the part concerning disjointness is very precise whereas the part
regarding overlapping changes is relatively fuzzy. In other words, the set of process instances
with overlapping bias may turn out to be very heterogenous; i.e., it may contain instances for
which instance–specific changes significantly vary regarding their degree of overlap with the
process type change. Instance–specific changes may reach from changes having the same effects
on original process schema S (as the process type change) to changes which only marginally
overlap with the process type change. Due to this fact, finding a common migration strategy
for all these instances may turn out very difficult or may be even impossible. Consequently,
a first important challenge is to find a classification for biased instances along their particular
degree of overlap between their instances–specific change and the process type change. Doing
so is important in order to be able to establish practically applicable migration strategies in the
sequel.

Assume that we have found an appropriate classification of process instances for which their
instance–specific change overlaps the process type change1. The important question then is how
to efficiently decide which class a particular process instance belongs to. When discussing this

1In the following we use the term ”process instances with overlapping bias” short hand for such instances.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 143

issue we will also answer the question raised in Section 5.2 about how to quickly detect process
instances with disjoint bias.

Based on an adequate classification dedicated migration strategies can be found. This in-
cludes automatic instance adaptations (if desired by users) as well as detailed messages to guide
users through the migration process. In other words, depending on the particular degree of
overlap (between process type and process instance changes) recommendations and rules can be
generated which make the migration process transparent to users and help them to intervene if
they want to.

After having selected and applied the right migration strategy (either automatically by the
PMS or manually by users) process instances are ”linked” (i.e., assigned) to the changed process
schema. This holds advantages like the possibility to take part at future type changes (e.g., future
process optimizations). As necessary pre–conditions for migrating instances with overlapping
bias to a changed process type schema, structural and state–related checks on the respective
instances may become necessary. For instances with disjoint bias these checks can be carried
out by applying the conflict tests introduced in Section 5.4 and the compliance conditions set
out in Section 4.3.2. If they are compliant regarding structure and state, process instances with
disjoint bias can migrate to the changed process type schema by maintaining their original bias.
An example is depicted in Figure 6.2 where instance–specific change ∆I1 = deleteActivity(S, H)
is maintained after migrating I1 to changed process type schema S′. In contrast, for compliant
process instances with overlapping bias doing so would not be correct; i.e., the effects on original
process type schema S which process type and process instance change have in common are
already incorporated within schema S′. Therefore, the remaining bias related to S′ has to be
re–calculated. For example, consider Figure 6.2 where a migration of process instance I2 to
changed process type schema S′ is desired. Bias ∆I2 is totally reflected in S′ since ∆T and ∆I2

have the same effects on original schema S. Consequently, ∆I2 should not be maintained on S′

after migrating I2 to S′. Instead, the resulting bias of I2 on S′ must be newly calculated on S′

(and becomes the empty set for this example).

In summary, in order to adequately deal with overlapping process type and process instance
changes we have

1. to find a classification along the particular degree of overlap. Based on this classification
appropriate migration strategies can be established.

2. to provide methods to efficiently decide on the particular degree of overlap for given process
type and process instance changes.

3. to provide migration strategies along the different degrees of overlap between process type
and process instance changes (including rules for guiding the user).

4. to provide methods to automatically adapt process instances when migrating them to the
changed process type schema. This includes structural and state–related adaptations (as
already known for process instances with disjoint bias) as well as re–calculation of the bias
(i.e., the remaining instance–specific change based on S′).

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 144

6.2 On Classifying Concurrent Changes

In this section, we want to find an appropriate classification for overlapping process type and
process instance changes along their particular degree of overlap. First of all, we abstract from
whether changes are carried out at the type or at the instance level. More precisely, we base our
considerations on two arbitrary changes ∆1 and ∆2 concurrently applied to same schema S2.

Let S be a (correct) process schema and let ∆1 and ∆2 be two changes which transform
S into another (correct) process schema S1 and S2 respectively (notation: S1 := S + ∆1 and
S2 := S + ∆2).

The particular degree of overlap between ∆1 and ∆2 corresponds to the kind of relation
between the concerned changes (like disjointness and overlap of changes in general, cf. Section
5.2). In order to understand the relation between two changes ∆1 and ∆2 applied to same
original process schema S we must compare their particular effects on S. In other words, the
degree of overlap between ∆1 and ∆2 corresponds to the degree of overlap between their effects
on S.

Which relationships between the effects of two changes ∆1 and ∆2 on original schema S are
conceivable? As introduced in Section 5.2, ∆1 and ∆2 may have totally different effects on S,
i.e., ∆1 and ∆2 may be disjoint. In contrast, ∆1 and ∆2 may have exactly the same effects on
original schema S. In this case, we denote ∆1 and ∆2 as equivalent changes. Between these
two extremes a ”containted–in” relation between ∆1 and ∆2 is conceivable [97]. More precisely,
∆1 may have the same effects on S as ∆2 has, but may have further effects on S as well. In
this case we call ∆1 and ∆2 subsumption equivalent. Note that this relation is bi–directional.
Finally, ∆1 and ∆2 may partially have the same effects on S but both ∆1 and ∆2 may have
additional effects on S as well (not reflected by the other changes). Then we denote ∆1 and ∆2

as partially equivalent. Informally, the different degrees of overlap between ∆1 and ∆2 can be
summarized as follows:

Summary 1 (Degrees Of Overlap Between Concurrent Changes) Let S be a (correct)
process schema and let ∆1 and ∆2 be two changes which transform S into (correct) process
schemes S1 and S2 respectively (notation: S1 := S + ∆1 and S2 := S + ∆2). Then we denote
∆1 and ∆2 as

1. disjoint if they have totally different effects on S (notation: ∆1 ∩∆2 = ∅)
2. equivalent if they have exactly the same effects on S (notation: ∆1 ≡ ∆2)

3. subsumption equivalent if ∆2 has the same effects on S as ∆1, but ∆2 has additional effects
on S as well (notation: ∆1 ≺ ∆2)

2One possible application of these general results is the treatment of process type and process instance changes
concurrently applied to original process schema S. This case is reflected throughout all examples presented in this
chapter. Apart from this, the general results are also applicable in connection with concurrent instance changes
(e.g., introduced by different users at the same time).

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 145

4. partially equivalent if ∆1 and ∆2 have some common effects on S, but both have additional
different effects on S (notation: ∆1 G ∆2)

We now want to illustrate the different degrees of overlap by applying the general results of
Summary 1 to concurrent process type and process instance changes:

Example 6.3 (Concurrent Changes With Different Degrees Of Overlap): Consider Figure 6.3:
Type change ∆T inserts activity X between activities B and D, and it inserts activity Y between
activities A and C.

• Instance I1: Obviously, ∆T and the instance–specific change ∆I1 are disjoint since they
have totally different effects on S3. Therefore I1 can be linked to S′I1 := S′+∆I1 preserving
instance–specific change ∆I1 on S′ (cf. Theorem 1).

• Instance I2: Here the situation is quite different. The instance–specific change ∆I2 has
exactly the same effects on S as ∆T since both changes insert the same activities X and
Y into S at the same target positions. Therefore ∆T and ∆I2 are detected as equivalent
changes (cf. Summary 1). Intuitively, I2 can be linked to S′ without applying ∆T to SI2

(since the effects of ∆T are already contained in SI2). Furthermore no instance–specific
change based on S′ has to be kept, i.e., ∆I2(S

′) = ∅ holds.

• Instance I3: The instance–specific change ∆I3 has inserted a subset of activities {Y }
when compared to the set of activities {X, Y } inserted by ∆T . Furthermore, Y has been
inserted at the same target position between A and C. Altogether, the effects of ∆I3 on
S are subsumed by the effects of ∆T on S. Consequently, ∆T and ∆I3 are considered
as subsumption equivalent, i.e., ∆I3 ≺ ∆T holds (cf. Summary 1). I3 can therefore be
re–linked to S′ but without need for maintaining any instance–specific change based on S′

since ∆I3 is already reflected within S′ (∆I3(S
′) = ∅).

• Instance I4: The effects of the instance–specific change ∆I4 subsume the effects of ∆T

since ∆I4 inserts same activities X and Y into S at the same positions as ∆T does,
but additionally inserts activity Z between D and E. Therefore I4 can be migrated to
S′. However, we have to maintain an instance–specific bias ∆I4(S

′), which differs from
original instance–specific bias ∆I4(S). More precisely we have to remove the effects of ∆T

(already reflected within S′) from ∆I4 in order to obtain the new instance–specific bias
∆I4(S

′) = (serialInsertActivity(S, Z,D, E)).

• Instance I5: The instance–specific change ∆I5 has partially the same effects on S as ∆T

has; i.e., both changes insert activity Y between A and C. However, on the one hand ∆I5

has deleted activity E and on the other hand ∆T additionally inserts activity X between B
and D. According to Summary 1, ∆I5 and ∆T are partially equivalent, i.e., ∆T ∩∆I5 6= ∅
holds. In the given situation it is possible to migrate I5 to S′ and to determine new
instance–specific bias ∆I5(S

′) based on S′ (∆I5(S
′) = (deleteActivity(S, E))). However,

doing so is not always possible for partially equivalent changes as we will show later on.
3We assume that X and Y denote semantically different activities.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 146

Summary 1 provides a rather informal description of the different degrees of overlap between
concurrent changes ∆1 and ∆2. To base our further consideration on a sound framework we
formalize the statements given in Summary 1: Regarding disjoint changes we have already
given (formal) Definition 10 (cf. Section 5.2). Equivalence between changes ∆1 and ∆2 can be
formalized as follows:

Definition 11 (Equivalent Changes) Let S be a (correct) process schema and let ∆1 and ∆2

be two changes which transform S into (correct) process schemes S1 and S2. Then we denote
∆1 and ∆2 as being equivalent (notation: ∆1 ≡ ∆2) iff S1 and S2 are trace equivalent (cf. Def.
8). Formally:

∆1 ≡ ∆2 ⇐⇒ S1 ≡trace S2

Thus concurrent changes ∆1 and ∆2 have the same effects on the original schema S if the
resulting process schemes S1 and S2 show the same behavior, i.e., S1 and S2 are trace equivalent
(cf. Definition 8). This corresponds to the intuitive understanding of equivalent changes: ∆1

and ∆2 have exactly the same effects on process schema S if – based on the resulting schemes
S1 := S + ∆1 and S2 := S + ∆2 – the same behavior can be achieved. More precisely, each
activity sequence (together with its read/write operations on data elements) producible on S1

must be also producible on S2 and vice versa.

We have formally defined change equivalence based on behavorial equivalence of the resulting
process schemes S1 and S2 so far. We now try to define subsumption and partial equivalence
in a similar manner (cf. Statements 3 + 4 in Summary 1). We start with the definition of
subsumption equivalence between changes. Obviously, in this case, S1 and S2 are not trace
equivalent since ∆2 has ”more effects” on S than ∆1 has (or vice versa). However, we would
obtain trace equivalent schemes if the additional effects of ∆2 on S (when compared with ∆1)
had been applied to S1 as well. In terms, ∆1 is subsumption equivalent with ∆2 (∆1 ≺ ∆2) if
process schemes (S +∆1)+∆2 \∆1 and S +∆2 are trace equivalent. Similarly, two concurrent
changes ∆1 and ∆2 are partially equivalent if (S + ∆1) + ∆2 \∆1 ≡trace (S + ∆2) + ∆1 \∆2

holds. In both cases, the difference of changes ∆1 \∆2 or ∆2 \∆1 shall represent the difference
of effects of ∆1 and ∆2 on S. However, the difference between changes cannot be precisely
determined if the change logs to be compared contain noise4 or change operations depend on
each other. More precisely:

1. Missing Canonical Representation Of Changes: Change logs may often contain
information about change operations which actually have no or only hidden effects on the
underlying process schema. One example is the (temporary) insertion of activities which
are deleted in the sequel. The reason is that users who define the changes (i.e., the process
designer or end user) do not always act in a goal–oriented way when modifying a process
schema. In fact, they may try out the best solution resulting in noisy information within

4Noise in change logs is somewhat comparable to the existence of noisy information in process execution logs.
This noisy information impedes, for example, the mining of these logs [50, 47].

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 147

 B

Y

E A D

C

Z

X

Z

B

C

E A D

Process Instance I2 on SI2 := S + 'I2

Process Type Schema S: Process Type Schema S’:

Process Instance I1 on SI1 := S + 'I1

type change

'T = (serialInsertActivity(S, X, B, D),

serialInsertActivity(S, Y, A, C))

'I1 = serialInsertActivity(S,Z, D, E)

Process Instance I1 on S’I1 := S’ + 'I1

migrate

'T and 'I1 are disjoint, i.e., 'T � 'I1 = �

'T and 'I5 overlap, i.e., 'T � 'I5 z �

migrate

E

B

C

A D

 B X

Y

E A D

C

Process Instance I2 on S’I2 := S’

 B X

Y

E A D

C

 B X

Y

E A D

C

'I2 = (serialInsertActivity(S, X, B, D),
serialInsertActivity(S, Y, A, C))

'T and 'I2 equivalent, i.e., 'T { 'I2

 B

Y

A D

C

E

 B X

Y

E A D

C

Process Instance I3 on SI3 := S + 'I3 Process Instance I3 on S’I3 := S’

'I3 = serialInsertActivity(S, Y, A, C)

migrate

'T and 'I3 subsumption equivalent, i.e., 'T > 'I3

 B

Y

E A D

C

Z

X

Process Instance I4 on SI4 := S + 'I4 Process Instance I4 on S’I4 := S’ + 'I4(S’)

 B

Y

E A D

C

Z

X

'T and 'I4 subsumption equivalent, i.e., 'T < 'I4

'I4 = (serialInsertActivity(S, X, B, D),
serialInsertActivity(S, Y, A, C),
serialInsertActivity(S, Z, D, E))

'I4(S’) = serialInsertActivity(S, Z, D, E)

migrate

 B

Y

A D

C

E

Process Instance I5 on SI5 := S + 'I5 Process Instance I5 on S’I5 := S’ + 'I5(S’)

 B X

Y

E A D

C

'I5(S’) = deleteActivity(S, E)

'I5 = (serialInsertActivity(S, Y, A, C),

 deleteActivity(S, E))

'I2(S’) = �

'I3(S’) = �

migrate

Completed Activated TrueSignaled

Figure 6.3: Concurrent Changes with Different Degrees of Overlap

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 148

Process Type Schema S: Process Type Schema S’: type change

'T = (serialInsertActivity(S, X, A, B),

 serialInsertActivity (S, Y, X, B)

 serialInsertActivity (S, Z, Y, B))

 A B A X Y Z B

Process Instance Schema SI = S + 'I : 'I = (serialInsertActivity (S, Y, A, B),

 serialInsertActivity (S, Z, Y, B)

 serialInsertActivity (S, X, A, Y))
 A X Y Z B

Figure 6.4: Context–Dependent Insert Operations

the change logs. We will extensively discuss the issue of noisy change logs in Section 6.4.2.
At the moment, it is sufficient to be aware of the fact that such noise exists.

2. Context–Dependent Changes: As discussed in Section 5.4.3 there may be context–
dependent changes within a change log, i.e., changes which are based on each other. Ap-
plying context–dependent changes in a different order may lead to different change logs
such that these logs cannot be properly compared. An example for this phenomenon is
depicted in Figure 6.4:

Example 6.4 (Context–Dependent Insert Operations:) Process type change ∆T and pro-
cess instance change ∆I both insert activities X, Y , and Z into original process schema S
at the same target position. Merely, ∆T uses another order of applying the single insert
operations as ∆I does. However, building the differences between ∆T and ∆I results in
empty sets. Note that solely based on the change logs, it cannot be determined that ∆T

and ∆I are actually equivalent changes.

As we will show in Section 6.5.1 we can find methods to purge changes from noisy information.
However, the problem of context–dependent changes remains, i.e., it is not possible to find
a common representation for change logs containing context–dependent changes. Therefore,
at the moment, we have to leave our attempt to find formal definitions for subsumption and
partially equivalent changes based on change differences and trace equivalence. Fortunately,
there is another possibility which finally enables us to formally define subsumption and partial
equivalence between concurrent changes (cf. Section 6.6.1).

However, we already have formal definitions for disjoint and equivalent changes. Both are
based on trace equivalence between process schemes (cf. Definition 8). Consequently, in order
to be able to determine the particular degree of overlap (cf. Section 6.1) we have to ensure
trace equivalence. For this purpose, a formal method based on process schema isomorphism is
provided in Section 6.3.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 149

6.3 A Formalism Based on Graph Isomorphism

In Sections 5.2 and 6.2, formal definitions for disjoint and equivalent changes have been provided
(cf. Definitions 10 and 11). Both definitions are based on trace equivalence between process
schemes (cf. Definition 8). Therefore when deciding about different degrees of overlap between
changes ∆1 and ∆2 the important question is how to ensure trace equivalence between the
resulting process schemes S1 := S+∆1 and S2 := S+∆2. Obviously, trying to replay all possible
execution histories of process schema S1 on process schema S2 and vice versa is far too expensive.
The determination of all possible execution histories producible on a process schema may result
in exponential complexity. Fortunately, the problem of testing trace equivalence between two
process schemes S1 and S2 can be solved by testing whether S1 and S2 are isomorphic [56] or
not; i.e., by finding a bijective mapping between the activities and edges of two process schemes.
A formal definition of this property is provided in Definition 12. Note that this definition is
especially tailored to WSM Nets (cf. Section 3.1.1), i.e., the bijective mapping between the two
WSM Nets is already fixed by the labelings of the respective activities and edges.

Definition 12 (Graph Isomorphism (GI)) Let Si = (Ni, Di, NT, CtrlEi, SyncEi, LoopEi, DataEi)
(i = 1, 2) be two (correct) process schemes. Then S1 and S2 are isomorphic (formally: S1 ' S2)
if condition (♣) holds with

(♣):
[[∃ bijective mapping f: N1 7→ N2 with

(label(n) = label(f(n)) ∀ n ∈ N1) ∧
(∀ e= (u, v) ∈ CtrlE1: ∃ e* = (f(u), f(v)) ∈ CtrlE2 with label(e)= label(e*)
∧ ∀ e* = (u*, v*) ∈ CtrlE2 ∃ e = (f−1(u*), f−1(v*)) ∈ CtrlE1

with label(e*) = label(e)) ∧
(∀ e= (u, v) ∈ SyncE1: ∃ e* = (f(u), f(v)) ∈ SyncE2 with label(e)= label(e*)
∧ ∀ e* = (u*, v*) ∈ SyncE2 ∃ e = (f−1(u*), f−1(v*)) ∈ SyncE1

with label(e*) = label(e))∧
(∀ e= (u, v) ∈ LoopE1: ∃ e* = (f(u), f(v)) ∈ LoopE2 with label(e)= label(e*)
∧ ∀ e* = (u*, v*) ∈ LoopE2 ∃ e = (f−1(u*), f−1(v*)) ∈ LoopE1

with label(e*) = label(e))]∧
[∃ bijective mapping g: D1 7→ D2 with

(label(d) = label(g(d)) ∀ d ∈ D1) ∧
(∀ dE = (n, d, mode) ∈ DataE1, n ∈ N1:
∃ dE* = (g(n), g(d), mode) ∈ DataE2: label(dE) = label(dE*)
∧ ∀ dE* = (n*, d*, mode) ∈ DataE2

∃ dE = (g−1(n*), g−1(d*), mode) ∈ DataE1: label(dE*) = label(dE)]]

The following theorem formally states that isomorphism between two process schemes S1

and S2 also implies trace equivalence between them. Note that depending on the concrete
operational semantics of the used process meta model two process schemes can be execution
equivalent but not isomorphic. That is the case, for example, if dummy nodes for structuring

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 150

matters are used5 or if the process schemes contain transitive control dependencies. A solution
here is to reduce the respective process schemes. If necessary, the node set is reduced by logically
discarding all dummy nodes.

Theorem 10 (Trace Equivalence By Process Schema Isomorphism) Let S1 and S2 be
two (correct) process schemes. Then S1 and S2 are trace equivalent if S1 and S2 are isomorphic
according to Definition 12. Formally:

S1 ' S2 =⇒ S1 ≡trace S2

A formal proof of Theorem 10 can be found in Appendix C (cf. Proof C.9).

One can claim is that, in general, there is no efficient algorithm for detecting graph iso-
morphism (GI). In particular, no efficient algorithm has been found for GI (GI lies in class
NP) [64]. But there are some special graph classes for which efficient isomorphism algorithms
exist, e.g., planar graphs or graphs with bounded valence [24]. However, for two graphs with
unique vertex labeling it is trivial to find an isomorphism between them. As it can be seen
from Definition 12 this is the case for two process schema graphs since there is always a unique
labeling which is preserved during the isomorphism mapping. One way would be to compare
the adjacency matrices of both process schemes. Generally, this can be done with complexity
O(n2) if n corresponds to the number of nodes6. Regarding process schemes the number of rows
in the adjacency matrices depends on the number |N | of activity nodes and the number |D| of
data elements. Therefore the complexity of this method results in O((|N |+ |D|)2)

To our best knowledge there is no approach with lower complexity than O(|M |2) (with M =
max(|N |, |D|)) for this special problem. This could cause a performance problem if we have to
check process graph isomorphism for complex process schemes and for a large number of process
instances at runtime. Furthermore, as discussed in Section 6.2, verification of trace equivalence
using process schema isomorphism is only applicable for detecting disjoint and equivalent process
changes. Therefore, in the following sections, we present better approaches. These approaches
can be applied for detecting all conceivable degrees of overlap between process changes.

6.4 Structural and Operational Approaches

Let S be a (correct) process schema and ∆1 and ∆2 two changes which transform S into (correct)
process schemes S1 and S2 respectively (notation: S1 := S+∆1 and S2 := S+∆2). As indicated
in Sections 6.2 and 6.3, detecting the particular degree of overlap between ∆1 and ∆2 based
on trace equivalence and process schema isomorphism (cf. Definition 8 and Theorem 10) is not
(always) recommendable due to the following reasons:

5Such dummy nodes (also called null tasks) are often used in connection with block–structured models, (e.g.,
BPEL4WS [5, 92] or WSM Nets) in order to preserve the block structuring.

6Note that for arbitrary graphs one has to analyze all n! permutations of the adjacency matrix.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 151

1. As discussed in Section 6.2 it is not possible to determine whether ∆1 and ∆2 are sub-
sumption or partially equivalent (cf. Summary 1, Section 6.2). For this reason we cannot
define and also cannot decide on these two particular degrees of overlap. It is only possible
to check whether ∆1 and ∆2 are disjoint or equivalent based on trace equivalence between
S1 + ∆2 and S2 + ∆1.

2. However, doing so requires the materialization of the resulting process schemes S1 + ∆2

and S2 + ∆1 or S1 and S2 respectively and the explicit verification of trace equivalence.
This approach is not applicable in practice, especially in conjunction with a large number
of running process instances.

For these reasons we have to find better suited approaches to define and decide on the
particular degrees of overlap between ∆1 and ∆2. The information we can use for this purpose
comprises process schemes S, S1, and S2 as well as changes ∆1 and ∆2. Intuitively, taking this
information we come to the following three kinds of approaches:

1. Structural Approaches which directly compare process schemes S, S1, and S2

2. Operational Approaches directly contrasting changes ∆1 and ∆2 (i.e., looking at the
two sets of applied change operations),

3. Hybrid Approaches (cf. Section 6.5) combining structural and operational approaches.

In the following we present these variants and systematically rate their particular strenghts and
limitations.

6.4.1 Structural Approaches

The essence of all structural approaches is to compare resulting process schemes S1 := S + ∆1

and S2 := S + ∆2 to gain information about the degree of overlap between ∆1 and ∆2. A
promising approach to analyze the difference between two process schemes, the so called Delta
Analysis, has been presented by Guth and Oberweis in [45] and was used by van der Aalst
and Basten in [117]. In [117], Delta Analysis is based on four inheritance relations on process
schemes. Roughly speaking a process schema S1 is a subclass of process schema S2 if it can do
everything S2 can do and more. With this, for example, van der Aalst and Basten determine the
Greatest Common Divisor (GCD) for process schemes S1 and S2 which represents the smallest
common superclass of S1 and S2. However, this approach cannot be adopted to the problem
described in this paper since it is not possible to directly compare the process schemes S1 and
S2 in order to detect the degree of overlap between the changes ∆1 and ∆2. This is illustrated
by the following example:

Example 6.5 (Greatest Common Divisor Approach:) Consider process schemes S1 and S2 (rep-
resented by WF Nets [118] introduced in Section 2.3) as depicted in Figure 6.5a). Applying the

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 152

t

a) Process Schema S
(represented by a WF Net):

Derived Process
Schema S1:

t x

Derived Process
Schema S2:

t

y

Superclass

a

Process
Schema S1:

b

b

a

b)

Process
Schema S2:

Superclass??

Figure 6.5: Determining the Greatest Common Divisor (Examples)

approach suggested by van der Aalst and Basten [13, 117, 116] we start from process schemes S1

and S2 and determine the common superclass S. By contrast, in our approach we already have
a common divisor S and derive process schemes S1 and S2 by applying ∆1 and ∆2 respectively.

However, considering the Delta Analysis approach we can already recognize one common
limitation of all structural approaches: they are not able to adequately deal with order–changing
operations. One example is depicted in Figure 6.5b) where we cannot find a process schema
which represents a common behavior for schemes S1 and S2.

As a second possibility, consider the so called pure structural approach (cf. Figure 6.10).
Here we exploit the set–based representation of WSM Nets (cf. Section 3.1.1) and directly
compare activity sets N1 and N2, edge sets CtrlE1 and CtrlE2, SyncE1 and SyncE2, DataE1

and DataE2, LoopE1 and LoopE2, and data element sets D1 and D2 regarding the two process
schemes S1 and S2 with Si = (Ni, Di, . . .), i = 1, 2. However, doing so is unnecessarily expensive.
Actually, we do not have to compare ”whole” activity and edge sets of S1 and S2 since these
sets have been derived starting with same original schema S, i.e., starting with the same activity
and edge sets. In other words we already know a common divisor S = (N,D, . . .) for S1 and
S2. Therefore we can reduce complexity by exploiting the common ancestry of S1 and S2 what
results in a third method which we call aggregated structural approach (cf. Figure 6.10). More
precisely, the aggregated structural approach works by comparing differences between process
schema S1 and original schema S and between process schema S2 and original schema S. These
differences can be easily determined by building the following difference sets:

Definition 13 (Difference Sets fo Control Flow And Data Flow Changes) Let
S = (N, D, NT, CtrlE, SyncE, LoopE, DataE) be a (correct) process schema and let ∆ be
a change transforming S into another (correct) process schema S′ = (N ′, D′, . . .). Then the
difference sets regarding control and data flow can be determined as follows:

1. Control Flow Difference Sets:

• Nadd
∆ := N ′ \N and Ndel

∆ := N \N ′

• CtrlEadd
∆ := CtrlE′ \ CtrlE and CtrlEdel

∆ := CtrlE \ CtrlE′

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 153

• SyncEadd
∆ := SyncE′ \ SyncE and SyncEdel

∆ := SyncE \ SyncE′

• LoopEadd
∆ := LoopE′ \ LoopE and LoopEdel

∆ := LoopE \ LoopE′

2. Data Flow Difference Sets:

• Dadd
∆ := D′ \D and Ddel

∆ := D \D′

• DataEadd
∆ := DataE′ \DataE and DataEdel

∆ := DataE \DataE′ 2

We now apply Definition 13 to detect the particular degree of overlap between changes ∆1

and ∆2 on original schema S. For this purpose the following difference sets (cf. Definition 13)
have to be compared:

1. Control Flow Difference Sets to be compared:

• Nadd
∆1

and Nadd
∆2

• Ndel
∆1

and Ndel
∆2

• CtrlEadd
∆1

and CtrlEadd
∆2

• CtrlEdel
∆1

and CtrlEdel
∆2

• SyncEadd
∆1

and SyncEadd
∆2

• SyncEdel
∆1

and SyncEdel
∆2

• LoopEadd
∆1

and LoopEadd
∆2

• LoopEdel
∆1

and LoopEdel
∆2

2. Data Flow Difference Sets to be compared:

• Dadd
∆1

and Dadd
∆2

• Ddel
∆1

and Ddel
∆2

• DataEadd
∆1

and DataEadd
∆2

• DataEdel
∆1

and DataEdel
∆2

To illustrate the general results of this section achieved so far we apply them to concurrent
process type and process instance changes ∆T and ∆I on process schema S. We provide the
following example:

Example 6.6 (Application Of Structural Approach To Concurrent Activity Insertion): Consider
Figure 6.6. Both ∆T and ∆I1 serially insert activity X at the same position (”between B and
C”) into S whereas ∆I2 serially inserts another activity Y between A and B. Obviously, ∆T

and ∆I1 overlap since they offend against claim (2) for disjoint changes (cf. Definition 10).
Using the aggregated structural approach, we obtain Nadd

∆T
= Nadd

∆I1
= {X}. This corresponds

to the expected result, i.e., the multiple insertion of same activity X. Regarding instance I2

on S, ∆T and ∆I2 are disjoint according to Def. 10. Application of the aggregated struc-
tural approach results in Nadd

∆T
∩ Nadd

∆I2
= ∅, Ndel

∆T
∩ Ndel

∆I2
= ∅, CtrlEadd

∆T
∩ CtrlEadd

∆I2
= ∅, and

CtrlEdel
∆T

∩ CtrlEdel
∆I2

= ∅. Interpreting this result, we can state that ∆T and ∆I2 are disjoint.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 154

 A B C

 A B X C

 A B X C

 A Y B C

Process Type Schema S: : Process Type Schema S’:
type change

'T = serialInsertActivity(S, X, B, C)

Process Instance I1 on SI1 = S + 'I1 with 'I1 = serialInsertActivity(S, X, B, C)

Process Instance I2 on SI2 = S + 'I2 with 'I2 = serialInsertActivity(S, Y, A, B)

N�T
add = {X}, CtrlE�T

add = {(B, X), (X, C)}, CtrlE�T
del = {(B, C)}

N�I1add = {X}, CtrlE�I1add = {(B, X), (X, C)}, CtrlE�I1del = {(B, C)}

N�I2
add = {Y}, CtrlE�I2

add = {(A, Y), (Y, B)}, CtrlE�I2
del = {(A, B)}

Completed Activated TrueSignaled

Figure 6.6: Application of Structural Approach to Concurrent Activity Insertion

These first two examples show that the aggregated structural approach works fine for insert
(and delete) operations. We are able to precisely determine which activities have been inserted or
deleted. In contrast, for move operations the aggregated structural approach (and consequently
the pure structural approach) may be too imprecise. This is shown by the following example of
changes ∆T and ∆I concurrently applied at the process type and process instance level:

Example 6.7 (Application Of The Structural Approach To Concurrent Activity Shifting): Con-
sider Figure 6.7. For all three changes ∆T ,∆I1 , and ∆I2 applied to schema S,
Nadd

∆T
= Nadd

∆I1
= Nadd

∆I2
= ∅ and Ndel

∆T
= Ndel

∆I1
= Ndel

∆I2
= ∅ holds (no activity has actually been

inserted or deleted). Determining the sets of newly inserted and deleted control edges for ∆T and
∆I1 yields CtrlEadd

∆T
= CtrlEadd

∆I1
= {(A,C), (C,B), (B,D)} and

CtrlEdel
∆T

= CtrlEdel
∆I1

= {(A,B), (B, C), (C, D)} respectively. From this result it could be con-
cluded that ∆T ≡ ∆I1 holds, but it is not exactly observable which activity has been actually
moved. In contrast, comparing respective edge sets for ∆T and ∆I2 , we obtain non–disjoint
difference sets of control edges, i.e., CtrlEadd

∆T
∩ CtrlEadd

∆I2
6= ∅ and CtrlEdel

∆T
∩ CtrlEdel

∆I2
6= ∅.

This indicates that ∆T ∩ ∆I2 6= ∅ holds. However, no further statement is possible since we
cannot derive whether ∆T and ∆I2 are subsumption or partially equivalent. Therefore results
based on structural approaches are too imprecise in conjunction with order–changing operations
since we cannot exactly determine which activity has been actually moved. For example, in case
of ∆T and ∆I1 , activity C as well as activity B could have been moved. When comparing ∆T

with ∆I2 we can only conclude that these changes actually overlap but we are not able to make
further statements.

One may claim that a solution for the above drawback of structural approaches is to ”map”
a move operation onto respective delete and insert operations. Type change ∆T depicted in
Figure 6.7, for example, could be translated into deleteActivity(S, B) operation followed by
serialInsertActivity(S,B, C, D) operation. However, doing so is not sufficient in conjunction
with structural approaches. Activity C is actually neither deleted nor inserted what is reflected
by difference sets Nadd

∆T
= ∅ and Ndel

∆T
= ∅.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 155

 C
 B

 A
 D

 A B C D

 B
 A

 C
 D

 C
 B

 A
 D

Process Type Schema S: Process Type Schema S’:type change

'T = serialMoveActivity(S, B, C, D)

Process Instance I1 on SI1 = S + 'I1 with 'I1 = serialMoveActivity(S, B, C, D)

Process Instance I2 on SI2 = S + 'I2 with 'I2 = serialMoveActivity(S, A, B, C)

CtrlE�Tadd = {(A, C), (C, B), (B, D)}, CtrlE�Tdel = {(A, B), (B, C), (C, D)}

CtrlE�I1
add = {(A, C), (C, B), (B, D)}, CtrlE�I1

del = {(A, B), (B, C), (C, D)}

CtrlE�I2
add = {(B, A), (A, C), (C, D)}, CtrlE�I1

del = {(A, B), (B, C)}

Completed Activated TrueSignaled

Figure 6.7: Application of the Structural Approach to Concurrent Activity Shifting

The limitations coming with applying structural approaches (cf. Summary 2) are aggravated
if changes comprise several move operations. Taking this imprecise information it is not possible
to derive adequate migration strategies in the following.

Summary 2 (Advantages and Limitations of Structural Approaches) Let S be a (cor-
rect) process schema and let ∆1 and ∆2 be two changes transforming S into (correct) process
schemes S1 := S + ∆1 and S2 := S + ∆2 respectively. Applying the (aggregated) structural ap-
proach by comparing the difference sets between S1 and S2 (cf. Definition 13) has the following
advantages and limitations:

• Advantages: precise information concerning insert and delete operations
(based on Nadd

∆i
and Ndel

∆i
(i = 1, 2))

• Limitations: imprecise information concerning order–changing operations

6.4.2 Operational Approach

A solution to overcome the drawback of structural approaches in conjunction with order–
changing operations – not knowing which activities have been actually moved (cf. Summary 2)
– may be to directly compare the applied changes ∆1 and ∆2. Obviously, ∆1 and ∆2 contain
precise information about the applied change operations in general and about the actually moved
activities in particular. However, this operational approach also shows limitations. Change logs
may contain information about change operations which actually have no or only hidden effects
on the underlying process schema. As already explained users who define changes (i.e., process
designers or end users) do not always act in a goal–oriented way when modifying a process
schema. In fact they may try out the best solution resulting in noisy information within the
change logs. To get the idea behind in the following let ∆ be an arbitrary change log applied to
a (correct) process schema S what results in another process schema S′ := S + ∆.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 156

A

C X

D

G B F

Y

E

' = (serialInsertActivity(S, X, C, F) ,

 serialInsertActivity(S, Y, X, F),

 serialInsertActivity(S, Z, F, G),

 deleteActivity(S, E),

serialInsertActivity(S, E, Y, G),

deleteActivity(S, Z),

 serialMoveActivity (S, E, F, G))

A

E

C

D

G B F

A

C X

D

G B F

Y

E

Process Schema S: Process Schema S’:

'

Context-Dependent Changes

Compensating

Changes Overriding Change

Hidden Change

N
o

 o
r

H
id

d
en

E

ff
ec

ts
 o

n
 S

1

Z

Figure 6.8: Noisy Process Change Log(Example)

1. The first group of changes without any effects on S′ are compensating changes, i.e., change
operations mutually compensating their effects.

Example 6.8.a (Compensating Changes): A simple example is depicted in Figure 6.8, where
activity Z is first inserted (between F and G) and afterwards deleted by the user. Conse-
quently, the respective operations serialInsertActivity(S, Z, F, G) and deleteActivity(S,Z)
have no visible effect on S′.

2. The second category of noise in change logs comprises changes which only have hidden
effects on S′. Such hidden changes always arise from deleting an activity which is then
inserted again at another position. This actually has the effect of a move operation:

Example 6.8.b (Hidden Changes): An example is given in Figure 6.8 where activity E is
first deleted an then re–inserted between Y and G. The effect behind is the same as of
the move operation serialMoveActivity(S,E, Y, G).

