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Abstract. Recently, a new generation of adaptive Process-Aware Infor-
mation Systems (PAISs) has emerged, which enables structural process
changes during runtime while preserving PAIS robustness and consis-
tency. Such flexibility, in turn, leads to a large number of process variants
derived from the same model, but differing in structure. Generally, such
variants are expensive to configure and maintain. This paper provides
a heuristic search algorithm which fosters learning from past process
changes by mining process variants. The algorithm discovers a reference
model based on which the need for future process configuration and adap-
tation can be reduced. It additionally provides the flexibility to control
the process evolution procedure, i.e., we can control to what degree the
discovered reference model differs from the original one. As benefit, we
can not only control the effort for updating the reference model, but also
gain the flexibility to perform only the most important adaptations of
the current reference model. Our mining algorithm is implemented and
evaluated by a simulation using more than 7000 process models. Simula-
tion results indicate strong performance and scalability of our algorithm
even when facing large-sized process models.

1 Introduction

In today’s dynamic business world, success of an enterprise increasingly depends
on its ability to react to changes in its environment in a quick, flexible and
cost-effective way [22]. However, current off-the-shelf enterprise software does
not meet these needs [23]. It is deployed in different companies, domains, and
countries, and therefore tends to be too generic and rigid. Generally, introduction
of enterprise software entails the problem of aligning business processes and IT.
This causes huge customization efforts at the site of software buyers that exceed
the price for the software licenses by factor five to ten [5]. Software vendors, in
turn, make endeavors to close this alignment gap [34], and major progress has
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been achieved by shifting from function- to process-centered software design.
Along this trend a variety of process support paradigms as well as languages
have emerged. Using WS-BPEL [1], for example, an executable process can be
composed out of existing application services. At runtime, execution of these
services is then orchestrated by the PAIS according to the defined process logic.
Recently, different approaches for adapting processes have emerged. Generally,
structural process adaptations are not only needed for configuration purpose at
build time [9, 32], but also become necessary for single process instances during
runtime to deal with exceptional situations and changing needs [25, 41].

In response to this need adaptive process management technology has emerged
[41, 43]. It allows to configure and adapt process models at different levels. This,
in turn, results in large collections of process model variants (process variants
for short) created from the same process model, but slightly differing from each
other in their structure. Fig. 1 depicts an example. The left hand side shows a
high-level view on a patient treatment process as it is normally executed: a pa-
tient is admitted to a hospital, where he first registers, then receives treatment,
and finally pays. In emergency situations, however, it might become necessary to
deviate from this model, e.g., by first starting treatment of the patient and allow-
ing him to register later during treatment. To capture this behavior in the model
of the respective process instance, we need to move activity receive treatment
from its current position to the one parallel to activity register. This leads to
instance-specific process model variant S′ as shown in Fig. 1b. Generally, a large
number of process variants derived from same original process model exist [22].

1.1 Problem Statement

Though considerable efforts have been made to ease process configuration and
customization [9, 25], most existing approaches have not yet utilized the infor-
mation resulting from past process adaptations [40]. Fig. 2 describes the goal
of this paper. We aim at learning from past process changes by ”merging” pro-
cess variants into one generic process model, which covers these variants best.
By adopting this generic model as newreference process model within the PAIS,
need for future process adaptations and thus cost for change will decrease.

S[∆>S’receive treatmentAdmitted 
a) S: original process model

register pay 
b) S’: final execution & change

registerreceive treatment pay AND-Split AND-Joinadmitted ∆=Move (S, register, admitted, pay) 
e=<admitted, receive treatment, register, pay> 

Fig. 1. Original Process Model S and Process Variant S’
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When deriving a new process reference model, the original one should be also
taken into account. In most cases, ”dramatic” changes of the current reference
model are not preferred due to implementation costs or social reasons. Process
designers should therefore have the flexibility to choose to what degree they want
to change the original reference model to fit better to the variants.

…

Original reference process model S
customization & adaptation

Process variant S1 Process variant S2 Process variant Sn
mining & learning

Discovered reference process model  S’ Control 
differences

Fig. 2. Discovering a new reference model by learning from past process configurations

Based on the two assumptions that (1) process models are well-formed (i.e.,
block-structured like in WS-BPEL) and (2) all activities in a process model
have unique labels, this paper deals with the following fundamental research
question: Given a reference model and a collection of process variants configured
from it, how to derive a new reference process model by performing a sequence
of change operations on the original one, such that the average distance between
the reference model and the process variants becomes minimal?

The distance between the reference process model and a process variant is
measured by the number of high-level change operations (e.g., to insert, delete
or move activities [25]) needed to transform the reference model into the re-
spective variant. Clearly, the shorter the distance is, the less efforts needed for
process adaptation are. Basically, we discover a new reference model by per-
forming a sequence of change operations on the original one. In this context, we
provide users the flexibility to control the distance between old reference model
and newly discovered one, i.e., to choose how many change operations shall be
applied to the old reference model. Clearly, the most relevant changes (which
significantly contribute to reduce the average distance) should be considered first
and the less important ones last. Particularly, if users decide to ignore the less
relevant changes, the overall performance of our algorithm with respect to the
described research goal will not be influenced too much. Such flexibility to con-
trol the difference between the original and the discovered model is a significant
improvement when compared to our previous work [15]; the approach presented
in [15] enables discovery of a reference process model by mining a collection of
variants, but is unable to take the original reference process model into account.
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The remainder of this paper is organized as follows. Section 2 gives back-
ground information needed for understanding this paper. Section 3 introduces
our heuristic search algorithm and provides a high-level overview on how it can
be used for mining process variants. We describe two important aspects of our
heuristics algorithm, (i.e., the fitness function and the search tree) in Sections
4 and 5. To evaluate the performance of our mining algorithm, we conduct a
simulation. Section 6 describes its setup, while Section 7 presents the simulation
results. Finally, Section 8 discusses related work and Section 9 concludes with a
summary and outlook.

2 Backgrounds

We first introduce basic notions needed in the following:
Process Model : Let P denote the set of all sound process models. A par-

ticular process model S = (N, E, . . .)4 ∈ P is defined as well-structured Activity
Net [25]. N constitutes the set of activities and E the set of control edges (i.e.,
precedence relations) linking them. To limit the scope, we assume Activity Nets
to be block-structured (similar to WS-BPEL). A simple example is depicted in
Fig. 3. For a detailed description and correctness issues, we refer to [25].

Process change : A process change is accomplished by applying a sequence
of high-level change operations to a given process model S over time [25]. Such
operations modify the initial process model by altering its set of activities and
their order relations. Thus, each application of a change operation results in a
new process model. We define process change and process variant as follows:

Definition 1 (Process Change and Process Variant). Let P denote the
set of possible process models and C be the set of possible process changes. Let
S, S′ ∈ P be two process models, let ∆ ∈ C be a process change, and let σ =
〈∆1,∆2, . . .∆n〉 ∈ C∗ be a sequence of changes performed on initial model S.
Then:

– S[∆〉S′ iff ∆ is applicable to S and S′ is the (sound) process model resulting
from the application of ∆ to S.

– S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ = Sn+1, and Si[∆i〉Si+1

for i ∈ {1, . . . n}. We also denote S′ as variant of S.

Examples of high-level change operations include insert activity, delete ac-
tivity, and move activity as implemented in the ADEPT change framework [25].
While insert and delete modify the set of activities in the process model, move
changes activity positions and thus the structure of the process model. A for-
mal semantics of these change patterns is given in [31]. For example, operation
move(S, A,B,C) moves activity A from its current position within process model
S to the position after activity B and before activity C. Operation delete(S, A),
in turn, deletes activity A from process model S. Issues concerning the correct
4 A Well-structured Activity Net contains more elements than only node set N and

edge set E, which can be ignored in the context of this paper.
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use of these operations, their generalization and formal pre-/post-conditions are
described in [25]. Though the depicted change operations are discussed in rela-
tion to our ADEPT change framework, they are generic in the sense that they
can be easily applied in connection with other process meta models as well [31,
43]. For example, a process change as realized in the ADEPT framework can
be mapped to the concept of life-cycle inheritance known from Petri Nets [37].
We refer to ADEPT since it covers by far most high-level change patterns and
change support features when compared to other adaptive PAISs [41, 43].

Definition 2 (Bias and Distance). Let S, S′ ∈ P be two process models.
Then: Distance d(S,S′) between S and S′ corresponds to the minimal number
of high-level change operations needed to transform S into S′; i.e., we define
d(S,S′) := min{|σ| | σ ∈ C∗ ∧ S[σ〉S′}. Furthermore, a sequence of change oper-
ations σ with S[σ〉S′ and |σ| = d(S,S′) is denoted as bias between S and S′.

The distance between S and S′ is the minimal number of high-level change op-
erations needed for transforming S into S′. The corresponding sequence of change
operations is denoted as bias BS,S′ between S and S′.5Usually, such distance
measures the complexity for model transformation (i.e., configuration). As ex-
ample take Fig. 1. Here, distance between model S and variant S1 is one, since we
only need to perform one change operation move(S, register,admitted,pay)
to transform S into S′ [17]. In general, determining bias and distance between
two process models has complexity at NP level [17]. We consider high-level
change operations instead of change primitives (i.e., elementary changes like
adding or removing nodes / edges) to measure the distance between process
models. This allows us to guarantee soundness of process models and provides a
more meaningful measure for distance [17, 41].

Definition 3 (Trace). Let S = (N,E, . . .) ∈ P be a process model. We define
t as a trace of S iff:

– t ≡< a1, a2, . . . , ak > (with ai ∈ N) constitutes a valid and complete exe-
cution sequence of activities considering the control flow defined by S. We
define TS as the set of all traces that can be produced by process instances
running on process model S.

– t(a ≺ b) is denoted as precedence relationship between activities a and b in
trace t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b.

We only consider traces composing ’real’ activities, but no events related to
silent ones, i.e., nodes within a process model having no associated action and
only existing for control flow purpose [17]. At this stage, we consider two process
models as being the same if they are trace equivalent, i.e., S ≡ S′ iff TS ≡ TS′ .
The stronger notion of bi-similarity [10] is not needed in our context.

5 Generally, it is possible to have more than one minimal set of change operations to
transform S into S′, i.e., given process models S and S′ their bias does not need to
be unique. A detailed discussion of this issue can be found in [37, 17].
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3 Overview of Our Heuristic Search Algorithm

Section 3.1 provides a running example which we use throughout the paper. In
Section 3.2, we introduce our heuristic search algorithm and give a high-level
overview of how it can be applied for mining process variants.

3.1 Running Example

An illustrating example is given in Fig. 3. Out of an original reference model S,
six different process variants Si ∈ P (i = 1, 2, . . . 6) have been configured. These
variants do not only differ in structure, but also with respect to their activity
sets. For example, activity X appears in 5 of the 6 variants (except S2), while
Z only appears in S5. The 6 variants are further weighted based on the number
of process instances created from them. In our example, 25% of all instances
were executed according to variant S1, while 20% ran on S2. If we only know
the process variants, but have no runtime information about related instance
executions, we assume variants to be equally weighted; i.e., every process variant
then has weight 1/n, where n corresponds to the total number of variants.

We can also compute the distance (cf. Def. 2) between original reference
model S and each variant Si. For example, when comparing S with S1 we ob-
tain distance 4 (cf. Fig. 3); i.e., we need to apply four high-level change op-
erations (move(S, H,I,D), move(S, I,J, endF low), move(S, J,B, endF low) and
insert(S, X,E,B); cf. Def. 1) to transform S into S1. Based on weight wi of each
variant Si, we can then compute average weighted distance between reference
model S and its variants. Regarding our example, as distances between S and
Si we obtain: 4(i = 1, . . . , 6)6(cf. Fig. 3). When considering the variant weights,
as average weighted distance, we obtain 4× 0.25 + 4× 0.2 + 4× 0.15 + 4× 0.1 +
4 × 0.2 + 4 × 0.1 = 4.0. This means we need to perform on average 4.0 change
operations to configure a process variant (and related instance respectively) out
of the reference model. Generally, average weighted distance between a reference
model and its process variants represents how ”close” they are. The goal of our
mining algorithm is to discover a reference model for a collection of (weighted)
process variants with minimal average weighted distance to the variants.

