
Evaluation Patterns for Analyzing the Costs
of Enterprise Information Systems

Bela Mutschler1 and Manfred Reichert2

1 Business Informatics, University of Applied Sciences Ravensburg-Weingarten, Germany
bela.mutschler@hs-weingarten.de

2 Institute of Databases and Information Systems, University of Ulm, Germany
manfred.reichert@uni-ulm.de

Abstract. Introducingenterprise information systems(EIS) is usually associated
with high costs. It is therefore crucial to understand those factors that determine
or influence these costs. Existing cost analysis methods are difficult to apply. Par-
ticularly, these methods are unable to cope with the dynamic interactions of the
many technological, organizational and project-driven cost factors,which specif-
ically arise in the context of EIS. Picking up this problem, in previous work we
introduced the EcoPOST framework to investigate the complex cost structures
of EIS engineering projects through qualitative cost evaluation models. This pa-
per extends this framework and introduces a pattern-based approachenabling
the reuse of EcoPOST evaluation models. Our patterns do not only simplifythe
design of EcoPOST evaluation models, but also improve the quality and com-
parability of cost evaluations. Therewith, we further strengthen our EcoPOST
framework as an important tool supporting EIS engineers in gaining a better un-
derstanding of those factors that determine the costs of EIS engineeringprojects.
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1 Introduction

While the benefits ofenterprise information systems(EIS) are usually justified by im-
proved process performance [1], there exist no approaches for systematically analyzing
related cost factors and their dependencies. Though software cost estimation has re-
ceived considerable attention during the last decades [2] and has become an essential
task in software engineering, it is difficult to apply existing approaches to EIS, par-
ticularly if the considered EIS shall support business processes. This difficulty stems
from the inability of these approaches to cope with the numerous technological, or-
ganizational and project-driven cost factors which have tobe considered for process-
aware EIS (and which do only partly exist in data- or function-centered information
systems). As example consider the costs which emerge when redesigning business pro-
cesses. Another challenge deals with the many dependenciesexisting between different
cost factors. Activities forbusiness process redesign, for example, can be influenced
by intangible impact factors like availableprocess knowledgeor end user fears. These
dependencies, in turn, result in dynamic effects which influence the overall costs of EIS



engineering projects. Existing evaluation techniques [3]are typically unable to deal
with such dynamic effects as they rely on too static models based upon snapshots of the
considered software system.

What is needed is an approach that enables project managers and EIS engineers to
model and investigate the complex interplay between the many cost and impact factors
that arise in the context of EIS. This paper is related to the EcoPOST methodology, a
sophisticated and practically validated, model-based methodology to better understand
and systematically investigate the complex cost structures of EIS engineering projects
[4, 5]. Specifically, this paper extends previously described concepts [6, 7] and intro-
duces a pattern-based approach to enable the reuse of EcoPOST evaluation models.
Using the presented evaluation patterns does not only simplify the design of EcoPOST
evaluation models, but also improves the quality of EcoPOSTcost evaluations.

Section 2 summarizes the EcoPOST methodology. This background information is
needed for understanding this work. Section 3 introduces evaluation patterns for design-
ing evaluation models. Section 4 deals with the use of our evaluation patterns. Section
5 discusses related work. Section 6 concludes with a summary.

2 The EcoPOST Cost Analysis Methodology - A Brief Summary

We designed the EcoPOST methodology [3–7] to ease the realization of process-aware
EIS. The EcoPOST methodology comprises seven steps (cf. Fig. 1). Step 1concerns
the comprehension of an evaluation scenario. This is crucial for developing problem-
specific evaluation models.Steps 2 and 3deal with the identification of two different
kinds ofCost Factorsrepresenting costs that can be quantified in terms of money (cf.
Table 1):Static Cost Factors(SCFs) andDynamic Cost Factors(DCFs).