3. There are changes overriding preceding changes (note that a change transaction is an
ordered series of single change operations).

Example 6.8.c (Overriding Changes): Again consider Fig. 6.8 where the effect of the
hidden move operation serialMoveActivity(S, E, Y,G) is overwritten by move operation
serialMoveActivity(S,E, F, G), i.e., in S′ activity E is finally placed between F and G.

However, the presence of compensating, hidden, or overriding changes within a change trans-
action is a cumbersome problem but we can find methods to purge a log from these kinds of
changes (cf. Section 6.5). As we will see, doing so is essential in order to find a canonical and
minimal view on change logs. This, in turn, is necessary to be able to determine which activities
actually have been moved by a change.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 157

 Process Schema S: Process Schema S1 := S + '1: '1 = (serialInsertActivity(S, X, A, B),
 serialInsertActivity (S, Y, X, B)
 serialInsertActivity (S, Z, Y, B)) A B

 A X Y Z B

Process Schema S2 := S + '2 : '2= (serialInsertActivity (S, Y, A, B),
 serialInsertActivity (S, Z, Y, B)
 serialInsertActivity (S, X, A, Y))

 A X Y Z B

Figure 6.9: Equivalent Process Type and Instance Changes (Example)

A more severe limitation of the operational approach is its disability to adequately deal with
context–dependent changes, i.e., changes which are mutually based on each other. An example
is depicted in Figure 6.8: First, activity X is inserted serially between C and F . Based on this a
second activity Y is inserted between X and F . Obviously, the second insertion uses the newly
added activity of the first insertion as change context.

Why are such context–dependent process changes critical when applying the operational
approach?

Example 6.9 (Context–Dependent Changes): Figure 6.9 illustrates the underlying problem.
Obviously, ∆1 and ∆2 are equivalent since S1 and S2 are trace equivalent (cf. Definition 8).
Unfortunately, this equivalence relation cannot be determined based on the depicted change logs
(capturing ∆1 and ∆2) since the single insert operations for X, Y , and Z have been applied in
different order within ∆1 and ∆2. Therefore the operational approach sketched so far would only
detect an overlapping (multiple insertion of same activities) but would not be able to determine
the degree of overlap, i.e., the total equivalence between ∆1 and ∆2.

Summary 3 (Advantages And Limitations Of Operational Approaches) Let S be a (cor-
rect) process schema and let ∆1 and ∆2 be two changes transforming S into (correct) process
schemes S1 := S + ∆1 and S2 := S + ∆2 respectively. Applying the operational approach by
directly comparing changes ∆1 and ∆2 we observe the following advantages and limitations:

• Advantages: precise information for order–changing operations

• Limitations: – noisy change logs containing compensating, hidden, or overriding changes
– context–dependent changes

At this point a very important conclusion is that structural approaches have no problems
with context–dependent changes.

Example 6.9.b (Context–Dependent Changes): Consider again Figure 6.9. Applying the aggre-
gated structural approach (cf. Section 6.4.1) we obtain
Nadd

∆1
= Nadd

∆2
, Ndel

∆1
= Ndel

∆2
, CtrlEadd

∆1
= CtrlEadd

∆2
, and CtrlEdel

∆1
= CtrlEdel

∆2

(all other difference sets are empty). Consequently, ∆1 ≡ ∆2 holds.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 158

 Running Instances I 1 , …, I n

1) Operational Approach

Comparing High - Level Change Operations

Advantages:

- precise information
- easy deduction of migration strategies
- deduction of rules for user

Limitations:

- con text - dependent changes
- compensating changes
- hidden changes
- overriding changes

2) Structural Approaches

♦ Delta - Analysis and Inheritance
Approaches

♦ Pure Approach: Comparing Type and
Insta nce Schemes

♦ Aggregated Approach: Comparing
Change Regions

Advantages:

- no problem with context-dependent changes

- no problem with compensating changes
- no problem with overriding changes

Limitations:

- not applicable for order-changing operations
- complexity
- deriving migration strategies?
- (materialization of instance schema SI) 3) Hybrid Approach:

Combine Operational Approach (Purged Changes) with Aggregated Structural Approach

Purged Change
Transaction Log Files

Figure 6.10: Approaches for Detecting Degree of Overlap Between Concurrent Changes

Taking Summaries 2 and 3 we now have the following situation (cf. Figure 6.10): Structural
approaches are able to cope with context–dependent changes as well as with compensating, hid-
den and overriding changes. The reason is that structural approaches are based on the actual
effects on a process schema. However, they are unable to adequately deal with order–changing
operations. In contrast, when applying the operational approach we are able to precisely de-
termine which activities have been moved but we are not able to handle context–dependent
changes. Altogether, in the following section we combine both methods to a hybrid approach in
order to exploit the particular strengths and to overcome the particular limitations.

6.5 Hybrid Approach

As discussed in the previous section, structural and operational approaches are not sufficient for
correctly determining the degree of overlap between process type and process instance changes.
The challenge is now to find an approach which overcomes these drawbacks. The hybrid ap-
proach presented in the following combines elements of structural and operational approaches
(cf. Section 6.4) by exploiting there particular strengths and by overcoming their particular lim-
itations (cf. Summaries 2 and 3). Altogether, this hybrid approach actually allows the formal
definition of the still missing relations on process changes – subsumption and partial equiva-
lence. Finally, it provides the basis to choose the right migration strategy along the particular

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 159

 Change log capturing ':

 (op1, op2, op3, op4, op5, op6, op7, op8, op9, op10, op11)

scan in reverse
direction

 (op1, op3, opmod

4, op7, opmod
8, op9, op11)

Purged Change log ('purged)

Figure 6.11: Basic Principle of Purging Change Logs

degree of overlap between process changes. Therefore, in Section 6.5.1, we present a method
to purge change logs from noise like overriding, hidden, or compensating changes (cf. Section
6.4.2). Based on purged change logs it becomes possible to exactly determine which activities
have been actually moved [99]. For other change operations like the insertion of activities the
difference sets (cf. Definition 13) can be used.

6.5.1 Purging Change Logs

In this section, we provide an algorithm purging noise from change logs. For this purpose, let S
be a (correct) process schema and let ∆ be a change which transforms S into another (correct)
process schema S′. Informally, the algorithm works as follows: Firstly, the control and data
flow difference sets for change ∆ on S, e.g., the set Nadd

∆ of newly inserted activities and the
set Ndel

∆ of deleted activities (cf. Definition 13, cf. Section 6.4.1) are determined (Structural
Approach). Taking this information the change log capturing ∆ is purged. More precisely, this
purging is accomplished by scanning the change log of ∆ = (op1, . . . , opn) in reverse direction
and by determining whether change operation opi (i = 1, . . . , n) has actually any effect on S.
If so we incorporate opi into an new – intially empty – change log ∆purged (cf. Figure 6.11).
Finally, in order to reduce the number of necessary change log scans to one we use auxiliary
sets to memorize which activities, sync edges, data elements, and data edges have been already
treated. The following informal description focuses on the insertion, deletion, and moving of
activities in order to get the idea behind the respective algorithm (cf. Algorithm 9 in Appendix
D). However, the used methods can be also applied to purge logs capturing information about
the insertion and deletion of sync edges, data elements, and so on7.

• Assume that we find a log entry opi for an operation inserting activity X between activ-
ities src and dest into S and that X has not been considered so far, i.e., opi is the last
change operation within ∆8 which manipulates X. If X has been already present in S
(X 6∈ Nadd

∆) a hidden change is found (cf. Sect. 6.4.2). Consequently, a respective log
entry for an operation moving X between src and dest is created and written into ∆purged.

7Note that Algorithm 9 splits block operations (like e.g., inserting blocks) into the respective single operations
(e.g., inserting the activities contained in the respective block).

8Note that we traverse the change logs in reverse order.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 160

• If log entry opi denotes an operation deleting activity X from S and X has been not con-
sidered so far but X is still present in S′ (X 6∈ Ndel

∆) then we have found a compensating
change. Therefore opi (and the respective insert operation) are left outside ∆purged.

• If log entry opi denotes an operation moving activity X between activities src and dest
and opi is the last operation working on X within ∆ we have to distinguish between two
cases: If X has been inserted befort opi (i.e, X ∈ Nadd

∆) we write a new log entry in ∆purged

denoting an operation inserting X between src and dest. If X has been also present in S
(X 6∈ Nadd

∆) we write opi unalteredly into ∆purged.

Of course, the purged change logs resulting from Algorithm 9 are not correct in the sense
that they can be ”replayed” on S in order to obtain S′. Purged change logs are only used to
determine set Nmove

∆ of activities which have been moved by ∆. Among other things this will
serve as the basis for determining the degree of overlap between concurrently applied changes
(respective defintions and strategies are provided in Section 6.6).

Definition 14 (Purging Changes and Consolidated Sets) Let S = (N, D, . . .) be a (cor-
rect) process schema. Let further ∆ be a change transaction which transforms S into another
(correct) process schema S’ = (N ′, S′, . . .). Then the purged representation of ∆, ∆purged and
the set of actually moved activities Nmove

∆ can be determined as described by Algorithm 9 (cf.
Appendix D).

How Algorithm 9 works is illustrated by the following example.

Example 6.12 (Purging a Change Log): Figure 6.12 illustrates the mode of operation of Algo-
rithm 9 applied to the log capturing change ∆1 in Figure 6.8. Initially, Algorithm 9 determines
the set of newly inserted and deleted activities regarding schema S, i.e., Nadd

∆1
= {X,Y } and

Ndel
∆1

= ∅ hold. Based on this information change log ∆1 is run through once (in reverse direc-
tion) and purged from noisy operations op6, op5, op4, and op3. Algorithm 9 finishes with purged
change transaction ∆purged

1 as depicted in Figure 6.12. Based on this purged change log the set
of activities actually moved by ∆1 can be determined as Nmove

∆1
= {E}. Together with the set

of newly inserted and deleted activities we obtain consolidated activity sets (Nadd
∆1

, Ndel
∆1

, Nmove
∆1

)
= ({X,Y }, ∅, {E}).

However, to be able to define subsumption and partially equivalent changes we need further
information about the target context of insert operations. Based on the consolidated activity
sets (cf. Definition 14) we can only check, for example, whether the same set of activities has
been inserted but we do not recognize in which target context. However, this is information
important in order to distinguish between equivalent changes (”same activities into same target
context”) and partially equivalent changes (”same activities into different context”) for example.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 161

Change Log (in reverse order): Initialization: Purged Change Log

 A = �;

 N�1add = {X, Y};

 N�1
del = �;

'1= ('1
purged= (

op7 = serialMoveActivity(S, E, F, G), E � A � A = {E};

 E �N�1
add� new pos. � op3 = serialMoveActivity (S, E, F, G),

op6 = deleteActivity(S, Z), Z � A � A = {E, Z};

 Z �N�1del
;

op5 = serialInsertActivity (S, E, Y, G), E � A;

op4 = deleteActivity(S, E), E � A;

op3 = serialInsertActivity (S, Z, F, G), Z � A;

op2 = serialInsertActivity (S, Y, X, F), Y � A � A = {E, Z, Y};

 Y � N�1add � op2 = serialInsertActivity (S, Y, X, F),

op1 = serialInsertActivity (S, X, C, F)) X � A � A = {E, Z, Y,X};

 X � N�1
add � op1 = serialInsertActivity (S, X, C, F),

Figure 6.12: Purging a Change Log

6.5.2 Anchor Sets and Order Sets

In this section we want to extend the current approach towards the ability to define all degrees of
overlap between process changes. More precisely, we still need two kinds of information. At first
it is necessary to know the target context of insert and order–changing operations. Secondly, we
also need to know the order in which activities have been inserted into or moved to the target
context. As mentioned, this information is required in order to correctly classify concurrent
changes according to their degree of overlap.

Example 6.13.a (Insertion into Different Context): Consider Figure 6.13 where process type
change ∆T inserts activity sequence X → Y between activities B and C. In addition, an
instance–specific change ∆1 has inserted X and Y serially between B and C. This results in
consolidated activity sets (Nadd

∆I1
= {X, Y }, Ndel

∆I1
= ∅, Nmove

∆I1
= ∅). Obviously, ∆T and ∆I1 are

equivalent. However, the instance–specific change ∆I2 has the same consolidated activity set
(Nadd

∆I2
= {X, Y }, N∆del

I2

= ∅, Nmove
∆I2

= ∅) though changes ∆I2 and ∆T are not equivalent – ∆I2

has added the same activities X and Y to S but has embedded them in a different target context
when compared to ∆T (between activities C and D). Therefore, changes ∆T and ∆I2 are only
partially equivalent.

What we can see from Example 6.13 is that it is not sufficient to base the determination of
the degree of overlap solely on the comparison of their consolidated activity sets. We also need
to evaluate the information about the target context of insert and move operations.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 162

Process Type Schema S: : Process Type Schema S’:

'T = (serialInsertActivity(S, X, B, C),
serialInsertActivity(S, Y, X, C))

I1 on SI1 = S + 'I1 with 'I1 = (serialInsertActivity(S, X, B, C), serialInsertActivity(S, Y, X, C))

I2 on SI2 = S + 'I2 with 'I2 = (serialInsertActivity(S, X, C, D), serialInsertActivity(S, Y, X, D))

 A C D B
 A X Y B C D

 A X Y B C D

 A C X B Y D

Consolidated Activity Set for 'I1:

({X, Y}, �, �}

Consolidated Activity Set for 'I2:

({X, Y}, �, �}

'T { 'I1

'T � 'I2 z �

Process Instance Level:

Consolidated Activity Set for 'T: ({X, Y}, �,

 A X C B D

I3 on SI3 = S + 'I3 with 'I3 = serialInsertActivity(S, X, B, C)

Consolidated Activity Set for 'I3:

({X}, �, �}

'I3 < 'I1

Completed Activated TrueSignaled

Figure 6.13: Insertion and Moving in Different Context

But on which information shall a comparison between the target context of newly inserted
or moved activities be based on? Again problems arise in conjunction with context–dependent
changes. The context of newly inserted activities, i.e., their direct successors and predecessors
within the changed process schema, may also have been newly inserted or may consist of shifted
activities. As an example consider the insertion contexts of activities X and Y (in S′) as depicted
in Figure 6.13. The insertion context of activity X, for example, is given by activities B and
Y whereby activity Y has been newly inserted as well. Change ∆I3 inserts activity X into S
between activities B and C (this change would be subsumption equivalent to ∆I1 since it inserts
a subset of the activities added by ∆I1 into S at the same target context). However, comparing
the target context of both operations inserting X (∆1 inserts X between B and Y whereas ∆2

inserts X between B and C) we cannot conclude that they are subsumption equivalent.

From the above example we can see the challenge we must deal with when determining the
target context of newly inserted or shifted activities. We have to determine the target context of
changes based on the original schema S in order to provide a common basis for their comparison.
This, in turn, can be difficult if we apply context–dependent changes since in this case we have
to ”transfer” the context to activities which are already present within the original schema.

We have already discussed an approach to transfer a target context from newly inserted
activities to activities already present in the original process schema: For the structural conflict
test to detect deadlock causing cycles (via newly inserted sync links) we have developed special

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 163

graph reduction techniques [101]. They transfer the order relations set out by the newly inserted
sync links to virtual sync links between activities within the original schema (cf. Algorithm 3,
Section 5.4). Similarly, we can act in order to determine the target context for insert and move
operations. The target context of an insert or move operation ∆ applied to a process schema S
is called the anchor set of ∆ based on S. Formally:

Algorithm 4 (Anchors for Insert Operations) Let S = (N, D, CtrlE, ...) be a (correct)
process schema and let ∆ be a change which transforms S into another (correct) process schema
S’ = (N’, D’, CtrlE’,...). Let further Nadd

∆ and Nmove
∆ be the consolidated activity sets for insert

and move operations (cf. Definition 14). Then the anchors of the insert operations applied
within ∆ – AnchorIns(S,∆) – can be determined as follows:

AnchorIns(S, ∆) = ∅;
forall (X ∈ Nadd

∆) do
find {(left, X), (X, right)} ∈ CtrlE’;
while (left ∈ Nadd

∆ ∪Nmove
∆))9 do

find (leftleft, left) ∈ CtrlE’;
left = leftleft;

od
while (right ∈ Nadd

∆ ∪Nmove
∆)) do

find (right, rightright) ∈ CtrlE’;
right= rightright;

od
od
AnchorIns(S, ∆) = AnchorIns(S, ∆) ∪ {(left, X, right)};

Anchor sets for move operations can be determined analogously.

Algorithm 5 (Anchors for Move Operations) Let S = (N, D, CtrlE, ...) be a (correct)
process schema and let ∆ be a change which transforms S into another (correct) process schema
S’ = (N’, D’, CtrlE’,...). Let further Nadd

∆ and Nmove
∆ be the consolidated activity sets for insert

and move operations (cf. Definition 14). Then the anchors of the move operations applied within
∆ – AnchorMove(S, ∆) – can be determined as follows:

AnchorMove(S, ∆) = ∅;
forall (X ∈ Nmove

∆) do
find {(left, X), (X, right)} ∈ CtrlE’;
while (left ∈ Nadd

∆ ∪Nmove
∆)) do

find (leftleft, left) ∈ CtrlE’;
left = leftleft;

od
while (right ∈ Nadd

∆ ∪Nmove
∆)) do

find (right, rightright) ∈ CtrlE’;

9It is not necessary to consider Ndel
∆ here since deleted activities cannot build anchors for other activities.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 164

right= rightright;
od

od
AnchorMove(S, ∆) = AnchorMove(S, ∆) ∪ {(left, X, right)};

Applying Algorithms 4 + 5 we can determine the target context of an insert or move operation
which is based on original schema S and not on the changed schema S′. This is important in
order to obtain a common basis for comparing changes. Otherwise, for example, the original
target context of an insertion may be not present in S′ if it has been deleted by change ∆.

We illustrate the function of Algorithms 4 and 5 in the following example. Here, they are
applied to a concrete scenario of concurrently applied changes at type and instance level:

Example 6.13.b (Determination Of Anchor Sets): Consider again Figure 6.13. Solely on the basis
of the consolidated activity sets we cannot distinguish between ”∆T and ∆I1” (being equivalent
changes) and ”∆T and ∆I2” (being partially equivalent changes). Both ∆I1 and ∆I2 insert the
same activities but into a different target context. The specific target context of an insert op-
eration can be determined by applying Algorithm 4. For type change ∆T and instance–specific
change ∆I1 we obtain AnchorIns(S,∆T) = {(B,X, C), (B, Y, C)} and AnchorIns(S,∆I1) =
{(B, X,C), (B, Y,C)} respectively. As we can easily see AnchorIns(S,∆T) = AnchorIns(S,∆I1)
holds and therefore both changes can be considered as being equivalent. However, for ∆I2 we
obtain AnchorIns(S,∆I2) = {(C, X, D), (C, Y,D)}. From this we can conclude that ∆T and
∆I2 insert the same activities X and Y but into a different target context based on S. Conse-
quently, they cannot be (subsumption) equivalent and are therefore regarded as being partially
equivalent.

Generally, information about the consolidated activity sets and the respective anchor sets
will not be sufficient. For example, two changes may insert the same activities into the same
target context but in different order as the following example shows:

Example 6.14.a (Insertion into Different Order): Consider Figure 6.14 where ∆T , ∆I1 , and ∆I2

all insert and move the same activities

(Nadd
∆T

= Nadd
∆I1

= Nadd
∆I2

= {X,Y }, Nmove
∆T

= Nmove
∆I1

= Nmove
∆I2

= {B}).
As anchor sets we obtain

• AnchorIns(S,∆T) = {(C, X, D), (C, Y,D)}, AnchorMove(S, ∆T) = {(C,B, D)},
• AnchorIns(S,∆I1) = {(C, X,D), (C, Y, D)}, AnchorMove(S,∆I1) = {(C,B,D)},
• AnchorIns(S,∆I2) = {(C, X,D), (C, Y, D)}, AnchorMove(S,∆I2) = {(C,B,D)}.

At first glance it seems that ∆I1 ≡ ∆T and ∆I2 ≡ ∆T holds. However, this is not true for
∆I2 and ∆T since ∆I2 has inserted and moved the respective activities in a different order than
∆T .

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 165

Process Type Schema S: Process Type Schema S’:

'T = (serialInsertActivity(S, X, C, D),
serialInsertActivity(S, Y, X, D), moveActivity(S, B, Y, D))

I2 on SI2 = S + 'I2 with 'I2 = (serialInsertActivity(S, Y, C, D), serialInsertActivity(S, X, Y, D),
moveActivity(S, B, Y, X))

 A C D B A X Y C B D

 A X Y C B D

 A Y B C X D

Process Instance Level:

Consolidated Activity Set for 'I1:

({X, Y}, {B}, �}

Consolidated Activity Set for 'I2:

({X, Y}, {B}, �}

'T { 'I2

'T � 'I2 z �

I1 on SI1 = S + 'I1 with 'I1 = (serialInsertActivity(S, X, C, D), serialInsertActivity(S, Y, X, D),
moveActivity(S, B, Y, D))

Consolidated Activity Set for 'T: ({X, Y}, {B}, �}

Completed Activated TrueSignaled

Figure 6.14: Insertion and Moving in Different Order

We additionally have to care about the order of newly inserted or shifted activities when
comparing schema changes. The respective information can be gained by scanning the resulting
control edge set after applying the change. As opposed to anchor sets we do not base our
considerations about orders on the original schema S, but in the present case we have to look
at the order given by the new schema S′. Of course, only those activities have to be compared
regarding their order on S′ which have been inserted into or moved to the same target context.
More precisely, it is only necessary to consider the order of those activities which have the same
anchors in S. Applying Definition 15 determines the respective grouping of activities with same
anchors:

Definition 15 (Anchor Groups for Insert / Move Operations) Let S = (N, D, . . .) be a
(correct) process schema and ∆ be a change which transforms S into another (correct) process
schema S’ = (N’, D’, CtrlE’, . . .). Let further AnchorIns(S,∆) and AnchorMove(S,∆) be
the anchor sets for insert and move operations captured by ∆ (cf. Algorithms 4 + 5). Then
the corresponding anchor group sets AnchorGroupsIns(S,∆) and AnchorGroupsMove(S,∆)
contain groups of (newly inserted or moved) activities which have the same left and the same
right anchor. Formally:

AnchorGroupsIns(S,∆) = {G = {X1, . . . , Xn} |
∀Xi, Xj ∈ G : ∃ (lefti, Xi, righti), (leftj, Xj, rightj) ∈ AnchorIns(S,∆) with

lefti = leftj ∧ righti = rightj (i, j = 1, ..., n)}
AnchorGroupsMove(S,∆) = {G = {X1, . . . , Xn} |

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 166

∀Xi, Xj ∈ G : ∃ (lefti, Xi, righti), (leftj, Xj, rightj) ∈ AnchorMove(S,∆) with
lefti = leftj ∧ righti = rightj (i, j = 1, ..., n)}

If there is only one activity within an anchor the respective anchor group becomes the empty
set since there is no order relation to be considered. For the scenario depicted in Figure 6.14,
for example, we obtain

• AnchorGroupsIns(S,∆T) = {{X, Y }}, AnchorGroupsMove(S, ∆T) = ∅,
• AnchorGroupsIns(S,∆I1) = {{X,Y }}, AnchorGroupsMove(S,∆I1) = ∅,
• AnchorGroupsIns(S,∆I2) = {{X,Y }}, AnchorGroupsMove(S,∆I2) = ∅.

Based on Definition 15 we are able to determine the order between the activities contained
within the same anchor group. Formally:

Algorithm 6 (Order Sets for Insert Operations) Let S = (N, D, CtrlE, . . .) be a (correct)
process schema and ∆ be a change which transforms S into another (correct) process schema S’ =
(N’, E’, ...). Let further AnchorGroupsIns(S, ∆) be the anchor group sets for insert operations
captured by ∆ (cf. Definitions 15). Then the order of the insert operations OrderIns(S,∆)
within AnchorGroupsIns(S,∆) can be determined as follows:

OrderIns(S,∆) = ∅;
forall (G = {X1, . . . , Xn} ∈ AnchorGroupsIns(S, ∆)) do {

forall (Xi, Xj ∈ G) do
if (Xi ∈ pred∗(S’, Xj))

OrderIns(S′, ∆) = OrderIns(S′,∆) ∪ {(Xi, Xj)};
fi
if (Xi ∈ succ∗(S’, Xj))

OrderIns(S′, ∆) = OrderIns(S′,∆) ∪ {(Xj , Xi)};
fi

od
od

The order sets for move operations can be analogously obtained:

Algorithm 7 (Order Sets for Move Operations) Let S = (N, D, CtrlE, . . .) be a (correct)
process schema and ∆ be a change which transforms S into another (correct) process schema S’ =
(N’, E’, ...). Let further AnchorGroupsMove(S,∆) be the anchor group sets for move operations
captured by ∆ (cf. Definitions 15). Then the order of the move operations OrderMove(S,∆)
within AnchorGroupsMove(S, ∆) can be determined as follows:

OrderMove(S, ∆) = ∅;

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 167

forall (G = {X1, . . . , Xn} ∈ AnchorGroupsMove(S, ∆)) do
forall (Xi, Xj ∈ G) do
if (Xi ∈ pred∗(S’, Xj))

OrderMove(S′, ∆) = OrderMove(S′, ∆) ∪ {(Xi, Xj)};
fi
if (Xi ∈ succ∗(S’, Xj))

OrderMove(S′, ∆) = OrderMove(S′, ∆) ∪ {(Xj , Xi)};
fi

od
od

How the determination of anchor groups and order sets works and how it contributes to
detect the degree of overlap between changes is shown in the following example. We apply
Definition 15 and Algorithms 6 + 7 to the scenario depicted in Figure 6.14.

Example 6.14.b (Determining Anchor Groups and Order Sets): Consider the example from
Figure 6.14. So far ∆T and ∆I1 as well as ∆T and ∆I2 have been regarded as being potentially
equivalent. This assumption has been based on the comparison of the consolidated activity sets
and anchor sets. However, when also taking the respective order sets into account this picture
changes like follows:

• AnchorGroupsIns(S,∆T) = {{X, Y }}; AnchorGroupsMove(S, ∆T) = ∅. We obtain
OrderIns(S,∆T) = {(X, Y)}; OrderMove(S, ∆T) = ∅

• AnchorGroupsIns(S,∆I1) = {{X,Y }}; AnchorGroupsMove(S,∆I1) = ∅ . We obtain
OrderIns(S,∆I1) = {(X,Y)}; OrderMove(S,∆I1) = ∅

• AnchorGroupsIns(S,∆I2) = {{X,Y }}; AnchorGroupsMove(S,∆I2) = ∅ . We obtain
OrderIns(S,∆I2) = {(Y, X)}; OrderMove(S,∆I2) = ∅

From this, we can see that ∆T and ∆I1 are actually equivalent but ∆T and ∆I2 are not.
Though ∆T and ∆I2 have inserted the same activities into the same context, this has been done
in different order. The latter can be easily seen from the resulting order sets. Therefore, we
conclude that ∆T and ∆I are only partially equivalent.

In general, it is not sufficient to consider the order relations for insert and move operations
in a separated way. We also have to include the order relations between newly inserted and
moved activities into our considerations as the following example shows:

Example 6.15.a (Different Aggregated Order): Consider Figure 6.15 where process type change
∆T inserts two activities X and Y between anchors C and D and then moves activity B to
the position between X and Y . For instance I1 as well as for I2 the consolidated activity
sets, the anchors sets, and even the order sets related to the insertions are the same (i.e.,
OrderIns(S,∆T) = OrderIns(S,∆I1) = OrderIns(S,∆I2) = {(X,Y)}). By contrast, the

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 168

Process Type Schema S: : Process Type Schema S’:

'T = (serialInsertActivity(S, X, C, D),serialInsertActivity(S, Y, X, D)),
 serialMoveActivity(S, B, X, Y))

I1 on SI1 = S + 'I1 with
'I1 = (serialInsertActivity(S, X, C, D),serialInsertActivity(S, Y, X, D)), serialMoveActivity(S, B, X, Y))

I2 on SI2 = S + 'I2 with
 'I2 = (serialInsertActivity(S, X, C, D), serialInsertActivity(S, Y, X, D), serialMoveActivity(S, B, Y, D))

 A C D B A X B C Y D

 A X B C Y D

 A X Y C B D

'T { 'I1

'T � 'I2 z �

Process Instance Level:

Activated

Figure 6.15: Different Aggregated Order

order sets for move operations are empty for ∆T , ∆I1 and ∆I2 . Nevertheless, there is a difference
between the relation of ∆T and ∆I1 which are equivalent and the relation of ∆T and ∆I2 which
are actually partially equivalent.

To get the aggregated order relations for insert and move operations, first of all, we have
to determine which activities have been inserted or shifted between the same anchors (related
to S). Therefore, analogously to Definition 15, we detect the so called anchor groups for both,
insert and move operations.

Definition 16 (Anchor Groups for Insert and Move Operations) Let S = (N, E, ...) be
a (correct) process schema and ∆ be a change which transforms S into another (correct) process
schema S’ = (N’, E’, ...). Let further AnchorIns(S,∆) and AnchorMove(S, ∆) be anchor sets
for insert and move operations captured by ∆ (cf. Algorithms 4 + 5). Then the anchor group
set AnchorGroupsAgg(S,∆) for both anchor sets AnchorIns(S, ∆) and AnchorMove(S,∆)
contains groups of activities which have been newly inserted or moved between the same left and
right anchor. Formally:

AnchorGroupsAgg(S, ∆) = {G = {X1, . . . , Xn} |
∀Xi, Xj ∈ G : ∃ (lefti, Xi, righti), (leftj, Xj, rightj) ∈ AnchorIns(S, ∆) ∪ AnchorMove(S, ∆)

with lefti = leftj ∧ righti = rightj (i, j = 1, ..., n)}

Applying Definition 16 we obtain the following aggregated anchor groups for the scenario
depicted in Figure 6.15:

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 169

• AnchorGroupsAgg(S, ∆T) = {{X, Y, B}}
• AnchorGroupsAgg(S, ∆I1) = {{X,Y, B}}
• AnchorGroupsAgg(S, ∆I2) = {{X,Y, B}}

Using Definition 16 we can determine the aggregated order for these operations:

Algorithm 8 (Order Sets for Insert and Move Operations) Let S = (N, E, ...) be a
(correct) process schema and ∆ be a change which transforms S into another (correct) process
schema S’ = (N’, E’, ...). Let further AnchorGroupsAgg(S,∆) be the anchor group sets for
insert as well as for move operations captured by ∆ (cf. Definition 16). Then the order of the
insert and move operations OrderAgg(S,∆) can be determined as follows:

OrderAgg(S, ∆) = ∅
forall (G = {X1, . . . , Xn} ∈ AnchorGroupsAgg(S, ∆)) do

forall (Xi, Xj ∈ G) do
if (Xi ∈ pred∗(S’, Xj))

OrderAgg(S′, ∆) = OrderAgg(S′,∆) ∪ {(Xi, Xj)};
fi
if (Xi ∈ succ∗(S’, Xj))

OrderAgg(S′, ∆) = OrderAgg(S′,∆) ∪ {(Xj , Xi)};
fi

od
od

Applying the aggregated order sets we can adequately deal with interactions between insert
and move operations regarding their order. This is shown by the following example:

Example 6.15.b (Aggregated Order Sets): If we determine the aggregated order sets for changes
∆T , ∆I1 , and ∆I2 (cf. Figure 6.15) we obtain

• OrderAgg(S′,∆T) = {(X,B), (B, Y), (X,Y)}
• OrderAgg(S′,∆I1) = {(X, B), (B, Y), (X, Y)}
• OrderAgg(S′,∆I2) = {(X, B), (Y, B), (X,Y)}

With these aggregated order sets we finally reached the milestone of being able to correctly
determine the degree of overlap between process changes (cf. Figure 6.16). In summary, we are
able to define the remaining degrees of overlap – subsumption and partially equivalent changes
– as we will do in the following section.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 170

Migrating Unbiased Process Instances

Migrating Biased Process Instances

Disjoint Process Type &
Process Instance Changes

P� Comprehensive
Correctness Criterion

P� Efficient Compliance
Checks

P� Automatic Instance
Migration

Distinction Between Disjoint and Overlapping
Process Type And Process Instance Changes

P� General Correctness
Criterion

P� Designing Structural
Conflict Tests

P� Automatic Instance
Migration

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

�

�

�

�

P� Change Classification Along Degree
of Overlap

P� Determining the Degree of Overlap
Between Changes

P� Selection of the Adequate Migration
Strategy

P� Optimization of Migration Strategies
P� Decision Rules
P� Automatic Bias Calculation

�

�

�

�

�

'1 compared with '2
?

1st step (Structural Approach): determine and compare Nadd�
1, Ndel�

1, Nadd�
2, N

del�
2

2nd step (Purging): determine and compare Nmove�
1 Nmove�

2

1st Comparison: (Nadd�
1, Ndel�

1, Nmove�
1) with (Nadd�

2, Ndel�
2, Nmove�

2)

2nd Comparison: AnchorIns(S,
�

1) with AnchorIns(S,
�

2) �
AnchorMove(S,

�
1) with AnchorMove(S,

�
2)

3rd Comparison: OrderIns(S,
�

1) with OrderIns(S,
�

2) �
OrderMove(S,

�
1) with OrderMove(S,

�
2)

4th Comparison: OrderAgg(S,
�

1) with OrderAgg(S,
�

2)

Overlapping Process Type &
Process Instance Changes

Figure 6.16: Determining Degree of Overlap Between Process Changes

6.6 Migration Strategies and Change Projections

So far it has not been possible to (formally) distinguish between subsumption and partially
equivalent process changes though doing so is crucial for applying adequate migration strategies.
In the previous section, we have introduced the notions of consolidated activity sets, anchor sets,
and order sets in order to precisely determine the degree of overlap between process changes.
Based on this we are now able to formally define subsumption equivalent and partially equivalent
changes.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 171

6.6.1 Subsumption and Partially Equivalent Changes

In the following let S be a (correct) process schema and let ∆1 and ∆2 be two changes which
transform S into (correct) process schemes S1 and S2 respectively.

According to Summary 1 (cf. Section 6.2), ∆1 is subsumption equivalent with ∆2 (notation:
∆1 ≺ ∆2) if ∆2 subsumes the effects of ∆1 on S, i.e., ∆2 has the same effects on S as ∆1 has
but causes additional effects too. ∆1 and ∆2 are denoted as partially equivalent if they partially
have the same effects on S, but both changes have specific effects on S as well.

We now formalize these two relations between changes ∆1 and ∆2. We base our considera-
tions on the consolidated activity sets as well as the specific anchor and order sets of these two
changes.

Definition 17 (Subsumption Equivalent Changes) Let S be a (correct) process schema
and ∆1 and ∆2 be two changes which transform S into (correct) process schemes S1 and S2

respectively. For ∆i (i = 1, 2) let further Nadd
∆i

, Ndel
∆i

and Nmove
∆i

be the consolidated activity sets,
AnchorIns(S, ∆i) and AnchorMove(S,∆i) the anchor sets, and OrderIns(S,∆i) and
OrderMove(S, ∆i) the order sets. Then:
We denote ∆1 as subsumption equivalent with ∆2 (notation: ∆1 ≺ ∆2) if the following condi-
tions hold:

1. Change Operations on Activity Sets:
(Nadd

∆1
⊆ Nadd

∆2
∧ Ndel

∆1
⊆ Ndel

∆2
∧ Nmove

∆1
⊆ Nmove

∆2
) ∧

(AnchorIns(S,∆1) ⊆ AnchorIns(S,∆2)∧
AnchorMove(S, ∆1) ⊆ AnchorMove(S,∆2)) ∧

(OrderIns(S, ∆1) ⊆ OrderIns(S,∆2), ∧
OrderMove(S, ∆1) ⊆ OrderMove(S,∆2) ∧

OrderAgg(S,∆1) ⊆ OrderAgg(S,∆2))

2. Change Operations on Sync And Loop Edges:
(SyncEadd

∆1
⊆ SyncEadd

∆2
∧ SyncEdel

∆1
⊆ SyncEdel

∆2
)∧

(LoopEadd
∆1

⊆ LoopEadd
∆2

∧ LoopEdel
∆1
⊆ LoopEdel

∆2
)

3. Change Operations on Data Flow:
(Dadd

∆1
⊆ Dadd

∆2
∧ Ddel

∆1
⊆ Ddel

∆2
) ∧

(DataEadd
∆1

⊆ DataEadd
∆2

∧ DataEdel
∆1
⊆ DataEdel

∆2
)

4. Change Operations on Attributes:
ChangedAttr∆1 ⊆ ChangedAttr∆2

Two changes are subsumption equivalent if a real subset relation (”⊂”) holds for at least
one case in Definition 17. In particular, changes ∆1 and ∆2 are equivalent if for every relation

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 172

Process Type Schema S: : Process Type Schema S’:

'T = (serialInsertActivity(S, X, B, D),serialInsertActivity(S, Y, D, E), addDataElements(S, {d}),
addDataEdges(S, {(X, d, write), (Y, d, read)}), deleteActivity(S, C))

I1 on SI1 = S + 'I1 with
'I1 = (serialInsertActivity(S, X, B, D), serialInsertActivity(S, Y, D, E), addDataElements(S, {d}),

addDataEdges(S, {(X, d, write), (Y, d, read)}))

I2 on SI2 = S + 'I2 with
 'I2 = (serialInsertActivity(S, Z, A, B), deleteActivity(S, C))

'I1 < 'T

'I2 � 'T z �

Process Instance Level:

Activated

A

D

B

C

F B E

 d

B X

Y A D

D

E

 d

B X

Y A D

D

E

C

 Z B

F A E

D

Figure 6.17: Subsumption and Partially Equivalent Changes

”=” holds as we will show in Section 6.6.4; i.e., equivalence can be considered as a special case
of subsumption equivalence.

