UNIVERSITY OF ULM

Faculty of Computer Science
Department of Database and Information Systems

Emergent Workflow

DIPLOMARBEIT
presented by

Florian Bertele

Thesis advisers: Prof. Dr. Manfred Reichert
Prof. Dr. Peter Dadam

April 2005

Abstract

Many fields of work require information systems that support an organization in man-
aging its complex process-aligned business. However, the flexibility of process creation
and enactment offered by current workflow management systems is often insufficient. As
a consequence these systems are not broadly used and suffer from low acceptance. Agile
processes that involve creative work are hardly supported as requirements changes and
exceptional situations occur frequently. Emergent Workflow is an approach that tries to
overcome these deficiencies by capturing the current process instantly — as it emerges
out of work — and offering immediate support to workflow participants. Its goals are
the retainment of organizational knowledge, improved reuse of individual work patterns
and a better transparency of the overall process. This thesis first motivates the sub-
ject by introducing a field of application in automotive product development. Typical
components of an Emergent Workflow Management System are identified and their re-
quirements as well as a process model are specified. Then related work is presented and
matched against these requirements. The thesis closes with a conceptual architectural
proposal and discusses some issues of feature integration and implementation.

Contents

1.

Introduction

1.1.
1.2
1.3.
1.4.
1.5.

2.1.
2.2.
2.3.

2.4.

Motivation L
Vision of Emergent Workflow
Application example
Terminology
Organization of this thesis

. Requirements

Use cases o e
Component overview e
Component-based requirements
2.3.1. User interfaces/Client application
2.3.2. Server interfaces.
2.3.3. Dictionary L
2.3.4. Organizational model
2.3.5. Time management L.
2.3.6. Process creation engine Lo
2.3.7. Runtimeengine Lo
2.3.8. Process matching engine
2.3.9. Repositoryo
2.3.10. Requirements summaryo
Process metamodel 0oL
2.4.1. Process definitions L
2.4.2. Processinstance.
2.4.3. Process compositionso oL

Related approaches

3.1.

3.2.

Case-based reasoning L
3.1.1. Fundamentals
3.1.2. Applications
3.1.3. Assessment of usefulness
Process mining
3.2.1. Fundamentals
3.2.2. Multi-phase process mining
3.2.3. Assessment of usefulness

— O &~ W=

12
15
17
17
19
20
23
26
28
33
47
49
o1
23
35
60
62

Contents

3.3. Flexibility approaches L oo 89
3.3.1. Schema evolution and propagation 89

3.3.2. Ad-hoc instance change L. 92

3.3.3. Integration of schema evolution and ad-hoc instance modification = 96

3.3.4. Assessment of usefulness 98

4. Architectural proposal 100
4.1. Stage 1 — Basic functionality Lo 101
4.2. Stage 2 — Advanced functionality 103
4.3. Stage 3 — Full functionality 106

5. Discussion 110
6. Conclusion 115
6.1. Summary and conclusiono L0 115
6.2. Omitted and future work o 000000 116

A. Supplementary Listings and Figures 117
A1 CODAW . . L o e 117
A.1.1. Processdatamodel 117

A.1.2. Instance level workflow schema 119

Bibliography 120

il

1. Introduction

1.1. Motivation

Today, entrepreneurial success is determined by both external and internal factors. As
the economic competition grows harder, companies face several external challenges. The
high innovation speed in research and production leads to shorter product life cycles and
less development time. Markets tend towards going global and offer more choice for cus-
tomers. Thus customers’ expectations towards competitive pricing, quality, performance
and flexibility of products rises as well. Internally, production and development gets more
and more complex with each generation. To handle that complexity, staff becomes highly
diverse and develops specific knowledge in each department. That makes it harder to
aggregate each individual’s work and to communicate common goals. Obviously, com-
plicated products cause complicated corporate structures. That is why companies have
come to extend their focus from a product-oriented view to a more process-oriented
view.

By aligning business in a process-oriented manner, inputs, outputs and relationships
between activities have to be identified. Formalizing these elements helps to break down
the corporate strategy into operations and clarifies their relation. The process itself of
creating explicit process models and visualizations fosters a more in-depth understanding
of collaboration and the flow of documents, products and work. A more transparent
perception helps to spot chances to increase efficiency such as eliminating redundant
work, defective products or reducing cycle times. According to Jablonski and Bussler
[JBI6|, the expected benefits are among others improved quality of service, improved
productivity and cost reduction and reduced vulnerability of the work process.

Workflow management systems have been introduced in order to give technological sup-
port to the idea of business processes. They are software systems dedicated to manage
the steps involved when dealing with business processes, such as modeling or assigning
tasks. A workflow management system is meant to encapsulate all process logic within
a corporate information technology system.

The classical model of a business process life cycle is depicted in Figure 1.1. Process
design is the task of distilling a process model from a set of informal business require-
ments. It involves the definition and selection of appropriate tasks (possibly from a
task library), sequencing of the tasks to satisfy data and logical dependencies, alloca-
tion of resources consumed by tasks, allocation of agents to execute tasks, scheduling
of tasks considering concurrency, and finally validation and verification of the model.

1. Introduction

Diagnosis

Process
design

Process
enactment

System configuration

Figure 1.1.: The business process life cycle (compare [Aal02] Figure 2)

During system configuration, an initial business process is implemented and deployed in
the workflow management system. In the following enactment phase instances of the
implemented models are created and executed. A process instance passes a number of
states by initiating its tasks. The conditions and sequence of task execution is stated in
the process schema as well as a terminal state. After enactment, the process instance
history is diagnosed for analysis and improvement. Conclusions drawn from that phase
influence the next process (re)design phase.

However, workflow management systems have not been accepted widely in pracice been
[HSWO97]. Multiple reasons can be found for that: Technology sometimes has not been
proven to be mature enough for corporate-wide deployment. On a managerial level
people may be not convinced of the positive effects a workflow management system has
on efficiency and see primarily high investments. As most activities of employees can
be individually controlled and monitored by information systems, acceptance problems
become apparent as well. People feel observed or are afraid of doing "office assembly-line
work" due to the high degree of work assignment automatization. The most profound
deficiency though is the lack of flexibility in most commonly used workflow management
systems.

Depending on the type of work and operational business, it is quite common that, from
time to time, the product or the production process needs to be changed. Exceptional
situations occur that have to be treated separately. These might be caused due to
internal or external events, such as special arrangements with a customer or extra quality
checks due to legislative changes. Very often it is not possible to foresee all possible
exceptions during process design, so the implemented workflow model does not cover
it. What happens most of the time is a treatment of such cases out of the system.
Activities are inserted, modified or skipped manually without proper documentation —
the workflow management system does not know anything about the deviation from its
standard procedures. Such behavior leads into a situation where processes (or what is

1. Introduction

left of them) become intransparent and the knowledge about them is incomplete or even
incorrect. Since this would practically reverse all efforts put into process management,
exceptional situations need to be taken care of differently.

The correct resolution of an incomplete process implementation is another reiteration
through the business process cycle (see Figure 1.1): Let process designers and staff diag-
nose the weaknesses, redesign their models and get them implemented into the workflow
management system. Furthermore running process instances need to be taken care of
separately to assure their conformance with the new model. That is a tedious and time-
consuming task that involves many reports, meetings and interviews. Design work and
communication between various groups of people leads to a certain degree of informa-
tion loss and potential misunderstanding. If such changes appear very frequently on
potentially long-running process instances, the efficiency advantages of workflow man-
agement system are mostly lost. Due to these shortcomings of conventional workflow
management systems, we motivate the use of flexible workflow management.

A flexible workflow management system is able to adapt to changing requirements of its
users and their work items, particularly during process enactment. That includes the
consideration of exceptional situations, ad-hoc changes to workflow instances, activities
and resources and workflow schema alteration. Knowing that not even the most care-
fully pre-built process model suits all possible future situations and later alterations are
unavoidable, a flexible workflow management system rather focuses on offering means
to extend or modify its behavior for all involved parties in an acceptable way. It does
not force users to circumvent its limited capabilities outside the system, but lets them
document a change operation and its context as well as possible.

1.2. Vision of Emergent Workflow

Emergent Workflow envisions a flexible workflow management system with the capabil-
ity of building small-scale workflows during process enactment without explicit process
design.

There exist many fields of work which share characteristics such as being highly variable
and having low regularity patterns in their schema of activities. For instance, highly cre-
ative or knowledge intensive processes like product development fall into that category.
At the same time, those kind of processes require close collaboration of many people from
several disciplines, each representing distinctive knowledge. There exist many different
views on one common project, all of which need to be integrated properly.

Introducing a workflow management system into an environment like that is very promis-
ing due to the large amounts of implicit knowledge involved. Building an information
system that collects structured information about the process and makes it available
for later reuse would yield the benefit of improving each individual’s process awareness
and productivity. A higher work pace, work quality and learning curve are among the

1. Introduction

potential benefits.

However due to the nature of creative work, a small scale process can hardly be pre-
modeled because there does not exist literally one single regular case of reasonable
complexity. Rather, there is a rough framework whose detailed structure is subject
to continuous adaption due to spontaneous requirement changes.

As the exact process logic is unknown until process enactment, it is the approach of
Emergent Workflow to capture the process as it emerges from spontaneous performance
of activities. An explicit modeling approach is impractical as it is both too complicated
and too time-consuming to be done by people who are not dedicated process designers.
The user rather documents their advancement in a more convenient and less formal way,
e.g. supported by a dialogue-based software. A partial process model is then supposed
to be derived from an audit trail that documents users’ activities.

Interesting uses for that information include documentation, reuse and composition. As
for documentation, recurring situations including their context and decisions made upon
them can be reviewed to gain insights for future work. If a very similar situation occurs
in the future, it is even possible to reuse a previously recorded situation as a template
to guideline upcoming activities. Finally, the collected set of small-scale process parts
contains all information necessary to compose a view on the overall current process.
This is particularly interesting to compare with a theoretically developed target process
in order to find characteristic differences and chances for improvements.

1.3. Application example

In order to get a taste of what a typical application environment could look like, an initial
example is introduced. It helps understanding the major questions that have to be asked
and answered when considering the introduction of Emergent Workflow. Furthermore
the application scenario is used throughout the thesis to illustrate proposed ideas.

The example introduces an outline of a new product development process in the auto-
motive engineering sector. Automotive development is a relevant application field for
Emergent Workflow for a number of reasons. Modern automobiles are mechatronic sys-
tems — machines whose components comprise mechanical, electronical and information
technology aspects. Their correlation is visualized in Figure 1.2 and the meaning of
mechatronics is defined by VDI [Ver04] as follows:

[Mechatronics is|...the synergetic integration of mechanical engineering
with electronic and intelligent computer control in the design and manufac-
turing of industrial products and processes.

1. Introduction

information
technology

mechatronics

electrical
engineering

mechanical
engineering

Figure 1.2.: Mechatronics as the interaction of different disciplines (compare [Ver04| Fig-
ure 2-1)

It is crucial to notice that synergetic effects can not be reached by independently op-
erating science groups but take their power from cooperation with each other. That
implies consequent synchronization between the disciplines to establish a common view,
language and understanding of development issues.

The driving force behind interests in mechatronic systems is the fast paced innovative
potential in information technology. On the one hand it is due to the exponential ad-
vancements of processing power and memory with concurrently decreasing costs and size
at the same time. On the other hand the functional and spatial integration of technolo-
gies unleashes potential improvements concerning functionality, absolute performance
and price-performance ratio as well as better behavior.

In an automobile, electronic and information processing components are built on top of a
mechanical structure. This structure would suggest a sequential development procedure
which is not practical in reality though because of its very time-consuming nature. For
efficiency reasons it is rather desirable to have a continuous, distributed development
and cross-domain cooperation at the same time. A digital mock-up is a widely used
tool in product development to achieve that objective. It is a virtual prototype used
by all involved disciplines to simulate and test the most important physical and other
functional aspects.

As development procedures can not be pinned down to one single best model, the com-
bination of the following patterns offers more flexibility:

1. Introduction

e General problem-solving as a micro cycle

e V model styled macro cycle

Problem-solving as a micro cycle The problem-solving cycle shown in Figure 1.3
applies to small-scale procedures and comprises several components. The starting point
is either a situation analysis or the adoption of a goal, depending on whether a pre-
existing structure is adopted or new structures are built from scratch. After the situation
has been analyzed with a given structure, a goal can be formulated from given input.
In case an ideal concept is the starting point, these goals are adopted first and situation
analysis starts from there.

During analysis and synthesis, a solution for the given problem is researched. Both
activities analysis and synthesis are alternating: The first develops solution alternatives
which are then checked, improved or rejected during synthesis of the results. By iterating
these steps, improved solutions are eventually found.

The final analysis and assessment step evaluates the solution alternatives found in more
detail. An assessment with regard to the initial goal formulation leads to either a pro-
posal or a recommendation for one or more proposed solutions.

During decision, one compares the overall success of procedures which have shown sat-
isfactory result so far. It either ends in a return to another goal formation if the results
were not convincing or a favorite solution is chosen.

Planning for further procedure or learning makes sure that, at the end of one micro-
cycle, the efforts made so far are carefully reviewed and evaluated. Learning about the
good and bad points from the past cycle helps to improve further planning. That leads
to a systematic improvement of future processes.

V model The V model is a macro-cycle that formulates — in contrast to a micro-
cycle — a view on the overall development process. In Figure 1.4 multiple iterations of
macro-cycles are shown.

The process starts at the entry point of the innermost cycle on its left side. From there,
each iteration begins with a formulation of its respective requirements. They specify the
goals of the macro-cycle in detail and are used as a comparative measure for outcomes.

During system design, developers establish cross-domain concepts for solutions. That
is achieved by decomposition of major system functionalities, finding solution elements
and recomposing these into an overall solution concept.

The domain-specific design phase is used by each discipline individually to elaborate
on solutions that had been outlined during system design. Solutions are substantiated
in more detail which requires separate models and views for mechanical, electrical and
information engineering each.

1. Introduction

Procedure based Procedure based
on actual state on desired state
(existing structure is (ideal concept is at
taken as a basis) the forefront)
> Situation analysis Adoption of goal -
\i Y
- Goal formation Situation analysis]
- develop
alternatives for a
solution

- check, improve,
reject solutions

Analysis and assessment

Decision
Y
Planning for
further Learning
procedure

Figure 1.3.: Problem-solving as a micro-cycle (compare [Ver04| Figure 3-1)

1. Introduction

Degree of maturity

Degree of maturity

Quality gate

\i ;
| Product

Requirements

Y
Assurance

of
properties

Mech. eng.
Electrical eng.
Inform. eng.

Mechanical engineering
Electrical engineering
Information engineerin

Mechanical engineering
Electrical engineering
Information engineerin

Figure 1.4.: V-model styled macro cycles with increasing product maturity (compare

[Ver04] Figures 3-2 and 3-3)

1. Introduction

System integration finally consolidates all partial solutions and investigates their inter-
action. An important part of integration is the assurance of properties as indicated in
Figure 1.4 by arrows pointing from right to left. As integration proceeds, its results
are continuously checked back with the solution concepts built during system design.
Furthermore, their compliance with the initial requirements has be assured.

A macro-cycle iteration results in a product. This can be either the final product which is
ready to be released or just an intermediate product such as a certain prototype stage. As
complex products require usually several macro-cycles for development, an intermediate
product has to pass a quality gate to proceed to the next development cycle. A quality
gate driven process ensures the quality level of outcomes at a certain stage by defining
detailed requirements that have to be met before entering the next stage. After passing
the quality gate, the next set of requirements gives the agenda for the next macro-cycle
and the next quality gate. With each additional macro-cycle, the product maturity in
terms of completeness and correctness increases until the last cycle outputs the final
product.

The V model and the problem solving micro-cycle indicate that Emergent Workflow
is a promising approach in automotive development. On the one hand, the overall
process has a coarse fixed structured defined by iterating through quality gates. On the
other hand, small-scale problem solving appears frequently, is individually determined
by the context and has little repetitive structure. Still, there are expected benefits
from reusing previously applied procedures. Suppose a construction detail such as an
advanced window power lifter. It may have already been implemented in a premium
class model line successfully and is about to be adopted for the next generation of a
compact car. The processes and insights recorded while integrating the power lifter in
the premium car can save efforts by being reused for its integration in the compact car.

1.4. Terminology

While talking about a specific field of application, we have used a lot of terms without
exactly specifying their meaning. This sections purpose is to introduce the terminology
that will be used most commonly throughout the subsequent chapters. The following
definitions and explanations were established by the Workflow Management Coalition
in "Terminology & Glossary" [Wor99| respectively taken from [AH02, WRWR05|. We
will adapt their interpretation in the following paragraphs.

A business process is a set of procedures and activities, which collectively realize a
business objective such as the construction of a new car generation. These procedures
and activities are linked by various relations, e.g. temporal or causal dependencies.

A workflow is the automation of a business process, in whole or partially. A set of pro-
cedural rules manage the exchange and distribution of documents, information or tasks.
Strictly speaking, the term workflow refers to the subset of processes which are sup-

1. Introduction

ported by information technology. Since however the differentiation of a process versus
a workflow is not crucial in the light of this thesis, I will mostly use both terminologies
synonymously.

The execution of workflows is defined, created and managed by a workflow management
system. By the use of software it runs on one or more workflow engines. These are
able to interpret formal process definitions, interact with workflow participants (also
called workflow users) and, where required, invoke the use of applications and other
information technological tools. A workflow participant is a human or machine-based
agent that constitutes a resource which performs work represented by a workflow activity
instance. A workflow management system that meets the requirements discussed in
Chapter 2 will be referred to as an Emergent Workflow Management System.

The automation of a workflow is defined within a process definition. It is the represen-
tation of a business process in a form which is supported for automated manipulation,
such as modeling or enactment by a workflow management system. A process definition
holds a certain process type. The type is specified by a process schema which defines
the process structure. The schema consists of a network of tasks and their relationships,
constraints to indicate the start and termination of the process and information about
individual activities, such as participants, associated applications and data, etc.

A business process is structured by the identification of logical steps. Each atomic
step is referred to as a task. A task is performed by the execution of an instance-specific
activity. During execution, an activity passes a sequence of defined states. Activity state
traversal can be either workflow automated or manual without information technology
support. A workflow activity requires human and/or machine resources to support
workflow execution. Where human resources are required, an activity is allocated to a
workflow participant.

A process instance is a process definition with individually allocated resources and ac-
tivity states for all tasks it contains. The set of activity states defines the execution
state of a process instance. During process enactment, a process definition is both in-
stantiated and executed. That is, a process definition with an individual process state
and its resources are allocated and an initial state transition is performed in order to
indicate the instance’s readiness. In literature, process instances are often referred to as
cases'. In this thesis, we will stick to the term process instance in order not to confuse
it with the term case used in case-based reasoning (see Section 3.1).

Many individual process instances may be operational during process enactment. Each
process instance is the representation of one single enactment of a process definition and
may be controlled independently. It has its own internal state and externally visible
entity. A workflow management system creates and manages a process instance for each
separate invocation of the process definition.

A worklist is a list of work items which are associated with a given workflow participant.

'e.g. by van der Aalst et al. in [AHO02]

10

1. Introduction

Each work item is a representation of a task which has been scheduled for execution in
the context of an activity within a process instance. The worklist represents a part of
the interface between a workflow engine and the worklist handler, a software component
that manages the interaction between the user and the worklist. It enables work items
to be passed from the workflow management system to users and forwards notifications
of completion or other work status conditions.

1.5. Organization of this thesis

Up to now, Chapter one has motivated and introduced the subject around Emergent
Workflow. After a motivation of business process management in conjunction with work-
flow management, the vision of Emergent Workflow is presented. A characterization of
a possible field of application follows. The Chapter closes with an introduction and clar-
ification of the terminology most commonly used throughout the thesis. Chapter two
presents the requirements on an Emergent Workflow Management System in a struc-
tured manner. First, typical use cases are identifed, from which a component overview is
concluded. Then detailed requirements on each individual component are elaborated. A
tabular requirements summary gives a brief statement on the most noticeable points of
the component’s requirements. The Chapter closes with a specification of characteristics
for a suitable process metamodel. Chapter three presents related work approaches to
Emergent Workflow. Case-basd reasoning, process mining and flexibility approaches are
introduced and assessed with respect to their usefulness for Emergent Workflow. Chap-
ter four contains an architectural proposal for an Emergent Workflow Management
System presented in three stages. Chapter five discusses functional issues of integra-
tion. Finally, Chapter six contains a summary of the presented work, a conclusion and
mentions future and omitted work.

11

2. Requirements

In order to receive functionalities as described in the vision of Emergent Workflow,
certain requirements have to be met. This Chapter attempts to explore these and lay
out some details about them. First, an overview of typical use cases identifies user groups
and their interaction with system components. That information is used as a starting
point for a more complete illustration of all generic components of Emergent Workflow.
From there, each mentioned component is further elaborated concerning its interfaces,
functionalities and constraints. After a summary of component-oriented requirements,
requirements on an underlying process metamodel follow.

2.1. Use cases

Process design Although Emergent
Workflow aims at a more spontaneous
creation of process models, pre-modeled
processes can not be left out in practice: On
the one hand, they may be still used as a
starting point for process development and
on the other hand a coarse, big scale process
model can be used for flexible workflows as
well.

Example 1. The V model depicted in
Figure 1.4 shows the common procedures
for automotive development. Although it
is a highly creative process, there is a rigid
framework of steps to take during develop-
ment: There is a number of quality gates
to pass, each with a dedicated design phase,
discipline-specific problem solving and a fi-
nal integration phase.

Before enactment, a dedicated process de-
signer models explicitly a more or less com-
plete process model. It consists of the over-
all structure determined by a development
model and also generic procedures which
have standardized and repetitive character.
This model is being formalized by the help
of a process definition tool and stored to the

repository. 12

Process
designer

?

Process
definition tool

stores process
model

Repository

Figure 2.1.: Use case: process de-
sign

2. Requirements

Administration A process model is the
starting point for enactment of process in-
stances. Instances may be initialized by
users or an administrator using a wuser in-
terface to the runtime engine of the work-
flow management system. After the instance
is up and running, it is being managed by
the administrator until it reaches a termi-
nal state. Management includes observing
functions such as monitoring the progress
and state of instances, intervening in excep-
tional cases and overriding user interactions
as necessary.

Usage & creation A workflow user is
someone whose work is coordinated by a
workflow management system. In Emergent
Workflow, this person (or agent) does not
only receive tasks from the runtime engine,
but is also involved in creation and adaption
of partial processes. This is possible and
necessary as the flexible approach of Emer-
gent Workflow intends to give its users the
freedom for self-determining, thus creating
their own partial process. So after the re-
ception of a task through a wuser interface
or a client application, the participant per-
forms the steps necessary to complete the
task. His actions are being formalized in an
interaction protocol. This protocol contains
the information which is necessary to recon-
struct the user’s individual process fragment
in a process creation engine. Finally, this
fragment of a process instance is stored to
the repository.

13

Administrator

)

!
User interface

manages
instances

Runtime
engine

instantiates
process model

Repository

Figure 2.2.: Use case: administra-

tion
User &
Creator
'
User interface/Client application
assignment of . (t:reatiz_s
tasks Interaction
protocol
Runtime Process
engine creation
engine

.. %res process
Repository fragments

Figure 2.3.: Use case: usage & cre-
ation

2. Requirements

Composition Having stored these process
fragments, the process designer can now go
ahead and compose these elements into big-
ger compositions. These foster the under-
standing of the coherence of collaborative
work and can be used either for documen-
tation or as a template for big-scale process
redesign. As there are probably many frag-
ments available in the repository, a designer
needs the support of a process matching en-
gine component which assists him finding
relevant fragments. These are composed in
a process modeling tool and resulting com-
positions are stored to the repository.

Usage & reuse Once the repository is
filled with process fragments, a workflow
user may now choose to make use of them.
So when the runtime engine assigns him
with a task that turns out to be similar to a
task which has been processed in the past,
the user may choose to follow similar pro-
cedures again. Thus, he will rely on the
process matching engine to find a template
in the form of a stored process fragment.
That template guides him at a chosen level
of interactivity through the procedures. As
it is in creative processes likely that sponta-
neously formed processes slightly differ from
each other, deviations from the templates
occur and are recorded again in an interac-
tion protocol. As before, the trail is trans-
formed by the process creation engine into a
new fragment and stored to the repository.

14

Modeling &
Composition

!

‘ Process modeling tool

specification of

model
properties
Process stores
matching composition
engine
queries
fragments and
models

Repository

Figure 2.4.: Use case: composition

(Re-)User

)

User interface/Client application

. creates
assignment searches interaction
of tasks tocol

templates protoco
Runtime Process Process
engine matching creation
engine engine
queries
fragments

storeg’ process
fragments

Repository

Figure 2.5.: Use case: (re-)usage

2. Requirements

Documentation The last distinguished Documentation
use case is the role of documenting work.
Process fragments can be documented al- {
ready at run time With annotations, hOW— Documentation tool
ever separate documentation may summa- specification of
rize the most important insights from a post- model
properties
hoc point of view. These records may re- Process stores
. matching documentation

quire references to process fragments as they engine
were derived during the execution of the cur- _ queries

K . ragments an
rent process. Again, a process matching en- models

gine is needed to spot the relevant fragments
and integrate them on the client side with
a documentation tool and store the results
back to the repository.

Repository

Figure 2.6.: Use case: documenta-
tion

2.2. Component overview

While enumerating use cases, basic components of Emergent Workflow were mentioned.
In order to receive a more complete understanding of all the components involved, this
section gives a short overview of them. As the usefulness of a workflow management
system is not only determined by its functions but also by its ability to interact with
external entities, a set of standardized interfaces has been defined by the Workflow
Management Coalition. Their Reference Model [Hol95| is shown in Figure 2.7.

The model generalizes the idea of a runtime engine to a workflow enactment service, as
such could potentially contain multiple workflow engines. This service is encapsulated
by a Workflow APIT and interchange formats which are the results of standardization
efforts by the Workflow Managements Coalition.

It distinguishes five interfaces in total:

Interface 1: Process definition tools This is the interface used during process design
phase by process designers to transfer developed process models to the workflow
management system.

Interface 2: Workflow client applications All workflow-related user interaction is di-
rected over this interface. Typically this includes client applications that manage
assigned work items for users and updates the system about work progress.

15

2. Requirements

Process definition
tools

Interface 1

Workflow API and interchange formats
Interface 5 Other workflow enactment

Workflow enactment service service(s)

Administration & |1 <::>
Monitoring tools |\ | Workflow Workflow
engine(s) engine(s)
Interface 2 Interface 3

Workflow client Invoked
applications applications

Interface 4

Figure 2.7.: Workflow Reference Model (compare [Hol95] Figure 6)

Interface 3: Invoked application This interface addresses third-party applications which
are invoked server-side by the workflow enactment service such as Enterprise Re-
source Planning software.

Interface 4: Other workflow enactment service(s) Cross-organizational workflow be-
comes a hot issue when a combination of services offers additional benefits. This
interface serves the purpose of enabling interoperability between various types of
workflow management systems. They exchange use and control data, enable syn-
chronization and virtually merge independently created and executed processes.

Interface 5: Administration & monitoring tools Administration and monitoring is a
default requirement for any workflow management system. Therefore, a generic in-
terface is defined which allows the use of non legacy applications for administration
and monitoring.

Figure 2.8 gives an overview of all identified Emergent Workflow components. Three
groups of components were identified and aligned in an interface, logic and data layer
each. Interface components direct and format relevant input or output data. Compo-
nents for the application logic process data and forward outputs to the other two layers.
The data layer finally handles storage of data.

16

2. Requirements

Client 3 Server

User interfaces/ ‘ External applications ‘

Interfaces

Client application ‘ External WfMS ‘
Dictionary Process Runtime Process
Logic |Organizational model creation engine matching
Time management engine 9 engine

Data
Repository

Figure 2.8.: Emergent Workflow components
2.3. Component-based requirements

In the following Sections, the desired functionality of all mentioned components is ex-
plained and functional as well as nonfunctional requirements are derived.

2.3.1. User interfaces/Client application

A user interface represents all users’ access point to the Emergent Workflow Manage-
ment System. Notice that we summarize interfaces 1, 2 and 5 from Figure 2.7 into
this generic Section about user interfaces/client application. Hence three different user
groups, workflow participants, designers and administrators apply varying functional and
nonfunctional requirements on this interface. They have been combined into this section
as a detailed specification of functional requirement of applications used by designers
and administrators is not a point of emphasis in this thesis.