3.2 Heuristic Search for Process Variant Mining

As discussed in Section 2, measuring the distance between two models is an NP
problem, i.e., the time for computing the distance is exponential to the size of
the process models. Consequently, the problem set out in our research question
(i.e., finding a reference model which has minimal average weighted distance to
the variants), is an NP problem as well. When encountering real-life cases (i.e.,

6 In our example, all variants have the same distance to the original reference model.
We specially designed it in this way in order to better explain our simulation as
presented in Section 6. Clearly, our algorithm can also be applied when variants
have different distances to the original reference model.
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insert(S, X, E, B), insert(S, Y, startFlow, B), move (S, J, B, endFlow), move (S, H, I, C)B(S,S6)=insert(S, Y, {A,F}, B), insert(S, X, E, Y), insert(X, Z, C, D), move (S, J, B, endFlow) B(S,S5)=

move(S, J, {A,F}, B), insert(S, X, E, J),  Insert (S, Y, startFlow, I), move(S, I, D, H)B(S,S3)=
insert(S, Y, E, B, con),  move(S, C, startFlow, I), move (S, J, B, endFlow), move (S, I, D, H)B(S,S2)=
move(S, H, startFlow, I),  move (S, I, B, endFlow), insert(S, X, E, B), move (S, J, B, endFlow, con)B(S,S4)=
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AND-Split AND-Join XOR-Split XOR-Join

S : 

Weight: w1 = 25%

Weight: w3 = 15%
Weight: w5 = 20%

Weight: w2 = 20%

Weight: w4 = 10%
Weight: w6 = 10%

move (S, H, I, D), move(S, I, J, endFlow), move (S, J, B, endFlow), insert(S, X, E, B) Bies: B(S,S1)=
Bies:

Bies: Bies:

Bies:

Bies:

Distance: Distance: 

Distance: 

Distance: 

Fig. 3. Illustrating example

thousands of variants with complex structure), finding ”the optimum” would
therefore be either too time-consuming or not feasible. In this paper, we present
a heuristic search algorithm for variant mining. Our overall goal is to find a
solution which is close to ”the optimum”, but can be computed in a reasonable
amount of time.

Heuristic algorithms are widely used in various fields of computer science,
e.g., artificial intelligence [20], data mining [36] and machine learning [24]. A
problem employs heuristics when ”it may have an exact solution, but the com-
putational cost of finding it may be prohibitive” [20]. Although heuristic algo-
rithms do not aim at finding the ”real optimum” (i.e., it is neither possible to
theoretically prove that the discovered result is the optimum nor can we say how
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close it is to the optimum), they are widely used in practice. Usually heuristic al-
gorithms provide a nice balance between the goodness of the discovered solution
and the computation time for finding it [20].

Regarding the mining of process variants, Fig. 4 illustrates on how heuristic
algorithms can be applied in our context. Here we represent each process variant
Si as a single node in the two dimensional space (white node). The goal for
variant mining is then to find the ”center” of these nodes (bull’s eye Snc), which
has minimal average distance to them. In addition, as discussed in Section 1,
we also want to take the original reference model S (solid node) into account,
such that we can control the difference between the newly discovered reference
model and the original one. Basically, this requires us to balance two forces: one
is to bring the newly discovered reference model closer to the variants (i.e., to
the bull’s eye Snc at right) than the old one; the other one is to ”move” the
discovered model not too far away from original model S (the solid node at left)
such that it does not differ too much from the original one. Process designer
obtain the flexibility to balance these two forces, i.e., they are able to discover
a model (e.g., Sc), which is closer to the variants than the old one but which
is still within a limited distance to the latter. Clearly, the change operations
applied first to the (original) reference model should be more important (i.e.,
reduce the distance between the reference model and the variants more) than
the ones positioned at end. Consequently, if we ignore the less relevant changes,
we will not influence the overall distance reduction between reference model and
variants too much.

Our heuristic algorithm works as follows:

1. We use original reference model S as starting point.
2. We search for all neighboring process models with distance 1 to the currently

considered reference process model. If we are able to find a better model S′

among these candidate models (i.e., one which has lower average weighted
distance to the given collection of variants than S), we replace S by S′.

3. Repeat Step 2 until we either cannot find a better model or the maximally al-
lowed distance between original and new reference model is reached. Finally,
S′ corresponds to our discovered reference model Sc.

If we do not set any search limitation, our heuristic algorithm is also able
to find the ”center” of the variants (i.e., Snc). This implies that it can be also
applied to scenarios where there only exists a collection of variants, but the
original reference model is not known. In this case, we can randomly select a
variant Si as starting point and search unlimitedly until we find the ”center”, i.e.,
the model with minimal average weighted distance to the collection of variants.

Generally, most important for any heuristic search algorithm are two aspects:
the heuristic measure and the algorithm that uses heuristics to search the state
space. Section 4 introduces the fitness function which measures the quality of
a particular candidate model; i.e., it allows us to approximately evaluate how
close such candidate model is to the given variants. Section 5 then introduces
a best-first search algorithm to search the state space; i.e., this algorithm
illustrates how to search for a next candidate process model.
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No 
constraint

Snc : Search result 
without constraint 

Si :Variants d=1d = 2d = 3 S: Original 
reference 
model

Discovered Reference ModelOriginal Reference model Process variants Intermediate search result Search steps
Sc: Search result 
with constraint 

Force 1:
close to variants

Force 2:
close to reference

Fig. 4. Heuristic search approach

4 Fitness Function of Heuristic Search Algorithm

Generally, any fitness function of a heuristic search algorithm should be quickly
computable. Since search space may become very large, we must be able to make
a quick decision on which path to choose next. Average weighted distance can
not be used as fitness function since complexity for computing it is NP. In this
section we introduce a fitness function, which can be used to approximately mea-
sure the ”closeness” between a candidate model and the collection of variants. In
particular, it can be computed in polynomial time. Like in most heuristic search
algorithms, the chosen fitness function is a ”reasonable guessing” rather than a
precise measurement. Therefore, in Section 7 we will investigate how the fitness
function is correlated with the average weighted distance.

4.1 Activity Coverage

For a candidate process model Sc = (Nc, Ec, . . .) ∈ P, we first measure to
what degree its activity set Nc covers the activities that occur in the considered
collection of variants. We denote this measure as activity coverage AC(Sc) of Sc.

Before we can compute activity coverage, we first need to determine the
frequency with which each activity aj appears within the collection of variants.

Definition 4 (Activity frequency).
Let Si = (Ni, Ei, . . .) ∈ P, i = 1, 2, . . . , n be a collection of variants with

weights wi and activity sets Ni. For each aj ∈
⋃n

i=1 Ni, we define g(aj) as relative
frequency with which aj appears within the given variant collection. Formally:

g(aj) =
∑

Si:aj∈Ni

wi (1)

Table 1 shows the frequency of each activities contained in any of the variants
in our running example; e.g., X is present in 80% of the variants (i.e., in S1, S3,
S4, S5, and S6), while Z only occurs in 20% of the cases (i.e., in S5).
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Activity A B C D E F G H I J X Y Z

g(aj) 1 1 1 1 1 1 1 1 1 1 0.8 0.65 0.2
Table 1. Frequency of each activity within the given variant collection

Definition 5 (Activity coverage). Let M =
⋃n

i=1 Ni be the set of activities
which are present in at least one of the variants. Let further Nc be the activity set
of a candidate process model Sc. Given activity frequency g(aj) of each aj ∈ M ,
we can compute activity coverage AC(Sc) of model Sc as follows:

AC(Sc) =

∑
aj∈Nc

g(aj)∑
aj∈M g(aj)

(2)

The value range of AC(Sc) is [0, 1]. Let us take original reference model S
as candidate model. It contains activities A, B, C, D, E, F, G, H, I, and J,
but does not contain X, Y and Z. Therefore, its activity coverage AC(S), which
represents how much it covers the activities in the variant collection, is 0.858.

4.2 Structure Fitting

Though AC(Sc) measures how representative the activity set Nc of a candidate
model Sc is with respect to a given variant collection, it does not say anything
about the structure of the candidate model. We therefore introduce structure
fitting SF (Sc) as another measurement. It measures to what degree a candidate
model Sc structurally fits to the given collection of variants Si.

We first sketch a method which allows to represent a process model S as
order matrix. Based on this, we introduce aggregated order matrix which allows
to represent a collection of process variants as matrix. In addition, we introduce
the coexistence matrix which shows the importance of the order relations. Finally,
we describe how to measure structure fitting SF (Sc) of a candidate model Sc.

Representing Process Models as Order Matrices One key feature of our
ADEPT change framework is to maintain the structure of the unchanged parts
of a process model [25]. For example, when deleting an activity this neither
influences successors nor predecessors of this activity, and therefore also not
their order relations. To incorporate this feature in our approach, rather than
only looking at direct predecessor-successor relationships between activities (i.e.
control edges), we consider the transitive control dependencies for each pair of
activities; i.e. for a given process model S = (N, E, . . .) ∈ P, we examine for
activities ai, aj ∈ N , ai 6= aj their transitive order relation. Logically, we deter-
mine order relations by considering all traces the process model may produce (cf.
Section 2). Results are aggregated in an order matrix A|N |×|N |, which considers
four types of control relations (cf. Def. 6):

Definition 6 (Order matrix). Let S = (N,E, . . .) ∈ P be a process model
with N = {a1, a2, . . . , an}. Let further TS denote the set of all traces producible
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on S. Then: Matrix A|N |×|N | is called order matrix of S with Aij representing
the order relation between activities ai,aj ∈ N , i 6= j iff:

– Aij = ’1’ iff (∀t ∈ TS with ai, aj ∈ t ⇒ t(ai ≺ aj))
If for all traces containing activities ai and aj, ai always appears BEFORE
aj, we denote Aij as ’1’, i.e., ai always precedes of aj in the flow of control.

– Aij = ’0’ iff (∀t ∈ TS with ai, aj ∈ t ⇒ t(aj ≺ ai))
If for all traces containing activities ai and aj, ai always appears AFTER
aj, we denote Aij as a ’0’, i.e. ai always succeeds of aj in the flow of control.

– Aij = ’*’ iff (∃t1 ∈ TS , with ai, aj ∈ t1 ∧ t1(ai ≺ aj)) ∧ (∃t2 ∈ TS , with
ai, aj ∈ t2 ∧ t2(aj ≺ ai))
If there exists at least one trace in which ai appears before aj and another
trace in which ai appears after aj, we denote Aij as ’*’, i.e. ai and aj are
contained in different parallel branches.

– Aij = ’-’ iff ( ¬∃t ∈ TS : ai ∈ t ∧ aj ∈ t)
If there is no trace containing both activity ai and aj, we denote Aij as ’-’,
i.e. ai and aj are contained in different branches of a conditional branching.

Fig. 5 gives an example. Besides control edges, which express direct predecessor-
successor relationships, the depicted process model S contains different control
connectors: AND-Split, AND-Join, XOR-Split and XOR-join. The depicted or-
der matrix represents all these relations. For example, activities A and B will
never appear in the same trace since they are contained in different branches of
an XOR block. Therefore, we assign ’-’ to matrix element AAB . Similarly, we
obtain the relation for each pair of activities. The main diagonal of the matrix
is empty since we do not compare an activity with itself.

Under certain conditions, an order matrix uniquely represents the process
model it was created from [17]. Analyzing its order matrix (cf. Def. 6) is then
sufficient for analyzing the corresponding process model.

A
C

B
E

F

GD

Process model S Order matrix of S

AND-SplitAND-Join XOR-SplitXOR-Join
‘0’ : successor
‘1’ : predecessor
‘*’ : AND-block
‘-’ : XOR-block

a) b)

Fig. 5. a) Process model and b) related order matrix

Aggregated Order Matrix For a given collection of process variants, first,
we compute the order matrix of each process variant (cf. Def. 6). Regarding our
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running example from Fig. 3, we need to compute six order matrices (cf. Fig.
6). Note that we only show a partial view of the order matrices here, (activities
H, I, J, X, Y and Z) due to space limitations. Afterwards, we analyze the
order relation for each pair of activities considering all order matrices derived
before. As the order relation between two activities might be not the same in
all order matrices, this analysis does not result in a fixed relation, but provides
a distribution for the four types of order relations (cf. Def. 6). Regarding our
example, in 65% of all cases, H is a successor of I (as in S2, S3, S4 and S6),
in 25% of all cases H is a predecessor of I (as in S1), and in 10% of all cases H
and I are contained in different branches of an XOR block (as in S4) (cf. Fig.
6). Generally, to a collection of process variants we can define the order relation
between activities a and b as 4-dimensional vector Vab = (v0

ab, v
1
ab, v

∗
ab, v

−
ab). Each

field then corresponds to the frequency of the respective relation type (’0’, ’1’,
’*’ or ’-’) as specified in Def. 6. Take our running example and consider Fig.
6. Here, v1

HI corresponds to the frequency of all cases with activities H and I
having order relationship ’1’, i.e., all cases for which H precedes I; we obtain
VHI = (0.65, 0.25, 0, 0.1).