Example 6.17.a (Subsumption Equivalent Changes): Consider Figure 6.17. Type change ∆T

inserts two activites X and Y with a data dependency between them and deletes activity C.
Instance change ∆I1 also inserts activites X and Y and the respective data dependency but does
not delete activity C. According to Definition 17 ∆I1 ≺ ∆T holds. The sets of inserted activites
are equal (i.e., Nadd

∆I
= Nadd

∆I1
) as well as the respective anchor and order sets. However, the set

Ndel
∆I1

of activities deleted by ∆I1 constitutes a subset of Ndel
∆T

.

Definition 18 (Partially Equivalent Changes) Let S be a (correct) process schema and ∆1

and ∆2 be two changes which transform S into (correct) process schemes S1 and S2 respec-
tively. For ∆i (i = 1, 2) let further Nadd

∆i
, Ndel

∆i
, and Nmove

∆i
be the consolidated activity sets,

AnchorIns(S, ∆i) and AnchorMove(S,∆i) the anchor sets, and OrderIns(S,∆i) and
OrderMove(S, ∆i) the order sets. Then we denote ∆1 and ∆2 as being partially equivalent

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 173

(notation: ∆1 G ∆2) if the following conditions hold:

¬(∆1 ∩∆2 = ∅) ∧ ¬(∆1 ≡ ∆2) ∧ ¬(∆1 ≺ ∆2) ∧ ¬(∆2 ≺ ∆1)

≡
¬(S1 + ∆2 ≡trace S2 + ∆1 ∧ Nadd

∆1
∩Nadd

∆1
= ∅) ∧

¬(S1 ≡trace S2) ∧
¬(∆1 ≺ ∆2) ∧ ¬(∆2 ≺ ∆1) (Ψ)

Two changes ∆1 and ∆2 are partially equivalent if they are not disjoint, equivalent, or
subsumption equivalent, i.e., partial equivalence can be defined as the complement of all other
change relations.

Example 6.17.b (Partially Equivalent Changes): Consider again Figure 6.17 where instance
change ∆I2 has inserted activity Z between A and B. Additionally, ∆I2 has deleted activity C.
Obviously, ∆T and ∆I2 are not commutative since ∆T cannot be applied to SI2 . Consequently,
∆T and ∆I2 are not disjoint. SI2 and S′ := S + ∆T are not trace equivalent and therefore, ∆T

and ∆I2 are not equivalent. According to Definition 17, ∆T and ∆I2 are also not subsumption
equivalent since Nadd

∆T
6⊂ Nadd

∆I2
∧ Nadd

∆I2
6⊂ Nadd

∆T
holds. Altogether, we obtain partial equivalence

of ∆T and ∆I2 (both changes delete the same activity C).

We have provided formal definitions for all kinds of overlapping changes. In the following
section we complement these results with adequate migration strategies.

6.6.2 On Selecting Migration Strategies for Overlapping Process Changes

According to the particular degree of overlap between process type and process instance changes
different migration strategies are to be applied. In this section we provide adequate strategies
for migrating process instances with equivalent and subsumption equivalent bias.

Let S be a (correct) process type schema and let I = (S, ∆I , . . .) be a process instance
running on S with instance–specific bias ∆I . Let further ∆T be a process type change which
transforms S into another (correct) schema S′.

For equivalent, subsumption equivalent and disjoint process type and process instance changes
we provide migration strategies which can be automatically applied by the process management
system. In particular, one deposits these migration strategies within the PMS. If, for example,
an equivalent change takes place the system correctly reports this to the user as, for example,
done in our proof–of–concept prototype (cf. Chapter 7). Furthermore, the PMS offers a default
migration strategy that consists of re–linking the instance to the new process type schema (and
of concomitantly adapting instance state and instance–specific bias to the empty set). Of course,
the user is not forced to take over this default migration strategy.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 174

 Process Type Schema S: Process Type Schema S’:

'T = serialInsertActivity(S, Y, C, D)
 A C D B

 D A C Y B

Process Instance I on SI := S + 'I

'I = serialInsertActivity(S, Y, C, D)

migrate

'T { 'I � SI {trace S’ � 'I(S’) = �

 D A C Y B

Process Instance I on S’I := S + 'T

 D A C Y B

Completed Activated TrueSignaled

Figure 6.18: Migrating Instances with Equivalent Bias

Migration Strategy 2 (For Process Instances with Equivalent Bias) Let S be a (cor-
rect) process type schema and let ∆T be a process type change which transforms S into another
(correct) type schema S′. Let further I = (S, ∆I , . . .) be a process instance on S with current
instance execution schema SI := S + ∆I . Finally, let ∆T and ∆I be equivalent changes, i.e.,
∆T ≡ ∆I holds. Then I can correctly migrate to S’ (without propagating ∆T to SI) resulting in
bias ∆I = ∅ on S’, i.e., I = (S’, ∅, . . .).

Actually we do not propagate ∆T to SI since SI := S+∆I ≡trace S+∆T already reflects ∆T .
Consequently, no structural conflicts between ∆T and ∆I can occur. Interestingly, for instances
with equivalent bias, migration is even possible if these instances have actually progressed too
far and are therefore no longer compliant with S′. In the given case change ∆T has been
completely and precisely anticipated by the instance–specific change ∆I . Note that ∆I was
introduced at a point in time the respective instance has been compliant with S′. Altogether,
for migrating process instances with equivalent bias, state–related and structural compliance are
always fulfilled (cf. Criterion 8).

Example 6.18 (Migrating Instances with Equivalent Bias): Consider Figure 6.18. Process type
change ∆T and process instance change ∆I are equivalent since both have inserted activity Y
into the same context. According to Migration Strategy 2, we can re–link I to S′ without any
further compliance checks. Note that this is possible though I is actually not state compliant
with S′10. The resulting bias ∆I(S′) is nullified on S′.

Regarding subsumption equivalence between concurrent process type and process instance
changes (on S) we have to distinguish two cases: (1) ∆T is subsumption equivalent with ∆I ,
i.e, ∆I contains all effects of ∆T on S and has additional effects (formally: ∆T ≺ ∆I) or
(2) ∆I is subsumption equivalent with ∆T , i.e., ∆T includes the effects of ∆I on S but has

10Note that there is a conflict between the runtime performance of the PMS and the goal of migrating as many
instances as possible. One possibility to increase the migration rate is to first check state–related compliance
by verifying the state–conditions set out in Section 4.3.2. This can be done very quickly. However, doing so,
some instances with equivalent bias may be excluded from migration due to the fact that they are actually not
compliant regarding their state (what is irrelevant for instances with equivalent bias).

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 175

 Process Type Schema S: Process Type Schema S’:

'T = serialInsertActivity(S, Y, C, D)
 A C D B

 D A C Y B

Process Instance I on SI := S + 'I

'I = (serialInsertActivity(S, X, C, D)
serialInsertActivity(S, Y, X, D))

migrate

'I(S’) = serialInsertActivity(S, X, C, Y)

Process Instance I on S’I := S’ + 'I(S’)

 Y A C X B D Y A C X B D

'T < 'I
Completed Activated TrueSignaled

Figure 6.19: Migrating Instances with ∆T ≺ ∆I

additional effects (formally: ∆I ≺ ∆T). In particular, we need different migration strategies for
these two cases.

Migration Strategy 3 (for Process Instances with ∆T ≺ ∆I) Let S be a (correct) process
type schema and ∆T be a process type change which transforms S into another (correct) type
schema S′. Let further I = (S, ∆I , . . .) be a process instance on S with current instance execution
schema SI := S + ∆I and with ∆T ≺ ∆I (i.e., ∆T is subsumption equivalent with ∆I). Then: I
can correctly migrate to S’ (without propagating ∆T to SI) with resulting bias ∆I(S′) = ∆I\∆T

11

on S’, i.e., I = (S’, ∆I(S′), . . .).

If ∆T ≺ ∆I holds the effects of ∆T on S are already reflected in SI . Therefore, ∆T has
not to be propagated to SI . Consequently we do not have to check state–related or structural
compliance (cf. Criterion 8) for this case. However, SI deviates from S′ since ∆I has additional
effects on S when compared to ∆T . Therefore we have to store a remaining bias ∆I(S′) on
S′ after re–linking I from S to S′. Note that it is difficult to determine ∆I(S′) since it is not
always sufficient just to calculate the difference between the set–based representations of ∆T

and ∆I even if both changes are purged (cf. Section 6.5). More precisely, there may be context–
dependent changes within ∆T or ∆I (cf. Section 6.2) which counterpart this straightforward
approach. Instead we have to develop other methods to calculate ∆I(S′) (cf. Section 6.7).

Example 6.19 (∆T Sumsumption Equivalent With ∆I): Regarding Figure 6.19 type change ∆T

is subsumption equivalent with instance change ∆I . Therefore we re–link I to S′ without further
compliance checks. In contrast to instances with equivalent bias we have to store a resulting
bias ∆I(S′) on S′ containing all effects ∆I ”has more” than ∆T (cf. Migration Strategy 3).

Migration Strategy 4 (for Process Instances with ∆I ≺ ∆T) Let S be a (correct) process
type schema and ∆T be a process type change which transforms S into another (correct) type

11∆I \∆T denotes all effects of ∆I resulting in SI on S not present in S′. How to concretely calculate this bias
will be described in Section 6.7.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 176

schema S′. Let further I = (S, ∆I , . . .) be a process instance on S with current instance execution
schema SI := S + ∆I and with ∆I ≺ ∆T (i.e., ∆I is subsumption equivalent with ∆T). Then:
I can correctly migrate to S’ with resulting bias ∆I = ∅ on S’, i.e., I = (S’, ∅, . . .) ⇐⇒

∆T \∆I can be correctly propagated to SI regarding its state (cf. Criterion 7).

If ∆I ≺ ∆T holds the new process type schema S′ := S + ∆T completely reflects the effects
of ∆I on S. Furthermore, the effects which ∆T has in addition to ∆I are also contained in
S′. Though, effectively, no parts of ∆T are propagated to SI (doing so would only result in S′

again) logically we have to check state–related compliance on SI for these parts of ∆T which are
not yet reflected by ∆I ; i.e., we must check the compliance conditions set out in Section 4.3.2
for ∆T \ ∆I . Determining ∆T \ ∆I poses similar problems as determining the resulting bias
∆I(S′) in case ∆T ≺ ∆I holds (see above). Again, at this point, we refer to Section 6.7 where
we present a method to build up a virtual change representing the difference between two other
changes ∆T and ∆I . This is based on the respective purged change logs and on the difference
sets.

If ∆I ≺ ∆T holds there can be no structural conflict between ∆T and ∆I , or more precisely,
between ∆T \∆I and ∆I . If this had been the case ∆T itself would already contain a structural
conflict what is contradictory to our general assumptions.

Finally, the resulting bias ∆I(S′) on S′ becomes the empty change if ∆I ≺ ∆T holds. For
this case all effects of ∆I on S are reflected by ∆T .

Example 6.20 (∆I Subsumption Equivalent With ∆T): Consider Figure 6.20 where type change
∆T subsumes instance change ∆I , i.e., ∆I ≺ ∆T . In this case, we have to check state–related
compliance for ∆T \∆I (cf. Section 6.7). If I is compliant with S′ it can be re–linked to S′ and
the resulting bias ∆I(S′) becomes empty (cf. Migration Strategy 4).

Process instances with partially equivalent bias cannot be uniformly treated since this class
of instances may contain strongly varying instance–specific changes. These instance–specific
changes may range from inserting (different) activities into the same target context at type and
instance level to type and instance changes having almost the same effects on S. Furthermore,
for some cases there is no automatic migration strategy as the following example shows:

Example 6.21 (Migrating Instances With Partially Equivalent Bias): Consider Figure 6.21 where
type change ∆T destroys the target context of instance change ∆I . This is caused by deleting
source activity C of the newly inserted sync edge (B, C). In this case, ∆T cannot be applied to
SI (and therefore ∆T and ∆I are not commutative and consequently not disjoint). A possible
measure here is to report the context–destroying conflict between ∆T and ∆I to the user and to
ask him or her whether it is desired to migrate I to S′ by specifying the remaining bias ∆I(S′)
on S′ or to let I finish according to S (cf. Section 6.7).

Consequently, it is not possible to provide a (default) migration strategy for partially equiva-
lent process type and instance changes. However, it is possible to subclassify the set of partially
equivalent changes (cf. Section 6.6.3), report the results to the user, and present decision rules

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 177

 d

B X

Y A D

D

E

C

Process Type Schema S: : Process Type Schema S’:

'T = (serialInsertActivity(S, X, B, D),serialInsertActivity(S, Y, D, E), addDataElements(S, {d}),
addDataEdges(S, {(X, d, write), (Y, d, read)}), deleteActivity(S, C))

'I = (serialInsertActivity(S, X, B, D),serialInsertActivity(S, Y, D, E),
addDataElements(S, {d}), addDataEdges(S, {(X, d, write), (Y, d, read)}))

'I1 < 'T
Activated

A

D

B

C

F B E

 d

B X

Y A D

D

E

 d

B X

Y A D

D

E
migrate

Process Instance I on S’I := S’

Process Instance I on SI := S + 'I

Check Compliance of I for 'T \ 'I = deleteActivity(S, C)

Figure 6.20: Migrating Instances with ∆I ≺ ∆T

Process Type Schema S: Process Type Schema S’ 'T = deleteActivity(S, C)

'I = insertSyncEdge(S, D, C)

Process Instance I (on S + 'I):

 B C

D

G A F

E

 B C

D

G A F

E

ET=SyncE

 B

D

G A F

E

'T 'I Activated

Figure 6.21: Migrating Instances with Partially Equivalent Changes

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 178

afterwards (cf. Section 6.7). Note that for partially equivalent changes state–related and struc-
tural compliance must be ensured since those parts of ∆T and ∆I which are different from each
other may form a structural conflict within the resulting schema (cf. Criterion 8). Furthermore,
the changes contained in ∆T \∆I may cause state–related conflicts.

In summary, it is favorable if process instances have an equivalent, subsumption equivalent
or disjoint bias (when compared with the process type change). For these cases we can offer
automatic migration strategies. However, applying arbitrary change transactions consisting of
different kinds of change operations with upmost probability we will also get process instances
with partially equivalent changes (for which we then have to involve the user in the migration
decision). This user interactions slow down the migration process. However, for many process
instance changes which are detected as being partially equivalent this classification is too coarse.
The reason is that they are partially equivalent regarding the changes as a whole. However, we
will show in the next section that is sufficient to put focus on the different kinds of change
operations, e.g., activity insertions when determining the degree of overlap.

6.6.3 On Optimizing Migration Strategies for Overlapping Process Changes

In the previous section we have provided an adequate migration strategy for each degree of
overlap between process type and process instance changes. In this section we show how the
application of these migration strategies can be optimized, i.e., how we can increase the number
of process instances for which one of the automatic migration strategies can be applied.

The conditions for equivalent as well as for subsumption equivalent changes (cf. Definitions 11
and 17) are very precise. In contrast condition ψ of Definition 18 for partially equivalent changes
is relatively coarse. As a consequence, usually there will be only few process instances being
classified as having equivalent or subsumption equivalent bias. In contrast the set of instances
with partially equivalent bias will contain a greater number of instances (with strongly varying
bias) which may cause expensive user interactions (cf. Section 6.6.2)12.

When looking at Figure 6.22 we see that changes ∆1 and ∆2 capture different kinds of
change operations like, for example, insert, delete, and move operations. More precisely, ∆1 and
∆2 are equivalent regarding delete operations (both delete activity E) and ∆2 is subsumption
equivalent with ∆1 regarding insert operations. Furthermore, ∆2 is subsumption equivalent with
∆1 regarding data flow operations whereas ∆1 is subsumption equivalent with ∆2 regarding move
operations. Comparing ∆1 and ∆2 as a whole both changes would be assumed as being partially
equivalent although they are (subsumption) equivalent regarding the different kinds of change
operations.

Therefore we group the changes regarding the different kinds of applied change operations.
Then solely the groups including the same kind of change operations are compared. Doing so
enables a more fine–granular determination of the degree of overlap. Taking this into considera-

12Th standard case, however, is that process instances have a disjoint bias.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 179

'1 = (serialInsertActivity(S, X, C, F) ,

 deleteActivity(S, E),

 serialInsertActivity (S, Z, A, B),

 serialInsertActivity(S, Y, X, F),

 addDataElements(S, {d}),

 addDataEdges(S, {(X, d, write), (Y, d, read)}))

A

E

C

D

G B F

Process Schema S:

'2 = (serialMoveActivity(S, D, F, G) ,

 deleteActivity(S, E),

 serialInsertActivity(S, Z, A, B))

Figure 6.22: Partially Equivalent Changes

tion for the delete operation captured by ∆1 and ∆2 (cf. Figure 6.22) we can apply the default
migration strategy for equivalent changes (cf. Theorem 2) for example. Furthermore, we can
better assist the user and provide more precise problem reports to them. Thus the transparency
of the overall migration process can be improved when comparing changes according to their
projections on the different kinds of operations instead of comparing whole change transactions.

Auxiliary Definition 1 (Assigning Change Operations to Change Types) Let ∆ be a
change. Let further

1. Change be a set of change operations (cf. Tables 3.2 and 3.3) with

Change:={[serial|parallel|branch]InsertActivity(. . .), deleteActivity(. . .),
[serial|parallel|branch]MoveActivitiy(. . .), insertSyncEdge(. . .), deleteSyncEdge(. . .),
insertLoopEdge(. . .), deleteBlock(. . .), addDataElements(. . .), deleteDataElements(. . .),
addDataEdges(. . .), deleteDataEdges(. . .), changeActivityAttributes(. . .),
changeEdgeAttributes(. . .)} and

2. OpType be a set of operation types with OpType:={ins Act, del Act, move Act, ins Sync,
del Sync, ins Loop, del Loop, data, attrChange}

3. optype be a function which assigns to each change operation in Change its specific opera-
tion type in OpType. Formally:

optype : Change 7→ OpType

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 180

(The concrete assignment of change operations to operation types is given in Auxiliary
Definition 2 (cf. Appendix B).)

Auxiliary Definition 1 assigns to each change operation a particular key word indicating its
type, e.g., key word ”ins Act” is assigned to change operation serialInsertActivity(. . .). Based
on this we can project changes onto the different kind of change types:

Definition 19 (Change Projections) Let the assumption be as in Auxiliary Definition 1.
Then ∆[optype] denotes the projection of ∆ onto optype. Formally:

∆[optype] = (opi, . . . opk) (i ≤ k ≤ n) with: ∀opj(j = 1, . . . , k): optype(opj) = optype

The projections can be arbitrarily combined, i.e.,

∆[optype1 ⊕ optype2]:= (opi, . . . , opk) (i ≤ k ≤ n) with:
∀opj (j = 1, . . . , k): optype(opj) ∈ {optype1, optype2}

We illustrate the notion of change projections introduced above by providing the following
example.

Example 6.22.a (Change Projections): Consider Figure 6.22. The projections for changes ∆1

and ∆2 turn out as follows:

• Projections for ∆1:
∆1[ins Act] = (serialInsertActivity(S, X, C, F), serialInsertActivity(S, Y,X, F),

serialInsertActivity(S,Z, A, B));
∆1[del Act] = (deleteActivity(S, E));

∆1[data] = (addDataElements(S, {d}), addDataEdges(S, {(X, d, write), (Y, d, read)}))
• Projections for ∆2:

∆2[ins Act] = (serialInsertActivity(S, Z, A,B));
∆2[del Act] = (deleteActivity(S, E))

∆2[move Act] = (serialMoveActivity(S,D, F, G))

• Combined Projection for ∆2:
∆2[ins Act⊕move Act] = (serialInsertActivity(S, Z, A,B), serialMoveActivity(S, D, F, G))

The combined projection on operations like inserting and moving activities, ∆2[ins⊕move Act]
(cf. Auxiliary Definition 2, cf. Appendix B), refers to a possible kind of interaction between
these two kinds of operations. As we have discussed in Section 6.5 it is important to consider
the aggregated order between activities inserted or shifted to the same context. This plays also
a role when determining degrees of overlap in the following (cf. Section 6.6.4).

When determining the particular degree of overlap between process changes we do not con-
sider the changes as a whole but use the single change projections (cf. Definition 19). More

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 181

precisely, given two changes ∆1 and ∆2 concurrently applied to a process schema S we compare
the particular projections of ∆1 and ∆2 but not the whole changes. Therewith, we achieve a
fine–granular comparison based on which adequate messages for the user can be generated and
appropriate migration strategies can be proposed.

Summary 4 (Degree of Overlap Between Change Projections) Let S be a (correct) pro-
cess schema and let ∆i (i = 1, 2) be two changes transforming S into (correct) process schemes
Si, i = 1, 2. Assume that ∆i[op type] are the projections of ∆i (i = 1, 2) as defined in Definition
19. Then we determine the degree of overlap between ∆1 and ∆2 along the degrees of overlap
between the projections of the same kind, i.e., we check whether

∆1[op type] ≡ ∆2[op type] or
∆1[op type] ≺ ∆2[op type] (or vice versa) or

∆1[op type] G ∆2[op type] or
∆1[op type] ∩∆2[op type] = ∅

It is also possible to compare the combined projection on certain kinds of changes, e.g.,
∆1[ins Act⊕move Act] ≡ ∆2[ins Act⊕move Act] if, for example, we want to analyze the in-
teractions between insert and move operations. The challenging question is how to (efficiently)
check the different degrees of overlap between ∆1 and ∆2 or, more precisely, between the par-
ticular projections. In Section 6.3, we have introduced an approach for which trace equivalence
between S1 and S2 is ensured by verifying that S1 and S2 are isomorphic. This method, in turn,
is applicable to check equivalence or disjointness of changes ∆1 and ∆2 since the respective
definitions are based on trace equivalence. However, the isomorphism approach is not adequate
for our concerns for the following reasons:

1. It cannot be used to verify subsumption or partial equivalence since we cannot find ade-
quate definitions based on graph isomorphims for these two change relations.

2. As already discussed in Section 6.3, materializing respective process schemes to be checked
whether they are isomorphic or not may become costly, especially for a large number of
running biased instances.

3. If we want to restrict comparisons between ∆1 and ∆2 to comparisons between their
particular projections (in order to get the right level of granularity) the isomorphism ap-
proach is practically not applicable. For example, if we would like to verify isomorphism
for S + ∆1[ins Act] and S + ∆2[ins Act] it would become necessary to determine the pro-
cess schemes resulting from the application of the insert operations (contained within the
respective projections). This ”projection” on process schemes resulting for the application
of change projections would have to be done for each kind of change projection. How-
ever, doing so is by far too expensive, especially when regarding a multitude of running
instances.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 182

For these reasons we want to find more advanced and efficient methods for detecting the
particular degree of overlap between the projections of two changes ∆1 and ∆2.

6.6.4 Determining the Degree of Overlap Based on Projections

We can use our hybrid approach (cf. Section 6.5) for detecting the degree of overlap between
change projections. As an exampke take changes ∆1 and ∆2 as depicted in Figure 6.22. A
comparison between activity sets Nadd

∆1
= {X, Y, Z} and Nadd

∆2
= {Z}, between anchor sets

AnchorIns(S, ∆1) = {(C,X, F), (C, Y, F), (A,Z,B)} and AnchorIns(S,∆2) = {(A,Z, B)}, and
between order stes OrderIns(S,∆1) = {(X,Y)} and OrderIns(S,∆2) = ∅ (cf. Section 6.5)
exactly reflects the comparison between the projections on insert operations of ∆1 and ∆2. As
result of this comparison we obtain that ∆1[ins Act] Â ∆2[ins Act] holds.

The hybrid approach is always applicable for determing the degree of overlap between change
projections, i.e., based on this method subsumption and partial equivalence can be detected.

To formally underpin our above considerations we provide Theorems 11 and 12. They state
that equivalence and disjointness of two changes ∆1 and ∆2 can be verified by applying the
hybrid approach to the particular change projections.

Theorem 11 (Equivalent Changes) Let S be a (correct) process schema and let ∆i, i = 1, 2
be two changes which transform S into (correct) process schemes Si, i = 1, 2. Then ∆1 and ∆2

are equivalent, i.e, ∆1 ≡ ∆2 if the following conditions (1) – (4) hold:

(1) Change Operations on Activity Sets:

(a) ∆1[ins Act] ≡ ∆2[ins Act] ⇐⇒
(Nadd

∆1
= Nadd

∆2
∧

AnchorIns(S,∆1) = AnchorIns(S,∆2)∧
OrderIns(S, ∆1) = OrderIns(S,∆2))

(b) ∆1[del Act] ≡ ∆2[del Act] ⇐⇒ Ndel
∆1

= Ndel
∆2

(c) ∆1[move Act] ≡ ∆2[move Act] ⇐⇒
(Nmove

∆1
= Nmove

∆2
) ∧

AnchorMove(S, ∆1) = AnchorMove(S,∆2)) ∧
OrderMove(S,∆1) = OrderMove(S,∆2))

(d) ∆1[ins/move Act] ≡ ∆2[ins/move Act] ⇐⇒
(Nmove

∆1
= Nmove

∆2
) ∧

∆1[ins Act] ≡ ∆2[ins Act] ∧
∆1[move Act] ≡ ∆2[move Act] ∧

OrderAgg(S, ∆1) = OrderAgg(S, ∆2))

(2) Change Operations on Sync and Loop Edges:

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 183

(a) ∆1[ins Sync] ≡ ∆2[ins Sync] ⇐⇒ SyncEadd
∆1

= SyncEadd
∆2

(b) ∆1[del Sync] ≡ ∆2[del Sync] ⇐⇒ SyncEdel
∆1

= SyncEdel
∆2

(c) ∆1[ins Loop] ≡ ∆2[ins Loop] ⇐⇒ LoopEadd
∆1

= LoopEadd
∆2

(d) ∆1[del Loop] ≡ ∆2[del Loop] ⇐⇒ LoopEdel
∆1

= LoopEdel
∆2

(3) Change Operations on Data Flow:
∆1[data] ≡ ∆2[data] ⇐⇒

(Dadd
∆1

= Dadd
∆2

∧ Ddel
∆1

= Ddel
∆2

) ∧
(DataEadd

∆1
= DataEadd

∆2
∧ DataEadd

∆1
= DataEadd

∆2
)

(4) Change Operations on Attributes:
∆1[attrChange] ≡ ∆2[attrChange] ⇐⇒ ChangedAttr∆1 = ChangedAttr∆2

(Φ)

A formal proof of Theorem 11 can be found in Appendix C (cf. Proof C.10). Interestingly,
we can proof Theorem 11 by showing that ”(Φ) =⇒ S1 ' S2

Theorem10=⇒ S1 ≡trace S2” holds.

We pick up the scenario depicted in Figure 6.22 to illustrate the above theorem.

Example 6.22.b (Change Projections): Consider Figure 6.22. Applying the hybrid approach to
the projections of ∆1 and ∆2 on delete operations (i.e., ∆1[del Act] and ∆2[del Act] yields:

Ndel
∆1

= Ndel
∆2

=⇒ ∆1[del Act] ≡ ∆2[del Act]

To be able to define disjointness of two changes ∆1 and ∆2 in a similar way we first have
to introduce notions for operations inserting or moving activities into the same context (cf.
Definition 20) and for operations destroying the context of other operations (cf. Definition 21).

Definition 20 (Changes with Conflicting Target Context) Let S be a (corrrect) process
schema and let ∆i, i = 1, 2 be two changes transforming S into (correct) process schemes S1

and S2. Let further Nadd
∆i

and Nmove
∆i

be the activity sets newly inserted or moved by ∆i and
let AnchorIns(S,∆i) and AnchorMove(S,∆i) be the respective anchor sets (i = 1, 2). Then
we denote ∆1 and ∆2 as operations with conflicting target context (notation: ∆1 . ∆2) if ∆1

contains an insert or move operations which inserts or moves an activity into the same context
an insert or move operation of ∆2 does. Formally:

∆1 . ∆2 ⇐⇒
(Econc context

∆1
[ins]∪Econc context

∆1
[move]) ∩ (Econc context

∆1
[ins]∪Econc context

∆2
[move]) 6= ∅

with

• Econc context
∆1

[ins] = {(n1, n2)|∃(n1, X, n2) ∈ AnchorIns(S,∆1) ∧X ∈ Nadd
∆1

\Nadd
∆2
}

• Econc context
∆2

[ins] = {(n1, n2)|∃(n1, X, n2) ∈ AnchorIns(S,∆2) ∧X ∈ Nadd
∆2

\Nadd
∆1
}

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 184

 Process Type Schema S: Process Type Schema S’: 'T = (serialInsertActivity(S, X, B, C),
serialInsertActivity(S, Y, C, D))

 C A X Y B

Process Instance I on SI := S + 'I

'I = serialInsertActivity(S, Z, B, C)

E�T
conc_context

[ins] = {(B, C)}

E�I
conc_context

[ins] = {(B, C)} �

Conflicting Context of 'I and 'T is (B, C) A Z C B

 A C B

Completed Activated TrueSignaled

Figure 6.23: Changes with Conflicting Context

• Econc context
∆1

[move] = {(n1, n2)|∃(n1, X, n2) ∈ AnchorMove(S, ∆1)∧X ∈ Nmove
∆1

\Nmove
∆2

}
• Econc context

∆2
[move] = {(n1, n2)|∃(n1, X, n2) ∈ AnchorMove(S, ∆2)∧X ∈ Nmove

∆2
\Nmove

∆1
}

Regarding Definition 20, at first, we determine the context of each insert and move operation
included in change ∆1 but not in change ∆2 (and vice versa). Then we check whether ∆1 and ∆2

use the same context or not. As the following example shows changes with conflicting context
are also correctly determined for context–dependent changes when applying Definition 20.

Example 6.23 (Changes With Conflicting Context): Look at Figure 6.23 where type change ∆T

inserts activities X and Y between anchors B and C and instance change ∆I inserts activity Z
also between B and C. Determining the conflicting context of both changes we see that (B, C)
lies in the intersect of them. Therefore (B,C) is a conflicting context used by changes ∆T and
∆I .

As we can see from Definition 20 to check whether ∆1 . ∆2 holds we can use the anchor sets
for insert and move operations. We extract those anchors which are affected by both changes ∆1

and ∆2. Then we pick all those anchors to which ∆1 and ∆2 have inserted or shifted different
activities.

Definition 21 (Context–Destroying Changes) Let S be a (corrrect) process schema and
let ∆1 = (op1

1, . . . , op
1
n) and ∆2 = (op2

1, . . . , op
2
m) be two changes transforming S into (correct)

process schemes S1 and S2. Then we denote ∆1 and ∆2 as context–destroying changes (notation:
∆1 / ∆2) if ∆1 contains a change operation which destroys the context of a change operation
contained in ∆2 or vice versa. This is the case if one of the following conditions holds (i =
1, . . . , n):

• ∃op1
i = [serial|parallel|branch]MoveActivity(S, X1, . . .),
∃op2

j ∈ {serial[Insert|Move]Activity(S, X2, src2, dest2), insertSyncEdge(S, src2, dest2)}
with X1 = src2 ∨X1 = dest2 or vice versa (”moving context away”)

• ∃op1
i = deleteActivity(S,X1),
∃op2

j ∈ {serial[Insert|Move]Activity(S,X2, src2, dest2), insertSyncEdge(S, src2, dest2)} with
X1 = src2 ∨X1 = dest2 or vice versa (”deleting context”)

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 185

 Process Schema S: Process Schema S1 := S + '1:
'1 = serialMoveActivity(S, B, C, D)

'2 = serialInsertActivity(S, X, B, C)??

 A C D B

 A B D C

Figure 6.24: Context–Destroying Changes

• ∃op1
i = deleteActivity(S,X1),
∃op2

j = changeActivityAttribute(S, X2, attr2, nV 2)
with X1 = X2 or vice versa (”overriding activity attribute change”)

• ∃op1
i = deleteActivity(S,X1),
∃op2

j = changeEdgeAttribute(S, (src2, dest2), attr2, nV 2)
with X1 = src2 ∨X1 = dest2 or vice versa (”overriding edge attribute change”)

Definition 21 summarizes the different scenarios in which a change operation destroys the
context of another change operation: Within the first two scenarios, a change operation moves or
deletes an activity which is used as insertion or move context by another change operation. The
next scenario comprises change operations which delete an activity for which an activity attribute
is changed by another change operation. Within the last scenario an activity is deleted by a
change operation which is source or destination of an edge for which an edge attribute is changed
by another change operation. An example for case ”moving context away” (cf. Definition 21) is
illustrated by Figure 6.24.

Example 6.24 (Context–Destroying Changes): Consider Figure 6.24. Change ∆1 destroys the
context of change ∆2 since it moves one of the anchors of ∆2 away. As a consequence, ∆2 cannot
be applied to S1.

Context–destroying changes constitute a very hard problem. At their presence it is not
possible to provide automatic migration strategies (illustrated by Example 6.21). However, we
can precisely report the ”weak points” in conjunction with context–destroying changes to users.
In doing so, we can adequately assist users (cf. Section 6.7).

Preserving Definitions 20 and 21 is important for the disjointness of changes ∆1 and ∆2 on S
in order to guarantee their commutativity. Otherwise, if, for example, ∆2 destroys the context
of a change operation of ∆1 process schema (S +∆1)+∆2 can be produced but it is not possible
to apply ∆1 to S2 := S + ∆2. Thus ∆1 and ∆2 are not commutative.