Functional requirements Administrators require applications that allow them to con-
trol the workflow management system with special focus on the runtime engine. Aspects
such as instantiation, execution, termination of instances as well as their permanent
placement in an archive are to be monitored and influenced as necessary. Process de-
signers analyze, create and compose process models. Hence their client applications are
to provide support when retrieving running or archived process instances and during
the creation or composition of process models. Human workflow participants (from this
point on also referred to as "the" users) require client applications that receive incoming
work items representing tasks, manage this set of tasks using a worklist handler, help
them document their work and return status information to the system, such as when
the user has started or finished their job on one work item. Non-human workflow par-
ticipants referred to as agents have special requirements regarding a machine-readable
interface, but behave generally very similar to human users and are therefore not further

17

2. Requirements

considered here.

A user interface is either referred to as a part of the client application or represents the
client application itself, commonly depending on whether there is enough application
logic present at the client: A tool that graphically lists all incoming work items is usually
called an user interface, whereas a version of this tool supplemented with functionality
for execution and manipulation is rather called an application. In both cases, their
appearance is critical to the acceptance of the whole workflow management system.
That is, nonfunctional aspects determine whether a software system is understood and
controlled by users to its fullest extent or its features are mostly ignored and worked
around.

Application integration levels describe the functional level on which client applications
can access a workflow management system’s functionality and vice versa. At a mini-
mum integration level, the runtime engine may receive the ability to start/stop a client
application upon the start/stop of an activity. In a second level, startup parameters
can additionally be handed over to a client application which itself hands back a return
value upon its termination. At the next level, the ability to pass data objects as input or
output for the application may be added. The highest level of integration of a workflow
management system and a client application represents a module or macro call type
of access directly through the client’s respectively the workflow management system’s
API (Application Programming Interface). The implemented level of integration deter-
mines to a certain extent the ability to automatize a process and thereby increase user
efficiency.

Usability User interfaces and usability in general are a wide field of studies; this para-
graph does not intend to claim completeness on this side aspect of the thesis. It is rather
meant to provide a starting points and examples of objectives to consider. For a more
elaborate discussion of usability, appropriate literature exists'

In order to help the novice or occasional user to make his first steps with workflow
management, an easy to use interface is substantial. Intuitivity and simplicity are two
very frequently mentioned nonfunctional requirements for any user interface. The first
may be described as the ability of an interface to behave in all situations as expected by
its typical user. Simplicity is a very delicate issue, as it runs contrary to most functional
requirements: To give users a clear understanding of how they are supposed to interact
and what their actions will infer. This goal is mostly reached by a low number of items
on the screen and predefined screen sequences (such as "assistants" or "wizards") which
makes it hard to integrate a lot of functions in the interface. The simpler the interface,
the lower is the learning curve for its users to work at a high level of productivity.

Additionally, documentation is an important aspect in order to achieve acceptance for

!For example Dix, Finley, Abowd, Beale "Human-Computer Interaction" [DFAB98| or Shneiderman
"Designing the User Interface" [Shn98]

18

2. Requirements

a user interface. As a persistent and complete understanding of all aspects of a user
interface is rather less likely for all potential users, proper documentation helps them to
answer raising questions on their own.

Configuration & customization A system environment differs individually from client
to client: Invocation of various third-party applications needs to be configured individ-
ually on each system. Also, once a user becomes more advanced in using an interface,
he might want to modify its behavior in order to enhance his working speed. As there
is not one uniform user, there does not exist one perfect interface that meets all users’
needs as well. While an explanatory pop-up window is helpful for the novice user, it is
annoying and useless for the advanced user. Customization describes those abilities of
an interface, e.g. to modify its look-and-feel, toggle optional parameters, add keyboard
shortcuts and adjust the level of interactivity.

Interaction protocol Apart from user communication, the most important functional
requirement can be seen from the use cases in Section 2.1. A user interface has to
propagate user interaction in the form of an interaction protocol back to the workflow
management system. It is one of the key ideas of Emergent Workflow to derive complete
or partial process or instance models from recordings of spontaneous flow of work. This
can only happen if there exists sufficient input which has been generated on the client
interface layer. An adequate interaction protocol contain the sequence of actions of a
user including their context and modified data objects. The more complete and con-
sistent user interaction can be formalized, the more it is likely to come up with correct
conclusions regarding the current in-detail process.

2.3.2. Server interfaces

Although this thesis does not deal with server-side interfaces in-depth, for the sake of
completeness they are mentioned here shortly. Two interfaces assure the integration of
workflow management systems into an existing and heterogeneous environment: One for
external workflow management systems, the other one for external applications.

Communication between workflow management systems is motivated by a trend towards
closer collaboration between companies, such as along the value chain of a modular and
complex product. The consequence is that companies using process aligned information
technology start sharing certain portions of their internal process in order to improve col-
laboration. Cross-organizational workflows are an example for the alignment of multiple
individual workflows into one virtual big workflow?.

2Compare for example C. Bussler "The Role of B2B Protocols in Inter-Enterprise Process Execution"
[Bus01] or Grefen et al. "CrossFlow: cross-organizational workflow management in dynamic virtual
enterprises" [GAHLO1]

19

2. Requirements

For interoperability, an XML based protocol Wf-XML has been proposed for run time
integration of process engines®. Different levels of interoperation are separated depend-
ing on the following scenarios: Cooperation may be chained where output items are
passed on as input items for the next process. A nested subprocess can be found where
a sub-task is performed by an external entity. A peer-to-peer organization describes
independently acting entities that send work items as unsynchronized packets, whereas
in contrast to that a parallel synchronized top process is established.

Non-workflow external application integration of workflow management is needed to put
the abstract view of process instances into practice and execute them. Involved external
applications may be as fundamental as a database system, an automotive production
control system or as the classic example, enterprise resource planning software. There
exist applications which are "workflow enabled" and those which are not; in the latter
case an intermediate "Application agent" is used, otherwise communication may function
directly. A standardized Workflow Application Programming Interfacen (WAPI) for
synchronous/asynchronous access and data exchange has been established’.

Analogue to the client interface, the creation of interaction protocols for all commu-
nication passing the server interfaces is a vital part for the functionality of Emergent
Workflow. As user interaction is complemented by system reaction, both sides need to
be recorded in order to draw a complete picture. Such systems do not only reside at
the client side, but primarily at the server side as the examples given in the paragraph
above illustrate.

2.3.3. Dictionary

When many users document their work progress, their input is used to build formal
fragments of each individual’s stake in the development process inside the workflow
management system. As different users may enter the same data redundantly or use
the same terminology in a different context, it is important to keep an eye on data
consistency. Without an explanation and knowledge of the field of application, benefits
from having the process documented are very limited. To avoid such ambiguities, it is
suggested to establish a common syntax for all terminology which is used to describe
work and its outcomes. Otherwise it is not possible for the system to grasp commonalities
in related activities described by different users, if they use heterogeneous terminology
for the same facts without specifying the semantic contents of their vocabulary.

Such confusion is avoided if all entered data is based on a previously or concurrently
defined common dictionary. It defines shared terminology and highlights relations be-
tween terms like entities being synonyms, antonyms and homonyms. Authorized roles
should be able to extend, modify and use this dictionary while documenting their work.
A well developed dictionary is very valuable as it bears a formalization of various views

3See WE-XML 2.0 Current Draft: http://www.wfmc.org/standards/docs/WfXML20-200410c.pdf
4See WAPI Version 2.0e Specification: http://www.wfmc.org/standards/docs /interface2-3.pdf

20

2. Requirements

Author ——is a member of—» Project
group
has background in
created by
Discipline
Description
_ A
. Development
used in———»
stage
explained by (
consists of
synonyfnous to
— Keyword antonyrﬁous to

-

homonymous to

-

[custom ‘relation]

-
-

Figure 2.9.: Dictionary entities

and references on the subject which is being worked on.

Figure 2.9 shows a exemplary view on entities which are most likely to be chosen for a
dictionary in an automotive new product development context. The core of a dictionary
is the set of keywords it contains. During any rather complex process, it is very likely
that a large number of keywords is being used and thus the dictionary grows quite big.
In order to keep the dictionary still useful, it is essential to add supportive data in order
to categorize its content. If the context of a keyword is stored additionally, it is easy to
apply methods of data retrieval and modification just like in relational database systems.

The relevant context of a keyword is for example its description, which yields a textual
explanation of the key term. As the same word can be used in several development
stages with different meanings, one keyword can have multiple descriptions. Moreover,
the author and his background regarding his discipline and role as well as the project
group he is working in determines the usage and thereby the description of a keyword
as well.

Furthermore, relations between keywords themselves should be expressed in a dictionary
as well. Common relations are "consists of", which specifies hierarchical dependencies
between keywords, "is synonymous to" , "is antonymous to" and "is homonymous to".
Additionally, it is meaningful to allow process designers to create custom relationships

21

2. Requirements

Sensor window
Stages >= 2 Stages >= 2 resistance
Side window Sensor window
$. lifting motor % . position
used in used in
‘ Side window ‘ Sensor control
i lifting gears i button
Window . Window .
. consists of - - . consists of
power lifter Side window power lifter .
o L Actor window
lifting toggle
motor control
‘ button ‘
explained by explained by
Group of components Set of sensors and
which are involved in . actors that control the .
opening/closing the Sidedoor, movement of the side Sidedoor,
window of a door Integration window Integration
is a is a
‘ member of ‘ member of
created by ME created by EE
ME EE
Designer has Designer has
Bob background in Jim background in

(a) Mechanical engineering view (b) Electrical engineering view

Figure 2.10.: Examplary views of disciplines on the keyword "window power lifter"

within the dictionary, e.g. "is called by mechanical engineers ... " or "is named in the new
development generation ...". Extensibility is crucial to the adaptability of a dictionary
to changing requirements — consequently users will only make use of the dictionary if it
supports their needs within their specific environment.

Example 2. Figure 2.10 shows an example of two different views on the component
"window power lifter" within the automotive development process. In a mechanical
context (Subfigure 2.10(a)), the window power lifter is regarded as an assembly group of
gears, a motor and controls. An electrical engineer’s view (Subfigure 2.10(b)) however
focuses rather on the sensors and actors of that component.

This idea is closely related to the efforts being made in the Semantic Web movement. Its
goal is to structure the contents of the World Wide Web in a way that allows both humans
and machines to capture the semantics of the information available. The approach is to
establish an ontology which is a conceptual schema that defines a data structure with
entities, relationships and rules for a given domain.”

A dictionary as described defines a corporate-specific ontology that yields information
about types of employees and their relations. That way, it is not only an information

®Compare http://en.wikipedia.org/wiki/Semantic_ web

22

2. Requirements

source to human users, but creates a machine-readable representation of domain-specific
knowledge which builds the foundation for applications that support e.g. semantic com-
position of process fragments.

2.3.4. Organizational model

Employees perform different tasks according to their responsibilities within an organiza-
tion. Consequently, a commonly used information system needs to adapt to each type
of user by the provision of individually tailored support. That is why — apart from secu-
rity reasons — authentication systems are gatekeepers to any kind of multi-user software
using personalized applications or data.

A workflow management system additionally controls work activities and assigns work
items to process participants. In order to abstract from individual users, sets of skills
and responsibilities are subsumed to identify common roles within an organization. The
execution of tasks is usually bound to a particular role, which means that the work item
can be processed by any user holding a matching role.

Abstracting roles from individuals helps to distribute work load automatically as equally
as possible within available personnel. Another benefit is the handling of exceptional
situations like unavailability of a user. Dynamic rescheduling of work items to a work
list of a substitute process participant makes it possible to avoid high variance in waiting
time for work items.

When role abstraction is enriched with hierarchy information and roles are put into re-
lations with each other, an organizational model is created. It represents the translation
of a corporate personnel structure into an workflow model as seen from an organiza-
tional perspective (see also Section 2.4). Obviously that includes the hierarchic order
and composition of organizational segments. Each individual has for example an edu-
cational background in a certain discipline, but can also have other responsibilities like
executive tasks. So the fact that one person acts within several roles has to be formal-
ized. Relationships like being subordinate or superordinate can exist between persons or
only between certain roles of persons. Moreover, one person can participate with each
role in different projects or task forces with overlapping responsibilities. Figure 2.11
illustrates these basic relations.

23

2. Requirements

Organizational
‘ has typ

Organizationa
unit

1
is a composition of
]

A

o
[

is a composition of

. 1
Project Position is sub- /superordinate to
group - |
occupies
is lead by————————
participates Person

has background in

Figure 2.11.: Organizational Model

Example 3. An example of a basic organizational model is given in Figure 2.12. It
refers to the running example of an automotive development environment. The au-
tomotive development unit has a type "development unit" and is lead by a head of
development which is supported by an assistant. The unit splits up in three depart-
ments, each dedicated to the three disciplines involved in mechatronics (see also Figure
1.2): Mechanical engineering, electrical engineering and software development. Each
department comprises a number of employees who perform one (or more) of the listed
roles: A head of department with assistant, designers, engineers, quality assurance for
testing purposes and people for documentation. That workforce is distributed over a
number of project teams, where each individual gets assigned to projects according to
his role. As an example, projects "chassis" and "sidedoor" are shown. The third project
"integration" in the schema indicates that projects are not independent from each other.
As component integration is a complicated task in automotive development, a dedicated
project "integration" focuses just on integration issues.

24

2. Requirements

Development Automotive Head of
s rhas type development leads— development
unit unit.
_______________ ‘
supports
consists of .
v v v

Mechanical
engineering
(ME)

Software
development (SD)

Electronic/Electrica
engineering (EE)

consists of consists of consists of

Head of Dept. Head of Dept. Head of Dept.
Dept. assistant Dept. assistant Dept. assistant
ME Designer EE Designer SD Designer
ME Engineer EE Engineer SD Engineer
ME EE SD
Quality ass. Quality ass. Quality ass.

[T I
ME EE SD
Documentation Documentation Documentation.

project pjrticipation

integrated
by

integrated
by

Project

Project “Chassis” .
Integration

has type

Project Team |

Figure 2.12.: Example: Organizational model

Creation of an organizational models starts with identification of existing personnel
relations. Its usability is determined by its completeness and level of detail. Only
roles that have been explicitly identified exist in an information system. In real-life
organizations, employees hold official and unofficial roles representing their primary and
secondary, often implicit tasks. On the one hand it is meaningful to capture roles as
detailed as possible, on the other hand generalization is necessary to establish groups of
individuals providing exchangeable capacities.

When existing personnel relations in an organization are identified, it has to be deter-
mined whether they are suitable for mapping one-by-one to an organizational model or
they turn out to be too inflexible, ambiguous or incomplete. For example a statement
"most people who having spare time work on the integration project" is not helpful if its
formalization yields the assignment of the whole development crew to that project. So

25

2. Requirements

there has to be found a trade off between adapting the workflow management system’s
organizational model to the real organization and vice versa.

Once a complete organizational model is built, it is being used throughout the whole
Emergent Workflow process: The originator of a new workflow fragment uses his orga-
nizational status to narrow the dictionary down to a subset which is relevant for him.
A new process fragment can be assigned to its related process phase, team and project.
Such knowledge facilitates also the composition of fragments and their placement in
the current process. Just like any conventional workflow management system, an or-
ganizational model determines during run time which user is suitable to do a task and
places it into his worklist handler. Finally, the search for templates in the repository is
strongly supported by an organizational model analogous to the search for keywords in
the dictionary.

2.3.5. Time management

Process definitions express control or data flow between activities and objects. They
yield relative temporal dependencies such as "activity A can run concurrently to activity
B" or "document D has to be processed before report R can be created". However, they
do not tell anything about quantitative temporal constraints which are involved in any
kind of process.

Example 4. Quality gates (see Figure 1.4 on page 8) in the automotive development
process are an example for quantitative temporal constraints. They tell that a certain
stage of features and quality has to be met until a certain deadline. All activities
preceding that quality gate have to be completed until that deadline.

In general a maximum or minimum duration for a set of activities or the earliest and lat-
est start and end date for activities are common temporal dependencies within planning
a process. Furthermore, during run time actual values for start, stop and duration are
being filled in. This is necessary for the integration with external applications managing
temporal constraints, such as collective calendar systems or planning software. As soon
as activities have been passed during enactment, temporal alignment between real-life
activities and their planning counterpart can be checked and stored.

Example 5. Table 2.1 gives an overview of fictious temporal constraints of an activity.
All types of constraints (start, stop, duration) can be defined either relative to other
constraints or absolute in time. Each constraint has two planning values (earliest /latest
respectively max/min) and one value recording the real values after execution. Notice
that planned constraints are not mandatory and the information they provide can be
incomplete, redundant or ambiguous. The earliest start time and the lastest stop time
do not have to describe the same value as the planned maximum duration. Consistency
between them can only be expected from recorded real values after execution.

26

2. Requirements

| Constraint Absolute dependency Relative dependency |

Start
earliest 2004-01-13 12pm after termination of activity A
latest 2004-01-20 12pm 1 day before quality gate Q
real 2004-01-14 1:32pm after termination of activity A
Stop
earliest - after start of activity C
latest 2004-01-21 12pm before quality gate Q
real - -
Duration
minimum 1 day -
maximum 7 days 1 day longer than activity A
real - -

Table 2.1.: Example for temporal dependencies of an activity

These demands motivate the integration of a central time management component in
the Emergent Workflow approach. It handles all temporal aspects of process models
during modeling, execution and evaluation.

Prerequisite for centralized time management is the availability of timing information.
This can be assured if temporal constraints become an integral part of the process
metamodel. Before or during execution, earliest /latest respectively minimum /maximum
timing dependencies are created which need to be checked during execution. These values
have to be integrated with process models as well as with instances. While and after
execution, real execution values are derived either from the runtime engine itself or from
interaction protocols. Hence running and archived process instances have to integrated
execution timing for instances and activities.

Externalizing time management has besides its benefits strong requirements concerning
synchronization and integration. After the initial transmission of timing constraints of
a process model or an instance, constant synchronization is necessary to keep time man-
agement, process creating engine and runtime engine updated. While time management
propagates notifications about the passage of defined time events, opposite components
keep time management updated about status and schematic changes of running process
instances. Notice that time management itself is not concerned with reactions initiated
by temporal events. As a consequence, the time management component can not inter-
act directly with users because reactions to regular or exceptional temporal events are
instance-specific.

27

2. Requirements

Example 6. What happens if the quality gate has been reached, but one preceding
activity has not terminated yet? Let us assume that at the process definition level a rule
has been set up that, in case an activity missed a quality gate, the head of the responsible
department should be notified. The time management component though can not notify
the head of department directly, as it has to be decided on the instance level who the
responsible department actually is. So time management notifies the runtime engine
about the exceptional event in an activity. The runtime engine has information about
the responsible user, finds his department and emails the head of department.

2.3.6. Process creation engine

Conventional workflow management systems come with a software tool which is used
to design a workflow explicitly. Before designing and enacting an instance, dedicated
process designers either textually or graphically create a model in this software tool and
transfer it to the workflow engine.

This procedure is not entirely suitable for Emergent Workflow as it does not separate
modeling and enactment time of process definitions clearly from each other. According to
the use case in Figure 2.1, dedicated process designer do still exist: They produce process
models which either initiate an emerging process or provide a coarse framework for the
overall process. Instances of these process models are then altered or completed ad-hoc
during run time. To support this step, Emergent Workflow has to provide functionalities
to document user interaction implicitly.

The idea of a process creation engine is to incrementally derive a process definition
including instance-specific data from user interaction®. These process definitions are
formalized according to a chosen metamodel (see Chapter 2.4). The input is a collection
of interactions of the complete workflow management system using its interfaces. Input
data is commonly styled in a textual and sequential manner. It is referred to as an audit
trail and — originating from multiple interfaces — composed by the runtime engine. The
audit trail describes what all external instances that interact during run time intend to
do or have done.

It can be further clarified what the outcomes of a process creation engine look like if
one distinguishes when a certain piece of documentation was created: The objective for
documenting an event depends on when it has been created relative to its execution: Any
documentation can be either created before, in the meanwhile or after execution of the
according activity. The moment of documentation does not only influence its purpose
but determines also how the start of process creation is triggered. These relations are
listed in Table 2.2.

If a record was created prior to execution, planning support as well as synchronization
of future activities are interesting aspects for a user. Such would be the estimation of

61n literature, post-hoc process creation from log files is referred to as process mining.

28

2. Requirements

| Time | Purpose | Trigger | Example aspects
before planning & explicitly start date
synchronization by user input data
while & documentation & implicitly by output data
after reuse runtime engine stop date

Table 2.2.: Documentation purpose relative to its creation time

resource availability and the early detection of their shortage. In this case, the process
creation engine is activated ezplicitly by user interaction. When a process definition
is created for planning, that is, the preparation of future activities, there is no way
for any part of a workflow management system to detect the correct startup time and
corresponding planning audits automatically. If process models are created while or after
the execution of according activities, they serve for purposes such as documentation
and reuse. Unlike the former, the invocation of the process creation engine is here
likely to be triggered implicitly. For documentation, any kind of activity records is
immediately relevant as throughout execution of activities, information such as start/end
date, involved data and resources is completed on-the-fly.

Example 7. Suppose this example for a planned activity: An interdisciplinary meeting
is scheduled for 16pm in a conference room. The according memo is created in the morn-
ing and the Emergent Workflow system has been set up to inform all project members of
the upcoming meeting. The system might also put a watch on requirements documents
and notify project leader about eventual changes taking place before the meeting.

Both on-the-fly and after the event documentation rather serve as a documentary basis
for later reuse or analysis. If documentation is created during execution of an activity
on-the-fly, especially temporal aspects of activities might be of interest.

Example 8. The activity start time of the interdisciplinary meeting was already fixed
prior in the morning, but meetings in this fictitious organization are always open-ended.
So the information about the meeting’s ending time must to be added after its termina-
tion.

These varying usage purposes create different requirements regarding when to run the
process creation engine on which data. In order to support planning, a process creation
engine needs to evaluate data which is indicating upcoming activities, such as outputs
from schedules or project planning tools. That forms a coarse framework of work struc-
ture but contains usually no details beyond the planned activity, starting time and du-
ration. As that picture changes throughout execution of activities, the process creation
engine has to add sequentially more details to the pre-modeled workflow.

If documentation or later reuse aspects are focused, then the creation of process models
is delayed until all addressed activities have terminated and complete information is

29

2. Requirements

available. That raises the question which data is relevant and if it is possible to manage
the invocation of the process creation engine automatically. The recognition of relevant
data for a certain usage purpose needs supportive data. That comprises state information
of an activity as well as contextual data. Both tells whether due to the termination status
detailed information is available and what the overall task — according to context such
as a product number — of the particular activity was. In order to determine the right
time to start a process definition extraction, a continuously running process creation
engine is required. Otherwise an explicit start/stop mechanism of the process creation
engine would be needed, which would turn the process creation engine basically into
a cross-application macro recorder. Such solution would be impractical as it reduces
usability drastically and it results effectively in explicit documentation of tasks. The
purpose of a process creation engine is to avoid exactly that requirement.

As already mentioned, the sole recording of events caused by activities is not a sufficient
input for the process creation engine to function properly. On the one hand, even
repetitive tasks have differences and cause instances of the same process model to differ
from each other. On the other hand, in real life unforseeable things can happen such that
the planned course of activities gets interrupted or changed. The key for the development
of an understanding for individual case variations is an extended view on an activity and
the following related factors:

e Activity
e (lassification
e Context

e Reason

Activity Documentation of an activity means to describe all relevant parameters which
influence its execution during run time and all parameters which are affected by the
execution. They can be identified as the following ones:

Author

Data input/output/modification

Activity status

Activity start/end time/duration

In order to find dependencies within an audit trail, first of all any record requires a note
who its author is. This information is needed to determine whether it was an individual
who created the entry or a whole group of either cooperating or independently acting

30

2. Requirements

users. Based on that assignment the engine can estimate how many instance fragments
can be extracted and what piece of information fits into which fragment.

Most activities involve data processing, creation or consumption. These external con-
tacts are a substantial part of a documentation, consequently any form of data input,
output or modification is vital to build a formal data flow representation. That in-
cludes objects such as paper documents, electronic documents as well as data objects
being exchanged between applications, database queries or transactions within an ERP
system.

Example 9. If in our automotive development example an activity "interdisciplinary
meeting" in project “integration” (see Figure 2.12 on page 25) is scheduled by a project
leader, the side door and chassis requirements documents will be used as a data input
and the output might be new change requests.

As the audit trail is concurrently created with the execution of activities, the status of
a running process instance has to be found out. That is based on the status of each
single activity within the process; consequently the activity status is an integral part
of an activity description. The status has to conform with the run time process status
metamodel as shown in Figure 2.17 on page 61.

For planning and documentation purposes, temporal aspects are highly important as
already motivated in Section 2.3.5. Thus, start, end dates and activity duration are
recorded and are used within the process creation engine for process model creation and
can be forwarded to the time managment component as needed.

Classification A classification of activity instances makes sense due to expected de-
viations of the "regular” case. Once recorded, the instances of an activity will look all
alike if an annotation is missing on how the occurrence of an activity has to be judged.
If an exception occurs only in 1 % of all activity records, a process model that weights
an exceptional case equally likely to a regular case is misleading. A simple classification
to avoid that is to distinguish between regular and exceptional activities.

Additionally, an exception which leaves out parts of the control or data flow is to be
considered separately. Namely, if an exceptions behavior is to step over a commonly
executed activity for some reason, then no trace in the audit trail would indicate its
existence. To avoid that lack of information, for example an additional type of activity
"replacement" might extend the exceptional classification. This relation can point to
left out activities and indicates what the exception’s character.

Context Contextual information describes basically any condition which is crucial for
the execution of an activity. It can be either a side note or a further specification that
subdivides an activity into distinctive cases. When a workflow user carries out tasks

31

2. Requirements

as a particular role, this can describe a distinctive context as well as involved key data
which determines the type of work.

Example 10. When a software tester performs the activity "basic module unit testing"
in the context of a stage "first generation", then the activity has other characteristics
than being executed in the context of "pre-release generation".

Reason "Why did we do it that way?" A workflow user might ask himself that question
when he looks at past executions of activities. The parameters mentioned above already
give a detailed testimony of what happened. Actually the reason is a formalized causal
conclusion drawn from all other parameters. In order to make it easier to catch why
something happened exactly the way it did, it should be mentioned explicitly in an audit
trail. This part makes most sense in special exceptional cases, where strong deviations
from more common procedures have occurred. In cases where the same path has been
chosen as ten times before or the taken actions are made clear by contextual information
and common sense, a reason is not mandatory.

Advanced but important issues are selective process creation and handling of erroneous
and incomplete audit trails. As a workflow management system is in a central position
handling many users and being integrated in big scale information systems, only a small
subset of the information available at a time is relevant for creating a process fragment.
Therefore the extraction procedure should offer parameters to control what record types
are to be considered from a single logical workflow. It should also be able to compensate
with non-conform inputs such as erroneous or incomplete audit trails. Especially having
incomplete input is a very likely scenario if parts of a workflow are documented for
planning early, but many details are missing and are supplemented piece by piece later
on.

The quality of process definition fragments is another factor determining require-
ments of a process creation engine. All created fragments have to conform with a chosen
meta model (see Chapter 2.4). This implies that there must exist specifications as well
as methods to test the correctness of produced fragment. Dependencies within the con-
trol flow and the data flow have to be detected and modeled accordingly. To maintain
robustness and a modular structure within the set of process fragments, there should
not exist any implicit correlations or dependencies between fragments.

When a fragment has been created, it can be stored in the repository. Notice that it
is vital to attach either manually or automatically a description of the procedure that
is represented by the fragment. As one does not only want to save the fragment but
also needs to find it later on within a potentially large set of fragments, a fragment’s
description is almost as important as its contents. A set of attributes like an identifier,
a description, involved groups, associated process stages, number of activities and some
examples for relevant information which is combined into a descriptive tag.