SCF Static Cost Factors(SCFs) represent costs whose values do not change during an EIS engineering project (except
for their time value, which is not further considered in the following). Typical examples: software license costs,
hardware costs and costs for external consultants.

DCF Dynamic Cost Factors(DCFs), in turn, represent costs that are determined by activities related to an EIS engineer-
ing project, e.g. process modelling, requirements elicitation and definition, process implementation and adaptation.
These activities cause measurable efforts which, in turn, vary due to the influenceof intangibleimpact factors.

Table 1.Cost Factors.

Step 4deals with the identification ofImpact Factors(ImFs), i.e., intangible factors
that influence DCFs and other ImFs. We distinguish between organizational, project-
specific, and technological ImFs. ImFs cause the value of DCFs (and other ImFs) to
change, making their evaluation a difficult task to accomplish. As examples consider
factors such as ”End User Fears”, ”Availability of Process Knowledge”, or ”Ability to
(re)design Business Processes”. Also, ImFs can be static ordynamic (cf. Table 2).

Static ImF Static ImFs do not change, i.e., they are assumed to be constant during an EIS engineering project; e.g., when
there is a fixed degree of user fears, process complexity, or work profile change.

Dynamic
ImF

Dynamic ImFs may change during an EIS engineering project, e.g., due to interference with other ImFs.
As examples consider process and domain knowledge which is typically varyingduring an EIS engineering
project (or a subsidiary activity).

Table 2. Impact Factors.



Unlike SCFs and DCFs the values of ImFs are not quantified in monetary terms. Instead,
they are ”quantified” by experts using qualitative scales describing the degree of an ImF.
As known from software cost estimation models, such as COCOMO [2], qualitative
scales we use comprise different ”values” (ranging from ”very low” to ”very high”)
expressing the strength of an ImF on a given cost factor.

Generally, dynamic evaluation factors (i.e., DCFs and dynamic ImFs) are difficult to
comprehend. In particular, intangible ImFs (i.e., their appearance and impact in EIS en-
gineering projects) are not easy to follow. When evaluating the costs of EIS engineering
projects, therefore, DCFs and dynamic ImFs constitute a major source of misinterpre-
tation and ambiguity. To better understand and to investigate the dynamic behavior of
DCFs and dynamic ImFs, we introduce the notion ofevaluation modelsas basic pillar
of the EcoPOST methodology (Step 5; cf. Section 2.2). These evaluation models can be
simulated (Step 6) to gain insights into the dynamic behavior (i.e., evolution) of DCFs
and dynamic ImFs (Step 7). This is important to effectively control the design and im-
plementation of EIS as well as the costs of respective projects. Note that EcoPOST
evaluation models can be designed and simulations can be performed using any System
Dynamics modeling and simulation tool. In our case, we used the tool ”Vensim”.
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Fig. 1.Basic EcoPOST Methodology (without Evaluation Patterns).

2.1 Evaluation Models

In EcoPOST, dynamic cost/impact factors are captured and analyzed by evaluation
models which are specified using the System Dynamics [8] notation (cf. Fig. 2). An
evaluation model comprises SCFs, DCFs, and ImFs corresponding to model variables.
Different types of variables exist.State variablescan be used to represent dynamic
factors, i.e., to capture changing values of DCFs (e.g., the”Business Process Redesign
Costs”; cf. Fig. 2A) and dynamic ImFs (e.g., ”Process Knowledge”). A state variable
is graphically denoted as rectangle (cf. Fig. 2A), and its value at timet is determined
by the accumulated changes of this variable from starting point t0 to present moment
t (t > t0) – similar to a bathtub which accumulates at a defined momentt the amount
of water poured into it in the past. Typically, state variables are connected to at least
onesourceor sinkwhich are graphically represented as cloud-like symbols (except for
state variables connected to other ones) (cf. Fig. 2A). Values of state variables change
through inflows and outflows. Graphically, both flow types aredepicted by twin-arrows
which either point to (in the case of aninflow) or out of (in the case of anoutflow) the
state variable (cf. Fig. 2A). Picking up again the bathtub image, aninflow is a pipe that
adds water to the bathtub, i.e., inflows increase the value ofstate variables. Anoutflow,
by contrast, is a pipe that purges water from the bathtub, i.e., outflows decrease the