Theorem 12 (Disjoint Changes) Let S be a (correct) process schema and let ∆i, i = 1, 2 be
two changes which transform S into (correct) process schemes Si, i = 1, 2. Then ∆1 and ∆2 are
disjoint (i.e, ∆1 ∩∆2 = ∅) if the following conditions hold:

1. Change Operations on Activity Sets:

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 186

(a) ∆1[ins Act] ∩∆2[ins Act] = ∅ ⇐⇒
(Nadd

∆1
∩Nadd

∆2
= ∅ ∧ ¬(∆1[ins Act] . ∆2[ins Act])

(b) ∆1[del Act] ∩∆2[del Act] = ∅ ⇐⇒ Ndel
∆1
∩Ndel

∆2
= ∅

(c) ∆1[move Act] ∩∆2[move Act] = ∅ ⇐⇒
(Nmove

∆1
∩Nmove

∆2
= ∅ ∧ ¬(∆1[move Act] . ∆2[move Act])

(d) ∆1[ins/move Act] ∩∆2[ins/move Act] = ∅ ⇐⇒
(∆1[ins Act] ∩∆2[ins Act] = ∅ ∧

∆1[move Act] ∩∆2[move Act] = ∅ ∧
¬(∆1[ins/move Act] . ∆2[ins/move Act])

2. Change Operations on Sync and Loop Edges:

(a) ∆1[ins Sync] ∩∆2[ins Sync] = ∅ ⇐⇒ SyncEadd
∆1

∩ SyncEadd
∆2

= ∅
(b) ∆1[del Sync] ∩∆2[del Sync] = ∅ ⇐⇒ SyncEdel

∆1
∩ SyncEdel

∆2
= ∅

(c) ∆1[ins Loop] ∩∆2[ins Loop] = ∅ ⇐⇒ LoopEadd
∆1

∩ LoopEadd
∆2

= ∅
(d) ∆1[del Loop] ∩∆2[del Loop] = ∅ ⇐⇒ LoopEdel

∆1
∩ LoopEdel

∆2
= ∅

3. Change Operations on Data Flow:
∆1[data] ∩∆2[data] = ∅ ⇐⇒

(Dadd
∆1

∩Dadd
∆2

= ∅ ∧ Ddel
∆1
∩Ddel

∆2
= ∅) ∧

(DataEadd
∆1

∩DataEadd
∆2

= ∅ ∧ DataEadd
∆1

∩DataEadd
∆2

= ∅)
4. Change Operations on Attributes:

∆1[attrChange] ∩∆2[attrChange] = ∅ ⇐⇒ ChangedAttr∆1 ∩ ChangedAttr∆2 = ∅
5. Context–Destroying Change Operations:
¬(∆1 / ∆2)

(Θ)

We abstain from a formal proof of Theorem 12 and give a short proof sketch instead: Basi-
cally, we have to show that

Θ =⇒ (S1 + ∆2 ≡trace S2 + ∆1 ∧Nadd
∆1

∩Nadd
∆2

= ∅
holds (cf. Definition 10). Trivially, the second term of this conjunction is fulfilled by (Θ).
The first term about commutativity of ∆1 and ∆2 can be similarly shown as trace equivalence
within Proof C.10, i.e., by verifying isomorphism between S1 + ∆2 and S2 + ∆1 (formally:
(Θ) =⇒ S1 + ∆2 ' S2 + ∆1). At this, we can argue by building the sets of activities, control
edges, etc. for S1 +∆2 and S2 +∆1 and by showing that they are equal. For example, let N(1,2)

be the activity set of S1 + ∆2 (and N(2,1) the activity set of S2 + ∆1 respectively). N(1,2) has
been build by [((N + Nadd

∆1
) \Ndel

∆1
) + Nadd

∆2
] \Ndel

∆2
. Since all activity sets are disjoint regarding

(Θ) for ∆1 and ∆2 we can see that the same term can be build for N(2,1) as the activity set of
S2 + ∆1. Consequently, N(1,2) = N(2,1) holds.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 187

Migrating Unbiased Process Instances

Migrating Biased Process Instances

Disjoint Process Type &
Process Instance Changes

P� Comprehensive
Correctness Criterion

P� Efficient Compliance
Checks

P� Automatic Instance
Migration

Distinction Between Disjoint and Overlapping
Process Type And Process Instance Changes

P� General Correctness
Criterion

P� Designing Structural
Conflict Tests

P� Automatic Instance
Migration

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

Process Type Level

Process Instance Level

�

�

�

�

P� Change Classification Along Degree
of Overlap

P� Determining the Degree of Overlap
Between Changes

P� Selection of the Adequate Migration
Strategy

P� Optimization of Migration Strategies
P� Decision Rules
P� Automatic Bias Calculation

�

�

�

�

�

Overlapping Process Type &
Process Instance Changes

' 1

 compared with ' 2
?

1 st step (Structural Approach): determine N add � 1 , N del � 1 � N add � 2, N del � 2

 2 nd step (Purging): determine and compare N move � 1 and

 N move � 2

 3 rd step (Projections): determine � 1 [op_type] and � 2 [op_type]

 4 th step (C omparison): determine degree of overlap between projections

 5 th step (Migration): migration strategy or user interaction

�

�

Figure 6.25: Applying Optimized Migration Strategies

Now it becomes clear how to check the degree of overlap between concurrent changes ∆1 and
∆2 on process schema S (cf. Figure 6.25). First, we determine the consolidated activity sets
(cf. Definition 14), the anchor sets (cf. Algorithms 4 + 5), and the order sets (cf. Algorithms 6
+ 7 and Definition 16). Based on this information we determine the degree of overlap between
the different projections of ∆1 and ∆2 (cf. Definition 19). Finally, we present the migration
strategies as summarized in Theorems 2, 3, and 4 to users. If ∆1 and ∆2 are partially equivalent
(i.e., ∆1 G ∆2) we provide rules to support the users’ decision process. The different possibilities
for partial equivalence between ∆1 and ∆2 and the resulting decision rules are described in
Section 6.7.

To illustrate the theoretical results of this section we provide the following example by
applying them to a concrete scenario of concurrent process type and process instance changes.

Example 6.26 (Detecting Degree of Overlap): Consider Figure 6.26 where type change ∆T

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 188

serially inserts two activities X and Y and moves activity B from its current position to position
between activities Y and D. To detect the degree of overlap between ∆T and change ∆I1 on I1

we determine the difference sets from which we can see that Nadd
∆T

⊂ Nadd
∆I1

and Nmove
∆T

≡ Nmove
∆I1

hold (all other difference sets are empty for ∆T as well as for ∆I1). Activities X and Y have
been inserted and activity B has been moved between the same anchors C and D for ∆T and
∆I1 . Furthermore, the order sets of ∆T are subsets of the order sets of ∆I1 . Finally, sets
Econc context

∆T
[ins|move] and Econc context

∆I1
[ins|move] are empty what implies that ∆T and ∆I1 do

not insert or move any activity into the same (conflicting) target context. Furthermore, these
two changes are not mutually context–destroying. Altogether, we obtain that ∆T is subsumption
equivalent with ∆I1 , i.e., ∆T ≺ ∆I1 . Using Theorem 3, we migrate I1 to S′. Doing so we have to
calculate new bias ∆I1(S

′) on S′. How this calculation can be carried out is one of the challenges
to be discussed in Section 6.7.

Considering instance I2, we find out that ∆T actually subsumes ∆I2 regarding insert opera-
tions (i.e., ∆I2 [ins Act] ≺ ∆T [ins Act]), but ∆I2 subsumes ∆T regarding move operations (i.e.,
∆T [move] ≺ ∆I2 [move]). Consequently, ∆T and ∆I2 are related to each other under a special
form of partial equivalence, i.e., ∆T G ∆I2 . Figure 6.26 depicts two possible instance–specific
schemes for I2 after its migration to S′ whereby the second alternative is automatically deter-
mined by applying Algorithm 10 (cf. Section 6.7) and reported to users. Finally, instance ∆I3

is partially equivalent with ∆T . However, ∆I3 ”lies very close” to ∆T since we insert and move
exactly the same activities into the same target context but (only) in different order. This, in
turn, is exactly reported to the user to assist him or her in an adequate way.

6.7 Decision Rules and Calculating Bias

In this section, we present decision rules for partially equivalent changes – remember that for
this kind of changes in most cases no automatic migration is possible (cf. Section 6.7.1). In
Section 6.7.2, we present algorithms which automatically calculate the new bias ∆I(S′) when
migrating instance I to S′.

6.7.1 Decision Rules

Let S be a (correct) process schema and let I = (S, ∆I , . . .) be a biased process instance running
on S. Let further ∆T be a process type change which transforms S into another (correct) process
schema S′. Assume that ∆T and ∆I are partially equivalent, i.e., ∆T G ∆I holds.

The (default) migration strategies for (subsumption) equivalent and disjoint process type
and process instance changes have been already presented in Section 6.6.2. As mentioned,
for partially equivalent changes there is no common migration strategy. However, partially
equivalent changes vary from case to case as Example 6.26 has shown. Based on the presented
concepts of change projection (cf. Definition 19) we can distinguish between different kinds of

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 189

 A X Y C B Z D A X Y C B Z D

I1 on SI1 = S + 'I1 with 'I1 = (serialInsertActivity(S, X, C, D), serialInsertActivity(S, Y, X, D),
serialMoveActivity(S, B, Y, D), serialInsertActivity(S, Z, B, D))

Process Type Schema S: Process Type Schema S’:

'T = (serialInsertActivity(S, X, C, D),
serialInsertActivity(S, Y, X, D), serialMoveActivity(S, B, Y, D))

I3 on SI3 = S + 'I3 with 'I3 = (serialInsertActivity(S, Y, C, D), serialInsertActivity(S, X, Y, D),
moveActivity(S, B, Y, X))

 A C D B A X Y C B D

 A Y B C X D

Process Instance Level:

(N�I1
add, N�I1

del
, N�I1

move) = ({X, Y, Z}, {B}, �}
AnchorIns(S, 'I1) = {(C, X, D), (C, Y, D), (C, Z, D)}, AnchorMove(S, 'I1) = {(B, C, D)}
OrderIns(S, 'I1) = {(X, Y)}, OrderMove (S, 'I1) = �, OrderAgg(S, 'I1) = �
Econc_context[ins] = �; Econc_context[move] = �

'T � 'I3 z �
actually 'T { 'I3 but: different order!

(N�Tadd, N�Tdel
, N�Tmove) = ({X, Y}, {B}, �}

AnchorIns(S, 'T) = {(C, X, D), (C, Y, D)}, AnchorMove(S, 'T) = {(B, C, D)}
OrderIns(S, 'T) = {(X, Y)}, OrderMove (S, 'T) = �, OrderAgg(S, 'T) = �
Econc_context[ins] = �; Econc_contex[move] = �

I1 on S’I1 = S’ + 'I1(S’) with 'I1(S’) = serialInsertActivity(S’, Z, B, D)

'T[ins_Act] < 'I1[ins_Act]
'T[move_Act] { 'I1[move_Act]

 C A B X D

I2 on SI2 = S + 'I2 with 'I2 = (serialInsertActivity(S, X, C, D), serialMoveBlock(S, (A, B), X, D))

 C Y A X B D

 C A B X Y D

1
st

 Alternative: I2 on S’I2 = S’ + 'I2(S’)

with 'I2(S’) = serialMoveBlock(S’, (A, B), Y, D)

2
nd

 Alternative: I2 on S’I2 = S’ + 'I2(S’)

with 'I2(S’) = serialMoveBlock(S’, (A, B), X, Y)

'T[ins_Act] > 'I2[ins_Act]
'T[move_Act] < 'I2[move_Act]

Completed Activated TrueSignaled

'T < 'I1

�
T

�
T

�
I1

�
I1

Figure 6.26: Determining Degree of Overlap Between Concurrent Changes

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 190

partially equivalent changes. Based on the respective kind of change we can define rules to be
reported to users in order to provide optimal assistance. Based on these decision rules the user
has two possibilities:

1. Instance I is excluded from the migration to the changed process type schema S′ and
therefore remains running according to the original schema S.

2. Instance I shall be migrated to the changed process type schema S′. Then I is re–linked
to S′ and the resulting instance–specific bias ∆I(S′) has to be determined. For this, there
are two possibilities: In some special cases, the system is able to suggest a bias ∆I(S′) (cf.
Algorithm 10) which can be chosen by the user. However, in most cases, the user has to
individually specify ∆I(S′).

The first strategy of excluding instances from migrating to the changed process type schema
can be chosen at any time by the user. For the second variant we present a sophisticated
classification of instances with partially equivalent bias based on which decision rules for users
can be deposited within the system (cf. Tables 6.1 and 6.2).

1) Different Order (cf. Table 6.1): This group contains all partially equivalent changes ∆T and
∆I which insert or move the same (or a subset of) activities into or to the same target context
but in different order. This can be exactly reported to users such that they are able to decide on
two possibilities: Instance change ∆I is either estimated as being (subsumption) equivalent with
type change ∆T or the different order defined by ∆I compared to ∆T is explicitly desired. If
the latter is the case users can decide to migrate I to the changed type schema S′ by specifying
instance–specific bias ∆I(S′) based on S′. Alternatively, they may let I further run according
to the original type schema S.

2) Different Anchors (cf. Table 6.1): The ”distance” between changes ∆T and ∆I belonging to
this group is greater than for changes within the first group. Users might be indifferent regarding
the order of newly to insert or to move activities but they should be sure regarding the context
(anchors) where these activities are added or moved to. Therefore user decisions are based on
the report where same activities (or a subset of them) have been inserted or moved between
different anchors by ∆T and ∆I . Then users can decide either to finish respective instances
according to original schema S or to migrate them to S′ by specifying instance–specific change
∆I(S′).

3) Conflicting Target Context (cf. Table 6.1): A conflicting target context (cf. Definition 20)
characterizes only a minor overlap between respective type and instance changes ∆T and ∆I .
However, this case must be considered when calculating instance–specific change ∆I(S′) since
∆I(S) uses one or more target positions for inserting or moving activities which are already
occupied by activities inserted or moved by ∆T . Therefore, we first detect the conflicting target
context for ∆T and ∆I , report them to users, and adapt ∆I(S′) respectively (cf. Algorithm 10).

4) Multiple Operations (cf. Table 6.2): This group contains all concurrently applied changes
∆T and ∆I which access same activities. A special case herewith is the multiple insertion of

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 191

Activated

Process Type Schema S: Process Type Schema S’:

Process Instance I on SI := S + 'I

'T = serialMoveActivity(S, B, C, D)

'I = serialInsertActivity(S,X, B, C)

I on S’I := (S + 'T) + 'I(S’) (?)
migrate

 A C D B

 A B D C

 D A X C B

Intermediate Instance-Schema S*I := (S + 'I) + 'T

 D A C B X

 D A C B X

Figure 6.27: Context–Destroying Type Change

activities since this may lead to an instance–specific schema S′I containing activities twice. This,
however, may not correspond to users’ intentions wherefore the multiple insertion is reported
to them. For concurrent changes ∆T and ∆I which delete same activities we can re–link the
affected instance I to changed type schema S′ and make a suggestion regarding instance–specific
change ∆I(S′) (cf. Algorithm 10, Section 6.7).

5) Context–Destroying Operations (cf. Table 6.2): Context–destroying operations ∆T and ∆I

(cf. Definition 21) are similar to operations which have a concurrent target context (cf. Defini-
tion 20). They are not overlapping in the sense that same activities, sync edges or data elements
are manipulated. However there may be problems with specifying ∆I(S′) on S′. These problems
may be serious such that it is not possible to find automatic adaptation methods for ∆I(S′).
If ∆T destroys the context of ∆I the intermediate schema S∗I := (S + ∆I) + ∆T can be deter-
mined. However for the instance–specific schema resulting from the re–linkage of I to S′, i.e.,
S′I := (S + ∆T) + ∆I(S′) (cf. Figure 6.27) this is not the case. Obviously, ∆I cannot be main-
tained on S′ since ∆T has destroyed its context. Consequently, we can only report the respective
destroyment of context to users and let them specify ∆I(S′).

Example 6.27 (Context–Destroying Type Change): Consider Figure 6.27 where type change ∆T

moves activity B from its current position to the position between activities C and D. Instance–
specific change ∆I , in contrast, inserts activity X between activities B and C. Obviously, ∆T

destroys the context of ∆I (”moving context away”, cf. Definition 21). The propagation of ∆T

to I (resulting in intermediate instance–specific schema S∗I := (S + ∆I) + ∆T) is no problem
since ∆I does not destroy the context of ∆T . Consequently, in general, the migration of I to S′

is possible. The difficult question is how to transfer I from (logically) running according to S∗I
to run according to S′I := (S + ∆T) + ∆I(S′), i.e., how to determine the new bias ∆I(S′). The
simple example depicted in Figure 6.27 shows that this cannot be done automatically.

6) Data Flow Changes (cf. Table 6.2): It is a very sensitive job to adequately deal with the case

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 192

that ∆T [data] and ∆I [data] are partially equivalent. Note that it is difficult to automatically
decide about the equality of data elements. Consequently, the user should be asked about the
migration of ∆I to S′ and the resulting instance–specific change ∆I(S′) based on S′.

If it is possible to offer a decision rule which can be automatically executed and is accepted
by users we still have to care about possible state–related and structural conflicts. The reason
is that the parts of ∆T which are not contained in ∆I may cause state–related inconsistencies
for I on S′. Furthermore, there may be also structural inconcistencies with S′I resulting from
the concurrent application of ∆T \ ∆I and ∆I \ ∆T on S. Consequently, it is no sufficient to
determine ∆I(S′) = ∆I \ ∆T but we also have to calculate ∆T \ ∆I . For partially equivalent
process type and process instance changes the calculation of ∆T \∆I as well as the calculation
of ∆I \∆T is not possible (cf. Example 6.27).

Summarizing the results presented in Tables 6.1 and 6.2 and the respective explanations,
we can conclude that in case of partially equivalent process type and process instance changes,
users should be consulted in most cases. It is not possible to automatically determine ∆I(S′) on
S′ after re–linking I to S′. However, for concurrent process type and process instance changes
using a conflicting target context and for projections on deleting activities and sync edges we
can automatically generate a suggestion for ∆I(S′), i.e., for these special cases of partially
equivalent changes ∆T and ∆I the new bias of I on S can be calculated by applying the same
algorithm as for determining ∆I(S′) in case ∆T ≺ ∆I holds. In this case, we can re–link I to
S′ but we have to store remaining bias ∆I(S′) for I on S′. A last interesting application of a
respective calculation method for change differences is the determination of ∆T (SI) := ∆T \∆I

if ∆I ≺ ∆T holds. According to Migration Strategy 4 we have to check state–related compliance
for I regarding ∆T (SI). Section 6.7.2 presents the respective algorithms and illustrates them by
means of examples.

6.7.2 Calculating Bias ∆I(S
′) and ∆T (SI) for Compliance Checks

When considering Tables 6.1 and 6.2 and the respective explanations one important conclusion is
that we have to provide methods to calculate instance–specific bias ∆I(S′) if need be. Basically,
we can provide an automatic calculation of ∆I(S′) for the following cases:

1. Calculating ∆I(S′)[projection] if
• ∆I [projection] ≺ ∆T [projection]

(with projection ∈
{ins Act, del Act,move Act, ins Sync, del Sync, ins Loop, del Loop, data, attrChange}) or

• ∆I [projection] G ∆T [projection]
(with projection ∈ {del Act, del Sync})

2. Calculating ∆I(S′) if ∆T . ∆I

Algorithm 10 (cf. Appendix D) checks whether one of the above cases is given. Then it starts
with calculating the differences between the consolidated sets of ∆I and ∆T (cf. Definition 13).

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 193

Based on this, we can, for example, state which activities have been inserted by ∆I but not
by ∆T . Starting from this, the context of these additionally inserted activities within S′I are
determined and a respective entry within the change logs capturing ∆I(S′) is generated.

Example 6.28 (Calculating Instance–Specific Change (1)): Consider Figure 6.28 where
∆T ≺ ∆I holds since ∆I has additionally inserted activities remind, repeat, and stop when com-
pared to ∆T . According to Migration Strategy 3, I can be re–linked to S′ but we have to calculate
bias ∆I(S′) on S′ by applying Algorithm 10. Doing so, we first determine Add := Nadd

∆I
\Nadd

∆T

= {remind, repeat, stop}. Then it is decided whether the activities contained in set Add are
inserted in a separated way or context–dependently. Obviously, remind, repeat, and stop are
inserted ”in a row” and are therefore included in set Row = {< remind, repeat, stop >} of or-
dered context–dependently inserted activities. Afterwards anchor (collect data, pack goods)
for newly inserted activities remind, repeat, and stop is determined and the first entry of
∆I(S′) results in insertBetweenNodeSets(S′, remind, collectdata, packgoods). Note that by
applying this change operation we obtain the desired parallel branching within S′. Then the
remaining entries of ∆I(S′) are determined as serialInsert(S′, repeat, remind, packgoods) and
serialInsert(S′, stop, repeat, packgoods).

The following Example 6.29 shows that Algorithm 10 also works fine if activities are inserted
and moved in a context–dependent way by ∆I (but not by ∆T):

Example 6.29 (Calculating Instance–Specific Change (2)): Look at Figure 6.29 where again
∆T ≺ ∆I holds whereby ∆I has additionally inserted activities X and Y between anchors C
and D and has moved activity B to the position between X and Y . Applying Algorithm 10
yields ∆I(S′) as depicted in Figure 6.29. Obviously, the respective change log capturing ∆I(S′)
can be applied to S′ resulting in S′I .

If ∆I is subsumption equivalent with ∆T (i.e., ∆I ≺ ∆I) it is possible to determine ∆T (SI) :=
∆T \∆I . Doing so is important in order to maintain correctness for S′I regarding state–related
conflicts between ∆T \ ∆I and I. The respective algorithm (cf. Algorithm 11, Appendix D)
works analogously to Algorithm 10 applied in case ∆T ≺ ∆I holds. The resulting change log
capturing ∆T (SI) together with SI contains all necessary information for evaluating our precise
state conditions set out in Section 4.3.2.

6.8 Summary

In this chapter, we have developed methods which allow us to adequately classify instances
changes with respect to their particular degree of overlap with subsequent process type changes.
Our main goal is to support users by offering as many automatisms as possible. Especially, for
application–neutral changes we want to simplify daily work by offering the formal foundation for
an intelligent change management within PMS. Therefore, depending on the particular degree
of overlap between process type and process instance changes (semi–) automatic migration
strategies can be offered.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 194

get order collect

data

compose
order

confirm
order

remind

pack goods

ship goods

cust_size

send
form

send
shirt

repeat stop

Process Type Schema S: : Process Type Schema S’:

'T = (serialInsertActivity(S, send form, collect data, compose order),
serialInsertActivity(S, send shirt, compose order, pack goods), addDataElements(S, {cust_size}),
addDataEdges(S, {(send form, cust_size, write), (send shirt, cust_size, read)}), deleteActivity(S, confirm order))

'T < 'I

Activated

migrate

Process Instance I on S’I := S’

Process Instance I on SI := S + 'I

get order

collect data

compose order

confirm order

pack
 goods

ship goods

get order collect data send form send shirt compose
order

pack goods

send
goods

cust_size

'T = (serialInsertActivity(S, send form, collect data, compose order),
serialInsertActivity(S, send shirt, compose order, pack goods), addDataElements(S, {cust_size}),
addDataEdges(S, {(send form, cust_size, write), (send shirt, cust_size, read)}),
 serialInsert(S, remind, confirm order, pack goods), serialInsert(S, repeat, remind, pack goods),
 serialInsert(S, stop, repeat, pack goods), deleteActivity(S, confirm order))

'I(S’) = (insertBetweenNodeSets(S’, remind, {collect data}, {pack goods}),

serialInsertActivity(S, repeat, remind, pack goods),

serialInsertActivity(S, stop, repeat, pack goods))

get order collect

data

compose
order

remind

pack goods

ship goods

cust_size

send
form

send
shirt

repeat stop

Figure 6.28: Calculating Instance–Specific Change (1)

The classification of instances along their particular degree of overlap was based on the formal
notions of trace equivalence and process schema isomorphism. Since it was shown that this is
still not sufficient to capture all possible scenarios we have discussed structural and operational
approaches and have shown their specific limitations and advantages. Starting from this, the
key to solution was to combine both methods to a hybrid approach. The core of the hybrid
approach is the purging of change logs from noisy information on the one hand and determining
consolidated activity sets, anchor sets, and order sets on the other hand. Based on this, finally,
sufficient definitions for subsumption and partially equivalent changes could be found.

For partially equivalent changes we have also shown that the existing classification is still
to coarse. Therefore we introduced projections on the particular change type. Using these
change projections increases the number of process instances with overlapping bias for which an
automatic migration strategy can be applied. This, in turn, contributes to the usability of our
solution.

We provided adequate migration strategies to be proposed as default strategies within the
system. So users can either choose the suggested strategy or can specify other migration strate-

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 195

'I = (serialInsertActivity(S, Z, A, B),
serialInsertActivity(S, X, C, D),

serialInsertActivity(S, Y, X, D),
serialMoveActivity(S, B, X, Y))

Activated

Process Type Schema S: Process Type Schema S’:

Process Instance I on SI := S + 'I

'T = serialInsertActivity(S, Z, A, B)

I on S’I := (S + 'T) + 'I(S’)
migrate

 A C D B

 D A B C Z

 A C X Z B Y D

 A C X Z B Y D

'I(S’) = (insertBetweenNodeSets(S, X, {C}, {D}),

serialInsertActivity(S, Y, X, D),

 moveBetweenNodeSets(S, B, {X}, {Y})) 'T < 'I

Figure 6.29: Calculating Instance–Specific Change (2)

gies. For those instances for which no default strategy is possible we developed rules which serve
as decision help for users. Finally, we developed algorithms to automatically calculate resulting
bias on the changed process type schema where automatic strategies are possible.

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 196

Table 6.1: Decision Rules for Partially Equivalent Process Type and Instance Changes (1)

∆T and ∆I partially equivalent, i.e., ∆T G ∆I

1) Different Order:

i) Nadd
∆T

= Nadd
∆T

∧AnchorIns(S, ∆T) = AnchorIns(S, ∆I)∧ equivalent insertion regarding activities

OrderIns(S′, ∆T) 6= OrderIns(S′, ∆I) and anchors but different order

=⇒ ∆T [ins Act]
↔≡ ∆I [ins Act] ➪ ask user about order

ii) Nmove
∆T

= Nmove
∆T

∧AnchorMove(S, ∆T) = AnchorMove(S, ∆I)∧ equivalent move regarding activities

OrderMove(S′, ∆T) 6= OrderMove(S′, ∆I) and anchors but different order

=⇒ ∆T [move Act]
↔≡ ∆I [move Act] ➪ ask user about order

iii) ∆T [ins Act] ≡ ∆I [ins Act]∧ ∆T [move Act] ≡ ∆I [move Act]∧ equivalent insert and move operations
OrderAgg(S, ∆T) 6= OrderAgg(S, ∆I) but different order in combination

=⇒ ∆T [ins/move Act]
↔≡ ∆I [ins/move Act] ➪ ask user about order

iv) Nadd
∆T

⊂ Nadd
∆T

∧AnchorIns(S, ∆T) ⊂ AnchorIns(S, ∆I)∧ subsumption equivalent regarding activities

OrderIns(S′, ∆T) 6⊂ OrderIns(S′, ∆I) and anchors but different order

=⇒ ∆T [ins Act]
↔≡ ∆I [ins Act] ➪ ask user about order

and vice versa for =⇒ ∆I [ins Act]
↔≺ ∆T [ins Act]

v) Nmove
∆T

⊂ Nmove
∆T

∧AnchorMove(S, ∆T) ⊂ AnchorMove(S, ∆I)∧ subsumption equivalent regarding activities

OrderMove(S′, ∆T) 6⊂ OrderMove(S′, ∆I) and anchors but different order

=⇒ ∆T [move Act]
↔≺ ∆I [move Act] ➪ ask user about order

and vice versa for =⇒ ∆I [move Act]
↔≺ ∆T [move Act]

vi) (∆T [ins Act] ≡ ∆I [ins Act]∧ ∆T [move Act] ≺ ∆I [move Act])∨ subsumption equivalent insert
(∆T [move Act] ≡ ∆I [move Act]∧ ∆T [move Act] ≺ ∆I [move Act])∨ and move operations

(∆T [ins Act] ≺ ∆I [ins Act]∧ ∆T [move Act] ≺ ∆I [move Act]) but different order
OrderAgg(S, ∆T) 6⊆ OrderAgg(S, ∆I) for combination

=⇒ ∆T [ins/move Act]
↔≺ ∆I [ins/move Act] ➪ ask user about order

and vice versa for =⇒ ∆I [move Act]
↔≺ ∆T [move Act]

2) Different Anchors:

i) Nadd
∆T

⊆ Nadd
∆T

∧AnchorIns(S, ∆T) 6⊆ AnchorIns(S, ∆I) same activities but different anchors

=⇒ ∆T [ins Act] G ∆I [ins Act] ➪ ask user about anchors
and vice versa

ii) Nmove
∆T

⊆ Nmove
∆T

∧AnchorMove(S, ∆T) 6⊆ AnchorMove(S, ∆I)∧ same activities but different anchors

=⇒ ∆T [move Act] G ∆I [move Act] ➪ ask user about anchors
and vice versa

CHAPTER 6. MIGRATING PROCESS INSTANCES WITH OVERLAPPING BIAS 197

Table 6.2: Decision Rules for Partially Equivalent Process Type and Instance Changes (2)

∆T and ∆I partially equivalent, i.e., ∆T G ∆I

3) Conflicting Target Context (cf. Definition 20):

∆T . ∆I ⇐⇒ calculate ∆I(S′) (cf. Alg. 10)
∃(src, dest) ∈
(Econc context

∆1
[ins] ∪ Econc context

∆1
[move]) ∩ ➪ suggest ∆I(S′) to users

(Econc context
∆1

[ins] ∪ Econc context
∆2

[move]) of ∆I(S′) on S′

4) Multiple Operations:

i) Nadd
∆T

∩Nadd
∆I

6= ∅ =⇒ detect which activities are inserted twice

∆T [ins Act] G ∆I [ins Act] ➪ report activities (+ anchors) to user

ii) Ndel
∆T

∩Ndel
∆I

6= ∅ =⇒
∆T [del Act] G ∆I [del Act] calculate ∆I(S′) (cf. Alg. 10)

➪ suggest ∆I(S′) to users

iii) Nmove
∆T

∩Nmove
∆I

6= ∅ =⇒ detect which activities are moved

∆T [move Act] G ∆I [move Act] by ∆T and ∆I

➪ report activities (+ anchors) to user

For the deletion of sync edges act like for the deletion of activities. For all other projections,
e.g., for inserting data elements and changing attributes, act like for the multiple insertion of activities.

5) Context–Destroying Operations (cf. Definition 21):

∆T / ∆I determine destroyment of ∆T reg. ∆I

➪ report to user

6) Data Flow Changes:

∆T [data] G ∆I [data] ➪ ask user in any case

Chapter 7

Proof–Of–Concept Prototype

In order to prove practical feasibility of our (theoretical) framework for (dynamic) process
changes we have developed a powerful software prototype with integrated process modeling
and monitoring components [71, 100]. One major goal in design and implementation was to
ensure correctness of process instance migration to a changed process type schema for each kind
of process instance and at any point in time. In detail, the prototype offers the possibility to
generate and change process type schemes. Based on the process type schemes, process instances
can be created and started whereby their state is represented by model–inherent markings and
stored within execution histories. Process instances can also be ad hoc modified. Then the
instance–specific schema reflects the modifications which are logged within a change history.
If a process type schema is changed a new version is derived. At first, the prototype checks
state–related compliance (cf. Chapter 4) for all running process instances and migrates the
compliant unbiased process instances to new schema version. Then all biased process instances
are classified along their particular degree of overlap (cf. Chapter 6). For process instances with
disjoint bias the structural conflict tests (cf. Chapter 5) are applied. For process instances with
overlapping bias their specific degree of overlap is reported and compliant process instances with
equivalent and subsumption equivalent bias are migrated to the changed process type schema.

As we will discuss in Section 7.2, the correctness criteria developed in this work and related
checks have been realized within the prototype. Furthermore, we paid a lot of attention on
implementation and efficiency issues as well since classification of process instances, compliance
checks, and instance migrations must be carried out at runtime. As shown in Chapters 4 – 6
many optimizations regarding efficiency have been already conducted on the logical level. Ex-
amples include the provision of precise compliance conditions to efficiently check state–related
compliance (cf. Section 4.3.2), the quickly applicable conflict tests (cf. Section 5.4), and the
optimized instance classification by means of the presented hybrid approach (cf. Section 6.5).
These logical optimizations have been realized within the prototype as well. Additionally, fur-
ther optimization on the physical level have been carried out, e.g., concerning the intelligent
management of process type and process instance objects [71]. Overall, the realization of this

198

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 199

proof–of–concept prototype impressively demonstrates our framework for process change man-
agement and shows in which direction future adaptive PMS must go in order to finally deliver
in practice.

The remainder of this chapter is organized as follows: In Section 7.1, we present the architec-
ture of our proof–of–concept prototype. Section 7.2 shows how this demonstrator works along
different examples. Finally, Section 7.3 closes with a summary of the presented results.

7.1 Architectural Considerations

Our prototype is a stand–alone solution which allows to demonstrate all important aspects of
process change management. The implementation is completely based on Java. The demon-
strator offers the possibility to store process templates and process instances as XML files . The
latter includes information about current instance states (described by node and edge markings,
data element values, and execution histories) and instance–specific bias. Template changes (at
process type level) are reflected by maintaining different schema versions. Finally, changes at
the process type and the process instance level are additionally stored within respective (purged)
change histories (cf. Section 6.5).

Figure 7.1 depicts the underlying system architecture which consists of different modules
(called managers in the following). The Demo–Client provides the possibility to establish and
change process templates and process instances and to monitor process instance execution. In
order to carry out process instance activities the Worklist Manager offers respective work items
and the Execution Manager controls the progress of instance executions and cares about related
marking adaptations. If a template change takes place a new schema version for this template is
generated by the Template Manager. The Change Manager is then responsible for propagating
the template changes to related process instances and to enable their migrations to the new
schema version (if possible). In addition, process instances can be individually modified by the
Execution Manager. Finally, the Logging Module manages and stores execution and change
logs.

We now describe the different managers in detail:

• Template Manager: A new template can be defined by means of the Demo–Client which
offers a set of change operations for this purpose. This, in turn, leads to the creation of
an internal template object. The Template Manager loads and stores process templates
from/into XML files. Furthermore, template changes (e.g., insertion of activities) and
the required template versioning are accomplished by this component. If a displayed
template has been changed a view update is triggered within the Demo–Client. Finally,
the Template Manager informs the Change as well as the Logging Manager if a template
has been changed.

• Execution Manager: With this component new process instances can be created. This is

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 200

Change Manager Worklist Manager

Template Manager

Demo-Client

Logging Module

Execution Manager

• Evaluation of Messages
• Compliance Checks
• Classification of Instances
• Structural Conflict Tests
• Selection of Migration Strategy
• Migration of Compliant Instances
• Adaptation of Instance Markings

• Generates Worklist Entries
• Deletes Worklist Entries
• Changes Worklist Entries
• Manages Worklist

Message about State Changes

Version Management
 Template

Information

• Instance Execution
• Generates Instances
• Changes Instances
• Blocks and Releases Instances

During Migration

View Update
After Migration Informs About

Success or Failure
of Migrations

Fetches Active
Instances

State/History
Information

Template
Changes

Passes
Templates

Displayed
Instances

View
Updates

State
Information

• Manages Histories
• Stores Histories
• Searches For Start /

End Entries
• Logs Events

Requests
Templates

State
Information

• Generates Instances
• Starts Instances
• Changes Instances
• Changes Templates
• Visualization

Message
About

Activity Start

Figure 7.1: System Architecture of Proof–Of–Concept Prototype

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 201

done by fetching the respective template, by creating a process instance object, and by ini-
tializing this object (e.g., by setting the inital status of process start nodes to Activated).
Instance states are updated according to messages of the Worklist Manager. The Exe-
cution Manager, in turn, informs the Worklist Manager and the Demo–Client when an
instance state is changed. Furthermore, information about such state changes is sent to
the Logging Manager. Finally, the Execution Manager is responsible for locking instances
during compliance checks and migrations, and for releasing these locks afterwards.

• Logging Module: This module manages execution and change histories for each instance.
For templates change histories are maintained as well. Furthermore, all relevant events
like Start and End events for activity executions or instance–specific changes are logged.

• Change Manager: This manager receives messages about template changes from the Tem-
plate Manager and evaluates them respectively. Furthermore, it carries out state–related
compliance checks based on the state and the history information passed by the Execution
Manager. For compliant process instances the Change Manager classifies these instances
along their particular degree of overlap. Again, for this purpose, information about the
change logs of biased instances from the Execution Manager and (structural) template
information from the Template Manager are needed. For process instances with disjoint
bias, structural compliance is verified by applying the quick conflict tests introduced in
Section 5.4. Based on the classification of the process instances the Change Manager
selects the right (default) migration strategy. This means that compliant, unbiased pro-
cess instances and compliant process instances with disjoint bias are re–linked to the new
template version by applying respective state adaptations (cf. Section 4.4). For process
instances with equivalent and subsumption equivalent bias the classification is reported
to users and the default migration strategies are carried out. For process instances with
partially equivalent bias the respective sub–classification (cf. Section 6.7) is reported to
users such that they can specify desired migration strategies.

• Worklist Manager: Depending on messages from the Execution Manager this manager
generates or updates worklist entries. Generally, it is responsible for worklist management.
If a respective message from the Change Manager is received particular worklist entries
may have to be reset (cf. Algorithm 2, Section 4.4). If the activity related to a work item
is selected for execution a respective message is sent to the Execution Manager.

• Demo–Client: This monitoring and change client allows to create and change templates.
It is also possible to create, start and change process instances. Furthermore, templates,
instances, worklists, and histories are visualized. Finally, if a migration takes place a
migration report (cf. Figure 7.4) is depicted. This report shows the classification of
running process instances along their particular degree of overlap. Furthermore, it depicts
which process instances are compliant with the new template and which amount of time
was consumed for checking compliance and for migrating compliant process instances. For
non–compliant process instances an explanation is given why they are considered as being
non–compliant.