32

2. Requirements

2.3.7. Runtime engine

The runtime engine is the central functional component of a workflow management sys-
tem. Its invocation starts with the instantiation of process definitions. During execution
of instances, they traverse state changes which trigger activities integrated in data and
control flow. These activities are distributed and performed by external entities. The
following aspects of a runtime engine will be considered in this Section:

e Interfaces

Audit trail

Task assignment with role management

Instantiation

Flexibility

— Change classification

— Flexible execution

Annotations

Consistency and correctness

Interfaces Looking at the inputs and output objects of a runtime engine in a black box
manner, one notices that interfaces 2 through 5 introduced by the workflow reference
model (Figure 2.7 on page 16) refer to the runtime engine: Client applications receive
work items (interface 2), applications are invoked during run time (interface 3), other
workflow enactment services exchange objects during during process execution (interface
4) and administrators monitor the progress of instances (interface 5).

Input objects for a runtime engine comprise process models from the repository, the
process creation engine or an external process modeling tool and interaction protocols of
its interfaces to client applications, server applications and external process enactment
services.

During run time, a runtime engine outputs task assignments to client applications, mon-
itoring information to administrators, and an audit trail for storage and reuse purposes
(e.g. to the process creation engine). Furthermore, it exchanges status updates and
synchronization messages with external workflow enactment services.

Audit trail The term audit trail refers to a continuous stream of use data in a machine
processable form. This stream can either originate from a workflow management system
(inside-out) or is handed to it from external information sources (outside-in).

33

2. Requirements

Conventional uses of an "inside-out" audit stream are monitoring and controlling func-
tions for workflow participants in order to extend their own scope on the processes they
work on. Monitoring and controlling may be used also for compensation of the lack of
awareness inherent in workflow implementations. An audit stream going outside-in helps
administration and management to monitor and control procedures and gives them a
better understanding of operational dynamics. But also trading partners or customers
can use monitoring functionality for optimizing B2B collaboration (e.g. supply-chain
forecasting) or tracking of remote processes (e.g. order tracking).

A special use of Emergent Workflow for an audit trail is as an input for the process cre-
ation engine. However, "raw" data entering the interfaces of Emergent Workflow is not
yet suitable for it. First, as mentioned in Section 2.3.6, process creation imposes strong
formal requirements on its input as well as filtering abilities to receive an audit trail se-
lectively. Numerous input sources deliver massive amounts of protocol data consisting of
events, data actions, transaction information and others. All of them arrive in different
data formats. As all that information arrives at the runtime engine, its responsibility
is to filter incoming data, arrange it in a common format and deliver a selected stream
to the process creation engine. The outputs of the process creation engine in exchange
are planned for later reuse and are input for the runtime engine at a later point of time.
This process is visualized in Figure 2.13.

(Interface 5)

. Process
Runtime q
: creation
engine .
engine
Proces

mining of
interaction
protocols

| APIs (Interfaces 2 & 3 & 4) |

Client Invoked S
. s enactment
application application .
services

Figure 2.13.: Audit trail flow

External applications at the client and server side as well as external workflow enactment
services communicate through different a layer of various application programming in-
terfaces (APIs) with the runtime engine. With respect to the workflow reference model
(see Figure 2.7 on page 16) that layer represents the interfaces 2, 3 and 4. Besides
control data, use data is exchanged by that interface. Hereof protocols of workflow user
interaction are extracted, which is also called mining. After being forwarded to the
runtime engine, this information can be processed and spread to other components such

34

2. Requirements

as the process creation engine. Although outputs of the process creation engine are not
directly passed back to the runtime engine, in the course of process model reuse they
return to the runtime engine. Thus, the stream of process fragments from the process
creation engine back to the runtime engine can be interpreted as a return value to the
audit trail, closing a cycle between these components.

An interesting, requirements-related architectural question is to consider whether a push
or pull mechanism is realized between the runtime engine and the process creation
engine. These patterns refer to how communication is initiated between data source and
destination. The answer to that question influences where program logic for the assembly
of relevant audit trails and the initiation of process fragment creation is settled. In
this case a pushing architecture means to have the runtime engine to decide on timing
and content of audit data sent to the process creation engine. That case implies a
continuously running process creation engine, which service-like awaits incoming audit
trails and answers these requests with the delivery of process fragments. In a pull
architecture, the process creation engine requests an audit trail from the runtime engine
by specifying when and what type of audit data will be transmitted. Obviously, here
the process creation engine needs an external trigger which initiates the explicit query.

If one compares these two possible realizations with the listing of documentation time and
purpose in Table 2.2 on page 29, one can detect a relation between the usefulness of either
the push or pull principle and the purpose of documentation. If documentation is meant
to be created before the execution of activities for planning & synchronization reasons,
fragment creation by the process creation engine is explicitly triggered by workflow
users. Hence, a pull mechanism would make sense where the process creation engine
— comparable to SQL statements in relational database systems — requests excerpts
of the overall incoming audit trail. In the contrary case of documentation during or
after the execution of activities, an implicit run by the runtime engine suggests a push
architecture.

Task assignment with role management Task assignment addresses an event during
execution of a process instance and is in conjunction with the activation of activity in-
stances. Activation is an intermediate activity state between being inactive and running
(activity states are introduced in Section 2.4.2). Task assignment describes the resolution
of an abstract role model into existing real individuals. Only interactive activities (e.g.
activities with associated roles incorporated by either human users or software agents)
are affected of this action as they have a role association. Automatic activities can be
started immediately upon completion of all pre-constraints, thus they do not distinguish
between the states activated and started. When an interactive activity instance switches
from not_ activated to activated and further to started, task assignment is done by the
runtime engine. In order to find all personifications of a role within an organization, the
runtime engine relies to an organizational model as described in Section 2.3.4.

Major objectives of task assignment are optimal work efficiency and flexible assignment

35

2. Requirements

of work load. Optimum efficiency denotes a maximum average throughput of work items
using the available resources while minimizing erroneous processing and administrative
overhead. Throughput can be influenced by flexibility of assignment, such as automatic
rescheduling of tasks from busy participants to idle participants. The automation of
assignments supposedly reduces overhead but reduces also flexibility if realized without
possibility of manual interference.

Two queuing models of task assignment are possible: One virtual global queue describes
virtually one worklist shared by all workflow users embodying a particular role. What
happens is that an activated activity shows up as a work item within the worklist handler
of each workflow user with a corresponding associated role. As soon as a user chooses to
process a work item, the activity’s state changes to started. At this point, an instance
of that role has been assigned to the activity instance. Concurrently, the work item
is removed from the virtual queue and disappears from all other role personifications’
worklist handlers. This type can either offer a list to each user from which he can choose
a work item or all users can just request an anonymous "next" work item. Individu-
ally selectable items offer more flexibility but bear also the possibility of non-uniform
item prioritization. By implementing a virtual global queue, the workflow management
system can influence prioritization of activities by introducing priority levels into the
queue. If tasks are assigned to users by an anonymous "get next" retrieval, this order-
ing is fixed. If users can actually see the contents of the queue and choose work items
within constraints such as a minimum /maximum idle period of items, they can influence
prioritization of work items.

With multiple queues, one queue is maintained individually for each workflow user. Upon
activation time of an activity, it may be assigned to a specific workflow user and appears
as a new work item in his worklist handler. This queuing method shifts responsibility
for equal work distribution to the workflow management system. It offers a higher level
of automation and reduces potentially more overhead. Furthermore it gives a workflow
user a clear idea of the anticipated work load and facilitates individual planning. On the
other hand individual queues decrease the level of flexibility. If a task has been assigned
mistakenly or needs manual changes, an additional function for re-queuing work items
is indispensable.

Independent from a queuing method, the moment of role resolution is flexible. At the
earliest, it can be done during instantiation of a process definition, at the latest it has to
be completed when the activity instance switches into the activated state. The earlier
resolution is done, the better activities and future engagements can be planned. If
process instances are rather long-running, then occurring changes generate very likely
the need for updating resolution. These changes can originate from both sides, the
organizational model and the process instance: Available employees switching positions
or becoming unavailable as well as altered or stepped over activities are examples for such
scenarios. In any of these cases the validity of existing assignments must be checked and
is an elaborative task. The later task assignments are completed, the more likely they are
stable until processing. Participants’ flexibility though is reduced by late resolution as

36

2. Requirements

incoming work items are "popping up" right away and can not be anticipated throughout
a longer time frame.

Instantiation Sources that initiate instantiation are all input and output interfaces
as defined in Section 2.3.7 on page 33. External events trigger the instantiation of
process definitions through several defined interfaces: Using interface 2, the initiator is
a workflow user who is sufficiently authorized to instantiate a particular type of process
definition. Invoked applications are another source of process enactment using interface
3. They may be external software such as an Enterprise Resource Planning system upon
the start of a new procurement transaction. Interface 4 integrates workflow management
systems. This also includes that external workflow management system can not only
exchange data or synchronize with their internal activities, but can also initiate the
creation of process instances. Finally, also the administrator of a workflow management
system can monitor and influence all aspects of instances including their creation using
interface 5.

Example 11. A mechanical engineer receives a new change request from a colleague
as changes collide that were concurrently made on the digital mock-up. As change
requests are frequent events during the development process, a generic pre-modeled
process definition exists. In order to start processing a change request, the engineer
instantiates a change request process definition and executes the instance.

The first functional requirement is to check whether the instantiation of a process model
is executable: Basically, an instance is executable if a start state and a terminal state are
defined and they are "connected" by a sequence of valid state transitions. Furthermore,
no invalid activities, roles or resources are allowed to be referred to by an instance.
Second, the runtime engine usually applies an initial state transition on instances after
their activation. That is, the execution is initiated by starting the first activity according
to the instance control flow.

The fact that the runtime engine runs potentially many instances concurrently imposes
nonfunctional requirements on it. Van der Aalst and van Hee identify a number of
workflow bottlenecks [AH02|: First, the overall number of instances in progress can
grow large. If there are many instances in progress, it may indicate an existing prob-
lem. Causes include major fluctuations in the supply of instances or resources being
to inflexible or weak dimensioned for heavier use. However, it may also be that the
process contains too many steps that need to be passed through sequentially. Further-
more, completion time of instances could be too long compared to actual processing
time. The actual processing time of an instance sometimes forms only a small fraction
of the total time when it is in progress. If this is the case, there may be a whole range
of possibilities for reducing completion time. Moreover, the level of service can be too
low. A workflow’s level of service is the degree to which an organization is able to com-
plete instances within a certain dead line. If completion time fluctuates widely, then the

37

2. Requirements

organization offers a low level of service. In that case it is not possible to guarantee a
particular completion time. A low level of service also exists when there are many "no
sales" occurring — potential instances can not run because waiting for progression within
the runtime engine will take too long. When a user knows that it will take a long time
to complete an instance, he will try to circumvent the process. A low level of service can
indicate a lack of flexibility, a poorly designed process or a structural lack of capacity.

The symptoms mentioned above point to possible bottlenecks. To identify them one
needs to benchmark values for these measures, for instance from comparable processes.
Usually, it is not sensible to combat the symptoms using only emergency measures but
to tackle their causes.

Flexibility Static workflows are easy to handle, but fail in scenarios as motivated in
Section 1.1. As flexibility is an issue of particular interest in the light of Emergent
Workflow, this paragraph is actually subdivided into several points of view: First, the
flexibility is the requirement emerging out of the need for change. Hence, the first sub-
paragraph will introduces ways to characterize changes on different workflow perspectives
(see Section 2.4). Next, the term of flexibility will be broken down into more concrete
measures that allow variable kinds of deviations.

Change classification Changes during run time arise because parts of the information
that constitutes the workflow are not known during build time or changes occur while the
system is in production. Van der Aalst and Jablonski propose the following classification

[AJ00].

In order to classify, what types of focus exist when managing changes, a number of
change dimensions are introduced:

e Maintenance of correctness and consistency. This points at potential errors
resulting from change, which can be either syntactic and semantic errors. A se-
mantically correct process instance is able to reach a terminal state without any
errors or deadlocks.

e Single-perspective and multi-perspective errors. With respect to the work-
flow perspectives, errors are identified that affect either only one workflow per-
spective or multiple perspectives at once. A deadlock is only visible in the process
perspective, whereas a task pointing to nonexistent roles and data objects occurs
in the organizational and information perspective.

e Transient and permanent errors. Errors caused by changes can last for differ-
ent amounts of time. Transient changes exist only temporarily and do not affect
new instances. Permanent errors are lasting longer and affect newly created in-
stances as well.

38

2. Requirements

When solutions are proposed to implement changes and resolve errors, one can distin-
guish between introducing flexibility by configuration and flexibility by adaption. The
former offers more powerful design constructs and integrates changes into the meta-
model. Flexibility by adaption tries to limit changes, manage multiple versions and
avoid errors by the application of inheritance concepts.

Introducing flexibility means to allow certain types of changes. These types can be
classified by the following six characterizations:

1. What is the reason for change? Reasons may be located in the context of
process execution outside the system like changing requirements or technology, but
can be triggered also from the inside of the system such as errors and problems
causing failure.

2. What is the effect of change? On the one hand, momentary changes influence a
limited set of instances. They occur typically as the result of errors or exceptions
and pass by without permanently altering the process definition. On the other
hand, evolutionary changes take action for all instances starting at a certain point
in time. Their type of change is rather structural and more permanent such as a
changing legislation that eventually changes the process context.

3. Which perspectives are affected? The type of change is reflected very well by
the related workflow perspective (Figure 2.14 on page 54). In addition, deletion
or modification of process definitions including their tasks and routing are typical
changes appearing in the process perspective. Staff changes and other modifications
of the organizational structure relate to the organizational perspective. In case
data structures are added, removed or modified, these changes become evident
in the information perspective. The operational perspective shows the exchange
of invoked applications and other operations related resources. If finally linking
points between the perspectives such as task assignment are subject to change,
these and only these changes will be reflected in the integration perspective.

4. What kind of change? This refers to the way a change operation affects the
functionality of a process. As control flow oriented changes deal with the alteration
of tasks and their structural arrangement, functionality can be extended, reduced
or replaced by adding, removing or replacing a task. If the dependencies are just
rearranged between existing tasks, the change is called a re-linking change.

5. When are changes allowed? A change is either allowed at entry time only or at
any time. The entry time denotes the very moment an instance’s specification is
set up for each involved perspective; after that moment all specifics are not allowed
to change any more. Otherwise, changes are allowed at any point during workflow
execution on-the-fly.

6. How are existing instances handled? A number of alternatives exist for how
running instances may be handled after a change operation. A forward recovery

39

2. Requirements

aborts old instances and compensates them outside the workflow management
system. Backward recovery aborts, compensates or rolls old instances back in order
to get them restarted with new definitions. Alternatively, one lets old instances
proceed as they continue running the old way. Only new cases are instantiated
with respect to the change. A transfer operation migrates old instances to new
process definition, whereas a momentary detour allows the change to settle before
actions are taken.

Three frequently named change types exceptions, ad-hoc workflows and dynamic changes/
migration, will now be categorized using the first five criteria given above:

Ezxceptions are usually unexpected events which are caused by failure of some component
rather than deliberate changes. Reasons for exceptions are mostly located inside the
system, they have momentary effect on a limited number of instances and affect the
information and operational perspectives. Functionality is either reduced or replaced by
exceptions and they occur at any time on-the-fly.

Ad-hoc workflows are edited shortly before and during enactment on an instance level.
The reason for ad-hoc changes is located outside the system and changes have only
momentary effects. Although any perspective can be affected by ad-hoc changes, mostly
the process perspective is focused. Ad-hoc changes can extend, reduce, replace or re-link
functionality of a process instance at any given time during execution.

Dynamic changes/migration deals with handling of instances running on an old process
definition after the process schema has been changed. This is not always straightforward,
e.g. the new model may not have an execution state corresponding to the state of the
old instance which was specified by variables indicating which tasks have already been
executed. Reasons for migration are usually irrelevant and by modifying the process
definition, they apply evolutionary changes. They have an impact on all perspectives
and perform any kind of change as well. Only on-the-fly changes have to be investigated
as entry time changes are considered straightforward: It can be assumed that any new
process model has a correct initial marking state.

Types of flexible execution As already mentioned, flexibility during execution can be
created by applying various measures. In the following enumeration, types of flexibility
are classified according to their degree of flexibility in time and are further elaborated
in the following paragraphs.

Schema evolution

Late modeling/Case handling

Ad-hoc changes

Exception

40

2. Requirements

Schema evolution describes schematic changeability by iterating a design phase, late
modeling predefines limited short-term flexibility on details of process definitions. Ad-
hoc changeability constitutes spontaneous changeability of the execution state of process
instances. Fxception and case handling provides means for spontaneous change of state
of process instances.

Schema evolution or evolutionary modeling refers to incremental changes applied to
process definitions (compare Wargitsch et al. [WWT98]|). Instances of explicitly mod-
eled process definitions are observed by process designers and improvements according to
analysis outcomes are integrated into process definitions. This method contrasts process
reengineering where the entire process is radically redesigned to achieve performance
improvements (compare Davenport and Short [DS90]). This procedure adapts to the
workflow life cycle as depicted in Figure 1.1 on page 2. Thus flexibility is provided for
long-term changes, however it is not helpful for short-term flexibility as mentioned in
Section 1.1. In order to enable process model evolution, process designers require meth-
ods that allow them to apply schematic changes to a model such as the insertion/removal
of a activity or the alteration of the control flow. Subsequently, running instances have
to be handled in one of the ways mentioned in the previous paragraph on change classi-
fication. Most desirable is the solution to migrate instances to the new model by either
changing their schema on the fly or restarting them and auto-execute them until a state
that was defined equivalent to the originating state.

Late modeling/Case handling addresses incomplete modeling with unstructured
process portions which are also called black boxes or placeholders (compare Herrmann et
al. [HSW97|). Late modeling means the replacement of placeholders with spontaneously
modeled sub-processes during run time. This information gap has to be filled up during
run time in order to let the process instance terminate correctly. If a workflow user can
choose at run time from a number of previously defined alternative process fragments
referred to as cases in order to replace the black box, a case handling method is applied
(compare Hagemeyer et al. [HHJHS97]).

If process definitions containing black boxes should be executable, unstructured process
parts have to be identified and marked adequately during process design phase. Eventu-
ally they are equipped at design time with a case base which describes several alternatives
for structuring the black box upon activation. The runtime engine needs to make sure
that each unstructured process portion is submodeled before it can transfer the activity
in the state started. As a subgraph is modeled individually for each instance by the
workflow user in charge, the user also has to examine the case base for a suitable case
that matches the individual context. If such does not exist, then the ability to alter
existing cases and to add new cases to the case base is required. Not all activities are
meant to be arbitrarily changeable by workflow users, consequently a classification of
flexibility for activities has to be established in the process metamodel (see Figure 2.16
on page 58) and implemented during process design. If a workflow user decides to mod-
ify an existing case or to introduce a new case, this action influences secondary related
activities. Such would be dependencies like a removed data output which is expected by

41

2. Requirements

another activity. Coordination and propagation of subsequent changes is a task which
needs functional support by the runtime engine. For each activity, it must maintain a
list of dependent activities and their processing role instances.

Late modeling offers the benefit of short-term flexibility without reiterating through
process design. However, spontaneous changes are restrained to process parts where
short-term actions were anticipated and unstructured process portions with case base
were either realized during process design phase or are spontaneously created during run
time.

Limitations apply when process enactment deviates from planned flexibility because an
unexpected situation has occurred. Late modeling does not offer sufficient functionality
to formalize handling of exceptional situations.

Ad-hoc state changes are meant to apply instant changes to default state transitions of
instances: An activity can be skipped, moved, inserted or removed. Execution can return
to the previous activity, reset or step over the current activity. These modifications do
not influence the process model but are restricted to a specific instance.

Each ad-hoc state change potentially endangers correctness as a change could make a
terminal execution state unreachable. The responsibility for avoidance of such "bad"
changes is carried either by the workflow user applying the change or by the workflow
management system. The latter case requires nontrivial process analysis which validates
the change: As activities are correlated (by control/data flow, usage of resources, ...),
manual changes may interfere with pre- and postconditions of activities. They might
require successive adaptions of other activity states to prevent unwanted states such as
deadlocks. Hence, checking and modifying mechanisms for process instance states are
required.

Exception handling A computer-based workflow management system has its strengths
in structuring, rationalizing and routinizing work. The fewer unscheduled manual inter-
vention is required, the better is the system’s performance. FEzceptions are defined by
Strong and Miller [SM95] as follows:

We define exceptions in computer-based information processes as cases that
computer systems cannot process correctly without manual intervention [which
is] a definition broader than "errors”.

One can distinguish three major perspectives on exceptions:

The random-event perspective on exceptions addresses situations which occur infre-
quently, are non repetitive and have random character. While it is assumed that a
workflow management system works correctly most of the time, little can be forecast
about exceptions. Such might be caused by external influences like power downtime or
physical damage that harm information systems as well as internal malfunctions. Due
to their unpredictable nature there is no efficient way of resolution for these kind of ex-

42

2. Requirements

Perspective Underlying assumption Solution approach
Random-event = Exceptions are unpredictable None
Error Errors (from operations, design, Eliminate causes

changing environment)
Political system Political system causing conflict- FEfficiently detect and
ing interests handle exceptions

Table 2.3.: Perspectives on exceptions (compare [SM95] Figure 1)

ceptions. Depending on the negative impact of specific types of exceptions, precautions
may be taken in order to minimize their probability.

The error perspective looks at exceptional situations caused by errors in operations,
process design or changing environment. Operational errors are most common when
human interference with input or output is handled incorrectly or the user misunder-
stands the interface or system. Erroneous behavior can also be traced back to weaknesses
in system design. The process models can reflect the real process incompletely or in-
correctly. That type of error is likely to exist due to many factors influencing correct
functionality, fuzzy knowledge about true processes and the problem’s high overall com-
plexity. Additionally, errors are introduced by changing external requirements caused by
a flexible environment. As an information system does not evolve as smoothly as real
processes which it depicts and supports, over time the electronic process diverges from
the real process. Differences cause increasing errors, because the workflow management
system ends up processing a process it was not designed for. While operational and
design errors are conceptually tough to avoid, frequent minor adaptions and evolution-
ary changes to process models reduce errors caused by a flexible environment. In this
context, the term Total Quality Management” (TQM) is often mentioned. It describes
a management methodology trying to detect the causes for primary error sources and
to eliminate them.

One can conclude from the estimations given above that exceptions are a regular part of
process flexibility and require to a certain extent efficient detection and handling support.
The error perspective mentioned last is the most likely error type to be encountered in
Emergent Workflow. As high flexibility in the addressed field of application is likely,
the occurrence of an exception in this context does not mean that such an event is
exceptionally rare, but that exceptions occur with many variations — they are legitimate
special cases.

Formally, exceptions are arbitrary ad-hoc deviations to any workflow component at run
time. Any workflow perspective (see Figure 2.14 on page 54) can be affected by ex-
ceptions: On the process instance, instantiation, execution or termination of process
instances can be interrupted by exceptions. A changing organizational model causes
potentially exceptions as well as problems with data objects being manipulated dur-

"Compare http://en.wikipedia.org/wiki/Total _quality management

43

2. Requirements

ing execution. The same applies to client and server application integration or other
resources.

With respect to the definition of exception given above, exception handling denotes
manual interventions in Emergent Workflow procedures which resolve or compensate
an exception’s effects. In fact, exception handling splits up into two distinct activities:
Detection € information and handling.

First of all, it is necessary to create an awareness within the workflow management
system for an exception and to propagate that information. Therefore one needs to
detect an exception and its type. Exceptions can be caused by external events which
are not system-related or of technical nature. These kinds of exceptions have to be
entered by an external entity such as a workflow user or a software agent. If for example
the user interface of the runtime engine offers an explicit entry form for the description
of exceptions, a reaction can be directly declared by the user as an exceptional state
transition. If not notified from the outside, the runtime engine has to recognize from
unexpected situations or other indicators that an exception has occurred.

If the exception is system-related and caused by an event within the workflow manage-
ment system, then an exception message has to be broadcasted in order to notify other
components. An example would be the alteration of the organizational model during
run time. As the organizational model changes, the re-assignment of tasks for running
instances becomes necessary, so the runtime engine should receive a message about this.
In return, the runtime engine can come up with a delegation rule and reschedule waiting
jobs in other worklists if possible.

44

2. Requirements

Example 12. In order to compensate an exceptions caused by a failed activity, a
workflow user can handle the exception by a manual intervention in one of the following
ways:

e Ignore the exception. This is the most simple way of exception handling which
might be helpful under certain conditions.

e Retry the failed activity. This makes sense if failure was caused by a momentary
reason which has changed.

e Perform a partial rollback. With this option, one can try to circumvent the
execution path that lead to the exception. A partial rollback means to undo
or compensate a number of previous activities until a branching state is reached.
From there, an alternative path can be chosen that leads to a terminal state without
touching the failed activity.

e Add extra activities for compensation. Execution continues after the failure,
but an extra activity is inserted in the future process that compensates previous
failure.

e Delete planned activities. If there are succeeding activities that rely on the
failed activity (e.g. they need its data output), then the solution could be to delete
all dependent future activities and to proceed with execution.

Annotations Annotations are supplemental records created during run time by work-
flow users. The idea is to give workflow users a tool to annotate the execution history
of a particular process instance. The addition of an annotation does not interfere with
the schema of process definitions, but is a user-based tool to distinguish a certain case
within a case type. It evolves from the user’s perception of an individual contextual
situation. If certain conclusions can be drawn from the context and are valuable for
later reuse, the user may quote it accordingly.

Example 13. Suppose during implementation of a software component, a software
engineer realizes that an issue should have been tackled during component design and is
causing unnecessary work right now. In the last development cycle, the same problem
had shown up, too. So it would be nice to give the engineer a tool to formalize his idea
because otherwise it may be forgotten until the next cycle. Of course, he can put down
a note in his notebook or email his project manager about it, but this will not make
his idea lasting and broadly available. If in fact until the next development cycle team
composition changes, his idea may get lost. So it would be helpful if Emergent Workflow
would offer means to annotate instances or activities — in this case the component design
activity — which have already been terminated during run time. By adding such notes or
modifying existing information, reference knowledge about an activity is increased and
it can be used more intelligently when the model is re-instantiated or used as a template
for another model.

45

2. Requirements

Correctness In order to avoid errors during enactment, the runtime engine should
take as much of the responsibility of assuring correctness for process models and in-
stances as possible. In the following paragraph, semantic and syntactic correctness are
distinguished.

Syntactic correctness of process models is available if consistency and completeness of
process models can be assured® If all elements within the model notation are sufficiently
described in the metamodel, a model is consistent. Completeness can be guaranteed if
all mandatory constructs from the metamodel are integrated in a process model.

Data in a workflow management system is called consistent, if all integrity requirements
are met. FEach process instance is supposed to correspond to one associated process
definition. Upon changes to the definition, the conformance of all associated instances
has to be assured in order to maintain structural identity with its associated definition,
e.g. by migration. If only a subset of all running instances of a process definition
is intended to be adapted during run time, then the remaining old instances may be
associated to exclusive old copies of the process definition.

For a runtime engine that allows multiple flexible operations such as late modeling,
schema changes and ad-hoc modification it is nontrivial to uphold consistency and cor-
rectness. This will be subject for discussion throughout the rest of this thesis.

Semantic correctness addresses whether a built model is able to function semantically
as intended. Typical examples for semantically incorrect models are models whose in-
stances can not be executed or do not terminate correctly upon execution. Reachability
of termination issues that an process instance is only executable if its start and termi-
nation state are defined and are "connected" by a sequence of valid state transitions.
Correctness is here given if any sequence of transitions beginning from the start state
leads into a valid termination state.

The correctness requirement for process definitions addresses their behavior after changes
during run time. As structure and dependencies are getting changed and instances are
being migrated, the runtime engine has to run checks on them to make sure they are still
able to reach the designated termination state. Alternatively, changes are only allowed in
a way that — in conjunction with an appropriate metamodel — does not harm correctness
such as in ADEPT [Rei00, RD98|. Possible incorrect behaviors can be a number of state
transitions which lead into a deadlock or an infinite loop. These states do not contain a
correct termination state. Other problems after alteration of process definitions can be
a lacking reachability for activities or unforeseen termination.

8Compare zur Miihlen [Miih96] p.17 et sqq.

46

2. Requirements

2.3.8. Process matching engine

Central ideas of all data processing in Emergent Workflow are documentation and reuse
of previously defined structures (compare Section 1.2). The process matching engine is
a necessary tool to accomplish the idea of reuse.