Formally, we define an aggregated order matrix as follows:

Definition 7 (Aggregated Order Matrix).
Let Si = (Ni, Ei, . . .) ∈ P, i = 1, 2, . . . , n be a collection of process vari-

ants with activity sets Ni. Let further Ai be the order matrix of Si, and let
wi represent the number of process instances being executed based on Si. The
Aggregated Order Matrix of all process variants is defined as 2-dimensional
matrix Vm×m with m = |⋃ Ni| and each matrix element vjk = (v0

jk, v1
jk, v∗jk, v−jk)

being a 4-dimensional vector. For τ ∈ {0, 1, ∗,−}, element vτ
jk expresses to what

percentage, activities aj and ak have order relation τ within the collection of

process variants Si. Formally: ∀aj , ak ∈
⋃

Ni, aj 6= ak : vτ
jk =

∑
Aijk

=′τ′ wi

∑
aj,ak∈Ni

wi
.

Fig. 6 shows the aggregated order matrix V for the process variants from
Fig. 3. Again, due to space limitations, we only consider order relations for
activities H, I, J, X, Y, and Z. Generally, in an aggregated order matrix, the
main diagonal is always empty since we do not specify the order relation of
an activity with itself. For all other elements, a non-filled value in a certain
dimension means it corresponds to zero.

Importance of the Order Relations Generally, the order relations computed
by an aggregated order matrix may be not equally important. For example,
relationship VHI between H and I (cf. Fig. 6) would be more important than
relation VHZ, since activities H and I appear together in all six process variants
while activities H and Z only show up together in variant S5 (cf. Fig. 3). We
therefore define co-existence matrix CE in order to represent the importance of
the different order relations occurring within an aggregated order matrix V .

Definition 8 (Coexistence Matrix).
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0 1

* -

‘0’ : successor
‘1’ : predecessor
‘*’ : AND-block
‘-’ : XOR-block

Order matrices

Aggregated 
order matrix

V

S 1 :25% S 2 :20% S 3 :15% S 4 :10% S 5 :20% S 6 :10%

V H I = (0.65, 0.25, 0, 0.10)
‘0’ : 65%
‘1’ : 25%
‘*’ : 0%
‘-’ : 10%

Fig. 6. Aggregated order matrix based on process variants

Let Si = (Ni, Ei, . . .) ∈ P, i = 1, 2, . . . , n be a collection of process variants
with activity sets Ni. Let further wi represent relative frequency of process in-
stances being executed based on Si. The Coexistence Matrix of process variants
S1, . . . , Sn is then defined as 2-dimensional matrix CEm×m with m = |⋃ Ni|.
Each matrix element CEjk corresponds to the relative frequency with which activ-
ities aj and ak appear together within the given collection of variants. Formally:
∀aj , ak ∈

⋃
Ni, aj 6= ak : CEjk =

∑
Si:aj∈Ni∧ak∈Ni

wi.

Regarding our running example, Table 7 shows the corresponding coexistence
matrix. Again, due to space limitations, we only depict the coexistence matrix
for activities H, I, J, X, Y, and Z. For instance, CEHI = 1 and CEHZ = 0.2.
This indicates that order relation between H and I is more important than the
one between H and Z.

Structure Fitness of a Candidate Process Models Since we can represent
a candidate process model Sc by its corresponding order matrix Ac (cf. Def.
6), we determine the structure fitting SF (Sc) between Sc and the variants (cf.
subsection 4.2) by measuring how similar order matrix Ac and aggregated order
matrix V (representing the variants) are. We can compute Sc by measuring the
order relations between every pair of activities in Ac and in V .
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Fig. 7. Pairwise co-existance of activities

For example, consider reference model S as candidate process model Sc (i.e.,
Sc = S). A partial view of the corresponding order matrix A is depicted in Fig.
8. Obviously, AHI =”0” holds, i.e., H is successor of I in model S (cf. Fig. 8).
Consider now aggregated order matrix V . Here the order relation between activ-
ities H and I is represented by the 4-dimensional vector VHI = (0.65, 0.25, 0, 0.1).
If we now want to compare how close AHI and VHI are, we first need to build
an aggregated order matrix V c purely based on our candidate process model Sc

(S in our case). Fig. 8 shows both the order matrix Ac and the ”calculated”
aggregated order matrix V c of process model Sc (Sc = S). As order relation
between H and I in V c, we obtain V c

HI = (1, 0, 0, 0), i.e., H is always a successor
of I. We now can compare VHI (which represents the variants) with V c

HI (which
represents the reference model).

We use Euclidean metrics f(α, β) to measure the closeness between two vec-
tors α = (x1, x2, ..., xn) and β = (y1, y2, ..., yn):

f(α, β) =
α · β

|α| × |β| =
∑n

i=1 xiyi√∑n
i=1 x2

i ×
√∑n

i=1 y2
i

(3)

f(α, β) ∈ [0, 1] computes the cosine value of the angle θ between vectors α
and β in Euclidean space. If f(α, β) = 1 holds, α and β exactly match in their
directions; f(α, β) = 0 means, they do not match at all. Regarding our running
example, we obtain f(VHI, V c

HI) = 0.848. This number indicates high similarity
between the order relations of the candidate process model with respect to H
and I and the ones captured by the variants.

Based on (3) which measures similarity between the order relations, and
Coexistence matrix CE (cf. Def. 8) which measures importance of the order
relations, we can define structure fitness SF (Sc) of candidate model Sc as follows:

Definition 9 (Structure Fitness). Let Si = (Ni, Ei, . . .) ∈ P, i = 1, 2, . . . , n
be a collection of process variants with activity sets Ni. Let further CE be the
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b)

Ac: order matrix of candidate model 
Sc as original reference model S

Vc: Aggregated order matrix by candidate 
model Sc as original reference model S

a)

Fig. 8. Order matrix Ac and aggregated order matrix V c constructed by candidate
model Sc = S

coexistence matrix, and V be the aggregated order matrix of the collection of
variants. For candidate model Sc, let m = |Nc| corresponds to the number of
activities in Sc; let further V c be aggregated order matrix of Sc. we can compute
structure fitness SF (Sc) as follows:

SF (Sc) =

∑m
j=1

∑m
k=1,k 6=j(f(Vajak

, V c
ajak

)× CEajak
)

m× (m− 1)
(4)

For every pair of activities aj , ak ∈ Nc, j 6= k, we first compute similar-
ity of corresponding order relations (as captured by V and Vc) by means of
f(Vajak

, V c
ajak

), and second the importance of these order relations by CEajak
.

Structure fitness SF (Sc) ∈ [0, 1] of candidate model Sc then equals the average
of the similarity multiplied by the importance of every order relation. Regarding
our example from Fig. 3, structure fitting SF (S) of the original reference model
S corresponds to 0.749.

4.3 Fitness Function

So far, we have described the two measurements activity coverage AC(Sc) and
structure fitting SF (Sc) to evaluate fitness of a candidate model Sc. While
AC(Sc) measures to what degree activities occurring in the variants are covered
by the candidate model Sc, SF (Sc) measures to what degree Sc fits structurally
to the variants.

Definition 10 (Fitness). For candidate model Sc, let AC(Sc) be the activity
cover of Sc and let further SF (Sc) be the structure fitness of Sc. We compute
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the fitness Fit(Sc) of a candidate model Sc as follows:

Fit(Sc) = AC(Sc)× SF (Sc) (5)

As AC(Sc) ∈ [0, 1] and SF (Sc) ∈ [0, 1], value range of Fit(Sc) is [0,1] as well.
Fitness value Fit(Sc) indicates how ”close” a candidate model Sc is to the given
collection of variants. If Fit(Sc) = 1 holds, candidate model Sc will fit perfectly
to the variants; i.e., no additionally adaptation will be needed. Otherwise, further
adaptations might be required. The higher Fit(Sc) is, the closer Sc will be to
the variants and the less configuration efforts will be needed. Regarding our
example from Fig. 3, fitness value Fit(S) of the original reference process model
S is Fit(S) = AC(S)× SF (S) = 0.858× 0.749 = 0.643.

As fitness of a candidate model Sc is evaluated by activity coverage AC(Sc)
multiplied by structure fitting SF (Sc), we can automatically balance the number
of activities to be considered in candidate model Sc. If too many activities of
low relevance (i.e., activities which only appear in a limited number of instances;
e.g., activity Z in our example) are considered in the candidate model, we will
obtain a high AC(Sc) value. However, SF (Sc) then possibly will decrease since
coexistence values (cf. Def. 8) of such less relevant activities are often very low (cf.
Fig. 7). On the contrary, if Sc contains too few activities, SF (Sc) can potentially
be very high, while AC(Sc) will be too low in order to qualify Sc as a good
candidate model. Therefore, a high value for Fit(Sc) does not only mean that
Sc structurally fits well to the variants, but also that a reasonable number of
activities is considered in the candidate model.

The complexity of computing Fit(Sc) is polynomial. To be more precise,
let n be the number of variants and let m = |⋃n

i=1 Si| be the total number of
activities in the variants. The complexity to compute activity frequency (cf. Def.
4) is O(mn) and the complexity to compute aggregated order matrix V (cf. Def.
7) is O(2m2n). Based on this, the complexity to compute the fitness function
is O(m + 2m2). Note that it is significantly lower than NP level complexity as
needed for computing the average weighted distance.

As already discussed, the fitness function Fit(Sc) is only a ”reasonable guess”
rather than an exact measurement (like average weighted distance). Therefore,
we analyze the performance of our fitness function later in Section 7.

5 Constructing the Search Tree

We have sketched the basic steps of our heuristic mining algorithm in Section
3.2. In Section 4, we have then discussed how to evaluate a candidate process
model Sc based on fitness function Fit(Sc). In this section, we show how we can
find adequate candidate process models. For that purpose we present a best-first
algorithm which allows us to construct a search tree in such a way that we can
find the best candidate model in the search space. Section 5.1 first provides an
overview on how we construct the search tree by comparing the result models
from changing each activity aj ∈ Nc in the candidate model Sc. In Section 5.2,
we further describe in what ways we can adapt a particular activity aj in order
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to find all kids of a given candidate process model Sc, i.e., all models which have
distance one to Sc. In Section 5.3, we provide search results and an evaluation
of our example models from Fig. 3. Finally, Section 5.4 provides a prototype
implementation of the described algorithm.

5.1 The Search Tree

Let us revisit Fig. 4 which gives a general overview of our heuristic search ap-
proach. Starting with the current candidate model Sc, in each iteration, we
search for its ”neighbors” (i.e., process models which have distance 1 to Sc) to
see whether we still can find a better candidate model S′c with higher fitness
value. Generally, we can construct a neighbor model for a given process model
Sc = (Nc, Ec, . . .) by applying one insert, delete, or move operation to Sc. All
activities aj ∈

⋃
Ni (Ni corresponds to the activity set of variant Si), which

have appeared in the variant collection, are candidate activities for change. Ob-
viously, an insert operation adds an activity aj /∈ Nc to Sc, while the other two
operations delete or move an activity aj already present in Sc (i.e., aj ∈ Nc).
Generally, numerous process models may result by changing one particular ac-
tivity aj on Sc. Note that the positions where we can insert (aj /∈ Nc) or move
(aj ∈ Nc) activity aj can be numerous.

Section 5.2 provides a details on how to find all process models resulting
from the change of one particular activity aj on Sc. In this section, first of all,
we assume that we have already found the best process model (i.e., with highest
fitness value) from all the models resulting from changing a particular activity
aj on Sc. We denote this model as the best kid Sj

kid of Sc when changing aj .
Our basic idea is to create all neighbor models, to evaluate each of them

with the fitness function, and to finally choose the one with highest fitness value.
We present a best-first algorithm to perform our heuristic variant mining (cf.
Algorithm 1). To illustrate this algorithm, we use the search tree depicted in
Fig. 9.