value of state variables. The DCF ”Business Process Redesign Costs” shown in Fig.
2A, for example, increases through its inflow (”Cost Increase”) and decreases through
its outflow (”Cost Decrease”). Returning to the bathtub image, we further need ”water
taps” to control the amount of water flowing into the bathtub,and ”drains” to specify the
amount of water flowing out. For this purpose, arate variableis assigned to each flow
(graphically depicted by a valve; cf. Fig. 2A). In particular, a rate variable controls the
inflow/outflow it is assigned to based on those SCFs, DCFs, andImFs which influence
it. It can be considered as an interface which is able to mergeSCFs, DCFs, and ImFs.
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Fig. 2.Evaluation Model Notation and Initial Examples.

Besides state variables, evaluation models may compriseconstantsandauxiliary vari-
ables. Constants are used to represent static evaluation factors, i.e., SCFs and static
ImFs. Auxiliary variables, in turn, represent intermediate variables and typically bring
together – like rate variables – cost and impact factors, i.e., they merge SCFs, DCFs, and
ImFs. As example consider the auxiliary variable ”AdjustedProcess Analysis Costs” in
Fig. 2B. It merges the three dynamic ImFs ”Process Knowledge”, ”Domain Knowl-
edge” and ”Ability to Redesign Business Processes”, and theSCF ”Planned Analysis
Costs per Week”. Both constants and auxiliary variables areintegrated into an evalu-
ation model with labeled arrows denoted aslinks (not flows). Apositive link(labeled
with ”+”) between x and y (with y as dependent variable) indicates that y will tend in
the same direction if a change occurs in x. Anegative link(labeled with ”-”) expresses
that the dependent variable y will tend in the opposite direction if x changes.

EcoPOST evaluation models are useful for EIS engineers and project managers.
However, the evolution of DCFs and dynamic ImFs is still difficult to comprehend.
Thus, we added a simulation component to our evaluation framework (cf. Fig. 1).

2.2 Understanding Model Dynamics through Simulation

To enable simulation of an evaluation model we need to formally specify its behavior by
means of asimulation model. We usemathematical equationsfor this purpose. Thereby,
the behavior of each model variable is specified by one equation (cf. Fig. 3), which



describes how a variable is changing over time from simulation start. Details on the
specification of simulation models can be found in [3, 9].
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Fig. 3.Elements of a Simulation Model.

Generally, results of a simulation enable EIS engineers to gain insights into causal
dependencies between organizational, technological, andproject-specific factors. This
helps them to better understand resulting effects and to develop a concrete ”feeling” for
the dynamic implications of EcoPOST evaluation models. To investigate how a given
evaluation model ”works” and what might change its behavior, we simulate the dynamic
implications described by it – a task which is typically too complex for human mind. In
particular, we conduct ”behavioral experiments” based on aseries of simulation runs.
During these simulation runs selected parameters are changed in a controlled manner
to systematically investigate their effects within an evaluation model, i.e., to investigate
how the output of a simulation will vary if its initial condition is changed. This proce-
dure is also known assensitivity analysis. Simulation outcomes can be further analyzed
using graphical charts (generated by the used simulation tool).

2.3 Applying EcoPOST in Practice: Experiences and Lessons Learned

We applied the EcoPOST framework in several case studies in the automotive domain.
This has made us aware of a number ofcritical success factorswhich foster the transfer
of the EcoPOST framework into practice.

First, it is important that EcoPOST users get enough time to becomefamiliar with
the provided evaluation concepts. Note that EcoPOST exhibits a comparatively large
number of different concepts and tools, such that it will need some time to effectively
apply them. In practice, this can be a barrier for potential users. However, this complex-
ity quickly decreases through gathered experiences.

Second, it is crucial that results of EcoPOST evaluations are carefully documented.
This does not only enable their later reuse, it also allows toreflect on past evaluations
and lessons learned as well as to reuse evaluation data. For that purpose, theEcoPOST
Cost Benefit Analyzercan be used, which is a tool we developed to support the use of
EcoPOST [3]. For example, it enables storage of complete evaluation scenarios, i.e.,
evaluation models and their related simulation models.

Third, evaluation models should be validated in an open forum where stakehold-
ers such as policy makers, project managers, EIS architects, software developers, and
consultants have the opportunity to contribute to the modelevolution process.

Finally, the use of EcoPOST has shown that designing evaluation models can be
a complicated and time-consuming task. Evaluation models can become complex due
to the high number of potential cost and impact factors as well as the many causal
dependencies that exist between them. Evaluation models wedeveloped to analyze a



large EIS engineering project in the automotive domain, forexample, comprise more
than ten DCFs and ImFs and more than 25 causal dependencies [3]. Taking the approach
described so far (cf. Section 2), each evaluation and each simulation model would have
to be designed from scratch. Besides additional efforts, this results in an exlusion of
existing modeling experience, and prevents the reuse of both evaluation and simulation
models. In response to this problem, we introduce a set of reusableevaluation patterns.

3 EcoPOST Evaluation Patterns

EIS engineering projects often exhibit similarities, e.g., regarding the appearance of cer-
tain cost and impact factors. We pick up these similarities by introducing customizable
patterns. This shall increase model reuse and facilitate practical use of our EcoPOST
framework.Evaluation patterns(EPs) do not only ease the design and simulation of
evaluation models, but also enable reuse of evaluation information. This is crucial to
foster practical applicability of the EcoPOST framework.

Specifically, we introduce anevaluation pattern(EP) as a predefined, but customiz-
able EcoPOST model, i.e., EPs can be built based on same elements as introduced in
Section 2. An EP consists of anevaluation modeland an associatedsimulation model.
More precisely, each EP constitutes a template for a specificDCF or ImF as it typically
exists in many EIS engineering projects. Moreover, we distinguish betweenprimary
EPs (cf. Section 3.2) andsecondaryones (cf. Section 3.3).

A primary EP describes a DCF whereas a secondary EP represents an ImF. We
denote an EP representing an ImF as secondary as it has a supporting role regarding the
design of EcoPOST cost models based on primary EPs.

The decision whether to represent cost/impact factors as static or dynamic factors in
EPs also depends on the model designer. Many cost and impact factors can be modeled
both as static or dynamic factors. Consequently, EPs can be modeled in alternative ways.
This is valid for all EPs discussed in the following.

3.1 Research Methodology and Pattern Identification

As sources of our patterns (cf. Tables 3 and 4) we consider results from surveys [5], case
studies [3, 10], software experiments [4], and profound experiences we gathered in EIS
engineering projects in the automotive domain. These projects addressed a variety of
typical settings in enterprise computing which allows us togeneralize our experiences.

Pattern Name Discussed in PaperSurvey Case StudyLiterature Experiment Experiences
Business Process Redesign Costs yes x x x - x
Process Modeling Costs yes - - x x x
Requirements Definition Costs yes - x x - x
Process Implementation Costs yes x x x x x
Process Adaptation Costs no x x x x x

Table 3.Overview of primary Evaluation Patterns and their Data Sources.

To ground our patterns on a solid basis we first create a list ofcandidate patterns. For
generating this initial list we conduct a detailed literature review and rely on our ex-
perience with EIS-enabling technologies, mainly in the automotive industry. Next we



thoroughly analyze the above mentioned material to find empirical evidence for our
candidate patterns. We then map the identified evaluation data to our candidate patterns
and - if necessary - extend the list of candidate patterns.

Pattern Name Discussed in PaperSurvey Case StudyLiterature Experiment Experiences
Process Knowledge yes x - x x x
Domain Knowledge yes x - x x x
Process Evolution yes x - x - x
Process Complexity yes - - x - -
Process Maturity no - - x - x
Work Profile Change no x - x x x
End User Fears no x x x - x

Table 4.Overview of secondary Evaluation Patterns and their Data Sources.

A pattern is defined as a reusable solution to a commonly occurring problem. We re-
quire each of our evaluation patterns to be observed at leastthree times in different
settings of literature and our empirical research. Only those patterns, for which enough
empirical evidence exists, are included in the final list of patterns, which is presented
in the following. Also note that these patterns represent a first baseline which clearly
needs to be extended in future. This includes a deeper analysis of additional cost areas
such as data modelling or system configuration efforts.

3.2 Primary Evaluation Patterns

Business Process Redesign Costs. The EP shown in Fig. 4 deals with the costs of
business process redesign activities. Prior to EIS development such activities become
necessary for several reasons. As examples consider the need to optimize business pro-
cess performance or the goal of realizing a higher degree of process automation.
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Fig. 4.Primary Evaluation Pattern: Business Process Redesign Costs.

This EP is based on our experiences (from several process redesign projects) that busi-
ness process redesign costs are primarily determined by twoSCFs: ”Planned Costs for
Process Analysis” and ”Planned Costs for Process Modeling”. While the former SCF



represents planned costs for accomplishing interviews with process participants and
costs for evaluating existing process documentation, the latter SCF concerns costs for
transforming gathered process information into a new process design. Process redesign
costs are thereby assumed to be varying, i.e., they are represented as DCF.

Process Modeling Costs. The EP shown in Fig. 5 deals with the costs of process mod-
eling activities in EIS engineering projects. Such activities are typically accomplished
to prepare the information gathered during process analysis, to assist software devel-
opers in implementing the EIS, and to serve as guideline for implementing the new
process design (in the organization). Generally, there exist many notations that can be
used to specify process models. Our EP, for example, assumesthat process models are
expressed asevent-driven process chains(EPC).
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Fig. 5.Primary Evaluation Pattern: Process Modeling Costs.

Basically, this EP (cf. Fig. 5) reflects our experiences that”Process Modeling Costs” are
influenced by three ImFs: the two static ImFs ”Process Complexity” and ”Process Size”
(whereas the impact of process size is specified based on a table function transforming
a given process size into an EcoPOST impact rating [3]) and the dynamic ImF ”Process
Knowledge” (which has been also confirmed by our survey described in [3]). The ImF
”Process Complexity” is not further discussed here. Instead, we refer to [3] where this
ImF has been introduced in detail. The ImF ”Process Size”, inturn, is characterized
based on (estimated) attributes of the process model to be developed. These attributes
depend on the used modeling formalism. As aforementioned, the EP from Fig. 5 builds
on the assumption that the EPC formalism is used for process modeling. Taking this
formalism, we specify process size based on the ”Number of Functions”, ”Number of
Events”, ”Number of Arcs”, ”Number of Connectors”, ”Numberof Start Events”, and
”Number of ”End Events”. Finally, the DCF ”Process ModelingCosts” is also influ-
enced by the dynamic ImF ”Process Knowledge” (assuming thatincreasing process
knowledge results in decreasing modeling costs). Level of process knowledge increases
with costs (the comprehensiveness of the modeled process increases over time).

Requirements Definition Costs. The EP from Fig. 6 deals with costs for defining and
eliciting requirements [3]. It is based on the two DCFs ”Requirement Definition Costs”
and ”Requirement Test Costs” as well as on the ImF ”Requirements to be Documented”.
This EP reflects our observation from practice that the DCF ”Requirements Definition
Costs” is determined by three main cost factors: costs for a requirements management



tool, process analysis costs, and requirements documentation costs. Costs for a require-
ments management tool are constant and are therefore represented as SCF. The auxiliary
variable ”Adjusted Process Analysis Costs”, in turn, merges the SCF ”Planned Process
Analysis Costs” with four process-related ImFs: ”Process Complexity”, ”Process Frag-
mentation”, ”Process Knowledge”, and ”Emotional Resistance of End Users” (whereas
only process knowledge is represented as dynamic ImF).

Requirements Definition

Cost Rate

[Planned Process
Analysis Costs]

Adjusted Process
Analysis Costs

+

+

(Process Complexity)

(Process Fragmentation) (Emotional Resistance
of End Users)

+

+

Process
Knowledge
Growth Rate

+

+

Requirements
Documentation

Costs

[Costs for Requirements
Management Tool]

Analyzed
RequirementsCompletion

Rate

Documentation
Rate

(Basic

Comprehension

Rate)

+

[Documentation
Costs per

Requirement]

(Relevance
Rate)

Requirements
Test Costs

Test Cost
Rate

[Test Costs per
Requirement]

[Costs for
Test Tool]

Requirements to
be Documented

Process
Knowledge

Requirements
Definition Costs

+

++

+

+

+

+

+

+

+

Fig. 6.Primary Evaluation Pattern: Requirements Definition Costs.

Costs for documenting requirements (represented by the auxiliary variable ”Require-
ments Documentation Costs”) are determined by the SCF ”Documentation Costs per
Requirement” and by the dynamic ImF ”Requirements to be Documented”. The lat-
ter ImF also influences the dynamic ImF ”Process Knowledge” (resulting in a positive
link from ”Analyzed Requirements” to the rate variable ”Process Knowledge Growth
Rate”). ”Requirements Test Costs” are determined by two SCFs (”Costs for Test Tool”
and ”Test Costs per Requirement”) and the dynamic ImF ”Requirements to be docu-
mented” (as only documented requirements need to be tested). Costs for a test tool and
test costs per requirement are assumed to be constant (and are represented as SCFs).
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Process Implementation Costs. The EP shown in Fig. 7 deals with costs for imple-
menting a process and the interference of these costs through impact factors [3]. An
additional EP (not shown here) deals with the costs caused byadapting the process(es)
supported by an EIS. This additional EP is identical to the previous EP ”Process Imple-
mentation Costs” – except for the additional ImF ”Process Evolution”.

3.3 Secondary Evaluation Patterns

Process Knowledge. Fig. 8 shows an EP which specifies the ImF ”Process Knowl-
edge”, i.e., causal dependencies on knowledge about the process(es) to be supported.
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Domain Knowledge. The EP from Fig. 9 deals with the evolution of domain knowledge
along the course of an EIS engineering project. Our practical experiences allow for the
conclusion that ”Domain Knowledge” is a dynamic ImF influenced by three other ImFs:
the period an EIS engineer is working in a specific domain (captured by the dynamic
ImF ”Experience”), the dynamic ImF ”Process Knowledge”, and the complexity of the
considered domain (represented by the static ImF ”Domain Complexity”).
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Fig. 9.Secondary Evaluation Pattern: Domain Knowledge.

Process Evolution. The EP shown in Fig. 10 covers the static ImF ”Process Evolu-
tion”. Specifically, it describes origins of process evolution. Basically, this EP reflects



the assumption that business process evolution is caused byvarious drivers. Note that
arbitrary drivers of evolution can be included in the EP.
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Process Complexity. The EP from Fig. 11 deals with the ImF ”Process Complexity”.
Note that this EP does not specify process complexity itself, but defines it based on
an easier manageable replacement factor. In our context, this replacement factor cor-
responds to the complexity of the process model describing the business process to be
supported [11]. Thus, we extend process complexity to ”Process Complexity / Process
Model Complexity”. The EP from Fig. 11 further aligns with the assumption that re-
spective process models are formulated using EPC notation.According to the depicted
EP, the static ImF ”Process Complexity/Process Model Complexity” is determined by
four other static ImFs: ”Cycle Complexity”, ”Join Complexity” (JC), ”Control-Flow
Complexity” (CFC), and ”Split-Join-Ratio” (SJR) (whereasthe latter ImF is derived
from the SCFs ”Join Complexity” and ”Control-Flow Complexity”).
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Fig. 11.Secondary Evaluation Pattern: Process Complexity.

The complexity driver ”Cycle Complexity” is confirmed in [12, 13]. Arbitrary cycles,
for example, can lead to EPC models without clear semantics (cf. [14] for examples).
The ImF ”Control-Flow Complexity” is characterized by [11]. It is based on the ob-
servation that the three split connector types in EPC modelsintroduce a different de-
gree of complexity. According to the number of potential post-states an AND-split is
weighted with 1, an XOR-split is weighted with the number of successorsn, and an
OR-split is weighted with 2n−1. The sum of all connector weights of an EPC model
is then denoted as ”Control-Flow Complexity” [15]. The ImF ”Join Complexity” can
be defined as the sum of weighted join connectors based on the number of potential
pre-states in EPC models [16, 17]. Finally, the mismatch between potential post-states
of splits and pre-states of joins in EPC models is included asanother driver of complex-
ity. This mismatch is expressed by the static ImF ”Split-Join-Ratio” (= JC/CFC) [16,



17]. Based on these four static ImFs (or drivers of complexity), we derive the EP from
Fig. 11. Thereby, an increasing cycle complexity results inhigher process complexity.
Also, both increasing CFC and increasing JC result in increasing process complexity.
A JSR value different from 1 increases error probability andthus process complexity.
It is important to mention that – if desired – other drivers ofprocess complexity can be
considered as well. Examples can be found in [13, 17].

Work Profile Change. This EP (not shown here, but discussed in [3]) deals with change
of end user work profiles (and the effects of work profile changes). More specifically,
it relates the perceived work profile change to changes emerging in the five job dimen-
sions of Hackman’sjob characteristics model[18, 19]: (1)skill variety, (2) task identity,
(3) task significance, (4)autonomy, and (5)feedback from the job. For each of these five
core job dimensions, the emerging change is designated based on the level before and
after EIS introduction.

End User Fears. This EP (not shown here, but discussed in [3] and [6]) is based on
experiences which allow to conclude that the introduction of an EIS may cause end
user fears, e.g., due to work profile change (i.e., job redesign) or changed social clues.
Such fears can lead, for example, to emotional resistance ofend users. This, in turn, can
make it difficult to get needed support from end users, e.g., during process analysis.

4 Working with Patterns: Customization and Composition

Using EcoPOST evaluation patterns starts with the identification of those patterns which
are relevant in a given context. After selecting a pattern, it might have to be customized.
Note that EPs are applied in different evaluation context. Thereby, we have to distin-
guish between customization of anevaluation model(Step I) and of its corresponding
simulation model(Step II). The former always requires the subsequent adaptation of
the underlying simulation model, while the latter is also possible without customiz-
ing the associated evaluation model. Adapting an evaluation model can be achieved by
adding or removing model variables, flows, or links. An example can be found in [3].
Correctness of customized EPs is ensured through EcoPOST-specific design rules [7].

Customizing a simulation model, by contrast, means to adaptfunctions of the sim-
ulation model, e.g. changes of SCF values. Customizing an EPcan be quickly realized
as a single EP does not require complex adaptations.

Another important feature with respect to the practical applicability of the EcoPOST
framework concerns pattern composition (cf. Fig. 12). In particular, EcoPOST enables
EIS engineers to compose new evaluation models by merging EPs. Unlike pattern cus-
tomization, composing patterns is typically more complex and costly. Note that the
number of composition variants might be quite large. Indeed, composition can be partly
automated, but usually manual postprocessing becomes necessary. Respective concepts
and merge algorithms are introduced in [3].

In a large case study [3] in the automotive domain, we have successfully applied
EPs when designing complex evaluation and simulation models (see [3] for details).
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Fig. 12.Composition of Patterns.

5 Related Work

Boehm et. al [20] distinguish six categories of cost estimation techniques. They dis-
tinguish betweenmodel-based approaches(e.g., COCOMO, SLIM),expertise-based
approaches(e.g., the Delphi method),learning-oriented approaches(using neural net-
works or case based reasoning),regression-based approaches(e.g., the ordinary least
squares method),composite approaches(e.g., the Bayesian approach), anddynamic-
based approaches(explicitly acknowledging that cost factors change over project du-
ration). Picking up this classification, EcoPOST can be considered as an example of a
dynamic-based approach (the other categories rely on static analysis models).

There are other formalisms that can be applied to unfold the dynamic effects caused
by causal dependencies in EIS engineering projects. CausalBayesian Networks(BN)
[21], for example, promise to be a useful approach. BN deal with (un)certainty and
focus on determining probabilities of events. A BN is a directed acyclic graph which
represents interdependencies embodied in a given joint probability distribution over a
set of variables. In our context, we are interested in the interplay of the components
of a system and the effects resulting from this. BN do not allow to model feedback
loops as cycles in BN would allow infinite feedbacks and oscillations that prevent sta-
ble parameters of the probability distribution.Agent-based modelingprovides another
promising approach. Resulting models comprise a set of reactive, intentional, or social
agents encapsulating the behavior of the various variablesthat make up a system [22].
During simulation, the behavior of these agents is emulatedaccording to defined rules
[23]. System-level information (e.g., about intangible factors being effective in a EIS
engineering project) is thereby not further considered. However, as system-level infor-
mation is an important aspect in our approach, we have not further considered the use
of agent-based modeling.

Patterns were first used to describe best practices in architecture [24]. However, they
have also a long tradition in computer science, e.g., in the fields of software architec-
ture (conceptual patterns), design (design patterns), and programming (XML schema
patterns, J2EE patterns, etc.). Recently, the idea of using patterns has been also applied
to more specific domains like workflow management [25, 26] or inter-organizational



control [27]. Generally, patterns describe solutions to recurring problems. They aim at
supporting others in learning from available solutions andallow for the application of
these solutions to similar situations. Often, patterns have a generative character. Gen-
erative patterns (like the ones we introduce) tell us how to create something and can
be observed in the environments they helped to shape. Non-generative patterns, in turn,
describe recurring phenomena without saying how to reproduce them.

Reusing System Dynamics models has been discussed before aswell. On the one
hand, authors like Senge [28], Eberlein and Hines [29], Liehr [30], and Myrtveit [31]
introduce generic structures (with slightly different semantics) satisfying the capability
of defining ”components”. On the other hand, Winch [32] proposes a more restrictive
approach based on the parameterization of generic structures (without providing stan-
dardized modeling components). Our approach picks up ideasfrom both directions, i.e.
we address both the definition of generic components as well as customization.

6 Summary and Future Work

This paper extends our EcoPOST framework, a model-based methodology to systemati-
cally investigate the complex cost structures of EIS engineering projects, by introducing
the notion of evaluation pattern (EP). Each EP constitutes atemplate for specific cost
or impact factors we encounter in typical EIS engineering projects. All EPs have been
derived based on different pillars: results from two surveys [5], case studies [3, 10], a
controlled software experiment [4], and practical experiences gathered in EIS engineer-
ing projects.

In future work we will extend available EPs and apply them in abroader context
in order to gather detailed experiences in applying EcoPOST. This includes the perfor-
mance of additional experiments to analyze different use cases (e.g., customization and
composition) for our patterns.
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