All interfaces of Emergent Workflow and components like the process creation engine are
busy with internalizing external data. As a consequence, a massive collection of audit
trails, fragments of process definitions, their instances and compositions is accumulated.
Emergent Workflow is likely to be used in an environment that requires adaptability to
changing conditions. That implies that the amount of slightly differing fragments grows
rapidly.

The process matching engine is supposed to support different user groups in finding in-
formation from the repository. A workflow participant wants to find process fragments
from previous instantiations in order to build the current instance execution on a tem-
plate. Administrators who monitor actions on the runtime engine want access to the
latest pieces of the audit trail. Process designers want to obtain stored process types,
archived instances, compositions and audit trails for analysis and improvement.

Input & output characterizations On the system side, the process matching engine
accesses the repository which holds all available data structures (see Section 2.3.9).
These are stored in databases for each type and equipped eventually with helpful access
constructs such as an index. Complex data structures such as graphs are supposed to
have attached tags containing important search criteria. The process search engine must
be able to read all data structures in the repository. Any request is answered with a
(possibly empty) set of return elements matching the search.

Theoretically, database systems used for the repository already provide access methods
for their contents which could be sufficient for Emergent Workflow, too. The reason
why a designated search engine is proposed lies in the fact that search types required
by Emergent Workflow exceed common database search methods’ abilities. All types of
users or their client applications interact with the process matching engine by submitting
requests that characterize repository elements. These requests contain a number of
constraints as well as supplementary data objects to characterize their expected result
set. Query constructs offered by common database systems are not able to cope with
similarity matching of data object.

Let us focus in the following considerations on the search for fragments of past executions.

Example 14. A query for a process fragment using constraints and expressed in nat-
ural language could be "Show me all fragments that have been created by mechanical
engineerings using the activities A, B and C since two weeks ago and sort them by
descending date".

47

2. Requirements

In this example, the constraints refer to a number activities and to information that was

collected during enactment. Typical questions for instance-specific characteristics would
be:

What activities were executed?

Which data streams and functions are included?

What organizational entities and applications are involved?

What was the duration of each executed activity?

Which disciplines were involved?

What was the process frequency in the past?

A query can be supplemented by data objects which describe what a return object should
look like.

Example 15. A process designer has a process fragment and wants to find out if this
process fragment occurs frequently. He passes it to the process matching engine along
with a query "Show me all fragments recorded during the last two weeks which are
similar to my process fragment."

The first query presented in the Example 14 gave an exact type and number of constraints
that all result have to comply with. In Example 15, a constraint is given along with an
fuzzy description as a query. Similarity between fragments can refer to either syntactic
(same activities, users, data), semantic (same function and effect) or structural (process
graph structure) similarity. In this case a result list is expected where the most relevant
(similar) match is presented first, followed by less similar matches in decreasing order.
Obviously, different kinds of searches require different matching processes.

Matching process Without specifying a particular matching algorithm, different types
of algorithms are required for matching according to different search types:

First, queries requiring exact matching are to be differentiated from those requiring
approximate matching. FEzact matching is characterized by a number of quantitative
constraints which can be composed (e.g. with boolean operators) to a complex expres-
sion. Each repository element is checked for accordance with the expression and either
matches it (and is put into the return set) or does not. The exact matching algorithm
returns a finite set of matches on the query. Approzximate matching is needed when the
query contains qualitative constraints such as similarity aspects. When a qualitative
constraint is used for searching, the result is never absolutely clear but represents a
relative rating of matching quality. When performing a similarity search with a given

48

2. Requirements

reference as parameter, the only absolutely "safe" matching is obtained when the found
object matches exactly and equals the search parameter. Otherwise, a rating based on a
similarity metric is added to each matching that indicates its quality. A user query based
on qualitative constraints expects a return set of those matches that yield the highest
rating. Notice that without any filtering, the result would be always the complete set
of searched objects available, because any repository element receives a (possibly low)
rating. Therefore, a threshold needs to be either determined by the process search engine
or is specified by the user in order to cut off results whose matching quality is too low.

With respect to the application domain of searching process-related objects, a further
distinction can be made between requests that require descriptive searching and those
involving a schema-matching search. A descriptive search contains constraints that can
be checked without an in-depth analysis of process structures. Rather, each process
element inside the repository holds a descriptive tag which roughly classifies it. Such
would be a creation time, the creating user and the overall context. Descriptive search
is supposed to be rather simple and quick. Schema-matching search denotes searches
asking for details, which are not contained in descriptive tags but have to be obtained
using more elaborate structural analysis of repository objects. Typically, fuzzy queries
causing approximate matching rely on schema-matching search.

Having mentioned more and less elaborate matching processes, it is worth to reinforce the
observation that efficiency plays a major role for algorithms implemented in the process
matching engine. Searching through a potentially large number of process objects and
matching them with complex constraints including structural comparison is a demanding
task for computer hardware and software. However in most situations when a process
search is invoked, a user does not want to wait for results longer than a short amount of
time. Consequently, a trade-off between functionality and performance has to be found
for a useful implementation of process matching.

2.3.9. Repository

The repository has already been referenced frequently as all other components’ activ-
ities are accessing it. After discussing all other components of Emergent Workflow, it
becomes evident that basically all kinds of information are stored either temporarily or
permanently. To make that happen, all components rely on a common repository for
data storage and retrieval. In this section, no particular data structures are proposed
due to the high-level characterization approach and the following characterization of the
process metamodel in Section 2.4.

Storage Different kinds of data are stored either temporarily or permanently. Tem-
porarily stored data is used to depict and update the current state of the workflow
management system. As this topic becomes quickly implementation-specific, We will
not go into much detail on this matter. It may be only said that the core of tempo-

49

2. Requirements

rary data are states and their transitions within the runtime engine. It runs multiple
instances, all of which have different types and states. If ad-hoc changeability is al-
lowed on an instance level, supplementary data is attached to instances, indicating and
defining the change operation. T@me management is closely integrated into execution of
instances as it sets and checks temporal dependencies. This kind of temporary informa-
tion changes consistently, frequent updating read and write operations can be expected
on it during run time of the workflow management system.

Permanently stored data serves the purpose of preserving and building a collection
of useful knowledge for a longer period of time. In Emergent Workflow, this includes
especially traces of current processes and any supportive information for reuse. General
knowledge like the dictionary is stored permanently as it preserves a depiction of the
commonly used vocabulary. Also the organizational model is a permanent system rep-
resentation of an organization. It contains a hierarchy of roles, assignments into groups
and associations of roles with real personnel. The fundamental part of reuse-oriented,
permanently stored data are process models. Descriptions of process model are option-
ally supplemented with a classification of granularity that describes its level of detail.
Furthermore, the allowance of schematic changes on process models extends their repre-
sentation with versioning information, as the schema of a process type changes over time.
Parts of temporarily stored data as described above becomes permanently stored data.
Instance fragments created by the process creation engine are archived in the repository
for reuse, such as the establishment of a case base (see Section 3.1). Also compositions
of fragments created by process designers are stored permanently as they were created
for the sole purpose to enable post-hoc analysis. Finally the source of process fragments,
audit trail is also interesting for permanent storage to a certain extent. As audit data
represents the most quickly and a permanently growing amount of information, practice
has to show whether it is meaningful and possible to store the full amount of audit data
permanently and efficiently.

As major amounts of data are collected and created inside Emergent Workflow, data
structures for storage may be chosen with an eye on space efficiency. On the other hand,
a convertible and open representation would be recommendable for better reusability.
The Workflow Management Coalition proposes for example XPDL?, an XML Process
Definition Language which offers a metamodel and an exchangeable representation form
for process definitions. For use with Emergent Workflow, this format may be used if
constructs for flexibility requirements are added. Thereby, process models would become
easily exchangeable but also space inefficient due to the high verbosity of XML which
makes it a questionable choice for permanent storage. The same issue holds for possible
representations for the audit trail such as the XML workflow log format proposed by
van der Aalst et al. in [ADH"03] or an instance-level case representation proposed by
Madhusudan et al. in [MZ03].

%See the XML Process Definition Language Specification Version 1.0 Final Draft:
http://www.wfmec.org/standards/docs/TC-1025 10 _xpdl 102502.pdf

50

2. Requirements

Access methods are the necessary counterpart to data representation within a reposi-
tory to enable reuse. They describe ways to receive read and write access to all use data.
As any kind of repository is most likely based on database technology, basic querying
mechanisms as well organization forms for structured storage are already available. That
includes organization forms such as tree structures, hash tables or indexing and will not
be elaborated here any further. Notice however that a textual representation of process
structures is neither very "handy" nor very expressive in text-based data structures.
Thus, it is suggested to supply process fragments and compositions with a textual tag
containing a description that can be used for most common search criteria. Information
such as the creator of a fragment, its start/stop date, its type and more can be easily
derived from the context when archiving a terminated fragment. The same holds for
compositions, here the tag could be composition of the tags of all contained fragments.

2.3.10. Requirements summary

In this Section, component-specific requirements are summarized in a tabular repre-
sentation. For each component the source or kind of input and output are giving and
indicated by an "I" and "O" in the left column. Then an enumeration of the most
fundamental properties is given. Each property is associated with a unique identifier
located in the left column, such as (UI2). These identifiers are used in Chapter 3 to
refer to a property match between Emergent Workflow requirements and related work.

User Interface/Client Application/Agent

I/0 Exchange of control and use data between runtime engine and a human-
machine interface/an agent

(UT1) — Functional specifics for user groups

(UI2) — Usability (intuitivity, simplicity, documentation)

(UI3) — Configuration & customization

(UI4) — Creation of accurate/detailed interaction protocols

Server Interface

I/0 Communication with external applications/workflow enactment services,
runtime engine

(S11) — Standardized interfaces for synchronous/asynchronous communication
with external applications and workflow enactment services

(S12) — Support different levels of interoperability

(S13) — Creation of accurate/detailed interaction protocols

Dictionary

I/0 Dictionary contents are communicated with all other components

(D1) — Establishment of an ontology that explains semantics and correlation of
domain-specific vocabulary

(D2) — Completeness/consistency

(D3) — Structural extensibility

51

2. Requirements

Organizational Model

I/0 Used by all components for role abstraction

(OM1) | - Formal representation of corporate structure with respect to hierarchy,
responsibility and specialization

(OM2) | — Role abstraction

(OM3) | — Coverage of official and unofficial roles

(OM4) | — Completeness/consistency /useful level of detail

Time Management Component

I/0 Communicates temporal constraints with all other components

(TM1) | — Control and monitoring of temporal dependencies during enactment
(TM2) | — Synchronization with other components

(TM3) | — Integration of time constraints into workflow metamodel

Process Creation Engine

I/0 Inputs an audit trail from the runtime engine and outputs process fragments
(PC1) | — Creation of instance-specific process fragments from an audit trail and

general knowledge

(PC2) | — Goal-dependent invocation and creation of process fragments

(PC3) | — Robust and configurable input

(PC4) | - Metamodel-conformance of output

(PC5) | - Supplementation of output with a description

Runtime Engine

I Process models, interaction protocols

O Audit trail, task assignment, synchronization with externals, monitoring
(RE1) | — Rights management/security

(RE2) | — Task assignment

(RE3) | - Instantiation of process models

(RE4) | - Schema evolution

(RE5) | - Late modeling/Case handling

(RE6) | — Flexible execution of instances (ad-hoc change, exceptions)

(RE7) | — Assure correctness/consistency of running instances

(RE8) | — Create an audit trail from events and incoming interaction protocols
(RE9) | - Allow annotations of events

Process Matching Engine

I Queries

O Result set of matching data objects, eventually supplemented by a rating
(PM1) | — Queries contain quantitative/qualitative constraints and are supplemented

by data objects

() | — Exact and approximate matching

(PM3) | — Descriptive and schema-matching search

() | — Syntactic, semantic or structural similarity matching
() | — Rated result sets with filtering threshold

52

2. Requirements

Repository

I/0 All data types with all other components
(R1) — Temporary storage of data:

(R1a) — Runtime engine state information
(R1b) — Time management information

(R2) — Permanent storage of data:

(R2a) — Dictionary ontology

(R2b) — Organizational model

(R2c) — Process models with versioning information
(R2d) — Archived process fragments

(R2e) — Process compositions

(R2f) — Audit trail

(R3) — Efficient data representation

(R4) — Basic access methods to stored information

Table 2.4.: Requirements summary

2.4. Process metamodel

A model in the context of workflow management reduces the complexity of systems in
the real world in order to make it controllable!’. By abstracting from reality, individual
objects and relations of the real world are reduced to object types and relation types
by filtering out irrelevant aspects of reality. The more detail is left, the more complex
a model grows. Hence a process designer determines how much information is relevant
and decides on the required level of complexity.

A metamodel defines a model for all models within a workflow management system. It
establishes a formalism that defines the class of constructs which are allowed in models.
Key dimensions'! of metamodels are among others its granularity, control flow, data flow,
organizational model, role binding and exception handling. Practically speaking, the
metamodel determines the maximum expressive capability of all models built according
to it. The metamodel both abstracts a "modeling language" from models and can be
used to verify the correctness of models.

A process metamodel represents a process perspective view on a metamodel and shows
only partial aspects of the total metamodel as it is used in a workflow management
system. The following paragraph puts the process perspective into a bigger picture in
order to give an idea of its classification.

0Compare [Miih96] p. 13 et sqq.
" Compare Lei and Sing [LS97] p. 3 et sqq.

53

2. Requirements

Workflow perspectives Van der Aalst and Jablonski identify five different perspec-
tives to characterize different aspects of a workflow management system [AJ0O]. These
perspectives are a good starting point to structure as shown in Figure 2.14:

Process perspective

c O

o =2 . :
5 ‘g Organization perspective
—_

Q. . .
g Information perspective
c o . .

- a Operation perspective

Figure 2.14.: Workflow perspectives (compare [AJ00| Figure 1)

The process perspective takes a task and control flow oriented point of view focusing
on process definitions, their type and instantiation. The organization perspective fo-
cuses organizational structures characterized by roles, groups, responsibilities and their
allocation. The information perspective is a data-centric view dealing with control and
production data. Elementary operations performed by applications and resources form
the operational perspective. They are used in the process perspective as elements for
construction of data and control flow. The integration perspective finally links all views
together.

This Section deals with the process metamodel of Emergent Workflow and therefore
restricts its view to the process perspective. An overview of the most important com-
ponents of Emergent Workflow’s process metamodel is given in Figure 2.15. Further
explanation on the shown elements will be given in the subsequent Sections. Notice that
Figure 2.15 does not contain instance-specific elements such as instances, fragments or
compositions to enhance readability.

54

2. Requirements

0..n . .
Sequence |- Version Granularity
A1l..n Ao .1
On Schematic |
Loop -&-consists of has a
structure
A 1 [0..n
v 0.0 1 Process
AND split/join = has a definition
1A
0.ln 0..n
OR split/join - 1..n
Control flow <«———has a is a
0..n
. |00
XOR split/join 01
consists of Subprocess
0..1
¥Yi..n
o 0..n 1 . 1..n .
Precondition has a Activity 1. : is a
0..n
. 0.|n
Postcondition |« .
is assignedto isa—» Ato.”?'c
T 1 0..1 activity
ype il 0..n
v 1..n
C 0.[.n Rol
ontext - ole has a
is a
0..1y ¢ 0..1
0..1 . 1
Regular case |« is a Case Black box

Exceptional
case 0..1

Figure 2.15.: Process metamodel

2.4.1. Process definitions

A process definition or process model represents the formalization of a business process.
A business process consists of a manual part called the manual definition and an auto-

%)

2. Requirements

mated part named workflow definition'?. The attribute "automated" is here used in a
wider sense than addressing only processes which run without any manual interference.
It rather refers to the set of processes which are supported by information technology.
Workflow definitions consist of a number of items and relations expressing an automated
process. These items are activities, resources and data objects. They are connected by
structural relations which creating a control flow.

Granularity An issue with distinguished importance for Emergent Workflow is the de-
finition, recognition and application of a process definition’s granularity. It describes the
abstraction level of an atomic or basic element within the process metamodel. Emergent
Workflow aims at deriving process fragments from interactions and activities of active
users. Users though have different perspectives, responsibilities and statuses within an
organizational model. Thus, their perception of what an "elementary" task is differs
significantly. Emergent Workflow requires the ability to cope with inputs that differ in
level of detail and granularity.

Definition and recognition of granularity means to establish a common measure that
allows the classification of all incoming fragments. That refers not only to the recognition
of a top/bottom level task, but includes also quantitative measurement of intermediate
level tasks.

A lower bound for the finest level of granularity is represented by the stability of mod-
els: A process model should be stable and not change on each instantiation due to
persistent changes on the lowest granularity level. An event in a workflow management
system represents the smallest recognizable element for an information system, however
tasks outside the system may be even more detailed. Semantically, an elementary task
should be chosen as the smallest stable and independent set of operations that form one
logical unit. Being small is here characterized as a minimum amount of bound time
and resources. The highest granularity level being the other end of the spectrum is the
top-level process. 1t is basically a coarse view on the total process that does not allow
any further abstraction with less details and a broader scope without loosing significant
information.

Between these two extremes, intermediate levels of granularity exist. Their classification
is most challenging due to the number of characterizations indicating a granularity level:
First, the hierarchical position of the person who executed an instance is an indicator for
the granularity of the underlying process definition. A task regarded as elementary by a
project manager may represent a whole subprocess for the software tester subordinate
to the manager. Second, the involvement of (eventually nested) transactions gives a hint
on the abstraction level as transactions may be used both on higher or lower levels. The
used time for the completion of one task as well as the amount of resources bound by a
task classifies the individual granularity level of a reported process fragment.

12Compare the Workflow Management Coalition Reference Model [Hol95] p. 7 et sqq.

56

2. Requirements

[t appears very plausible that the total number of hierarchies (the "granularity of gran-
ularity levels") has been defined at some point in the workflow cycle, e.g. in the or-
ganizational model. This establishes an abstraction hierarchy with distinguished levels,
defined by a number of quantitative, measurable characteristics. Then it is the job of
the workflow management system to examine incoming fragments and classify them in
a granularity level within the defined abstraction hierarchy using one of the characteris-
tics mentioned. Especially with regard to semantic process fragment composition, this
represents a fundamental step to enable meaningful composition.

Version One of the flexibility measures mentioned in the requirements of Emergent
Workflow’s runtime engine was schema evolution (see Section 2.3.7). It proposes that
process models are adapted to a continuous changing environment by the application
of change operations. Process instances that were instantiated on the same process
definition have potentially differing process schemata. Consequently, a process type
by itself does not clearly identify the structure of its instances or schema. Hence, a
versioning of process definitions is proposed. An incrementing version number indicates
a schema change and gives a clear reference to each version of a process definition.

Activity Within a process definition, activities are elementary functional units. Each
activity consists of many different types of information whose composition allow its
functionality. All parameters combined yield a case its identity. As mentioned before,
Emergent Workflow does have requirements in terms of workflow flexibility and reusabil-
ity. These requirements are reflected by the parameters specifying an activity as shown
in Figure 2.16.

An activity performs a certain task and is identified by a name. An activity’s character
is specified by stateful case information which describes the case content, case attributes
and conditions!®. In Emergent Workflow, case information categorizes an activity and
tells for example whether it is regular or exceptional. The number of case categories is
extensible and they can be used to classify instance-based entries in an audit trail with
respect to their relevance or likelihood to reoccur. As a further differentiated classifi-
cation of cases may be useful depending on the application domain, the extensibility of
this attribute is expressed by one or more custom cases. An activity type tells whether
additional constraints have to be taken care of when an activity is processed. The reg-
ular case is an atomic activity. However, the activity can also be a placeholder for a
subprocess or a black box. These impose specific execution restrictions to the activity,
e.g. a black box (compare Section 2.3.7 on page 41) activity must be fully submodeled
before the activity can be activated. One or multiple descriptions offer room to de-
scribe informally from one or multiple perspectives what an activity does. A flexibility
parameter tells the workflow management system about the degree of flexibility of this
activity. It can be either fully ad-hoc changeable, the change methods may be restricted

13Compare [AH02] p. 33 et sqq.

57

2. Requirements

Start (planned/real) |

Time Stop (planned/real) |
-.n Duration (planned/real) \
Data I/0
0.
NEmE ; Context
Regular
0..n

Case <O—"\

Exceptional

[Custom]

Activity > Precondition

R
Type Postcondition
Black box
0..n 0..1 Static
Description Flexibility

Fully flexible
Figure 2.16.: Activity metamodel

to a limited type and change time (e.g. only description changes before activation) or
the activity is totally static and does not allow any changes. Conditions split up into
preconditions and postconditions: Preconditions tell about the conditions ought to be
met before activation and postconditions guarantee a defined state after termination of
the activity. Contextual information is a generic entry which captures relevant factors
influencing activity processing or which are needed for post-hoc evaluation. Data input
and output refers to data objects that are created, read or wrote during activity process-
ing. Time entries hold temporal constraints for time management and are used to record
the execution history of an activity instance. They contain start and stop times as well
as a duration fields, each having a field for the planned and the real value. Finally, the
role object identifies which organizational entities are allowed to process a definition.

Control flow A control flow interconnects activities being elementary parts into a con-
tinuous workflow. The structural elements of a control flow determine causal relationship
of activities within a control flow. In order to classify the control flow expressiveness of
workflows, van der Aalst et al. define workflow patterns [AHKBO02|. A pattern abstracts
from solutions given for concrete problems an makes more generic recommendations. By
separating basic from more advanced language constructs, an incremental approach to
the requirements on a modeling language is given.

The following enumeration gives a summary on basic patterns (No. 1 — 5) and selected
advanced patterns (No. 6 —9):

58

2. Requirements

. Sequence. This allows activities to be executed in sequential order. An activity
is activated after its predecessor terminates.

. Parallel split. The thread of control splits at a parallel split which is also called
AND-split. A thread of control describes the path of execution which is headed by
the currently executed activity. Multiple activities are activated after a common
predecessor terminates.

. Synchronization. The execution of multiple activities/threads of control is merged
using a synchronization or AND-join. The next activity is activated as soon as all
incoming parallel threads of control have arrived.

. Exclusive choice. The thread of control has multiple choices to proceed on
different paths. In contrast to a parallel split, only one of the available alternatives
is exclusively chosen which is why this split is also called XOR-split. The choice
is made upon control data or a condition.

. Simple merge. As a counterpart to the exclusive choice, the simple merge or
XOR-join activates the next activity as soon as one of the incoming path is acti-
vated.

. Arbitrary cycles. This construct allows to execute one or more activities repeat-
edly. Control data or a condition check whether and how often a loop is passed.

. Implicit termination. When no activity is currently active and none is available
for activation, the process is terminated implicitly without reaching an explicitly
defined terminal state.

. Interleaved parallel routing. When in a set of activities, no two activities
should be executed at the same time but the order does not matter, then interleaved
parallel routing allows the activation as an unordered sequence. That is, each
activity is executed only once in a nondeterministic order.

. Milestone. The activation of a certain activity depends on whether a milestone
has been reached without expiring. The milestone being a condition is defined as
a specific compound state of multiple activities of the control flow.

Patterns 1 through 5 are essential for even very basic structured workflows. For more
advanced processes, pattern 6 is useful but complicates execution considerably: The in-
troduction of a loop means that activities can be activated multiple times per execution
and their state has to reset when a new loop iteration is started. Analysis becomes
harder and due to the possibility of infinite loops, correctness can hardly be guaran-
teed. Patterns 7 to 9 are not required but "nice-to-have’s" as they support goals of
Emergent Workflow: Implicit termination facilitates handling and correctness checking
of incomplete process models or late modeled subprocesses. Interleaved parallel routing
increases flexibility for many scenarios where the order of activities does not matter:

99

2. Requirements

In fact, any other construct would impose artificial and unnecessary regulation on such
cases. Finally, the idea of having a milestone element for control flow greatly aligns with
running a quality-gate driven process such as the V-Model (see Figure 1.4 on page 8).

Notice that these patterns do not take into account flexibility-specific control constructs
for the integration of subprocesses, exception handling and case-handling. Subprocesses
need a hierarchical integration which enacts an independent process definition upon the
activation of the activity representing a subprocess. For exception handling, an explicit
description of an exception handling routine and a description on how to jump back
and forth to the routine are desirable. A dedicated version of an XOR-choice/merge
supplemented with implicit termination functionality would be a starting point for a
structural control element giving dedicated support to exception handling.

The question on which workflow patterns to integrate in Emergent Workflow’s process
control structure has conflicting goals in its background: High functionality and flexi-
bility can be offered by a complex process model with manifold control structures. But
it also brings along much more complicated construction, changeability and correctness
checking than a simple process model. Moreover, an easy-to-use process model is more
likely to be understood and accepted by most workflow users. If a highly functional
model is chosen, then an interface must be built around the models which either pro-
vides strong support or hides the system’s complexity by translating the complex internal
model to a more simplistic outside view and vice versa.

2.4.2. Process instance

A process instance puts the specifications of a process definition into practice. Each
process definition can have multiple instantiations, but each instance refers to only one
definition. An instance is an independent object residing inside the runtime engine
during enactment. In the context of a process instance, each activity is instantiated
and associated roles are resolved. That is, an activity is assigned with one ore more
individuals in the organization who occupy an according role. How and when resolution
takes place is decided by the runtime engine’s role resolution policy. During execution,
a process instance occupies resources such as the individuals executing it, use data
or server-side applications. Beyond that, it traverses a number of states between its
instantiation and termination. If from all possible states a terminal state is reachable, a
process instance is called correct.

Process and activity state model A process instance has usually a defined start and
end state and traverses a number of intermediate states from the one to the other. An
initial state transition is mostly performed after initialization is completed by activating
the first activity. The overall state of a process instance is determined by the set of

states of its activities. An exemplary activity instance state model is shown in Figure
2.17.

60

2. Requirements

Activity
instantiation
Waitin
¢ \J
@_" not_activated
Running
exec_sub-
‘pausedm staited] Orocess
A
Terminated y]
Skipped ‘ failed H completed Hskipped}

Archived

Y

commited

Figure 2.17.: Activity instance state model (adapted from [Rei00] Figure 4-1)

Figure 2.17 shows a coarse state model which applies for both, an activity and the overall
instance as shaded boxes. Within the shaded boxes, white boxes represent more detailed
activity states. Arrows between shaded boxes and between white boxes indicated state
transitions of the instance and the activity respectively. An instance switches in an
initial waiting state as soon as its first activity is instantiated. It moves from there into
a running state as soon as the first activity is running and terminates as soon as the
last activity has either failed, completed or was skipped. Upon successful termination,
it is being archived. From any of the first three states, the instance can be skipped which
means its execution is aborted at some point.

An instance starts in a state not_ activated and gets activated when the thread of control
arrives. From there it transits into a started state as soon as all of its resources are
allocated. While it is running, it can switch back and forth to the sub-states paused or
to exec_ subprocess in case a subprocess is associated. Upon termination, an activity
can either fail, e.g. due to errors during execution or complete successfully. The last
step after completion is a commit to the archived instance. As multiple paths of control
flow through a process schema exist, an activity can possibly be never activated. In that
case it transits straight form not_activated to skipped.

As already indicated by the final archiving state, a history of state transitions is recorded
and saved as part of the audit trail. This is a requirement due to the demand of Emergent
Workflow for the analysis and reuse of part instance executions.

The flexibility requirement of Emergent Workflow (see Requirement summary in Section
2.3.10, (RE5)) to enact incomplete instances has further impact on the metamodel of

61

2. Requirements

process instances. Black boxes represent missing subprocesses and are modeled during
run time. Also ad-hoc changes (RE6) interfere with instance execution. Both cases
modify the instance’s execution state and after each modification, consistency checks
are mandatory to assure the legality of a state. If for example a non-activated activity
is inserted in an area which precedes activities that have already terminated, it becomes
impossible for the instance to terminate correctly. If an instance modification leads to
an illegal state, either the user or the runtime engine has to care for its correction (RE7).

Furthermore, each instance should archive any extra annotations which were entered
by a workflow user during enactment (RE9). This allows him to supplement the the
archived instance with useful, informal notes for later reuse.

Instance fragments When an audit trail is examined by the process creation engine,
a partial process instance is derived and is referred to as an instance fragment (PC1).
It links to the archived execution history and contains thereby references to executing
individuals, occupied resources, timing informations and results from instance flexibility
measures.