Our search algorithm starts with setting the original reference model S as
the initial state, i.e., Sc = S (see the node at the top of Fig. 9). We further define
AS as active activity set, which contains all activities available for change. At
the beginning, AS = {aj |aj ∈

⋃n
i=1 Ni} contains all activities that appear in

at least one process variant Si. For each activity aj ∈ AS, we determine the
corresponding best kid Sj

kid of Sc when changing aj on Sc (i.e., when deleting,
moving or inserting aj). If the best kid Sj

kid has higher fitness value than Sc,
we mark it with lines; otherwise, we mark it white and remove aj from AS (cf.
Fig. 9).7 Afterwards, we find the best one among all the best kids Sj

kid, i.e., the

7 For all nodes marked as white, we remove them from active activity set AS. Conse-
quently, we stop searching the best kid when changing them. In principle, it is still
possible that when changing them later (i.e., based on another candidate model S′c),
we can find a better resulting model. However, such chance is very low due to the
fact that we have already enumerated all possible solutions by changing such activity
on Sc. We therefore remove them from AS in order to reduce the search space.
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…

A B C YZ

Best kid when  changing A
A B Z

…

Best kid when  changing Z Best kid when  changing YBest kid when  changing B Best sibling of all best kids

B

Best kid is better than parentBest kid is NOT better than parent
Terminating condition: No kid is better than its parent

Start / End

Original reference model

Search result
Fig. 9. Construct the search tree

one with highest fitness value. We denote this model as best sibling Ssib and we
mark the corresponding activity as accordingly. Since this model Ssib is the best
model we are able to obtain by one change operation on candidate model Sc, we
set Ssib as the first intermediate search result and replace Sc by Ssib for further
search (cf. Fig. 9, Ssib are marked as bull’s eyes). Note that we also remove as

from AS since this activity has now been already considered for change.
The described search method goes on iteratively, until termination condition

is met, i.e., we either can not find a better model, or the allowed search distance
is reached. The final search result Ssib corresponds to our discovered reference
model S′ (the node marked by a bull’s eye and circle in Fig. 9).

5.2 Options for Changing One Particular Activity

Section 5.1 has shown how to construct a search tree by comparing the best
kids Sj

kid. This section discusses how to find such best kid Sj
kid when changing

a particular activity aj , i.e., we discuss how to find the ”neighbors” of a candi-
date model Sc by performing one high-level change operation (cf. Def. 1) on aj .
The best kid Sj

kid is consequently the one with highest fitness value among all
considered models.

Regarding a particular activity aj , we consider three type of basic change op-
erations: delete, move and insert activity (cf. Section 5.1). The neighbor model
resulting through deletion of an activity aj ∈ Nc can be easily determined by
removing aj from the process model and the corresponding order matrix; further-
more, movement of an activity can be simulated by its deletion and subsequent
re-insertion at the desired position. Thus, the basic challenge in finding neigh-
bors of a candidate model is to apply one activity insertion such that block
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input : A process model S; a collection of process variants
Si = (Ni, Ei, . . .), i = 1, . . . , n; allowed search distance d ;

output: Resulting process model S′

AS =
⋃n

i=1 Ni /* Define AS as active activity set */;1

Sc = S /* Define initial candidate model */;2

t = 1 /* Define initial search step */ ;3

while |AS| > 0 and t ≤ d /* Search condition */;4

do5

Ssib = Sc /* Set Sc as initial Ssib */ ;6

Define as as the selected activity ;7

foreach aj ∈ AS do8

Skid = FindBestKid(Sc) ;9

if Fitness(Skid) > Fitness(Sc) then10

if Fitness(Skid) > Fitness(Ssib) then11

Ssib = Skid ;12

as = aj ;13

end14

else15

AS = AS \ {aj} ;16

/* Best kid not better than its parent */

end17

end18

if Fitness(Ssib) > Fitness(Sc) then19

Sc = Ssib ; /* Initiate next iteration */ ;20

AS = AS \ {as} ;21

else22

break ;23

end24

t = t+1 ;25

end26

Algorithm 1: Heuristic search algorithm for variant mining

structuring and soundness of the resulting model can be guaranteed. Obviously,
for a particular activity aj , the positions where we can (correctly) insert it into
candidate model Sc are the subjects of our interest. Inserting aj at a (correct)
position within Sc results in one neighbor model. Therefore, finding all neighbors
first requires finding all valid positions where we can correctly insert aj in Sc.

Fig. 10 provides one example. Given a process model S, we would like to find
all process models that may result when inserting activity X into S. We apply
the following two steps to ”simulate” the insertion of an activity:

1. First, we enumerate all possible blocks the candidate model S contains. A
block can be an atomic activity, a self-contained part of the process model,
or the process model itself (cf Algorithm 2 for an algorithm enumerating
all possible blocks of a process model). Note that the number of possible
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candidate blocks can become very large; e.g., hundreds of potential blocks
may exist for a process model containing 50 activities.

2. After having determined all blocks of the current model we now can simulate
all possible insertions of activity X. For this purpose, we can cluster X with
each block and position it in relation to this block, i.e., we can set order
relation τ ∈ {0, 1, ∗,−} between X and the selected block B (cf. Def. 6). This
way, we insert X to the respective position such that it forms another block
together with B; or in another word, we replace block B by another block
B′ which contains B and X. Consequently, we obtain a neighbor model S′

by inserting X into S.

Following these two steps, we can guarantee that the resulting process model
is sound and block-structured. Every time we cluster an activity with a block,
we actually add this activity to the position where it can form a bigger block
together with the selected one, i.e., we replace a self-contained block of a pro-
cess model by a bigger one. Consider our example from Fig. 10a. Among the
determined blocks, we can find the sequential block defined by activities C and
D (step 1). Then we can cluster activity X with this block using order relation
τ = ”0” for example (step 2). Consequently, we obtain S′ as one neighbor of S
(cf. Fig. 10). In the following, we describe these two steps in detail.

a) b) Step 1: enumerate blocks

G
I J

C D
H {C, D}, {J, H}{C, D, G}{I, C, D, G},  {C, D, G, H}

Blocks containing n activitiesn = 1n = 2n = 3n = 4n = 5n = 6
{I}, {G}, {C}, {D}, {J}, {H}
{I, C, D, G, J},  {C, D, G, J, H}{I, C, D, G, J, H}

Blocks Enumerate blocksS: a process model Cluster X with block {C, D} by  τ= “0” S’: one possible resulting model after inserting activity X in SC D G H I JCDGHIJ
*** * 00000 00 0 00 0 0

1 10 11 11 11 11 1 1X 1
X

* 01 1
*
0
0
1

0 0
1
1τ= “0” Copy of block {C,D}

C D G H I JCDGHIJ
1 1 11111 1111 1 10 00000 00 0 00 0 0

*** * Same order relations
AS: Order matrix of S AS’: Order matrix of S’ 

Step 2: clustering

G
I J

C D
H

X

56 potential 
neighborsCluster X with block {I, C, D, G, J, H} by  τ= “1” Cluster X with block {G} by  τ= “*”

XG
I

C D HJ

G
I J HX

C D

G
I J

C D
HX Cluster X with block {J, H} by  τ= “-”

c) Some example neighboring models by inserting X into S

Fig. 10. Finding the neighboring models by inserting X into process model S
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Step 1: Block-enumerating Algorithm We now present an algorithm to
enumerate all possible blocks of a process model S.

Let S = (N, E, . . .) ∈ P be a process model with N = {a1, . . . , an}. Let
further A|N |×|N | be the order matrix of S. Two activities ai and aj can form a
block if and only if [∀ak ∈ N \ {ai, aj} : Aik = Ajk] holds; i.e., two activities can
form a block if and only if they have exactly same order relations to the remaining
activities. Consider our example from Fig. 10a. Here activities C and D can form
a block since they have same order relations to the remaining activities G, H,
I and J.

input : A process model S = (N, E, . . .) and its order matrix A
output: A set BS with all possible blocks

Define BSx be a set of blocks containing blocks with x activities. x = (1, . . . , n);1

Define each activity ai as a block B, i = (1, . . . , n) ;2

BS1 = {B1, . . . , Bn}. /* initial state */ ;3

for i = 2 to n /* Compute BSi */;4

do5

let j = 1; let k = i;6

while j ≤ k do7

k = i - j /* A block containing k activities can only be8

obtained by merging blocks containing i and j activities */;
foreach (Bj , Bk) ∈ BSj ×BSk;9

merge = TRUE /* judge whether Bj and Bk can form a block */;10

do11

if Bj

⋂
Bk = ∅ /* Disjoint? */ then12

foreach (aα, aβ , aγ) ∈ Bj ×Bk × (N \Bj

⋃
Bk) do13

if Aαγ 6= Aβγ then14

merge = FALSE /* two blocks con merge only if15

they show same order relations to the activities

out side the two blocks */;
break ;16

end17

end18

else19

merge = FALSE;20

end21

if merge = TRUE then22

Bp = Bj

⋃
Bk;23

BSi = BSi

⋃
Bp;24

end25

end26

j = j + 1 ;27

end28

end29

BS =
⋃n

x=1 BSx30

Algorithm 2: Block enumerating algorithm
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The block-enumerating algorithm is depicted in Algorithm 2. Let us first de-
fine BSx as the set containing all blocks comprising exactly x activities. In its
initial state, each activity forms a single block by its own (line 2) and conse-
quently we obtain BS1 (line 3). The algorithm starts by computing BS2 (blocks
containing 2 activities) and continues iteratively to compute BSi until it reaches
its upper boundary i = n. In each iteration, we can determine a block containing
x activities by merging two disjoint blocks containing j and k activities respec-
tively (i = j+k) (line 8). For example, a block containing 2 activities can only be
obtained by merging two blocks of which each contains 1 activity. Or we can only
obtain a block containing 5 activities by merging two disjoint blocks containing
either 1 and 4 activities respectively or 2 and 3 activities respectively (line 4 -
29). Lines 9 to 26 check whether or not two blocks Bj and Bk can be merged
together. This is possible iff any activities aα ∈ Bj and aβ ∈ Bk show same order
relations to the remaining activities outside the two blocks. Otherwise (lines 14
-17), Bj and Bk cannot form a block (i.e., merge = FALSE). Until we obtain all
sets of blocks BSx with x = 1, . . . , n activities per block, we can define set BS
as BS =

⋃n
x=1 BSx. BS consequently corresponds to all blocks, process model

S contains (line 28). In our context, we consider each block as a set rather than
a process model, since structure of these blocks is already clear in S.8Consider
the example from Fig. 10a. For the given a process model S, all possible blocks
are enumerated. For example, as activities C and D show same order relations in
respect to the remaining activities in order matrix As, they may form a block.
Or, block {C, D} and block {G} show same order relations in respect to remain-
ing activities H, I and J; therefore they can form a bigger block {C, D, J}. As
S contains 6 activities, its blocks are organized in 6 groups containing blocks of
different sizes.

Step 2: Cluster Inserted Activity with One Block In Step 1, we have
shown how to enumerate all possible blocks for a given candidate model Sc.
Based on this, we describe where we can insert a particular activity aj in Sc

such that we obtain a sound and block-structured model again.
Assume that we want to insert activity X in S (cf. Fig. 10). To ensure the

block structure of the resulting model, we ”cluster” X with an enumerated block,
i.e., we replace one of the previously determined blocks B by a bigger block B′

containing B as well as X. In the context of this clustering, we set the order
relation between block B and inserted activity X as τ ∈ {0, 1, ∗,−} (see Def.
6), i.e., the order relations between X and all activities of B are defined by τ .
One example is given in Fig. 10b, where the inserted activity X is clustered
with block {C, D} by order relation τ = ”0”, i.e., we set X as successor of the

8 Worst-case, the complexity of this algorithm is 2n where n corresponds to the number
of activities. However, this worst-case scenario will only occur if any combination of
activities may form a block (like a process model for which all activities are ordered
in parallel to each other). During our simulation, in most cases we were able to
enumerate all blocks of a process model within few milliseconds. This indicates that
complexity is low in practice.
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sequence block containing C and D. To realize this clustering, we have to set the
order relations between X on the one hand and activities C and D from the selected
block on the other hand to ”0”. Furthermore, order relations between X and the
remaining activities are the same as for C and D respectively. Afterwards these
three activities form a new block {C, D, X} replacing the old one (i.e., {C, D}).
This way, after inserting X into S, we obtain a new sound and block-structured
process model S′.

Fig. 10b shows only one resulting model S′ which we obtain when inserting
X in S. Obviously, S′ is not the only neighboring models in this context since we
can insert X at different positions in S; i.e., for each block S enumerated in Step
1, we can cluster it with X by any one of the four order relations τ ∈ {0, 1, ∗,−}.
Regarding our example from Fig. 10, S contains 14 blocks. Consequently, the
number of models that may result when inserting X in S equals 14 × 4 = 56;
i.e., we obtain 56 potential models by inserting X into S. Fig. 10c shows some
neighboring models of S. Note that the 56 resulting models are not necessarily
unique, i.e., it is possible that some of them are same. However, this is not an
important issue in our context since our fitness function Fit(Sc) can be quickly
computed. Therefore, some redundant information will not significantly decrease
the performance of our heuristic search algorithm.

5.3 Search Result for Our Running Example

Regarding our example from Fig. 3, we now present the search result we obtain
when applying our heuristics search algorithm. Fig. 11 does not only show the
final resulting model, but all the intermediate process models discovered during
the search. Note that in this scenario, we do not set any limitation on the number
of search steps, i.e., we allow the algorithm to go as far as possible to find the
best reference model.