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 202

Process Type Schema S: Process Type Schema S’:

'T = (serialInsertActivity(S, send form, collect data, compose order),
 serialInsertActivity(S, send shirt, compose order, pack goods), addDataElements(S, {cust_size}),
 addDataEdges(S, {(send form, cust_size, write), (send shirt, cust_size, read)}), deleteActivity(S, confirm order))

migrate

Process Instance I1 on S’

Process Instance I1 on S:

get order

collect data

compose order

confirm order

pack
 goods

ship goods

get order collect data send form send shirt compose
order

pack goods

send
goods

cust_size

get order

collect data

compose order

confirm order

pack
 goods

ship goods

get order collect data send form send shirt compose
order

pack goods

send
goods

cust_size

Process Instance I2 on S:

get order

collect data

compose order

confirm order

pack
 goods

ship goods

Completed Activated TrueSignaled

Running

I2 not compliant with S’

type change / template change

Figure 7.2: Migrating Unbiased Process Instances (Abstract Level)

After sketching the prototype architecture we illustrate its functioning by different examples
in the following section.

7.2 Demonstrating a Complete Example

In this section, we systematically show how our prototype works by presenting examples for
migrating unbiased and biased instances to a changed process type schema. Doing so, we
introduce the basic functions of the demonstrator and refer to the theoretical concepts they
are based on. At first, the respective example is depicted on an abstract level. Then we show
screenshots regarding its realization within the prototype.

Example 7.2: Migrating Unbiased Process Instances (Abstract Level): The first example refers
to the migration of unbiased process instances. As introduced in Chapter 4, compliance of
unbiased instances depends on their particular state. Figure 7.2 shows two process instances
in different execution states. Process type change ∆T inserts activities send form and send
shirt with a data dependency between them and deletes activity confirm order. Obviously, I1

is compliant with S′ and therefore can be migrated to S′. In contrast, I2 is not compliant with
S′ (insertion before completed activity and deletion of running activity) and therefore remains
running according to S.

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 203

Figure 7.3: Migrating Unbiased Process Instances (Screenshot Prototype)

Example 7.3: Migrating Unbiased Process Instances (Screenshot Prototype): Taking Figure 7.2
and establishing the same example within the prototype we obtain the scenario as depicted
in Figure 7.3. The prototype checks compliance of the two instances and correctly decides to
migrate instance I1 to the new version V 2 of the respective process template. It also carries
out the necessary marking adaptations. In contrast, I2 (what corresponds to process instance
non compliant within the prototype) is considered as being not compliant and therefore remains
running according to the old version of the process template.

As we can see from the Migration Report depicted in Figure 7.4 the applicability of the
demonstrator is not restricted to only one or two running instances. The scenario depicted in
Figures 7.2 and 7.3 captures 2502 running process instances1. At this, 1501 instances were com-
pliant with the changed template and could be migrated to it whereas 1001 instances progressed
too far. The Migration Report also shows that compliance checks for 2502 instances took 16 ms
of time.

Figures 7.2 – 7.4 show that our prototype works fine for the migration of unbiased process
instances. The next examples refer to the migration of process instances with disjoint bias to
a changed process type schema. At this, we have to care about state–related and structural

1For demonstration purposes the prototype offers the possibility to clone process instances. Therewith an
arbitrary number of running process instances in a certain state can be achieved.

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 204

Figure 7.4: Migrating Unbiased Process Instances (Screenshot Migration Report)

compliance of the concerned instances. Similar to our state–related compliance conditions easily
to check conflict tests have been established to ensure structural compliance (cf. Section 5.4).

Example 7.5: Disjoint Changes: Deadlock–Causing Cycle (Abstract Level): Consider Figure
7.5 where two biased process instances I1 and I2 (running on template S) are depicted. I1 has
been biased by inserting activity remind and a sync link from remind to activity compose order.
Bias ∆I2 consists of the serial insertion of activity send form between activities pack goods and
send goods. Applying the structural conflict tests introduced in Section 5.4, I1 is rated as being
structurally non compliant with S′ since instance–specific schema S∗I1 := (S +∆I1)+∆T (which
would result when propagating ∆T to SI1) contains a deadlock–causing cycle. In contrast, I2 is
structurally compliant with S′ since no test indicates a structural conflict between ∆T and I2.
Furthermore, I2 is compliant regarding its state (cf. Section 4.3.2). Consequently, it is possible
to migrate I2 to S′ by applying Migration Strategy 1 (cf. Section 5.5). This means that I2

simply can be re–linked to S′ by maintaining original bias ∆I2 on S′.

Now let us have a look how the scenario depicted in Figure 7.5 turns out within our proof–
of–concept prototype.

Example 7.6: Disjoint Changes: Deadlock–Causing Cycle (Screenshot Prototype): Looking at
Figure 7.6 we can see that, generally, biased process instances are signed with the add–on
”adhoc modified”. The respective bias is graphically depicted within the respective instance–
specific schemes and stored within individual change histories. After propagating the template

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 205

Process Type Schema S: Process Type Schema S’:

propagate

Process Instance I1 on S*I1 := (S + 'I1) + 'T

Process Instance I1 on SI1 := S + 'I1 :

get order

collect data

compose order

confirm order

p ack
 goods

send goods

Process Instance I2 on SI2 := S + 'I2:

get order

collect data

compose order

confirm order

p ack
 goods

send form send goods

Deadlock!

get order

collect
data

compose
order

send
goods

pack
goods

control
order

confirm
shipping

e � SyncE

 compose order

get order

collect
data

send
goods

pack
goods

remind confirm
shipping

e � SyncE

get order

collect
data

send
goods

pack
goods

remind confirm
shipping

e � SyncE

compose
order

control
order

get order

collect
 data

compose
 order

pack

 goods

control
 order

confirm shipping

e

� SyncE

send form send goods

Process Instance I2 on S’I2 := S’ + 'I2:

migrate

'I1 = (serialInsertActivity(S, remind, confirm shipping, pack goods),
insertSyncEdge(S, remind, compose order))

'I2 = serialInsertActivity(S, send form, pack goods, send goods)

type change / template change

'T = (serialInsertActivity(S, control order, compose order, pack goods),
insertSyncEdge(S, control order, confirm shipping))

Completed Activated TrueSignaled

Running

Figure 7.5: Disjoint Changes: Deadlock–Causing Cycle (Abstract Level)

changes to the running instances the Migration Report yields that instance I2 (what corresponds
to process instance compliant within the prototype) was compliant and therefore migrated to
the second version V 2 of template Order Disjoint1. In contrast, the Migration Report shows
that instance I1 (what correponds to process instance deadlock within the prototype) could not
be migrated due to the fact that there would be a deadlock–causing cycle within the resulting
instance–specific schema.

A second scenario for migrating process instances with disjoint bias shows that our prototype
is also able to correctly deal with data flow conflicts.

Example 7.7: Disjoint Changes: Missing Input Data (Abstract Level): The respective scenario
is depicted in Figure 7.7. Here process instance I is biased due to the deletion of activities
compose order and pack goods as well as to the concomitant deletion of related read and write
data links on data element goods. Type change ∆T serially inserts activity control goods with
read data link connected to data element goods. If ∆T is propagated to SI in an uncontrolled

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 206

Figure 7.6: Disjoint Changes: Deadlock–Causing Cycle (Screenshot Prototype)

manner the resulting instance–specific schema S∗I := (S + ∆I) + ∆T will not be correct. The
correctness constraints set out by WSM Nets (cf. Definition 2, Section 3.1.1) are not satisfied
since the input parameter of activity control goods is no longer supplied.

How the scenario depicted in Figure 7.7 is realized within the prototype is shown by the
following example.

Example 7.8: Disjoint Changes: Missing Input Data (Screenshot Prototype): Consider Figure
7.8 where we can see biased process instance I and intended template change ∆T from Figure
7.7. As the Migration Report shows the instance is excluded from migration to the changed
template since there would be data flow conflicts within the resulting instance-specific schema.

Finally, we want to present a scenario for the migration of process instances with overlapping
bias to a changed process type schema. As an interesting example we present the migration of
process instances with equivalent bias (cf. Chapter 6).

Example 7.9: Equivalent Changes (Abstract Level): Look at Figure 7.9 where process type
change ∆T and instance change ∆I are equivalent since the instance–specific schema SI is trace
equivalent with the new type schema S′ (cf. Definition 11). According to Migration Strategy 2
(cf. Section 6.6) for instances with equivalent bias we can re–link I to S′ at any time. Doing so
the resulting instance–specific bias ∆I(S′) on S′ becomes empty.

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 207

Process Type Schema S: Process Type Schema S’:

'T = (serialInsertActivity(S, control goods, pack goods, send goods),
addDataEdges(S, {(control goods, goods, read)}))

propagate

Process Instance I1 on S*I := (S + 'I) + 'T

Process Instance I on SI := S + 'I :

Missing

input data

'I = (deleteDataEdges(S, {compose order, goods, write), (pack goods, goods, read)},
deleteActivity(S, compose order), deleteActivity(S, pack goods))

get order

collect data

compose
order

confirm order

pack
 goods

send goods

goods

get order

collect data

compose
order

confirm order

pack
 goods

control
goods

goods

send goods

get order

collect data

compose
order

confirm order

pack
 goods

send goods

goods

get order collect data confirm order control
 goods

send goods

goods

type change / template change

Completed Activated TrueSignaled

Running

Figure 7.7: Disjoint Changes: Missing Input Data (Abstract Level)

Figure 7.8: Disjoint Changes: Missing Input Data (Screenshot Prototype)

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 208

Process Type Schema S: Process Type Schema S’:

'T = serialInsertActivity(S, allergy Drug, operate, aftercare)

migrate

Process Instance I on S’I := S’

Process Instance I on SI := S + 'I :

Completed Activated TrueSignaled

'T { 'I 'I = serialInsertActivity(S, allergy Drug, operate, aftercare)

admit

examinate aftercare operate

admit

examinate aftercare allergyDrug operate

admit

examinate aftercare allergyDrug operate

admit

examinate aftercare allergyDrug operate

Figure 7.9: Equivalent Changes (Abstract Level)

The transfer of the respective scenario to our prototype is depicted in Figure 7.10.

Example 7.10: Equivalent Changes (Screenshot Prototype): Consider Figure 7.10. Obviously
process template Clinic Equivalent1, V2 corresponds to process type schema S′ and instance
equiv1 corresponds to process instance I after migration to S′. From the Migration Report
we can see that instance equiv1 was correctly estimated as being equivalent. Based on this
classification the default migration strategy was chosen by re–linking equiv1 to new template
version V 2 and by nullifying bias ∆I(S′) on S′. This is depicted by retracting the add–on ”adhoc
modified” of equiv1 (what means that equiv1 is running on template Clinical Equivalent, V2 as
an unbiased process instance).

Recapitulating this section, we can state that our prototype supports the migration of un-
biased instances as well as the migration of instances with disjoint and overlapping bias, in an
adequate and user–friendly way. Therefore it is possible to demonstrate the formal concepts of
this work and to show in which direction future adaptive PMS must go.

7.3 Summary and Outlook

In this chapter, the developed proof–of–concept prototype for process schema evolution was pre-
sented. At first, the basic architecture of this system was introduced. Then important functions
of the prototype were demonstrated by means of different change scenarios. These scenarios
have illustrated that the prototype supports process type changes as well as process instance
changes and adequately deals with the interplay between them. More precisely, when a process
type schema is changed for the unbiased process instances state–related compliance is checked
and the compliant instances are automatically migrated to the new schema version. Biased pro-
cess instances are classified along their particular degree of overlap. For process instances with
disjoint bias also structural test are carried out. For process instances with equivalent or sub-
sumption equivalent bias the adequate migration strategy is selected and applied. Altogether,
this chapter comprises some fundamental concepts for implementating adaptive PMS.

CHAPTER 7. PROOF–OF–CONCEPT PROTOTYPE 209

no bias, i.e., 'I = ∅

Figure 7.10: Equivalent Changes (Screenshot Prototype)

At the moment our ADEPT PMS prototype [90], which is currently used by several partners
[10, 11, 81] as a platform for realizing advanced PAIS (e.g., supporting e–business and clinical
workflows) is re–implemented within the AristaFlow project. This project is a cooperation
between the Universities of Ulm and Mannheim and several companies (for details see [86]).
Within this new prototype the lessons learned from the implementation of the proof–of–concept
prototype will be incorporated.

Chapter 8

Summary

A turbulent market and continously arising new IT trends (e.g., e–government, e–auctions,
web services) necessitate the integrated and flexible support of business processes. Therefore,
throughout the software world process–awareness is a hot topic nowadays (e.g., a lot of research
on composing (web) services in a process–oriented manner is being performed). Process man-
agement systems offer promising perspectives due to the separation of process logic from the
application code; i.e., the process logic is explicitly modeled and deposited within the system
and not ”hard–wired” within the application programs. This approach offers many advantages.
Since process executions are controlled by the process management system both application
development and application maintenance are simplified. Furthermore, process changes tend to
become more easy since business process changes can be accomplished by adapting the respective
process model, i.e., one must not dig into application program code.

Though the separation of process logic and application code provides the basis to be able
to change process instances at runtime this is not sufficiently realized in today’s systems. Com-
mercial process management systems either forbid changes of process instances (e.g., MQSeries
Workflow) or strongly restrict them (e.g., Ultimus). Other systems allow process instance
changes but they may lead to inconsistencies and errors in the sequel (e.g., Staffware). This
missing flexibility is the main reason for process management systems not being widely spread
in practice.

The main goal of this work was to develop a formal framework which enables process man-
agement systems to offer a correct, comprehensive, and user–friendly change management. This
requires the support of propagating process type changes to running process instances and to
migrate them to the changed process type schema afterwards. At this, the challenge was to
handle a large number of (long–running) process instances all being in different execution states
but also to deal with process instances which have been already individually modified. In par-
ticular, the question was not to allow either process type changes or process instance changes
but to support their interplay, i.e., the migration of biased process instances to the changed
process type schema. This requires a deep understanding of the possible relations between pro-

210

CHAPTER 8. SUMMARY 211

cess changes and the resulting migration strategies. We provided a prototypical implementation
of the developed concepts which supports the migration of unbiased as well as biased process
instances to the changed process type schema in a correct and efficient way. The most important
results of this work can be summarized as follows:

Migrating Unbiased Process Instances

Basic to process change management is a sound approach for checking compliance of unbiased
process instances with the changed process type schema and for migrating compliant instances
to this schema. Thereby, special attention must be paid on correctness and consistency as well as
on efficiency and usability of the presented concepts. In this work, these challenges were satisfied
by establishing a comprehensive correctness criterion, by providing efficient compliance checks,
and by automatically adapting states after migrating process instances to the new process type
schema.

In detail, we have analyzed different correctness criteria from the literature suggested for mi-
grating process instances to a changed process schema. From this, we have identified compliance
as an adequate criterion for meta models storing process instance states as explicit markings.
A process instance is said to be compliant with the changed process type schema if its previous
execution (represented by its execution history) can be reproduced on the changed process type
schema. We recognized that the quality of this compliance criterion depends on which view
on execution histories is used. We formally proved that the Start/End view on an execution
history ensures a correct migration of process instances. Furthermore, we found out that this
view is still too restrictive in conjunction with the use of iterative process constructs (i.e., loops).
Therefore we developed a special view on execution histories. This so called loop–tolerant view
is obtained by (logically) discarding all entries of already finished loop iterations. Using this
view we obtain a basis for correct process instance migration but without unnecessary exclusion
of process instances from being migrated.

After introducing a formal correctness criterion the challenging question was how to efficiently
ensure this criterion in the context of WSM Nets. For this, we provided precise state conditions
which make use of the model–inherent markings of WSM Nets as well as of the semantics of the
applied change operation. We presented a method to check compliance with complexity O(n)
(whereby n corresponds to the number of activities comprised by the respective process instance
schema). In average, however, process instance data has to be accessed 2 times.

To correctly and efficiently decide which process instances are compliant is only one side of
the coin. The other is to provide efficient methods to automatically adapt instance markings
on the changed process type schema. In any case, users must not be burdened with this task.
Therefore we developed an algorithm to automatically migrate compliant process instances to
the changed process type schema, i.e., to re–link these instances to the new type schema and to
automatically adapt their markings correspondingly. The algorithm developed for this purpose
is based on the marking and adaptations rules of WSM Nets as well as on the semantics of the
applied change operation. With a complexity of O(n) (whereby n corresponds to the number of
activities within the respective process instance schema) this algorithm can be effectively applied

CHAPTER 8. SUMMARY 212

even in large–scale environments.

In summary, the presented methods and algorithms for migrating of (unbiased) process
instances to a changed process type schema are not bound to the formalism of WSM Nets, i.e.,
they can be easily transferred to other process meta models with model–inherent markings like,
for example, Activity Nets as well. We have shown this in [91].

In order to offer a really flexible process management system it is necessary to support
changes at the process instance level as well. Thereby it is not sufficient to separate the treatment
of changes at the process type and at the process instance level from each other. It must be also
possible to adequately deal with the interplay of process type and process instance changes, i.e.,
to be able to migrate biased process instances to the changed process type schema as (if desired
by users and possible). Therefore this work dealt with the concurrent application of process
type and process instance changes as well.

Migrating Process Instances With Disjoint Bias

To put the discussion about the interplay between process type and process instance changes
on a solid basis, first of all, we put focus on the relationships between such changes. The
core of this discussion was the distinction between changes which have totally different effects
on the underlying process schema (e.g., changes which affect different regions of this schema)
and changes which have (partially) overlapping effects. This distinction between disjoint and
overlapping changes is important since process instances with disjoint bias (i.e., the instance–
specific bias and the process type change are disjoint) must be treated in another way than
process instances with overlapping bias when migrating them to a changed process type schema.
Whether a process instance has a disjoint or overlapping bias does not only affect necessary
compliance checks and marking adaptations, but does also affect the (new) bias of this instances
when being migrated to the changed process type schema. In order to obtain a formal basis we
defined the notations of disjoint and overlapping changes.

For migrating process instances with disjoint bias similar challenges exist as for the migration
of unbiased process instances. Of course, it is important to ensure correctness and consistency
at any time. The migration of process instances with disjoint bias imposes state–related as
well as structural correctness. Consequently, we presented a correctness criterion preserving
both properties when migrating process instances. Another challenge was to find methods to
efficiently ensure structural correctness when migrating compliant process instances with disjoint
bias. In order to achieve this we presented easily and quickly to check structural conflict tests.
These conflict tests indicate structural inconsistencies within the process instance schema when
propagating the process type change to it (like, for example, deadlock–causing cycles or missing
input data). Using them, in particular, it is possible to ensure structural correctness without
need for materializing the schema reflecting process instance and the process type change (and
consequently without need for explicit compliance checks on this schema). Instead, the conflict
tests are solely based on already present information (about applied process instance/process
type changes and about the original process schema). Together with the developed precise state
conditions the structural conflict tests ensure compliance of process instances with disjoint bias.

CHAPTER 8. SUMMARY 213

Finally, an important task was to find an adequate migration strategy for process instances
with disjoint bias. Thereby the goal was to avoid expensive and annoying user interactions. We
have shown that compliant process instances with disjoint bias can be automatically re–linked
to the changed process type schema while preserving their entire bias. Thus, possibly expensive
bias re–calculations on the changed process type schema do not become necessary in this case.
Furthermore, the migration can be completely carried out by the system.

In summary, the presented results for migrating process instances with disjoint bias are
fundamental (for any adaptive PMS). Furthermore, they can be easily transferred to other
process meta models as well.

The last step towards a flexible process change management is to master the migration of
process instances with overlapping bias as well.

Migrating Process Instances With Overlapping Bias

For any adaptive PMS it is indispensable to provide solutions for migrating process instances
with overlapping bias to a modified process type schema. To be able to do so we firstly presented
a classification for overlapping changes along their particular degree of overlap. This classifi-
cation ranges from equivalent changes (having completely the same effects on the respective
process schema) to partially equivalent changes with only minor overlap. This classification is
very important in order to find adequate migration strategies. Note that the choice of the right
migration strategy depends on the particular degree of overlap between process type and process
instance change.

On the way to find formal definitions for the different kinds of overlapping changes, we
discussed several approaches. They ranged from structural ones directly comparing process
schemes to operational ones directly contrasting changes. Starting from these approaches we
combined their particular strenghts to a hybrid approach. This hybrid approach determines all
inserted and deleted elements (e.g., activities or edges) by applying a structural approach. In
addition, operational methods are used to determine shifted activities. Thereby, a key element
of this approach is to purge change logs from noisy information. With the information gained by
applying the hybrid approach we were able to define the different kinds of overlapping changes
along their particular kind of overlap.

For all kinds of overlapping changes adequate migration strategies were provided. These
strategies contain information about necessary compliance checks and process instance adapta-
tions on the changed process type schema. The latter include marking adaptations of respective
instances as well as the re–calculation of their bias regarding the changed process type schema.
In order to make the classification along the degree of overlap more precise we introduced change
projections on the different change types, e.g., projections on activity insertions or deletions.
Doing so we obtained a fine–granular classification for overlapping changes what leads to a more
precise and therefore more optimized application of the migration strategies.

For partially equivalent changes for which no automatic migration strategy can be found we
indicated how to adequately assist users by corresponding messages. These messages exactly

CHAPTER 8. SUMMARY 214

report the particular scenario to users and provide decision guidance for them.

Altogether a complete solution for the adequate treatment of process type and process in-
stance changes was provided in this work. Furthermore, we implemented a proof–of–concept
prototype in order to demonstrate the presented concepts. In summary, this thesis provides a
complete framework for application–neutral change management in process management sys-
tems.

Outlook

Business processes are the ”jewels” of every company. The process life cycle [123, 124] sum-
marizes the different life phases of a business process: the process design phase, the configuration
phase (during which the processes are implemented), the enactment phase where processes are
executed, and the diagnosis phase where instance logs are analyzed in order to further optimize
the process instances (cf. Figure 8.1).

Figure 8.1: The Business Process
Life Cycle [123]

Process change management will offer important sup-
port for the different phases of the life cycle. During
the diagnosis phase process mining techniques may be
applied to generate suggestions for process type op-
timizations from analyzing process instance changes.
These process optimizations can be then applied to
process type schemes and, in turn, be propagated to
already running process instances. In particular, the
process instances which have indicated the respective
process optimization can be adequately treated using
the approach presented in this thesis.

An important aspect is the implementation of flexible PMS. As indicated in Chapter 7, we
have already elaborated propositions for the efficient storage and management of process type
and process instance schemes [70, 71]. Another question concerns locking of process instances
for compliance checks and migration to the changed process type schema but without blocking
their execution too long.

This thesis focused on the application–neutral part of change management in process man-
agement system. This application–neutral is fundamental to cover practical relevant scenarios
which can be (in most cases) automatically handled. Nevertheless, there are some scenarios
where also application–dependent information is desired. As one example consider semantical
conflicts between process type and process instance changes (like medical incompatibility of
drugs, cf. Figure 5.7, Section 5.3). To be able to deal with such semantical conflicts it becomes
necessary to deposit application information within the system, e.g., ”drugA is incompatible
with drugB”. If any activity related to one of these drugs is then inserted at process type or
process instance level we have to check whether an activity related to the other drug is inserted
on the other level or not. If so, we have, at minimum, to report this situation to the user.
In this context, we must also deal with the question how to store and evaluate the necessary

CHAPTER 8. SUMMARY 215

semantical information within the system (e.g., within ontologies or case–based reasoning sys-
tems [132]). Altogether, incorporating more semantics into PAIS constitutes a promising future
research topic.

Another important issue refers to the transferability of the presented results to process
management systems with distributed process control; i.e., the partitioning of process schemes
and the allocation of these partitions to different process server [15].

This work addresses the handling of process type and process instance changes. However,
there are other components within a process management system which may be subject of
changes as well like the organizational model or the application components (cf. Figure 8.2). Of
course, it is quite important to adequately cope with changes of these components as well and to
find complete solutions. Again, it is crucial to deal with the interplay and interactions between
changes of all components. For example, organizational changes (e.g., split of an organizational
unit, fusion of user roles) may require adaptations of actor assignments at process type level
[93, 137]. To be able to manage changes at all levels of a PMS is very challenging and will be a
hot topic in future research.

CHAPTER 8. SUMMARY 216

D

Payment 1:

calculate
bonus

collect
data

send
statement

pay
off

get
order

collect
data

compose
order

confirm
order

confirm
shipping

pack
goods

deliver
goods

get
order

Process Type 1: Order

Process Type 2: Payment

a) Process Type Level:

b) Process Instance Level:

Instances on Type 1:

 Order 1:

 Order 2:

 Order 3:

c) Organizational Level:

d) Application Level:

control
statement

DP Clerk3

Instances on Type 2:

Payment 2:

Payment 3:

Payment 4:

INTERACTIONS!!!

Completed

Activated

TrueSignaled

Figure 8.2: Changing Process Management Components – The Big Picture

Bibliography

[1] A. Agostini and G. De Michelis. Improving flexibility of workflow management systems.
In Proc. Int’l Conf. on Business Process Management (BPM’00), pages 218–234, 2000.

[2] A. Agostini and G. de Michelis. A light workflow management system using simple process
models. In Int’l Journal of Collaborative Comp. [61]. 335-363.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts, Architectures
and Applications. Springer, 2004.

[4] J. Andany, M. Leonard, and C. Palisser. Management of schema evolution in databases. In
Proc. Int’l Conf. on Very Large Databases (VLDB’91), pages 161–170, Barcelona, Septem-
ber 1991.

[5] T. Andrews, F. Curbera, H. Dholakia, and Y. Goland et al. BPELWS - Business Process
Execution Language for Web Services – Version 1.1., 2003. BEA Systems, International
Business Machines Corporation, Microsoft Corporation, SAP AG, Siebel Systems.

[6] E. Badouel and J. Oliver. Reconfigurable nets: a class of high level petri nets supporting
dynamic changes with workflow systems. Technical Report PI1163, Inria, 1998.

[7] B.R, Badrinath and K. Ramamritham. Semantics-based concurrency control: Beyond
commutativity. ACM Transactions on Database Systems, 17(1):163–199, 1992.

[8] K. Baina, S. Tata, and K. Benali. A model for process service interaction. In v.d. Aalst
et al. [122], pages 261–275.

[9] S. Bandinelli, A. Fugetta, and C. Ghezzi. Software process model evolution in the SPADE
environment. IEEE Transactions on Software Engineering, 19(12):1128–1144, December
1993.

[10] S. Bassil, M. Benyoucef, R. Keller, and P. Kropf. Addressing dynamism in e-negotiations
by workflow management systems. In Proc. Workshop on Negotiations in e-Markets –
Beyond Price Discovery (DEXA’02), September 2002.

[11] S. Bassil, R. Keller, and P. Kropf. A workflow–oriented system architecture for the man-
agement of container transportation. In Desel et al. [35], pages 116–131.

217

BIBLIOGRAPHY 218

[12] T. Basten. Branching bisimilarity is an equivalence indeed!. Information Processing Let-
ters, 58(3):141–147, 1996.

[13] T. Basten and W.M.P. v.d. Aalst. Inheritance of behavior. Journal of Logic and Algebraic
Programming, 47(2):47–145, 2001.

[14] C. Batini, M. Lenzerini, and S.B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

[15] T. Bauer. Efficient Realization of Enterprise–Wide Workflow Management Systems. PhD
thesis, University of Ulm, 2001. (in German).

[16] T. Bauer and P. Dadam. Efficient distributed workflow management based on variable
server assignments. In Proc. Int’l Conf on Advanced Information Systems Engineering
(CAiSE’00), pages 94–109, Stockholm, June 2000.

[17] C. Beckstein and J. Klausner. A planning framework for workflow management. In Proc.
Workshop Intelligent Workflow and Process Management, Stockholm, 1999.

[18] P. Berry and K.L Myers. Adaptive process management: An al perspective. In Proc.
Workshop Towards Adaptive Workflow Systems (CSCW’98), Seattle, 1998.

[19] T. Beuter. Workflow Management for Product Development Processes. PhD thesis, Uni-
versity of Ulm, 2002. (in German).

[20] T. Beuter, P. Dadam, and P. Schneider. The WEP model: Adequate workflow-
management for engineering processes. In Proc. Europ. Conf. on Concurrent Engineering,
Erlangen, April 1998.

[21] P. Bichler, G. Preuner, and M. Schrefl. Workflow transparency. In Proc. Int’l Conf on
Advanced Information Systems Engineering (CAiSE’97), pages 423–436, Barcelona, June
1997.

[22] D. Bogia and S. Kaplan. Flexibility and control for dynamic workflows in the wOrlds en-
vironment. In Proc. Int’l Conference on Organisational Computing Systems (COOCS’95),
pages 148–161, 1995.

[23] Y. Breitbart, A. Deacon, H.–J. Schek, A. Sheth, and G. Weikum. Merging application–
centric and data–centric approaches to support transaction–oriented multi–system work-
flows. ACM SIGMOD Record, 22(3):23–30, 1993.

[24] H. Bunke and X. Jiang. Graph matching and similarity. In H. N. Teodorescu, D. Mlynek,
A. Kandel, and H. J. Zimmermann, editors, Proc. Intelligent Systems and Interfaces.
Kluwer Academic Publishers, 2000.

[25] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and implementation of
exceptions in workflow management systems. ACM TODS, 24(3):405–451, 1999.

BIBLIOGRAPHY 219

[26] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data and Knowledge
Engineering, 24(3):211–238, 1998.

[27] D. Chiu, Q. Li, and K. Karlapalem. Web interface-driven cooperative exception handling
in ADOME. Informations Systems, 26(2):93–120, 2001.

[28] S. Conrad. Federated Database Systems – Concepts of Data Integration. Springer, 1997.
(in German).

[29] F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana. Exception handling in the
BPEL4WS language. In v.d. Aalst et al. [122], pages 321–335.

[30] P. Dadam. Distributed Databases and Client/Server systems. Springer, 1996. (in German).

[31] P. Dadam and M. Reichert. Towards a new dimension in clinical information processing.
In Proc. MIE2000/GMDS 2000, pages 295–301, Hannover, Sept. 2000.

[32] P. Dadam, M. Reichert, and K. Kuhn. Clinical workflows – the killer application for
process-oriented information systems? In Proc. Int’l Conf. on Business Information Sys-
tems (BIS’00), pages 36–59, Poznan, Poland, 2000.

[33] W. Deiters, T. Goesmann, K. Just-Hahn, T. Löffeler, and R. Rolles. Support for exception
handling through workflow management systems. In Proc. Workshop Towards Adaptive
Workflow Systems (CSCW’98), Seattle, November 1998.

[34] W. Deiters and V. Gruhn. The FUNSOFT net approach to software process management.
Int’l Journal of Software Engineering and Knowledge Engineering, 4(2):229–256, 1994.

[35] J. Desel, B. Pernici, and M. Weske, editors. Business Process Management., LNCS 3080,
Potsdam, Germany, June 2004.

[36] M. Dumas and A. H. M. ter Hofstede. UML activity diagrams as a workflow specification
language. In Proc. UML ’01, Toronto, Canada, 2001.

[37] D. Edmond and A.H.M. ter Hofstede. A reflective infrastructure for workflow adaptability.
Data and Knowledge Engineering, 34(3):271–304, 2000.

[38] C. Ellis and K. Keddara. A workflow change is a workflow. In Proc. Int’l Conf. on Business
Process Management (BPM’00), pages 516–534, 2000.

[39] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems.
In Proc. ACM Conf. on Organizational Computing Systems (COOCS’95), pages 10–21,
Milpitas, CA, August 1995.

[40] C.A. Ellis and C. Maltzahn. The Chautauqua workflow system. In Proc. Int’l Conf. on
System Science, Maui, Hawaii, 1997.

BIBLIOGRAPHY 220

[41] A. Fent, H. Reiter, and B. Freitag. Design for change: Evolving workflow specifica-
tions in ULTRAflow. In Proc. Int’l Conf. on Advanced Information Systems Engineering
(CAISE’02), pages 516–534, May 2002.

[42] FileNet Corporation. FileNet Business Process Manager., 2003. (www.filenet.com).

[43] H. Frank and J. Eder. Equivalence transformations on statecharts. In Proc. Int’l Conf. on
Software Engineering and Knowledge Engineering (SEKE’00), pages 150–158, Chicago,
July 2000.

[44] Gartner Group. Why e-business craves workflow technology. Technical Report T-09-4929,
Gartner Group, December 1999.

[45] V. Guth and A. Oberweis. Delta analysis of petri net based models for business processes.
In Proc. Applied Informatics, pages 23–32, 1997.

[46] M. Hammer and J. Champy. Reengineering the Corporation. Harper Collins, 1993.

[47] M. Hammori, J. Herbst, and N. Kleiner. Interactive workflow mining. In Desel et al. [35],
pages 211–226.

[48] Y. Han. Software Infrastructure for Configurable Workflow Systems. PhD thesis, TU
Berlin, 1995.

[49] P. Heimann, G. Joeris, C. Krapp, and B. Westfechtel. DYNAMITE: Dynamic task nets
for software process management. In Proc. Int’l Conf. Software Engineering (ICSE’06),
pages 331–341, Berlin, March 1996.

[50] J. Herbst. An inductive approach to adaptive workflow systems. In Proc. Workshop
Towards Adaptive Workflow Systems (CSCW’98), Seattle, November 1998.

[51] IBM. IBM WebSphere MQ Workflow V3.5 Release – Advanced pro-
duction workflow with MQ and portal integration, 2004. http://www-
306.ibm.com/common/ssi/rep ca/4/897/ENUS204-044/ENUS204-044.PDF.

[52] S. Jablonski, M. Böhm, and W. Schulze. Workflow Management Development of Applica-
tions and Systems. dpunkt, 1999. (in German).

[53] G. Joeris. Defining flexible workflow execution behaviors. In Proc. GI-Workshop,
Enterprise-wide and Cross-enterprise Workflow-Management (Informatik’99), pages 49–
55, October 1999.

[54] G. Joeris and O. Herzog. Managing evolving workflow specifications. In Proc. Int’l Conf.
on Cooperative Information Systems (CoopIS’98), pages 310–321, New York City, August
1998.

[55] B. Joos, R.M. Katzsch, A. Meier, and C. Wernet. A practical comparison of three work-
flow management systems: Workflow, Staffware und InConcert. Theorie und Praxis der
Wirtschaftsinformatik, 193:81–103, 1997. (in German).

BIBLIOGRAPHY 221

[56] D. Jungnickel. Graphs, Networks and Algorithms. BI Wissenschaftsverlag, 1994. (in
German).

[57] M. Kamath, G. Alonso, R. Günthör, and C. Mohan. Providing high availability in very
large workflow management systems. In Proc. Int’l Conf. on Extending Database Tech-
nology (EDBT’96), pages 427–442, Avignon, March 1996.

[58] G. Kappel. Reorganizing object behavior by behavior composition – coping with evolving
requirements in office systems. In Proc. Datenbanksysteme in Büro, Technik und Wis-
senschaft (BTW’91), pages 446–453, Kaiserslautern, March 1991.

[59] B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. PhD thesis, Queensland University of Technology, Brisbane, 2002. (available
via http://www.tm.tue.nl/it/research/patterns).

[60] B. Kiepuszewski, A.H.M. ter Hofstede, and C.J. Bussler. On structured workflow mod-
elling. In Proc. Int’l Conf. on Advanced Information Systems Engineering (CAiSE’00),
pages 431–445, 2000.

[61] M. Klein, C. Dellarocas, A. Bernstein, and (Eds.). Special issue on adaptive workflow
systems. Int’l Journal of Collaborative Comp., 9(3-4), 2000.

[62] N. Kleiner. Supporting usage–centered workflow design: Why and how?. In Desel et al.
[35], pages 227–243.

[63] M. Kloppmann and G. Pfau. WebSphere Application Server Enterprise
Process Choreographer: Concepts and Architecture., 2002. http://www-
136.ibm.com/developerworks/websphere/.

[64] J. Köbler, U. Schöning, and J. Toran. Graph isomorphism is low for PP. Journal of
Computational Complexity, 2:301–330, 1992.

[65] K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer, B. Arpinar, and J. Cardoso.
IntelliGEN: A distributed workflow system for discovering protein-protein interactions.
Distributed and Parallel Databases, 13(1):43–72, 2003.

[66] M. Kradolfer. A Workflow Metamodel Supporting Dynamic, Reuse–Based Model Evolu-
tion. PhD thesis, University of Zurich, 2000.

[67] M. Kradolfer and A. Geppert. Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In Proc. Int’l Conf. in Cooperative Information
Systems (CoopIS’99), pages 104–114, Edinburgh, September 1999.