From a system perspective, an instance fragment is a portion of an archived process
instance put into a formalism according to the process metamodel. Compared to a
process instance, specific start and end states are missing and the correctness of the
schema is unchecked. Notice that it is built from the audit trail which has a certain
level of detail according to the originator of the trail. That is, each fragment has an
individual level of granularity describing its richness of details. An explicit representation
of granularity is fundamental for further reuse of instance fragments as the next Section
reinforces.

2.4.3. Process compositions

A complete workflow transforms an initial business requirement (the precondition) into
a state that realizes the business goal (the postcondition). It does so by a number of
steps implicitly traversing a state-space. The composition of fragments equals to the
identification of a sequence of tasks that transforms a precondition state into a state
complying with the final postcondition for an "overall" instance. In fact, composition
is performed wvertically and horizontally: Vertical composition of fragments represents
the alignment of different views and hierarchies related to a common part of the overall
process. Horizontal integration links causally related process parts sequentially together.

The overall instance is identified by a business requirement such as an order number in
a production process. From an employee’s point of view, the overall instance is invisible
and appears only as smaller instances of lower-level tasks. The reassembly of those
fragments reveals the structure of the virtual overall process.

Theoretically it would be possible to combine fragments of different instance audit trails.

62

2. Requirements

In fact it could be very much easier to assemble all parts of an overall process from
multiple instances. However, their composition can be difficult and the usefulness of its
outcomes is questionable. Because of the flexibility measures offered by Emergent Work-
flow, different instances are individually able to tailor a process by modifying instances,
schemas and applying cases. When combining different cases or schema versions, they
may not only collide syntactically but do not match semantically either: A cross-instance
composed overall process starts with an business requirement and ends with a different
business goal which does not reflect reality. That is why only compositions consisting of
instance fragments belonging to one overall instance are meaningful.

Relation types Technically, a composition is a relation defined on a set of process
fragments. The involved types of relations are shown in Figure 2.18.

Composition
Disjunct Overlapping
fragments fragments
/\ \J
Sequential Parallel Partial Total Hierarchical

[] e N [e
E=E

Figure 2.18.: Types of relations in fragment composition

Figure 2.18 makes a distinction between disjunct and overlapping fragment relations. A
sequential relation directs the control flow after the termination of the first fragment to
the second fragment. A parallel relation splits the thread of control and directs it to
both fragments at the same time. Overlapping relations are more complicated as they
correlate activities within fragments. A partially overlapping relation correlates a subset
of both fragments with each other. If each activity of one fragment is correlated with
an activity in the other fragment, the overlapping is total. A special case of overlapping
relations is a hierarchical relation. It depicts subprocess relations by correlating one
activity with the complete second fragment. When the thread of control arrives at
this activity, the activity pauses and forwards the thread of control to the lower-level
fragment. As soon as the thread of control returns, the activity is terminated and the
top-level fragment continues its execution.

63

2. Requirements

Notice that correlating an activity means the creation of a compound activity merged
of the attributes specifying each activity (see Figure 2.16 on page 58). This is either
achieved by adding both attributes (e.g. all roles from both activities are added to the
new activity) or choosing one of them (e.g. the choice of a flexibility level) When creating
an overlapping relation, either the system or the composer must take care of merging
each overlapping activity. Each mentioned relation relates two fragments, hence for the
composition of an overall instance, multiple relations must be applied. That requires a
composition to conform with the same requirements as a process fragment, that is, from
an outside look it behaves and looks like a process fragment.

Supportive constructs One of the key enablers of fragment composition is an explic-
itly expressed level of granularity on each fragment and composition. Any automated
support for finding matching fragments is based on a quantitative metric to assess sim-
ilarity, one of which is granularity. Besides other attributes such as roles and temporal
information, it helps to determine which fragments can be composed in a semantically
meaningful way and where a hierarchical relation should be applied.

As it is likely that fragments do not match each other perfectly or parts of the over-
all process are missing, elementary tools help to interconnect a control flow with gaps.
These are constructs like a spontaneous transition to interconnect activities or an empty
fragment in order to easily integrated a hierarchical relation into a composition. Fur-
thermore, a black box fragment can indicate missing parts. In case the composition gets
enacted, this construct fills up gaps which were not covered during composition and
behaves similarly to a late modeling instance in the runtime engine.

Fields of use Process composition is performed by process designers who use desig-
nated client applications for modeling support. An example on how relations between
fragments could be detected is given in the example below.

Example 16. Assume an activity "window power lifter mounted" with the context "as-
sembly left front door" is in one fragment, activity "side window lifting motor mounted"
with the context "assembly left front door" is in another fragment. By doing a dictionary
lookup, a process designer can find out that the side window lifting motor is a part of
the window power lifter assembly unit (see Figure 2.10 on page 22). From that informa-
tion he can conclude, that the corresponding activity "mounting window lifter motor"
is a sub-activity of the activity "mounting window lifter". If further examination of the
temporal execution history, the involved roles and further context information (such as
a serial number on the body) confirms that assumption, very likely a subprocess relation
has been found.

As a composition tool is considered as a special case of user interface and the fields
of use were not mentioned in Section 2.3.1, a short paragraph on the fields of use for
compositions is added here. Process compositions are created by process designers for

64

2. Requirements

in-depth analysis. By constructing a composition, designers receive a big scale view
on the course of execution of an instance. While workflow participants are most able
to optimize a partial process on a small scale due to their knowledge and experience,
process designers use a composition as a tool to understand and optimize big scale
dependencies of an overall process. Such analysis can be supplemented by a simulation of
past executions using the continuous documentation given in a composition. Annotations
made by workflow users are attached to fragments and accumulated on them is given
in a composition. They represent an excellent summary on lessons learned during the
execution of an instance. Drawbacks and conclusions lead to improvements in the big
scale process and can be applied for example to the V model (see Figure 1.4 on page 8).

65

3. Related approaches

This Chapter presents a number of approaches which are related to aspects of Emergent
Workflow. Each Section introduces at the beginning the fundamentals of the underly-
ing field of research. By summarizing selected projects, interesting aspects of mostly
recent work are highlighted. Each Section closes with an assessment of usefulness of the
presented concepts in the light of Emergent Workflow.

3.1. Case-based reasoning

3.1.1. Fundamentals

Case-based reasoning (CBR) is a methodology that can be used to enhance flexibility
in process management. It builds fundamentally on the hypothesis that reasoning is
reminding of useful information. The origin of this automated learning approach lies in
Artificial Intelligence research.

As introduced by Aamodt and Plaza [AP94], the idea of CBR is to solve problems by
using knowledge gained by previous experiences which are referred to as cases. Because
each solved case is added to a case base, it extends incrementally the available experience
within a problem domain. CBR is a [earning technique because the knowledge about
the problem grows independently from the reasoning method and fosters better or easier
finding of solutions.

Commonly the term CBR is used in a wider sense and refers to various reasoning meth-
ods. Strictly speaking it differs however from other reasoning types. Those varying
aspects include methods for retrieval, management and utilization of past cases and
general domain knowledge as well as matching and adaption procedures. A list of re-
lated reasoning methods is given below:

¢ Exemplar-based reasoning Here a concept is defined as the set of its exemplars.
Solving a case in this scope denotes a classification task where the matching class of
problem is found. As each class represents one single solution for a particular type
of problem, the class that shows most similarities is chosen as a solution. A concept
definition is learned when an unclassified problem can be classified correctly.

e Instance-based reasoning This is a specialization of exemplar-based reasoning
that aims at automated learning without user interference and focuses on a syn-

66

3. Related approaches

taz-oriented approach. Less background information is available, the data model
is relatively simple and a bigger number of cases is necessary to find a concept
definition.

e Memory-based reasoning The case base is seen here as a large piece of memory.
The reasoning procedure corresponds to navigating and searching through the the
memory. Consequently, herein types of organizing and accessing the memory and
processing methods are focused.

e Case-based reasoning Although the term case-based reasoning is used more
generic throughout the thesis, it differs typically from the other reasoning methods
mentioned in a number of aspects. First, a case is considered rich of information
and has a rather complex organization in contrast to the data model of instance-
based reasoning. Second, more general background knowledge can be used in a
situation-dependent context. Finally, CBR distinguishes itself by the ability to
modify a retrieved solution, which allows and implies user interference.

e Analogy-based reasoning Although closely related to CBR, analogy-based rea-
soning focuses on finding analogies between problem domains. That ability char-
acterizes methods which solve new problems by basing their solutions on solved
problems of different domains, whereas CBR matches cases within one problem
domain.

Process model view on CBR Effective problem solving with CBR involves a number
of steps. When a new case comes up, it must be first analyzed to determine the type
of problem. Next the case based can be searched for similar cases that match the new
problem sufficiently with respect to chosen criteria. If a previous case matches the new
case, it is used as a proposal for a new solution. After eventually necessary adaptions
have been made to the proposal and it has been accepted as a solution for the new case,
it can be added to the case base and becomes a learned case. From this point on, the
solution for the next new case relies on the improved case base. Formally, these actions
are represented by retrieval, reuse, revision and retainment phases. The cyclic nature
of this procedure becomes evident by a glance at Figure 3.1 which illustrates the steps
mentioned in a generic CBR cycle.

67

3. Related approaches

Problem

New
case

Learned B
case Retri New
— etrieved| o
/ case
Previous /
cases H
General
_ knowledge
Tested/ Solved
Repaired case
case ‘. ’ l
1 Suggested
Confirmed solution
solution

Figure 3.1.: CBR cycle (compare [AP94| Figure 1)

The generic CBR cycle in Figure 3.1 consists of the CBR main tasks: Upon the reception
of an incoming new case, the user retrieves the most similar cases by using general
domain-specific knowledge and provided case retrieval methods. He further reuses the
available information to solve the new case, revises the proposed solution and retains
interesting and relevant information in a learned case for future cases.

As the illustrated CBR cycle already indicates, the main problem areas of CBR are
knowledge representation and methods for retrieval, reuse, revision and retainment.
Within each area, one faces a number of questions whose architectural answers affect
the functionality of a CBR implementation.

Knowledge representation Within a case base, gained experience and learned lessons
are stored. Together with generic domain knowledge it is fundamental for the overall
problem solving process. Thus, it is crucial to decide on a data structure that is both an
effective knowledge representation and efficiently accessible. What information should

68

3. Related approaches

be stored in a case? The more information is packed into it, the more likely it is to
detect commonalities between related cases. Much irrelevant or redundant information
however makes the case base hard to use and reduces efficiency. The need for efficient
structures does not only apply to the organization of cases, but also to the internal
structure of each case. A chosen data structure needs to be extensible as the case base
incrementally grows with each learned case. The more indexes and other data structures
are created for accelerated output, the more administrative data has to be updated for
each alteration of the case base. Finally general domain knowledge has to be integrated
with the case base in a way that integrates them in requests. It may have for example
the form of a rule base containing "best-practice" rules which are applied to each query
before it is directed to the case base.

Case retrieval is clearly identified by its input and output: It starts with the reception
of an incomplete problem description as input and outputs the best matching case from
the case base. Three major steps lead to the desired outcomes. The input is first
analyzed in order to identify its features. This corresponds to the acquisition of a true
understanding for the present problem. The set of features is used for an initial matching
procedure in order to identify a number of candidates within the case base that are
potential solutions. Next a selection process of the most promising results refines the
matching set until a best matching case becomes evident. Eventually matching and
selection are one single step, but they usually differ from each other by the applied
depth of analysis. While matching is more superficial, selection analyzes more detailed
the relevance of identical and non-identical features.

Case retrieval needs a measure or metric to compare the similarity of cases and the
relevance of features: Those measures can be either based on syntactic or semantic
similarities. Syntactic measures are simpler to apply and return a rather superficial result
while semantic similarities are more accurate and more complex to obtain. Semantic
matching requires general domain knowledge in order to interpret for example contextual
information. Identifying a set of features from the given input and concluding on a
problem type requires a type of a semantic network that correlates terminology.

Example 17. A straightforward example for a similarity metric is used in CBRFlow
[WWBO04]. A query @ on the case base represents a new problem and is matched
against a solved problem C from the case base for similarity. Features of cases are
detected in this approach by a question-answer process; thus a set of answered questions
{QA,...,QA,,} comes with (). A comparison of these questions and answers in pairs
yields an observation whether the pair is matching or not. The similarity is calculated
as the normalized difference between the number of shared observations and the number
of conflicting observations.

same(Qoa, Coa) — diff(Qoa, Cga)
[Cqal

sim(Q, C) =

Case reuse is based on the identification of matching and differing attributes between

69

3. Related approaches

the old and new case. While the useful parts of the old case have to be extracted into the
new case, the non-matching parts are to be left out. In a more simplistic scenario it is
sufficient to make a comparison for similarities — the differences between the cases appear
irrelevant and are abstracted away. Then both cases are reduced to the problem class
and the retrieved case is copied as a solution to the new case. More realistic however is
a scenario where the retrieved case can not be transferred immediately to the new case
but requires adaption.

Adaption is achieved by either finding a transformation that translates the old solution
into a new solution or deriving the past methods such that it produces a solution for
the new case. Transforming the solution is only appropriate though if the case is rather
output oriented and the procedures themselves are not crucial to the success of a case.

Example 18. During the process of designing a car body, mechanical engineers use a
virtual prototype called digital mock-up which is equipped with methods to check for
collisions of body parts during development. Dependent on the type and severeness
of collisions, synchronization of collaborate work and resolution of problems can be
classified in several cases. For minor issues the transformation of older solutions is
likely to be sufficient because here only the outcome (which is a resolved collision) is
relevant. However, if the collision is more complicated and involves meetings of several
disciplines, then the resolution process itself in the form of inter-personal communication
is important as well and is influenced by many external parameters. Comparable cases
from the case base must then be adapted and reenacted instead of a replication and
modification of their former solution.

Case revision evolves out the lack of correctness or completeness of a reused solution.
It includes the evaluation of the reused case in order to clarify its deviation from current
requirements. After this has been found out by simulation or applying domain knowl-
edge, a learning effect is accomplished by extending the case base with the new findings.
Furthermore, faults in the reused case may be repaired by generating explanations for
them. Based on an explanation, modifications can be developed to repair a case solu-
tion. After a case has been revised, it should be assured that it can be applied without
exceptional behavior.

Case retainment enables the learning procedure within CBR by incrementally extend-
ing its case base. Depending on whether the new case has been derived from a past case
or was newly defined, existing cases are generalized by supplemental features or new
cases are added. Problem and solution descriptors as well as indexes for case retrieval
methods have to be refreshed for the updated case base to take effect.

3.1.2. Applications

CODAW The Case-Oriented Design Assistant for Workflow Modeling (CODAW) is
an approach that aims at supporting workflow model reuse during workflow design.

70

3. Related approaches

Madhusudan et al. point out the lack of useful standards regarding process model
storage, retrieval, reuse and assembly. In [MZ03, MZMO04], they present an architectural
proposal for case representation, case retrieval and case composition.

Manual process modeling is here considered a traversal of a "design space" defined by
a large number of process model alternatives and the selection of an optimal process
model that reflects the given problem best. Two phases are identified within process
design:

In the first phase, relevant business tasks are put into a partial ordering that satisfies all
preconditions and postconditions. Multiple process models can be found that meet these
requirements. In the second phase, the favored process model is selected and completed:
Routing is optimized with respect to flexibility and parallelity and appropriate agents
and resources are associated with the model. In both phases of design, process knowledge
from the repository in the form of cases may be reused.

New Business RETRIEVE

Requirement

Search for existing process
models with similar
requirements

Similar solution does not
exist but partial matches

Similar solution exists

Apply minor modifications
and reuse case

Compose a new case

h 4 Repository v
Apply modifications using B Use domain knowledge and
domain knowledge: e Domain | _L__,| partial matches to create
knowledge new process alternatives:
adapt tasks/task structures
Select tasks, constraints,

generate alternative
process sequences
manually or automatically

allocation, agent routing, ..

A allocate resources and

|
v

|
|
|
+
~i
I
I
I
|
Change resource 1
I
|
I
I
|
|
|
I
I
I
|
|
|
|
]
I
I
I
|
|
|
I
I
|
i
I
i
I
I
I
I

Validate/verify new solution | agents
REUSE REVISE
B —
Flow of process model
Store new case in repository

—— — — —»
Flow of repository

knowledge

RETAIN Deploy solution

Figure 3.2.: CODAW workflow design process (adapted from [MZ03| Figure 2)

71

3. Related approaches

Figure 3.2 shows the simplified design process of process modeling using CODAW. In
compliance with the generic CBR cycle (Figure 3.1 on page 68), its procedure splits
up into four phases: Retrieval, reuse, revision and retainment. An incoming business
requirement initiates retrieval by searching the repository for process models with sim-
ilar requirements. If a match is made, then the found case is slightly modified and
reused, otherwise a new process must be composed. The modification for reuse are mi-
nor structural /semantic changes such as the replacement of a task or the modification of
the process schema. Additionally, instance-specific settings such as resource allocation
need to be set up individually, even for processes of the same type. Validation and
verification uses measures such as domain-specific correctness checks, visualization or
simulation and assures the correctness of a reproduced case. For knowledge retainment,
the newly developed process is not only deployed to the workflow management system
after checking, but also stored into the repository for later reuse. If no suitable template
could be found during case retrieval, a new case has to be composed. Creation relies
on domain knowledge and eventual partial matches for the synthesis of new process al-
ternatives. This is done either entirely manual or is supported by a planning software,
whose basic principles will be mentioned below. Revision is finalized in the same way by
validation and verification, retainment and the solution is deployment just like a reused
case.

Case representation is here approached by separating prototypical cases from instance-
level cases. In the terminology of this thesis, a prototypical case comes close to what
we refer to as a process definition and an instance-level case would then be a process
instance. Prototypical cases contain the sequence of activities and represent a process
schema for a generic business requirement. Instance-level cases depict the execution trail
of a prototypical case for a specific input. One prototypical case can be associated with
several instance-level cases.

In CODAW'’s process ontology, the existence of primitive tasks which can be combined
into more complex processes is assumed. A process schema defines then internal struc-
ture of a composite task. Furthermore, it is possible to create hierarchical structures by
reusing a schema as a component tasks in another process.

The implementation of process definitions and instances is based on XML Schema and
leans towards standards such as XPDL!, WSFL? |, XLANG? and BPEL*. A repository
organizes prototypical and instance-level cases as well as a collection of primitive tasks.
Cases are arranged in a hierarchical directory structure in flat XML files. It indexes
cases according to their functional application area, task and organizational structure.

!See the XML Process Definition Language Specification Version 1.0 Final Draft:
http://www.wfmec.org/standards/docs/TC-1025 10 _xpdl 102502.pdf

2See the Web Services Flow Language Version 1.0:
http://www4.ibm.com/software/solutions/webservices/pdf/ WSFL.pdf

3See the XLANG Initial Public Draft Release http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm

“See the Web Services Business Process Execution Language Version 2.0: http://www.oasis-
open.org/committees/download.php/11600/wsbpel-specification-draft-022705.htm

72

3. Related approaches

Retrieval is implemented by plain text search or XQuery requests doing exact matches
on defined XML tags.

An example of the XML representation of a new product development process schema
is given in Appendix A.1.1. It becomes evident by the example that a process schema
consists of three sets of tags (in parentheses the corresponding line numbers of the exam-
ple is given): General descriptive tags for ID, name, type and description of the schema
(lines 2 — 5), workflow level structural tags to describe the overall process (lines 6 — 14)
and task level tags specifying tasks and their parameters (lines 15 — 64). It is substan-
tial to notice that each task is defined in three ways: First, a state-space declarative
AT planning based representation is given by the tag TaskDesign (lines 21 — 37) and
is used for case composition. Second a formal model representation using process alge-
braic representation is denoted by tag TaskFormal (lines 38 — 40). In the example, this
is textual description of a simple sequential finite state automaton. Third, a procedural
task definition denoted by TaskDefn (lines 41 — 63) highlights the implementation of
related attributes of the task such as roles (lines 42 — 48, named "Agent"), procedure
description (lines 49 — 53) and data I/O (lines 54 — 62).

An illustration of the XML schema of an instance representation is shown in Figure
A.1 in Appendix A.1.2. IDs identify the instance and the process schema it originates
from. It captures its execution history by recording data inputs and outputs, execution
performance metrics and a history of events.

Similarity-based case retrieval embodies a flexible notion of similarity that combines
features of domain knowledge and process graph structures. Case retrieval in CODAW
relies on an algorithm by Melnik et al. named Similarity Flooding Schema Matching
Algorithm [MGMRO2]. It is an inexact and generic similarity based schema matching
algorithm. The strength of this approach lies in its versatility that makes it applicable
to many structures, including both process schemata and instances.

It takes two graphs as input and generates a mapping between nodes that appear to
correspond. A threshold is defined in order to filter out the most relevant matches.
Similarity Flooding is meant to support a human in the matching process rather than
creating a complete matching autonomously. That is why the final step is to present the
most relevant matches to a human who revises and corrects them where needed.

The algorithm can be briefly described as follows: First it transforms the two input
structures into directed labeled graphs. The core idea of the matching procedure between
those graphs is to combine two ideas: As a starting point, a string comparison of common
prefixes and suffixes between designations of graph elements is performed. Based on the
assumption that, if two nodes are similar, then their neighboring nodes are similar as
well, an iterative fixpoint computation follows. Thus, a node propagates its similarity
to its adjacent nodes, who themselves continue propagation of similarity updates until
a stable state, the fixpoint, has been reached. Propagation relies on flooding algorithms

73

3. Related approaches

(such as the Distance Vector Multicast Routing Protocol®) which explains the naming of
Similarity Flooding. Notice that this algorithm does not have any semantic knowledge
about the contents of the input it is processing. Instead, semantic knowledge about
process models is replaced by the explicit representation and mutual influence of name,
type and attributes of process model elements.

Similarity Flooding for workflows runs on a graph representation that explicitly models
nodes for tasks and control structures such as in a Petri Net. While task nodes are named
according to their underlying task type, all control nodes share a common descriptor in
order to make their common type recognizable for Similarity Flooding. By defining
the similarity measure between any control and task node as 0, an accidental match
between different element types is avoided. While similarity values applying for matches
of control nodes are limited to discrete values 0 or 1 (representing no match or full match
respectively), matches of task nodes can range continuously between 0 and 1 according
to their substring similarity.

The matching algorithm results in a ranked list of map pairs including their final sim-
ilarity after convergence, from which the most relevant subset can be chosen as a final
mapping. As a manual selection of this map would turn out to be a tedious task, a filter-
ing process is applied before the resulting table is being presented to the user. Filtering
rules rely on experimentally determined similarity thresholds or can make use of domain
specific knowledge. The accuracy and efficiency of Similarity Flooding for workflows is
mainly determined by a good choice of threshold and is further examined experimentally
as found in [MGRO2|.

Functional limitations apply to Similarity Flooding as it only works and performs on
directed graphs sufficiently. Based on its algorithmic idea, it accounts only for semantic
similarity which is being reflected by node and edge labels and topological similarity of
the compared graphs. As far as computational resources are concerned, the size of input
graph nodes is limited by the fact that intermediate graph structures are based on cross
product operations with exponential costs.

Case composition is invoked by CODAW if either case retrieval fails to find a matching
recent case or when retrieved cases have to be composed. If no matching case was found,
a new process model is generated by the composition of primitive tasks. The input of case
composition describes a business problem defined in a planning language. The output
is a set of declarative process models that characterize its attributes and constraints in
an enumerative style.

Case-based planning in the CODAW framework uses the Simple Hierarchical Ordered
Planning (SHOP) algorithm, an implementation of the Hierarchical Task Network plan-
ning technique. Its approach is to create plans by task decomposition and constraint
satisfaction. The SHOP algorithm supports reasoning on interactions between task
preconditions and postconditions during state-space search for developing plans. Addi-

’Defined in RFC 1075, compare also Kurose and Ross [KR93] p.308 et sqq.

74

3. Related approaches

tionally, SHOP allows reuse of appropriate prototypical and instance-level cases from
repositories during problem solving.

The SHOP algorithm works roughly as follows: A planning problem is first specified by
an initial task network, which is a collection of tasks that need to be performed under
a specified set of constraints. The planning process decomposes tasks in the initial
task network into progressively smaller subtasks until the task network contains only
primitive tasks or operators. The decomposition of a task into subtasks is performed
using a method from a domain description. This method specifies how to decompose the
task into a set of subtasks. Each method is associated with various constraints that limit
the applicability of the method to certain conditions and define the relations between
the subtasks of the method. The planning algorithm performs a recursive search of the
planning state space via task decomposition and constraint satisfaction. It terminates
either when all a solution has been found that meets all pre- and postconditions or
when it tries to backtrack a composite task that does not offer any more methods to
decompose successfully.

The SHOP algorithm is able to generate a sequential workflow which requires post-
processing in order to add concurrently executed tasks by the analysis of data and
causal dependencies. The effectiveness of the SHOP algorithm strongly depends on
an appropriate design of the predicates, operators and methods. In the worst case, it
explores the complete search space incurring exponential costs. With respect to that
issues, time-out mechanisms may be used to ensure termination.

Conversational case-based reasoning A conversational case-based reasoning (CCBR)
system as proposed by Weber et al. in their system CBRFlow [WWBO04] is a hybrid rea-
soning approach combined with user interaction. Rule-based reasoning procedures are
supplemented by case-based reasoning which improves adaptivity of the overall system.
Business rules are a set of statements representing general, domain-specific knowledge
that regulate the course of processes, such as instantiation or exception handling. A set
of business rules is predefined in the process model and is annotated during run time
with cases having context-specific information. The business rule set defines the de-
fault system, whereas cases add specific knowledge gained by previous concrete problem
situations.

CCBR approaches to integrate machine learning methods from CBR with continuous
user interaction in order to enhance the learning process and to overcome weaknesses of
pure machine approaches. A case in CBRFlow consists of a free textual description, a set
of question-answer pairs give the reason for the case and actions. An action is specified
by the change operations taken and the subject they are operating on. In contrast to
traditional CBR, problems do not need to be specified a priori completely in CCBR.
Instead, the system is assisted by user interaction in an initiated dialogue of questions
and answers that helps to retrieve the desired case or to evaluate the relevance of case
features. This dialogue proceeds incrementally until the user has pinpointed a solution.

75

3. Related approaches

is abstracted to

adds rule adds case
—— Rule base Case base +——
Process Process
modeler is annotated by user
Process design time ‘ Process enactment time

-t ‘ >

Figure 3.3.: Adaptive workflow management approach with CCBR (compare [WWB04]
Figure 1)

The adaptive workflow management approach of CCBR as shown in Figure 3.3 starts
with an initial model. Tt consists of a set of business rules which are formalized for
example in event-condition-action (ECA) form. These rules describe the model’s control
flow. During run time, instances of a model are created and users work with them.
Whenever changing requirements or exceptions cause deviations from the model, a user
annotates the corresponding business rule by adding a case. The case describes, in which
context what kind of deviation between reality and model occurred. Over time a case
base becomes established and shows, which kinds of exceptions from business rules occur
more frequently than others. Based on that information, process modelers analyze those
cases which describe concrete exceptional situations and abstract from them changes
on business rules that incorporate the modified requirements. Thus the original process
model is adapted to changing environments. As changes to case and rule base can be
temporally overlapping or take place concurrently, a process model adapts incrementally
without strictly separated design and enactment phases.

The fundamental distinction between rules and cases is that rules are applied auto-
matically, whereas cases require user interaction. Reasons that induce cases such as
exceptions or helpful annotations are too manifold than to be processed automatically
and need to be checked manually. Cases are used in two ways: One type supplements
the rule base by referring to specific contexts that cause changes. Alternatively a case
updates a specific rule by "hardcoding" the case with it. That way a case can update a
particular rule.

Applying hybrid reasoning in the form of CCBR bears several benefits over pure rule-
based reasoning: Explicit initial process modeling is allowed to be incomplete or rather
low-detailed. Especially before process enactment it is very hard or expensive to find
all important rules or parameters influencing the process. As improvement of models
with CCBR is more continuous than reengineering the rule base, a starting model is
more flexibly adapted to the starting and continuously changing environment. Cases
enable users to express immediate manual adaptions and serve as a decision support
system. The selective transfer of cases into rules differentiates one-time exceptions from

76

3. Related approaches

more systematic changes caused by new circumstances. Due to its high frequency, the
latter is abstracted into the model and becomes more efficient because it is executed
fully automated.