Fig. 11 shows the evolution of the original reference model S. The first op-
eration δ1 = move(S, J,B, endF low) changes S into intermediate result model
R1. According to Algorithm 1, R1 constitutes that neighbor model of S which
can be derived by applying one valid change operation to S and which shows
highest fitness value in comparison to all other neighbor models of S. Using R1

as next input for our algorithm, we discover process model R2. In this context,
change operation δ2 = insert(R1, X, E, B) is applied. Finally, we obtain R3 by
performing change δ3 = move(R2, I,D,H) on model R2. Since we cannot find
a ”better” process model by changing R3 anymore, we obtain R3 as final re-
sult. Note that if we set constraints on allowed search steps (i.e., we only allow
to change original reference model by maximal d change operations), the final
search result would be as follows: Rd if d ≤ 3 or R3 if d > 3. We further
compare the original reference model S and all (intermediate) search results in
Table 2.

We first show the fitness value of all the models in Fig. 11. As our heuristic
search algorithm is based on finding process models with better fitness values,
we can observe improvements of the fitness values with each search step. The
fitness value Fit(S) increases from 0.643 (model S) to 0.841 (model R1), and
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Fig. 11. Search result by every change operations

then to 0.854 (model R2). Finally, it reaches 0.872 (model R3). Though such
fitness value is only a ”reasonable guessing” of how good the result model is,
the improvement of the fitness value at least indicates that discovered models is
assumed to get better in each iteration.

Still, we need to examine whether or not the discovered process models are
indeed getting better. We therefore compute the average weighted distance be-
tween the discovered model and the variants, which is a precise measurement in
our context. From Table 2, the improvement of average weighted distances after
applying the above changes becomes clear, i.e., the average weighted distance
drops monotonically from 4 (when considering model S) to 2.25 (when consid-
ering model R3). Measuring the average weighted distance shows that for the
given example, the algorithm performs as expected.

One important reason to design a heuristic search algorithm in our context
was to be able to only consider the most relevant change operations, i.e., the
important changes (reducing average weighted distance between reference model
and variants most) should be discovered at beginning while the trivial ones
should be either ignored or be put at the end (cf. Section 1). We therefore
additionally evaluate delta-fitness and delta-distance, which indicate the relative

S R1 R2 R3

Fitness 0.643 0.814 0.854 0.872

Average weighted distance 4 3.2 2.6 2.25

Delta fitness 0.171 0.04 0.017

Delta Distance 0.8 0.6 0.25
Table 2. Search result by every change
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improvement of fitness values and the reduction of average weighted distance
for every iteration of the algorithm. For example, the first change operation δ1

changes S into R1, and consequently improves fitness value (delta-fitness) by
0.0171 and reduces average weighted distance (delta-distance) by 0.8. Similarly,
δ2 reduces average weighted distance by 0.6 and δ3 by 0.25. It is obvious that the
delta-distance is monotonically decreasing as the number of change operations
increases. This indicates that the important changes are performed at beginning
of the search, while the less important ones are performed at the end.

Another important feature of our heuristic search is its ability to automat-
ically decide on which activities shall be included in the reference model. A
predefined threshold or filtering of the less relevant activities in the activity set
are not needed. In our example, X is automatically inserted, when Y and Z are
not. The only concern in our heuristic variant mining is to reduce the aver-
age weighted distance, i.e., the three change operations (insert, move, delete)
are automatically balanced based on their influence on the reduction of aver-
age weighted distance. This is also a significant improvement when compared to
many other process mining techniques in which preprocessing of trivial activities
should be conducted before performing the mining [15, 38].

5.4 Proof-of-Concept Prototype

The described approach has been implemented and tested using Java. Figure 12
depicts a screenshot of our prototype. We have used our ADEPT2 Process Tem-
plate Editor [27] as tool for creating process variants. For each process model, the
editor can generate an XML representation with all relevant information (like
nodes, edges, blocks) being marked up. We store created variants in a variants
repository (cf. Fig. 12) which can be accessed by our mining procedure.

Fig. 12. Screenshot of the prototype
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The mining algorithm has been developed as stand-alone Java program, in-
dependent from the process editor. It can read the original reference model and
all process variants, and it can generate the result models according to the XML
schema of the process editor. All intermediate search results are also stored and
can be visualized using the ADEPT2 editor.

ADEPT2 is a next generation adaptive process management tool, which al-
lows for the flexible execution of process instances. Particularly, the ADEPT2
framework enables ad-hoc changes of single process instances during runtime
as well as changes at the process type level and their propagation to running
instances if desired and possible [26]. Based on the presented mining algorithm,
ADEPT is able to provide full process lifecycle support.

6 Simulation Setup

Clearly, using one example to measure the performance of our heuristic min-
ing algorithm is far from being enough. Since computing the average weighted
distance is at NP level, the fitness function, whose calculation only needs poly-
nomial time, is only an approximation of average weighted distance. Therefore,
these two measures can NOT be correlated perfectly, i.e., it is not for sure that
the improvement of the fitness value will always result in a deduction of average
weighted distance. Therefore, the first question is how the fitness improvement
(delta-fitness) correlates with the reduction of average weighted distance (delta-
distance)?

Moreover, we want to analyze whether the algorithm can scale up. Clearly,
it will take longer time to find the result if we have to cope with a large collec-
tion of variants with dozens or even hundreds of activities, simply because the
search space would be significantly larger. What is more important to know is
whether the performance will also change when facing large models, i.e., does
the correlation between delta-fitness and delta-distance depend on the size of the
model?

In addition, we are interested in whether it is really true that the most impor-
tant change operations (i.e., the change operations which largely reduce average
weighted distance) are performed at beginning of the search. If this is the case,
we do not need to fear too much when setting search limitations or filtering
out the change operations performed at the end. Therefore, the third research
question is as follows: To what degree are the important change operations posi-
tioned at the beginning of the search steps? I.e., to what degree are delta-fitness
and delta-distance monotonically decreasing as the number of change operations
increases?

Finally, we investigate whether we can further improve the performance of
our heuristic variant mining algorithm using some other data mining or arti-
ficial intelligence techniques, i.e., we try to adopt the concept of ”pruning” as
commonly used in data mining [36] and artificial intelligence [20]. In our con-
text of variant mining, we can ”prune” out the situation when delta-fitness is
not nicely correlated with delta-distance, and consequently improve the perfor-
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mance of our algorithm by adapting our algorithm to such situation. Therefore,
the last research question is as follows: : How can we improve the performance
of our heuristic mining algorithm by adopting the concept of ”pruning”?

We try to answer all these questions using simulation, i.e., by generating
thousands of data samples, we can provide a statistical answer for these ques-
tions.

To summarize, we use simulation to answer the following research questions:

1. How much is delta-fitness correlated to delta-distance in our heuristic algo-
rithm?

2. Can the performance of the algorithm scale up? That is, does the correlation
between fitness value and average weighted distance depend on the size of
models?

3. Is it really true that the important change operations are performed at the
beginning? That is, does improvement of the average weighted distance mono-
tonically decreases as the number of change operations increases?

4. Would it be possible to further ”prune” the data such that we can improve
the performance of our heuristic mining algorithm?

In this section, we describe how we setup the simulation, simulation results
themselves are presented in Section 7. In total, we created 72 groups of datasets
based on different scenarios. Each of these groups consists of 1 reference model
and 100 variants configured out of it. In total, we create 7272 process models for
analysis. This section is organized as follows. Section 6.1 describes an algorithm
to generate a random reference process model. Section 6.2 describes based on
which parameters we can configure a collection of variants out of such randomly
created reference model. Section 6.3 summarizes the considered scenarios and
describe how we adapt the parameters when creating the respective variants.
Finally, Section 6.4 shows how simulations are setup to measure the performance
of our heuristic variant mining algorithm.

6.1 Generating the Reference Process Model

Our general idea of randomly generating (block structured) reference model is to
cluster blocks, i.e., we randomly cluster activities (blocks) into a bigger block and
this clustering continues iteratively until all the activities (blocks) are clustered
together. The detail of our approach is depicted in algorithm 3.

To illustrate how Algorithm 3 works, an example is given in Fig. 13. As
input a set of activities {A,B,C,D,E} are given, and the goal is to construct a
valid, block-structured process model S out of them. The algorithm starts by
considering each activity ai as basic block Bi, and adding these blocks to set
B (lines 1 and 2). Regarding our example, B = {{A}, {B}, {C}, {D}, {E}}. The
algorithm first randomly select two blocks Bi, Bj (lines 4) and cluster them
together with a randomly chosen order relation τ (lines 5 and 6). Regarding
our example, blocks {B} and {C} are selected to construct a new block {B, C}
with a randomly chosen order relation 1 (which means B precedes C). The newly
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input : Set of activities ai the process model to be generated should contain,
i = (i, . . . , n)

output: Valid process model S

Define each activity ai as a basic block Bi, i = (1, . . . , n);1

Define set B := {B1, . . . , Bn} /* initial state */ ;2

while |B| > 1 do3

randomly selected two blocks Bi, Bj ∈ B ;4

randomly select an order relation τ ∈ {0, 1, ∗,−} ;5

build block Bk which contains sub-blocks Bi and Bj having order relation τ6

;
B := B \ {Bi, Bj} ;7

B := B⋃{Bk} ;8

end9

S := B0 with B0 ∈ B10

Algorithm 3: Randomly generating a reference model

created block {B, C} will then replace blocks {B} and {C} in the block set B, i.e.,
B = {{A}, {B, C}, {D}, {E}} (lines 7 and 8). This procedure (lines 4-8) is repeated
until block set B contains one single block B0 (B0 = {A,B,C,D,E} regarding our
example). This block then represents our randomly generated process model S.
(line 10). Fig. 13 shows the process model we randomly generated as well as the
block constructed in each iteration.

AB C E D

1 * 

1 0Order relation randomly chosen 
Result

B C

E

DA 1 2 3 4
Fig. 13. Example of generating random process model

In practise, certain order relations are used more often than others. For exam-
ple, the predecessor-successor relation is used more frequently than AND/XOR-
splits [46]. When randomly generating a process model, we therefore take this
into account as well. Rather than randomly setting the order relation for two
blocks, we set the probability for choosing AND-split (τ =′ ∗′) and XOR-
split (τ =′ −′) to 10% respectively, while predecessor-successor relationships
(τ = {0, 1}) are chosen with probability of 80%.
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6.2 Parameters Considered for Generating Process Variants

Taking a generated reference process model, we control how variants are config-
ured by adjusting specific parameters. For example, these parameters determine
how many change operations needed to perform to configure a particular variant
and where activities should be moved or inserted to and so forth. Basically, we
have considered the following parameters when generating the process variants.

1. Parameter 1 (Size of Process Models) The size of a variants (i.e., the
number of its activities) can potentially influence results. Therefore, we need
to check the behavior of our algorithm when applying them to variants of
different sizes. This is also important to test the scalability of our algorithm,
i.e., whether or not the correlation of delta-fitness and delta-distance depends
on th size of the models.

2. Parameter 2 (Similarity of Process Variants) This parameter measures
how ”close” these variants are, e.g., whether or not the variants are similar to
each other. In this context, similarity measures how difficult it is to configure
one variant into another [17].

3. Parameter 3 (Activity Occurrence) One important feature of our heuris-
tic mining algorithm is its ability to automatically decide which activities
should or should not be considered in the discovered model. Clearly, activi-
ties with low activity frequency (cf. Def. 4) may not be considered. We use
this parameter to perform a detailed analysis of this situation.

4. Parameter 4 (Activity Consistence) As activity frequency can be quickly
computed by scanning the activity sets of the variants, it is also important
to know whether the position for one particular activity is consistent. e.g., if
an activity is often inserted, we are also interested in whether such activity
is always inserted into a particular position. This parameter therefore helps
us to examine whether or not the position where activities are inserted or
moved to can influence our search algorithm.

As parameter 1 and 2 are easy to understand, we use Fig. 14 to provide a
further analyze of parameter 3 and 4.

Consider the situation when an activity aj is very often inserted when config-
uring variants (high occurrence), and its inserted position is also very consistent
(high consistency). The heuristic algorithm therefore should have a high chance
to also insert aj in the reference model, since such insertion is very often used in
configuring each variant (up-right part of Fig 14). On the contrary, if an activity
appears in only a few variants (low occurrence) and its positions in those variants
are also changing all the time (low consistency), we therefore can ignore such
activity (down-left part of Fig. 14) since such change does not repeat often. The
difficult part is the rest two parts in the value space (marked with a question
mark). It would be difficult to know whether we should insert one activity with
high activity frequency but its positions are not very stable. Reason is that even
if we insert this activity in the reference model, we also need to move it frequently
since its position in the variants are not stable, therefore inserting such activity
is not necessarily lead to the reduce of the average weighted distance. On the
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contrary, if an activity does not appear often in the variants, but its positions in
these variants are very consistent, it is also difficult to determine whether or not
we should insert this activity in the reference model. If we insert it, we need to
often delete it since it does not shows up often in the variants. Therefore, in the
following subsections, we will explain how to simulate these situations to cover
the value space in our simulation.

6.3 Methods for Generating Data Sets

When configuring the variants based on a given reference model, we vary the
values of the parameters described in subsection 6.2 and consequently generate
variants based on different scenarios. The following choices are available for the
different parameters:

Parameter 1 (Size of Process Models) This parameter controls how
many activities shall be contained in the original reference model and conse-
quently control, in general, the size of process variants. There can be three
options:

1. Small-sized reference models: containing 10 activities
2. Medium-sized reference models: containing 20 activities
3. Large-sized reference models: containing 50 activities

In our simulation, we use the same reference model for the groups containing
process models of same size. Reason is that we want to avoid the influence
of the randomly generated reference model. According to [21], process models
containing more than 50 activities have high risk of errors. therefore, it is not
recommended to design such large model. Following this guideline, we also set
the largest size of a process model for 50 activities in our simulation. Note that
the variants may have different activity sets than the reference model since we
also employ insert and delete operations when configuring a variant.

Parameter 2 (Similarity of Process Variants) The closeness between
the variants is measured by the total number of change operations we apply
when generating variants (cf. Def. 2). Three possible choices exist:
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1. Small-change: 10% of activities are changed
2. Medium-change: 20% of activities are changed
3. Large-change: 30% of activities are changed

For example, for the datasets comprising large-size process variants (i.e.,
variants with 50 activities), medium-change would mean we need to perform
10 change operations on the reference model to configure a particular process
variant. This way, we can control the distance between the reference model and
its variant. And indirectly, we can control the similarity between variants since
they are all controlled in a certain distances with the reference model.

Parameter 3 (Activity Occurrence) We use Fig. 15 to illustrate how we
configure parameter 3. The X-axis represents a list of activities and the Y-axis
shows their corresponding probability being involved in process configurations.

Given a reference model S, let aj ∈ N , j = 1 . . . , m be the activities in S.
Based on parameter 1 and 2, we can decide on by performing how many change
operations we are able to configure S into a particular variant Si. For example,
if parameter 1 is ”large-sized” model (S contains 50 activities) and parameter
2 is ”large-change” (change 30% of activities in S), we know that we need to
change 15 activities to configure one variant out of S. Let x be the number of
change operations, we can create x new activities ax, x = n + 1 . . . n + x. Then
the m + x activities constitute the X-axis in Fig. 15.

Activitymoved insertedstable

Old New

a1 a2 am am+xam-1 am+1... ...am-x+1 ...
x = number of change operations
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Fig. 15. Change occurrence for activities in the reference model

The Y-axis therefore shows the probability each activity is involved in change
operations. In order to compare activities with different probability being in-
volved in change operations, we assign each activity with different probabil-
ity. We use Gaussian distribution to realize the difference. For activity aj , j =
(m − x + 1) . . . (m + x), the probability it involved in change operations is
∫ j

j−1
1√
2π

e
−(j−m)2

2( x
3 )2 (i.e.,X:(m, (x

3 )2), which means the expected value of the dis-
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tribution is m with standard deviation x
3 . The probability of changing aj is the

integral in the interval [j-1,j) ). Table 3 shows the probability for the groups
with parameter 1 being small-sized and parameter 2 being large-change. Note
that activity K, L and M, are not in the original reference model S. The purpose
of using Gaussian distribution here is only to simulate the situation that activ-
ities have different probability being involved in changes. We do NOT assume
that the probability for activities being involved in change must follow Gaussian
distribution or any other distributions.

Activity A B C D E F G H I J K* L* M*

Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.136 0.341 0.341 0.136 0.022
Table 3. The probability for each activity being involved in change operations when
configuring process variants

After we described how to simulate the probability for each activity being
involved in changes, now we describe what kind of change operations we consider
on generating each variants. Since the original reference model S only contain
activities aj , j = 1 . . . m, if an activity aj , j = m + 1 . . .m + x are involved in
process configurations, we can only insert such activity in S in order to configure
a particular variant Si. For the activities aj , j = m− x + 1 . . . m which already
exist in the reference model S, we can move such activity to another position
when configuring a particular variant Si. We ignored delete operation when
generating the dataset since it can be easily handled. 9

While how often an activity aj is inserted when generating variants can be
easily obtained by activity frequency g(aj), it is difficult to know how often
activities are involved in move operations because move operation does not lead
to the change of the activity set and structure changes are difficult to identify.
We design our simulation by considering both insert and move operation also
with the purpose of checking whether these two types of change operations are
considered equally important by our heuristic mining algorithm. Since the move
and insert operations have the same probability to be employed when generating
dataset, we would also expect the heuristic mining algorithm can also apply
relatively same amount of change or insert operations to discover a reference
model. If it is not the case, it is an indication that the fitness function is not
properly designed.

Parameter 4 (Activity Consistence) While parameter 3 describe how
often a particular activity is changed, parameter 4 controls where these activities
are changed (moved or inserted) to.

As we discussed in subsection 5.2, there are numerous options to insert an
activity aj into a particular process model Sc. aj can be clustered with any block

9 Delete operation is only not considered in generating dataset but is still considered
in performing mining. Deleting activity aj leads to the change of activity frequency
g(aj), which can also be realized by insert operation.
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in Sc by one of the order relation τ = {0, 1, ∗,−}. Since the number of blocks
contained in a process model is often large, the number of possible resulting
models by inserting aj in Sc is also large.

Therefore, for a particular group, we can define several change operations
as consistent change operations, i.e., when an activity aj is inserted into Sc,
it is always clustered with a particular block by a particular order relation τ ′.
Therefore, we can control how frequent we perform the corresponding consistent
change operations to configure a particular variant Si.

The first step is then to determine these consistent change operations for a
particular group. For example, consider Fig. 15. For a given reference model S,
we only allow performing x changes from activity set aj , j = (m−x+1) . . . (m+x)
to configure a particular process variants Si. The remaining activities, i.e., aj , j ∈
[1, (m−x)], are stable, i.e., will not be changed. These activities are the suitable
candidate blocks to be cluster with. For each activity aj , j ∈ [(m− x + 1), (m +
x)], we can find a corresponding activity aj′ , j

′ ∈ [1, (m − x)], so that if we
need to perform a consistent change on aj , it is always clustered with aj′ by a
particular order relation τ ′. For example, consider the case we described in Table
3. Activities A, B, C, D, E, F and G will not be involved in change since their
probability for change all equal to 0. Therefore, if we need to move H, I or J or
to insert K, L or M, we always cluster them with one of the stable activities, e.g.,
if we need to move J to configure a particular variant by a consistent change
operation, it will always be clustered with B by order relation saying τ ′ = ”0”.

We therefore can control activity consistence of activity aj by setting how
often a consistent change operation is performed. If aj is to be change, we set the
probability to perform a consistent change operation to p, and the probability
to perform a random change operation (i.e., randomly select a block and cluster
it with a random order relation) is consequently 1 − p. In order to analyze
the relation between the activity consistency and activity occurrence, we have
designed four different scenarios to cover the space as illustrated in Fig. 14. The
scenarios are depicted in Fig. 16.

These four scenarios are constructed by keeping either occurrence or consis-
tency stable while changing the others:

1. LowOcc scenario keeps occurrence of activities all at 30%, while makes the
consistency of these activities varying from 0 to 80%.

2. HighOcc scenario keeps the occurrence of activities all at 70% while making
the consistency of them also varying from 0 to 80%.

3. LowCon scenario keeps the consistency of activities all at 30% while making
the occurrence change from 0 to 80%.

4. HighCon scenario keeps the consistency of activities all at 70% while mak-
ing the occurrence changes from 0 to 80%.

Note that the scenario is not describing a particular activities but a set of
activities. For the group with parameter 1 being ”large-sized” and parameter 2
being ”large-change”, 30 activities (15 for move and 15 for insert) will be involved
in configuring the 100 process variants with different occurrence or consistency
values. Therefore, one particular scenario can cover a large space in the value
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space (cf. Fig. 16). This can significantly enhance our research since for each
scenarios, we have a collection of activities for analysis.

In order to better cover the value space, we have designed four additional
scenarios. While the occurrence always follows the curve as depicted in Fig. 15,
the consistency of the corresponding activities are depicted in Fig. 17.

1. Positively correlated scenario makes the consistency of a particular ac-
tivity positively correlated to its occurrence, i.e., when activity aj has high
occurrence, it also has high consistency. This applies to both moved and
inserted activities.

2. Negatively correlated scenario, on the contrary, makes the consistency
negatively correlated to the occurrence. When aj has high occurrence value,
it should have a low consistency. This applies also to both moved and inserted
activities.

3. Focus on ”move” scenario assigns high consistency to the moved activities
while set low consistency to the inserted activities.

4. Focus on ”insert” scenario on the contrary assigns high consistency to the
inserted activities and low consistency to the moved activities.

Fig. 17 also depicts the value space as covered by each scenario. We additional
design these scenario not only to better cover the value spaces, but also to analyze
whether the insert and move operations are considered equally important by the
algorithm, i.e., since insert and move operations are equally used when generating
the dataset, our heuristic mining algorithm also should not show significant
difference on move and insertions when discovering the reference model.

To sum up, this subsection describes how each group of dataset are generated
by adjusting the values of different parameters. Since we have 3 options for
parameter 1 (small-size, medium-size and large-sized), 3 options for parameter
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2 (small-change, medium-change and large-change) and 8 scenarios to cover the
value space of occurrence and consistency, we have in turn generated 3×3×8 = 72
groups of dataset containing 1 reference model and 100 variants configured from
it. In the next subsection, we will describe what information we can obtain from
each group of dataset.

6.4 Simulation Setup

For each one of the 72 groups of dataset constructed based on different scenarios,
we perform our heuristic mining to discover a new reference model by mining
the collection of variants. We do not set any constraints on search steps, i.e., the
algorithm will only terminate when no better model can be discovered. We used
a Dell Latitude Laptop (2.4 GHZ CPU and 3.5 GB RAM) to run our simulation
under Windows environment. The following information are documented in each
group:

1. Original reference model, i.e., the model based on which we perform the
changes (cf. subsection 6.1).
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2. 100 process variants. Based on a given reference model, we generate each
variant by configuring the reference model according to the different scenar-
ios as described in subsection 6.3. For each group, we generate 100 process
variants. Note that although the 100 variants are generated by following a
same scenario, these models are NOT same. The reason is that the scenario
only depicted the feature of the collection of variants but not a particular
variant.

3. Search results. We document all the intermediate process models as well
as the end search result as obtained from the heuristic search. The corre-
sponding change operations are also documented. As example consider Fig.
11 as the heuristic search result we can obtain by mining the reference model
S and variants Si from Fig. 3.

4. Fitness and average weighted distance. Similar to the evaluation results
we presented in Table 2 of search results (cf Fig. 11), we also compute the
fitness and average weighted distance value of every intermediate process
models as obtained from our heuristic mining. We additional documents
delta-fitness and delta-distance in order to examine the influence of every
change operation.

5. Execution time. At last, we also document The running time to perform
our heuristic search algorithm.

7 Simulation Result

In Section 6, we have described how the simulation is setup and what research
questions we want o answer through the simulation, in this section we give the
answer to these research questions. In particular:

1. Subsection 7.1 will provide the basic analysis of the heuristic algorithm, e.g.,
average distance reduction, running time etc.

2. Subsection 7.2 will show the correlation analysis of delta-fitness and delta-
distance.

3. Subsection 7.3 will compare the correlation values of process models with
different size to answer whether the performance of our algorithm can scale
up.

4. Subsection 7.4 will examine whether nor not the important changes are per-
formed at the beginning.

5. Subsection 7.5 will provide a method to train a threshold value to improve
the performance of our heuristic mining algorithm.

7.1 Basic Performance Analysis

Improvement on average weighted distances In 60 (our of 72) groups,
we are able to discover a new reference model different than the original one.
The average weighted distance of the discovered model is 0.765 shorter than
that of the original reference model, i.e., setting the discovered model as the
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new reference model can reduce on average 0.765 change operations to configure
the variants. When compared to the average weighted distance of the original
reference process model, it is on average 17.92% shorter.

Number of Change and Move operations For the 60 (out of 72) groups
which we are able to discover a different reference model, we perform in total 284
change operations, i.e., on average 4.73 change operations per group. Within the
284 change operations, there are 132 insert operations and 152 move operations.
Clearly, we see no significant difference between the number of insert or move
operations. which indicates that the two operations are well-balanced by our
algorithm. Reason is that we performed relatively same amount of insert or move
operations when generating the data set (cf. subsection 6.3) and such trend is
also shown during the discovery of the reference model.