[68] H.T. Kung and J.T. Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, 6(2):213–226, 1981.

BIBLIOGRAPHY 222

[69] J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute equivalence in databases
with application to schema integration. IEEE Transactions on Software Engineering,
15(4):449–463, 1989.

[70] M. Lauer. Implementation aspects for adaptive process management systems. Master’s
thesis, University of Ulm, Computer Science Faculty, 2004. (to appear, in German).

[71] M. Lauer, S. Rinderle, and M. Reichert. Representation of schema and instance objects in
adaptive process management systems. In Proc. Workshop on Business Process Oriented
Architectures (Informatik’04), LNI P-51, pages 555–560, Ulm, Germany, Sept. 2004. (in
German).

[72] F. Leymann. Supporting business transactions via partial recovery in workflow manage-
ment systems. In Proc. Datenbanksysteme in Büro, Technik und Wissenschaft (BTW’95),
pages 51–70, Dresden, March 1995.

[73] F. Leymann and W. Altenhuber. Managing business processes as an information ressource.
IBM Systems Journal, 33(2):326–348, 1994.

[74] F. Leymann and D. Roller. Production Workflow. Prentice Hall, 2000.

[75] C. Liu and R. Conradi. Automatic replanning of task networks for process model evo-
lution. In Proc. European Software Engineering Conference, pages 434–450, Garmisch-
Partenkirchen, Germany, Sept. 1993.

[76] P. Mangan and S. Sadiq. A constraint specification approach to building flexible workflows.
Journal of Research and Practice in Information Technology, 35(1):21–39, 2002.

[77] J.E. Mann. Workflow and EAI. EAI Journal, September/October:49–53, 1999.

[78] U. Martschat. Comparison and evaluation of production workflow-management-systems.
Master’s thesis, University of Ulm, Computer Science Faculty, 2001. (in German).

[79] Microsoft. BizTalk Server, 2004. http://www.microsoft.com/biztalk/.

[80] R. Müller. Event-Oriented Dynamic Adaptation of Workflows. PhD thesis, University of
Leipzig, Germany, 2002.

[81] R. Müller, U. Greiner, and E. Rahm. AgentWork: A workflow system supporting
rule–based workflow adaptation. Data & Knowledge Engineering, 51(2):223–256, 2004.

[82] P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum. Workflow history management
in virtual enterprises using a light-weight workflow management system. In Proc. Int’l
Workshop on Research Issues in Data Engineering (RIDE’99), pages 148–155, March
1999.

[83] A. Oberweis. Modeling and Execution of Workflows with Petri Nets. Teubner, 1996. (in
German).

BIBLIOGRAPHY 223

[84] G. Piccinelli and S. Lane Williams. Workflow: A language for composing web services. In
v.d. Aalst et al. [122], pages 13–24.

[85] P. McBrien; A. Poulovassilis. A formalism of semantic schema integration. Information
Systems, 23(5):390–334, 1998.

[86] The AristaFlow Project. www.aristaflow.de, 2004.

[87] M. Reichert. Dynamic Changes in Workflow-Management-Systems. PhD thesis, University
of Ulm, Computer Science Faculty, 2000. (in German).

[88] M. Reichert and P. Dadam. ADEPTflex - supporting dynamic changes of workflows with-
out losing control. JIIS, 10(2):93–129, 1998.

[89] M. Reichert and S. Rinderle. Change authorizations in adaptive workflow management
systems. In Proc. Conf. Sichere Geschäftsprozesse, pages 30–42, St. Leon-Rot, Germany,
September 2002. (in German).

[90] M. Reichert, S. Rinderle, and P. Dadam. ADEPT workflow management system: Flexible
support for enterprise-wide business processes (tool presentation). In v.d. Aalst et al. [122],
pages 370–379.

[91] M. Reichert, S. Rinderle, and P. Dadam. On the common support of workflow type
and instance changes under correctness constraints. In Proc. Int’l Conf. on Cooperative
Information Systems (CoopIS’03), LNCS 2888, pages 407–425, Catania, Italy, November
2003.

[92] M. Reichert, S. Rinderle, and P. Dadam. On the modeling of correct service flows with
BPEL4WS. In Proc. Conf. on Development Methods for Information Systems and their
Application (EMISA’04), pages 117–128, Luxembourg, October 2004.

[93] M. Reichert, U. Wiedemuth-Catrinescu, and S. Rinderle. Evolution of access control in
information systems. In Proc. Conf. Elektronische Geschäftsprozesse (EGP’04), pages
100–114, Klagenfurt, 2004. (in German).

[94] W. Reisig. Petri Nets: An Introduction. Springer, 1991. (in German).

[95] S. Rinderle and P. Dadam. Schema evolution in workflow management systems. Informatik
Spektrum, 26(1):17–19, 2003. (in German).

[96] S. Rinderle, M. Reichert, and P. Dadam. Evaluation of correctness criteria for dynamic
workflow changes. In v.d. Aalst et al. [122], pages 41–57.

[97] S. Rinderle, M. Reichert, and P. Dadam. On dealing with semantically conflicting business
process changes. Technical Report UIB-2003-04, University of Ulm, June 2003.

[98] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering, Special Issue on Advances
in Business Process Management, 50(1):9–34, 2004.

BIBLIOGRAPHY 224

[99] S. Rinderle, M. Reichert, and P. Dadam. Disjoint and overlapping process changes: Chal-
lenges, solutions, applications. In Proc. Int’l Conf. on Cooperative Information Systems
(CoopIS’04), pages 101–120, Larnaca, Cyprus, October 2004.

[100] S. Rinderle, M. Reichert, and P. Dadam. Flexible support of team processes by adaptive
workflow systems. Distributed and Parallel Databases, 16(1):91–116, 2004.

[101] S. Rinderle, M. Reichert, and P. Dadam. On dealing with structural conflicts between
process type and instance changes. In Desel et al. [35], pages 274–289.

[102] B. Rosenstengel and U. Winand. Petri Nets: An Application–Oriented Introduction.
Vieweg, 1991. (in German).

[103] S. Sadiq. Handling dynamic schema changes in workflow processes. In Proc. 11th Aus-
tralian Database Conference, January 2000.

[104] S. Sadiq, O. Marjanovic, and M. Orlowska. Managing change and time in dynamic work-
flow processes. IJCIS, 9(1&2):93–116, 2000.

[105] S. Sadiq and M. Orlowska. Dynamic modification of workflows. Technical Report 442,
University of Queensland, Brisbane, Australia, October 1998.

[106] S. Sadiq and M. Orlowska. Architectural considerations in systems supporting dynamic
workflow modification. In Proc. Workshop Software Architectures for Business Process
Management, Heidelberg, June 1999.

[107] S. Sadiq, W. Sadiq, and M. Orlowska. Pockets of flexibility in workflow specifications. In
Proc. Int’l Entity–Relationship Conf. (ER’01), pages 513–526, Yokohama, 2001.

[108] SAP. Webflow Engine Driving Continous Improvement In Business Processes., 2003.
http://www.sap.com/solutions/netweaver/brochures/.

[109] SERprocess. (www.ser.com).

[110] R. Siebert, T. Kindler, and T. Soyez. Integrated workflow and telecooperation support for
the german government. In Proc. Symposium on Applied Computing (SAC’1997), pages
177–179, San Jose, March 1997.

[111] Staffware. Staffware Process Suite Brochure, 2004.
http://www.staffware.com/downloads/.

[112] D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized infor-
mation processes. ACM–TOIS, 13(2):206–233, 1995.

[113] R. v. Glabbeek and U. Goltz. Refinement of actions and equivalence notions for concurrent
systems. Acta Informatica, 37(4–5):229–327, 2001.

[114] W.M.P. v.d. Aalst. Timed Coloured Petri Nets and their Application to Logistics. PhD
thesis, Eindhoven University of Technology, 1992.

BIBLIOGRAPHY 225

[115] W.M.P. v.d. Aalst. Exterminating the dynamic change bug: A concrete approach to
support worfklow change. Information Systems Frontiers, 3(3):297–317, 2001.

[116] W.M.P. v.d. Aalst. Inheritance of business processes: A journey visiting four notorious
problems. In Proc. Petri Net Technology for Communication Based Systems, LNCS 2472,
pages 383–408, 2003.

[117] W.M.P. v.d. Aalst and T. Basten. Identifying commonalities and differences in object life
cycles using behavorial inheritance. In Proc. Int’l Conf. on Application and Theory of
Petri Nets (ICATPN’01), LNCS 2075, pages 32 – 52, Newcastle, UK, 2001.

[118] W.M.P v.d. Aalst and T. Basten. Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science, 270(1-2):125–203, 2002.

[119] W.M.P. v.d. Aalst and P. Berens. Beyond workflow management: Product-driven case
handling. In Proc. Conference On Supporting Group Work, pages 42–51, New York, 2001.

[120] W.M.P. v.d. Aalst and S. Jablonski. Dealing with workflow change: Identification of issues
an solutions. Int’l Journal of Comp. Systems, Science and Engineering, 15(5):267–276,
2000.

[121] W.M.P v.d. Aalst and M. Song. Mining social networks. uncovering interaction patterns
in business processes. In Desel et al. [35], pages 244–260.

[122] W.M.P. v.d. Aalst, A.H.M. ter Hofstede, and M. Weske, editors. Business Process Man-
agement., LNCS 2678, Eindhoven, The Netherlands, June 2003.

[123] W.M.P v.d Aalst, A.H.M ter Hofstede, and M. Weske. Business process management: A
survey. In v.d. Aalst et al. [122], pages 1–12.

[124] W.M.P v.d. Aalst, B.F van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M
Weijters. Workflow mining: A survey of issues and approaches. Data and Knowledge
Engineering, 27(2):237–267, 2003.

[125] W.M.P. v.d. Aalst and K. van Hee. Workflow Management. MIT Press, 2002.

[126] W.M.P v.d. Aalst, M. Weske, and D. Grünbauer. Case handling: A new paradigm for
business process support. Data & Knowledge Engineering, 2004. (to appear).

[127] W.M.P v.d. Aalst, M. Weske, and G. Wirtz. Advanced topics in workflow management:
Issues, requirements, and solutions. Int’l Journal of Integrated Design and Process Science,
7(3), 2003.

[128] E. Verbeek. Verification of WF–Nets. PhD thesis, Technical University of Eindhoven,
2004.

[129] H.M.W. Verbeek and W.M.P. v.d. Aalst. Woflan 2.0 A petri-net-based workflow diagnosis
tool. In Proc. Int’l Conf. on Application and Theory of Petri Nets (ICATPN’00), LNCS
1825, pages 455–464, Aarhus, June 2000.

BIBLIOGRAPHY 226

[130] G. Vossen and J. Becker. Business Process Modeling and Workflow Management. Thomson
Publisher, 1996. (in German).

[131] J. Wäsch and W. Klas. History merging as a mechanism for concurrency control in
cooperative environments. In Proc. Int’l Workshop on Research Issues in Data Engineering
(RIDE–NDS’96), pages 76–85, New Orleans, February 1996.

[132] B. Weber, W. Werner, and R. Breu. CCBR–enabled adaptive workflow management. In
Proc. European Conf. on Case-Based Reasoning (ECCBR’04), LNCS 3155, pages 434–448,
Madrid, 2004.

[133] M. Weber, T. Illmann, and A. Schmidt. Webflow: Decentralized workflow management in
the world wide web. In Proc. Int’l Conf. on Applied Informatics (AI’98), February 1998.

[134] M. Weber, G. Patsch, A. Scheller-Huoy, J. Schweitzer, and G. Schneider. Flexible real-
time meeting support for workflow management systems. In Proc. Hawaii Int’l Conf. on
System Sciences (HICSS’97), Maui, Hawaii, January 1997.

[135] M. Weske. Workflow management systems: Formal foundation, conceptual design, imple-
mentation aspects. University of Münster, Germany, 2000. Habilitation Thesis.

[136] M. Weske. Formal foundation and conceptual design of dynamic adaptations in a work-
flow management system. In Proc. Hawaii International Conference on System Sciences
(HICSS-34), 2001.

[137] U. Wiedemuth-Catrinescu. Evolution of organizational models in workflow management
systems. Master’s thesis, University of Ulm, Computer Science Faculty, 2002. (in German).

[138] D.E Wilkins, K.L. Myers, J.D Lowrance, and L.P Wesley. Planning and reacting in
uncertain and dynamic environments. Experimental and Theoretical AI, 7(1):197–227,
1995.

[139] Workflow Management Coalition. Terminology & glossary. Technical Report WFMC-TC-
1011, WfMC, 1999.

Appendix A

Abbreviations

Table A.1: List of Abbreviations

Abbreviation Meaning Chapter

CP Changing the Past Problem cf. Chapter 2
DMBS Database Management System cf. Chapter 2
DS Dangling States Problem cf. Chapter 2
GCD Greates Common Divisor cf. Chapter 6
GI Graph Isomorphism cf. Chapter 6
ICN Information Control Network cf. Chapter 2
LT Loop Tolerance Problem cf. Chapter 2
MCS Minimal Critical Specification cf. Chapter 2
NM Net Model cf. Chapter 2
OC Order Changing Problem cf. Chapter 2
PAIS Process–Aware Information Systems cf. Chapter 1
PI Parallel Insertion Problem cf. Chapter 2
PMS Process Management System cf. Chapter 1
SCOC Synthetic Cut Over Change cf. Chapter 2
SM Sequential Model cf. Chapter 2
WSM Net Well–Structured Marking Net cf. Chapter 3

227

Appendix B

Definitions and Functions

Table B.1: A Selection of Important Functions Based On WSM Nets [87]

Let S = (N, D, . . .) be a correct WSM Net (cf. Definitions 1 and 2).

c succ(S,n) / c pred(S,n) set of all direct successors / predecessors
of activity n considering only
edges e ∈ CtrlE in S

c succ∗(S,n) / c pred∗(S,n) set of all direct or indirect successors / predecessors
of activity n considering only
edges e ∈ CtrlE in S

succ(S,n) / pred(S,n) set of all direct successors / predecessors
of activity n referring to edges
e ∈ (CtrlE ∪ SyncE) in S

succ∗(S,n) / pred∗(S,n) set of all direct and indirect successors / predecessors
of activity n referring to edges e ∈ (CtrlE ∪ SyncE)
in S
succ∗(S,n) = {n* ∈ N | n* ∈ succ(S,n)

∨
(∃ n** ∈ succ(S,n): n* ∈ succ*(S,n**))}

MinBlock(S, N∗) minimal control block in S embracing
all activities contained in N∗ (N∗ ⊆ N)

BranchNodes(S, n1, n2) determines split and join activity nodes (s, j) of
the smallest branching block embracing n1 and n2 in S

joinS(s) (splitS(j)) With split (join) node s (j) associated join
(split) node in WSM Net S.

endloopS(LS) (startloopS(LE)) With loop start (end) node LS (LE) associated loop end
(start) node in WSM Net S.

228

APPENDIX B. DEFINITIONS AND FUNCTIONS 229

Rules 1 (ADEPT Marking and Execution Rules) Let S = (N, D, NT, CtrlE, SyncE,
LoopE, DataE, DP, EC) be a correct WSM Net (cf. Definitions 1 and 2) and let
I = (S, ∆I , MSI , V alSI , ΠSI

I) be a process instance running according to S with node and
edge markings MSI = (NSSI , ESSI) (cf. Definition 3).

Execution Rule E1 (Executing Activity Nodes)

∀n ∈ N with NT (N) ∈ {EndFlow, Activity, AndJoin, AndSplit, XOrSplit} ∧
NSSI (n) = NotActivated:

NSSI (n) = NotActivated can be changed into NSSI = Activated ⇐⇒
(∀cE ∈ CtrlE with cE = (x, n) (x ∈ N): ESSI (e) = TrueSignaled) ∧

(∀sE ∈ SyncE with sE = (y, n) (y ∈ N): ESSI (sE) ∈ {TrueSignaled, FalseSignaled})

Execution Rule E2 (Executing XOr–Joins)

∀n ∈ N with NT (N) = XOrJoin ∧ NSSI (n) = NotActivated:

NSSI (n) = NotActivated can be changed into NSSI = Activated ⇐⇒
(∃̇cE ∈ CtrlE with cE = (x, n) (x ∈ N): ESSI (e) = TrueSignaled) ∧

(∀sE ∈ SyncE with sE = (y, n) (y ∈ N): ESSI (sE) ∈ {TrueSignaled, FalseSignaled})

Execution Rule E3 (Executing Loop Start Nodes)

∀n ∈ N with NT (N) = StartLoop ∧ NSSI (n) = NotActivated:

NSSI (n) = NotActivated can be changed into NSSI = Activated ⇐⇒
(∀cE ∈ CtrlE with cE = (x, n) (x ∈ N): ESSI (e) = TrueSignaled) ∧

(∀sE ∈ SyncE with sE = (y, n) (y ∈ N): ESSI (sE) ∈ {TrueSignaled, FalseSignaled}) ∧
(lE ∈ LoopE with lE = (LE, n) (LE ∈ N , NT(LE) = EndLoop):
ESSI (lE) ∈ {NotSignaled, TrueSignaled })

Marking Rule M1 (Completing Activities)

∀n ∈ N with NT (N) ∈ {StartFlow, EndFlow, Activity, AndJoin, AndSplit, XOrJoin} ∧
NSSI (n) = Running:

NSSI (n) = Running can be changed into NSSI = Completed ⇐⇒
n is successfully terminated. Then:

(NT(n) = EndFlow =⇒ I is terminated) ∨
(∀e ∈ CtrlE ∪ SyncE with e = (n, x) (x ∈ N): ESSI := TrueSignaled)

APPENDIX B. DEFINITIONS AND FUNCTIONS 230

Marking Rule M2 (Completing XOr–Splits)

∀n ∈ N with NT (N) = XOrSplit, decision parameter DPn, and NSSI (n) = Running:

NSSI (n) = Running can be changed into NSSI = Completed ⇐⇒
n is successfully terminated. Then:

(echoice ∈ CtrlE with echoice = (n, x) (x ∈ N) ∧ SCechoice = DPn: ESSI (echoice) := TrueSignaled) ∧
(e ∈ CtrlE with e = (n, y) (y ∈ N) ∧ SCe 6= DPn: ESSI := FalseSignaled ∧
∀z ∈ ({y} ∪ c succ∗(y)) ∩ c pred∗(joinS(n)):

NSSI (z) = Skipped and ∀ efalse = (z, t) (t ∈ N): ESSI (efalse):= FalseSignaled) ∧
(∀sE ∈ SyncE with sE = (n, w) (w ∈ N): ESSI := TrueSignaled)

Marking Rule M3 (Completing EndLoops)

∀LE ∈ N with NT (N) = EndLoop, lE ∈ LoopE with lE = (LE , LS , lC) (LS = startloopS(LE))
∧ NSSI (n) = Running:

NSSI (LE) = Running can be changed into NSLE = Completed ⇐⇒
LE is successfully terminated. Then:

(lC = True =⇒
∀n ∈ {LS , LE} ∪ (c succ∗(LS) ∩ c pred∗(LE):

NSSI (n):=NotActivated and ∀e ∈ CtrlE ∪ SyncE ∪ Loop with e = (n, x) (x ∈ N):
ESSI :=NotSignaled ∧ ESSI (lE):=TrueSignaled) ∨

lC = False =⇒
(ESSI (lE):=FalseSignaled) ∧

(∀e ∈ CtrlE ∪ SyncE with e = (LE, x) (x ∈ N): ESSI :=TrueSignaled)

APPENDIX B. DEFINITIONS AND FUNCTIONS 231

Auxiliary Definition 2 (Assigning Change Operations to Change Types) Let ∆ be a
change. Let further

1. Change be a set of change operations (cf. Tables 3.1, 3.2, and 3.3) with

Change:={[serial|parallel|branch]InsertActivity(. . .), deleteActivity(. . .),
[serial|parallel|branch]MoveActivitiy(. . .), insertSyncEdge(. . .), deleteSyncEdge(. . .),
insertLoopEdge(. . .), deleteBlock(. . .), addDataElements(. . .), deleteDataElements(. . .),
addDataEdges(. . .), deleteDataEdges(. . .), changeActivityAttributes(. . .),
changeEdgeAttributes(. . .)}1

and

2. OpType be a set of operation types with OpType:={ins Act, del Act, move Act, ins Sync,
del Sync, ins Loop, del Loop, data, attrChange}

3. optype be a function which assigns to each change operation in Change its specific opera-
tion type in OpType. Formally:

optype : Change 7→ OpType

with

optype([serial|parallel|branch]MoveActivitiy(. . .)) = ins Act
optype(deleteActivity(. . .)) = del Act
optype([serial|parallel|branch]MoveActivitiy(. . .)) = move Act
optype(insertSyncEdge(. . .)) = ins Sync
optype(deleteSyncEdge(. . .)) = del Sync
optype(addDataElements(. . .)) = data
optype(deleteDataElements(. . .)) = data
optype(addDataEdges(. . .)) = data
optype(deleteDataEdges(. . .)) = data
optyp(changeActivityAttributes(. . .) = attrChange
optyp(changeEgdeAttributes(. . .) = attrChange

1One may wonder whether block operations are taken into account or not. Block operations are implicitely
treated since we base projections onto purged change log ∆purged. Within this logical view on ∆ block operations
are split into their single operations.

Appendix C

Proofs

C.1 Proof (Theorem 1)

At first, we repeat Lemma 1 since it is needed in order to prove Theorem 1. It states that all
predecessors of a running or completed activity n∗ must have one of the markings COMPLETED or
SKIPPED.

Lemma 1 (Correctness Property for Process Instance Markings) Let
I = (S, ∆I , MSI , . . .) be a process instance based on a (correct) WSM Net S = (N, D, . . .).
Marking MSI has been achieved by applying the ADEPT marking and execution rules (cf. Rules
1, Appendix B). Then for MSI = (NSSI , ESSI) the following condition holds:

∀n ∈ N with NSSI (n) ∈ {Activated, Running, Completed, Skipped} =⇒
(∀ n∗ ∈ pred∗(S, n): NS(n∗) ∈ {Completed, Skipped})

We now have done all necessary prepartory work for proving Theorem 1:

Theorem 1 (Compliance Conditions When Inserting Activities) Let S = (N, D, NT,
CtrlE, SyncE, LoopE, DataE) be a correct process type schema (represented by a WSM–Net)
and I be a process instance on S with reduced execution history ΠS

I red and with marking
MS = (NSS , ESS). Assume further that change operation ∆ transforms S into a correct
process type schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE’).
Thereby ∆ inserts an activity ninsert (with associated control and sync edges) into S,
i.e., ∆ = [serial|parallel|branch]InsertActivity(S, ninsert, . . .) (cf. Table 3.2). Then:

I is compliant with S’ ⇔
∀ n ∈ {x ∈ N | ninsert → x ∈ (CtrlE’ ∪ SyncE’)}:

NS(n) ∈ {NotActivated, Activated, Skipped} ∨
ninsert is inserted into an already skipped branch of an XOR-branching

The proposition of Theorem 1 can be more formally described as follows:

232

APPENDIX C. PROOFS 233

I is compliant with S’ ⇔ B1 ∨B2 ∨B3 with
B1 ≡ [∀n ∈ succ(S’,ninsert):

NS(n) ∈ {NotActivated, Activated, Skipped}]
B2 ≡ [∀ n ∈ c pred(S’, ninsert): NS(n) = Skipped]
B3 ≡ [ninsert is inserted into a skipped, empty branch]

(The statement ”ninsert is inserted into an already skipped branch” corresponds to
B2 ∨B3∨ [∀n ∈ c succ(S’,ninsert): NS(n) = Skipped] where the last term is already included
by B1.)

”⇒” I is compliant with S’ ⇒ B1 ∨B2 ∨B3

Proof by Contradiction, we show: ¬(B1 ∨B2 ∨B3) ⇒ I is not compliant with S’

Assumption: ¬(B1 ∨B2 ∨B3) holds
¬(B1 ∨B2 ∨B3) ≡ ¬B1 ∧ ¬B2 ∧ ¬B3

≡ [∃n∗ ∈ succ(S’, ninsert): NS(n∗) ∈ {Running, Completed} ∧
[∃n∗∗ ∈ c pred(S’, ninsert): NS(n∗∗) 6= Skipped] ∧
[ninsert is not inserted into a skipped, empty branch]

With ¬B1 and Lemma 1 we obtain NS’(ninsert) ∈ {Completed, Skipped}. Consequently, the
marking NS(ninsert) must be Skipped. After re-evaluating the marking of the modified instance
a newly inserted activity will be either marked as Skipped (insertion into a skipped branch) or
as NotActivated or Activated.

Taking the above assumption, ninsert must therefore have been inserted into an already
skipped branch of an XOR-branching with split node s and join node j. Because of ¬B3 this
branch cannot be empty. Based on this, it either follows that ninsert is not a direct successor of
s – then ∀ n ∈ c pred(S’, ninsert): NS(n) = Skipped – or ninsert is not a direct predecessor of j
– ∀ n ∈ c succ(S’, ninsert): NS(n) = Skipped. The first statement can not be true because of
¬B2 and the latter because of ¬B1. This is contradicting to our assumption. 2

Nrel

ninsert

Nsucc

Ncritical

a) b)

nsrc

ndest inserted sync edge

Figure C.1: Important Sets of a Process Schema Referring to ninsert

Let now statements C1 and C2 be as follows:
C1 ≡ [∀ n ∈ succ(S’,ninsert):

NS(n) ∈ {NotActivated, Activated, Skipped}]
C2 ≡ [ninsert is inserted into a skipped branch of an XOR-branching]

APPENDIX C. PROOFS 234

”⇐”: C1 ∨ C2 ⇒ I is compliant with S’ (according to Criterion 7)
We first prove C1 ⇒ I is compliant with S’.
Assumption:

C1 ≡ [∀ n ∈ succ(S’,ninsert):
NS(n) ∈ {NotActivated, Activated, Skipped}]

⇒ ∀ n ∈ succ(S’,ninsert):
6 ∃ ei ∈ ΠS

I red with ei ∈ {Start(n), End(n)}
⇒ ∀ n ∈ succ∗(S’,ninsert):

6 ∃ ei ∈ ΠS
I red with ei ∈ {Start(n), End(n)} (¦)

That means that the history ΠS
I red contains no entry of a direct or indirect successor of ninsert.

Furthermore, a re-evaluation of the instance marking results in
NS’(ninsert) ∈ {NotActivated, Activated, Skipped}
⇒ 6 ∃ ei ∈ ΠS

I red with ei ∈ {Start(ninsert), End(ninsert)} (¦¦)
We now show that I is compliant with S’, i.e., the previous execution events e0, . . . , ek stored in
ΠS

I red can be applied to S’ in the given order.

Let Nrel be the set of all activity nodes of N’ which can be executed before ninsert is started(see
Figure C.1a). So, Nrel contains all activity nodes positioned before or parallel to ninsert. For-
mally:

Nrel := pred∗(S’, ninsert) ∪
{n ∈ N’ | n /∈ pred∗ (S’, ninsert) ∧ n /∈ succ∗(S’, ninsert)}

With (¦) and (¦¦) it follows:

∀ ei ∈ ΠS
I red with ei = Start(n) ∨ ei = End(n): n ∈ Nrel ⊆ N

Thus all entries of ΠS
I red have been written by activity nodes which are – in principle – executable

before ninsert referring to S’. Since the subgraph of S induced by the node set Nrel (cf. Figure
C.1a) is not affected by the insertion and therefore remains unchanged, e1, . . . , ek can be carried
out on this subgraph in the given order and therefore on S’ as well.
Referring to the second part [C2 ⇒ I is compliant with S’] it is clear that ninsert is inserted into
a skipped branch, i.e., we obtain NS’(ninsert) = SKIPPED. Therefore ninsert has not yet written
any entry into the execution history. Consequently, the previous execution history ΠS

I red is
producible on S’ as well. 2

C.2 Proof (Theorem 3)

Theorem 3 (Compliance Conditions When Inserting Control And Sync Edges) Let
S = (N, D, NT, CtrlE, SyncE, LoopE, DataE) be a correct process type schema (represented
by a WSM–Net) and I be a process instance on S with reduced execution history ΠS

I red and
with marking MS = (NSS , ESS). Assume further that change operation ∆ transforms S into a
correct process type schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE).

(a) ∆ inserts a control edge ctrlE = nsrc → ndest into S, i.e, ∆ = addCtrlEdge(S, ctrlE). Then:

APPENDIX C. PROOFS 235

I is compliant with S’ ⇔ NS(ndest) ∈ {NotActivated, Activated, Skipped}

(b) ∆ inserts a sync edge syncE = nsrc → ndest into S (nsrc and ndest ordered parallel so far),
i.e., ∆ = insertSyncEdge(S, syncE). Then:

I is compliant with S’ ⇔
[NS(ndest) ∈ {NotActivated, Activated, Skipped}] ∨
[NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed} with

∃ei = End(nsrc), ej = Start(ndest) ∈ Hred ∧ i < j))] ∨
[NS(nsrc) = Skipped ∧ NS(ndest) ∈ {Running, Completed}) with

∀ n ∈ Ncritical with NS(n) 6= Skipped:
∃ei = Start(ndest), ej = End(n) ∈ Hred with j < i),

where Ncritical = (c pred∗(S, nsrc) ¬ c pred∗(S, ndest))
and c pred∗(S, n)) denotes all direct/indirect predecessors of n in S
concerning control edges]

In the following, we first prove part (b) of Theorem 3 (insertion of sync edges into S) since
part (a) (insertion of control edges) is less complex and can be proven in a similar way.

(b) ∆ inserts a sync edge nsrc → ndest into S (nsrc and ndest ordered parallel so far).

First let
A1 ≡ [NS(ndest) ∈ {NotActivated, Activated, Skipped}]
A2 ≡ [(NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed})

with ∃ei, ej ∈ ΠS
I red: i < j ∧ ei = End(nsrc), ej = Start(ndest)]

A3 ≡ [(NS(nsrc) = Skipped ∧ NS(ndest) ∈ {Running, Completed})
with ∀n ∈ Ncritical with NS(n) 6= Skipped:

∃ek, el ∈ ΠS
I red: l < k ∧ ek = Start(ndest), el = End(n)]

where Ncritical = (c pred∗(nsrc) ¬ c pred∗(ndest)) (cf. Fig. C.1b)

The negation of A1, A2 and A3 yields
¬A1 ≡ [NS(ndest) ∈ {Running, Completed}]
¬A2 ≡ [NS(nsrc) 6= Completed ∨

NS(ndest) ∈ {NotActivated, Activated, Skipped} ∨
6 ∃ei, ej ∈ ΠS

I red: i < j ∧ ei = End(nsrc), ej = Start(ndest)]
¬A3 ≡ [NS(nsrc) 6= Skipped ∨

NS(ndest) ∈ {NotActivated, Activated, Skipped} ∨
∃n ∈ Ncritical with NS(n) 6= Skipped:

6 ∃ek, el ∈ ΠS
I red: l < k ∧ ek = Start(ndest), el = End(n)]

”⇒”: I is compliant with S’ ⇒ A1 ∨A2 ∨A3

Proof by contradiction, we show:
¬(A1 ∨A2 ∨A3) ⇒ I is not compliant with S’

APPENDIX C. PROOFS 236

Assumption: ¬(A1 ∨A2 ∨A3) holds.

¬(A1 ∨A2 ∨A3) ≡ ¬A1 ∧ ¬A2 ∧ ¬A3 ≡ (¬A1 ∧ ¬A2) ∧ ¬A3

≡ [(NS(ndest) ∈ {Running, Completed} ∧ NS(nsrc) 6= Completed)
∨ (NS(ndest) ∈ {Running, Completed} ∧

6 ∃ei, ej ∈ ΠS
I red: i < j ∧ ei = End(nsrc), ej = Start(ndest))]

∧¬A3

≡ [(NS(ndest) ∈ {Running, Completed} ∧ NS(nsrc) 6= Completed)
∨ ((∃ej ∈ ΠS

I red: ej = Start(ndest)) ∧
((6 ∃ei ∈ ΠS

I red: ei = End(nsrc)) ∨
(∃ei ∈ ΠS

I red: ei = End(nsrc) ∧ i > j)))] ∧¬A3

≡ [(NS(ndest) ∈ {Running, Completed} ∧ NS(nsrc) 6= Completed)
∨ ((∃ej ∈ ΠS

I red: ej = Start(ndest) ∧
6 ∃ei ∈ ΠS

I red: ei = End(nsrc)) ∨
(∃ei, ej ∈ ΠS

I red: ej = Start(ndest), ei = End(nsrc) ∧ i > j))]
∧¬A3

≡ [(∃ej ∈ ΠS
I red: ej = Start(ndest) ∧ 6 ∃ei ∈ ΠS

I red: ei = End(nsrc))
∨ (∃ei, ej ∈ ΠS

I red: ej = Start(ndest), ei = End(nsrc) ∧ i > j)]
∧¬A3

≡: (E1 ∨ E2) ∧¬A3 (≡ (E1 ∧ ¬A3) ∨ (E2 ∧ ¬A3))

Because of nsrc ∈ pred(S’, ndest) and due to the compliance of I with S’ the end entry of nsrc

cannot be situated before the start entry of ndest in the execution history ΠS
I red; i.e., E2 and

therefore (E2 ∧ ¬A3) cannot hold. Accordingly, (E1 ∧ ¬A3) must hold.

(E1 ∧ ¬A3)
≡ [∃ej ∈ ΠS

I red: ej = Start(ndest) ∧ 6 ∃ei ∈ ΠS
I red: ei = End(nsrc)] ∧

[NS(nsrc) 6= Skipped
∨ NS(ndest) ∈ {NotActivated, Activated, Skipped}
∨ ∃n ∈ Ncritical, NS(n) 6= Skipped:

6 ∃ ek, el ∈ ΠS
I red: l < k ∧ ek = Start(ndest), el = End(n)]

≡ [∃ej ∈ ΠS
I red : ej = Start(ndest) ∧

6 ∃ei ∈ ΠS
I red: ei = End(nsrc)

∧ NS(nsrc) 6= Skipped]
∨ [(∃ej ∈ ΠS

I red: ej = Start(ndest)
∧ 6 ∃ei ∈ ΠS

I red: ei = End(nsrc))
∧ NS(ndest) ∈ {NotActivated, Activated, Skipped}) ∨
(∃ej ∈ ΠS

I red: ej = Start(ndest) ∧
6 ∃ei ∈ ΠS

I red: ei = End(nsrc)
∧ (∃n ∈ Ncritical, NS(n) 6= Skipped:

6 ∃ ek, el ∈ ΠS
I red: l < k ∧ ek = Start(ndest), el = End(n)))]

≡ [∃ej ∈ ΠS
I red: ej = Start(ndest)

∧ 6 ∃ei ∈ ΠS
I red: ei = End(nsrc) ∧ NS(nsrc) 6= Skipped]

∨[(∃ej ∈ ΠS
I red: ej = Start(ndest) ∧ 6 ∃ei ∈ ΠS

I red: ei = End(nsrc)

APPENDIX C. PROOFS 237

∧ (∃n ∈ Ncritical, NS(n) 6= Skipped:
6 ∃ ek, el ∈ ΠS

I red: l < k ∧ ek = Start(ndest), el = End(n)))]
≡: C1 ∨ C2

C1 results in
NS(ndest) ∈ {Running, Completed} ∧ NS(nsrc) 6∈ {Completed, Skipped}.
In this case I cannot be compliant with S’. Therefore C2 must hold.

C2

≡[∃ej ∈ ΠS
I red: ej = Start(ndest), 6 ∃ei ∈ ΠS

I red: ei = End(nsrc) ∧
(∃n ∈ Ncritical with NS(n) 6= Skipped:

6 ∃ ek, el ∈ ΠS
I red: l < k ∧ ek = Start(ndest), el = End(n))]

≡ (∃ej ∈ ΠS
I red: ej = Start(ndest) ∧ 6 ∃ei ∈ ΠS

I red: ei = End(nsrc)) ∧
(∃n ∈ Ncritical, NS(n) 6= Skipped ∧

(6 ∃el ∈ ΠS
I red: el = End(n) ∨

∃el ∈ ΠS
I red: el = End(n) ∧ j < l))

≡ [(∃ej ∈ ΠS
I red: ej = Start(ndest) ∧ 6 ∃ei ∈ ΠS

I red: ei = End(nsrc))
∧ (∃n ∈ Ncritical, NS(n) 6= Skipped

∧ 6 ∃el ∈ ΠS
I red: el = End(n))] ∨

[(∃ej ∈ ΠS
I red: ej = Start(ndest) ∧ 6 ∃ei ∈ ΠS

I red: ei = End(nsrc))
∧ (∃n ∈ Ncritical, NS(n) 6= Skipped

∧ ∃el ∈ ΠS
I red: el = End(n) ∧ j < l)]

≡: D1 ∨D2

Because of D1 it follows that there is a predecessor node n ∈ Ncritical of nsrc which is neither
marked as Completed nor as Skipped (see Figure C.1b). Referring to S’ this node is also a
predecessor of ndest since S’ contains the additional edge nsrc → ndest. Accordingly, I cannot be
compliant with S’.
D2 yields that a predecessor node n ∈ Ncritical of nsrc with NS(n) = Completed exists whose
end entry is situated after the start entry of ndest in the execution history ΠS

I red. Since n is a
predecessor of ndest in S’ it follows that I is not compliant with S’. 2

”⇐”: A1 ∨A2 ∨A3 ⇒ I is compliant with S’
With A1 it follows that ΠS

I red still does not contain an entry related to ndest. Therefore ΠS
I red

could have been produced on S’ as well; i.e., I is compliant with S’. The same applies to A2

because the end entry of nsrc had been written into ΠS
I red before the start entry of ndest was

logged.