WorkBrain WorkBrain is a system presented by Wargitsch et al. in [WWT97, WWT98]
that integrates an evolutionary workflow management system with an Organizational
Memory Information System (OMIS). A workflow management system being evolution-
ary addresses here a step-by-step development of the workflow that involves its partici-
pants in incremental process design.

The concept of an Organizational Memory represents an organization’s ability to retain
previously made experience, so-called "learned lessons". Its existence is desirable as
it leads to improved performance and higher effectiveness. Usually it does not exist
implicitly within an organization’s structure but has to be established explicitly. An
OMIS tries to implement the concept of an organizational memory with information
technology. On its own, an OMIS does not differ substantially from common information
systems or databases that span over a large knowledge domain. Therefore, it does suffer
the same weaknesses because its access methods are often insufficient to find data and
to interpret them correctly: Usability is hard to manage for potentially many types of
involved users, the costs for maintenance in order to keep the data basis up-to-date,
consistent and correct are high.

By integrating an OMIS with a workflow management system, WorkBrain attempts to
overcome each individual system’s deficiencies®. In order to put its evolutionary idea into
practice, its concrete learning approach is twofold: Learning by example enables workflow
users to introduce spontaneously new elements into the process. This provides a more
creative way of design and positions its results closer to operations. At the same time,
process designers observe and reflect those changes of the users and apply revisions that
are more durable and efficient. This part of an evolving workflow management system
is called learning by supervision. Together, these learning cycles form a double-loop
learning approach that is depicted in Figure 3.4.

6The deficiencies of a regular workflow management system were presented in Section 1.1

77

3. Related approaches

Modification Planning

il

Process Process
designer user
\ Cases /

General
knowledge

Analysis Execution

Organizational
memory

Archiving

Outer cycle: Inner cycle:

“Learning by supervision”

“Learning by examples”

Figure 3.4.: Double-loop learning (compare [WWT98| Figure 1)

Central component of double-loop learning is the organizational memory. One part is a
case base filled with terminated workflows and related audit data. The other part bears
domain specific knowledge. Both learning loops are attached to the organizational mem-
ory, "learning by supervision" as the outer cycle and "learning by examples" as the inner
cycle. The process designer analyzes cases within the organizational memory by observ-
ing their structure and frequency and modifies process models accordingly. Process users
plan their activities and process executed instances. For treatment of upcoming excep-
tions during execution, they rely on the organizational memory. Subsequent solutions
for exceptions are archived as cases in the case base.

In order to simplify usage, partial processes called "single building blocks" are stored
as cases rather that entire processes. By this modularization, the number of variations
within cases decreases significantly. Building blocks exist on various level of granularity,
that is, blocks are based on a varying level of detail. The lowest level represents an
elementary activity, intermediate levels are sets of activities or subprocesses. The top
level is represented by a complete process phase. For each level, a catalog describes the
available cases within the case base.

A further implemented concept is separation of control: Organized in two layers, a man-
agement layer defines milestones, beneath actions are self-managed by subunits and users
in a second layer. On the management layer the process is automated and for subunits
an ad-hoc changeable subprocess allows optimization and more control on details.

The advantage of using an OMIS is that it integrates processes and information. Knowl-
edge becomes explicitly stored and does not get lost when employees leave an organiza-
tion. Both parties, process users and designers apply changes to process instances and
types respectively. Thus processes can adapt to changing internal and external require-

78

3. Related approaches

ments. Due to the outer learning cycle, continuous analysis makes it easy to check for
performance, goal attainment and to apply benchmarking and monitoring methods.

The WorkBrain approach appears very similar to CCBR: Both improve the process
incrementally by allowing the user to make adaptions according to his current situation
using a case base. However, in contrast to CBRFlow, WorkBrain interprets and uses
the case base in a broader sense as a part of an organizational memory. While in CCBR
a case base is a set of deviations, exceptions and adaptions, in WorkBrain it contains
both fundamental and supplemental data.

Exception handling with CBR Hwang et al. aim in [HHT99| at supporting users on
exception handling with a case base of past exceptions. When a new exception shows up,
the system proposes solutions of previously experienced exceptions based on similarity
measures.

Two types of exceptions are differentiated: Those that are expected and are treated by
implementing explicit modeling for exceptions. These are typically adaptive workflow
approaches, such as ADEPT [RD98|. The other type of exceptions which occur com-
pletely unezpected are dealt with in this approach: Reactions for exceptions include
ignoring them, retry the failed activity, perform a partial rollback of the process, add
compensation activities or delete planned activities and make general evaluations for
correctness.

Their idea of exception handling has two steps: First, a rule base is consulted. Each rule
refers to a type of exceptions. If a matching rule could be found, then the rule tells how
to resolve the exception. The rule base represents domain specific knowledge that makes
it possible to specify instantly the correct treatment of a predefined type of exception.

If the rule base fails, then in a second step the user searches through a case base filled
with exceptions for similar exceptions and their resolution. Search is done by a similarity
metric, that is based on a number of attributes that characterize a particular exception:

e Process instance status holds the execution state of a process instance and all
its constituent activities (compare Section 2.4.2)

e Activity describes which activity caused the exception

e Event gives a semantic description of the type of exception specified by keywords
and/or free text

e Who experienced/noticed the exception?

e When in time did the exception happen?

A complete matching between all attributes of the current exception and an stored
exception in the case base is very unlikely. In order to implement a similarity measure,

79

3. Related approaches

a key idea of this project is to formalize and classify the relevance of attributes and their
influence on the similarity of exceptions in concept hierarchies. For each attribute type,
concepts are ordered hierarchically in a tree structure such that the most general concept
is the root of the tree and more specific concepts are organized in branches. Within
hierarchic trees, the depth of a node denotes its distance from the root. Levels in contrast
describe the depth of a node ¢ with regard to the tree’s lowest leaves. That is, level; =
depth,, — depth; with m = max{depth,|n € T, n is a node, T' is a concept tree}.

Example 19. A concept hierarchy for the attribute Activity corresponds to a task
decomposition of the activity as shown in Figure 3.5.

Level
A
Window power 2
lifter assembly
] ME components \] EE components \] SD components \ 1
|Button || Motor || Gears| |Controller|| Actors | Sensors| | Firmware |[Software| 0

Figure 3.5.: Example: Concept hierarchy of a window power lifter assembly

The assembly of a window power lifter constitutes components from the three disciplines
mechanical engineering, electrical engineering and software development. The leafs of
the tree represent the lowest level 0. With each parent node, the level increments.

Let the tuple < ay,as,...,a; > be a number of k attributes that describe the current
exception. This is matched against the attributes of solutions < sq, s9,..., 8, > in the
case base. A function leastCommonAncestor(< a;,s; >) takes two attributes as input
and returns the least common ancestor [of both in the concept tree. That is, it returns
the node [in the concept tree at the lowest level possible, that contains both a; and s;
in its child branches. The level of [is an measure for the similarity of the compared pair
of problems and solutions with respect to the i™* attribute: The lower the level of I, the
more similar is the solution to the given problem.

80

3. Related approaches

Example 20. This example illustrates the least common ancestor concept building
on Example 19. Suppose a problem is described among others by an attribute a; that
specifies the activity type. Two solutions s and s” are found in the case base. The values
for each one of these attributes are shown in Figure 3.6.

Level
l,l‘ A
Window power 2
lifter assembly
l;
| ME components |] EE components \] SD components \ 1
[Button || Motor |[Gears| |Controller|| Actors || Sensors| [Firmware| | Software| 0

a; Si s’
Figure 3.6.: Example: Least common ancestor in a concept hierarchy

The least common ancestor [; for < a;,s; > and < a;,s; > has level 1 and level 2
respectively. Because of its lower common ancestor level, solution s; is preferable over
si: This makes sense because an exception that occurred during the assembly of gears
is more similar to an exception on button assembly than an exception during firmware
upload.

If additionally a weight function is defined, the relevance of each attribute can be
weighted individually. Adding the weighted attributes up returns a similarity index
between the current exception and the solution. Based on this index, the best matching
solution is proposed. The best solution with the lowest overall index matches as the
most relevant solution on the lowest level in the concept tree.

Apart from efficiency and implementational issues’, the concept tree approach is limited
by two issues: First, a weight function influences the matching process heavily and has
to be set for each upcoming problem individually in order to optimize results. Finding
a generic weight function that matches most problems well might to turn out to be very
hard. Second, the foundational assumption of concept trees is that all attributes can be
broken down hierarchically. This is not necessarily true for all types of attributes and can
be ambiguous, too. An Activity attribute might be decomposed either in a more logical
fashion or a way that reflects better the temporal aspects of the tasks that constitute
the activity. The first would be formally more correct, while the second reflects better
on reality.

"Implementational issues are discussed in [HHT99] in detail

81

3. Related approaches

3.1.3. Assessment of usefulness

CBR in general bears many useful aspects for Emergent Workflow: Its learning & reuse-
based approach has benefits for handling recurring problems more efficiently. In ap-
plication, it has been identified to be well suitable for slight variations around clearly
identifiable tasks. As an integrated approach, CBR must be combined with new case
creation methods in order to be useful.

CODAW on page 70 introduces multiple interesting aspects for Emergent Workflow: Tts
XML based process model and instance represents a lightweight alternative to BPEL,
XPDL and other standardization efforts. In fact, this may be due to the fact that
CODAW including its case representation has been developed for an engineering appli-
cation field which allows to reduce generic constructs. With respect to the Emergent
Workflow requirements summarized in Table 2.4, Section 2.3.10, these representations
can be used for temporary instance representation (Rla, R1b) and permanent storage of
process models (R2c¢) and fragments (R2d). In particular, this instance representation
allows annotations (RE9) (this feature is here meant for administrators, but could be
used by users as well). Its state-space declarative representation allows the represen-
tation of task compositions (R2e). As the representation is XML based, basic access
methods like XQUERY for full-text search exist(R4). Furthermore, the similarity flood-
ing schema matching algorithm is versatile enough to be used in the process matching
engine for searches with qualitative constraints (PM1). It performs an approximate,
schema-matching search (PM2, PM3) on syntactic similarity (PM4) and allows filtering
of its outputs (PM5). The planning algorithm SHOP can be used for automated case
selection and planning supporting the recognition of cases (RE5). As it is able to com-
pose and decompose composite tasks, it may be used by process designers for fragment
composition (UIL).

CCBR on page 75 improves human-machine interaction: Fundamental to this approach
is the separation of automatic rules and manual cases. A mixed-initiative, conversation-
based case finding enhances usability of a system (UI2). Furthermore, reinstantiation of a
defined case is done manually but already predefined (RE5). It invokes an exact matching
algorithm (PM2) based on descriptive and quantitative attributes and constraints (PM2,
PM3). The analysis of the case base is done manually (RE5).

WorkBrain on page 77 introduces the concept of an Organizational Memory Information
System. This integrates general knowledge with cases representing archived instances
(R2d). The dictionary and organizational model in Emergent Workflow can be seen
as a reduced version or a part of the organizational memory (R2a, R2b). Double-loop
learning addresses the evolution of process models initiated by workflow users (REG,
RE9) and revised and permanently implemented by process designers (RE4, RET7).

The work by Hwang et al. on exception handling on page 79 introduces exception han-
dling (RE6) by using a rule base for automated handling and a case base that supports
manual resolution of exceptions (RE5). Based on their idea of concept hierarchies, this

82

3. Related approaches

approach performs similarity matching between exceptions using exception attributes.
This is a quantitative (PM1) and exact (PM2) matching type based on a descriptive
(PM3) search for structural similarity (PM4). The concept of least common ancestors
allows to put an index on results and to sort them (PM5).

3.2. Process mining

3.2.1. Fundamentals

Explicit creation of process models is a lengthy task and its outcomes do not always
reflect the real process accurately. The goal of process mining is to reverse the process
and collect data at run time to support workflow design and analysis. Van der Aalst et
al. describe process mining respectively workflow mining in [ADH'03] as follows:

The term process mining refers to methods for distilling a structured process
description from a set of real executions. Because these methods focus on
so-called case-driven process that are supported by contemporary workflow
management systems, we also use the term workflow mining.

Workflow mining

Diagnosis

Process Process
enactment Delta analysis design

System configuration

Traditional approach

Figure 3.7.: Workflow mining in the business process life cycle (compare [ADH*03] Fig-
ure 1)

The business process life cycle has already been introduced in Section 1.1 (Figure 1.1 on
page 2). In Figure 3.7, the role of workflow mining is shown in the context of the business

83

3. Related approaches

process life cycle. While the traditional approach starts with process design and develops
models which are later enacted, workflow mining takes the outputs of process enactment
and supports process design. This is possible because implicitly processes do always
exist, even if they were not explicitly modeled in a preceding design phase. Involved
software such as an ERP system usually keeps track of events and transactions and
provides logging functionality. Process mining can use this information as a starting
point for the derivation of a formalization of the ongoing process. A delta analysis
compares bidirectional the designed process models with mined real processes from the
enactment phase. This "delta" gap between a model and its actual behavior shows
discrepancies that can indicate weaknesses of models. These are very useful e.g. for
iterative process improvement.

Input & output A minimum input for a workflow mining algorithm is a sequential
list of entries describing an event of the execution of a process instance each. This list
is also referred to as a log. A log file must meet following minimum requirements:

e Each log event refers to a task
e Each log event refers to an instance

e The log events are totally ordered

A minimal log is shown in Table 3.1.

Instance identifier | Task identifier

Instance 1 Task A
Instance 2 Task A
Instance 1 Task B

Instance 2 Task C

Table 3.1.: Simplistic minimum activity log

When real-life information systems record protocols of events, usually much more in-
formation is put into a log file: For each event, an ewvent type is specified such as
"start/stop". Additionally, a time stamp as well as further context-specific can be sup-
plied for each entry. Such would be a transaction status, indication of exceptions, a user
causing the event or a case description within a certain instance. Notice that such addi-
tional information is necessary for a more sophisticated semantic analysis as Emergent
Workflow intends to do (see Section 2.3.6).

The output of a mining algorithm is a representation of a process model or an incomplete
template indicating its schema. The outcome determines how much of the business
process cycle can be skipped by mining (see Figure 3.7 on page 83) a log file. Workflow

84

3. Related approaches

mining is either able to step over the whole process design phase if resulting models are
ready for enactment or gives a starting point for process designers who revise a provided
template.

Problem definition Mining a process graph can be seen as two subproblems:

e Finding of a schematic graph structure that generates the log output.
The extraction of a set of structural dependencies (which are usually visualized
in a process graph) from a set of logged events is what most mining algorithms
are dealing with. With some limitations, this can be done based on a minimum
input log by a syntax-analyzing algorithm without user interaction. Notice that
most algorithms do not focus on the reconstruction of the ezact generating graph
but create a sound and equivalent graph which has the same output. That is, any
reachable marking state in the graph is legal and terminates correctly with the
same functional result as the original.

e Finding of edge conditions. The second step of recreating a process model is
less straightforward as it requires an understanding of the semantics of a process.
Real processes make use of conditional constructs such as exclusive branching and
loops. During the first step, the fact that a conditional construct exists has been
detected — now it has to be added what the condition was. If this is planned to be
done by information provided by the process log only, then the process log must
be enriched with supplemental data describing a task’s and instance’s context. For
example an exclusive conditional splits up two distinct alternatives identified by
a condition. If these two cases can be identified, then it is possible to derive a
condition.

Complexity & Incompleteness One can look at a graph that represents a process
model PM as a finite state automaton®. The process schema defines here a grammar
on an alphabet) whose symbols are tasks. A formal language L on) is then defined
by any subset of >.". L consists of all words that can be generated by a given grammar
over Y . Then there exists an onto® function that maps each process instance that was
enacted on PM to a word of L. The existence of such a function is evident because
instances are not only specified by their sequence of tasks, but also by their context.
What process mining actually tries to do is to draw a conclusion on the process schema
from a limited set of instances. As real-life business processes are rather large, this set
is almost certain to be incomplete. This situation equals to having an incomplete set
of words of an unknown language. Now one tries to guess a grammar that creates the
unknown language. This procedure is very unlikely to yield a correct guess. Therefore,

8See any book introducing language theory, e.g. M. Sipser "Introduction to the Theory of Computa-
tion".
9Note to German readers: "Onto" translates into German "surjektiv".

85

3. Related approaches

there will be always a difference between the real process and its mined reconstruction,
even though mining techniques attempt to make a very realistic guess that matches the
original process model for certain classes of processes quite well.

Example 21. In this example, the conceptual idea of the a-algorithm [AWMO3]
is given: The a-algorithm inputs an event log as shown in Table 3.1 and outputs a
Place/Transition net (P/T-net). P/T-nets extend the Petri Net formalism for use with
multiple concurrently running tokens®.

Fundamental for most mining algorithms is the idea of causal relations. It is defined
as follows: An activity B follows an activity A (A — B) if either B starts after the
termination of A or there exists an activity C such that C follows A and B follows C
(A— CANC — B) in each instance log. If A — BA B -+ A, then B causally follows A.
IfA— BAB— Aor A—» BAB -+ A, then A and B are independent.

The basic functionality of the a-algorithm is the following: A task ezists in the resulting
net if it appears in any log trace. A task is either the first task of a process model or
has an ingoing edge for each task that this task causally follows. In an analogy, a task
is either the last task of a process model or has an outgoing edge for each task that
causally follows it. If a task is neither the first or last task in a process model nor does it
have any causal relations, then it does not receive any ingoing and outgoing edges. This
version of the a-algorithm mines simply structured graphs (including sequence, parallel
and conditional branching) mostly correct, but fails on structures containing short loops,
invisible or duplicate tasks and other advanced constructs. Support for them requires
extensions which are further discussed in [ADHT03, MAWO03].

*See W. Reisig and G. Rozenberg in "Lectures on Petri Nets I: Basic Models", volume 1491 of "Lecture
Notes in Computer Science".

Difficulties Besides the conceptual problems of process model recovery from log files,
additional conditions complicate the functionality of process mining.

Noise in process logs describes the fact that process logs can be not only incomplete,
but also incorrect. Due to human or technical errors, a log file is possibly disordered
or events themselves contain wrong information. Even with correct input logs, wrong
models can be mined due to coincidentally colliding events that are not related but are
misinterpreted by mining algorithms. Certain mining approaches try overcome this by
the introduction of stochastic models and frequency tables that help to detect and ignore

erroneous entries!'?.

Privacy is a non-functional issues that has major impact of the usability of process
mining. As an event log contains personalized information about individuals interacting
with an information system, the storage and processing of process logs may be subject
to restriction due to federal legislation or corporate ethics. Functionality to anonymize
data before collecting it in an event log may be required in certain situations.

0Compare the work of Herbst and Karagiannis referred to in [ADHT 03]

86

3. Related approaches

3.2.2. Multi-phase process mining

Van Dongen and van der Aalst present in [DA04| a process mining approach in a control-
flow perspective, that creates visualizations of individual process instances. It splits the
mining process up into two phases: The first step creates representations for each running
instance individually, the second step optionally merges the instance representations into
an overall process model.

This is motivated by the fact that, during run time, analysis of performance is inter-
esting, such as the average time to transfer a task from one person to another. The
implemented processes however differ from actual execution, therefore their analysis is
not sufficient. Rather, individual execution trails are discovered by mining an individual
process instance history from process logs. So the basic idea is to look at each instance
individually rather that looking at a combined, overall trace of events.

Without giving formal specifics, instance graphs are created as follows: A process log
consists of a sequence of log entries that refer to multiple process instances. Processes
are mined by first extracting an instance net and transforming that into an instance
graph. An instance net is based on an instance domain which links each log entry to a
task. This is necessary as duplicate tasks may appear in a log file. The instance domain
indexes the log entries and enables their clear referral. The instance net is an ordered
set of log entries which stem from one process instance. As an instance net has already
been executed in the past, no choice or loop constructs are needed. The properties of
this ordering relation (referred to as ¢ in the following list) are:

o is irreflexive, asymmetric and acyclic

If an entry ¢ appears before an entry j in the log, then j ¢ ¢ can not exist

For any i ¢ j there is no common intermediate element % such that ok and ko™ j.
The symbol o1 expresses that there may exist any sequence of 0. ..n intermediate
ordering relations ¢ between k and j.

If duplicate tasks appear in the log, then they must be related with o™

This ordering creates relations between the closest tasks, each of which have a causal
relation. As a causal relation indicates a sequential structure, no symmetric causal
relations with the exception of short loops are allowed.

Creating an instance graph from an instance net is straightforward: Each task from the
instance net represents a node in the instance graph and each causal relation creates
an edge. If tasks have no causal relation with their predecessor or successor, their node
representation are parallel branches. Due to the retrospective view on the process as a
log, choice branching is not supported. Finally, a start and end node are added with in-
and outgoing edges respectively going into nodes that have no predecessor or successor.
An instance graph holds the property of being strongly connected. Furthermore, an

87

3. Related approaches

entry in the log only appears if all its predecessors in the directed graph have already
appeared in the graph'!. These assure the correctness of the reconstructed flow of tasks
in terms of executability and conformance with the records provided by the process log.

Instance mining may be beneficial when process logs are not complete as their complete-
ness is not required to produce useful results. Primary ways of usage include instant
instance visualization and other related functionality supporting the analysis, control
and planning of processes. As a secondary option, an instance graph can be either used
to be transformed into other data formats'? which may offer further processing such as
the aggregation of multiple instance graphs into one process schema. Usage limitations
apply when dealing with erroneous logs that require preceding filtering steps. Moreover,
meaningful aggregation is hard to accomplish when more complex routing structures are
involved.

3.2.3. Assessment of usefulness

The process mining approach clearly aligns with the functional requirements of the
process creation engine of Emergent Workflow (see Section 2.3.6). All requirements
references in paranthesis refer to the requirements summary in Table 2.4, Section 2.3.10
if not noted otherwise.

In Emergent Workflow, the audit trail composed of user interaction and system events
represents an event log enriched with context data (see Section 2.3.7 on page 33) which
meets the process creation engine’s input requirements (PC1, PC I/0). Regular workflow
mining as described on page 83 proposes algorithms that require as input completed logs
of sufficiently many instances in order to function properly. Therefore, they are focused
on ad posteriori analysis. With respect to the different purposes of documentation shown
in Table 2.2 on page 29, workflow mining offers means to document for later reuse, but
does not support planning or synchronization of ongoing operations (PC2). In order to
achieve robustness against real-life circumstance such as noisy log files, advanced mining
methods have been proposed (PC3).

Multi-phase process mining on page 87 is a mining approach of particular interest for
Emergent Workflow. Its first phase performs individual instance mining which aligns
perfectly with the creation of process fragments by a process creation engine (PC2). It
is not as complicated as regular process mining because it restricts itself to log analysis
of single instances. Thereby, the outputted metamodel is simpler as for example no
conditional branching is allowed and necessary (PC4). Moreover, its output format can
be easily transformed into other representations (PC4). Most noticeable is the fact that
instance-based mining is useful for immediate and individual support for workflow users.
While regular workflow mining is rather a post-hoc analysis, instance-based mining can
be done during execution as it does not require completeness of its input (PC2, PC3).

" Compare [DA04] page 8/369 for proofs
2Such as an Instance Event-driven Process Chain in [DA04] page 8/369 et sqq.

88

3. Related approaches

Finally, one can compare the results of instance-based process mining with the planned
overall process. This allows an analysis of the flexibility of process models and their
average level of deviation from the planned process.

3.3. Flexibility approaches

Approaches that introduce flexibility on process models during run time can be classified
into two categories: Ad-hoc change of process instances applied to instances during run
time and schematic changes applied to process models. As already motivated in Section
2.3.7 on page 40, instance-based changes are used for exceptional situations or changes
affecting only selected instances. Schematic changes indicate incremental systematic
change that applies to all instances and causes the process type to evolve.

3.3.1. Schema evolution and propagation

Schema evolution consists of a static part modifying the process models and a dynamic
part which refers to managing the migration of running instances [CCPP96].

A static evolution is the issue of modifying the workflow description and includes check-
ing for syntactic correctness. Dynamic evolution refers to managing running instances
whose type was modified. They require some form of assistance to adapt to the new re-
quirements formulated by the type change. Their consistency regarding their execution
state needs to be checked and assured.

Change operations on a process can have an impact on any one of its perspectives
(see Figure 2.14 on page 54): For instance the assignment of tasks to users or the
organizational structure can change as well as associated applications and use data.
The modification of the control flow is focused in the following Section due to its high
relevance.

A set of operations modifying the control flow holds characteristics such as being com-
plete, minimal and consistent. Completeness is achieved if any schema can be trans-
formed into any other schema. Minimality refers to the fact that only a minimum set of
operations is offered that meets the completeness requirement. Consistency means that
the change operation reinduces no errors during run time.

Dynamic schematic changes occur during workflow execution when the process model
adapts to a changing environment. Possible strategies to handle these changes during
execution are:

e Flushing the system. The enactment of new instances is delayed until all
running instances have terminated. Then changes are applied and enactment is

89

3. Related approaches

restarted. This strategy is safe but time costly and not acceptable when dealing
with many and long-running instances.

e Abortion of all jobs in progress. Running instances are aborted, the process
model is altered and instances are re-run using the new schema. Again, this
strategy is unacceptable due to the high costs of restarting all instances and redoing
all the work to reach the originating state.

e Run old and new versions simultaneously. Here, running instances remain
running on the "old" process model while newly enacted instances use the new
process model. The old process model remains active until all old instances have
terminated. This strategy is potentially unsafe and inconsistencies are especially
likely if the schematic change interferes with data dependencies or the change
downsizes the model (see below).

e Safe migration of instances from one version to another. The change is
applied to the process model and running instances are individually migrated to
conform with the new process schema. Here, safety is an issue because correctness
and consistency need to be checked explicitly.

Obviously, a safe migration of executed instances upon schematic change is the most
challenging and promising strategy at the same time.

Synthetic cut-over change Ellis et al. deal in [EKR95| with the dynamic change
problem and ways to verify the correctness of one class of dynamic change. They present
a certain class of processes for which the consistency of migrated instances can be proved.
Their approach is to define a change region as that part of a process model which is being
affected by a structural change. The old change region existing prior to the change is then
replaced with a new change region containing the change while obeying the procedural
specifications in order to maintain correctness. Correctness is maintained if all instances
resume and finish according to either the old version or the new version of the procedure.
A special class of changes referred to as synthetic cut-over change is observed when the
new change region contains both the old and the new region.

A Petri Net formalism'? is chosen to represent process models as marked networks. In
Petri Nets, a change is a replacement of a marked subnet by another marked subnet.
The old change region is defined as the smallest net containing all activities affected
by the change operation. Those parts of the net connecting the change region to its
context are described as the interface. Thus communication between change-affected
and non-affected regions is restricted to the interface. Intuitively, the changed network
is obtained by removing the old change region from the network and plugging the new
change region into the interface.

13 An basic introduction to the Petri Net formalism is given e.g. in [EKR95] p. 14 et sqq.

90

3. Related approaches

Dynamic change correctness with respect to the used formal model splits in three key
issues: Fault prevention means to disallow any changes such that the marked network
can not reach a terminal (final) marking state. Assuming that the initial marking of
the old and new network both comply with the fault prevention property, a system
replacement which cancels all instances in progress and restarts everything should main-
tain correctness as well. If the system is not restarted, then the consistency of hybrid
executing sequences needs to be assured. A hybrid sequence consists of a pre-change
sequence and a post-change sequence which is supposed to continue the work initiated
before the change. Hence, each marking state that leads to a valid terminal state in the
old network must do so as a pre-change part of a hybrid sequence on the new network
as well. Additionally, all hybrid sequences must be valid execution sequences of the new
network.

A dynamic change can be either immediate of delayed. In the prior case, any change
operation takes effect on all involved instances immediately as the change region is
replaced and existing tokens representing instances have immediately migrated into a
new schematic environment. The proposed solution to delay a change operation is
motivated by increased safety in certain cases. The idea named synthetic cut-over change
is to maintain the old and new change region both at the same time within the process
model. Already existing tokens in the old change region practically do not take notice
of the change operation whereas new tokens entering the change region will only get in
touch with the new change region. The change appears to be immediate for all tokens
but those in the old change region. The following example visualizes a synthetic cut-over
change.