Running Time Clearly, the number of activities contained in the variants can
significantly influence the execution time of our algorithm. The search space is
simply larger for large models since the number of candidate activities for change
is higher and the number of blocks contained in a large model is also higher. We
therefore analyze the execution time of our algorithm by considering the size of
process models. The average running time is summarized in Table 4.

small-sized medium-sized large-sized

Average search time (s) 0.184 4.568 805.539

Average # of changes performed 1.83 3.52 8.43

Model sizes 10 ∼ 13 20 ∼ 26 50 ∼ 65
Table 4. Average search time for process models of different sizes

While it takes only little time to discover the result model for the small-
sized and medium-sized models, it takes considerable longer time (on average
805.539 seconds) to find the result for the large-sized model. It takes long not
only because the process models are larger, but also because the search steps
are longer as well. We need to perform on average 8.43 change operations on the
original reference model to discover the end result. Reason is that the variants
in these groups are more different from each other than those in the small-sized
and medium-sized model (the number of change operations is determined by
the model size, i.e., we change respectively 10%, 20% and 30% of activities to
configure a variant (cf. subsection 6.3)). The consequence is that the discovered
model could also be more different from the original model. However, we believe
the running time is acceptable considering the complexity of the problem, espe-
cially when compared with other data mining problems which might take hours
or even days to compute [36].
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7.2 Correlation of Delta Fitness and Delta Distance

One important issue we want to investigate is how fitness value is correlated
with average weighted distance. As we discussed in Section 6, fitness value is
only a ”quick guess” of how close a candidate model Sc is to the collection of
variants, it is not as precise as the average weighted distance and can also not
perfectly correlated with the average weighted distance since computing it is an
NP problem. In this subsection, we will analyze how much they are correlated
with each other.

Our heuristic search algorithm is a best-first approach, i.e., we search whether
we can find a process model with a higher fitness value, therefore, it is more useful
to measure how much the delta-fitness (the difference between the fitness values
before and after change) is correlated with the delta-distance (the difference
between the average weighted distances before and after change), because it is
improvement of the fitness value (delta-fitness) that guide the search steps (cf.
Section 5). Another reason not to directly analyze the correlation of the fitness
value and the distance value is their value ranges. While, the fitness value of
a model has value range [0, 1], the average weighted distance has value range
[0, +∞]. On the contrary, the delta-fitness and the delta-distance both have
value range [−1, 1] since we only change one activity at a time. Therefore, the
correlation between the delta-fitness and delta-distance is more reasonable to
consider. Similar techniques for evaluating fitness function is also widely used in
evaluating other algorithms [14].

Since every change operation will lead to particular change on the process
model and consequently creates a delta-fitness value and a delta-distance value,
we obtain 284 data samples since we performed in total 284 change operations.
We plot these data sample in Fig. 18 as (delta-fitness, delta-distance). For ex-
ample, consider the search result in Table 2. We can obtain three data sam-
ples of delta-fitness and delta-distance from it, i.e., (0.171,0.8), (0.04,0.6) and
(0.017,0.25).

In Fig. 18, the x-axis is the delta-fitness value and the y-axis is the delta-
distance value. All delta-fitness are larger than 0. It is easy to understand since
the algorithm would only perform a change if and only if it can find a model
with higher fitness value. However, the delta-distance is not always larger than
0, which indicates that sometimes the a change operation can make the result
even worse. It is not surprising to see this since the fitness value is only a quick
guessing of the distance. We additional plot a line with delta-distance being 0 to
separate ”good” samples (positive delta-distance) and ”bad” samples (negative
delta-distance).

In Fig. 18, we also marked the data sample from groups of different model
sizes separately. It is clear that these three groups form three different clusters,
i.e., they are not overlapping too much with each other and the larger the model
size is, the more its cloud positions towards the y-axis. This indicates that the
size of process model can influence the delta-fitness value. Reason is that the
fitness value is measured by the average of how much each pair of order relations
matches each other in the candidate model and in the variants (cf. Formula 5),
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Fig. 18. Construct the search tree

therefore since one change operation only change one activity, it would have
higher influence on the small model compared to on the big ones. Therefore,
it is more reasonable to analyze the correlation of the groups of different sizes
separately.

We use Pearson correlation to measure the correlation between the delta-
fitness and delta-distance [35]. Let X be the delta-fitness and Y be the delta-
distance. We obtain n data samples (xi, yi) where i = 1, . . . , n. Let x̄ and ȳ be
the mean of X and Y , let sx and sy be the standard deviation of X and Y . The
Pearson correlation can be computed using Formula 6.

rxy =
∑

xiyi − nx̄ȳ

(n− 1)sxsy
(6)

We additional tested whether the correlations are significant, i.e., whether
the correlation coefficients are significantly different from 0 [35]. The results are
summarized in Table 5.

Number of data Correlation Probability of r = 0 Significantly Correlated

Small-sized 33 0.762 <1.0E-8 Yes

Medium-sized 74 0.589 <1.0E-8 Yes

Large-sized 177 0.623 <1.0E-8 Yes
Table 5. Delta fitness and delta distance correlations of groups with different sizes
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It is clear that the correlation coefficients obtained from all three groups
are significant and high. The high positive correlation between delta-fitness and
delta-distance indicates that when we could find a model with higher fitness
value, we would have very high chance also to reduce the average weighted
distance and therefore should change the old model to the newly discovered one.
A correlation is normally considered high if it is larger than 0.5 [35]. In our case,
all three groups show high correlation coefficients, especially when compared
with most other heuristic or genetic algorithms in computer science, where the
coefficients between the fitness value and the local optimum are mostly low or
even negative [14].

7.3 Correlation Comparison

In the former subsection we have discussed the correlation between the delta-
fitness and delta-distance. Since it is an important value to evaluate the perfor-
mance of our algorithm, we would also like to know whether the coefficient will
change when dealing with process models of different sizes. It is important to
know since it directly reflects the scalability of the algorithm. If the correlation
coefficient does not change when dealing with small process models or large ones,
the scalability of our algorithm is consequently good since the performance is
stable when dealing with process models of different sizes.

When purely looking at the correlation coefficients from Table 5, it is dif-
ficult to derive any trend since the lowest correlation value is obtained from
the medium-sized models. More importantly, since we have different number of
data samples from the three groups, these three correlation should have differ-
ent ”credibility”, the correlation derived from 177 data points should be more
reliable than the one we obtain from 33 samples. To compare correlation val-
ues while considering the size of the data sample, we need to employ statistical
approach again.

Since the sampling distribution of Pearson correlation analysis is not nor-
mally distributed, we first need to perform a Fisher’s Z transformation to covert
the Pearson correlation to a normally distributed variable [35]. Let r be a cor-
relation coefficient, we can perform Fisher’s Z transformation using Formula 7.

Z(r) = 0.5× (ln(1 + r)− ln(1− r)) (7)

The distribution of Z(r) has two important attributes: first it is normally
distributed and second it has a known standard error of 1√

n−3
where n equals the

number of data samples for computing the Pearson correlation r. We therefore
can compare the difference between two correlations r1 (obtained from n1 data
samples) and r2 (obtained from n2 data samples) using Formula 8.

ρ(r1, r2) =
Z(r1)− Z(r2)√

1
n1−3 + 1

n2−3

(8)

The difference ρ(r1, r2) follows approximately Standard Normal Distribution
[35]. Table 6 shows the pairwise comparison results of the correlations from the
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three groups of different sizes. In all three comparisons, the correlation coeffi-
cients are not significantly different from each other, i.e., they are all statistically
same. This indicates that the performance of our heuristic algorithm is NOT de-
pendent on the size of the models, i.e., the algorithm can scale up on dealing
with large size process models without sacrificing its performance.

ρ value Probability of being same Significant?

Small-sized V.S. Medium-sized 1.51 0.130 Yes

Medium-sized V.S. Large-sized -0.4 0.689 Yes

Small-sized V.S. Large-sized 1.37 0.170 Yes
Table 6. Paired correlation coefficients

7.4 Monotonicity Test

In this subsection, we will test whether our heuristic search algorithm always
perform important change operations (changes that have higher delta-distance
value) at the beginning. We therefore perform two tests. The first test is to
see how much we are able to reduce the distance by only performing a limited
number of change operations. Another test is to see whether the delta-distance
is monotonically decreasing.

How Much the Top n% Change Operations Can Do In our simulation,
we do not control the search depth, i.e., we allow the algorithm continue as far
as better models can still be discovered. As mentioned before, one important
feature of our algorithm is its ability to control how many change operations
we want to perform. This implies that the important ones should be put at
beginning. One approach is to compute how much the top n% changes have
achieved on reducing the average weighted distance.

For example, consider the search results in Table 2. We have perform in total
3 change operations to discover the best model. In total, the average weighted
distance reduced 1.75 from 4 as based on the original reference model S to
2.25 as based on R3 (cf. Table 2). We therefore can analyze how important
the changes at beginning is by compute how much it has reduced the average
weighted distance. For example, the first change operation reduces the average
weighted distance by 0.8, compared to the overall distance reduction by 1.75,
we have accomplished 0.8/1.75 = 45.71% distance reduction by performing only
the top one change operation. Since we only have 3 change operations, we can
claim that by performing the top 33.33% of the change operations, we can al-
ready accomplish 45.71% distance reduction. This therefore can indicate how
important the changes at beginning are, the higher the distance reduction has
accomplished, the more important these operations are. Similarly, we can also
compute how much fitness improvement can be accomplished by performing only
the top changes. The results are summarized in Table 7.
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top 33.33% changes top 50% changes

Fitness gain 57.35% 74.60%

Distance gain 63.80% 78.93%
Table 7. Fitness and distance gains if only apply the top changes

Table 7 summarize the average distance and fitness gains by the top 1/3 and
top 1/2 change operations. It becomes clear that the changes at beginning are a
lot more important than the changes performed at end. For example, the top 1/3
change operations has achieved 63.80% distance reduction while the remaining
2/3 change operations only achieved the remaining 36.20% distance reduction. If
we only perform the first half of the change operation, we would already obtain
around 80% of the distance reduction. This simple analysis has already implied
that the changes performed at the beginning are a lot more important than the
changes performed at end.

The Monotonically Decreasing Score The approach described in former
subsection is an abstract approach, i.e., we analyze the effect of a collection of
change operations rather than focus on comparing each individual ones. In this
subsection, we will focus on each individual change operations, i.e., whether it is
really the case that the one performed before is better than the one performed
next to it, i.e., whether the delta-distance is monotonically decreasing.

Most of the monotonicity test in data mining or artificial intelligence provide
binary answers, i.e., the data sample is either monotonic or non-monotonic [20,
36]. These monotonicity test are too restrict here since one problematic num-
ber can kill the whole monotonicity test, especially considering the fact that a
heuristic algorithm is only a reasonable ”guessing”. Statistical monotonicity test
(e.g., [4]) can not be applied either, since there are only on average 4.73 change
operations performed in each group. This number is too low to conduct any
creditable statistical analysis. Therefore, we use the following method to test
the monotonicity.

For one group of dataset, let n be the number of change operations performed
on the original reference model to discover the end result. Let xi, i = 1 . . . n and
xj , j = 1 . . . n be the delta-distance of number ith and number jth change oper-
ations. The monotonically decreasing score µ can be computed using Formula
9.

µ =

∣∣{(xi, xj)|(i < j) ∧ (xi ≥ xj)
}∣∣

n× (n− 1)/2
(9)

µ measure the monotonicity by comparing every pair of change operations.
If for two change operations i, j with i < j, i.e., i performed before j, we obtain
delta-distance xi is larger or equal to xj , it means change i and j follow mono-
tonically decreasing. Otherwise, not. Clearly we obtain µ ∈ [0, 1] and if µ = 1
holds, delta-distance keeps perfect monotonically decreasing, or if µ = 0 holds,
delta-distance would keep monotonically increasing. The higher µ is the higher
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delta-distance follows the trend of monotonically decreasing. Similarly, we can
test the monotonicity of delta-fitness. The results are summarized in Table 8.

average µ average µ with 5% error rate

Fitness 0.9942 0.9987

Average weighted distance 0.6682 0.6858
Table 8. The average monotonic decreasing score µ as obtain from the simulation

Besides the average monotonic decreasing score µ, Table 8 also shows the
average monotonic decreasing score µ by allowing 5% error rate, i.e., if i < j
and xi ≥ xj × (1− 0.05), we still consider it monotonic decreasing just to avoid
rounding errors. It becomes clear that the delta-fitness is almost perfectly mono-
tonically decreasing while such trend on delta-distance is not very strong. The
difference is due to the fact that the correlation between these two values are
not perfect. Therefore, we can not claim that the delta-distance keeps decreasing
as the search continues. The monotonic decreasing on the delta-distance is only
strong at high abstraction level, e.g., the top 1/3 change operations would accom-
plish around 2/3 of the distance reduction. It is not very strong when comparing
each individual change operation.