After insertion of nsrc → ndest, in any case, nsrc has to be either executed or skipped before
ndest is activated or skipped. In addition, other (predecessor) nodes of nsrc, which could have
been executed parallel to ndest so far may now have to be executed or skipped before ndest can
be marked. This node set is determined by Ncritical (see Figure C.1b). Only if each activity
node of Ncritical has either been marked as Skipped or has written its end entry before the start
entry of ndest into ΠS

I red, the execution history can be produced on the new schema S’ as well.

APPENDIX C. PROOFS 238

This follows directly from A3. 2

C.3 Proof (Theorem 4)

Theorem 4 (Deletion of Activities/Control Edges/Sync Edges) Let S = (N, D, NT,
CtrlE, SyncE, LoopE, DataE) be a correct process type schema (represented by a WSM–Net)
and I be a process instance on S with reduced execution history ΠS

I red and with marking MS =
(NSS , ESS). Assume further that change operation ∆ transforms S into a correct process type
schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE).

(a) ∆ deletes an activity ndelete from S (including the re-linking of control edges),
i.e., ∆ = deleteActivity(S, ndelete) (cf. Table 3.2). Then:

I is compliant with S’ ⇔
NS(ndelete) ∈ {NotActivated, Activated, Skipped}

(b) ∆ deletes a control or sync edge c sEdge = (nsrc, ndest) from S,
i.e., ∆ = delete[Ctrl|Sync]Edges(S, c sEdge) (cf. Table 3.1 + 3.2). Then:

I is compliant with S’

(a) ∆ deletes an activity ndelete from S (including the re-linking of control edges)

”⇒”: I is compliant with S’ =⇒ NS(ndelete) ∈ {NotActivated, Activated, Skipped}
Proof by contradiction, we show:
NS(ndelete) 6∈ {NotActivated, Activated, Skipped} =⇒ I is not compliant with S’

Assumption:
NS(ndelete) 6∈ {NotActivated, Activated, Skipped}
≡ NS(ndelete) ∈ {Running, Completed}
=⇒ ∃ei ∈ ΠS

I red with ei = Start(ndelete)

Because of ndelete 6∈ N ′ for each process instance on S′ with execution history ˜ΠS′
I red:

6 ∃ek ∈ ˜ΠS′
I red with ek = Start(ndelete)

=⇒ ΠS
I red cannot be produced on S′

=⇒ I is not compliant with S′ 2

”⇐=”: NS(ndelete) ∈ {NotActivated, Activated, Skipped} =⇒ I is compliant with S’

Case 1: NS(ndelete) ∈ {NotActivated, Activated}
=⇒ ∀ n ∈ c succ∗(S, ndelete) ∪ {ndelete}: NS(n) ∈ {NotActivated, Activated}

APPENDIX C. PROOFS 239

=⇒ ∀ n ∈ c succ∗(S, ndelete) ∪ {ndelete}: 6 ∃ei ∈ ΠS
I red with ei = Start(n) ∨ ei = End(n)

=⇒ ∀ei ∈ ΠS
I red with ei ∈ {Start(n), End(n)}: n 6∈ c succ∗(S, ndelete) ∪ {ndelete}

All previous history entries have been produced by activities which either were predecessors
of ndelete or were executable parallel to ndelete, i.e., the previous execution history can also be
produced on S′.

Case 2: NS(ndelete) = Skipped
In this case ndelete has not yet written any history entry. Consequently the previous execu-

tion history can also be produced on S′. 2

(b) ∆ deletes a control or sync edge c sEdge = (nsrc, ndest) from S

The only effect of deleting control or sync edge c sEdge = (nsrc, ndest) (c sEdge ∈ CtrlE ∪
SyncE) is that previous predecessor activities of ndest can be parallel executed with ndest now.
In principle, these parallel ordered activities can be finished before starting ndest when executing
a respective process instance on S′. Therefore an execution history ΠS

I red can be also produced
on S′. In particular, this holds if NS(nsrc) = Skipped or NS(ndest) = Skipped. 2

C.4 Proof (Theorem 6)

Theorem 6 (Moving Activities) Let S = (N, D, NT, CtrlE, SyncE, LoopE, DataE) be a
correct process type schema (represented by a WSM–Net) and I be a process instance on S with
reduced execution history ΠS

I red and with marking MS = (NSS , ESS). Assume further that
change operation ∆ transforms S into a correct process type schema
S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE) by moving activity nmove from its cur-
rent position to its new position within S′ Thereby ∆ adds set of control edges

CtrlEadd
∆T

= {(n1, n2)|n1 ∈ c pred(S, nmove), n2 ∈ c succ(S, nmove)} ∪
{(n1, nmove)|n1 ∈ c pred(S′, nmove)} ∪

{(nmove, n2)|n2 ∈ c sucee(S′, nmove)}
i.e., ∆ = [serial|parallel|branch]moveActivity(S, nmove, . . .) (cf. Table 3.3). Then:

I is compliant with S’ ⇔
∀(nsrc, ndest) ∈ CtrlEadd

∆T
:

NS(ndest) ∈ {NotActivated, Activated, Skipped} ∨
[NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed} with

(∃ei = End(nsrc), ej = Start(ndest) ∈ ΠS
I red ∧ i < j)]

To prove Theorem 6 we draft the following Lemma 2. It states that for a sequence of deleting
and inserting control and sync edges a serialization of these edge operations can be found for
which each resulting intermediate process schema is correct, formally:

APPENDIX C. PROOFS 240

Lemma 2 (Serialization of Control / Sync Edge Insertions / Deletions) Let S be a
(correct) process type schema. Assume that S is transformed into another (correct) process
type schema S’ by applying control edge insertion and deletion operations op1, . . . , opk, i.e.,
opi ∈ {addCtrlEdge(S, ...), deleteCtrlEdge(S, ...), insertSyncEdge(S, ...), deleteSyncEdge(S,
...)}. Then:

There is a serialization opi1 , . . . , opik of op1, . . . , opk such that a correct intermediate process
schema results when applying each operation opij (j = 1, . . . , k), formally:

S = S0[opi1 > S1 . . . Sk−1[opik > Sk = S′

with Sµ is a correct process schema (µ = 1, . . . , k).

Proof of Lemma 2:

We show the proposition by induction over the number of applied edge operations k.

k = 1 (Inductive Beginning): S = S0[opi1 > S1 = S′

Trivially, this is correct since S and S′ are correct process schemes according to lemma
assumption.

k → k + 1 (Inductive Step): S = S0[opi1 > S1 . . . Sk[opik+1
> Sk+1 = S′

Let op1, . . . , opk+1 be edge operations which transform S into correct process schema S′. In
particular, correctness of a process schema means that it is free of deadlock–causing cycles, i.e.,
cycles over control or sync edges besides desired loops over loop egdes. To show: ∃i1, . . . , ik+1

with {1, . . . , k + 1} such that:

S = S0[opi1 > S1 . . . Sk[opik+1
> Sk+1 := S′ with Sµ correct for all µ = 1, . . . , k + 1.

Regarding edge operations op1, . . . , opk+1 we distinguish between three cases:

Case 1: All edge operations are additive, i.e., each time a control or sync edge is added.

In this case we get that Sk is correct since Sk+1 := S′ is correct regarding assumption and
therefore free of deadlock–causing cycles. S′ results from adding a control or sync edge to Sk,
i.e., Sk has exactly one control or sync edge less than S′. Since S′ is free of deadlock–causing
cycles Sk is free of deadlock–causing cycles. With inductive assumption S1, . . . , Sk−1 are free of
deadlock–causing cycles.

Case 2: All edge operations are subtractive, i.e., each time a control or sync edge is deleted.

With inductive assumption we know that Sk is correct. Sk+1 results from Sk by deleting a control
or sync edge. Therefore if Sk is free of deadlock–causing cycles Sk+1 is free of deadlock–causing
cycles as well.

Case 3: There are at least one subtractive and one additive edge operation.

Let op∗ ∈ {op1, . . . , opk} be a edge deletion operation. Let opi1 = op∗. We immediately
obtain that S1 is correct. Furthermore, applying {op1, . . . , opk}\ {op∗} to S1 results in correct

APPENDIX C. PROOFS 241

schema Sk+1 := S′. With inductive assumption also intermediate schemes S2, . . . , Sk have to be
correct. 2

Now we can prove Theorem 6.

Let op1, . . . , opn be the edge operations transforming S into S′ with set of newly inserted
control edges CtrlEadd

∆T
and set of deleted control or sync edges Edel

∆T
. Accordingly, each insertion

operation generates an entry in CltrEadd
∆T

and each deletion operation an entry in Edel
∆T

.

We show Theorem 6 by induction over the number of applied edge operations n.

n = 1 (Inductive Beginning): S := S0[op1 > S1 := S′

Case 1: op1 adds a control edge, i.e., CltrEadd
∆T

= {nsrc → ndest} with nsrc, ndest ∈ N , Edel
∆T

= ∅.
In this case the proposition follows with Theorem 3.

Case 2: op1 deletes a control or sync egde, i.e., Edel
∆T

= {nsrc → ndest} with nsrc, ndest ∈ N ,
CtrlEadd

∆T
= ∅. In this case the proposition holds with CtrlEadd

∆T
= ∅ and Theorem 4.

n −→ n + 1 (Inductive Step): S := S0[op1 > S1 . . . Sn[opin+1 > Sn+1 := S′

With Lemma 2 there is a serialization i1, . . . , in+1 with
S := S0[opi1 > S1 . . . Sn[opin+1 > Sn+1 >:= S′ with Sµ is a correct intermediate schema
(µ = 1, . . . , n + 1).

Let CtrlEadd
∆T

(n) be the set of all control edges added by opi1 , . . . , opin . With inductive
assumption follows:

I is compliant with S’ ⇐⇒
∀nsrc → ndest ∈ CtrlEadd

∆T

(n):
NS(ndest) ∈ {NotActivated, Activated, Skipped} ∨
(NS(ndest) ∈ {Running, Completed} ∧ NS(nsrc) = Completed ∧

((∃ei = End(nsrc), ej = Start(ndest)) ∈ ΠS
I red ∧i < j)) (*)

Case 1: opin+1 adds a control edge nsrc → ndest

Then the proposition directly follows with (*) and Theorem 3.

Case 2: opin+1 adds a control edge nsrc → ndest

Then the proposition directly follows with (*) and Theorem 4 (CtrlEadd
∆T

(n+1) = CtrlEadd
∆T

(n)).2

C.5 Proof (Theorem 8)

Theorem 8 (Compliance Conditions For Data Flow Changes) Let S = (N, D, NT,
CtrlE, SyncE, LoopE, DataE) be a correct process type schema (represented by a WSM Net)
and I be a process instance on S with reduced execution history ΠS

I red and with marking
MS = (NSS , ESS). Assume further that change operation ∆ transforms S into a correct

APPENDIX C. PROOFS 242

process type schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, LoopE’, DataE).

(a) ∆ inserts a data element d into S, i.e., ∆ = addDataElements(S, {d}, . . .). Then:

I is compliant with S’.

(b) ∆ deletes a data element d from S, i.e., ∆ = deleteDataElements(S, {d}, . . .). Then:

I is compliant with S’ ⇔
No read or write access on d by an activity with state Running or Completed

(c) ∆ inserts or deletes a read edge (d, n, read),
i.e., ∆ ∈ {addDataEdges(S, {(d, n, read)}), deleteDataEdges(S, {(d, n, read)}}. Then:

I is compliant with S’ ⇔ NS(n) ∈ {NotActivated, Activated, Skipped}
(d) ∆ inserts or deletes a write edge (d, n, write),

i.e., ∆ ∈ {addDataEdges(S, {(d, n, write)}), deleteDataEdges(S, {(d, n, write)}}. Then:

I is compliant with S’ ⇔ NS(n) 6= Completed

(a) Adding a data element d to S has no effects on read or write accesses on existing data
elements. In particular, ΠS

I
red is also producable on S’.

(b) Deleting data element d

”=⇒”: I is compliant with S′ =⇒
[No read or write access on d by an activity with state Running or Completed]

We show the above propostion by contradiction with contradictionary assumption:

[∃n∗ with NS(n∗) ∈ {Running, Completed} ∧
there has been a read or write access or n∗ on d] =⇒ I not compliant with S′

Assumption:
[∃n∗ ∈ N with NS(n∗) ∈ {Running, Completed} ∧

there has been a read or write access or n∗ on d]

≡ ∃e((d
(µ)
1 ,v

(µ)
1),...,(d

(µ)
m ,v

(µ)
m))

µ ∈ ΠS
I red with eµ ∈ {Start(n∗), End(n∗)}

∧ ∃l ∈ {1, . . . , m} with d
(µ)
l = d, n∗ ∈ N

With this we get that I cannot be compliant with S′ since d is not present in S′. 2

”⇐=”:

A ≡ [6 ∃ activity X (with NS(X) ∈ Running or Completed with read or write access on d]

A =⇒ I is compliant with S′

I is compliant with S′ if ΠS
I red can be produced on S′ as well, in particular:

APPENDIX C. PROOFS 243

6 ∃e((d
(µ)
1 ,v

(µ)
1),...,(d

(µ)
m ,v

(µ)
m))

µ ∈ ΠS
I red with eµ ∈ {Start(n∗), End(n∗)}

∧ ∃l ∈ {1, . . . , m} with d
(µ)
l = d, n∗ ∈ N

This is true due to the validity of A. 2

(c) Adding or Deleting a read data edge

(c1) Adding a read data edge (d, n, read)

”=⇒”: I is compliant with S′ =⇒ NS(n) ∈ {NotActivated, Activated, Skipped}
We proof this proposition by contradiction using the following contradictionary assumption:

NS(n) ∈ {Running, Completed} =⇒ I is not compliant with S′

Assumption: NS(n) ∈ {Running, Completed} =⇒
∃e((d

(µ)
1 ,v

(µ)
1),...,(d

(µ)
m ,v

(µ)
m))

µ ∈ ΠS
I red with eµ = Start(n∗)

Since activity n has been already started when read data edge (d, n, read) is inserted n has
already performed its read data accesses but no read access on d, i.e., 6 ∃l ∈ {1, . . . , m} with
d

(1)
µ = d. Then I cannot be compliant with S′. 2

”⇐=”: NS(n) ∈ {NotActivated, Activated, Skipped} =⇒ I is compliant with S′

If I should be compliant with S′ ΠS
I red has to be also producable on S′. In particular, there

should be no e
((d

(µ)
1 ,v

(µ)
1),...,(d

(µ)
m ,v

(µ)
m))

µ ∈ ΠS
I red with eµ = Start(n∗). Otherwise d

(l)
µ 6= d∀l would

hold what is in conflict to assumption NS(n) ∈ {NotActivated, Activated, Skipped}. 2

(c2) When deleting a read data edge (d, n, read) we can argue similarily to case (c2). Reason is
that if (d, n, read) is removec from S n must not have read d since this read access is not longer
possible based on S′. Read accesses are always performed when starting activities what results
in the fact that n has not been started yet. 2

(d) When inserting and deleting write data edges we can argue similarily to case (c). The only
difference is that affected activity n can already be started. Reason is that write data accesses
take place not until completion of an activity. Therefore modifications of an activity’s write
data edges can be carried out as long as this activity is not completed. 2

C.6 Proof (Theorem 9)

Theorem 9 (Correctness of Marking Adaptation Approach) Let S be a process type
schema and I an unbiased process instance running on S with instance marking MS = (NSS ,
ESS) and execution history ΠS

I . Let further ∆T be a process type change which transforms S into
another (correct) process schema S′ and let I be compliant with S’. Then the instance markings
resulting from replaying ΠS

I on S’, i.e., MS′
replay = (NSS′

replay, ESS′
replay) conincides with the marking

APPENDIX C. PROOFS 244

resulting from applying Algorithms 1 + 2, i.e., MS′
adapt = (NSS′

adapt, ESS′
adapt). Fomrally:

NSS′
replay = NSS′

adapt ∧ ESS′
replay = ESS′

adapt

Generally, the following proposition (?) holds:
Algorithm 2 initially adopts previous markings for all activities and edges which are present in
original schema S and changed schema S′. Then all activities and edges which are concerned
by change operation ∆T are newly evaluated, e.g., by skipping activities which are inserted into
already skipped branches.

We show the proposition of Theorem 9 by induction over the number t of entries within ΠS
I .

(Inductive Assumption): Let S be a (correct) process type schema and I a process instance on
S with execution history ΠS

I =< e0, . . . , et >. Let ∆T = op1, . . . , opn be a process type change
which transforms S into another (correct) process schema S’. Let MS′

replay = (NSS′
replay, ESS′

replay)
and MS′

adapt = (NSS′
adapt, ESS′

adapt) be as described in Theorem 9.
Then NSS′

replay = NSS′
adapt ∧ ESS′

replay = ESS′
adapt (§).

t = 1 (Inductive Beginning): ΠS
I =< e1 > with e1 = Start(X) ∧ NT(X) = StartFlow (♦)

Since I is compliant with S’ we obtain that X ∈ N ′ and NT(X) = StartFlow holds for S′ (♣).
Then replaying ΠS

I on S′ results in marking MS′
replay where

NSS′
replay(X) = Running, NSS′

replay(n) = NotActivated ∀n ∈ N ′ \ {X},
and ESS′

replay(e) = NotSignaled ∀e ∈ E′1.

Because of (♦) regarding original schema S it follows that
NSS(X) = Running, NSS(n) = NotActivated ∀n ∈ N \ {X},
and ESS(e) = NotSignaled ∀e ∈ E hold.

Due to (♣) ∆T concerns not yet executed and therefore not yet marked regions of S and S′.
Therefore marking MSS = (NSS , ESS) is unalteredly transferred to S′ by Algorithm 2. 2

t −→ t + 1 (Inductive Step): ΠS
I =< e1, . . . , et+1 > with et+1 ∈ Start(X), End(X) (¶)

Since I is compliant with S’ we obtain that X ∈ N ′ holds (♥).

Case 1: et+1 = Start(X)
Replaying ΠS

I : With (♥) we obtain that NSS′
replay(X) = Running holds. Since markings of

all other activities remain unaltered when replaying ΠS
I it follows that NSS′

replay(n) = NSS′(n)
∀n ∈ N ′ \ {X} holds. Furthermore replaying a Start event on a process schema obviously has
no effects on edge markings and therefore: ESS′

replay(e) = ESS′(e) ∀e ∈ E′.
Applying Algorithm 2: Applying inductive assumption (§) Algorithm 2 yields the same marking
as results from replaying ΠS

I on S′ if X has not been started yet. With (♥) and ΠS
I we obtain

that NSS(X) = Running holds. This marking is transferred to S′ applying proposition (?).
Looking at Algorithm 2 we see that it never changes marking of running activities. Therefore
marking NSS(X) = Running is also unalteredly transferred to S′. Furthermore starting activity

1E = (CtrlE ∪ SyncE ∪ LoopE) and E’ = (CtrlE’ ∪ SyncE’ ∪ LoopE’)

APPENDIX C. PROOFS 245

X has no influence on edge markings, i.e., ESS = ESS′
adapt holds. 2

Case 2: et+1 = End(X)
Case 2.1: ∀(X, ndest,[lCond]) ∈ E : (X, ndest) ∈ E′, i.e., all outgoing edges and therefore all

direct successors ndest of X in S′ have been already present in S.
Replaying ΠS

I : With (♥) we obtain that NSS(X) = NSS′
replay(X) = Completed holds (since I is

compliant with S′ there must be a Start entry for X in ΠS
I). The completion of X only affects

the markings of direct successors of X (in S and S′). More precisely, for all direct successors of
X in S′ Rules 1 (cf. Appendix B) are executed in the same way for S and S′ since all direct
successors are present in S and S′. Therefore we obtain that NSS′

replay = NSS and consequently
ESS′

replay = ESS holds.

Applying Algorithm 2: Since ({X}∪{n|(X, n) ∈ E}) ⊆ N ′∧ ∀(X, ndest) ∈ E : (X,ndest) ∈ E′

holds and I is compliant with S′, ∆T does not concern X or one of its direct successors. Of
course, ∆T also does not affect any predecessors of X since I is compliant with S′. Therefore
again Algorithm 2 takes over marking MSS on S and does not carry out any further changes.

Case 2.2: At least one of the outgoing edges of X was not present in S (we summarize these
edges in Enew).

After replaying ΠS
I on S′, X is marked as Completed and all outgoing edges are marked

according to Rules 1 (cf. Appendix B) (and consequently all edges in Enew). Since the outgoing
edges are newly marked the respective destination activities are also evaluated according to
Rules 1 (cf. Appendix B). According to inductive assumption (§), MSS′

replay = MSS′
adapt holds

before completion of X. According to proposition (?) Algorithm 2 adopts NSS(X) = Completed
and the markings of all activities and edges present in S within the initialization phase. Since
Enew 6⊆ E holds we conclude that Enew ⊆ Echeck(∆T) holds what results in a re–evaluation of
edges contained in Enew. This re–evaluation executed by Algorithm 2 also follows Rules 1 (cf.
Appendix B) . Therefore all edges contained in Enew are equally marked when replaying ΠS

I in
S′ or applying Algorithm 2. For edges in Echeck(∆T) \Enew the necessary marking adaptations
are already covered by inductive assumption (§). 2

C.7 Proof (Proposition 1)

Proposition 1 (Avoiding Missing Input Data and Lost Updates) Let S be a WSM Net
and I be a biased instance with starting schema S and instance–specific schema SI := S + ∆I =
(NI , DI , NTI , CtrlEI , SyncEI , . . .). Assume that type change ∆T transforms S into a correct
schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...). Then: Propagating ∆T to I neither results in
missing input data nor in lost updates if

∀ mDL1 = (d1, mode1, [”add”|”delete”]) ∈ AD(S, ∆T) ∪ DD(S, ∆T),
∀ mDL2 = (d2, mode2, [”add”|”delete”]) ∈ ∈ AD(S, ∆I) ∪ DD(S, ∆I)

APPENDIX C. PROOFS 246

with modei ∈ {read, write} (i = 1, 2):
d1 6= d2 ∨
mode1 = mode2 = read ∨
mDL1 = (d1, ”read”, ”delete”) ∨ mDL2 = (d2, read, ”delete”) (♣)

whereas

• AD(S, ∆T) := {(d,mode, ”add”) ∈ DataE′ \DataE, mode ∈ {read, write}}
• DD(S, ∆T) := {(d,mode, ”delete”) ∈ DataE \DataE′, mode ∈ {read, write}}
• AD(S, ∆I) := {(d,mode, ”add”) ∈ DataEI \DataE, mode ∈ {read, write}}
• DD(S, ∆I) := {(d,mode, ”delete”) ∈ DataE \DataEI , mode ∈ {read, write}}

Additional Suppositions:

1. S, S′, and SI are correct WSM Nets (cf. Definition 2)

2. ∆T ∩∆I = ∅

Let S′I := (S + ∆I) + ∆T with S′I = (N ′
I , D

′
I , DataE′

I , CtrlE′
I , . . .) be the instance–specific

schema resulting from propagating type change ∆T to instance–specific schema SI .

Formalization Of Proposition:

1. Propostion 1: S′I contains no activities with missing input data, i.e.,
(∀X ∈ N ′

I with obligatory input data: ∃d ∈ D′
I with (d, X, read) ∈ DataE′

I)(θ)∧
(Let AX be the set of all action sets leading to activation of X (X ∈ N ′

I). Then:
∀X ∈ N ′

I , d ∈ D′
I with ∃e = (X, d, read) ∈ DataE′

I with obligatory input data:
∀V ∈ AX : ∃X∗ ∈ V ∧ ∃e∗ = (X∗, d, write) ∈ DataE′

I) (λ)

2. Proposition 2: S′I contains no write data edges causing lost updates at runtime, i.e.
∀n1, n2 ∈ N∗, n1 6= n2, d ∈ D∗ ∧ ∃ e1 = (n1, d, write), e2 = (n2, d, write) ∈ DataE∗ ∧

(split, join) := BranchNodes(S, n1, n2)2 6= (Undefined, Undefined):
(NT(join) 6= AndJoin) ∨ (n1 ∈ succ∗(n2) ∨ n1 ∈ pred∗(n2))

We first prove part (θ) of Propostion 1, i.e.,
(♣) =⇒ ∀X ∈ N ′

I with obligatory input data: ∃d ∈ D′
I with (d,X, read) ∈ DataE′

I .
Due to supposition 1 condition (θ) holds for S, SI and S′. Therefore if activity X has been
already present in N there has been also a read data edge (d, X, read) ∈ DataE. If ∆T or ∆I

delete (d,X, read) they also have to delete X due to Supposition 1. Consequently, either X
is not present in N ′

I or read data edge (d,X, read) is still present in DataE′
I . If otherwise X

has not been present in N either ∆I or ∆T has inserted X (not both due to Supposition 2)
2Function BranchNodes(...) is defined in Table B.1 (cf. Appendix B)

APPENDIX C. PROOFS 247

together with read data edge (d,X, read) (cf. Supposition 1). Let without loss of generality ∆T

be the change which has inserted activity X and data edge (d,X, read). Then it is not possible
that ∆I deletes (d,X, read) since ∆I does not ”know” activity X and the connected data edges.
Consequently, read data egde (d,X, read) is still present in DataE′

I . 2

Condition (λ) of Propostion 1 is proven by contradiction with contractionary assumption:

∃ X ∈ N′I , d ∈ D′I with ∃ e = (X, d, read) ∈ DataE′I with obligatory input data:
∃ V ∈ AX : 6 ∃ X̄ ∈ V with ∃ (X̄, d, write) ∈ DataE′I

Supp.1
=⇒

[(∃ (X̄, d, write) ∈ DeletedDataEdges(S, ∆T) ∧ (∃ (X, d, read) ∈ AddedDataEdges(S, ∆I)) ∨
(∃ (X̄, d, write) ∈ DeletedDataEdges(S, ∆I) ∧ (∃ (X, d, read) ∈ AddedDataEdges(S, ∆T))]3 ∨

[(∃ ẽ = (X̃, d, write) ∈ DataE:
(ẽ ∈ DeletedEdges(S, ∆I) ∧ (X̄, d, write) ∈ DeletedEdges(S, ∆T) ∨

(ẽ ∈ DeletedEdges(S, ∆T) ∧ (X̄, d, write) ∈ DeletedEdges(S, ∆I))]4

=⇒
∆T and ∆I both work on same data element d ∧
∆I or ∆T both delete at least on write data edge

≡ ¬ (λ) in Proposition 1 2

We now show Proposition 2:

[∀n1, n2 ∈ N∗, n1 6= n2, d ∈ D∗ ∧ ∃ e1 = (n1, d, write), e2 = (n2, d, write) ∈ DataE∗ ∧
(split, join) := BranchNodes(S, n1, n2) 6= (Undefined, Undefined):

(NT(join) 6= AndJoin) ∨ (n1 ∈ succ∗(n2) ∨ n1 ∈ pred∗(n2))] := C

Proof by Contradiction:

¬ C ≡
∃n1, n2 ∈ N∗, n1 6= n2, d ∈ D∗ ∧ ∃ e1 = (n1, d, write), e2 = (n2, d, write) ∈ DataE∗ ∧

(split, join):=BranchNodes(S, n1, n2) 6= (Undefined, Undefined):
(NT(join) = AndJoin) ∧ (n1 6∈ succ∗(n2) ∧ n1 6∈ pred∗(n2))

Supp.1
=⇒ (e1 ∈ AddedEdges(S, ∆I) ∧ e2 ∈ AddedEdges(S, ∆T) or vice versa)

=⇒ AddedWriteAccesses(S, ∆I) ∩ AddedWriteAccesses(S, ∆T) = {d}
≡ ¬ Proposition 2 2

3X 6∈ N
4X ∈ N

APPENDIX C. PROOFS 248

C.8 Proof (Proposition 2)

Proposition 2 (Basic Deadlock Prevention) Let S be a WSM Net and I be a biased instance
with starting schema S and instance–specific schema
SI := S + ∆I = (NI , DI , NTI , CtrlEI , SyncEI , . . .). Assume that type change ∆T transforms S
into a correct schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...).

Then: S′I = (S + ∆I) + ∆T does not contain deadlock-causing cycles if the following condition
holds:

∀ (s1, d1) ∈ AS(S, ∆T), ∀ (s2, d2) AS(S, ∆I):
d1 6∈ (pred∗(S, s2) ∪ {s2}) ∨ d2 6∈ (pred∗(S, s1) ∪ {s1}) (Ψ)

whereas

• AS(S, ∆T) := SyncE′ \ SyncE

• AS(S, ∆I) := SyncEI \ SyncE

Additional Suppositions:

1. S, S′, and SI are correct WSM Nets (cf. Definition 2)

2. ∆T ∩∆I = ∅

Let S′I := (S + ∆I) + ∆T with S′I = (N ′
I , D

′
I , DataE′

I , CtrlE′
I , . . .) be the instance–specific

schema resulting from propagating type change ∆T to instance–specific schema SI .

Formalization Of Proposition:

For S′Ifwd:=(N ′
I , CtrlE′I , SyncE′I) holds: (∀ n∗ ∈ N′I : n∗ 6∈ succ∗(S′Ifwd, n∗))

Proof by contradiction with contratictionary assumption:
¬ (∀ n∗ ∈ N′I : n∗ 6∈ succ∗(S′Ifwd,n

∗))
≡ ∃ n∗ ∈ N′I : n∗ ∈ succ∗(S′Ifwd,n

∗)
≡ ∃ edge sequence EdgeSeq := e1 → . . . → ek−1 with

e1= n∗ → n1, ek−1 = nk → n∗ ∈ (CtrlE′I ∪ SyncE′I)

Supp.1
=⇒ Edge sequence EdgeSeq is not present in S, SI , and S′ but EdgeSeq is present in S′I

=⇒ ∆T as well as ∆I must have inserted at least one edge within EdgeSeq, i.e.,
∃ ei = (si, di) ∈ (CtrlE′ ∪ SyncE′) \ (CtrlE ∪ SyncE) ∧

∃ej = (sj , dj) ∈ (CtrlEI ∪ SyncEI) \ (CtrlE ∪ SyncE) with
ei, ej ∈ {e1, . . . , en|EdgeSeq = ei → . . . → en}

=⇒ (di ∈ pred∗(S′Ifwd, sj) ∪{sj}) ∧ (dj ∈ pred∗(S′Ifwd, si) ∪{si})
=⇒ Contradiction to Proposition 2

APPENDIX C. PROOFS 249

C.9 Proof (Theorem 10)

Theorem 10 (Trace Equivalence By Process Schema Isomorphism) Let S1 and S2 be
two WSM Nets. Then S1 and S2 are trace equivalent if S1 and S2 are isomorphic according to
Definition 12. Formally:

S1 ' S2 =⇒ S1 ≡trace S2

In the following, for process schema S let ΩS comprise all producable execution histories on S.

Proposition: S1 ' S2 =⇒ S1 ≡trace S2

We show this by induction over the length k of an arbitrary execution history
ΠSi

I =< e1, . . . , ek > ∈ ΩSi (i = 1, 2) with
ej ∈ {START(label(a)), END(label(a))}; j = 1, . . . , k; a ∈ Ni.

Inductive Assumption (IA):

S1 ' S2 =⇒ ∀ ΠS1
I = < e1, ...ek > ∈ ΩS1 : ΠS1

I ∈ ΩS2 ,
i.e., ΠS1

I can be produced on S2 as well.

Note that we restrict our considerations to the direction from S1 to S2. Trivially, the reverse
direction – ∀ ΠS2

I = < e1, e2, ...ek > ∈ ΩS2 : ΠS2
I ∈ ΩS1 – can be proven analogously.

Inductive Beginning (IB):

ΠS1
I = < e1 > ∈ ΩS1 with e1 = START(label(a))

With condition (♣) from Definition 12 it follows that there is an image activity
f(a) ∈ N2 (N2 denotes the node set of S2) with label(f(a)) = label(a). Since activity ”a” has
written the first entry into ΠS1

I it must be a start activity of S1, i.e., a node without incoming
control edges. With (♣) from Definition 12 it directly follows that the image f(a) ∈ N2 in S2

has no incoming control edges as well (edge order preserving property). Consequently, activity
execution order given by ΠS1

I can be produced on S2 as well.

However, we still have to care about the possible read accesses produced by activity ”a”. Due
to e1 = START(label(a)) activity ”a” was already started, i.e., it has already read the set of process
data elements Da

1 ⊆ D1 to which it is linked via a set of read data edges DataEa
1 ⊆ DataE1.

With (♣) from Definition 12 it follows:

∀dj ∈ Da
1 : ∃ g(dj) ∈ Da

2 with label(dj) = label(g(dj)) ∧
∀dEi ∈ DataEa

1 : ∃ g(dEi) ∈ DataEa
2 with label(dEi) = label(g(dEi)).

Consequently, all entries produced by read data accesses of a in ΠS1
I can be produced on S2 as

well.

APPENDIX C. PROOFS 250

Inductive Step (IS):

ΠS1
I = < e1, e2, ..., ek, ek+1 > ∈ ΩS1

Let a ∈ N1 be the activity which has written entry ek into ΠS1
I and let ã ∈ N1 be the activity

which has written ek+1 into ΠS1
I .

Due to (IA) it follows that ΠS1
I

′
< e1, e2, ..., ek > ∈ ΩS2 . Now we analyze the order relation

beween activities a and ã regarding S1.

Case 1: a = ã =⇒ ek = START(a) ∧ ek+1 = END(a) (*)

Taking (IA) and (*), trivially, ΠS1
I ∈ ΩS2 holds.

Case 2: a 6= ã

For this case, activity a is either a direct predecessor of ã or a and ã are ordered in parallel
regarding schema S1.

Case 2.1: a is a direct predecessor of ã

With (♣) from Definition 12 it follows:
∃ f(a), f(ã) in N2 with: f(a) is a direct predecessor of f(ã).
For this case, it directly follows that ΠS1

I ∈ ΩS2 holds.

Case 2.2: a and ã are ordered in parallel

With (♣) from Definition 12 it follows:
∃ f(a), f(ã) in N2 with: f(a) and f(ã) are ordered in parallel.
For this case, trivially, ΠS1

I ∈ ΩS2 holds.