Example 22. Suppose a product development process. Part of this process is the
construction of a component. As depicted on top of Figure 3.8 and named "The old
change region", the activity "Construction" is followed by component integration and
simultaneously the analysis of upcoming problems. Upon the completion of both activ-
ities, an interdisciplinary meeting is held in order to discuss the encountered problems.
Notice that the shaded circles indicate the interface of the change region. Let us now
assume that in this scenario the parallel processed activities "Integration” and "Problem
analysis" are changed into a sequential order "Integration", "Problem analysis". In or-
der to achieve a delayed change, the old change region is transformed in the new change
region shown on the bottom of Figure 3.8. It consists of the old change region and the
new sequential procedure whose output interface is connected. This assures that newly
generated tokens traverse the new schema whereas existing tokens in the old change
region will not notice the change.

91

3. Related approaches

Problem analysis

. Interdisciplinary
Construction meeting
The old
Integration
Problem analysis
Interdisciplinary
Construction meeting
The new
change region
Integration
) . Problem Interdisciplinary
Construction Integration analysis meeting

Figure 3.8.: The old and new change region in the case of a synthetic cut-over change

The formal distinction between immediate and delayed changes is justified by differing
change safety. Change regions can be split up into a number of elementary operations.
Depending on the change operation, properties called upsizing and downsizing can be
informally established as follows: If the new change region contains all elements of the
old change region (it can "do more" such as the insertion of a new activity), then the
change is called upsizing. In the reverse case the old change region contains all elements
of the new change region (e.g. a delete operation) and the change is downsizing. Ellis et
al. prove'* the correctness of any immediate upsizing change. However, only the delayed
version of a downsizing change is always provable correct.

3.3.2. Ad-hoc instance change

Ad-hoc adaptive workflow with ADEPT In static workflow management system,
process designers create process models and take responsibility for producing only models
whose instantiations run and terminate correctly. When alterations are made to them
spontaneously by users, correctness and consistence is usually no longer guaranteed.

14Compare Ellis C., Keddara, K., Rozenberg, G., "The Modeling of Dynamic Change Within Workflow
Systems"

92

3. Related approaches

ADEPT?" presents a framework that allows a user to perform ad-hoc changes on running
instances without shifting the responsibility for correctness to him. ADEPT ., by
Reichert and Dadam [RD98, Rei00] contains a set of change operations applied to process
instances and foots on the designated ADEPT workflow model.

The ADEPT workflow model holds a number of characteristics which are essential for
the functionality of dynamic structural change methods. Fundamental to the structural
design of ADEPT is its concept of symmetrical control structures. It means that tasks are
partitioned into symmetrical blocks with well-defined start and end nodes. These blocks
are not allowed to overlap but can be nested. Elements of control structure are applied
to whole blocks in the same way as they are applied to primitive tasks. In the following
paragraphs, an overview of ADEPT’s control flow, data flow, change management and
undo capabilities of temporary changes is given.

ADEPT’s control flow is represented by a directed structured graph. Available basic
control structures are sequence and parallel processing (n-of-n split and join), exclusive
conditional routing (1-of-n split and join) and parallel branching with final selection (n-
of-n split and 1-of-n join). It does also provide advanced control structures such as loops,
failure edges and synchronization edges. Loops allow cyclic structures within the process
graph by inserting a loop edge that connects a unique start node with a unique end node
within a block. A loop condition at the end node is used to check whether the loop edge
or the next task is chosen next. A failure edge is a second outgoing edge from an activity
Ntailed that points to another activity nyestare that precedes ngjeq. This edge is signaled
on failure of the activity and resets all activities succeeding nyestare and preceding ngaijure.
Synchronization edges are introduced in order to enable synchronization of tasks from
different branches that are processed in parallel.

A control flow is considered correct, if from every reachable state a correct terminal
state can be reached by a number of valid state transitions (safeness) and each node is
reachable by a number of valid state transitions from the start node (reachability).

Data flow in ADEPT constitutes data elements, I/O parameters and auziliary services.
Data elements are global elements within a workflow representing data objects that
are collaboratively read and wrote by tasks. Input and output parameters of tasks
referring to data elements define the data flow within a workflow schema. As various
tasks implement different data input and output formats, auziliary services are meant
to provide a common interface to data elements for all tasks. They are individually
associated with each task and transform data inputs and outputs accordingly.

In order to uphold correctness with regard to the data flow, all input and output para-
meters and auxiliary services have to be available in time. That is, input and auxiliary
services are required to be ready before execution and output before termination. Glob-
ally accessible data elements bear the possibility of data inconsistency if tasks manipu-
late data elements concurrently without synchronization. Therefore, tasks of an instance

15 ADEPT stands for Application Development Based on Encapsulated Premodeled Process Templates

93

3. Related approaches

work on individual copies of the data element instead of the original. Upon successful
task termination, the global data element is replaced with the most recent version but
not discarded though. This holds two advantages: First, tasks in parallel branches can
work independently on local data copies. In order to maintain correctness, their updates
on termination must be synchronized. Second, in case of a rollback (which is an essential
exceptional scenario within flexible workflow management as further discussed below)
data elements can be reset to their initial state as their history is still available.

ADEPT ., represents a set of operations that allows dynamic schema changes on run-
ning workflow instances. Analogous with properties presented for schema change opera-
tions, the main focus designing these operations is put on the following three properties:

e Correctness/consistency: The application of a change operation to a work-
flow instance should neither affects its structural schematic correctness nor the
consistency of its execution state.

e Adequacy/completeness: Each change operation should be applicable to any
kind of correct and consistent workflow instance. Completeness is met if any kind
of structural change can be achieved by the application of a sequence of basic
change operations.

e Minimality: The set of operations is minimum if the removal of any operation
violates the completeness requirement.

ADEPT . consists of the following basic operations:

e Insertion of a task into the process graph
e Deletion of a task from the process graph

e Changing task sequence during run time

These are used to skip tasks for fast forwarding, to jump to currently inactive parts of the
process graph, to serialize previously parallel tasks and to rollback and undo temporary
changes. Higher level operations can be achieved by repetition and/or a composition of
these basic operations. For example an ad-hoc workflow definition can be achieved by
starting with an empty workflow and applying an insert operation repetitively on it.

Change management Problematic scenarios can arise when multiple workflow in-
stances are changed concurrently. Exemplarily a few are mentioned: For instance differ-
ent changes can be made to multiple instances of the same type concurrently. Changes
can also be made to an already changed type. Some changes may require secondary ad-
ditional changes (concomitant changes) in order to preserve correctness and consistency
of the underlying workflow model. Finally, there exist changes that last only temporarily
and have to be undone some time after their application.

94

3. Related approaches

In order to enable proper handling of such scenarios, each workflow instance p; maintains
the following information:

1. A process graph P,; representing the current process schema which includes all
changes and state information of p;.

2. A process graph P, whose graph structure contains only permanent changes —
temporary changes as well as state information is left out.

3. A change history C which is a chronologically ordered vector of all changes applied
to p;. Each change record consists of the following information:

e The type of a change operation
e The durability of a change (can be either temporary or permanent)
e The initiator of a change

e The start region of the change in order to determine whether and when to
undo a change

e Additional concomitant changes to maintain correctness/consistency

e A list of the applied change primitives in order to break down change opera-
tions into graph modification primitives

Temporary changes ¢; are done by first checking for correctness and consistency after
their application to P,;. If unresolvable problems persist, the user has to resolve excep-
tions an other issues manually. The change is performed and it is added to end of the
change list C'. Permanent changes require consistency checking for P,y as well as Py,
before a change operation ¢, can be applied to both of them.

Undo temporary changes Particular changes can be undone by removing them from
the graph structure P,;. Part of each change record is the definition of a start region
that describes a set of nodes in the process graph: If each node within the start region
is within a terminal state, the undo function of the temporary change is triggered.

Undoing a temporary insert or delete change operation ¢; works similar to the roll-
back /recovery concept of a transaction oriented system'® as visualized in Figure 3.9: A
change list consists of n sequential changes where ¢; represents the oldest and ¢, the
latest change. As undoing ¢; can cause a state change for a set of nodes (the so-called
backward region), other changes whose start region overlaps with the backward region
need to be undone as well. (1) Hence, the oldest change ¢ (1 < k < [< n) whose
start region interferes with the backward region of ¢; has to be found. (2) Then both
permanent and temporary changes are undone in reversed order starting from ¢, up to
¢k (3) Finally, all permanent changes between ¢, and ¢, are redone in forward direction.

16Compare e.g. the lecture notes on "Database Systems — winter term 2003", University of Ulm

95

3. Related approaches

Temporary changes are redone if their start region is not covered by ¢;’s backward region
and correctness and consistency of P,; remains.

1. Find first influenced change 2. Traverse and undo all changes

3. Traverse and redo permanent changes

Figure 3.9.: Undoing a change within a change list

3.3.3. Integration of schema evolution and ad-hoc instance
modification

Process-aware information system (PAIS) A very recent approach by Weber, Rinderle
et al. [WRWRO05, RWRWO05] named PAIS proposes the integration of the systems
ADEPT (see Section 3.3.2 on page 92) and CBRFlow (see Section 3.1.2 on page 75)
which were introduced earlier in this thesis. Its goals are to offer reusability of instance-
based ad-hoc changes and to accomplish a derivation of evolutionary schematic changes.

ADEPT contributes to this composite project with the abilities of a full-feature workflow
management system including modeling, analysis, execution and monitoring capabilities
[RD98|. As already mentioned before, ad-hoc change functions are provided by ADEPT.
Additionally, it offers schema change operations for process types. Its process represen-
tation based on symmetrical control structures allows on-the-fly migration of running
instances while preserving process consistency for most classes of instances (see Rinderle
et al. [RRD02, RRD04]). The shortcoming of this system is however that its ad-hoc
adaptions are not reusable.

CBRFlow contributes a case-based reasoning (CBR) approach including all of CBR’s
characteristic features (see Section 3.1). It documents the reason for instance changes
and makes them reusable for the future.

This joint approach now aims at covering the whole process life cycle with a combination
of both functionalities: Figure 3.10 illustrates how ad-hoc changes and type changes are
integrated with reuse of altered instances in a case base. From a given schema, process
instances are created. As now the user experiences an exception during run time, he
requests similar cases from the case base and either retrieves a matching case or adds a
new one. Deviations are modeled with change constructs and a documentation on the
case is added which makes the case immediately reusable. The reuse of existing cases
is counted and in case a defined maximum number (the threshold) is exceeded, process
designers are triggered with a notification indicating the possible need for a process type
change. In case the process type was updated, existing cases in the case base must be

96

3. Related approaches

| Updated process

schema
Process schema
Instantiation Process
Casebase gesigner process't pe change
migration

CCBR Case usage threshold

exceeded
Process Instances h Case base

Instances

Changed process h

Case [
retrieval/addition

Process instance change

I

User

Figure 3.10.: Process life cycle of the integrative PAIS approach (compare [WRWRO05]
Figure 2)

migrated to the new schema. Due to both system’s characteristics, correct and consistent
ad-hoc modification can be assumed along with a memorization of changes and adaptive
process types.

An extended CBR cycle (compare Figure 3.1 on page 68) is realized by PAIS in the
following way: Upon the addition of a new case to the case base, a free textual
description of the exception is given along with a set of question-answer pairs describing
the exception’s reason. A subset of the change operations made available by ADEPT
and supplemented with parameters are available to process-creating users to specify the
resolving action which is taken by the case. Notice that a retained case refers to a
specific process schema version.

Case retrieval works in the same way as it did for CBRFlow: A dialog is initiated
which consists of a set of questions and answers. The user’s answers and additional
parameters specify a matching on cases, which is refined by optionally given operations
and a subject. Based on that information, the case base is filtered and a similarity
measure similar to the one shown in Example 17 is used to present the best matches to

97

3. Related approaches

a requesting user.

Case reuse is assisted by case retrieval as described above. Change operations offered
by ADEPT are used to revise the case. However their application requires some ex-
perience and is not in any case straightforward, because changes may imply additional
concomitant changes in order to uphold correctness and consistency. The number of
reuses is counted for each case.

Case evaluation as a part of case retainment is a feedback channel describing the useful-
ness of an applied case. A task containing a simple evaluation (positive/neutral /negative)
and a descriptive text field is added at the end of a reused/retained case. This yields a
ranking of reputation amongst cases and is displayed during retrieval. It helps finding
the most successfully used cases in the past.

Case revision foots on the evaluation system and is invoked when a case receives
negative feedback. This triggers process designers to either revise the case or to remove
it from the case base.

As requirements evolve, exceptions show up more frequently. The derivation of a
process type change is started when CBRFlow notifies that certain exception types
are used very frequently. Process designers can react on this situation with a process
type change. The notification is sent out as soon as a certain threshold of reuse fre-
quency has been exceeded. However, type change induces a migration of running cases:
ADEPT makes a distinction between compliant and not compliant instances. The for-
mer designates a class of instances on which the change can be applied. Not compliant
changes can not be changed and the respective cases continue running on the old schema.
Compliant cases can be either biased if they contain ad-hoc changes or unbiased if they
do not. Unbiased cases are directly relinked to the new process schema, whereas biased
cases require additional correctness checks.

3.3.4. Assessment of usefulness

Flexibility of process models and their instances is the decisive requirement for the
runtime engine of Emergent Workflow if we leave elementary functionality like (RE1 -
RE3 with respect to Table 2.4 in Section 2.3.10) aside.

The introduced work by Ellis et al. on page 90 considers schema evolution (RE4) and
presents an approach to verify correctness for migrating instances to a new schema
(RE7). On the underlying Petri Net formalism, immediate changes are potentially un-
safe. That is why Ellis et al. propose to artificially delay the transition of running
instances to the new schema by a construct named synthetic cut-over change. This as-
sures for certain types of changes a consistent migration of Petri Nets in the middle of
execution (RET). Notice however that if this is put into practice and applied more often
to a schema (which is surely the case for Emergent Workflow), it grows more and more
"dead" branches. As a matter of fact, for iterative changes clean-up steps that cut the

98

3. Related approaches

old change regions off are mandatory in order to maintain a meaningful process model.

Next, ADEPT is presented on page 92 as a fully functional process management frame-
work. Notice that only the ad-hoc change functionality of this framework is considered
here [RD98|(RE6). Fundamental for all aspects of ADEPT’s properties are its sym-
metrical control structures which cause a highly rigid block structure. This is why its
schematic elements are roughly outlined first. Among others, powerful control structures
such as loops and failure edges are included in ADEPT which increase its expressive
power, but induce also a more difficult handling. For instance the loop construct creates
the necessity for an advanced change management and methods for undoing temporary
changes, which complicate its handling. The most distinguishing feature however is at
the same time the biggest benefit of ADEPT over other approaches: The application of
its set of change operations does not shift the responsibility for correctness and consis-
tency checking to a user or process designer, Instead, ADEPT is able to a assure both
for most cases on-the-fly (RET7).

The last presented flexibility approach on page 96 is PAIS by Weber, Rinderle et al. Its
decisive quality is that it integrates many features from two approaches which are already
powerful by themselves: ADEPT mentioned above and CBRFlow. It offers the full range
of functional features offered by both systems plus some synergetic effects. Schema
evolution (RE5) with automatic consistency assurance for instance migration (RE7)
and ad-hoc changability (RE6) are integrated in the CBR cycle. Conversational case-
based reasoning allows the reuse of cases (RE5) and annotates them with descriptions
(RE9). On top of that, the CBR cycle is extended with case evaluation functionality
which improves the accuracy of individual cases.

99

4. Architectural proposal

"Grasp and reuse"

Emergent Workflow is aiming at a way to grasp the current procedures and processes
and to reuse them in a way which is most simple, fast and flexible enough to be accepted
by users. From a functional point of view, no single approach presented in Chapter 3
does cover all aspired aspects of Emergent Workflow. In order to receive the focused
goals of Emergent Workflow, relevant ideas of different approaches have to be bundled
and integrated into one system.

Not only technical issues are decisive factors, but in the first place users representing
the human factor are. It may be emphasized at this point that the major motivation for
Emergent Workflow is to overcome acceptance deficiencies that conventional workflow
management systems are confronted with.

It appears recommendable to propose a staged introduction of an Emergent Workflow
System for a number of reasons: First, the high complexity of a system implementing all
kinds of desired functions and related technologies would be hard to implement, manage,
administer and use for all involved groups — developers, process designers, administrators
and users. Second, a step-by-step introduction is more likely to be accepted by users
which is a crucial success factor for Emergent Workflow in particular. Finally the emer-
gent approach implies that small-scale responsibility for process creation and planning is
shifted to users. These are however demanding tasks that require knowledge, predictive
thinking and not at last experience. Introduction phases allow users to slowly adjust
to new procedures and give them the chance to get acquainted with new tools and to
master their new tasks before they become mission-critical.

Creative activities are the most valuable and at the same time the most critical and
fragile part of knowledge intensive work. Therefore a major amount of care is suggested
when any kind of change is applied to them as their reaction to change is most sen-
sitive. The introduction of information technology such as Emergent Workflow has a
massive impact on the way creative processes function. That is why it is proposed that
those components of Emergent Workflow that introduce the most profound changes are
integrated at last.

The main objective of the architectural first stage is to gain user acceptance. It focuses
rather on non-functional issues. Workflow technology is used at this stage in a way in-
visible to the user and grasps information. However, functional improvements and reuse

100

4. Architectural proposal

aspects are postponed to the next stage. The second stage brings functional changes
into play: It introduces a workflow management system enriched with components for
flexibility enhancement used for routine process parts only. Exception handling is here
pioneering Emergent Workflow’s ability to reuse past experience. The final third stage
shifts controls and initiative to users. This offers a high potential to reuse past process
fragments and the workflow becomes "emergent", but at the same time becomes also
more complex to handle.

4.1. Stage 1 — Basic functionality

The goal of the introduction of basic functionality in the first stage is to obtain user
acceptance for a minimum set of functions in the first place. A critical user should
decrease rejective opinions by observing that the new system "actually does not harm"
or even "helps a little". The idea is to keep as much familiarity of the user with tools he
is used to instead of throwing him into a radically newly designed system environment.
Automatizing some minor routine work should help decrease aversion.

i

User

| Appl || Appl |_| Appl |_| Appl |_

GUI

Interaction protocol

v

Organizational | . _ | Process creation Analysis—»
model R engine
Process
designer

Figure 4.1.: Proposal stage 1

Figure 4.1 shows the arrangement of some basic workflow components introduced by the
first stage. A Graphical User Interface (GUI) is presented to workflow users which inte-
grates their applications into one common interface. The GUI creates a rough interaction
protocol and forwards it to the process creation engine. Supported by an organizational
model, it helps process designers to analyze the interactions of users.

Notice that at this stage, no formal workflow management is introduced regarding the
process perspective (see Figure 2.14 on page 54). Workflow components have only pas-
sive, "observing" functionality for analysis and prepare next steps. That implies that

101

4. Architectural proposal

existing work patterns are not harmed or changed. Only behind the curtains — invisible
for the user — changes and analysis take place in the form of process creation. The
following paragraphs give more details on the function of components at this stage.

Integrated GUI A common interface that integrates most applications and tools is a
cornerstone for building an Emergent Workflow. Functionally, this GUI must be able
to create and output a protocol of user interactions. This includes basic information
such as which application have been started or stopped. Additionally, it offers a generic
interface to client applications who can plug into the common architecture. First, an
extensible application interface helps to fill the user interaction stream with details on
intra-application interaction. Combined, an interaction protocols tells what applications
a user chose (e.g. started billing software) and what actions were performed inside the
applications (e.g. chose customer order overview, edited the latest order, sent out bills).
Second, the application interface facilitates the invocation of applications with parame-
ters specifying a context, e.g. a customer ID. For certain roles, user defined variables
determining a stateful GUI can automatically set application parameters, e.g. a part
number set once is a parameter for all applications. Moreover, different groups of users
employ different applications. Therefore, this interface must be tailored individually for
each user type, e.g. by using authentication mechanisms. This suggests the creation of a
basic organizational model: If users and their roles are known, then the interface can be
composed of modular role-dependent elements such that a user receives an individually
composed desktop. Finally, an abstraction from the operating system of a GUI is desir-
able in terms of look and feel. If the look and feel of an interface is easily configurable
on each given platform, then future hard- and software changes will hardly affect users
any more.

Organizational model With respect to the workflow perspectives (Figure 2.14 on page
54) the organizational perspective is the only perspective of a workflow management
system which is visible for users at this stage. It is represented by an organizational
model (see Figure 2.12 on page 2.12 for an example) that is used to abstract roles and
groups from individuals. At this stage, the focus lies rather on role/user translation
than on hierarchical relations between roles as it is mainly used for role-resolution by
the GUI and the process creation engine.

Process creation engine A basic version of the process creation engine collects in-
teraction protocols from users and offers basic data mining functionality. That includes
an instance-based visualization of interaction protocols and elementary filtering options.
Process designers rely on it to get an overview of the structure and types of individ-
ual users’ activities. If privacy is an issue, anonymization of captured information by
role abstraction helps to protect privacy and reduces user rejection and disapproval. It
does neither focus on cross-role or departmental process relation nor does it present its
outputs as feedback to users.

102

4. Architectural proposal

Metamodel As neither a real workflow management system nor a formal process repre-
sentation is present, only a very limited workflow metamodel is needed at this stage and
comprises two parts: First, the organizational model formalizes roughly the corporate
hierarchy. Role abstraction by itself does not capture formal collaborative dependencies
in the form of project or work groups. Second, the basic process creation engine is used
by process designers to get an idea of the structure of each individual’s tasks. Hence, a
simple representation of process instances being fragments of a more complete process
is necessary. That includes simple activities, basic control structures and no explicitly
defined granularity level.

4.2. Stage 2 — Advanced functionality

The second stage provides advanced functionality and introduces a more complete work-
flow support and a reuse aspect while trying to maintaining simplicity. After users have
gotten used to a new interface, now it is the goal to introduce functionality that creates
a positive user experience like "This saves really time!" or "I had to type this only once!"
At this stage, the desired result is the retainment of current work for later reuse without
intermediate steps involving third parties such as process designers.

A workflow management system is introduced which is meant to support routine work,
but not creative work. As it is known that the acceptance of a regular workflow manage-
ment system would be too low due to its inflexibility and rigidity, two things are done:
Support is restricted to rather static small-scale routine processes and deviations from
routine are handled by a case base.

During the first stage, process designer were able to observe and analyze activities of
users and to identify recurring routine tasks. Now designers create simple process model
representations of these processes and offer them to users in the integration GUI. If
deviations from common procedures occur, users can document the situation, apply
instance-level changes and put the case into a case base for later reuse.

As Figure 4.2 shows, additional components extend the system introduced in stage 1.
These new components focus on the support of routine work. Any kind of work (including
creative work) is being captured by an interaction protocol, but only parts identified
by process designers as routine work are further considered. In fact, by analyzing the
interaction protocols, process designers choose static recurring processes, create a process
model (not shown in the picture) and add it as a default case to the case base. Users
performing routine work can (1) retrieve the default case and (2) enact it on the runtime
engine. If one encounters an exceptional situation, it can be documented and ad-hoc
changes inside the system are applied. After termination, (3) the case is retained and
can be retrieved for later reuse. Documentation makes use of the dictionary by using
existing or new keywords to describe the stored case. This description helps to find
cases of a certain type during retrieval. Notice that the organizational model is here a

103

4. Architectural proposal

Routine work ﬁ Creative work

|
Us*l,er
g 1 I 1
1 App! [T Appl [T7] Appl [T Appl |
GUI
|
2. Case Interaction protocol
Enactment *
v-
Runt_lme Process creation
1. Case engine 3. Case engine
retrieval Ad-hoc retainment
changes |
Analysis
Case base Case addition
Process
designer

Organizational model

Figure 4.2.: Proposal stage 2

component commonly used by all other components — connecting edges are left out in
Figure 4.2 for better readability.

Case base [Initially, process designers populate the case base with reqular cases of dif-
ferent types. As only routine work is put into cases, deviations from cases are usually
caused by exceptional situation which have to be indicated explicitly by users. When en-
tering a new case, the creator must provide a description characterizing the case. A case
description answers for instance the following questions: When happened what type of
exception and what is the compensation action? Was the exception compensated inside
or outside the system? That information allows to classify types of exceptions. Com-
pensation of exceptions can be taken care of inside the system by the ad-hoc adaption
abilities of the runtime engine.

As cases inside the case base must be structured according to their type of exception,
the description of a case does not only comprise free text, but also keywords. These
keywords are defined in the dictionary attached to the case base. It represents a simple
ontology of keywords that describes the attributes of all exceptions. Process designers

104

4. Architectural proposal

are supposed to initiate the dictionary, but users should be able to extend the dictionary
with new terminology as they describe their case. This makes sure that user experience
is immediately available for further reuse.

The goal is to populate a case base around established process types with numerous cases
representing solutions for common exception types that were experienced in the past.
When new exceptions show up, the case base is searched using descriptive keywords
from the dictionary. That way, the organization, description and retrieval are highly
related with each other. This bears the advantage that users actually are motivated to
add accurate documentation to their processes. The better a case is described, the more
likely it will be for a user to find and reuse a case later on.

Example 23. A minimum framework for a dictionary with key informations describing
an exception scenario could be given as follows: Who (role, person, group) performed
what task (type and instance) when (point of time, duration) and what ezception (type:
functional /nonfunctional, description) happened and was handled using what compen-
sation (ad-hoc change operations inside the system/outside the system). Alternatively,
the characteristics of exceptions as given in Section 3.1.2 on page 79 by Hwang et al.
gives hints on relevant data types.

Ad-hoc instance adaption Ad-hoc adaption functionality on instances during run-
time allows to compensate or resolve occurring exceptions inside the system. Therefore,
individual users must be allowed to apply simple structural and state changes on run-
ning instances representing cases from the case base. A relatively small set of change
constructs is made available to them in order to perform changes that are necessary
for exception handling. They include the insertion or deletion of a task in sequence or
parallel. It is recommended that the set of change operations offered to users is mini-
mal (not more operations available than needed), but not complete (not every allowed
instance structure can be reached from any given structure) with regard to the given
workflow metamodel. As the default cases created by process designers might contain
advanced control structures, the complexity of a complete set of change operations would
very likely overwhelm common users. For example conditional forks and joins require
the formulation of boolean expressions. Such tasks may introduce a level of complexity
which is too high for unfamiliar users. This decision tries to realize treatment of ex-
ceptions inside the system by means that are straightforward enough to be applied by
unexperienced users.

Metamodel In stage 2, a fully functional workflow management system is introduced.
Therefore the organizational model from stage 1 is extended with metamodel constructs
belonging to the process perspective. Process types are defined by process designers
including structural elements to define the control flow between activities. In order to
reduce complexity, no or a very simple data model (compare the information perspective)
may be used. An instance of each process model resides as a reqular case in the case

105

4. Architectural proposal

base and makes the process type accessible to users. Each instance put into the case
base must be supplemented with a description consisting of dictionary-related keywords
and some free text fields.

Basic change operations (insert, delete, both either sequential or parallel) on process
instances are required to enable exception handling. As already mentioned in the pre-
vious paragraph, ad-hoc change operations available to users do not cover the complete
metamodel used by process designers to create process types.

4.3. Stage 3 — Full functionality

The goal of the third stage is to provide support for all types of tasks. Here the key ideas
of Emergent Workflow are made available for use with flexible tasks. After the user gets
acquainted with the functionality, his experience should express something like "I don’t
know how we did our work before we had this system!". This means to create a system
that formalizes processes relatively detailed without formalizing and complicating the
view on them. A user performing creative work will typically receive a roughly structured
bigger task assignment. He requires individual choice and freedom on the way the task
is split up into single steps and accomplished. A supportive system offers, but does not
force him to take a look at past executions of similar tasks and eventually adapt and
reuse one of them. This stage tries to accomplish that by permanently monitoring the
interactions a user. As he proceeds and requests support, the system may find similar
patterns in previously recorded actions and proposes to reuse them. The user can then
either agree to copy his previous procedures or decline and continue on his own.

It can be seen from Figure 4.3 that the previous stage’s functionality is included and
extended. The case-based reasoning cycle is still integrated and the numbering of its
steps are prefixed with "C". What has been added is the ability for schema evolution of
process types in the runtime engine. The dictionary has been extracted from the case
base and forms together with the organizational model a component general knowledge.
It is commonly used by all other components. The newly created cycle prefixed by an
"E" represents the flow of fragments supporting the reuse of creative work patterns.
First, the interaction protocol enters the runtime engine (F1) and is consolidated with
server-side events (which are not shown in Figure 4.3) into an audit trail. Notice that the
time management component as specified in Section 2.3.5 is considered an integral part
of the runtime engine and is not shown in Figure 4.3 for better readability either. The
process creation engine reads the audit trail (F2) and outputs process fragments. A user
can signal in the interaction protocol that he completed a subtask. If, as a consequence,
the workflow fragment represents a completed subtask, then the fragment is stored
to a fragment base (F3b). Otherwise, an incomplete fragment is sent to the process
matching engine (F3a) which compares it on-the-fly with stored existing fragments (F4).
If sufficiently good matches are found, these are presented to the user who can select
from the proposed fragments (F5) and reuse them by reenactment (F6). Apart from

106

4. Architectural proposal

that, process designers analyze the fragment base and the case base. On the one hand,
they perform schema evolution on the process types in the case base if necessary and
take care of the migration of running instances. On the other hand, they attempt to
compose an overall process out of the process types, cases and stored fragments.

Routine work m Creative work

|
Us‘l,er
I | |
| Appl Appl |_| Appl |_| Appl |
GUI
C2. Case F1. Interaction F6. Fragment
enactment protocol enactment F5
. Fragment
Y e g_
- selection
Runtime
C1.Case C3.Case engine
retrieval retainment Ad-hoc Process
changes matching engine
Schema
evolution t/'t
T F3a. Fragment F4. Fragment
F2. Audit trail comparison retrieval
Case base \J

Process creation F3b. D
I engine —Fragment Fragment
° storage base

General knowledge .
— — Analysis &
Organizational model || Dictionary | Composition
Process type changes &
instance migration
Process
designer

Figure 4.3.: Proposal stage 3

Schema evolution Schema evolution on the case base resembles the double-loop learn-
ing approach of Wargitsch et al. (compare Figure 3.4 on page 78): Workflow users par-
ticipate in the incremental design of non-flexible, slowly evolving processes: They can
create cases for exceptions and annotate their changes with keywords and descriptions.
Users perform changes on a small scale basis as they modify only the process parts they
work on. Process designers rely on these when they adapt routine process types to new

107

4. Architectural proposal

requirements. In fact, just as in the example approaches discussed in Section 3.1, process
designers observe the growing case base. When exceptions get more frequent and show a
strong bias towards a certain exception type, they can revise the existing process models
according to the changed requirements and update the regular case of a certain process
type. According to the chosen metamodel, running instances can be either migrated
automatically or need to be handled manually. Notice that on this stage, the part of the
system handling routine work shows strong functional similarities to the PAIS approach
introduced in the related work Section 3.3.3 on page 96.

Process matching engine Captured interaction protocols is now not only an analysis
tool for process designers, but is also used as a comparison and reuse tool for work-
flow users. A partial in-progress process instance needs to be matched with archived
instances for criteria given by the user. If the user signals the invocation, a partial audit
trail is translated into a process fragment. Due to the flexible nature of creative work,
exact matches are highly unlikely. Therefore, the process matching engine needs to im-
plement approximate search algorithms that compare syntax and structural similarity:.
Furthermore, an adjustable filtering threshold populates and limits the resulting list of
matches. From there, the user checks manually on the results for semantically similar
matches and eventually chooses one of them.

Analysis & Process composition A big danger at this stage is that individual users
take control of the process at a small scale level and a general direction and overview
passes out of focus. This is where analysis and process composition becomes a vital
part of the Emergent Workflow Process — they allow to gather an overview of what is
going on in order to make big scale adjustments where needed. Furthermore, user-based
changes need to be consolidated as to avoid collision of incompatible changes.

Practically, analysis includes as a major step the creation of current process types fol-
lowed by their composition. The analysis and derivation of process models from instance-
based fragments offers post-hoc insights in characteristics of the real small-scale process:
Where show instance of flexible processes commonalities? How do flexible processes
evolve over time? Thereby it serves as a foundation for e.g. cross-departmental syn-
chronization. Composing an overall process of derived process models yields a "big
picture" that shows deficiencies which span over individual users’ and groups’ horizon.
As each user participates with a different view on the process, hierarchical composition
of fragments requires the consideration of each fragments granularity level. However, as
flexible process fragments are likely to be very diverse, a common formal process type
can also be very complex. It can yield a composition that looks like totally different
instances were stitched together in parallel which does not help very much. In that case,
a separate composition of instance fragment returns a view on the overall process of one
single individual instance.

108

4. Architectural proposal

Metamodel The introduction further functionality at this stage requires an extension
of the process metamodel. First, process types in the case base can now be changed
schematically. That induces a set of change operations on process types. As the process
type evolves now, its schema must be versioned in order to be clearly referrable. As
ad-hoc alteration of cases is still allowed, instance changes apply to a certain schema
version only. This leads to an ordered list of ad-hoc and schematic changes associated
with and applied on each instantiated case from the case base. As already mentioned
before, type change of running instances is not a trivial problem, therefore the use of a
safe process metamodel as proposed by Weber, Rinderle et al. [WRWRO05] is suggested.

Incomplete process fragments are created during run time and stored for later reenact-
ment. They are based on a process model that allows the instantiation of incomplete
models. For each activity, parameters changing during enactment (compare Section
2.4.1 pages 57 et sqq.) have to be reset to an initial state. The composition of fragments
leads to compound instances which hold the same properties as their elements. For
overlapping and especially hierarchical compositions, a measure for the relative level of
detailedness of a fragment is introduced. It introduces levels of granularity according
to hierarchical levels in the organizational model. As all events caused by user activi-
ties are captured, one can assume that each individual’s interaction protocol presents a
maximum level of detail. Therefore the position of a role determines the granularity of
its recorded process.

109

5. Discussion

As many aspects of Emergent Workflow and its requirements were already discussed in
Chapters 2 and 3, the following discussion will confine itself to issues which may arise
from the integration of approaches presented in the architectural proposal, Chapter 4.

Functional issues of integration

Namely, Case-based reasoning (CBR), ad-hoc adaption of instances, schema evolution,
process mining and process composition were introduced throughout this thesis. The
following Table 5.1 couples approaches pairwise and assigns each pair a number. Re-
ferring to that enumeration, the following paragraphs discuss shortly the problems of
coupling the two approaches, if they have not been discussed yet and are relevant.

Ad-hoc Schema Process Composition
adaption evolution mining
CBR (1) (2) (3) (4)
Ad-hoc adaption (5) (6) (7)
Schema evolution (8) 9)
Process mining (10)

Table 5.1.: Composition of ideas

(1) CBR and Ad-hoc adaption As it has become evident in Section 3.1 on case-based
reasoning, ad-hoc adaption can be made an integral component of CBR: Case
revision implies the adaption of a retrieved case before its enactment. Ad-hoc
adaption as a revision tool can actually extend the allowed revision phase to the
complete enactment phase. That makes the CBR cycle more flexible and allows
the ad-hoc adjustment of cases to any upcoming situation. However, the allowance
of changed cases can also lead to a problem of classification: If a complete set of
change operations is provided, theoretically one case can be modified in such a way
that at the end it resembles more to another case than the originating case. This
arises the question whether during case retainment, it should be stored as case of
the first or the second case type. One can either choose to keep the case system
rigid or flexible. The latter allows to change a case type during run time whereas
the former keeps the case type static as soon as a case has been instantiated. A
flexible case management must allow the re-classification of a case at any given time

110

5. Discussion

before retainment. Static case management requires the establishment of common
criteria for cases as within case types, structural correspondence of instances can
not be guaranteed. Case classification needs to be based on parameters that remain
unchanged by any ad-hoc adaption.

(2) CBR and Schema evolution The integration of CBR and schema evolution has
been issued in the introduction of PAIS in Section 3.3.3.

(3) CBR and Process mining Integration of CBR and process mining is twofold: If
cases are enacted and the events of execution are used for process mining, nothing
special happens. That is not surprising, because after all, cases are during en-
actment regular process instances with a supplementary categorization. Without
further engagement, it is however problematic to add instance-based mining out-
puts to a case base. The reason therefore lies in the fact that common audit trails
do not indicate by default the association of a running instance with a case type.
Actually case creation or retrieval happens before process enactment. Therefore,
no documented activity inside a process instance indicates a case type.

There exist two possible resolutions for that matter: The first possibility is to
merge case attributes of each instance into the audit trail. That makes it easily
possible to identify the case affiliation of each single event. The alternative to this
very verbose and redundant marking is to embrace case selection or retrieval for a
new process instance as explicitly mentioned first task to the instance. That way,
the runtime engine can execute the virtual "assignment" task and one single event
identifying the case shows up in the audit trail.

(4) CBR and Composition Issues caused by the integration of CBR and fragment
composition are strongly dependent on the way a case base is used: If it is used
to model exceptions around a regular case which corresponds to the underlying
process definition, then cases make no difference to a post-hoc composition of
archived instances. See for that case (7) Ad-hoc adaption and Composition.
Either way, composition has to deal with instances that deviate from the given
process model in a rather unstructured way. The other application of case base
is for processes that have no regular case but a couple of equivalent cases. Here,
composition may be only able to compose cases of the same type as each case
represents a distinctive sub-type of a process definition. Cross-case composition
would result in syntactically inhomogeneous and semantically incorrect overall
processes.

(5) Ad-hoc adaption and Schema evolution The roles and cooperative functions of
ad-hoc instance adaption and schema evolution have been issued in Chapter 2,
Sections 2.3.7 and 2.4.

(6) Ad-hoc adaption and Process mining Commonly, process mining does not recog-
nize whether an event in the log was caused by a regular or by an exceptional
activity. Consequently, changed instances containing adaptions that were caused

111

5. Discussion

by exceptional circumstances are rated equivalent to those instances with a reg-
ular schema and course of state transitions. Without further consideration, this
would lead to the creation of wrong process types. In order to resolve this sit-
uation, a differentiation of regular and changed/exceptional events is required to
enable process mining to recognize the status of events. Having this knowledge,
policies that handle event types with different weights can be put into practice.
The desired outcome is a process model whose structure is influenced by the level
of importance of its contained events. Notice that this idea is comparable to min-
ing algorithms that use stochastic models and frequency tables to filter out noise
from the audit trail. Here, varying types of events have to be recognized, classified
and are integrated into a preliminary process model. Finally, only those events
exceeding a minimum weight threshold are integrated into the process model.

(7) Ad-hoc adaption and Composition Ad-hoc changes are applied to fragments of
the overall process by each user individually. When composing fragments, these
numerous views are aggregated into the overall process. Let now an exception occur
at a certain point in the process. Multiple users with different perspectives on the
process will encounter the exception. The composition of fragments contributed
by them will be overlapping at the exceptional point. The question here is whether
all of them interpret the situation in the same way. If they do, then all of them
will apply comparable ad-hoc adaptions that resolve the situation from their point
of view. In that case, fragment composition should work flawlessly. If however,
each user develops a different understanding of the situation, then people will take
compensating actions that do match semantically. As a result, composition of
fragments will either not yield a meaningful result or the difference are so strong
that fragments collide already syntactically.

In order to enable successful combination of ad-hoc adaption and the composition
of fragments, a minimum level of synchronization between users is required to
allow a common understanding and adaption of such situations. Then overlapping
fragments match a common problem and their composition delivers an overall
understanding.

(8) Schema evolution and Process mining As the schema of a process definition evolves,
process instances being enacted on different schema versions look different. As it
has already been broadly discussed in Section 3.3.1, the migration of already run-
ning instances from an old to a new schema is a complicated issue. These kinds of
instances also complicate the outcomes of process mining. The entries in an audit
trail created by a migrated instance refer half to the old schema and half to the
new schema. Consequently mining algorithms applied on events from migrated
instances deliver hybrid process fragments and types. These kinds of outputs are
not useful for purposes such as composition or reenactment.

Therefore, the runtime engine needs to indicate instance migration either by mark-
ing affected instances or creating a system event in the audit trail. This helps a

112

5. Discussion

process mining application to recognize events from migrated instances and to
ignore them.

(9) Schema evolution and composition What has been observed on intra-fragment

(10)

scale in the previous paragraph (8) holds for the overall process when schema
evolution is coupled with fragment composition. If process types are changed at
any time, an owverall process that started before the change and ended after it,
contains potentially three types of archived instances: Those according to the
old schema, hybrid instances containing both schemata and instances enacted on
the new schema. Thus, one can consider it an overall hybrid process. From a use-
oriented point of view, this kind of composition is highly interesting as it documents
in detail how well the overall process handled the migration. Difficulties that
showed up either before, after or during the schematic transition become evident
from the composition.

The critical momentum can be seen in a situation where no hybrid instance exists
but all instances either terminated before or started after the process type evolved.
If fundamental difference were introduced by the type change, it might become hard
to compose syntactically and semantically differing instances. Eventually, process
designers need to insert an additional transiting instance which connect the gap
between old and new instances.

Process Mining and Composition Processes are composed vertically and hori-
zontally: Vertical composition of fragments represents the alignment of different
views and hierarchies related to a common part of the overall process. Horizon-
tal integration relates causally dependent process parts either sequentially or in
parallel.

As already mentioned in Section 4.3, vertical composition of process fragments
is based on an explicit specification of their granularity (compare also Section
2.4). As multiple fragments yield multiple overlapping views on common process
parts, hierarchical correlations have to be identified. Moreover, composition can
only be accomplished with activities containing a sufficient amount of descriptive
characteristics in order to detect equivalences. For horizontal composition, those
matching activities represent the interfaces between the individual views. However,
the more detailed activities on fragment is, the less likely it is to match them with
other interfaces. Therefore, one needs to identify attributes which are instance-
specific, but not view-specific, such as temporal constraints.

113

5. Discussion

Example 24. In a quality gate-driven process, all engineers have to reach a certain
development stage until a deadline (the quality gate), which was specifically given for this
project (the overall instance). The activity "Delivery of results for the current quality
gate" may be named differently for engineers in different disciplines and have differing
related objects, roles, applications etc. — these attributes are view-specific. In the audit
trail, the common interface events can be identified by for example the timestamps
of their execution. They are all alike for each discipline, but instance-specific as the
deadline was given for this project only.

114

6. Conclusion

6.1. Summary and conclusion

In the industry and many other fields of work, organizations have aligned their business
according to processes. Workflow management systems offering technological support for
processes bear in principle many advantages. However until today, these gains could not
be widely realized as the traditional business process cycle tends to be too inflexible for
many applications. As a result, knowledge and process awareness gets lost because users
circumvent the workflow management system and resolve issues outside the system.

Emergent workflow has the vision to offer individual users immediate support without
the need for pre-modeled processes. By capturing fragments of the real process, it aspires
to gain user acceptance, improve reuse of work pattern and increase process transparency.

The contribution of this thesis to Emergent Workflow is a detailed requirements analy-
sis, an introduction of related work, a conceptual proposal and a discussion of possible
obstacles. The identification and specification of use cases, components, interfaces and
a suitable process metamodel represents about half of this thesis. It identifies numerous
functional and nonfunctional aspects in a structured manner. Moreover, selected related
work is considered and assessed according to the outcomes of the preceding requirements
analysis. The related work part surveys work on case-based reasoning, process mining
and flexible workflow management and restricts its view on fundamentals and some
interesting advanced work. The conceptual draft for the architecture of an Emergent
Workflow Management System proposes a successive introduction of features with in-
creasing functionality and complexity. As the proposal integrates ideas collected from
various related work, a final discussion reflects on upcoming obstacles with integration
and further practical aspects of the proposal.

As a conclusion on this work, we observe that for most of the requirements considered
isolated from each other, practical approaches and partial solutions exist. From our point
of view, the true challenge for Emergent Workflow is the integration of manifold ideas
into one functional and usable system. Given the set of requirements, one is tempted to
focus technical and functional aspects only and to forget that a resulting highly complex
workflow management system does not solve the problems it was meant to overcome.
Therefore, we would formulate as a maxim for further work on Emergent Workflow:
"Try to accomplish as much as possible with as few as possible."

115

6. Conclusion
6.2. Omitted and future work

As this thesis we settled on a conceptual level, working on it resulted in covering a very
broad range of involved topics. We have to say that the related work part mentioned
herein represents a very incomplete and punctual view on the field of relevant related
work. As a result, many topics with high relevance were either not mentioned at all or
not treated adequately with respect to their importance. The following list mentions
some topics worth of further investigation:

e Access methods for client applications on various levels of interactivity. They
enable workflow users to make use of collections of fragments, process types, cases
and terminology.

e Process designer applications used for fragment analysis and composition.

e Design of a dictionary ontology and organizational model with respect to
their creation, maintenance and usability.

e Workflow security that manages user allowance to access, modify, create and
extend any types of data.

e Transaction support of business processes including suitable constructs and
execution models.

e Inter-workflow coordination to allow an integration of the Emergent Workflow
approach with other types of workflow management systems.

As this thesis has an introducing character on Emergent Workflow at best, future work
on this topic is manifold. Based on the given conceptual architectural proposal, a more
concrete architectural specification has to follow. That starts with conceptual decisions
based on the given requirements: From the available approaches, those may be chosen
which show best functional and integrative abilities. Then more specific questions re-
garding algorithms, protocols, ontologies and storage issues have to be answered. As by
now, the final step would be marked by a prototypical implementation.

116

A. Supplementary Listings and Figures

A.1. CODAW

A.1.1. Process data model

© 00 ~J O O i W N =

W W N DN DN DN DNDDNDDNDNDDNDDN = = == = = = =
—_ O O 00 I O UL W N = O OO ULk WwNh=O

<?xml version="1.0"?><!DOCTYPE WorkflowSchema []>

<WSID> WS2</WSID>

<WSName> Market-Pull Workflow </WSName>

<WSType> ProductDevelopment</WSType>

<WSDesc> A product development process for a new chip </WSDesc>
<TaskList> (Project_Selection, Product_Definition,...) </TaskList>
<ComponentWorkflowsUnModified> WS21 </ComponentWorkflowsUnModified>
<ComponentWorkflowsModified> Null </ComponentWorkflowsModified>
<WorkflowInstances> (WFInsl WFIns22 WFIns23) </WorkflowInstances>
<WFFormalModel>

<PNModel>

PN-WS2

</PNModel>

</WFFormalModel>

<Tasks>

<Task>

<TaskType> Business </TaskType>

<TaskName> Project_Selection</TaskName>

<TaskDesc> Selects a list of new product ideas to work on </TaskDesc>

<TaskID> 1 </TaskID>

<TaskDesign>

<Parameters>

<Param> ?project_list </Param>

<Param> ?7total_budget</Param>

<Param> ?resource_list</Param>

</Parameters>

<PreConditions>

<Predicate> (available ?7project_list) </Predicate>
<Predicate> (available ?resource_list) </Predicate>
</PreConditions>

<PostEffects>

117

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
95
56
o7
o8
99
60
61
62
63
64

A. Supplementary Listings and Figures

<Effect> (add (new_proj_list ?7ne

</PostEffects>

<SubWF> WS25 - A subprocess
</SubWF>

</TaskDesign>

<TaskFormal>

<FSP> PS = (init -> sort_by_cos
</TaskFormal>

<TaskDefn>

<Agent> General_Manager </Agent>
<Agent> Marketing </Agent>
<Agent> Engg Design </Agent>
<Agent> Manfg </Agent>

<Agent> QA </Agent>
<Agent>Purchasing</Agent>
<Agent> Customer_Service</Agent>
<Procedure>

<ProcedureName> Select_Project <
<ProcedureSource> HandBook </Pro

</Procedure>

<Inputs>

<Dataltem> budget </Dataltem>
<Dataltem> resources </Dataltem>
<Dataltem> projects </Dataltem>
</Inputs>

<Outputs>

<Dataltem> selected_projects </D

</Outputs>
</TaskDefn>
</Task>

w_list)) </Effect>
<Effect> (add (new_budget ?new_budget)) </Effect>

t -> review -> vote -> select </FSP>

/ProcedureName>

cedureSource>
<Implementation_type> Manual_Team_Execution </Implementation_type>

ataltem>
<Dataltem> remaining_budget </Dataltem>

118

A. Supplementary Listings and Figures

A.1.2. Instance level workflow schema

| WFInstance |<>——| WFInstancelD |

— WFSchemalD |

—| WFDatalnputs K>
—| WFDataOutput K>

—| WFDateStarted |

—| WFDateCompleted |

—| PerformanceMetrics K> TotalTime |
AgentTime

—| EventsList |<>—| Event |<>——| EventID

—| DuringTask

|
|
—| EventType |
|
|

—| EventCause

—| EventRepair

—| SysAdminComments |

Figure A.1.: CODAW instance schema (compare [MZ03| Figure 7)

119

Bibliography

[Aal02]

[ADH"03]

|AT02]

[AHKBO2]

[AJO0]

[APO4|

[AWMO3]

[Bus01]

[CCPPYG|

IDAO4]

[DFABOS]

W.M.P. van der Aalst. Business Process Management: A personal view,
2002.

W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, .. Marustera,
G. Schimm, and A. J. M. M. Weijters. Workflow mining: A survey of
issues and approaches. Data & Knowledge Engineering, Volume 47, Issue
2, November 2003, pages 237-267, November 2003.

W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT press, Cambridge, MA, 2002.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros. Workflow Patterns. QUT Technical report, FIT-TR-
2002-02, Queensland University of Technology, Brisbane, 2002. (See also
http://www.tm.tue.nl/it /research /patterns.).

W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change:
Identification of Issues and Solutions. International Journal of Computer
Systems, Science, and Engineering, 15(5):267-276, 2000.

Agnar Aamodt and Enric Plaza. Case-based reasoning: foundational issues,
methodological variations, and system approaches. AI Communications,
7(1):39-59, 1994.

W.M.P. van der Aalst, A. Weijters, and L. Maruster. Workflow mining:
Discovering process models from event logs, 2003.

Christoph Bussler. The Role of B2B Protocols in Inter-Enterprise Process
Execution. Lecture Notes in Computer Science, 2193:16-34, 2001.

Fabio Casati, Stefano Ceri, Barbara Pernici, and Guiseppe Pozzi. Workflow
Evolution. In ER ’96: Proceedings of the 15th International Conference on
Conceptual Modeling, pages 438-455, London, UK, 1996. Springer-Verlag.

Boudewijn F. van Dongen and Wil M. P. van der Aalst. Multi-phase Process
Mining: Building Instance Graphs. In ER, pages 362-376, 2004.

Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-
Computer Interaction 2nd Edition. Prentice Hall, 1998.

120

[DS90]

[EKRO5]

[GAHLO1]

[HHJHS97)

[HHT99)

[Hol95]

[HSW97]

[JB96]

[KR93]

[LS97]
[MAWO03]

[MGMR02]

Bibliography

T. H. Davenport and J. E. Short. The new industrial engineering: Informa-
tion technology and business process redesign. Sloan Management Review,
pages 11-27, Summer 1990.

Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg. Dynamic Change
Within Workflow Systems. In COCS °95: Proceedings of conference on
Organizational computing systems, pages 10-21, New York, NY, USA, 1995.
ACM Press.

P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-
organizational Workflow Management in Dynamic Virtual Enterprises.

International Journal of Computer Systems, Science, and FEngineering,
15(5):277-290, 2001.

J. Hagemeyer, T. Herrmann, K. Just-Hahn, and R. Striemer. Flexibilitat
bei Workflow-Management-Systemen. In Usability Engineering: Integra-
tion von Mensch-Computer-Interaktionen und Software- Entwicklung, Fach-
tagung Software-Ergonomie 1997, Dresden, 3.-6.3.97, Stuttgart, pages 179
—190. Teubner, 1997.

San-Yih Hwang, Sun-Fa Ho, and Jian Tang. Mining Exception Instances to
Facilitate Workflow Exception Handling. In DASFAA, pages 45-52, 1999.

David Hollingsworth. Workflow Management Coalition Specification. The
Workflow Reference Model, January 1995. Document Status - Issue 1.1.

Thomas Herrmann, August-Wilhelm Scheer, and Herbert Weber.
Verbesserung von Geschdftsprozessen mit flexiblen Workflow-Management-
Systemen 1. Physica-Verlag, 1997.

Stefan Jablonski and Christoph Bussler. Workflow Management — Mod-
eling Concepts, Architecture and Implementation. International Thomson
Computer Press, 1996.

James E. Kurose and Keith W. Ross. Computer Networking. A Top-Down
Approach Featuring the Internet, volume Second Edition. Addison-Wesley,
2993.

K. Lei and M. Singh. A Comparison of Workflow Metamodels, 1997.

A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Work-
flow Mining: Current Status and Future Directions. In R. Meersman et al.,
editor, CoopIS/DOA/ODBASE 2003, volume LNCS 2888, pages 389 — 406.
Springer-Verlag Berlin Heidelberg, 2003.

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flood-
ing: A versatile graph matching algorithm and its application to schema
matching. In ICDE, pages 117-128, 2002.

121

IMGRO02]

[Miih96]

[MZ03]

[MZMO04]

[RD9S]

[Rei00)]

[RRDO2]

[RRDO4]

[RWRWO5]

[Shn98|

[SM95]

[Ver04]

[Wor99)

Bibliography

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile
Graph Matching Algorithm and its Application to Schema Matching. In
Proc. 18th ICDE, San Jose, CA, February 2002.

Michael zur Miihlen. Der Losungsbeitrag von Metamodellen und Kontroll-
flullprimitiven beim Vergleich von Workflowmanagementsystemen. Master’s
thesis, Westfilische Wilhelms-Universitdt Miinster, September 1996.

Therani Madhusudan and J. Leon Zhao. A Case-Based Framework for
Workflow Model Management. Springer-Verlag Berlin Heidelberg, 2003.

Therani Madhusudan, J. Leon Zhao, and Byron Marshall. A case-based
reasoning framework for workflow model management. Data Knowl. Eng.,
50(1):87-115, 2004.

Manfred Reichert and Peter Dadam. Adeptg.,-supporting dynamic changes
of workflows without losing control. J. Intell. Inf. Syst., 10(2):93-129, 1998.

Manfred Reichert. Dynamische Ablaufinderungen in Workflow-
Management-Systemen. PhD thesis, Universitdt Ulm, 2000.

Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Effiziente
Vertriglichkeitspriifung und automatische Migration von Workflow-

Instanzen bei der Evolution von Workflow-Schemata. Inform., Forsch. En-
twickl., 17(4):177-197, 2002.

Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness criteria
for dynamic changes in workflow systems - a survey. Data Knowl. Eng.,
50(1):9-34, 2004.

S. Rinderle, B. Weber, M. Reichert, and W. Wild. Integrating Process
Learning and Process Evolution - A Semantics Based Approach. submitted
for publication., 2005.

Ben Shneiderman. Designing the User Interface 3rd Edition. Addison-
Wesley, 1998.

D. M. Strong and S. M. Miller. Exceptions and exception handling in
computerized information processes. ACM Transactions on Information
Systems, 13(2):206-233, 1995.

Verein Deutscher Ingenieure, editor. VDI 2206. Entwicklungsmethodik fiir
mechatronische Systeme - Design methodologies for mechatronic systems.
VDI-Gesellschaft Entwicklung Konstruktion Vertrieb, June 2004.

Workflow Management Coalition. Terminology & Glossary, 1999. Document
Number WFMC-TC-1011.

122

Bibliography

[WRWRO05] Barbara Weber, Stefanie Rinderle, Werner Wild, and Manfred Reichert.

[WWB04]

[WWT97]

[WWTOS]|

CCBR-Driven Business Process Evolution. In Proc. 6th Int’l Conf. on
Case-Based Reasoning (ICCBR’05) (accepted for publication), Chicago, 1L,
August 2005.

B. Weber, W. Werner, and R. Breu. CCBR-enabled adaptive workflow man-
agement. In Proc. European Conf. on Case-Based Reasoning (ECCBR’04),
LNCS 3155, Madrid, 2004.

Christoph Wargitsch, Thorsten Wewers, and Felix Theisinger. Workbrain:
Merging Organizational Memory and Workflow Management Systems. In
Proceedings on 21st Annual German Conference on AI °97, 1997.

Christoph Wargitsch, Thorsten Wewers, and Felix Theisinger. An
Organizational-Memory-Based Approach for an Evolutionary Workflow
Management System - Concepts and Implementation. In HICSS '98: Pro-
ceedings of the Thirty-First Annual Hawait International Conference on
System Sciences-Volume 1, page 174. IEEE Computer Society, 1998.

123

Erklarung

Name: Florian Bertele
Matrikelnummer: 463675

Ich erklire, dass ich diese Diplomarbeit selbst verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

Ulm, den 29. April 2005

125