7.5 Pruning threshold training

If we revisit our delta-fitness and delta-distance graph as plotted in Fig. 18, it
is clear that there are still quite some ”bad” data points. Those are the points
with positive delta-fitness but negative delta-distance. Though these bad data
points can never be prevented due to the feature of heuristic algorithm, we can
at least improve it, i.e., reduce the chance such bad point from appearing.

When looking at these ”bad” points, we found them most time at the down-
left corner of the chart. It indicates that when the delta-fitness is low, the chance
of getting a negative delta-distance will get bigger. In order the quantitatively
evaluate it, we introduce the concept precision here.

Let X be the delta-fitness and Y be the delta-distance. We obtain n data
samples (xi, yi) where i = 1, . . . , n. Given a delta-fitness value x, we can compute
precision p(x) using Formula 10:

p(x) =

∣∣{(xi, yi)|(xi ≥ x) ∧ (yi > 0)
}∣∣

∣∣{(xi, yi)|xi ≥ x
}∣∣ (10)

Given a delta-fitness value x, precision p(x) measures the ratio of ”good”
data samples (with delta-distance larger than 0) among data samples with delta-
fitness value larger or equal to x. The higher p(x) is, the more ”good” sample
we have in the data sample. Such measurement is widely used in the fields like
information retrieval [3] or data mining [36]. Fig. 19 depicts the precision values
p(x) for different delta-fitness value x.
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Fig. 19. Delta-fitness and precision chart

It becomes clear from Fig. 19 that, the lower the delta-fitness is, the lower the
precision is. When consider only the data samples with delta-fitness larger than
0.0401, all the corresponding delta-distance are positive, i.e., they are all ”good”
samples. The precision keeps reducing until it reaches 65.14% when considering
all the data points. This has indicated that a lot of ”bad” data samples are with
low delta-fitness values.

The precision analysis indicates that we can probably improve our heuristic
mining algorithm by determine a threshold value of delta-fitness. Since most of
the ”bad” data samples are obtained with low delta-fitness values, we will only
allow to perform a change if the delta-distance value is larger than this threshold
value. In the following we introduce two approaches to discover such threshold
based on our simulation data.

Classification Tree We first introduce an approach using classification tree
[24]. By learning from the ”good” and ”bad” data samples, we should be able to
classify them by a threshold delta-fitness value. Let X be the delta-fitness and
Y be the delta-distance. We obtain n data samples (xi, yi) where i = 1, . . . , n.
We can assign each data sample a binary value zi being ”TRUE” or ”FALSE”
depending on the value of yi. If yi > 0 holds, zi is ”TRUE”, otherwise, zi is
”FALSE”. We therefore can build a classification tree using the delta-fitness xi

and the binary variable zi. We choose the algorithm C4.5 to build the classi-
fication tree [24], and use Weka, which is one of the most popular open-source
data mining tools, to compute the result [45]. The details about the classifica-
tion algorithm or the data mining tool are out of the scope of this paper; the
important issue is that they are standard method to perform such classification.
The resulting classification tree is shown in Fig. 20.

The simple classification tree has divided the data samples into two groups
based on the values of delta-fitness. When delta-fitness xi of a certain data
sample (xi, yi) is less or equal to 0.001516, the classification tree will classify it as
”FALSE”, i.e., it is more often the case that yi is lower than 0. On the contrary,
if xi is larger than 0.001516, it is more likely to obtain a positive delta-distance
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> 0.001516<= 0.001516

(# of total data samples / # of incorrectly classified ones)
Fig. 20. The classification tree build based on delta fitness values

value. The classification tree is also not 100% precise: 12 out of 50 data samples
with delta-fitness lower than 0.001516 actually provide positive delta-distance
while 61 out 234 data samples with delta-fitness larger than 0.001516 provide
negative delta-distance values. Though the classification tree is not perfectly
precise, it is already the best we can build purely based on the delta-fitness
value.

The discover threshold 0.001516, therefore can help us improve the perfor-
mance of our heuristic algorithm. We shall only perform a change if the im-
provement of the fitness value is larger than such threshold. In this case, we are
expected to reduce the chance of performing a wrong change, i.e., a change which
makes the distance between the discovered model and the variants even large
(negative delta-distance). If we filter the data sample by this threshold value
of delta-fitness, we will increase the precision of the whole data sample from
65.14% to 73.93%. Correspondingly, the average reduction on average weighted
distance per group will also improve from 0.765 to 0.879, i.e., we can discover
better models by setting a threshold value to guide our heuristic search.

Threshold by Overall Distance Gain In the former subsection, we present
a standard data mining approach to improve our algorithm, while in this subsec-
tion, we introduce a more initiative and straight forward approach to discover a
threshold value. One disadvantage of the above mentioned classification tree is
that it can not consider the importance of a ”good” or a ”bad” data sample. The
threshold is trained by a binary decision variable zi which is either ”TRUE” or
”FALSE”. It does not consider how much ”TRUE” or how much ”FALSE”
by directly measuring the average weighted distance value. Here, we introduce
a method to discover a threshold by considering the delta-distance value.

Let X be the delta-fitness and Y be the delta-distance. We obtain n data
samples (xi, yi) where i = 1, . . . , n. We can compute the sum of delta-distance
ηx by a certain threshold delta-fitness x using Formula 11:

η(x) =
n∑

i=1,xi≥x

yi (11)
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η(x) measures the sum of the delta-distance after filtering out the data sam-
ples with delta-fitness lower than a given x. Fig. 21 depicts the curve of η(x)
according to the value of x. We specially zoom in the part with x in the interval
[0, 0.006].

η(x) keeps increasing as x decreases. It is easy to understand since the lower
x is, the less data samples will be filtered out. However, η(x) reaches its maxim of
51.72 when x equals 0.0014, and starts to decrease as x decreases. This indicates
that in the interval [0, 0.0014) of delta-fitness, there are more data samples with
negative delta-distance. If use 0.0014 as the threshold value to guide our heuristic
search, i.e., we only perform a change if the improvement of fitness value is larger
than 0.0014, we can additional reduce the average weighted distance per group
from 0.765 to 0.892. The corresponding precision for all data samples will also
increase from 65.14% to 73.22%.

Please note that the threshold value trained using our simulation data would
be a case specific value. It can not be generalized that using these threshold values
can always improve the performance of our algorithm. However, it is useful to
perform such analysis in this paper in two aspects. First, we have indicated
that when the delta-fitness value is low, the algorithm bear a higher chance
of performing a wrong move, i.e., the user should be careful when discovering
a model with only a little better fitness value. Secondly, using the suggested
approaches, user can train their own threshold value based their own data set.
We present the corresponding training method in this paper just to provide a
guideline about how to apply and/or improve our heuristic mining algorithm to
a domain-specific field, i.e., user can train a threshold value to make our heuristic
mining algorithm works better for their own problem.
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Fig. 21. The sum of the delta distances with delta fitness values above certain threshold

8 Related Work

Though heuristic search algorithms are widely used in areas like data mining
[36], artificial intelligence [20], or machine learning [24], only few approaches use
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heuristics for process variant management exist. In particular, there exist only
few adequate solutions for learning from the adaptations that were applied to
configure a collection of process variants out of a given process model.

Structural process changes during runtime and approaches for flexible pro-
cess configuration have been intensively discussed in literature [28, 29, 41]. A
comprehensive analysis of theoretical and practical issues related to (dynamic)
process changes, for example, has been provided in the context of the ADEPT2
change framework [25]. Furthermore, there exist approaches for dynamic struc-
tural changes of Petri nets [37]. Based on such conceptual frameworks, the
AristaFlow BPM suite [27] and tools for configurable process models [7] have
emerged.

There exist approaches which provide support for the management and re-
trieval of separately modeled process variants. As example, [19, 18] allows stor-
ing, managing, and querying large collections of process variants within a process
repository. Graph-based search techniques are used in order to retrieve variants
that are similar to a user-defined process fragment. Obviously, this approach re-
quires profound knowledge about the structure of stored processes, an assump-
tion which does not always hold in practice. Apart from this, no techniques for
analyzing the different variants and for learning from their specific customiza-
tions are provided.

In process mining, a variety of techniques has been suggested [38, 44, 6, 39].
As illustrated in [16], traditional process mining is different from process variant
mining due to its different goals and inputs. [13] presents a method to mine con-
figurable process models based on event logs, but is still focusing on discovering
process models from event logs rather than reducing efforts for process config-
uration. There are few techniques which allow to learn from process variants
by mining recorded change primitives (e.g., to add or delete control edges). For
example, [2] measures process model similarity based on change primitives and
suggests mining techniques using this measure. However, this approach does not
consider important features of our process meta model; e.g., it is unable to deal
with silent activities and it does also not differentiate between AND- and XOR-
branchings. Similar techniques for mining change primitives exist in the field of
association rule mining [36] and maximal sub-graph mining [12] as known from
graph theory [33]; here common edges between different nodes are discovered to
construct a common sub-graph from a set of graphs. Similar constraints hold for
”subdue” discovery as commonly applied in the field of bioinformatics, where
”subdue” represents a certain sub-structure of genes or proteins, which has a
certain chemical or biological behavior [11].

The ProCycle system enables change reuse at the process instance level to
effectively deal with recurrent problem situations [30, 42]. ProCycle applies case-
based reasoning techniques to allow for the semantic annotation as well as the
retrieval of process changes. Based on this, the respective process adaptations
can be re-applied in similar problem context to configure other process instances
later on. If the reuse of a particular change exceeds a certain threshold, it will
become a candidate for adapting the process schema at the type level; i.e., for



48

evolving this schema accordingly and thus for considering the change for future
process instances as well. Though the basic goal of ProCycle is similar to our
approach, the techniques applied are much more simpler and do not consider
variation in changes.

To mine high level change operations, [8] presents an approach based on
process mining techniques, i.e., the input consists of a change log, and process
mining algorithms are applied to discover the execution sequences of the changes
(i.e., the change meta process). However, this approach simply considers each
change as individual operation so that the result is more like a visualization of
changes rather than mining them. [15] has provided an approach to discover
a reference model by learning from a collection of variants. However, it is not
able to take the original reference model into account. Consequently it can not
control the updating procedure of the reference model. None of the discussed
approaches is sufficient in supporting the evolution of reference process model
towards an easy and cost-effective model by learning from process variants in a
controlled way.

9 Summary and Outlook

The main contribution of this paper is to provide an heuristic search algorithm
supporting the discovery of a reference process model by learning from a col-
lection of (block-structured) process variants. Adopting the discovered model as
new reference process model will make process configuration easier; i.e., since it
will require less effort (measured by the number of change operations) to config-
ure these variants. Our heuristic algorithm can also take the original reference
model into account such that the user can control how much the discovered model
is different from the original one. This way, we cannot only avoid spaghetti-like
process models but also control how much changes we want to perform. Our al-
gorithm can also automatically determine which activities shall be considered in
the reference model, filtering or pre-analysis of the activity sets are not needed
in this context.

We have evaluated our algorithm by performing a comprehensive simulation.
Based on simulation results, we can conclude that:

1. the fitness function of our heuristic search algorithm is correlated with the
average weighted distance with high correlation coefficient. This indicates
good performance of our algorithm since the approximation value we use to
guide our algorithm is nicely correlated to the real one.

2. our algorithm can also scale up since its performance which is measured by
the correlation between the fitness and distance is not dependent on the size
of models.

3. when discovering the new reference model by changing the original one, the
more important changes, which largely reduce the average weighted distance
to the variants, are performed at the beginning. Our simulation results in-
dicate that the first 1/3 of the applied changes result in about 2/3 of the
overall distance reduction.
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We have also suggested two approaches for improving our heuristic search
algorithm by learning a threshold value. Though the results may not be gener-
alized to all cases, the suggested approach can also support users to adapt our
algorithm with their own domain-specific knowledge.

Though results look promising, still more work needs to be done. As the
algorithm will take relatively long time when encountering large process models,
it would be useful to improve the search algorithm to make it faster. It would
also be useful if we could integrate our algorithm with other process mining
algorithms so that it does not purely focus on reducing the average weighted
distance of the reference model, but also take the behavior perspective into
account [38].

Acknowledgment: We would like to thank Matthias Wettstein for his con-
tribution in the statistic correlation analysis.
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