However, we still have to care about the possible read and write data accesses produced by
activity ã. In doing so, we distinguish between the following cases:

Case 1: ek+1 = START(label(ã))

Activity ã has read the set of process data elements D1
ã ⊆ D1 to which it is linked via a set of

read data edges DataE1
ã ⊆ DataE1. With (♣) from Definition 12 it follows:

∀dj ∈ D1
ã: ∃ g(dj) ∈ D2

ã with label(g(dj)) = label(dj) ∧
∀dEi ∈ DataE1

ã: ∃ g(dEi) ∈ DataE2
ã with label(g(dEi)) = label(dEi)

Case 2: ek+1 = END(label(ã))

Since ã has been already completed, there were write data accesses of ã on a set of data elements
D1

ã ⊆ D1. For them we can argue analogously to read data accesses in Case 1. 2

APPENDIX C. PROOFS 251

C.10 Proof (Theorem 11)

Theorem 11 (Equivalent Changes) Let S be a (correct) process schema and let ∆i, i = 1, 2
be two changes which transform S into (correct) process schemes Si, i = 1, 2. Then ∆1 and ∆2

are equivalent, i.e, ∆1 ≡ ∆2 if the following conditions (1) – (4) hold:

1. Change Operations on Activity Sets:

(a) ∆1[ins Act] ≡ ∆2[ins Act] ⇐⇒
(Nadd

∆1
= Nadd

∆2
∧

AnchorIns(S,∆1) = AnchorIns(S,∆2)∧
OrderIns(S,∆1) = OrderIns(S,∆2))

(b) ∆1[del Act] ≡ ∆2[del Act] ⇐⇒ Ndel
∆1

= Ndel
∆2

(c) ∆1[move Act] ≡ ∆2[move Act] ⇐⇒
(Nmove

∆1
= Nmove

∆2
) ∧

AnchorMove(S,∆1) = AnchorMove(S, ∆2)) ∧
OrderMove(S,∆1) = OrderMove(S, ∆2))

(d) ∆1[ins/move Act] ≡ ∆2[ins/move Act] ⇐⇒
(Nmove

∆1
= Nmove

∆2
) ∧

∆1[ins Act] ≡ ∆2[ins Act] ∧
∆1[move Act] ≡ ∆2[move Act] ∧

OrderAgg(S,∆1) = OrderAgg(S,∆2))

2. Change Operations on Sync Edges:

(a) ∆1[ins Sync] ≡ ∆2[ins Sync] ⇐⇒ SyncEadd
∆1

= SyncEadd
∆2

(b) ∆1[del Sync] ≡ ∆2[del Sync] ⇐⇒ SyncEdel
∆1

= SyncEdel
∆2

(c) ∆1[ins Loop] ≡ ∆2[ins Loop] ⇐⇒ LoopEadd
∆1

= LoopEadd
∆2

(d) ∆1[del Loop] ≡ ∆2[del Loop] ⇐⇒ LoopEdel
∆1

= LoopEdel
∆2

3. Change Operations on Data Flow:
∆1[data] ≡ ∆2[data] ⇐⇒

(Dadd
∆1

= Dadd
∆2

∧ Ddel
∆1

= Ddel
∆2

) ∧
(DataEadd

∆1
= DataEadd

∆2
∧ DataEadd

∆1
= DataEadd

∆2
)

4. Change Operations on Attributes:
∆1[attrChange] ≡ ∆2[attrChange] ⇐⇒ ChangedAttr∆1 = ChangedAttr∆2

(Φ)

We show that:
(Φ) =⇒ S1 ' S2

Theorem10=⇒ S1 ≡trace S2

APPENDIX C. PROOFS 252

(Φ) =⇒
[[∃ bijective mapping f: N1 7→ N2 with

(label(n) = label(f(n)) ∀ n ∈ N1) ∧
(∀ e= (u, v) ∈ CtrlE1: ∃ e* = (f(u), f(v)) ∈ CtrlE2 with label(e)= label(e*)
∧ ∀ e* = (u*, v*) ∈ CtrlE2 ∃ e = (f−1(u*), f−1(v*)) ∈ CtrlE1

with label(e*) = label(e)) ∧
(∀ e= (u, v) ∈ SyncE1: ∃ e* = (f(u), f(v)) ∈ SyncE2 with label(e)= label(e*)
∧ ∀ e* = (u*, v*) ∈ SyncE2 ∃ e = (f−1(u*), f−1(v*)) ∈ SyncE1

with label(e*) = label(e))∧
(∀ e= (u, v) ∈ LoopE1: ∃ e* = (f(u), f(v)) ∈ LoopE2 with label(e)= label(e*)
∧ ∀ e* = (u*, v*) ∈ LoopE2 ∃ e = (f−1(u*), f−1(v*)) ∈ LoopE1

with label(e*) = label(e))]∧
[∃ bijective mapping g: D1 7→ D2 with

(label(d) = label(g(d)) ∀ d ∈ D1) ∧
(∀ dE = (n, d, mode) ∈ DataE1, n ∈ N1:
∃ dE* = (g(n), g(d), mode) ∈ DataE2: label(dE) = label(dE*)
∧ ∀ dE* = (n*, d*, mode) ∈ DataE2

∃ dE = (g−1(n*), g−1(d*), mode) ∈ DataE1: label(dE*) = label(dE)]]

Without loss of generality we show the direction from S1 to S2 (the other direction from S2

to S1 runs analogously).

• to show: ∀n ∈ N1 : ∃f(n) ∈ N2 with label(n) = label(f(n)) (ξ1)
N1 = (N ∪Nadd

∆1
) \Ndel

∆1
, N2 = (N ∪Nadd

∆2
) \Ndel

∆2
=⇒

N1 = N2 and consequently ξ1 hold.

• to show: ∀e = (u, v) ∈ CtrlE1 : ∃e∗ = (f(u), f(v)) ∈ CtrlE2 with label(e) = label(e*) (ξ2)
CtrlE1 = (CtrlE ∪ CtrlEadd

∆1
) \ CtrlEdel

∆1
, CtrlE2 = (CtrlE ∪ CtrlEadd

∆2
) \ CtrlEdel

∆2
=⇒

CtrlE1 = CtrlE2 and consequently ξ2 hold.

• to show: ∀e = (u, v) ∈ SyncE1 : ∃e∗ = (f(u), f(v)) ∈ SyncE2 with label(e) = label(e*)
(ξ3)
SyncE1 = (SyncE∪SyncEadd

∆1
)\SyncEdel

∆1
, SyncE2 = (SyncE∪SyncEadd

∆2
)\SyncEdel

∆2
=⇒

SyncE1 = SyncE2 and consequently ξ3 hold.

• to show: ∀e = (u, v) ∈ LoopE1 : ∃e∗ = (f(u), f(v)) ∈ LoopE2 with label(e) = label(e*)
(ξ4)
LoopE1 = (LoopE∪LoopEadd

∆1
)\LoopEdel

∆1
, LoopE2 = (LoopE∪LoopEadd

∆2
)\LoopEdel

∆2
=⇒

LoopE1 = LoopE2 and consequently ξ4 hold.

• to show: ∀d ∈ D1 : ∃g(n) ∈ D2 with label(n) = label(g(n)) (ξ5)
D1 = (D ∪Dadd

∆1
) \Ddel

∆1
, D2 = (D ∪Dadd

∆2
) \Ddel

∆2
=⇒

D1 = D2 and consequently ξ5 hold.

APPENDIX C. PROOFS 253

• to show: ∀dE = (n, d, mode) ∈ DataE1 : ∃dE∗ = (g(n), g(d),mode) ∈ DataE2 with
label(n) = label(g(n)) (ξ6)
DataE1 = (DataE∪DataEadd

∆1
)\DataEdel

∆1
, DataE2 = (DataE∪DataEadd

∆2
)\DataEdel

∆2
=⇒

DataE1 = DataE2 and consequently ξ6 hold. 2

Appendix D

Algorithms

Algorithm 9 Purge(S, S’, ∆ = (op1, . . . , opn), Nadd
∆ , Ndel

∆ , SyncEadd
∆ , SyncEdel

∆ , Dadd
∆ , Ddel

∆ ,

DataEadd
∆ , DataEdel

∆) −→ (∆purged, Nmove
∆ , ChangedAttr∆)

//Initialization

VisitedActivities:=∅;
VisitedSyncEdges:=∅;
VisitedDataElements:∅;
VisitedDataEdges:=∅;
VisitedAttributes:=∅;
∆purged := ∅; Nmove

∆ := ∅, ChangedAttr∆ := ∅
//Scan Change Log in Reverse Direction

for i = n to 1 do

switch (opi)

//Insertion Of Activities

case serialInsertActivity(S, X, src, dest)):

if (X 6∈ VisitedActivities)

VisitedActivities = VisitedActivities ∪ {X}; //X not considered so far

if(X 6∈ Nadd
∆) //X actually not inserted −→ hidden move

if (src 6= c pred(S, X) ∧ dest 6= c succ(S, X))//We have to check whether X
//has been moved to another position than its original one.

∆purged.addFirst(serialMoveActivity(S, X, src, dest))//This function

//adds an entry to the first position of the change transaction.;

Nmove
∆ = Nmove

∆ ∪ {X};
fi

else

∆purged.addFirst(serialInsertActivity(S, X, src, dest));

fi

fi

break

254

APPENDIX D. ALGORITHMS 255

case parallelInsertActivity(S, X, (b,e)):

if (X 6∈ VisitedActivities)

VisitedActivities = VisitedActivities ∪ {X}; //X not considered so far

if(X 6∈ Nadd
∆) //X actually not inserted −→ hidden move

∆purged.addFirst(parallelMoveActivity(S, X, (b, e)))//For parallel and

//branch insert operations it is not necessary

// to compare original and destination context

Nmove
∆ = Nmove

∆ ∪ {X};
else

∆purged.addFirst(parallelInsertActivity(S, X, (b, e)));

fi

fi

break;

case branchInsertActivity(S, X, split, join, sc):

if (X 6∈ VisitedActivities)

VisitedActivities = VisitedActivities ∪ {X}; //X not considered so far

if(X 6∈ Nadd
∆) //X actually not inserted −→ hidden move

∆purged.addFirst(branchMoveActivity(S, X, split, join, sc));

Nmove
∆ = Nmove

∆ ∪ {X};
else

∆purged.addFirst(branchInsertActivity(S, X, split, join, sc));

fi

fi

break

//Insertion Of Blocks

case serialInsertBlock(S, block, src, dest):

forall (X ∈ block \ VisitedActivities) do

VisitedActivities = VisitedActivities ∪ {X}; //X not considered so far

if(X 6∈ Nadd
∆) //X actually not inserted −→ hidden move

∆purged.addFirst(serialMoveActivity(S, X, src, dest));

Nmove
∆ = Nmove

∆ ∪ {X};
else

∆purged.addFirst(serialInsertActivity(S, X, src, dest));

fi

od

break

APPENDIX D. ALGORITHMS 256

case parallelInsertBlock(S, block, (b,e)):

forall (X ∈ block \ VisitedActivities) do

VisitedActivities = VisitedActivities ∪ {X}; //X not considered so far

if(X 6∈ Nadd
∆) //X actually not inserted −→ hidden move

∆purged.addFirst(parallelMoveActivity(S, X, (b, e)));

Nmove
∆ = Nmove

∆ ∪ {X};
else

∆purged.addFirst(parallelInsertActivity(S, X, (b, e)));

fi

od

break

case branchInsertBlock(S, block, split, join, sc):

forall (X ∈ block \ VisitedActivities) do

VisitedActivities = VisitedActivities ∪ {X}; //X not considered so far

if(X 6∈ Nadd
∆) //X actually not inserted −→ hidden move

∆purged.addFirst(branchMoveActivity(S, X, split, join, sc));

Nmove
∆ = Nmove

∆ ∪ {X};
else

∆purged.addFirst(branchInsertActivity(S, X, split, join, sc));

fi

od

break

//Moving Activities

case serialMoveActivity(S, X, src, dest):

if (X 6∈ VisitedActivities)

VisitedActivities = VisitedActivities ∪ {X};
if (X ∈ Nadd

∆) //X has been newly inserted and moved afterwards

∆purged.addFirst(serialInsertActivity(S, X, src, dest));

else

if (src 6= c pred(S, X) ∧ dest 6= c succ(S, X))

∆purged.addFirst(serialMoveActivity(S, X, src, dest));

Nmove
∆ = Nmove

∆ ∪ {X};
fi

fi

fi

break

case parallelMoveActivity(S, X, (b, e)):

if (X 6∈ VisitedActivities)

VisitedActivities = VisitedActivities ∪ {X};
if(X ∈ Nadd

∆) //X has been newly inserted and moved afterwards

∆purged.addFirst(parallelInsertActivity(S, X, (b, e)));

else

∆purged.addFirst(parallelMoveActivity(S, X, (b, e)));

Nmove
∆ = Nmove

∆ ∪ {X};
fi

fi

break

APPENDIX D. ALGORITHMS 257

case branchMoveActivity(S, X, split, join, sc):

if (X 6∈ VisitedActivities)

VisitedActivities = VisitedActivities ∪ {X};
if(X ∈ Nadd

∆) //X has been newly inserted and moved afterwards

∆purged.addFirst(branchInsertActivity(S, X, split, join, sc));

else

∆purged.addFirst(branchMoveActivity(S, X, split, join, sc));

Nmove
∆ = Nmove

∆ ∪ {X};
fi

fi

break

//Moving Blocks

case serialMoveBlock(S, block, src, dest):

forall (X ∈ block \ VisitedActivities) do

VisitedActivities = VisitedActivities ∪ {X};
if (X ∈ Nadd

∆) //X has been newly inserted and moved afterwards

∆purged.addFirst(serialInsertActivity(S, X, src, dest));

else

∆purged.addFirst(serialMoveActivity(S, X, src, dest));

Nmove
∆ = Nmove

∆ ∪ {X}
fi

od

break

case parallelMoveBlock(S, block, (b, e)):

forall (X ∈ block \ VisitedActivities) do

VisitedActivities = VisitedActivities ∪ {X};
if (X ∈ Nadd

∆) //X has been newly inserted and moved afterwards

∆purged.addFirst(parallelInsertActivity(S, X, (b, e)));

else

∆purged.addFirst(parallelMoveActivity(S, X, (b, e)));

Nmove
∆ = Nmove

∆ ∪ {X};
fi

od

break

case branchMoveBlock(S, block, split, join, sc):

forall (X ∈ block \ VisitedActivities) do

VisitedActivities = VisitedActivities ∪ {X};
if (X ∈ Nadd

∆) //X has been newly inserted and moved afterwards

∆purged.addFirst(branchInsertActivity(S, X, (b, e)));

else

∆purged.addFirst(branchMoveActivity(S, X, (b, e)));

Nmove
∆ = Nmove

∆ ∪ {X};
fi

od

break

APPENDIX D. ALGORITHMS 258

//Deleting Activities

case deleteActivity(S, X):

if (X 6∈ VisitedActivities)

VisitedActivities = VisitedActivities ∪ {X};
if(X ∈ Ndel

∆)

∆purged.addFirst(deleteActivity(S, X));

fi

fi

break

//Deleting Blocks

case deleteBlock(S, block):

forall (X ∈ block \ VisitedActivities) do

VisitedActivities = VisitedActivities ∪ {X};
if(X ∈ Ndel

∆)

∆purged.addFirst(deleteActivity(S, X));

fi

od

break

//Inserting And Deleting Sync Edges

case insertSyncEdge(S, edge):

if (edge 6∈ VisitedSyncEdges)

VisitedSyncEdges = VisitedSyncEdges ∪ {edge};
if(edge ∈ SyncEadd

∆)

∆purged.addFirst(insertSyncEdge(S, edge));

fi

fi

break

case deleteSyncEdge(S, edge):

if (edge 6∈ VisitedSyncEdges)

VisitedSyncEdges = VisitedSyncEdges ∪ {edge};
if(edge ∈ SyncEdel

∆)

∆purged.addFirst(deleteSyncEdge(S, edge));

fi

fi

break

APPENDIX D. ALGORITHMS 259

//Inserting And Deleting Data Elements

case addDataElements(S, dE, dom, defVal):

forall (d 6∈ dE ∩ VisitedDataElements) do

VisitedDataElements = VisitedDataElements ∪ {d};
if(d ∈ Dadd

∆)

∆purged.addFirst(addDataElement(S, d, dom, defVal));

fi

od

break

caes deleteDataElements(S, dE):

forall (d 6∈ dE ∩ VisitedDataElements) do

VisitedDataElements = VisitedDataElements ∪ {d};
if(d ∈ Ddel

∆)

∆purged.addFirst(deleteDataElements(S, d));

fi

od

break

//Inserting And Deleting Data Edges

case addDataEdges(S, dE):

forall (d 6∈ dE ∩ VisitedDataEdges) do

VisitedDataEdges = VisitedDataEdges ∪ {d};
if(d ∈ DataEadd

∆)

∆purged.addFirst(addDataEdges(S, d, dom, defVal));

fi

od

break

case deleteDataEdges(S, dE):

forall (d 6∈ dE ∩ VisitedDataEdges) do

VisitedDataEdges = VisitedDataEdges ∪ {d};
if(d ∈ DataEdel

∆)

∆purged.addFirst(deleteDataEdges(S, d));

fi

od

break

//Changing Activity And Edge Attributes

case changeActivityAttribute(S, X, attr, nV):

if (X 6∈ VisitedAttributes)

VisitedAttributes = VisitedAttributes∪ {X};
∆purged.addFirst(changeActivityAttribute(S, X, attr, nV));

ChangedAttr∆ = ChangedAttr∆ ∪ {(X, attr, nV)};
fi

break

case changeEdgeAttribute(S, edge, attr, nV):

if (edge 6∈ VisitedAttributes)

VisitedAttributes = VisitedAttributes∪ {edge};
∆purged.addFirst(changeEdgeAttribute(S, edge, attr, nV));

ChangedAttr∆ = ChangedAttr∆ ∪ {(edge, attr, nV)};
fi

break

return (∆purged, Nmove
∆ , ChangedAttr∆);

APPENDIX D. ALGORITHMS 260

Algorithm 10 (Calculating Instance–Specific Change ∆I(S′) := ∆I \∆T) Let S be a (cor-
rect) process type schema and I = (S, ∆I , . . .) a process instance with instance–specific schema
SI := S+∆I . Let further ∆T be a process type change which transforms S into another (correct)
process type schema S′. Assume that the degree of overlap between ∆T and ∆I has been deter-
mined. Then instance–specific change ∆I(S′) resulting after re–linking I to S′ can be determined
as follows:

CalcBias(S, S′, SI, Nadd
∆T

, Ndel
∆T

, Nadd
∆I

, Ndel
∆I

, Nmove
∆T

, Nmove
∆I

, SyncEadd
∆T

, SyncEdel
∆T

SyncEadd
∆I

, SyncEdel
∆I

LoopEadd
∆T

, LoopEdel
∆T

LoopEadd
∆I

, LoopEdel
∆I

, DataEadd
∆T

, DataEdel
∆T

DataEadd
∆I

, DataEdel
∆I

, Dadd
∆T

, Ddel
∆T

,

Dadd
∆I

, Ddel
∆I

, Econc context
∆T

[ins], Econc context
∆T

[move], Econc context
∆I

[ins], Econc context
∆I

[move],) −→ (∆I(S
′))

//Initialization

∆I(S′) := ∅;

//∆T is subsumption equivalent with ∆I, i.e., ∆T ≺ ∆I

if (∆T ≺ ∆I)

find Add:=Nadd
∆I

\Nadd
∆T

;

Single:={X ∈ Add | 6 ∃B ∈ OrderIns(SI , ∆I) with (X, Y) ∈ B ∨ (Y, X) ∈ B};
Row:= {< X1, . . . , Xn > |{X1, . . . , Xn} ∈ AnchorGroupsIns(S, ∆I) ∧ ∃(X1, X2), . . . , (Xn−1, Xn) ∈ CtrlEI};
forall X ∈ Single do

∆I(S′) := ∆I(S′)∪ {insertBetweenNodeSets(S′, X, {c pred(SI , X)}, {c succ(SI , X})};
od

forall B =< X1, . . . , Xn >∈ Row do

find (A1, X1, A2) ∈ AnchorIns(S, ∆I);
∆I(S′) := ∆I(S′)∪ {insertBetweenNodeSets(S′, X1, A1, A2)};
for (i = 2 to n) do

∆I(S′) := ∆I(S′)∪ {serialInsertActivity(S′, Xi, Ai−1, A2)};
od

od

forall X ∈ Ndel
∆I

\Ndel
∆T

do

∆I(S′):=∆I(S′) ∪ {deleteActivity(S′, X);
od

find Move:=Nmove
∆I

\Nmove
∆T

;

Single:={X ∈ Move| 6 ∃B ∈ OrderMove(SI , ∆I) with (X, Y) ∈ B ∨ (Y, X) ∈ B};
Row:= {< X1, . . . , Xn > |{X1, . . . , Xn} ∈ AnchorGroupsMove(S, ∆I) ∧ ∃(X1, X2), . . . , (Xn−1, Xn) ∈ CtrlEI};
forall X ∈ Single do

∆I(S′) := ∆I(S′)∪ {moveBetweenNodeSets(S′, X, {c pred(SI , X)}, {c succ(SI , X})}1;
od

forall B =< X1, . . . , Xn >∈ Row do

find (A1, X1, A2) ∈ AnchorMove(S, ∆I);
∆I(S′) := ∆I(S′)∪ {moveBetweenNodeSets(S′, X1, A1, A2)};
for (i = 2 to n) do

∆I(S′) := ∆I(S′)∪ {serialMoveActivity(S′, Xi, Ai−1, A2)};
od

od

forall edge ∈ SyncEadd
∆I

\ SyncEadd
∆T

do

∆I(S′):=∆I(S′) ∪ {insertSyncEdge(S′, edge)};
od

forall edge ∈ SyncEdel
∆I

\ SyncEdel
∆T

do

∆I(S′):=∆I(S′) ∪ {deleteSyncEdge(S′, edge)};
od

APPENDIX D. ALGORITHMS 261

forall edge ∈ LoopEadd
∆I

\ LoopEadd
∆T

do

∆I(S′):=∆I(S′) ∪ {insertLoopEdge(S′, edge, . . .)};
od

forall edge = (LS , LE) ∈ LoopEdel
∆I

\ LoopEdel
∆T

do

∆I(S′):=∆I(S′) ∪ {deleteBlock(S′, (LS , LE))};
od

forall d ∈ Dadd
∆I

\Dadd
∆T

do

∆I(S′):=∆I(S′) ∪ {addDataElements(S′, {d})};
od

forall edge ∈ DataEadd
∆I

\DataEadd
∆T

do

∆I(S′):=∆I(S′) ∪ {addDataEdges(S′, {edge})};
od

forall edge ∈ DataEdel
∆I

\DataEdel
∆T

do

∆I(S′):=∆I(S′) ∪ {deleteDataEdges(S′, {edge})};
od

forall d =∈ Ddel
∆I

\Ddel
∆T

do

∆I(S′):=∆I(S′) ∪ {deleteDataElements(S′, {d}))};
od

inherit attribute changing operations from ∆I which are not present in ∆I;

else

//∆I is partially equivalent with ∆T regarding deletion of activities and sync edges

if (∆I [projection] G ∆T [projection]∧ projection ∈ {del Act, del Sync})
forall X ∈ Ndel

∆I
\Ndel

∆T
do

∆I(S′):=∆I(S′) ∪ {deleteActivity(S′, X)};
od

forall edge ∈ SyncEdel
∆I

\ SyncEdel
∆T

do

∆I(S′):=∆I(S′) ∪ {deleteSyncEdge(S′, edge)};
od

else

//∆I and ∆T have a concurrent target context, i.e., ∆T . ∆I

if (∆T . ∆I)

forall (s, d) ∈ (Econc context
∆T

[ins] ∪ Econc context
∆T

[move]) ∩ (Econc context
∆I

[ins] ∪ Econc context
∆I

[move]) do

determine concerned activity X ∈ Nadd
∆I

∪Nmove
∆I

;

if (X ∈ Nadd
∆I

)

∆I(S′):=∆I(S′) ∪ {insertBetweenNodeSets(S′, X, {s}, {d});
else if (X ∈ Nmove

∆I
)

∆I(S′):=∆I(S′) ∪ {moveBetweenNodeSets(S′, X, {s}, {d})1;
fi

od

fi

return ∆I(S′);
1The high-level change moveBetweenNodeSets(S, X, . . .) can be defined analogously to high-level change

insertBetweenNodeSets(S, . . .), i.e., by first moving X parallel to a minimal block around the

defined node sets and then setting the desired order relations via sync edges.

APPENDIX D. ALGORITHMS 262

Algorithm 11 (Calculating ∆T (SI) := ∆T \∆I) Let S be a (correct) process type schema
and I = (S, ∆I , . . .) a process instance with instance–specific schema SI := S + ∆I . Let further
∆T be a process type change which transforms S into another (correct) process type schema S′.
Assume that ∆I ≺ ∆T holds. Then the parts of ∆T for which state–related compliance has to
be checked on SI (notation: (∆T (SI) := ∆T \∆I) can be determined as follows:

CalcStateChecks(S, S′, SI, Nadd
∆T

, Ndel
∆T

, Nadd
∆I

, Ndel
∆I

, Nmove
∆T

, Nmove
∆I

, SyncEadd
∆T

, SyncEdel
∆T

SyncEadd
∆I

, SyncEdel
∆I

LoopEadd
∆T

, LoopEdel
∆T

LoopEadd
∆I

, LoopEdel
∆I

, DataEadd
∆T

, DataEdel
∆T

DataEadd
∆I

, DataEdel
∆I

, Dadd
∆T

, Ddel
∆T

,

Dadd
∆I

, Ddel
∆I

,) −→ (∆T (SI))

//Initialization

∆T (SI) := ∅;

find Add:=Nadd
∆T

\Nadd
∆I

;

Single:={X ∈ Add | 6 ∃B ∈ OrderIns(S′, ∆T) with (X, Y) ∈ B ∨ (Y, X) ∈ B};
Row:= {< X1, . . . , Xn > |{X1, . . . , Xn} ∈ AnchorGroupsIns(S, ∆T) ∧ ∃(X1, X2), . . . , (Xn−1, Xn) ∈ CtrlE′};
forall X ∈ Single do

∆T (SI) := ∆T (SI)∪ {insertBetweenNodeSets(SI , X, {c pred(S′, X)}, {c succ(S′, X})};
od

forall B =< X1, . . . , Xn >∈ Row do

find (A1, X1, A2) ∈ AnchorIns(S, ∆T);
∆T (SI) := ∆T (SI)∪ {insertBetweenNodeSets(SI , X1, A1, A2)};
for (i = 2 to n) do

∆T (SI) := ∆T (SI)∪ {serialInsertActivity(SI , Xi, Ai−1, A2)};
od

od

forall X ∈ Ndel
∆T

\Ndel
∆I

do

∆T (SI):=∆T (SI) ∪ {deleteActivity(SI , X);
od

find Move:=Nmove
∆T

\Nmove
∆I

;

Single:={X ∈ Move| 6 ∃B ∈ OrderMove(S′, ∆T) with (X, Y) ∈ B ∨ (Y, X) ∈ B};
Row:= {< X1, . . . , Xn > |{X1, . . . , Xn} ∈ AnchorGroupsMove(S, ∆T) ∧ ∃(X1, X2), . . . , (Xn−1, Xn) ∈ CtrlE′};
forall X ∈ Single do

∆T (SI) := ∆T (SI)∪ {moveBetweenNodeSets(SI , X, {c pred(S′, X)}, {c succ(S′, X})};
od

forall B =< X1, . . . , Xn >∈ Row do

find (A1, X1, A2) ∈ AnchorMove(S, ∆T);
∆T (SI) := ∆T (SI)∪ {moveBetweenNodeSets(SI , X1, A1, A2)};
for (i = 2 to n) do

∆T (SI) := ∆T (SI)∪ {serialMoveActivity(SI , Xi, Ai−1, A2)};
od

od

forall edge ∈ SyncEadd
∆T

\ SyncEadd
∆I

do

∆T (SI):=∆T (SI) ∪ {insertSyncEdge(SI , edge)};
od

forall edge ∈ SyncEdel
∆T

\ SyncEdel
∆I

do

∆T (SI):=∆T (SI) ∪ {deleteSyncEdge(SI , edge)};
od

APPENDIX D. ALGORITHMS 263

forall edge ∈ LoopEadd
∆T

\ LoopEadd
∆I

do

∆T (SI):=∆T (SI) ∪ {insertLoopEdge(SI , edge, . . .)};
od

forall edge = (LS , LE) ∈ LoopEdel
∆T

\ LoopEdel
∆I

do

∆T (SI):=∆T (SI) ∪ {deleteBlock(SI , (LS , LE))};
od

forall d ∈ Dadd
∆T

\Dadd
∆I

do

∆T (SI):=∆T (SI) ∪ {addDataElements(SI , {d})};
od

forall edge ∈ DataEadd
∆T

\DataEadd
∆I

do

∆T (SI):=∆T (SI) ∪ {addDataEdges(SI , {edge})};
od

forall edge ∈ DataEdel
∆T

\DataEdel
∆I

do

∆T (SI):=∆T (SI) ∪ {deleteDataEdges(SI , {edge})};
od

forall d =∈ Ddel
∆T

\Ddel
∆I

do

∆T (SI):=∆T (SI) ∪ {deleteDataElements(SI , {d}))};
od

inherit attribute changing operations from ∆I which are not present in ∆I;

return ∆T (SI);

Zusammenfassung

Für Unternehmen gewinnt die elektronische Unterstützung ihrer Geschäftsprozesse zunehmend
an Bedeutung. Sowohl für traditionelle Applikationssysteme (z. B. ERP-Systeme) als auch für
Anwendungen im sich rasch entwickelnden E-Business-Bereich (z. B. E-Procurement, Supply
Chain Management) wird von Anwenderseite in verstärktem Maße eine aktive
Prozessunterstützung gewünscht. Dasselbe trifft auf Technologien zur unternehmensweiten
und -übergreifenden Anwendungsintegration zu. All diese Entwicklungen haben die Prozess-
Management-Idee – Trennung von Prozesslogik und Anwendungscode sowie explizite Steuerung
der Prozesse durch ein Prozess-Management-System (PMS) – wieder stark in den Fokus des
allgemeinen Interesses gerückt.

Sollen PMS in umfassender Weise für die rechnerbasierte Verwaltung und Steuerung von
Geschäftsprozessen einsetzbar sein, müssen die von ihnen verwalteten Prozessschemata und
Prozessinstanzen bei Bedarf rasch anpassbar sein. Solche Änderungen können einen Prozesstyp
(bzw. sein Schema) als Ganzes oder auch nur einzelne Instanzen betreffen. Bei Änderungen auf
Prozesstyp-Ebene wird man in der Regel fordern, dass die auf Basis des alten Prozessschemas
erzeugten Instanzen auch nach Änderung dieses Schemas ungestört weiterlaufen können. Dies
lässt sich z. B. durch geeignete Versionskonzepte erreichen. Dieser einfache Ansatz ist für
Prozesse kurzer Dauer meist ausreichend sein, wirft aber im Zusammenhang mit langlaufenden
Prozessen, wie sie z. B. im Krankenhaus-, Engineering- oder Finanz-Bereich auftreten, Probleme
auf. Bei dem dann resultierenden ,,Mix” von Instanzen alter und neuer Form muss gegebenenfalls
für längere Zeit ein Durcheinander in Produktion oder Dienstleistungen in Kauf genommen wer-
den. Abgesehen davon ist eine Fortführung der Prozesse auf Grundlage des alten Prozessschemas
aus verschiedenen Gründen nicht immer akzeptabel, etwa wenn dadurch gesetzliche Vorschriften
oder Geschäftsregeln des Unternehmens (z. B. Behandlungsrichtlinien eines Krankenhauses) ver-
letzt werden.

Aus diesen Gründen besteht von Anwenderseite der Wunsch, die auf Prozesstyp-Ebene fest-
gelegten Änderungen – wo sinnvoll und möglich – auch auf die bereits (vielleicht in großer Zahl)
laufenden Prozessinstanzen zu übertragen. Wir sprechen in diesem Zusammenhang auch von der
Propagation einer Prozesstyp-Änderung auf laufende Prozessinstanzen bzw. von der Migration
verträglicher Prozessinstanzen auf das geänderte Prozessschema. Dies bei Bedarf zu können,
und zwar ohne, dass es dadurch auf Instanzebene in der Folge zu Inkonsistenzen oder Fehlern
kommt, ist ungemein wichtig, wenn ein PMS breit und umfassend einsetzbar sein soll.

264

APPENDIX D. ALGORITHMS 265

Neben Änderungen auf Prozesstyp-Ebene muss ein flexibles PMS auch die (Ad-hoc) Modi-
fikation einzelner Prozessinstanzen zur Laufzeit erlauben. Kommt es dann nachfolgend zu einer
Prozesstyp-Änderung stellt sich die grundlegende Frage, ob und wann die bereits individuell
modifizierten Prozessinstanzen auf das geänderte Prozessschema migriert werden können. Das
bedeutet dann, dass ein flexibles Prozess-Management-System auch das Zusammenspiel von
Prozesstyp- und Prozessinstanz-Änderungen adäquat unterstützen muss.

Heutige auf dem Markt verfügbare PMS erlauben es jedoch entweder gar nicht, die Änderungen
eines Prozesstyps auf bereits laufende Prozessinstanzen zu übertragen oder aber dies kann in der
Folge zu Inkonsistenzen oder gar Systemabstürzen führen. Dieser Mangel ist ein wesentlicher
Grund für die immer noch geringe Verbreitung dieser Systeme. Auch Ansätze aus der Forschung
springen in vielerlei Hinsicht zu kurz, etwa hinsichtlich Benutzerfreundlichkeit oder Effizienz.
Außerdem existiert weder ein kommerzielles System noch ein theoretischer Ansatz, der das
Zusammenspiel von Prozesstyp- und Prozessinstanz-Änderungen erlaubt.

Ziel dieser Arbeit ist es, ein umfassendes formales Rahmenwerk für die Unterstützung von
Prozesstyp- und Prozessinstanz-Änderungen im laufenden Betrieb zu erarbeiten. Darauf ba-
sierend sollen Prozesstyp-Änderungen in korrekter und effizienter Weise auf die möglicherweise
große Zahl von sich in Ausführung befindlichen Prozessinstanzen propagiert werden. Dies er-
fordert einerseits entsprechende Korrektheitsüberprüfungen zur Laufzeit, andererseits darf die
Performanz des Gesamtsystems nicht wesentlich leiden. Darüber hinaus sollen alle präsentierten
Konzepte benutzerfreundlich anwendbar sein.

Grundlegend ist die Unterscheidung zwischen zwei Arten von Prozessinstanzen: solchen,
die noch basierend auf ihrem Original-Prozessschema laufen (unverzerrte Prozessinstanzen) und
solchen, die bereits individuell modifiziert worden sind (verzerrte Prozessinstanzen). Das Funda-
ment unserer Betrachtungen bildet der Ansatz zur Migration von unverzerrten Prozessinstanzen
auf das geänderte Prozessschema. Kernstück ist hierbei ein von uns (weiter-) entwickeltes, um-
fassendes Korrektheitskriterium, dessen Gültigkeit durch Auswertung einfacher Bedingungen
effizient überprüft werden kann. Zusätzlich werden Algorithmen zur automatischen Anpas-
sung der verträglichen Prozessinstanzen nach ihrer Migration auf das geänderte Prozessschema
präsentiert (was für bestimmte Formalismen, z. B. Petri-Netze im Allgemeinen nicht möglich
ist).

Ausgehend vom Basisfall der Migration unverzerrter Prozessinstanzen sollen Prozesstyp-
Änderungen auch auf verzerrte Prozessinstanzen anwendbar sein. Dazu werden die verzerr-
ten Prozessinstanzen zunächst entlang des Überlappungsgrades zwischen instanz-spezifischer
Änderung (,,Verzerrung”) und der Prozesstyp-Änderung klassifiziert. Der Grund hierfür ist, dass
Prozessinstanzen, für die instanz-spezifische Änderung und Prozesstyp-Änderung disjunkt sind,
eine andere Migrationsstrategie erfordern als Prozessinstanzen, für welche diese Änderungen
überlappende ,,Effekte” auf das ursprüngliche Prozessschema haben. Für Prozessinstanzen der
ersten Kategorie (disjunkte Prozessinstanz- und Prozesstyp-Änderungen), wird eine geeignete
Erweiterung des (Basis-) Korrektheitskriteriums vorgenommen, welche neben Statuskonflikten
nun auch strukturelle Konflikte berücksichtigt. Um die Existenz von strukturellen Konflikten

APPENDIX D. ALGORITHMS 266

effizient auszuschließen, werden schnell überprüfbare Struktur-Konflikttests entwickelt. Schließlich
werden geeignete Strategien für die Migration von Prozessinstanzen mit disjunkter Verzerrung
präsentiert.

Für Prozessinstanzen, deren Verzerrung die Prozesstyp-Änderung überlappt, wird eine wei-
terführende Klassifikation entwickelt, die von sich nur teilweise überlappenden bis hin zu
äquivalenten Änderungen reicht. Für alle diese Klassen werden (automatische) Migrationsstrate-
gien und Verhaltensregeln zur Benutzerunterstützung erarbeitet. Diese Strategien beinhalten
nicht nur das automatische ”Umhängen” der verträglichen Prozessinstanzen auf das geänderte
Prozessschema, sondern auch die erforderlichen Struktur- und Zustandsanpassungen. Alle Be-
griffe werden definiert und alle wichtigen Aussagen formal dargestellt und bewiesen. Zudem sind
die präsentierten Konzepte prototypisch (im Rahmen eines Demonstrators) implementiert. Sie
werden in die Entwicklung des neuen ADEPT2 Prozess-Management-Systems einfließen.

	Text3:
	Text4:
	Text5:
	Text6:

