
UNIVERSITY OF ULMFaculty of Computer ScienceDepartment of Database and Information Systems
U

N

IV
ERSI TÄ T

ULM
·

S
C

IE
N

D
O

·DOCENDO
·C

U
R

A
N

D
O

·

Emergent Work�ow
Diplomarbeitpresented byFlorian BerteleThesis advisers: Prof. Dr. Manfred ReichertProf. Dr. Peter Dadam
April 2005





AbstractMany �elds of work require information systems that support an organization in man-aging its complex process-aligned business. However, the �exibility of process creationand enactment o�ered by current work�ow management systems is often insu�cient. Asa consequence these systems are not broadly used and su�er from low acceptance. Agileprocesses that involve creative work are hardly supported as requirements changes andexceptional situations occur frequently. Emergent Work�ow is an approach that tries toovercome these de�ciencies by capturing the current process instantly � as it emergesout of work � and o�ering immediate support to work�ow participants. Its goals arethe retainment of organizational knowledge, improved reuse of individual work patternsand a better transparency of the overall process. This thesis �rst motivates the sub-ject by introducing a �eld of application in automotive product development. Typicalcomponents of an Emergent Work�ow Management System are identi�ed and their re-quirements as well as a process model are speci�ed. Then related work is presented andmatched against these requirements. The thesis closes with a conceptual architecturalproposal and discusses some issues of feature integration and implementation.





Contents
1. Introduction 11.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2. Vision of Emergent Work�ow . . . . . . . . . . . . . . . . . . . . . . . . 31.3. Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.5. Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 112. Requirements 122.1. Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.2. Component overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.3. Component-based requirements . . . . . . . . . . . . . . . . . . . . . . . 172.3.1. User interfaces/Client application . . . . . . . . . . . . . . . . . . 172.3.2. Server interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.3. Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.3.4. Organizational model . . . . . . . . . . . . . . . . . . . . . . . . . 232.3.5. Time management . . . . . . . . . . . . . . . . . . . . . . . . . . 262.3.6. Process creation engine . . . . . . . . . . . . . . . . . . . . . . . . 282.3.7. Runtime engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.3.8. Process matching engine . . . . . . . . . . . . . . . . . . . . . . . 472.3.9. Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492.3.10. Requirements summary . . . . . . . . . . . . . . . . . . . . . . . . 512.4. Process metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532.4.1. Process de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . 552.4.2. Process instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602.4.3. Process compositions . . . . . . . . . . . . . . . . . . . . . . . . . 623. Related approaches 663.1. Case-based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663.1.1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663.1.2. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703.1.3. Assessment of usefulness . . . . . . . . . . . . . . . . . . . . . . . 823.2. Process mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.2.1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833.2.2. Multi-phase process mining . . . . . . . . . . . . . . . . . . . . . 873.2.3. Assessment of usefulness . . . . . . . . . . . . . . . . . . . . . . . 88

i



Contents3.3. Flexibility approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893.3.1. Schema evolution and propagation . . . . . . . . . . . . . . . . . 893.3.2. Ad-hoc instance change . . . . . . . . . . . . . . . . . . . . . . . . 923.3.3. Integration of schema evolution and ad-hoc instance modi�cation 963.3.4. Assessment of usefulness . . . . . . . . . . . . . . . . . . . . . . . 984. Architectural proposal 1004.1. Stage 1 � Basic functionality . . . . . . . . . . . . . . . . . . . . . . . . . 1014.2. Stage 2 � Advanced functionality . . . . . . . . . . . . . . . . . . . . . . 1034.3. Stage 3 � Full functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 1065. Discussion 1106. Conclusion 1156.1. Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156.2. Omitted and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 116A. Supplementary Listings and Figures 117A.1. CODAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117A.1.1. Process data model . . . . . . . . . . . . . . . . . . . . . . . . . . 117A.1.2. Instance level work�ow schema . . . . . . . . . . . . . . . . . . . 119Bibliography 120

ii



1. Introduction1.1. MotivationToday, entrepreneurial success is determined by both external and internal factors. Asthe economic competition grows harder, companies face several external challenges. Thehigh innovation speed in research and production leads to shorter product life cycles andless development time. Markets tend towards going global and o�er more choice for cus-tomers. Thus customers' expectations towards competitive pricing, quality, performanceand �exibility of products rises as well. Internally, production and development gets moreand more complex with each generation. To handle that complexity, sta� becomes highlydiverse and develops speci�c knowledge in each department. That makes it harder toaggregate each individual's work and to communicate common goals. Obviously, com-plicated products cause complicated corporate structures. That is why companies havecome to extend their focus from a product-oriented view to a more process-orientedview.By aligning business in a process-oriented manner, inputs, outputs and relationshipsbetween activities have to be identi�ed. Formalizing these elements helps to break downthe corporate strategy into operations and clari�es their relation. The process itself ofcreating explicit process models and visualizations fosters a more in-depth understandingof collaboration and the �ow of documents, products and work. A more transparentperception helps to spot chances to increase e�ciency such as eliminating redundantwork, defective products or reducing cycle times. According to Jablonski and Bussler[JB96], the expected bene�ts are among others improved quality of service, improvedproductivity and cost reduction and reduced vulnerability of the work process.Work�ow management systems have been introduced in order to give technological sup-port to the idea of business processes. They are software systems dedicated to managethe steps involved when dealing with business processes, such as modeling or assigningtasks. A work�ow management system is meant to encapsulate all process logic withina corporate information technology system.The classical model of a business process life cycle is depicted in Figure 1.1. Processdesign is the task of distilling a process model from a set of informal business require-ments. It involves the de�nition and selection of appropriate tasks (possibly from atask library), sequencing of the tasks to satisfy data and logical dependencies, alloca-tion of resources consumed by tasks, allocation of agents to execute tasks, schedulingof tasks considering concurrency, and �nally validation and veri�cation of the model.1



1. Introduction
Diagnosis

Process

design

System configuration

Process

enactment

Figure 1.1.: The business process life cycle (compare [Aal02] Figure 2)During system con�guration, an initial business process is implemented and deployed inthe work�ow management system. In the following enactment phase instances of theimplemented models are created and executed. A process instance passes a number ofstates by initiating its tasks. The conditions and sequence of task execution is stated inthe process schema as well as a terminal state. After enactment, the process instancehistory is diagnosed for analysis and improvement. Conclusions drawn from that phasein�uence the next process (re)design phase.However, work�ow management systems have not been accepted widely in pracice been[HSW97]. Multiple reasons can be found for that: Technology sometimes has not beenproven to be mature enough for corporate-wide deployment. On a managerial levelpeople may be not convinced of the positive e�ects a work�ow management system hason e�ciency and see primarily high investments. As most activities of employees canbe individually controlled and monitored by information systems, acceptance problemsbecome apparent as well. People feel observed or are afraid of doing "o�ce assembly-linework" due to the high degree of work assignment automatization. The most profoundde�ciency though is the lack of �exibility in most commonly used work�ow managementsystems.Depending on the type of work and operational business, it is quite common that, fromtime to time, the product or the production process needs to be changed. Exceptionalsituations occur that have to be treated separately. These might be caused due tointernal or external events, such as special arrangements with a customer or extra qualitychecks due to legislative changes. Very often it is not possible to foresee all possibleexceptions during process design, so the implemented work�ow model does not coverit. What happens most of the time is a treatment of such cases out of the system.Activities are inserted, modi�ed or skipped manually without proper documentation �the work�ow management system does not know anything about the deviation from itsstandard procedures. Such behavior leads into a situation where processes (or what is2



1. Introductionleft of them) become intransparent and the knowledge about them is incomplete or evenincorrect. Since this would practically reverse all e�orts put into process management,exceptional situations need to be taken care of di�erently.The correct resolution of an incomplete process implementation is another reiterationthrough the business process cycle (see Figure 1.1): Let process designers and sta� diag-nose the weaknesses, redesign their models and get them implemented into the work�owmanagement system. Furthermore running process instances need to be taken care ofseparately to assure their conformance with the new model. That is a tedious and time-consuming task that involves many reports, meetings and interviews. Design work andcommunication between various groups of people leads to a certain degree of informa-tion loss and potential misunderstanding. If such changes appear very frequently onpotentially long-running process instances, the e�ciency advantages of work�ow man-agement system are mostly lost. Due to these shortcomings of conventional work�owmanagement systems, we motivate the use of �exible work�ow management.A �exible work�ow management system is able to adapt to changing requirements of itsusers and their work items, particularly during process enactment. That includes theconsideration of exceptional situations, ad-hoc changes to work�ow instances, activitiesand resources and work�ow schema alteration. Knowing that not even the most care-fully pre-built process model suits all possible future situations and later alterations areunavoidable, a �exible work�ow management system rather focuses on o�ering meansto extend or modify its behavior for all involved parties in an acceptable way. It doesnot force users to circumvent its limited capabilities outside the system, but lets themdocument a change operation and its context as well as possible.1.2. Vision of Emergent Work�owEmergent Work�ow envisions a �exible work�ow management system with the capabil-ity of building small-scale work�ows during process enactment without explicit processdesign.There exist many �elds of work which share characteristics such as being highly variableand having low regularity patterns in their schema of activities. For instance, highly cre-ative or knowledge intensive processes like product development fall into that category.At the same time, those kind of processes require close collaboration of many people fromseveral disciplines, each representing distinctive knowledge. There exist many di�erentviews on one common project, all of which need to be integrated properly.Introducing a work�ow management system into an environment like that is very promis-ing due to the large amounts of implicit knowledge involved. Building an informationsystem that collects structured information about the process and makes it availablefor later reuse would yield the bene�t of improving each individual's process awarenessand productivity. A higher work pace, work quality and learning curve are among the3



1. Introductionpotential bene�ts.However due to the nature of creative work, a small scale process can hardly be pre-modeled because there does not exist literally one single regular case of reasonablecomplexity. Rather, there is a rough framework whose detailed structure is subjectto continuous adaption due to spontaneous requirement changes.As the exact process logic is unknown until process enactment, it is the approach ofEmergent Work�ow to capture the process as it emerges from spontaneous performanceof activities. An explicit modeling approach is impractical as it is both too complicatedand too time-consuming to be done by people who are not dedicated process designers.The user rather documents their advancement in a more convenient and less formal way,e.g. supported by a dialogue-based software. A partial process model is then supposedto be derived from an audit trail that documents users' activities.Interesting uses for that information include documentation, reuse and composition. Asfor documentation, recurring situations including their context and decisions made uponthem can be reviewed to gain insights for future work. If a very similar situation occursin the future, it is even possible to reuse a previously recorded situation as a templateto guideline upcoming activities. Finally, the collected set of small-scale process partscontains all information necessary to compose a view on the overall current process.This is particularly interesting to compare with a theoretically developed target processin order to �nd characteristic di�erences and chances for improvements.1.3. Application exampleIn order to get a taste of what a typical application environment could look like, an initialexample is introduced. It helps understanding the major questions that have to be askedand answered when considering the introduction of Emergent Work�ow. Furthermorethe application scenario is used throughout the thesis to illustrate proposed ideas.The example introduces an outline of a new product development process in the auto-motive engineering sector. Automotive development is a relevant application �eld forEmergent Work�ow for a number of reasons. Modern automobiles are mechatronic sys-tems � machines whose components comprise mechanical, electronical and informationtechnology aspects. Their correlation is visualized in Figure 1.2 and the meaning ofmechatronics is de�ned by VDI [Ver04] as follows:[Mechatronics is]...the synergetic integration of mechanical engineeringwith electronic and intelligent computer control in the design and manufac-turing of industrial products and processes.
4



1. Introduction

mechatronics

information

technology

electrical

engineering

mechanical

engineering

Figure 1.2.: Mechatronics as the interaction of di�erent disciplines (compare [Ver04] Fig-ure 2-1)It is crucial to notice that synergetic e�ects can not be reached by independently op-erating science groups but take their power from cooperation with each other. Thatimplies consequent synchronization between the disciplines to establish a common view,language and understanding of development issues.The driving force behind interests in mechatronic systems is the fast paced innovativepotential in information technology. On the one hand it is due to the exponential ad-vancements of processing power and memory with concurrently decreasing costs and sizeat the same time. On the other hand the functional and spatial integration of technolo-gies unleashes potential improvements concerning functionality, absolute performanceand price-performance ratio as well as better behavior.In an automobile, electronic and information processing components are built on top of amechanical structure. This structure would suggest a sequential development procedurewhich is not practical in reality though because of its very time-consuming nature. Fore�ciency reasons it is rather desirable to have a continuous, distributed developmentand cross-domain cooperation at the same time. A digital mock-up is a widely usedtool in product development to achieve that objective. It is a virtual prototype usedby all involved disciplines to simulate and test the most important physical and otherfunctional aspects.As development procedures can not be pinned down to one single best model, the com-bination of the following patterns o�ers more �exibility:
5



1. Introduction
• General problem-solving as a micro cycle
• V model styled macro cycleProblem-solving as a micro cycle The problem-solving cycle shown in Figure 1.3applies to small-scale procedures and comprises several components. The starting pointis either a situation analysis or the adoption of a goal, depending on whether a pre-existing structure is adopted or new structures are built from scratch. After the situationhas been analyzed with a given structure, a goal can be formulated from given input.In case an ideal concept is the starting point, these goals are adopted �rst and situationanalysis starts from there.During analysis and synthesis, a solution for the given problem is researched. Bothactivities analysis and synthesis are alternating: The �rst develops solution alternativeswhich are then checked, improved or rejected during synthesis of the results. By iteratingthese steps, improved solutions are eventually found.The �nal analysis and assessment step evaluates the solution alternatives found in moredetail. An assessment with regard to the initial goal formulation leads to either a pro-posal or a recommendation for one or more proposed solutions.During decision, one compares the overall success of procedures which have shown sat-isfactory result so far. It either ends in a return to another goal formation if the resultswere not convincing or a favorite solution is chosen.Planning for further procedure or learning makes sure that, at the end of one micro-cycle, the e�orts made so far are carefully reviewed and evaluated. Learning about thegood and bad points from the past cycle helps to improve further planning. That leadsto a systematic improvement of future processes.V model The V model is a macro-cycle that formulates � in contrast to a micro-cycle � a view on the overall development process. In Figure 1.4 multiple iterations ofmacro-cycles are shown.The process starts at the entry point of the innermost cycle on its left side. From there,each iteration begins with a formulation of its respective requirements. They specify thegoals of the macro-cycle in detail and are used as a comparative measure for outcomes.During system design, developers establish cross-domain concepts for solutions. Thatis achieved by decomposition of major system functionalities, �nding solution elementsand recomposing these into an overall solution concept.The domain-speci�c design phase is used by each discipline individually to elaborateon solutions that had been outlined during system design. Solutions are substantiatedin more detail which requires separate models and views for mechanical, electrical andinformation engineering each. 6



1. Introduction

Synthesis

Analysis

Goal formation Situation analysis

Adoption of goalSituation analysis

Analysis and assessment

Decision

Planning for 

further 

procedure

Learning

- develop 

alternatives for a 

solution

- check, improve, 

reject solutions

Procedure based 

on actual state

(existing structure is 

taken as a basis)

Procedure based 

on desired state

(ideal concept is at 

the forefront)

Figure 1.3.: Problem-solving as a micro-cycle (compare [Ver04] Figure 3-1)
7



1. Introduction

Degree of maturity

Requirements Product

Entry

Degree of maturity

Assurance

of 

properties
S
y
s
te
m
 d
e
s
ig
n

S
y
s
te
m
 d
e
s
ig
n

S
y
s
te
m
 d
e
s
ig
n

S
y
s
te
m
 

in
te
g
ra
ti
o
n

S
y
s
te
m
 i
n
te
g
ra
ti
o
n

S
y
s
te
m
 i
n
te
g
ra
ti
o
n

 Mechanical engineering

 Electrical engineering

 Information engineering

 Mechanical engineering

 Electrical engineering

 Information engineering

 Mech. eng.

 Electrical eng.

 Inform. eng.

Quality gate

Figure 1.4.: V-model styled macro cycles with increasing product maturity (compare[Ver04] Figures 3-2 and 3-3)

8



1. IntroductionSystem integration �nally consolidates all partial solutions and investigates their inter-action. An important part of integration is the assurance of properties as indicated inFigure 1.4 by arrows pointing from right to left. As integration proceeds, its resultsare continuously checked back with the solution concepts built during system design.Furthermore, their compliance with the initial requirements has be assured.A macro-cycle iteration results in a product. This can be either the �nal product which isready to be released or just an intermediate product such as a certain prototype stage. Ascomplex products require usually several macro-cycles for development, an intermediateproduct has to pass a quality gate to proceed to the next development cycle. A qualitygate driven process ensures the quality level of outcomes at a certain stage by de�ningdetailed requirements that have to be met before entering the next stage. After passingthe quality gate, the next set of requirements gives the agenda for the next macro-cycleand the next quality gate. With each additional macro-cycle, the product maturity interms of completeness and correctness increases until the last cycle outputs the �nalproduct.The V model and the problem solving micro-cycle indicate that Emergent Work�owis a promising approach in automotive development. On the one hand, the overallprocess has a coarse �xed structured de�ned by iterating through quality gates. On theother hand, small-scale problem solving appears frequently, is individually determinedby the context and has little repetitive structure. Still, there are expected bene�tsfrom reusing previously applied procedures. Suppose a construction detail such as anadvanced window power lifter. It may have already been implemented in a premiumclass model line successfully and is about to be adopted for the next generation of acompact car. The processes and insights recorded while integrating the power lifter inthe premium car can save e�orts by being reused for its integration in the compact car.1.4. TerminologyWhile talking about a speci�c �eld of application, we have used a lot of terms withoutexactly specifying their meaning. This sections purpose is to introduce the terminologythat will be used most commonly throughout the subsequent chapters. The followingde�nitions and explanations were established by the Work�ow Management Coalitionin "Terminology & Glossary" [Wor99] respectively taken from [AH02, WRWR05]. Wewill adapt their interpretation in the following paragraphs.A business process is a set of procedures and activities, which collectively realize abusiness objective such as the construction of a new car generation. These proceduresand activities are linked by various relations, e.g. temporal or causal dependencies.A work�ow is the automation of a business process, in whole or partially. A set of pro-cedural rules manage the exchange and distribution of documents, information or tasks.Strictly speaking, the term work�ow refers to the subset of processes which are sup-9



1. Introductionported by information technology. Since however the di�erentiation of a process versusa work�ow is not crucial in the light of this thesis, I will mostly use both terminologiessynonymously.The execution of work�ows is de�ned, created and managed by a work�ow managementsystem. By the use of software it runs on one or more work�ow engines. These areable to interpret formal process de�nitions, interact with work�ow participants (alsocalled work�ow users) and, where required, invoke the use of applications and otherinformation technological tools. A work�ow participant is a human or machine-basedagent that constitutes a resource which performs work represented by a work�ow activityinstance. A work�ow management system that meets the requirements discussed inChapter 2 will be referred to as an Emergent Work�ow Management System.The automation of a work�ow is de�ned within a process de�nition. It is the represen-tation of a business process in a form which is supported for automated manipulation,such as modeling or enactment by a work�ow management system. A process de�nitionholds a certain process type. The type is speci�ed by a process schema which de�nesthe process structure. The schema consists of a network of tasks and their relationships,constraints to indicate the start and termination of the process and information aboutindividual activities, such as participants, associated applications and data, etc.A business process is structured by the identi�cation of logical steps. Each atomicstep is referred to as a task. A task is performed by the execution of an instance-speci�cactivity. During execution, an activity passes a sequence of de�ned states. Activity statetraversal can be either work�ow automated or manual without information technologysupport. A work�ow activity requires human and/or machine resources to supportwork�ow execution. Where human resources are required, an activity is allocated to awork�ow participant.A process instance is a process de�nition with individually allocated resources and ac-tivity states for all tasks it contains. The set of activity states de�nes the executionstate of a process instance. During process enactment, a process de�nition is both in-stantiated and executed. That is, a process de�nition with an individual process stateand its resources are allocated and an initial state transition is performed in order toindicate the instance's readiness. In literature, process instances are often referred to ascases1. In this thesis, we will stick to the term process instance in order not to confuseit with the term case used in case-based reasoning (see Section 3.1).Many individual process instances may be operational during process enactment. Eachprocess instance is the representation of one single enactment of a process de�nition andmay be controlled independently. It has its own internal state and externally visibleentity. A work�ow management system creates and manages a process instance for eachseparate invocation of the process de�nition.A worklist is a list of work items which are associated with a given work�ow participant.1e.g. by van der Aalst et al. in [AH02] 10



1. IntroductionEach work item is a representation of a task which has been scheduled for execution inthe context of an activity within a process instance. The worklist represents a part ofthe interface between a work�ow engine and the worklist handler, a software componentthat manages the interaction between the user and the worklist. It enables work itemsto be passed from the work�ow management system to users and forwards noti�cationsof completion or other work status conditions.1.5. Organization of this thesisUp to now, Chapter one has motivated and introduced the subject around EmergentWork�ow. After amotivation of business process management in conjunction with work-�ow management, the vision of Emergent Work�ow is presented. A characterization ofa possible �eld of application follows. The Chapter closes with an introduction and clar-i�cation of the terminology most commonly used throughout the thesis. Chapter twopresents the requirements on an Emergent Work�ow Management System in a struc-tured manner. First, typical use cases are identifed, from which a component overview isconcluded. Then detailed requirements on each individual component are elaborated. Atabular requirements summary gives a brief statement on the most noticeable points ofthe component's requirements. The Chapter closes with a speci�cation of characteristicsfor a suitable process metamodel. Chapter three presents related work approaches toEmergent Work�ow. Case-basd reasoning, process mining and �exibility approaches areintroduced and assessed with respect to their usefulness for Emergent Work�ow. Chap-ter four contains an architectural proposal for an Emergent Work�ow ManagementSystem presented in three stages. Chapter �ve discusses functional issues of integra-tion. Finally, Chapter six contains a summary of the presented work, a conclusion andmentions future and omitted work.

11



2. RequirementsIn order to receive functionalities as described in the vision of Emergent Work�ow,certain requirements have to be met. This Chapter attempts to explore these and layout some details about them. First, an overview of typical use cases identi�es user groupsand their interaction with system components. That information is used as a startingpoint for a more complete illustration of all generic components of Emergent Work�ow.From there, each mentioned component is further elaborated concerning its interfaces,functionalities and constraints. After a summary of component-oriented requirements,requirements on an underlying process metamodel follow.2.1. Use casesProcess design Although EmergentWork�ow aims at a more spontaneouscreation of process models, pre-modeledprocesses can not be left out in practice: Onthe one hand, they may be still used as astarting point for process development andon the other hand a coarse, big scale processmodel can be used for �exible work�ows aswell.Example 1. The V model depicted inFigure 1.4 shows the common proceduresfor automotive development. Although itis a highly creative process, there is a rigidframework of steps to take during develop-ment: There is a number of quality gatesto pass, each with a dedicated design phase,discipline-speci�c problem solving and a �-nal integration phase.Before enactment, a dedicated process de-signer models explicitly a more or less com-plete process model. It consists of the over-all structure determined by a developmentmodel and also generic procedures whichhave standardized and repetitive character.This model is being formalized by the helpof a process de�nition tool and stored to therepository.

Process 

definition tool

Repository

Process 

designer

stores process 

model

Figure 2.1.: Use case: process de-sign
12



2. RequirementsAdministration A process model is thestarting point for enactment of process in-stances. Instances may be initialized byusers or an administrator using a user in-terface to the runtime engine of the work-�ow management system. After the instanceis up and running, it is being managed bythe administrator until it reaches a termi-nal state. Management includes observingfunctions such as monitoring the progressand state of instances, intervening in excep-tional cases and overriding user interactionsas necessary.
User interface

Repository

Administrator

instantiates 

process model

Runtime 

engine

manages 

instances

Figure 2.2.: Use case: administra-tion
Usage & creation A work�ow user issomeone whose work is coordinated by awork�ow management system. In EmergentWork�ow, this person (or agent) does notonly receive tasks from the runtime engine,but is also involved in creation and adaptionof partial processes. This is possible andnecessary as the �exible approach of Emer-gent Work�ow intends to give its users thefreedom for self-determining, thus creatingtheir own partial process. So after the re-ception of a task through a user interfaceor a client application, the participant per-forms the steps necessary to complete thetask. His actions are being formalized in aninteraction protocol. This protocol containsthe information which is necessary to recon-struct the user's individual process fragmentin a process creation engine. Finally, thisfragment of a process instance is stored tothe repository.

Repository

User & 

Creator

Runtime 

engine

creates 

interaction 

protocol

Process 

creation 

engine

assignment of 

tasks

stores process 

fragments

User interface/Client application

Figure 2.3.: Use case: usage & cre-ation

13



2. RequirementsComposition Having stored these processfragments, the process designer can now goahead and compose these elements into big-ger compositions. These foster the under-standing of the coherence of collaborativework and can be used either for documen-tation or as a template for big-scale processredesign. As there are probably many frag-ments available in the repository, a designerneeds the support of a process matching en-gine component which assists him �ndingrelevant fragments. These are composed ina process modeling tool and resulting com-positions are stored to the repository.
Process modeling tool

Repository

Modeling & 

Composition

Process 

matching 

engine

stores 

composition

queries 

fragments and 

models

specification of 

model 

properties

Figure 2.4.: Use case: composition
Usage & reuse Once the repository is�lled with process fragments, a work�owuser may now choose to make use of them.So when the runtime engine assigns himwith a task that turns out to be similar to atask which has been processed in the past,the user may choose to follow similar pro-cedures again. Thus, he will rely on theprocess matching engine to �nd a templatein the form of a stored process fragment.That template guides him at a chosen levelof interactivity through the procedures. Asit is in creative processes likely that sponta-neously formed processes slightly di�er fromeach other, deviations from the templatesoccur and are recorded again in an interac-tion protocol. As before, the trail is trans-formed by the process creation engine into anew fragment and stored to the repository.

User interface/Client application

Repository

(Re-)User

Runtime 

engine

creates 

interaction 

protocol

Process 

creation 

engine

assignment

 of tasks

stores process 

fragments

Process 

matching 

engine

searches 

templates

queries 

fragments

Figure 2.5.: Use case: (re-)usage

14



2. RequirementsDocumentation The last distinguisheduse case is the role of documenting work.Process fragments can be documented al-ready at run time with annotations, how-ever separate documentation may summa-rize the most important insights from a post-hoc point of view. These records may re-quire references to process fragments as theywere derived during the execution of the cur-rent process. Again, a process matching en-gine is needed to spot the relevant fragmentsand integrate them on the client side witha documentation tool and store the resultsback to the repository.
Documentation tool

Repository

Documentation

Process 

matching 

engine

stores 

documentation

queries 

fragments and 

models

specification of 

model 

properties

Figure 2.6.: Use case: documenta-tion
2.2. Component overviewWhile enumerating use cases, basic components of Emergent Work�ow were mentioned.In order to receive a more complete understanding of all the components involved, thissection gives a short overview of them. As the usefulness of a work�ow managementsystem is not only determined by its functions but also by its ability to interact withexternal entities, a set of standardized interfaces has been de�ned by the Work�owManagement Coalition. Their Reference Model [Hol95] is shown in Figure 2.7.The model generalizes the idea of a runtime engine to a work�ow enactment service, assuch could potentially contain multiple work�ow engines. This service is encapsulatedby a Work�ow API and interchange formats which are the results of standardizatione�orts by the Work�ow Managements Coalition.It distinguishes �ve interfaces in total:Interface 1: Process de�nition tools This is the interface used during process designphase by process designers to transfer developed process models to the work�owmanagement system.Interface 2: Work�ow client applications All work�ow-related user interaction is di-rected over this interface. Typically this includes client applications that manageassigned work items for users and updates the system about work progress.

15



2. Requirements
Process definition 

tools

Administration & 

Monitoring tools

Invoked 

applications

Workflow client 

applications

Workflow API and interchange formats

Workflow enactment service

Workflow 

engine(s)

Other workflow enactment 

service(s)

Workflow 

engine(s)

Interface 1

Interface 5

Interface 2 Interface 3

Interface 4

Figure 2.7.: Work�ow Reference Model (compare [Hol95] Figure 6)Interface 3: Invoked application This interface addresses third-party applications whichare invoked server-side by the work�ow enactment service such as Enterprise Re-source Planning software.Interface 4: Other work�ow enactment service(s) Cross-organizational work�ow be-comes a hot issue when a combination of services o�ers additional bene�ts. Thisinterface serves the purpose of enabling interoperability between various types ofwork�ow management systems. They exchange use and control data, enable syn-chronization and virtually merge independently created and executed processes.Interface 5: Administration & monitoring tools Administration and monitoring is adefault requirement for any work�ow management system. Therefore, a generic in-terface is de�ned which allows the use of non legacy applications for administrationand monitoring.Figure 2.8 gives an overview of all identi�ed Emergent Work�ow components. Threegroups of components were identi�ed and aligned in an interface, logic and data layereach. Interface components direct and format relevant input or output data. Compo-nents for the application logic process data and forward outputs to the other two layers.The data layer �nally handles storage of data.
16



2. Requirements

Repository

Process 

matching 

engine

Runtime 

engine

Process 

creation 

engine
Logic

Interfaces

Data

Dictionary

Organizational model

Time management

External applications

External WfMS

Client Server

User interfaces/

Client application

Figure 2.8.: Emergent Work�ow components2.3. Component-based requirementsIn the following Sections, the desired functionality of all mentioned components is ex-plained and functional as well as nonfunctional requirements are derived.2.3.1. User interfaces/Client applicationA user interface represents all users' access point to the Emergent Work�ow Manage-ment System. Notice that we summarize interfaces 1, 2 and 5 from Figure 2.7 intothis generic Section about user interfaces/client application. Hence three di�erent usergroups, work�ow participants, designers and administrators apply varying functional andnonfunctional requirements on this interface. They have been combined into this sectionas a detailed speci�cation of functional requirement of applications used by designersand administrators is not a point of emphasis in this thesis.Functional requirements Administrators require applications that allow them to con-trol the work�ow management system with special focus on the runtime engine. Aspectssuch as instantiation, execution, termination of instances as well as their permanentplacement in an archive are to be monitored and in�uenced as necessary. Process de-signers analyze, create and compose process models. Hence their client applications areto provide support when retrieving running or archived process instances and duringthe creation or composition of process models. Human work�ow participants (from thispoint on also referred to as "the" users) require client applications that receive incomingwork items representing tasks, manage this set of tasks using a worklist handler, helpthem document their work and return status information to the system, such as whenthe user has started or �nished their job on one work item. Non-human work�ow par-ticipants referred to as agents have special requirements regarding a machine-readableinterface, but behave generally very similar to human users and are therefore not further17



2. Requirementsconsidered here.A user interface is either referred to as a part of the client application or represents theclient application itself, commonly depending on whether there is enough applicationlogic present at the client: A tool that graphically lists all incoming work items is usuallycalled an user interface, whereas a version of this tool supplemented with functionalityfor execution and manipulation is rather called an application. In both cases, theirappearance is critical to the acceptance of the whole work�ow management system.That is, nonfunctional aspects determine whether a software system is understood andcontrolled by users to its fullest extent or its features are mostly ignored and workedaround.Application integration levels describe the functional level on which client applicationscan access a work�ow management system's functionality and vice versa. At a mini-mum integration level, the runtime engine may receive the ability to start/stop a clientapplication upon the start/stop of an activity. In a second level, startup parameterscan additionally be handed over to a client application which itself hands back a returnvalue upon its termination. At the next level, the ability to pass data objects as input oroutput for the application may be added. The highest level of integration of a work�owmanagement system and a client application represents a module or macro call typeof access directly through the client's respectively the work�ow management system'sAPI (Application Programming Interface). The implemented level of integration deter-mines to a certain extent the ability to automatize a process and thereby increase usere�ciency.Usability User interfaces and usability in general are a wide �eld of studies; this para-graph does not intend to claim completeness on this side aspect of the thesis. It is rathermeant to provide a starting points and examples of objectives to consider. For a moreelaborate discussion of usability, appropriate literature exists1In order to help the novice or occasional user to make his �rst steps with work�owmanagement, an easy to use interface is substantial. Intuitivity and simplicity are twovery frequently mentioned nonfunctional requirements for any user interface. The �rstmay be described as the ability of an interface to behave in all situations as expected byits typical user. Simplicity is a very delicate issue, as it runs contrary to most functionalrequirements: To give users a clear understanding of how they are supposed to interactand what their actions will infer. This goal is mostly reached by a low number of itemson the screen and prede�ned screen sequences (such as "assistants" or "wizards") whichmakes it hard to integrate a lot of functions in the interface. The simpler the interface,the lower is the learning curve for its users to work at a high level of productivity.Additionally, documentation is an important aspect in order to achieve acceptance for1For example Dix, Finley, Abowd, Beale "Human-Computer Interaction" [DFAB98] or Shneiderman"Designing the User Interface" [Shn98] 18



2. Requirementsa user interface. As a persistent and complete understanding of all aspects of a userinterface is rather less likely for all potential users, proper documentation helps them toanswer raising questions on their own.Con�guration & customization A system environment di�ers individually from clientto client: Invocation of various third-party applications needs to be con�gured individ-ually on each system. Also, once a user becomes more advanced in using an interface,he might want to modify its behavior in order to enhance his working speed. As thereis not one uniform user, there does not exist one perfect interface that meets all users'needs as well. While an explanatory pop-up window is helpful for the novice user, it isannoying and useless for the advanced user. Customization describes those abilities ofan interface, e.g. to modify its look-and-feel, toggle optional parameters, add keyboardshortcuts and adjust the level of interactivity.Interaction protocol Apart from user communication, the most important functionalrequirement can be seen from the use cases in Section 2.1. A user interface has topropagate user interaction in the form of an interaction protocol back to the work�owmanagement system. It is one of the key ideas of Emergent Work�ow to derive completeor partial process or instance models from recordings of spontaneous �ow of work. Thiscan only happen if there exists su�cient input which has been generated on the clientinterface layer. An adequate interaction protocol contain the sequence of actions of auser including their context and modi�ed data objects. The more complete and con-sistent user interaction can be formalized, the more it is likely to come up with correctconclusions regarding the current in-detail process.2.3.2. Server interfacesAlthough this thesis does not deal with server-side interfaces in-depth, for the sake ofcompleteness they are mentioned here shortly. Two interfaces assure the integration ofwork�ow management systems into an existing and heterogeneous environment: One forexternal work�ow management systems, the other one for external applications.Communication between work�ow management systems is motivated by a trend towardscloser collaboration between companies, such as along the value chain of a modular andcomplex product. The consequence is that companies using process aligned informationtechnology start sharing certain portions of their internal process in order to improve col-laboration. Cross-organizational work�ows are an example for the alignment of multipleindividual work�ows into one virtual big work�ow2.2Compare for example C. Bussler "The Role of B2B Protocols in Inter-Enterprise Process Execution"[Bus01] or Grefen et al. "CrossFlow: cross-organizational work�ow management in dynamic virtualenterprises" [GAHL01] 19



2. RequirementsFor interoperability, an XML based protocol Wf-XML has been proposed for run timeintegration of process engines3. Di�erent levels of interoperation are separated depend-ing on the following scenarios: Cooperation may be chained where output items arepassed on as input items for the next process. A nested subprocess can be found wherea sub-task is performed by an external entity. A peer-to-peer organization describesindependently acting entities that send work items as unsynchronized packets, whereasin contrast to that a parallel synchronized top process is established.Non-work�ow external application integration of work�ow management is needed to putthe abstract view of process instances into practice and execute them. Involved externalapplications may be as fundamental as a database system, an automotive productioncontrol system or as the classic example, enterprise resource planning software. Thereexist applications which are "work�ow enabled" and those which are not; in the lattercase an intermediate "Application agent" is used, otherwise communication may functiondirectly. A standardized Work�ow Application Programming Interfacen (WAPI) forsynchronous/asynchronous access and data exchange has been established4.Analogue to the client interface, the creation of interaction protocols for all commu-nication passing the server interfaces is a vital part for the functionality of EmergentWork�ow. As user interaction is complemented by system reaction, both sides need tobe recorded in order to draw a complete picture. Such systems do not only reside atthe client side, but primarily at the server side as the examples given in the paragraphabove illustrate.2.3.3. DictionaryWhen many users document their work progress, their input is used to build formalfragments of each individual's stake in the development process inside the work�owmanagement system. As di�erent users may enter the same data redundantly or usethe same terminology in a di�erent context, it is important to keep an eye on dataconsistency. Without an explanation and knowledge of the �eld of application, bene�tsfrom having the process documented are very limited. To avoid such ambiguities, it issuggested to establish a common syntax for all terminology which is used to describework and its outcomes. Otherwise it is not possible for the system to grasp commonalitiesin related activities described by di�erent users, if they use heterogeneous terminologyfor the same facts without specifying the semantic contents of their vocabulary.Such confusion is avoided if all entered data is based on a previously or concurrentlyde�ned common dictionary. It de�nes shared terminology and highlights relations be-tween terms like entities being synonyms, antonyms and homonyms. Authorized rolesshould be able to extend, modify and use this dictionary while documenting their work.A well developed dictionary is very valuable as it bears a formalization of various views3See Wf-XML 2.0 Current Draft: http://www.wfmc.org/standards/docs/WfXML20-200410c.pdf4See WAPI Version 2.0e Speci�cation: http://www.wfmc.org/standards/docs/interface2-3.pdf20



2. Requirements

Keyword

Description

Author

Discipline

Project 

group

Development 

stage
used in

explained by

created by

has background in

is a member of

consists of

synonymous to

antonymous to

homonymous to

[custom relation]Figure 2.9.: Dictionary entitiesand references on the subject which is being worked on.Figure 2.9 shows a exemplary view on entities which are most likely to be chosen for adictionary in an automotive new product development context. The core of a dictionaryis the set of keywords it contains. During any rather complex process, it is very likelythat a large number of keywords is being used and thus the dictionary grows quite big.In order to keep the dictionary still useful, it is essential to add supportive data in orderto categorize its content. If the context of a keyword is stored additionally, it is easy toapply methods of data retrieval and modi�cation just like in relational database systems.The relevant context of a keyword is for example its description, which yields a textualexplanation of the key term. As the same word can be used in several developmentstages with di�erent meanings, one keyword can have multiple descriptions. Moreover,the author and his background regarding his discipline and role as well as the projectgroup he is working in determines the usage and thereby the description of a keywordas well.Furthermore, relations between keywords themselves should be expressed in a dictionaryas well. Common relations are "consists of", which speci�es hierarchical dependenciesbetween keywords, "is synonymous to" , "is antonymous to" and "is homonymous to".Additionally, it is meaningful to allow process designers to create custom relationships
21



2. Requirements
Window 

power lifter

Group of components 

which are involved in 

opening/closing the 

window of a door

ME 

Designer 

Bob

Sidedoor, 

Integration

Stages >= 2

Side window 

lifting gears

Side window 

lifting toggle 

button

Side window 

lifting motor

ME

used in

explained by

created by

consists of consists of 

has

 background in

is a 

member of

(a) Mechanical engineering view

Window 

power lifter

Set of sensors and 

actors that control the 

movement of the side 

window 

EE 

Designer 

Jim

Sidedoor, 

Integration

Stages >= 2

Sensor window 

resistance

Sensor control 

button

Actor window 

motor control

Sensor window 

position

EE

used in

explained by

created by

consists of consists of 

has

 background in

is a 

member of

(b) Electrical engineering viewFigure 2.10.: Examplary views of disciplines on the keyword "window power lifter"within the dictionary, e.g. "is called by mechanical engineers . . . " or "is named in the newdevelopment generation . . . ". Extensibility is crucial to the adaptability of a dictionaryto changing requirements � consequently users will only make use of the dictionary if itsupports their needs within their speci�c environment.Example 2. Figure 2.10 shows an example of two di�erent views on the component"window power lifter" within the automotive development process. In a mechanicalcontext (Sub�gure 2.10(a)), the window power lifter is regarded as an assembly group ofgears, a motor and controls. An electrical engineer's view (Sub�gure 2.10(b)) howeverfocuses rather on the sensors and actors of that component.This idea is closely related to the e�orts being made in the Semantic Web movement. Itsgoal is to structure the contents of the WorldWideWeb in a way that allows both humansand machines to capture the semantics of the information available. The approach is toestablish an ontology which is a conceptual schema that de�nes a data structure withentities, relationships and rules for a given domain.5A dictionary as described de�nes a corporate-speci�c ontology that yields informationabout types of employees and their relations. That way, it is not only an information5Compare http://en.wikipedia.org/wiki/Semantic_web22



2. Requirementssource to human users, but creates a machine-readable representation of domain-speci�cknowledge which builds the foundation for applications that support e.g. semantic com-position of process fragments.2.3.4. Organizational modelEmployees perform di�erent tasks according to their responsibilities within an organiza-tion. Consequently, a commonly used information system needs to adapt to each typeof user by the provision of individually tailored support. That is why � apart from secu-rity reasons � authentication systems are gatekeepers to any kind of multi-user softwareusing personalized applications or data.A work�ow management system additionally controls work activities and assigns workitems to process participants. In order to abstract from individual users, sets of skillsand responsibilities are subsumed to identify common roles within an organization. Theexecution of tasks is usually bound to a particular role, which means that the work itemcan be processed by any user holding a matching role.Abstracting roles from individuals helps to distribute work load automatically as equallyas possible within available personnel. Another bene�t is the handling of exceptionalsituations like unavailability of a user. Dynamic rescheduling of work items to a worklist of a substitute process participant makes it possible to avoid high variance in waitingtime for work items.When role abstraction is enriched with hierarchy information and roles are put into re-lations with each other, an organizational model is created. It represents the translationof a corporate personnel structure into an work�ow model as seen from an organiza-tional perspective (see also Section 2.4). Obviously that includes the hierarchic orderand composition of organizational segments. Each individual has for example an edu-cational background in a certain discipline, but can also have other responsibilities likeexecutive tasks. So the fact that one person acts within several roles has to be formal-ized. Relationships like being subordinate or superordinate can exist between persons oronly between certain roles of persons. Moreover, one person can participate with eachrole in di�erent projects or task forces with overlapping responsibilities. Figure 2.11illustrates these basic relations.

23



2. Requirements

Person

Position

Discipline

Organizational 

unit
Organizational 

type
has type is a composition of

is a composition of

has background in

is sub- /superordinate toProject 

group

is a

is lead by

participates

occupies

Figure 2.11.: Organizational ModelExample 3. An example of a basic organizational model is given in Figure 2.12. Itrefers to the running example of an automotive development environment. The au-tomotive development unit has a type "development unit" and is lead by a head ofdevelopment which is supported by an assistant. The unit splits up in three depart-ments, each dedicated to the three disciplines involved in mechatronics (see also Figure1.2): Mechanical engineering, electrical engineering and software development. Eachdepartment comprises a number of employees who perform one (or more) of the listedroles: A head of department with assistant, designers, engineers, quality assurance fortesting purposes and people for documentation. That workforce is distributed over anumber of project teams, where each individual gets assigned to projects according tohis role. As an example, projects "chassis" and "sidedoor" are shown. The third project"integration" in the schema indicates that projects are not independent from each other.As component integration is a complicated task in automotive development, a dedicatedproject "integration" focuses just on integration issues.24



2. Requirements
Development 

unit

Automotive 

development 

unit

Mechanical 

engineering

(ME)

Software 

development (SD)
Electronic/Electrical

engineering (EE)

has type

consists of

Head of Dept. Head of Dept. Head of Dept.

Dept. assistant Dept. assistant Dept. assistant

ME Designer EE Designer SD Designer

ME Engineer

ME

Quality ass.

ME

Documentation

SD Engineer

EE

Quality ass.

EE

Documentation

EE Engineer

SD

Quality ass.

SD

Documentation.

Head of 

development

unit.

Assistant

leads

Project Team

Project 

Integration

Project “Side 

door”Project “Chassis”

has type

consists of consists of consists of

integrated

 by

integrated

 by

project participation

supports

Figure 2.12.: Example: Organizational modelCreation of an organizational models starts with identi�cation of existing personnelrelations. Its usability is determined by its completeness and level of detail. Onlyroles that have been explicitly identi�ed exist in an information system. In real-lifeorganizations, employees hold o�cial and uno�cial roles representing their primary andsecondary, often implicit tasks. On the one hand it is meaningful to capture roles asdetailed as possible, on the other hand generalization is necessary to establish groups ofindividuals providing exchangeable capacities.When existing personnel relations in an organization are identi�ed, it has to be deter-mined whether they are suitable for mapping one-by-one to an organizational model orthey turn out to be too in�exible, ambiguous or incomplete. For example a statement"most people who having spare time work on the integration project" is not helpful if itsformalization yields the assignment of the whole development crew to that project. So25



2. Requirementsthere has to be found a trade o� between adapting the work�ow management system'sorganizational model to the real organization and vice versa.Once a complete organizational model is built, it is being used throughout the wholeEmergent Work�ow process: The originator of a new work�ow fragment uses his orga-nizational status to narrow the dictionary down to a subset which is relevant for him.A new process fragment can be assigned to its related process phase, team and project.Such knowledge facilitates also the composition of fragments and their placement inthe current process. Just like any conventional work�ow management system, an or-ganizational model determines during run time which user is suitable to do a task andplaces it into his worklist handler. Finally, the search for templates in the repository isstrongly supported by an organizational model analogous to the search for keywords inthe dictionary.2.3.5. Time managementProcess de�nitions express control or data �ow between activities and objects. Theyyield relative temporal dependencies such as "activity A can run concurrently to activityB" or "document D has to be processed before report R can be created". However, theydo not tell anything about quantitative temporal constraints which are involved in anykind of process.Example 4. Quality gates (see Figure 1.4 on page 8) in the automotive developmentprocess are an example for quantitative temporal constraints. They tell that a certainstage of features and quality has to be met until a certain deadline. All activitiespreceding that quality gate have to be completed until that deadline.In general a maximum or minimum duration for a set of activities or the earliest and lat-est start and end date for activities are common temporal dependencies within planninga process. Furthermore, during run time actual values for start, stop and duration arebeing �lled in. This is necessary for the integration with external applications managingtemporal constraints, such as collective calendar systems or planning software. As soonas activities have been passed during enactment, temporal alignment between real-lifeactivities and their planning counterpart can be checked and stored.Example 5. Table 2.1 gives an overview of �ctious temporal constraints of an activity.All types of constraints (start, stop, duration) can be de�ned either relative to otherconstraints or absolute in time. Each constraint has two planning values (earliest/latestrespectively max/min) and one value recording the real values after execution. Noticethat planned constraints are not mandatory and the information they provide can beincomplete, redundant or ambiguous. The earliest start time and the lastest stop timedo not have to describe the same value as the planned maximum duration. Consistencybetween them can only be expected from recorded real values after execution.26



2. RequirementsConstraint Absolute dependency Relative dependencyStartearliestlatestreal 2004-01-13 12pm2004-01-20 12pm2004-01-14 1:32pm after termination of activity A1 day before quality gate Qafter termination of activity AStopearliestlatestreal �2004-01-21 12pm� after start of activity Cbefore quality gate Q�Durationminimummaximumreal 1 day7 days� �1 day longer than activity A�Table 2.1.: Example for temporal dependencies of an activityThese demands motivate the integration of a central time management component inthe Emergent Work�ow approach. It handles all temporal aspects of process modelsduring modeling, execution and evaluation.Prerequisite for centralized time management is the availability of timing information.This can be assured if temporal constraints become an integral part of the processmetamodel. Before or during execution, earliest/latest respectively minimum/maximumtiming dependencies are created which need to be checked during execution. These valueshave to be integrated with process models as well as with instances. While and afterexecution, real execution values are derived either from the runtime engine itself or frominteraction protocols. Hence running and archived process instances have to integratedexecution timing for instances and activities.Externalizing time management has besides its bene�ts strong requirements concerningsynchronization and integration. After the initial transmission of timing constraints ofa process model or an instance, constant synchronization is necessary to keep time man-agement, process creating engine and runtime engine updated. While time managementpropagates noti�cations about the passage of de�ned time events, opposite componentskeep time management updated about status and schematic changes of running processinstances. Notice that time management itself is not concerned with reactions initiatedby temporal events. As a consequence, the time management component can not inter-act directly with users because reactions to regular or exceptional temporal events areinstance-speci�c.
27



2. RequirementsExample 6. What happens if the quality gate has been reached, but one precedingactivity has not terminated yet? Let us assume that at the process de�nition level a rulehas been set up that, in case an activity missed a quality gate, the head of the responsibledepartment should be noti�ed. The time management component though can not notifythe head of department directly, as it has to be decided on the instance level who theresponsible department actually is. So time management noti�es the runtime engineabout the exceptional event in an activity. The runtime engine has information aboutthe responsible user, �nds his department and emails the head of department.2.3.6. Process creation engineConventional work�ow management systems come with a software tool which is usedto design a work�ow explicitly. Before designing and enacting an instance, dedicatedprocess designers either textually or graphically create a model in this software tool andtransfer it to the work�ow engine.This procedure is not entirely suitable for Emergent Work�ow as it does not separatemodeling and enactment time of process de�nitions clearly from each other. According tothe use case in Figure 2.1, dedicated process designer do still exist: They produce processmodels which either initiate an emerging process or provide a coarse framework for theoverall process. Instances of these process models are then altered or completed ad-hocduring run time. To support this step, Emergent Work�ow has to provide functionalitiesto document user interaction implicitly.The idea of a process creation engine is to incrementally derive a process de�nitionincluding instance-speci�c data from user interaction6. These process de�nitions areformalized according to a chosen metamodel (see Chapter 2.4). The input is a collectionof interactions of the complete work�ow management system using its interfaces. Inputdata is commonly styled in a textual and sequential manner. It is referred to as an audittrail and � originating from multiple interfaces � composed by the runtime engine. Theaudit trail describes what all external instances that interact during run time intend todo or have done.It can be further clari�ed what the outcomes of a process creation engine look like ifone distinguishes when a certain piece of documentation was created: The objective fordocumenting an event depends on when it has been created relative to its execution: Anydocumentation can be either created before, in the meanwhile or after execution of theaccording activity. The moment of documentation does not only in�uence its purposebut determines also how the start of process creation is triggered. These relations arelisted in Table 2.2.If a record was created prior to execution, planning support as well as synchronizationof future activities are interesting aspects for a user. Such would be the estimation of6In literature, post-hoc process creation from log �les is referred to as process mining.28



2. RequirementsTime Purpose Trigger Example aspectsbefore planning & explicitly start datesynchronization by user input datawhile & documentation & implicitly by output dataafter reuse runtime engine stop dateTable 2.2.: Documentation purpose relative to its creation timeresource availability and the early detection of their shortage. In this case, the processcreation engine is activated explicitly by user interaction. When a process de�nitionis created for planning, that is, the preparation of future activities, there is no wayfor any part of a work�ow management system to detect the correct startup time andcorresponding planning audits automatically. If process models are created while or afterthe execution of according activities, they serve for purposes such as documentationand reuse. Unlike the former, the invocation of the process creation engine is herelikely to be triggered implicitly. For documentation, any kind of activity records isimmediately relevant as throughout execution of activities, information such as start/enddate, involved data and resources is completed on-the-�y.Example 7. Suppose this example for a planned activity: An interdisciplinary meetingis scheduled for 16pm in a conference room. The according memo is created in the morn-ing and the Emergent Work�ow system has been set up to inform all project members ofthe upcoming meeting. The system might also put a watch on requirements documentsand notify project leader about eventual changes taking place before the meeting.Both on-the-�y and after the event documentation rather serve as a documentary basisfor later reuse or analysis. If documentation is created during execution of an activityon-the-�y, especially temporal aspects of activities might be of interest.Example 8. The activity start time of the interdisciplinary meeting was already �xedprior in the morning, but meetings in this �ctitious organization are always open-ended.So the information about the meeting's ending time must to be added after its termina-tion.These varying usage purposes create di�erent requirements regarding when to run theprocess creation engine on which data. In order to support planning, a process creationengine needs to evaluate data which is indicating upcoming activities, such as outputsfrom schedules or project planning tools. That forms a coarse framework of work struc-ture but contains usually no details beyond the planned activity, starting time and du-ration. As that picture changes throughout execution of activities, the process creationengine has to add sequentially more details to the pre-modeled work�ow.If documentation or later reuse aspects are focused, then the creation of process modelsis delayed until all addressed activities have terminated and complete information is29



2. Requirementsavailable. That raises the question which data is relevant and if it is possible to managethe invocation of the process creation engine automatically. The recognition of relevantdata for a certain usage purpose needs supportive data. That comprises state informationof an activity as well as contextual data. Both tells whether due to the termination statusdetailed information is available and what the overall task � according to context suchas a product number � of the particular activity was. In order to determine the righttime to start a process de�nition extraction, a continuously running process creationengine is required. Otherwise an explicit start/stop mechanism of the process creationengine would be needed, which would turn the process creation engine basically intoa cross-application macro recorder. Such solution would be impractical as it reducesusability drastically and it results e�ectively in explicit documentation of tasks. Thepurpose of a process creation engine is to avoid exactly that requirement.As already mentioned, the sole recording of events caused by activities is not a su�cientinput for the process creation engine to function properly. On the one hand, evenrepetitive tasks have di�erences and cause instances of the same process model to di�erfrom each other. On the other hand, in real life unforseeable things can happen such thatthe planned course of activities gets interrupted or changed. The key for the developmentof an understanding for individual case variations is an extended view on an activity andthe following related factors:
• Activity
• Classi�cation
• Context
• ReasonActivity Documentation of an activity means to describe all relevant parameters whichin�uence its execution during run time and all parameters which are a�ected by theexecution. They can be identi�ed as the following ones:
• Author
• Data input/output/modi�cation
• Activity status
• Activity start/end time/durationIn order to �nd dependencies within an audit trail, �rst of all any record requires a notewho its author is. This information is needed to determine whether it was an individualwho created the entry or a whole group of either cooperating or independently acting

30



2. Requirementsusers. Based on that assignment the engine can estimate how many instance fragmentscan be extracted and what piece of information �ts into which fragment.Most activities involve data processing, creation or consumption. These external con-tacts are a substantial part of a documentation, consequently any form of data input,output or modi�cation is vital to build a formal data �ow representation. That in-cludes objects such as paper documents, electronic documents as well as data objectsbeing exchanged between applications, database queries or transactions within an ERPsystem.Example 9. If in our automotive development example an activity "interdisciplinarymeeting" in project �integration� (see Figure 2.12 on page 25) is scheduled by a projectleader, the side door and chassis requirements documents will be used as a data inputand the output might be new change requests.As the audit trail is concurrently created with the execution of activities, the status ofa running process instance has to be found out. That is based on the status of eachsingle activity within the process; consequently the activity status is an integral partof an activity description. The status has to conform with the run time process statusmetamodel as shown in Figure 2.17 on page 61.For planning and documentation purposes, temporal aspects are highly important asalready motivated in Section 2.3.5. Thus, start, end dates and activity duration arerecorded and are used within the process creation engine for process model creation andcan be forwarded to the time managment component as needed.Classi�cation A classi�cation of activity instances makes sense due to expected de-viations of the �regular� case. Once recorded, the instances of an activity will look allalike if an annotation is missing on how the occurrence of an activity has to be judged.If an exception occurs only in 1 % of all activity records, a process model that weightsan exceptional case equally likely to a regular case is misleading. A simple classi�cationto avoid that is to distinguish between regular and exceptional activities.Additionally, an exception which leaves out parts of the control or data �ow is to beconsidered separately. Namely, if an exceptions behavior is to step over a commonlyexecuted activity for some reason, then no trace in the audit trail would indicate itsexistence. To avoid that lack of information, for example an additional type of activity"replacement" might extend the exceptional classi�cation. This relation can point toleft out activities and indicates what the exception's character.Context Contextual information describes basically any condition which is crucial forthe execution of an activity. It can be either a side note or a further speci�cation thatsubdivides an activity into distinctive cases. When a work�ow user carries out tasks
31



2. Requirementsas a particular role, this can describe a distinctive context as well as involved key datawhich determines the type of work.Example 10. When a software tester performs the activity "basic module unit testing"in the context of a stage "�rst generation", then the activity has other characteristicsthan being executed in the context of "pre-release generation".Reason "Why did we do it that way?" A work�ow user might ask himself that questionwhen he looks at past executions of activities. The parameters mentioned above alreadygive a detailed testimony of what happened. Actually the reason is a formalized causalconclusion drawn from all other parameters. In order to make it easier to catch whysomething happened exactly the way it did, it should be mentioned explicitly in an audittrail. This part makes most sense in special exceptional cases, where strong deviationsfrom more common procedures have occurred. In cases where the same path has beenchosen as ten times before or the taken actions are made clear by contextual informationand common sense, a reason is not mandatory.Advanced but important issues are selective process creation and handling of erroneousand incomplete audit trails. As a work�ow management system is in a central positionhandling many users and being integrated in big scale information systems, only a smallsubset of the information available at a time is relevant for creating a process fragment.Therefore the extraction procedure should o�er parameters to control what record typesare to be considered from a single logical work�ow. It should also be able to compensatewith non-conform inputs such as erroneous or incomplete audit trails. Especially havingincomplete input is a very likely scenario if parts of a work�ow are documented forplanning early, but many details are missing and are supplemented piece by piece lateron.The quality of process de�nition fragments is another factor determining require-ments of a process creation engine. All created fragments have to conform with a chosenmeta model (see Chapter 2.4). This implies that there must exist speci�cations as wellas methods to test the correctness of produced fragment. Dependencies within the con-trol �ow and the data �ow have to be detected and modeled accordingly. To maintainrobustness and a modular structure within the set of process fragments, there shouldnot exist any implicit correlations or dependencies between fragments.When a fragment has been created, it can be stored in the repository. Notice that itis vital to attach either manually or automatically a description of the procedure thatis represented by the fragment. As one does not only want to save the fragment butalso needs to �nd it later on within a potentially large set of fragments, a fragment'sdescription is almost as important as its contents. A set of attributes like an identi�er,a description, involved groups, associated process stages, number of activities and someexamples for relevant information which is combined into a descriptive tag.
32



2. Requirements2.3.7. Runtime engineThe runtime engine is the central functional component of a work�ow management sys-tem. Its invocation starts with the instantiation of process de�nitions. During executionof instances, they traverse state changes which trigger activities integrated in data andcontrol �ow. These activities are distributed and performed by external entities. Thefollowing aspects of a runtime engine will be considered in this Section:
• Interfaces
• Audit trail
• Task assignment with role management
• Instantiation
• Flexibility� Change classi�cation� Flexible execution
• Annotations
• Consistency and correctnessInterfaces Looking at the inputs and output objects of a runtime engine in a black boxmanner, one notices that interfaces 2 through 5 introduced by the work�ow referencemodel (Figure 2.7 on page 16) refer to the runtime engine: Client applications receivework items (interface 2), applications are invoked during run time (interface 3), otherwork�ow enactment services exchange objects during during process execution (interface4) and administrators monitor the progress of instances (interface 5).Input objects for a runtime engine comprise process models from the repository, theprocess creation engine or an external process modeling tool and interaction protocols ofits interfaces to client applications, server applications and external process enactmentservices.During run time, a runtime engine outputs task assignments to client applications, mon-itoring information to administrators, and an audit trail for storage and reuse purposes(e.g. to the process creation engine). Furthermore, it exchanges status updates andsynchronization messages with external work�ow enactment services.Audit trail The term audit trail refers to a continuous stream of use data in a machineprocessable form. This stream can either originate from a work�ow management system(inside-out) or is handed to it from external information sources (outside-in).33



2. RequirementsConventional uses of an "inside-out" audit stream are monitoring and controlling func-tions for work�ow participants in order to extend their own scope on the processes theywork on. Monitoring and controlling may be used also for compensation of the lack ofawareness inherent in work�ow implementations. An audit stream going outside-in helpsadministration and management to monitor and control procedures and gives them abetter understanding of operational dynamics. But also trading partners or customerscan use monitoring functionality for optimizing B2B collaboration (e.g. supply-chainforecasting) or tracking of remote processes (e.g. order tracking).A special use of Emergent Work�ow for an audit trail is as an input for the process cre-ation engine. However, "raw" data entering the interfaces of Emergent Work�ow is notyet suitable for it. First, as mentioned in Section 2.3.6, process creation imposes strongformal requirements on its input as well as �ltering abilities to receive an audit trail se-lectively. Numerous input sources deliver massive amounts of protocol data consisting ofevents, data actions, transaction information and others. All of them arrive in di�erentdata formats. As all that information arrives at the runtime engine, its responsibilityis to �lter incoming data, arrange it in a common format and deliver a selected streamto the process creation engine. The outputs of the process creation engine in exchangeare planned for later reuse and are input for the runtime engine at a later point of time.This process is visualized in Figure 2.13.
Runtime 

engine

Process 

creation 

engine

APIs (Interfaces 2 & 3 & 4)

Client 

application

Invoked 

application

mining of 

interaction 

protocols

Audit trail

(Interface 5)

Process 

fragments

External 

enactment 

servicesFigure 2.13.: Audit trail �owExternal applications at the client and server side as well as external work�ow enactmentservices communicate through di�erent a layer of various application programming in-terfaces (APIs) with the runtime engine. With respect to the work�ow reference model(see Figure 2.7 on page 16) that layer represents the interfaces 2, 3 and 4. Besidescontrol data, use data is exchanged by that interface. Hereof protocols of work�ow userinteraction are extracted, which is also called mining. After being forwarded to theruntime engine, this information can be processed and spread to other components such34



2. Requirementsas the process creation engine. Although outputs of the process creation engine are notdirectly passed back to the runtime engine, in the course of process model reuse theyreturn to the runtime engine. Thus, the stream of process fragments from the processcreation engine back to the runtime engine can be interpreted as a return value to theaudit trail, closing a cycle between these components.An interesting, requirements-related architectural question is to consider whether a pushor pull mechanism is realized between the runtime engine and the process creationengine. These patterns refer to how communication is initiated between data source anddestination. The answer to that question in�uences where program logic for the assemblyof relevant audit trails and the initiation of process fragment creation is settled. Inthis case a pushing architecture means to have the runtime engine to decide on timingand content of audit data sent to the process creation engine. That case implies acontinuously running process creation engine, which service-like awaits incoming audittrails and answers these requests with the delivery of process fragments. In a pullarchitecture, the process creation engine requests an audit trail from the runtime engineby specifying when and what type of audit data will be transmitted. Obviously, herethe process creation engine needs an external trigger which initiates the explicit query.If one compares these two possible realizations with the listing of documentation time andpurpose in Table 2.2 on page 29, one can detect a relation between the usefulness of eitherthe push or pull principle and the purpose of documentation. If documentation is meantto be created before the execution of activities for planning & synchronization reasons,fragment creation by the process creation engine is explicitly triggered by work�owusers. Hence, a pull mechanism would make sense where the process creation engine� comparable to SQL statements in relational database systems � requests excerptsof the overall incoming audit trail. In the contrary case of documentation during orafter the execution of activities, an implicit run by the runtime engine suggests a pusharchitecture.Task assignment with role management Task assignment addresses an event duringexecution of a process instance and is in conjunction with the activation of activity in-stances. Activation is an intermediate activity state between being inactive and running(activity states are introduced in Section 2.4.2). Task assignment describes the resolutionof an abstract role model into existing real individuals. Only interactive activities (e.g.activities with associated roles incorporated by either human users or software agents)are a�ected of this action as they have a role association. Automatic activities can bestarted immediately upon completion of all pre-constraints, thus they do not distinguishbetween the states activated and started. When an interactive activity instance switchesfrom not_activated to activated and further to started, task assignment is done by theruntime engine. In order to �nd all personi�cations of a role within an organization, theruntime engine relies to an organizational model as described in Section 2.3.4.Major objectives of task assignment are optimal work e�ciency and �exible assignment
35



2. Requirementsof work load. Optimum e�ciency denotes a maximum average throughput of work itemsusing the available resources while minimizing erroneous processing and administrativeoverhead. Throughput can be in�uenced by �exibility of assignment, such as automaticrescheduling of tasks from busy participants to idle participants. The automation ofassignments supposedly reduces overhead but reduces also �exibility if realized withoutpossibility of manual interference.Two queuing models of task assignment are possible: One virtual global queue describesvirtually one worklist shared by all work�ow users embodying a particular role. Whathappens is that an activated activity shows up as a work item within the worklist handlerof each work�ow user with a corresponding associated role. As soon as a user chooses toprocess a work item, the activity's state changes to started. At this point, an instanceof that role has been assigned to the activity instance. Concurrently, the work itemis removed from the virtual queue and disappears from all other role personi�cations'worklist handlers. This type can either o�er a list to each user from which he can choosea work item or all users can just request an anonymous "next" work item. Individu-ally selectable items o�er more �exibility but bear also the possibility of non-uniformitem prioritization. By implementing a virtual global queue, the work�ow managementsystem can in�uence prioritization of activities by introducing priority levels into thequeue. If tasks are assigned to users by an anonymous "get next" retrieval, this order-ing is �xed. If users can actually see the contents of the queue and choose work itemswithin constraints such as a minimum/maximum idle period of items, they can in�uenceprioritization of work items.Withmultiple queues, one queue is maintained individually for each work�ow user. Uponactivation time of an activity, it may be assigned to a speci�c work�ow user and appearsas a new work item in his worklist handler. This queuing method shifts responsibilityfor equal work distribution to the work�ow management system. It o�ers a higher levelof automation and reduces potentially more overhead. Furthermore it gives a work�owuser a clear idea of the anticipated work load and facilitates individual planning. On theother hand individual queues decrease the level of �exibility. If a task has been assignedmistakenly or needs manual changes, an additional function for re-queuing work itemsis indispensable.Independent from a queuing method, the moment of role resolution is �exible. At theearliest, it can be done during instantiation of a process de�nition, at the latest it has tobe completed when the activity instance switches into the activated state. The earlierresolution is done, the better activities and future engagements can be planned. Ifprocess instances are rather long-running, then occurring changes generate very likelythe need for updating resolution. These changes can originate from both sides, theorganizational model and the process instance: Available employees switching positionsor becoming unavailable as well as altered or stepped over activities are examples for suchscenarios. In any of these cases the validity of existing assignments must be checked andis an elaborative task. The later task assignments are completed, the more likely they arestable until processing. Participants' �exibility though is reduced by late resolution as36



2. Requirementsincoming work items are "popping up" right away and can not be anticipated throughouta longer time frame.Instantiation Sources that initiate instantiation are all input and output interfacesas de�ned in Section 2.3.7 on page 33. External events trigger the instantiation ofprocess de�nitions through several de�ned interfaces: Using interface 2, the initiator isa work�ow user who is su�ciently authorized to instantiate a particular type of processde�nition. Invoked applications are another source of process enactment using interface3. They may be external software such as an Enterprise Resource Planning system uponthe start of a new procurement transaction. Interface 4 integrates work�ow managementsystems. This also includes that external work�ow management system can not onlyexchange data or synchronize with their internal activities, but can also initiate thecreation of process instances. Finally, also the administrator of a work�ow managementsystem can monitor and in�uence all aspects of instances including their creation usinginterface 5.Example 11. A mechanical engineer receives a new change request from a colleagueas changes collide that were concurrently made on the digital mock-up. As changerequests are frequent events during the development process, a generic pre-modeledprocess de�nition exists. In order to start processing a change request, the engineerinstantiates a change request process de�nition and executes the instance.The �rst functional requirement is to check whether the instantiation of a process modelis executable: Basically, an instance is executable if a start state and a terminal state arede�ned and they are "connected" by a sequence of valid state transitions. Furthermore,no invalid activities, roles or resources are allowed to be referred to by an instance.Second, the runtime engine usually applies an initial state transition on instances aftertheir activation. That is, the execution is initiated by starting the �rst activity accordingto the instance control �ow.The fact that the runtime engine runs potentially many instances concurrently imposesnonfunctional requirements on it. Van der Aalst and van Hee identify a number ofwork�ow bottlenecks [AH02]: First, the overall number of instances in progress cangrow large. If there are many instances in progress, it may indicate an existing prob-lem. Causes include major �uctuations in the supply of instances or resources beingto in�exible or weak dimensioned for heavier use. However, it may also be that theprocess contains too many steps that need to be passed through sequentially. Further-more, completion time of instances could be too long compared to actual processingtime. The actual processing time of an instance sometimes forms only a small fractionof the total time when it is in progress. If this is the case, there may be a whole rangeof possibilities for reducing completion time. Moreover, the level of service can be toolow. A work�ow's level of service is the degree to which an organization is able to com-plete instances within a certain dead line. If completion time �uctuates widely, then the37



2. Requirementsorganization o�ers a low level of service. In that case it is not possible to guarantee aparticular completion time. A low level of service also exists when there are many "nosales" occurring � potential instances can not run because waiting for progression withinthe runtime engine will take too long. When a user knows that it will take a long timeto complete an instance, he will try to circumvent the process. A low level of service canindicate a lack of �exibility, a poorly designed process or a structural lack of capacity.The symptoms mentioned above point to possible bottlenecks. To identify them oneneeds to benchmark values for these measures, for instance from comparable processes.Usually, it is not sensible to combat the symptoms using only emergency measures butto tackle their causes.Flexibility Static work�ows are easy to handle, but fail in scenarios as motivated inSection 1.1. As �exibility is an issue of particular interest in the light of EmergentWork�ow, this paragraph is actually subdivided into several points of view: First, the�exibility is the requirement emerging out of the need for change. Hence, the �rst sub-paragraph will introduces ways to characterize changes on di�erent work�ow perspectives(see Section 2.4). Next, the term of �exibility will be broken down into more concretemeasures that allow variable kinds of deviations.Change classi�cation Changes during run time arise because parts of the informationthat constitutes the work�ow are not known during build time or changes occur while thesystem is in production. Van der Aalst and Jablonski propose the following classi�cation[AJ00].In order to classify, what types of focus exist when managing changes, a number ofchange dimensions are introduced:
• Maintenance of correctness and consistency. This points at potential errorsresulting from change, which can be either syntactic and semantic errors. A se-mantically correct process instance is able to reach a terminal state without anyerrors or deadlocks.
• Single-perspective and multi-perspective errors. With respect to the work-�ow perspectives, errors are identi�ed that a�ect either only one work�ow per-spective or multiple perspectives at once. A deadlock is only visible in the processperspective, whereas a task pointing to nonexistent roles and data objects occursin the organizational and information perspective.
• Transient and permanent errors. Errors caused by changes can last for di�er-ent amounts of time. Transient changes exist only temporarily and do not a�ectnew instances. Permanent errors are lasting longer and a�ect newly created in-stances as well.

38



2. RequirementsWhen solutions are proposed to implement changes and resolve errors, one can distin-guish between introducing �exibility by con�guration and �exibility by adaption. Theformer o�ers more powerful design constructs and integrates changes into the meta-model. Flexibility by adaption tries to limit changes, manage multiple versions andavoid errors by the application of inheritance concepts.Introducing �exibility means to allow certain types of changes. These types can beclassi�ed by the following six characterizations:1. What is the reason for change? Reasons may be located in the context ofprocess execution outside the system like changing requirements or technology, butcan be triggered also from the inside of the system such as errors and problemscausing failure.2. What is the e�ect of change? On the one hand, momentary changes in�uence alimited set of instances. They occur typically as the result of errors or exceptionsand pass by without permanently altering the process de�nition. On the otherhand, evolutionary changes take action for all instances starting at a certain pointin time. Their type of change is rather structural and more permanent such as achanging legislation that eventually changes the process context.3. Which perspectives are a�ected? The type of change is re�ected very well bythe related work�ow perspective (Figure 2.14 on page 54). In addition, deletionor modi�cation of process de�nitions including their tasks and routing are typicalchanges appearing in the process perspective. Sta� changes and other modi�cationsof the organizational structure relate to the organizational perspective. In casedata structures are added, removed or modi�ed, these changes become evidentin the information perspective. The operational perspective shows the exchangeof invoked applications and other operations related resources. If �nally linkingpoints between the perspectives such as task assignment are subject to change,these and only these changes will be re�ected in the integration perspective.4. What kind of change? This refers to the way a change operation a�ects thefunctionality of a process. As control �ow oriented changes deal with the alterationof tasks and their structural arrangement, functionality can be extended, reducedor replaced by adding, removing or replacing a task. If the dependencies are justrearranged between existing tasks, the change is called a re-linking change.5. When are changes allowed? A change is either allowed at entry time only or atany time. The entry time denotes the very moment an instance's speci�cation isset up for each involved perspective; after that moment all speci�cs are not allowedto change any more. Otherwise, changes are allowed at any point during work�owexecution on-the-�y.6. How are existing instances handled? A number of alternatives exist for howrunning instances may be handled after a change operation. A forward recovery39



2. Requirementsaborts old instances and compensates them outside the work�ow managementsystem. Backward recovery aborts, compensates or rolls old instances back in orderto get them restarted with new de�nitions. Alternatively, one lets old instancesproceed as they continue running the old way. Only new cases are instantiatedwith respect to the change. A transfer operation migrates old instances to newprocess de�nition, whereas a momentary detour allows the change to settle beforeactions are taken.Three frequently named change types exceptions, ad-hoc work�ows and dynamic changes/migration, will now be categorized using the �rst �ve criteria given above:Exceptions are usually unexpected events which are caused by failure of some componentrather than deliberate changes. Reasons for exceptions are mostly located inside thesystem, they have momentary e�ect on a limited number of instances and a�ect theinformation and operational perspectives. Functionality is either reduced or replaced byexceptions and they occur at any time on-the-�y.Ad-hoc work�ows are edited shortly before and during enactment on an instance level.The reason for ad-hoc changes is located outside the system and changes have onlymomentary e�ects. Although any perspective can be a�ected by ad-hoc changes, mostlythe process perspective is focused. Ad-hoc changes can extend, reduce, replace or re-linkfunctionality of a process instance at any given time during execution.Dynamic changes/migration deals with handling of instances running on an old processde�nition after the process schema has been changed. This is not always straightforward,e.g. the new model may not have an execution state corresponding to the state of theold instance which was speci�ed by variables indicating which tasks have already beenexecuted. Reasons for migration are usually irrelevant and by modifying the processde�nition, they apply evolutionary changes. They have an impact on all perspectivesand perform any kind of change as well. Only on-the-�y changes have to be investigatedas entry time changes are considered straightforward: It can be assumed that any newprocess model has a correct initial marking state.Types of �exible execution As already mentioned, �exibility during execution can becreated by applying various measures. In the following enumeration, types of �exibilityare classi�ed according to their degree of �exibility in time and are further elaboratedin the following paragraphs.
• Schema evolution
• Late modeling/Case handling
• Ad-hoc changes
• Exception 40



2. RequirementsSchema evolution describes schematic changeability by iterating a design phase, latemodeling prede�nes limited short-term �exibility on details of process de�nitions. Ad-hoc changeability constitutes spontaneous changeability of the execution state of processinstances. Exception and case handling provides means for spontaneous change of stateof process instances.Schema evolution or evolutionary modeling refers to incremental changes applied toprocess de�nitions (compare Wargitsch et al. [WWT98]). Instances of explicitly mod-eled process de�nitions are observed by process designers and improvements according toanalysis outcomes are integrated into process de�nitions. This method contrasts processreengineering where the entire process is radically redesigned to achieve performanceimprovements (compare Davenport and Short [DS90]). This procedure adapts to thework�ow life cycle as depicted in Figure 1.1 on page 2. Thus �exibility is provided forlong-term changes, however it is not helpful for short-term �exibility as mentioned inSection 1.1. In order to enable process model evolution, process designers require meth-ods that allow them to apply schematic changes to a model such as the insertion/removalof a activity or the alteration of the control �ow. Subsequently, running instances haveto be handled in one of the ways mentioned in the previous paragraph on change classi-�cation. Most desirable is the solution to migrate instances to the new model by eitherchanging their schema on the �y or restarting them and auto-execute them until a statethat was de�ned equivalent to the originating state.Late modeling/Case handling addresses incomplete modeling with unstructuredprocess portions which are also called black boxes or placeholders (compare Herrmann etal. [HSW97]). Late modeling means the replacement of placeholders with spontaneouslymodeled sub-processes during run time. This information gap has to be �lled up duringrun time in order to let the process instance terminate correctly. If a work�ow user canchoose at run time from a number of previously de�ned alternative process fragmentsreferred to as cases in order to replace the black box, a case handling method is applied(compare Hagemeyer et al. [HHJHS97]).If process de�nitions containing black boxes should be executable, unstructured processparts have to be identi�ed and marked adequately during process design phase. Eventu-ally they are equipped at design time with a case base which describes several alternativesfor structuring the black box upon activation. The runtime engine needs to make surethat each unstructured process portion is submodeled before it can transfer the activityin the state started. As a subgraph is modeled individually for each instance by thework�ow user in charge, the user also has to examine the case base for a suitable casethat matches the individual context. If such does not exist, then the ability to alterexisting cases and to add new cases to the case base is required. Not all activities aremeant to be arbitrarily changeable by work�ow users, consequently a classi�cation of�exibility for activities has to be established in the process metamodel (see Figure 2.16on page 58) and implemented during process design. If a work�ow user decides to mod-ify an existing case or to introduce a new case, this action in�uences secondary relatedactivities. Such would be dependencies like a removed data output which is expected by41



2. Requirementsanother activity. Coordination and propagation of subsequent changes is a task whichneeds functional support by the runtime engine. For each activity, it must maintain alist of dependent activities and their processing role instances.Late modeling o�ers the bene�t of short-term �exibility without reiterating throughprocess design. However, spontaneous changes are restrained to process parts whereshort-term actions were anticipated and unstructured process portions with case basewere either realized during process design phase or are spontaneously created during runtime.Limitations apply when process enactment deviates from planned �exibility because anunexpected situation has occurred. Late modeling does not o�er su�cient functionalityto formalize handling of exceptional situations.Ad-hoc state changes are meant to apply instant changes to default state transitions ofinstances: An activity can be skipped, moved, inserted or removed. Execution can returnto the previous activity, reset or step over the current activity. These modi�cations donot in�uence the process model but are restricted to a speci�c instance.Each ad-hoc state change potentially endangers correctness as a change could make aterminal execution state unreachable. The responsibility for avoidance of such "bad"changes is carried either by the work�ow user applying the change or by the work�owmanagement system. The latter case requires nontrivial process analysis which validatesthe change: As activities are correlated (by control/data �ow, usage of resources, . . . ),manual changes may interfere with pre- and postconditions of activities. They mightrequire successive adaptions of other activity states to prevent unwanted states such asdeadlocks. Hence, checking and modifying mechanisms for process instance states arerequired.Exception handling A computer-based work�ow management system has its strengthsin structuring, rationalizing and routinizing work. The fewer unscheduled manual inter-vention is required, the better is the system's performance. Exceptions are de�ned byStrong and Miller [SM95] as follows:We de�ne exceptions in computer-based information processes as cases thatcomputer systems cannot process correctly without manual intervention [whichis] a de�nition broader than "errors".One can distinguish three major perspectives on exceptions:The random-event perspective on exceptions addresses situations which occur infre-quently, are non repetitive and have random character. While it is assumed that awork�ow management system works correctly most of the time, little can be forecastabout exceptions. Such might be caused by external in�uences like power downtime orphysical damage that harm information systems as well as internal malfunctions. Dueto their unpredictable nature there is no e�cient way of resolution for these kind of ex-42



2. RequirementsPerspective Underlying assumption Solution approachRandom-event Exceptions are unpredictable NoneError Errors (from operations, design,changing environment) Eliminate causesPolitical system Political system causing con�ict-ing interests E�ciently detect andhandle exceptionsTable 2.3.: Perspectives on exceptions (compare [SM95] Figure 1)ceptions. Depending on the negative impact of speci�c types of exceptions, precautionsmay be taken in order to minimize their probability.The error perspective looks at exceptional situations caused by errors in operations,process design or changing environment. Operational errors are most common whenhuman interference with input or output is handled incorrectly or the user misunder-stands the interface or system. Erroneous behavior can also be traced back to weaknessesin system design. The process models can re�ect the real process incompletely or in-correctly. That type of error is likely to exist due to many factors in�uencing correctfunctionality, fuzzy knowledge about true processes and the problem's high overall com-plexity. Additionally, errors are introduced by changing external requirements caused bya �exible environment. As an information system does not evolve as smoothly as realprocesses which it depicts and supports, over time the electronic process diverges fromthe real process. Di�erences cause increasing errors, because the work�ow managementsystem ends up processing a process it was not designed for. While operational anddesign errors are conceptually tough to avoid, frequent minor adaptions and evolution-ary changes to process models reduce errors caused by a �exible environment. In thiscontext, the term Total Quality Management7 (TQM) is often mentioned. It describesa management methodology trying to detect the causes for primary error sources andto eliminate them.One can conclude from the estimations given above that exceptions are a regular part ofprocess �exibility and require to a certain extent e�cient detection and handling support.The error perspective mentioned last is the most likely error type to be encountered inEmergent Work�ow. As high �exibility in the addressed �eld of application is likely,the occurrence of an exception in this context does not mean that such an event isexceptionally rare, but that exceptions occur with many variations � they are legitimatespecial cases.Formally, exceptions are arbitrary ad-hoc deviations to any work�ow component at runtime. Any work�ow perspective (see Figure 2.14 on page 54) can be a�ected by ex-ceptions: On the process instance, instantiation, execution or termination of processinstances can be interrupted by exceptions. A changing organizational model causespotentially exceptions as well as problems with data objects being manipulated dur-7Compare http://en.wikipedia.org/wiki/Total_quality_management43



2. Requirementsing execution. The same applies to client and server application integration or otherresources.With respect to the de�nition of exception given above, exception handling denotesmanual interventions in Emergent Work�ow procedures which resolve or compensatean exception's e�ects. In fact, exception handling splits up into two distinct activities:Detection & information and handling.First of all, it is necessary to create an awareness within the work�ow managementsystem for an exception and to propagate that information. Therefore one needs todetect an exception and its type. Exceptions can be caused by external events whichare not system-related or of technical nature. These kinds of exceptions have to beentered by an external entity such as a work�ow user or a software agent. If for examplethe user interface of the runtime engine o�ers an explicit entry form for the descriptionof exceptions, a reaction can be directly declared by the user as an exceptional statetransition. If not noti�ed from the outside, the runtime engine has to recognize fromunexpected situations or other indicators that an exception has occurred.If the exception is system-related and caused by an event within the work�ow manage-ment system, then an exception message has to be broadcasted in order to notify othercomponents. An example would be the alteration of the organizational model duringrun time. As the organizational model changes, the re-assignment of tasks for runninginstances becomes necessary, so the runtime engine should receive a message about this.In return, the runtime engine can come up with a delegation rule and reschedule waitingjobs in other worklists if possible.

44



2. RequirementsExample 12. In order to compensate an exceptions caused by a failed activity, awork�ow user can handle the exception by a manual intervention in one of the followingways:
• Ignore the exception. This is the most simple way of exception handling whichmight be helpful under certain conditions.
• Retry the failed activity. This makes sense if failure was caused by a momentaryreason which has changed.
• Perform a partial rollback. With this option, one can try to circumvent theexecution path that lead to the exception. A partial rollback means to undoor compensate a number of previous activities until a branching state is reached.From there, an alternative path can be chosen that leads to a terminal state withouttouching the failed activity.
• Add extra activities for compensation. Execution continues after the failure,but an extra activity is inserted in the future process that compensates previousfailure.
• Delete planned activities. If there are succeeding activities that rely on thefailed activity (e.g. they need its data output), then the solution could be to deleteall dependent future activities and to proceed with execution.Annotations Annotations are supplemental records created during run time by work-�ow users. The idea is to give work�ow users a tool to annotate the execution historyof a particular process instance. The addition of an annotation does not interfere withthe schema of process de�nitions, but is a user-based tool to distinguish a certain casewithin a case type. It evolves from the user's perception of an individual contextualsituation. If certain conclusions can be drawn from the context and are valuable forlater reuse, the user may quote it accordingly.Example 13. Suppose during implementation of a software component, a softwareengineer realizes that an issue should have been tackled during component design and iscausing unnecessary work right now. In the last development cycle, the same problemhad shown up, too. So it would be nice to give the engineer a tool to formalize his ideabecause otherwise it may be forgotten until the next cycle. Of course, he can put downa note in his notebook or email his project manager about it, but this will not makehis idea lasting and broadly available. If in fact until the next development cycle teamcomposition changes, his idea may get lost. So it would be helpful if Emergent Work�owwould o�er means to annotate instances or activities � in this case the component designactivity � which have already been terminated during run time. By adding such notes ormodifying existing information, reference knowledge about an activity is increased andit can be used more intelligently when the model is re-instantiated or used as a templatefor another model. 45



2. RequirementsCorrectness In order to avoid errors during enactment, the runtime engine shouldtake as much of the responsibility of assuring correctness for process models and in-stances as possible. In the following paragraph, semantic and syntactic correctness aredistinguished.Syntactic correctness of process models is available if consistency and completeness ofprocess models can be assured8 If all elements within the model notation are su�cientlydescribed in the metamodel, a model is consistent. Completeness can be guaranteed ifall mandatory constructs from the metamodel are integrated in a process model.Data in a work�ow management system is called consistent, if all integrity requirementsare met. Each process instance is supposed to correspond to one associated processde�nition. Upon changes to the de�nition, the conformance of all associated instanceshas to be assured in order to maintain structural identity with its associated de�nition,e.g. by migration. If only a subset of all running instances of a process de�nitionis intended to be adapted during run time, then the remaining old instances may beassociated to exclusive old copies of the process de�nition.For a runtime engine that allows multiple �exible operations such as late modeling,schema changes and ad-hoc modi�cation it is nontrivial to uphold consistency and cor-rectness. This will be subject for discussion throughout the rest of this thesis.Semantic correctness addresses whether a built model is able to function semanticallyas intended. Typical examples for semantically incorrect models are models whose in-stances can not be executed or do not terminate correctly upon execution. Reachabilityof termination issues that an process instance is only executable if its start and termi-nation state are de�ned and are "connected" by a sequence of valid state transitions.Correctness is here given if any sequence of transitions beginning from the start stateleads into a valid termination state.The correctness requirement for process de�nitions addresses their behavior after changesduring run time. As structure and dependencies are getting changed and instances arebeing migrated, the runtime engine has to run checks on them to make sure they are stillable to reach the designated termination state. Alternatively, changes are only allowed ina way that � in conjunction with an appropriate metamodel � does not harm correctnesssuch as in ADEPT [Rei00, RD98]. Possible incorrect behaviors can be a number of statetransitions which lead into a deadlock or an in�nite loop. These states do not contain acorrect termination state. Other problems after alteration of process de�nitions can bea lacking reachability for activities or unforeseen termination.
8Compare zur Mühlen [Müh96] p.17 et sqq.

46



2. Requirements2.3.8. Process matching engineCentral ideas of all data processing in Emergent Work�ow are documentation and reuseof previously de�ned structures (compare Section 1.2). The process matching engine isa necessary tool to accomplish the idea of reuse.All interfaces of Emergent Work�ow and components like the process creation engine arebusy with internalizing external data. As a consequence, a massive collection of audittrails, fragments of process de�nitions, their instances and compositions is accumulated.Emergent Work�ow is likely to be used in an environment that requires adaptability tochanging conditions. That implies that the amount of slightly di�ering fragments growsrapidly.The process matching engine is supposed to support di�erent user groups in �nding in-formation from the repository. A work�ow participant wants to �nd process fragmentsfrom previous instantiations in order to build the current instance execution on a tem-plate. Administrators who monitor actions on the runtime engine want access to thelatest pieces of the audit trail. Process designers want to obtain stored process types,archived instances, compositions and audit trails for analysis and improvement.Input & output characterizations On the system side, the process matching engineaccesses the repository which holds all available data structures (see Section 2.3.9).These are stored in databases for each type and equipped eventually with helpful accessconstructs such as an index. Complex data structures such as graphs are supposed tohave attached tags containing important search criteria. The process search engine mustbe able to read all data structures in the repository. Any request is answered with a(possibly empty) set of return elements matching the search.Theoretically, database systems used for the repository already provide access methodsfor their contents which could be su�cient for Emergent Work�ow, too. The reasonwhy a designated search engine is proposed lies in the fact that search types requiredby Emergent Work�ow exceed common database search methods' abilities. All types ofusers or their client applications interact with the process matching engine by submittingrequests that characterize repository elements. These requests contain a number ofconstraints as well as supplementary data objects to characterize their expected resultset. Query constructs o�ered by common database systems are not able to cope withsimilarity matching of data object.Let us focus in the following considerations on the search for fragments of past executions.Example 14. A query for a process fragment using constraints and expressed in nat-ural language could be "Show me all fragments that have been created by mechanicalengineerings using the activities A, B and C since two weeks ago and sort them bydescending date".
47



2. RequirementsIn this example, the constraints refer to a number activities and to information that wascollected during enactment. Typical questions for instance-speci�c characteristics wouldbe:
• What activities were executed?
• Which data streams and functions are included?
• What organizational entities and applications are involved?
• What was the duration of each executed activity?
• Which disciplines were involved?
• What was the process frequency in the past?A query can be supplemented by data objects which describe what a return object shouldlook like.Example 15. A process designer has a process fragment and wants to �nd out if thisprocess fragment occurs frequently. He passes it to the process matching engine alongwith a query "Show me all fragments recorded during the last two weeks which aresimilar to my process fragment."The �rst query presented in the Example 14 gave an exact type and number of constraintsthat all result have to comply with. In Example 15, a constraint is given along with anfuzzy description as a query. Similarity between fragments can refer to either syntactic(same activities, users, data), semantic (same function and e�ect) or structural (processgraph structure) similarity. In this case a result list is expected where the most relevant(similar) match is presented �rst, followed by less similar matches in decreasing order.Obviously, di�erent kinds of searches require di�erent matching processes.Matching process Without specifying a particular matching algorithm, di�erent typesof algorithms are required for matching according to di�erent search types:First, queries requiring exact matching are to be di�erentiated from those requiringapproximate matching. Exact matching is characterized by a number of quantitativeconstraints which can be composed (e.g. with boolean operators) to a complex expres-sion. Each repository element is checked for accordance with the expression and eithermatches it (and is put into the return set) or does not. The exact matching algorithmreturns a �nite set of matches on the query. Approximate matching is needed when thequery contains qualitative constraints such as similarity aspects. When a qualitativeconstraint is used for searching, the result is never absolutely clear but represents arelative rating of matching quality. When performing a similarity search with a given48



2. Requirementsreference as parameter, the only absolutely "safe" matching is obtained when the foundobject matches exactly and equals the search parameter. Otherwise, a rating based on asimilarity metric is added to each matching that indicates its quality. A user query basedon qualitative constraints expects a return set of those matches that yield the highestrating. Notice that without any �ltering, the result would be always the complete setof searched objects available, because any repository element receives a (possibly low)rating. Therefore, a threshold needs to be either determined by the process search engineor is speci�ed by the user in order to cut o� results whose matching quality is too low.With respect to the application domain of searching process-related objects, a furtherdistinction can be made between requests that require descriptive searching and thoseinvolving a schema-matching search. A descriptive search contains constraints that canbe checked without an in-depth analysis of process structures. Rather, each processelement inside the repository holds a descriptive tag which roughly classi�es it. Suchwould be a creation time, the creating user and the overall context. Descriptive searchis supposed to be rather simple and quick. Schema-matching search denotes searchesasking for details, which are not contained in descriptive tags but have to be obtainedusing more elaborate structural analysis of repository objects. Typically, fuzzy queriescausing approximate matching rely on schema-matching search.Having mentioned more and less elaborate matching processes, it is worth to reinforce theobservation that e�ciency plays a major role for algorithms implemented in the processmatching engine. Searching through a potentially large number of process objects andmatching them with complex constraints including structural comparison is a demandingtask for computer hardware and software. However in most situations when a processsearch is invoked, a user does not want to wait for results longer than a short amount oftime. Consequently, a trade-o� between functionality and performance has to be foundfor a useful implementation of process matching.2.3.9. RepositoryThe repository has already been referenced frequently as all other components' activ-ities are accessing it. After discussing all other components of Emergent Work�ow, itbecomes evident that basically all kinds of information are stored either temporarily orpermanently. To make that happen, all components rely on a common repository fordata storage and retrieval. In this section, no particular data structures are proposeddue to the high-level characterization approach and the following characterization of theprocess metamodel in Section 2.4.Storage Di�erent kinds of data are stored either temporarily or permanently. Tem-porarily stored data is used to depict and update the current state of the work�owmanagement system. As this topic becomes quickly implementation-speci�c, We willnot go into much detail on this matter. It may be only said that the core of tempo-49



2. Requirementsrary data are states and their transitions within the runtime engine. It runs multipleinstances, all of which have di�erent types and states. If ad-hoc changeability is al-lowed on an instance level, supplementary data is attached to instances, indicating andde�ning the change operation. Time management is closely integrated into execution ofinstances as it sets and checks temporal dependencies. This kind of temporary informa-tion changes consistently, frequent updating read and write operations can be expectedon it during run time of the work�ow management system.Permanently stored data serves the purpose of preserving and building a collectionof useful knowledge for a longer period of time. In Emergent Work�ow, this includesespecially traces of current processes and any supportive information for reuse. Generalknowledge like the dictionary is stored permanently as it preserves a depiction of thecommonly used vocabulary. Also the organizational model is a permanent system rep-resentation of an organization. It contains a hierarchy of roles, assignments into groupsand associations of roles with real personnel. The fundamental part of reuse-oriented,permanently stored data are process models. Descriptions of process model are option-ally supplemented with a classi�cation of granularity that describes its level of detail.Furthermore, the allowance of schematic changes on process models extends their repre-sentation with versioning information, as the schema of a process type changes over time.Parts of temporarily stored data as described above becomes permanently stored data.Instance fragments created by the process creation engine are archived in the repositoryfor reuse, such as the establishment of a case base (see Section 3.1). Also compositionsof fragments created by process designers are stored permanently as they were createdfor the sole purpose to enable post-hoc analysis. Finally the source of process fragments,audit trail is also interesting for permanent storage to a certain extent. As audit datarepresents the most quickly and a permanently growing amount of information, practicehas to show whether it is meaningful and possible to store the full amount of audit datapermanently and e�ciently.As major amounts of data are collected and created inside Emergent Work�ow, datastructures for storage may be chosen with an eye on space e�ciency. On the other hand,a convertible and open representation would be recommendable for better reusability.The Work�ow Management Coalition proposes for example XPDL9, an XML ProcessDe�nition Language which o�ers a metamodel and an exchangeable representation formfor process de�nitions. For use with Emergent Work�ow, this format may be used ifconstructs for �exibility requirements are added. Thereby, process models would becomeeasily exchangeable but also space ine�cient due to the high verbosity of XML whichmakes it a questionable choice for permanent storage. The same issue holds for possiblerepresentations for the audit trail such as the XML work�ow log format proposed byvan der Aalst et al. in [ADH+03] or an instance-level case representation proposed byMadhusudan et al. in [MZ03].9See the XML Process De�nition Language Speci�cation Version 1.0 Final Draft:http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf50



2. RequirementsAccess methods are the necessary counterpart to data representation within a reposi-tory to enable reuse. They describe ways to receive read and write access to all use data.As any kind of repository is most likely based on database technology, basic queryingmechanisms as well organization forms for structured storage are already available. Thatincludes organization forms such as tree structures, hash tables or indexing and will notbe elaborated here any further. Notice however that a textual representation of processstructures is neither very "handy" nor very expressive in text-based data structures.Thus, it is suggested to supply process fragments and compositions with a textual tagcontaining a description that can be used for most common search criteria. Informationsuch as the creator of a fragment, its start/stop date, its type and more can be easilyderived from the context when archiving a terminated fragment. The same holds forcompositions, here the tag could be composition of the tags of all contained fragments.2.3.10. Requirements summaryIn this Section, component-speci�c requirements are summarized in a tabular repre-sentation. For each component the source or kind of input and output are giving andindicated by an "I" and "O" in the left column. Then an enumeration of the mostfundamental properties is given. Each property is associated with a unique identi�erlocated in the left column, such as (UI2). These identi�ers are used in Chapter 3 torefer to a property match between Emergent Work�ow requirements and related work.User Interface/Client Application/AgentI/O Exchange of control and use data between runtime engine and a human-machine interface/an agent(UI1)(UI2)(UI3)(UI4) � Functional speci�cs for user groups� Usability (intuitivity, simplicity, documentation)� Con�guration & customization� Creation of accurate/detailed interaction protocolsServer InterfaceI/O Communication with external applications/work�ow enactment services,runtime engine(SI1)(SI2)(SI3) � Standardized interfaces for synchronous/asynchronous communicationwith external applications and work�ow enactment services� Support di�erent levels of interoperability� Creation of accurate/detailed interaction protocolsDictionaryI/O Dictionary contents are communicated with all other components(D1)(D2)(D3) � Establishment of an ontology that explains semantics and correlation ofdomain-speci�c vocabulary� Completeness/consistency� Structural extensibility
51



2. RequirementsOrganizational ModelI/O Used by all components for role abstraction(OM1)(OM2)(OM3)(OM4) � Formal representation of corporate structure with respect to hierarchy,responsibility and specialization� Role abstraction� Coverage of o�cial and uno�cial roles� Completeness/consistency/useful level of detailTime Management ComponentI/O Communicates temporal constraints with all other components(TM1)(TM2)(TM3) � Control and monitoring of temporal dependencies during enactment� Synchronization with other components� Integration of time constraints into work�ow metamodelProcess Creation EngineI/O Inputs an audit trail from the runtime engine and outputs process fragments(PC1)(PC2)(PC3)(PC4)(PC5)
� Creation of instance-speci�c process fragments from an audit trail andgeneral knowledge� Goal-dependent invocation and creation of process fragments� Robust and con�gurable input� Metamodel-conformance of output� Supplementation of output with a descriptionRuntime EngineI Process models, interaction protocolsO Audit trail, task assignment, synchronization with externals, monitoring(RE1)(RE2)(RE3)(RE4)(RE5)(RE6)(RE7)(RE8)(RE9)
� Rights management/security� Task assignment� Instantiation of process models� Schema evolution� Late modeling/Case handling� Flexible execution of instances (ad-hoc change, exceptions)� Assure correctness/consistency of running instances� Create an audit trail from events and incoming interaction protocols� Allow annotations of eventsProcess Matching EngineI QueriesO Result set of matching data objects, eventually supplemented by a rating(PM1)(PM2)(PM3)(PM4)(PM5)
� Queries contain quantitative/qualitative constraints and are supplementedby data objects� Exact and approximate matching� Descriptive and schema-matching search� Syntactic, semantic or structural similarity matching� Rated result sets with �ltering threshold

52



2. RequirementsRepositoryI/O All data types with all other components(R1)(R1a)(R1b)(R2)(R2a)(R2b)(R2c)(R2d)(R2e)(R2f)(R3)(R4)

� Temporary storage of data:� Runtime engine state information� Time management information� Permanent storage of data:� Dictionary ontology� Organizational model� Process models with versioning information� Archived process fragments� Process compositions� Audit trail� E�cient data representation� Basic access methods to stored informationTable 2.4.: Requirements summary2.4. Process metamodelA model in the context of work�ow management reduces the complexity of systems inthe real world in order to make it controllable10. By abstracting from reality, individualobjects and relations of the real world are reduced to object types and relation typesby �ltering out irrelevant aspects of reality. The more detail is left, the more complexa model grows. Hence a process designer determines how much information is relevantand decides on the required level of complexity.A metamodel de�nes a model for all models within a work�ow management system. Itestablishes a formalism that de�nes the class of constructs which are allowed in models.Key dimensions11 of metamodels are among others its granularity, control �ow, data �ow,organizational model, role binding and exception handling. Practically speaking, themetamodel determines the maximum expressive capability of all models built accordingto it. The metamodel both abstracts a "modeling language" from models and can beused to verify the correctness of models.A process metamodel represents a process perspective view on a metamodel and showsonly partial aspects of the total metamodel as it is used in a work�ow managementsystem. The following paragraph puts the process perspective into a bigger picture inorder to give an idea of its classi�cation.10Compare [Müh96] p. 13 et sqq.11Compare Lei and Sing [LS97] p. 3 et sqq. 53



2. RequirementsWork�ow perspectives Van der Aalst and Jablonski identify �ve di�erent perspec-tives to characterize di�erent aspects of a work�ow management system [AJ00]. Theseperspectives are a good starting point to structure as shown in Figure 2.14:
Process perspective

Organization perspective

Information perspective

Operation perspectiveIn
te
g
ra
ti
o
n
 

p
e
rs
p
e
c
ti
v
e

Figure 2.14.: Work�ow perspectives (compare [AJ00] Figure 1)The process perspective takes a task and control �ow oriented point of view focusingon process de�nitions, their type and instantiation. The organization perspective fo-cuses organizational structures characterized by roles, groups, responsibilities and theirallocation. The information perspective is a data-centric view dealing with control andproduction data. Elementary operations performed by applications and resources formthe operational perspective. They are used in the process perspective as elements forconstruction of data and control �ow. The integration perspective �nally links all viewstogether.This Section deals with the process metamodel of Emergent Work�ow and thereforerestricts its view to the process perspective. An overview of the most important com-ponents of Emergent Work�ow's process metamodel is given in Figure 2.15. Furtherexplanation on the shown elements will be given in the subsequent Sections. Notice thatFigure 2.15 does not contain instance-speci�c elements such as instances, fragments orcompositions to enhance readability.

54



2. Requirements
Process 

definition

Control flow

Activity

Schematic 

structure

AND split/join

OR split/join

XOR split/join

Loop

Sequence

Precondition

Context

Atomic 

activity

Subprocess

Regular case

Exceptional 

case

Role

Postcondition

Black box

has a

has a

consists of

is a

is a

is a

is a

has a

Type

has a

is assigned to

Caseis a

0..n

0..n

0..n

0..n

0..n

0..n

1

0..n

0..n

1

0..n

1..n

1

1..n

0..n

1

Version

1..n

0..n

1..n

1..n

0..1

1

0..1

1

0..1

0..n

0..10..1

10..1

0..1

consists of
0..n

Granularity

has a

0..n

0..1

Figure 2.15.: Process metamodel2.4.1. Process de�nitionsA process de�nition or process model represents the formalization of a business process.A business process consists of a manual part called the manual de�nition and an auto-
55



2. Requirementsmated part named work�ow de�nition12. The attribute "automated" is here used in awider sense than addressing only processes which run without any manual interference.It rather refers to the set of processes which are supported by information technology.Work�ow de�nitions consist of a number of items and relations expressing an automatedprocess. These items are activities, resources and data objects. They are connected bystructural relations which creating a control �ow.Granularity An issue with distinguished importance for Emergent Work�ow is the de-�nition, recognition and application of a process de�nition's granularity. It describes theabstraction level of an atomic or basic element within the process metamodel. EmergentWork�ow aims at deriving process fragments from interactions and activities of activeusers. Users though have di�erent perspectives, responsibilities and statuses within anorganizational model. Thus, their perception of what an "elementary" task is di�erssigni�cantly. Emergent Work�ow requires the ability to cope with inputs that di�er inlevel of detail and granularity.De�nition and recognition of granularity means to establish a common measure thatallows the classi�cation of all incoming fragments. That refers not only to the recognitionof a top/bottom level task, but includes also quantitative measurement of intermediatelevel tasks.A lower bound for the �nest level of granularity is represented by the stability of mod-els: A process model should be stable and not change on each instantiation due topersistent changes on the lowest granularity level. An event in a work�ow managementsystem represents the smallest recognizable element for an information system, howevertasks outside the system may be even more detailed. Semantically, an elementary taskshould be chosen as the smallest stable and independent set of operations that form onelogical unit. Being small is here characterized as a minimum amount of bound timeand resources. The highest granularity level being the other end of the spectrum is thetop-level process. It is basically a coarse view on the total process that does not allowany further abstraction with less details and a broader scope without loosing signi�cantinformation.Between these two extremes, intermediate levels of granularity exist. Their classi�cationis most challenging due to the number of characterizations indicating a granularity level:First, the hierarchical position of the person who executed an instance is an indicator forthe granularity of the underlying process de�nition. A task regarded as elementary by aproject manager may represent a whole subprocess for the software tester subordinateto the manager. Second, the involvement of (eventually nested) transactions gives a hinton the abstraction level as transactions may be used both on higher or lower levels. Theused time for the completion of one task as well as the amount of resources bound by atask classi�es the individual granularity level of a reported process fragment.12Compare the Work�ow Management Coalition Reference Model [Hol95] p. 7 et sqq.56



2. RequirementsIt appears very plausible that the total number of hierarchies (the "granularity of gran-ularity levels") has been de�ned at some point in the work�ow cycle, e.g. in the or-ganizational model. This establishes an abstraction hierarchy with distinguished levels,de�ned by a number of quantitative, measurable characteristics. Then it is the job ofthe work�ow management system to examine incoming fragments and classify them ina granularity level within the de�ned abstraction hierarchy using one of the characteris-tics mentioned. Especially with regard to semantic process fragment composition, thisrepresents a fundamental step to enable meaningful composition.Version One of the �exibility measures mentioned in the requirements of EmergentWork�ow's runtime engine was schema evolution (see Section 2.3.7). It proposes thatprocess models are adapted to a continuous changing environment by the applicationof change operations. Process instances that were instantiated on the same processde�nition have potentially di�ering process schemata. Consequently, a process typeby itself does not clearly identify the structure of its instances or schema. Hence, aversioning of process de�nitions is proposed. An incrementing version number indicatesa schema change and gives a clear reference to each version of a process de�nition.Activity Within a process de�nition, activities are elementary functional units. Eachactivity consists of many di�erent types of information whose composition allow itsfunctionality. All parameters combined yield a case its identity. As mentioned before,Emergent Work�ow does have requirements in terms of work�ow �exibility and reusabil-ity. These requirements are re�ected by the parameters specifying an activity as shownin Figure 2.16.An activity performs a certain task and is identi�ed by a name. An activity's characteris speci�ed by stateful case information which describes the case content, case attributesand conditions13. In Emergent Work�ow, case information categorizes an activity andtells for example whether it is regular or exceptional. The number of case categories isextensible and they can be used to classify instance-based entries in an audit trail withrespect to their relevance or likelihood to reoccur. As a further di�erentiated classi�-cation of cases may be useful depending on the application domain, the extensibility ofthis attribute is expressed by one or more custom cases. An activity type tells whetheradditional constraints have to be taken care of when an activity is processed. The reg-ular case is an atomic activity. However, the activity can also be a placeholder for asubprocess or a black box. These impose speci�c execution restrictions to the activity,e.g. a black box (compare Section 2.3.7 on page 41) activity must be fully submodeledbefore the activity can be activated. One or multiple descriptions o�er room to de-scribe informally from one or multiple perspectives what an activity does. A �exibilityparameter tells the work�ow management system about the degree of �exibility of thisactivity. It can be either fully ad-hoc changeable, the change methods may be restricted13Compare [AH02] p. 33 et sqq. 57



2. Requirements
Time

Data I/O

Name

Role

Context

Case

Type Postcondition

Precondition

Flexibility

Fully flexible

Limited

Static

Exceptional

Regular

Stop (planned/real)

Start (planned/real)

[Custom]

Atomic

Black box

Subprocess

Description

Duration (planned/real)

Activity

1..n

1

0..n

0..1

0..1

1 0..n

0..n

0..n

0..n

0..n

Figure 2.16.: Activity metamodelto a limited type and change time (e.g. only description changes before activation) orthe activity is totally static and does not allow any changes. Conditions split up intopreconditions and postconditions: Preconditions tell about the conditions ought to bemet before activation and postconditions guarantee a de�ned state after termination ofthe activity. Contextual information is a generic entry which captures relevant factorsin�uencing activity processing or which are needed for post-hoc evaluation. Data inputand output refers to data objects that are created, read or wrote during activity process-ing. Time entries hold temporal constraints for time management and are used to recordthe execution history of an activity instance. They contain start and stop times as wellas a duration �elds, each having a �eld for the planned and the real value. Finally, therole object identi�es which organizational entities are allowed to process a de�nition.Control �ow A control �ow interconnects activities being elementary parts into a con-tinuous work�ow. The structural elements of a control �ow determine causal relationshipof activities within a control �ow. In order to classify the control �ow expressiveness ofwork�ows, van der Aalst et al. de�ne work�ow patterns [AHKB02]. A pattern abstractsfrom solutions given for concrete problems an makes more generic recommendations. Byseparating basic from more advanced language constructs, an incremental approach tothe requirements on a modeling language is given.The following enumeration gives a summary on basic patterns (No. 1 � 5) and selectedadvanced patterns (No. 6 � 9): 58



2. Requirements1. Sequence. This allows activities to be executed in sequential order. An activityis activated after its predecessor terminates.2. Parallel split. The thread of control splits at a parallel split which is also calledAND-split. A thread of control describes the path of execution which is headed bythe currently executed activity. Multiple activities are activated after a commonpredecessor terminates.3. Synchronization. The execution of multiple activities/threads of control is mergedusing a synchronization or AND-join. The next activity is activated as soon as allincoming parallel threads of control have arrived.4. Exclusive choice. The thread of control has multiple choices to proceed ondi�erent paths. In contrast to a parallel split, only one of the available alternativesis exclusively chosen which is why this split is also called XOR-split. The choiceis made upon control data or a condition.5. Simple merge. As a counterpart to the exclusive choice, the simple merge orXOR-join activates the next activity as soon as one of the incoming path is acti-vated.6. Arbitrary cycles. This construct allows to execute one or more activities repeat-edly. Control data or a condition check whether and how often a loop is passed.7. Implicit termination. When no activity is currently active and none is availablefor activation, the process is terminated implicitly without reaching an explicitlyde�ned terminal state.8. Interleaved parallel routing. When in a set of activities, no two activitiesshould be executed at the same time but the order does not matter, then interleavedparallel routing allows the activation as an unordered sequence. That is, eachactivity is executed only once in a nondeterministic order.9. Milestone. The activation of a certain activity depends on whether a milestonehas been reached without expiring. The milestone being a condition is de�ned asa speci�c compound state of multiple activities of the control �ow.Patterns 1 through 5 are essential for even very basic structured work�ows. For moreadvanced processes, pattern 6 is useful but complicates execution considerably: The in-troduction of a loop means that activities can be activated multiple times per executionand their state has to reset when a new loop iteration is started. Analysis becomesharder and due to the possibility of in�nite loops, correctness can hardly be guaran-teed. Patterns 7 to 9 are not required but "nice-to-have's" as they support goals ofEmergent Work�ow: Implicit termination facilitates handling and correctness checkingof incomplete process models or late modeled subprocesses. Interleaved parallel routingincreases �exibility for many scenarios where the order of activities does not matter:59



2. RequirementsIn fact, any other construct would impose arti�cial and unnecessary regulation on suchcases. Finally, the idea of having a milestone element for control �ow greatly aligns withrunning a quality-gate driven process such as the V-Model (see Figure 1.4 on page 8).Notice that these patterns do not take into account �exibility-speci�c control constructsfor the integration of subprocesses, exception handling and case-handling. Subprocessesneed a hierarchical integration which enacts an independent process de�nition upon theactivation of the activity representing a subprocess. For exception handling, an explicitdescription of an exception handling routine and a description on how to jump backand forth to the routine are desirable. A dedicated version of an XOR-choice/mergesupplemented with implicit termination functionality would be a starting point for astructural control element giving dedicated support to exception handling.The question on which work�ow patterns to integrate in Emergent Work�ow's processcontrol structure has con�icting goals in its background: High functionality and �exi-bility can be o�ered by a complex process model with manifold control structures. Butit also brings along much more complicated construction, changeability and correctnesschecking than a simple process model. Moreover, an easy-to-use process model is morelikely to be understood and accepted by most work�ow users. If a highly functionalmodel is chosen, then an interface must be built around the models which either pro-vides strong support or hides the system's complexity by translating the complex internalmodel to a more simplistic outside view and vice versa.2.4.2. Process instanceA process instance puts the speci�cations of a process de�nition into practice. Eachprocess de�nition can have multiple instantiations, but each instance refers to only onede�nition. An instance is an independent object residing inside the runtime engineduring enactment. In the context of a process instance, each activity is instantiatedand associated roles are resolved. That is, an activity is assigned with one ore moreindividuals in the organization who occupy an according role. How and when resolutiontakes place is decided by the runtime engine's role resolution policy. During execution,a process instance occupies resources such as the individuals executing it, use dataor server-side applications. Beyond that, it traverses a number of states between itsinstantiation and termination. If from all possible states a terminal state is reachable, aprocess instance is called correct.Process and activity state model A process instance has usually a de�ned start andend state and traverses a number of intermediate states from the one to the other. Aninitial state transition is mostly performed after initialization is completed by activatingthe �rst activity. The overall state of a process instance is determined by the set ofstates of its activities. An exemplary activity instance state model is shown in Figure2.17. 60



2. Requirements

Skipped

Waiting

activated not_activated

Running

startedpaused
exec_sub-

process

Terminated

failed completed

Archived

skipped

commited

Activity 

instantiation

Figure 2.17.: Activity instance state model (adapted from [Rei00] Figure 4-1)Figure 2.17 shows a coarse state model which applies for both, an activity and the overallinstance as shaded boxes. Within the shaded boxes, white boxes represent more detailedactivity states. Arrows between shaded boxes and between white boxes indicated statetransitions of the instance and the activity respectively. An instance switches in aninitial waiting state as soon as its �rst activity is instantiated. It moves from there intoa running state as soon as the �rst activity is running and terminates as soon as thelast activity has either failed, completed or was skipped. Upon successful termination,it is being archived. From any of the �rst three states, the instance can be skipped whichmeans its execution is aborted at some point.An instance starts in a state not_activated and gets activated when the thread of controlarrives. From there it transits into a started state as soon as all of its resources areallocated. While it is running, it can switch back and forth to the sub-states paused orto exec_subprocess in case a subprocess is associated. Upon termination, an activitycan either fail, e.g. due to errors during execution or complete successfully. The laststep after completion is a commit to the archived instance. As multiple paths of control�ow through a process schema exist, an activity can possibly be never activated. In thatcase it transits straight form not_activated to skipped.As already indicated by the �nal archiving state, a history of state transitions is recordedand saved as part of the audit trail. This is a requirement due to the demand of EmergentWork�ow for the analysis and reuse of part instance executions.The �exibility requirement of Emergent Work�ow (see Requirement summary in Section2.3.10, (RE5)) to enact incomplete instances has further impact on the metamodel of61



2. Requirementsprocess instances. Black boxes represent missing subprocesses and are modeled duringrun time. Also ad-hoc changes (RE6) interfere with instance execution. Both casesmodify the instance's execution state and after each modi�cation, consistency checksare mandatory to assure the legality of a state. If for example a non-activated activityis inserted in an area which precedes activities that have already terminated, it becomesimpossible for the instance to terminate correctly. If an instance modi�cation leads toan illegal state, either the user or the runtime engine has to care for its correction (RE7).Furthermore, each instance should archive any extra annotations which were enteredby a work�ow user during enactment (RE9). This allows him to supplement the thearchived instance with useful, informal notes for later reuse.Instance fragments When an audit trail is examined by the process creation engine,a partial process instance is derived and is referred to as an instance fragment (PC1).It links to the archived execution history and contains thereby references to executingindividuals, occupied resources, timing informations and results from instance �exibilitymeasures.From a system perspective, an instance fragment is a portion of an archived processinstance put into a formalism according to the process metamodel. Compared to aprocess instance, speci�c start and end states are missing and the correctness of theschema is unchecked. Notice that it is built from the audit trail which has a certainlevel of detail according to the originator of the trail. That is, each fragment has anindividual level of granularity describing its richness of details. An explicit representationof granularity is fundamental for further reuse of instance fragments as the next Sectionreinforces.2.4.3. Process compositionsA complete work�ow transforms an initial business requirement (the precondition) intoa state that realizes the business goal (the postcondition). It does so by a number ofsteps implicitly traversing a state-space. The composition of fragments equals to theidenti�cation of a sequence of tasks that transforms a precondition state into a statecomplying with the �nal postcondition for an "overall" instance. In fact, compositionis performed vertically and horizontally : Vertical composition of fragments representsthe alignment of di�erent views and hierarchies related to a common part of the overallprocess. Horizontal integration links causally related process parts sequentially together.The overall instance is identi�ed by a business requirement such as an order number ina production process. From an employee's point of view, the overall instance is invisibleand appears only as smaller instances of lower-level tasks. The reassembly of thosefragments reveals the structure of the virtual overall process.Theoretically it would be possible to combine fragments of di�erent instance audit trails.62



2. RequirementsIn fact it could be very much easier to assemble all parts of an overall process frommultiple instances. However, their composition can be di�cult and the usefulness of itsoutcomes is questionable. Because of the �exibility measures o�ered by Emergent Work-�ow, di�erent instances are individually able to tailor a process by modifying instances,schemas and applying cases. When combining di�erent cases or schema versions, theymay not only collide syntactically but do not match semantically either: A cross-instancecomposed overall process starts with an business requirement and ends with a di�erentbusiness goal which does not re�ect reality. That is why only compositions consisting ofinstance fragments belonging to one overall instance are meaningful.Relation types Technically, a composition is a relation de�ned on a set of processfragments. The involved types of relations are shown in Figure 2.18.
Composition

Disjunct 

fragments

Overlapping 

fragments

Sequential Parallel Partial Total Hierarchical

Figure 2.18.: Types of relations in fragment compositionFigure 2.18 makes a distinction between disjunct and overlapping fragment relations. Asequential relation directs the control �ow after the termination of the �rst fragment tothe second fragment. A parallel relation splits the thread of control and directs it toboth fragments at the same time. Overlapping relations are more complicated as theycorrelate activities within fragments. A partially overlapping relation correlates a subsetof both fragments with each other. If each activity of one fragment is correlated withan activity in the other fragment, the overlapping is total. A special case of overlappingrelations is a hierarchical relation. It depicts subprocess relations by correlating oneactivity with the complete second fragment. When the thread of control arrives atthis activity, the activity pauses and forwards the thread of control to the lower-levelfragment. As soon as the thread of control returns, the activity is terminated and thetop-level fragment continues its execution.63



2. RequirementsNotice that correlating an activity means the creation of a compound activity mergedof the attributes specifying each activity (see Figure 2.16 on page 58). This is eitherachieved by adding both attributes (e.g. all roles from both activities are added to thenew activity) or choosing one of them (e.g. the choice of a �exibility level) When creatingan overlapping relation, either the system or the composer must take care of mergingeach overlapping activity. Each mentioned relation relates two fragments, hence for thecomposition of an overall instance, multiple relations must be applied. That requires acomposition to conform with the same requirements as a process fragment, that is, froman outside look it behaves and looks like a process fragment.Supportive constructs One of the key enablers of fragment composition is an explic-itly expressed level of granularity on each fragment and composition. Any automatedsupport for �nding matching fragments is based on a quantitative metric to assess sim-ilarity, one of which is granularity. Besides other attributes such as roles and temporalinformation, it helps to determine which fragments can be composed in a semanticallymeaningful way and where a hierarchical relation should be applied.As it is likely that fragments do not match each other perfectly or parts of the over-all process are missing, elementary tools help to interconnect a control �ow with gaps.These are constructs like a spontaneous transition to interconnect activities or an emptyfragment in order to easily integrated a hierarchical relation into a composition. Fur-thermore, a black box fragment can indicate missing parts. In case the composition getsenacted, this construct �lls up gaps which were not covered during composition andbehaves similarly to a late modeling instance in the runtime engine.Fields of use Process composition is performed by process designers who use desig-nated client applications for modeling support. An example on how relations betweenfragments could be detected is given in the example below.Example 16. Assume an activity "window power lifter mounted" with the context "as-sembly left front door" is in one fragment, activity "side window lifting motor mounted"with the context "assembly left front door" is in another fragment. By doing a dictionarylookup, a process designer can �nd out that the side window lifting motor is a part ofthe window power lifter assembly unit (see Figure 2.10 on page 22). From that informa-tion he can conclude, that the corresponding activity "mounting window lifter motor"is a sub-activity of the activity "mounting window lifter". If further examination of thetemporal execution history, the involved roles and further context information (such asa serial number on the body) con�rms that assumption, very likely a subprocess relationhas been found.As a composition tool is considered as a special case of user interface and the �eldsof use were not mentioned in Section 2.3.1, a short paragraph on the �elds of use forcompositions is added here. Process compositions are created by process designers for64



2. Requirementsin-depth analysis. By constructing a composition, designers receive a big scale viewon the course of execution of an instance. While work�ow participants are most ableto optimize a partial process on a small scale due to their knowledge and experience,process designers use a composition as a tool to understand and optimize big scaledependencies of an overall process. Such analysis can be supplemented by a simulation ofpast executions using the continuous documentation given in a composition. Annotationsmade by work�ow users are attached to fragments and accumulated on them is givenin a composition. They represent an excellent summary on lessons learned during theexecution of an instance. Drawbacks and conclusions lead to improvements in the bigscale process and can be applied for example to the V model (see Figure 1.4 on page 8).

65



3. Related approachesThis Chapter presents a number of approaches which are related to aspects of EmergentWork�ow. Each Section introduces at the beginning the fundamentals of the underly-ing �eld of research. By summarizing selected projects, interesting aspects of mostlyrecent work are highlighted. Each Section closes with an assessment of usefulness of thepresented concepts in the light of Emergent Work�ow.3.1. Case-based reasoning3.1.1. FundamentalsCase-based reasoning (CBR) is a methodology that can be used to enhance �exibilityin process management. It builds fundamentally on the hypothesis that reasoning isreminding of useful information. The origin of this automated learning approach lies inArti�cial Intelligence research.As introduced by Aamodt and Plaza [AP94], the idea of CBR is to solve problems byusing knowledge gained by previous experiences which are referred to as cases. Becauseeach solved case is added to a case base, it extends incrementally the available experiencewithin a problem domain. CBR is a learning technique because the knowledge aboutthe problem grows independently from the reasoning method and fosters better or easier�nding of solutions.Commonly the term CBR is used in a wider sense and refers to various reasoning meth-ods. Strictly speaking it di�ers however from other reasoning types. Those varyingaspects include methods for retrieval, management and utilization of past cases andgeneral domain knowledge as well as matching and adaption procedures. A list of re-lated reasoning methods is given below:
• Exemplar-based reasoning Here a concept is de�ned as the set of its exemplars.Solving a case in this scope denotes a classi�cation task where the matching class ofproblem is found. As each class represents one single solution for a particular typeof problem, the class that shows most similarities is chosen as a solution. A conceptde�nition is learned when an unclassi�ed problem can be classi�ed correctly.
• Instance-based reasoning This is a specialization of exemplar-based reasoningthat aims at automated learning without user interference and focuses on a syn-66



3. Related approachestax -oriented approach. Less background information is available, the data modelis relatively simple and a bigger number of cases is necessary to �nd a conceptde�nition.
• Memory-based reasoning The case base is seen here as a large piece of memory.The reasoning procedure corresponds to navigating and searching through the thememory. Consequently, herein types of organizing and accessing the memory andprocessing methods are focused.
• Case-based reasoning Although the term case-based reasoning is used moregeneric throughout the thesis, it di�ers typically from the other reasoning methodsmentioned in a number of aspects. First, a case is considered rich of informationand has a rather complex organization in contrast to the data model of instance-based reasoning. Second, more general background knowledge can be used in asituation-dependent context. Finally, CBR distinguishes itself by the ability tomodify a retrieved solution, which allows and implies user interference.
• Analogy-based reasoning Although closely related to CBR, analogy-based rea-soning focuses on �nding analogies between problem domains. That ability char-acterizes methods which solve new problems by basing their solutions on solvedproblems of di�erent domains, whereas CBR matches cases within one problemdomain.Process model view on CBR E�ective problem solving with CBR involves a numberof steps. When a new case comes up, it must be �rst analyzed to determine the typeof problem. Next the case based can be searched for similar cases that match the newproblem su�ciently with respect to chosen criteria. If a previous case matches the newcase, it is used as a proposal for a new solution. After eventually necessary adaptionshave been made to the proposal and it has been accepted as a solution for the new case,it can be added to the case base and becomes a learned case. From this point on, thesolution for the next new case relies on the improved case base. Formally, these actionsare represented by retrieval, reuse, revision and retainment phases. The cyclic natureof this procedure becomes evident by a glance at Figure 3.1 which illustrates the stepsmentioned in a generic CBR cycle.

67



3. Related approaches

New 

case

Problem

Retrieved 

case

New 

case

Solved 

case

Tested/

Repaired 

case

Learned 

case

previous 

cases
previous 

cases
Previous 

cases

General 

knowledge

Confirmed 

solution

Suggested 

solution

retrieve

re
u
s
e

revise

re
ta
in

Figure 3.1.: CBR cycle (compare [AP94] Figure 1)The generic CBR cycle in Figure 3.1 consists of the CBR main tasks: Upon the receptionof an incoming new case, the user retrieves the most similar cases by using generaldomain-speci�c knowledge and provided case retrieval methods. He further reuses theavailable information to solve the new case, revises the proposed solution and retainsinteresting and relevant information in a learned case for future cases.As the illustrated CBR cycle already indicates, the main problem areas of CBR areknowledge representation and methods for retrieval, reuse, revision and retainment.Within each area, one faces a number of questions whose architectural answers a�ectthe functionality of a CBR implementation.Knowledge representationWithin a case base, gained experience and learned lessonsare stored. Together with generic domain knowledge it is fundamental for the overallproblem solving process. Thus, it is crucial to decide on a data structure that is both ane�ective knowledge representation and e�ciently accessible. What information should68



3. Related approachesbe stored in a case? The more information is packed into it, the more likely it is todetect commonalities between related cases. Much irrelevant or redundant informationhowever makes the case base hard to use and reduces e�ciency. The need for e�cientstructures does not only apply to the organization of cases, but also to the internalstructure of each case. A chosen data structure needs to be extensible as the case baseincrementally grows with each learned case. The more indexes and other data structuresare created for accelerated output, the more administrative data has to be updated foreach alteration of the case base. Finally general domain knowledge has to be integratedwith the case base in a way that integrates them in requests. It may have for examplethe form of a rule base containing "best-practice" rules which are applied to each querybefore it is directed to the case base.Case retrieval is clearly identi�ed by its input and output: It starts with the receptionof an incomplete problem description as input and outputs the best matching case fromthe case base. Three major steps lead to the desired outcomes. The input is �rstanalyzed in order to identify its features. This corresponds to the acquisition of a trueunderstanding for the present problem. The set of features is used for an initial matchingprocedure in order to identify a number of candidates within the case base that arepotential solutions. Next a selection process of the most promising results re�nes thematching set until a best matching case becomes evident. Eventually matching andselection are one single step, but they usually di�er from each other by the applieddepth of analysis. While matching is more super�cial, selection analyzes more detailedthe relevance of identical and non-identical features.Case retrieval needs a measure or metric to compare the similarity of cases and therelevance of features: Those measures can be either based on syntactic or semanticsimilarities. Syntactic measures are simpler to apply and return a rather super�cial resultwhile semantic similarities are more accurate and more complex to obtain. Semanticmatching requires general domain knowledge in order to interpret for example contextualinformation. Identifying a set of features from the given input and concluding on aproblem type requires a type of a semantic network that correlates terminology.Example 17. A straightforward example for a similarity metric is used in CBRFlow[WWB04]. A query Q on the case base represents a new problem and is matchedagainst a solved problem C from the case base for similarity. Features of cases aredetected in this approach by a question-answer process; thus a set of answered questions
{QA1, . . . , QAm} comes with Q. A comparison of these questions and answers in pairsyields an observation whether the pair is matching or not. The similarity is calculatedas the normalized di�erence between the number of shared observations and the numberof con�icting observations.sim(Q, C) =

same(QQA, CQA) − di�(QQA, CQA)

|CQA|Case reuse is based on the identi�cation of matching and di�ering attributes between69



3. Related approachesthe old and new case. While the useful parts of the old case have to be extracted into thenew case, the non-matching parts are to be left out. In a more simplistic scenario it issu�cient to make a comparison for similarities � the di�erences between the cases appearirrelevant and are abstracted away. Then both cases are reduced to the problem classand the retrieved case is copied as a solution to the new case. More realistic however isa scenario where the retrieved case can not be transferred immediately to the new casebut requires adaption.Adaption is achieved by either �nding a transformation that translates the old solutioninto a new solution or deriving the past methods such that it produces a solution forthe new case. Transforming the solution is only appropriate though if the case is ratheroutput oriented and the procedures themselves are not crucial to the success of a case.Example 18. During the process of designing a car body, mechanical engineers use avirtual prototype called digital mock-up which is equipped with methods to check forcollisions of body parts during development. Dependent on the type and severenessof collisions, synchronization of collaborate work and resolution of problems can beclassi�ed in several cases. For minor issues the transformation of older solutions islikely to be su�cient because here only the outcome (which is a resolved collision) isrelevant. However, if the collision is more complicated and involves meetings of severaldisciplines, then the resolution process itself in the form of inter-personal communicationis important as well and is in�uenced by many external parameters. Comparable casesfrom the case base must then be adapted and reenacted instead of a replication andmodi�cation of their former solution.Case revision evolves out the lack of correctness or completeness of a reused solution.It includes the evaluation of the reused case in order to clarify its deviation from currentrequirements. After this has been found out by simulation or applying domain knowl-edge, a learning e�ect is accomplished by extending the case base with the new �ndings.Furthermore, faults in the reused case may be repaired by generating explanations forthem. Based on an explanation, modi�cations can be developed to repair a case solu-tion. After a case has been revised, it should be assured that it can be applied withoutexceptional behavior.Case retainment enables the learning procedure within CBR by incrementally extend-ing its case base. Depending on whether the new case has been derived from a past caseor was newly de�ned, existing cases are generalized by supplemental features or newcases are added. Problem and solution descriptors as well as indexes for case retrievalmethods have to be refreshed for the updated case base to take e�ect.3.1.2. ApplicationsCODAW The Case-Oriented Design Assistant for Work�ow Modeling (CODAW) isan approach that aims at supporting work�ow model reuse during work�ow design.70



3. Related approachesMadhusudan et al. point out the lack of useful standards regarding process modelstorage, retrieval, reuse and assembly. In [MZ03, MZM04], they present an architecturalproposal for case representation, case retrieval and case composition.Manual process modeling is here considered a traversal of a "design space" de�ned bya large number of process model alternatives and the selection of an optimal processmodel that re�ects the given problem best. Two phases are identi�ed within processdesign:In the �rst phase, relevant business tasks are put into a partial ordering that satis�es allpreconditions and postconditions. Multiple process models can be found that meet theserequirements. In the second phase, the favored process model is selected and completed :Routing is optimized with respect to �exibility and parallelity and appropriate agentsand resources are associated with the model. In both phases of design, process knowledgefrom the repository in the form of cases may be reused.
Search for existing process 

models with similar 

requirements

 Apply minor modifications 

and reuse case
Compose a new case

Apply modifications using 

domain knowledge:

Validate/verify new solution

Use domain knowledge and 

partial matches to create 

new process alternatives:

Store new case in repository

Similar solution does not 

exist but partial matchesSimilar solution exists

New Business 

Requirement

Deploy solution

Repository

Domain 

knowledge

Select tasks, constraints, 

generate alternative 

process sequences 

manually or automatically

allocate resources and 

agents

Flow of process model

Flow of repository 

knowledge

RETRIEVE

REUSE REVISE

RETAIN

adapt tasks/task structures

change resource 

allocation, agent routing, ..

Figure 3.2.: CODAW work�ow design process (adapted from [MZ03] Figure 2)71



3. Related approachesFigure 3.2 shows the simpli�ed design process of process modeling using CODAW. Incompliance with the generic CBR cycle (Figure 3.1 on page 68), its procedure splitsup into four phases: Retrieval, reuse, revision and retainment. An incoming businessrequirement initiates retrieval by searching the repository for process models with sim-ilar requirements. If a match is made, then the found case is slightly modi�ed andreused, otherwise a new process must be composed. The modi�cation for reuse are mi-nor structural/semantic changes such as the replacement of a task or the modi�cation ofthe process schema. Additionally, instance-speci�c settings such as resource allocationneed to be set up individually, even for processes of the same type. Validation andveri�cation uses measures such as domain-speci�c correctness checks, visualization orsimulation and assures the correctness of a reproduced case. For knowledge retainment,the newly developed process is not only deployed to the work�ow management systemafter checking, but also stored into the repository for later reuse. If no suitable templatecould be found during case retrieval, a new case has to be composed. Creation relieson domain knowledge and eventual partial matches for the synthesis of new process al-ternatives. This is done either entirely manual or is supported by a planning software,whose basic principles will be mentioned below. Revision is �nalized in the same way byvalidation and veri�cation, retainment and the solution is deployment just like a reusedcase.Case representation is here approached by separating prototypical cases from instance-level cases. In the terminology of this thesis, a prototypical case comes close to whatwe refer to as a process de�nition and an instance-level case would then be a processinstance. Prototypical cases contain the sequence of activities and represent a processschema for a generic business requirement. Instance-level cases depict the execution trailof a prototypical case for a speci�c input. One prototypical case can be associated withseveral instance-level cases.In CODAW's process ontology, the existence of primitive tasks which can be combinedinto more complex processes is assumed. A process schema de�nes then internal struc-ture of a composite task. Furthermore, it is possible to create hierarchical structures byreusing a schema as a component tasks in another process.The implementation of process de�nitions and instances is based on XML Schema andleans towards standards such as XPDL1, WSFL2 , XLANG3 and BPEL4. A repositoryorganizes prototypical and instance-level cases as well as a collection of primitive tasks.Cases are arranged in a hierarchical directory structure in �at XML �les. It indexescases according to their functional application area, task and organizational structure.1See the XML Process De�nition Language Speci�cation Version 1.0 Final Draft:http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf2See the Web Services Flow Language Version 1.0:http://www4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf3See the XLANG Initial Public Draft Release http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm4See the Web Services Business Process Execution Language Version 2.0: http://www.oasis-open.org/committees/download.php/11600/wsbpel-speci�cation-draft-022705.htm72



3. Related approachesRetrieval is implemented by plain text search or XQuery requests doing exact matcheson de�ned XML tags.An example of the XML representation of a new product development process schemais given in Appendix A.1.1. It becomes evident by the example that a process schemaconsists of three sets of tags (in parentheses the corresponding line numbers of the exam-ple is given): General descriptive tags for ID, name, type and description of the schema(lines 2 � 5), work�ow level structural tags to describe the overall process (lines 6 � 14)and task level tags specifying tasks and their parameters (lines 15 � 64). It is substan-tial to notice that each task is de�ned in three ways: First, a state-space declarativeAI planning based representation is given by the tag TaskDesign (lines 21 � 37) andis used for case composition. Second a formal model representation using process alge-braic representation is denoted by tag TaskFormal (lines 38 � 40). In the example, thisis textual description of a simple sequential �nite state automaton. Third, a proceduraltask de�nition denoted by TaskDefn (lines 41 � 63) highlights the implementation ofrelated attributes of the task such as roles (lines 42 � 48, named "Agent"), proceduredescription (lines 49 � 53) and data I/O (lines 54 � 62).An illustration of the XML schema of an instance representation is shown in FigureA.1 in Appendix A.1.2. IDs identify the instance and the process schema it originatesfrom. It captures its execution history by recording data inputs and outputs, executionperformance metrics and a history of events.Similarity-based case retrieval embodies a �exible notion of similarity that combinesfeatures of domain knowledge and process graph structures. Case retrieval in CODAWrelies on an algorithm by Melnik et al. named Similarity Flooding Schema MatchingAlgorithm [MGMR02]. It is an inexact and generic similarity based schema matchingalgorithm. The strength of this approach lies in its versatility that makes it applicableto many structures, including both process schemata and instances.It takes two graphs as input and generates a mapping between nodes that appear tocorrespond. A threshold is de�ned in order to �lter out the most relevant matches.Similarity Flooding is meant to support a human in the matching process rather thancreating a complete matching autonomously. That is why the �nal step is to present themost relevant matches to a human who revises and corrects them where needed.The algorithm can be brie�y described as follows: First it transforms the two inputstructures into directed labeled graphs. The core idea of the matching procedure betweenthose graphs is to combine two ideas: As a starting point, a string comparison of commonpre�xes and su�xes between designations of graph elements is performed. Based on theassumption that, if two nodes are similar, then their neighboring nodes are similar aswell, an iterative �xpoint computation follows. Thus, a node propagates its similarityto its adjacent nodes, who themselves continue propagation of similarity updates untila stable state, the �xpoint, has been reached. Propagation relies on �ooding algorithms
73



3. Related approaches(such as the Distance Vector Multicast Routing Protocol5) which explains the naming ofSimilarity Flooding. Notice that this algorithm does not have any semantic knowledgeabout the contents of the input it is processing. Instead, semantic knowledge aboutprocess models is replaced by the explicit representation and mutual in�uence of name,type and attributes of process model elements.Similarity Flooding for work�ows runs on a graph representation that explicitly modelsnodes for tasks and control structures such as in a Petri Net. While task nodes are namedaccording to their underlying task type, all control nodes share a common descriptor inorder to make their common type recognizable for Similarity Flooding. By de�ningthe similarity measure between any control and task node as 0, an accidental matchbetween di�erent element types is avoided. While similarity values applying for matchesof control nodes are limited to discrete values 0 or 1 (representing no match or full matchrespectively), matches of task nodes can range continuously between 0 and 1 accordingto their substring similarity.The matching algorithm results in a ranked list of map pairs including their �nal sim-ilarity after convergence, from which the most relevant subset can be chosen as a �nalmapping. As a manual selection of this map would turn out to be a tedious task, a �lter-ing process is applied before the resulting table is being presented to the user. Filteringrules rely on experimentally determined similarity thresholds or can make use of domainspeci�c knowledge. The accuracy and e�ciency of Similarity Flooding for work�ows ismainly determined by a good choice of threshold and is further examined experimentallyas found in [MGR02].Functional limitations apply to Similarity Flooding as it only works and performs ondirected graphs su�ciently. Based on its algorithmic idea, it accounts only for semanticsimilarity which is being re�ected by node and edge labels and topological similarity ofthe compared graphs. As far as computational resources are concerned, the size of inputgraph nodes is limited by the fact that intermediate graph structures are based on crossproduct operations with exponential costs.Case composition is invoked by CODAW if either case retrieval fails to �nd a matchingrecent case or when retrieved cases have to be composed. If no matching case was found,a new process model is generated by the composition of primitive tasks. The input of casecomposition describes a business problem de�ned in a planning language. The outputis a set of declarative process models that characterize its attributes and constraints inan enumerative style.Case-based planning in the CODAW framework uses the Simple Hierarchical OrderedPlanning (SHOP) algorithm, an implementation of the Hierarchical Task Network plan-ning technique. Its approach is to create plans by task decomposition and constraintsatisfaction. The SHOP algorithm supports reasoning on interactions between taskpreconditions and postconditions during state-space search for developing plans. Addi-5De�ned in RFC 1075, compare also Kurose and Ross [KR93] p.308 et sqq.74



3. Related approachestionally, SHOP allows reuse of appropriate prototypical and instance-level cases fromrepositories during problem solving.The SHOP algorithm works roughly as follows: A planning problem is �rst speci�ed byan initial task network, which is a collection of tasks that need to be performed undera speci�ed set of constraints. The planning process decomposes tasks in the initialtask network into progressively smaller subtasks until the task network contains onlyprimitive tasks or operators. The decomposition of a task into subtasks is performedusing a method from a domain description. This method speci�es how to decompose thetask into a set of subtasks. Each method is associated with various constraints that limitthe applicability of the method to certain conditions and de�ne the relations betweenthe subtasks of the method. The planning algorithm performs a recursive search of theplanning state space via task decomposition and constraint satisfaction. It terminateseither when all a solution has been found that meets all pre- and postconditions orwhen it tries to backtrack a composite task that does not o�er any more methods todecompose successfully.The SHOP algorithm is able to generate a sequential work�ow which requires post-processing in order to add concurrently executed tasks by the analysis of data andcausal dependencies. The e�ectiveness of the SHOP algorithm strongly depends onan appropriate design of the predicates, operators and methods. In the worst case, itexplores the complete search space incurring exponential costs. With respect to thatissues, time-out mechanisms may be used to ensure termination.Conversational case-based reasoning A conversational case-based reasoning (CCBR)system as proposed by Weber et al. in their system CBRFlow [WWB04] is a hybrid rea-soning approach combined with user interaction. Rule-based reasoning procedures aresupplemented by case-based reasoning which improves adaptivity of the overall system.Business rules are a set of statements representing general, domain-speci�c knowledgethat regulate the course of processes, such as instantiation or exception handling. A setof business rules is prede�ned in the process model and is annotated during run timewith cases having context-speci�c information. The business rule set de�nes the de-fault system, whereas cases add speci�c knowledge gained by previous concrete problemsituations.CCBR approaches to integrate machine learning methods from CBR with continuoususer interaction in order to enhance the learning process and to overcome weaknesses ofpure machine approaches. A case in CBRFlow consists of a free textual description, a setof question-answer pairs give the reason for the case and actions. An action is speci�edby the change operations taken and the subject they are operating on. In contrast totraditional CBR, problems do not need to be speci�ed a priori completely in CCBR.Instead, the system is assisted by user interaction in an initiated dialogue of questionsand answers that helps to retrieve the desired case or to evaluate the relevance of casefeatures. This dialogue proceeds incrementally until the user has pinpointed a solution.
75



3. Related approaches
Process 

modeler
Process

 user

Rule base Case base

is abstracted to

adds rule adds case

is annotated by

Process design time Process enactment timeFigure 3.3.: Adaptive work�ow management approach with CCBR (compare [WWB04]Figure 1)The adaptive work�ow management approach of CCBR as shown in Figure 3.3 startswith an initial model. It consists of a set of business rules which are formalized forexample in event-condition-action (ECA) form. These rules describe the model's control�ow. During run time, instances of a model are created and users work with them.Whenever changing requirements or exceptions cause deviations from the model, a userannotates the corresponding business rule by adding a case. The case describes, in whichcontext what kind of deviation between reality and model occurred. Over time a casebase becomes established and shows, which kinds of exceptions from business rules occurmore frequently than others. Based on that information, process modelers analyze thosecases which describe concrete exceptional situations and abstract from them changeson business rules that incorporate the modi�ed requirements. Thus the original processmodel is adapted to changing environments. As changes to case and rule base can betemporally overlapping or take place concurrently, a process model adapts incrementallywithout strictly separated design and enactment phases.The fundamental distinction between rules and cases is that rules are applied auto-matically, whereas cases require user interaction. Reasons that induce cases such asexceptions or helpful annotations are too manifold than to be processed automaticallyand need to be checked manually. Cases are used in two ways: One type supplementsthe rule base by referring to speci�c contexts that cause changes. Alternatively a caseupdates a speci�c rule by "hardcoding" the case with it. That way a case can update aparticular rule.Applying hybrid reasoning in the form of CCBR bears several bene�ts over pure rule-based reasoning: Explicit initial process modeling is allowed to be incomplete or ratherlow-detailed. Especially before process enactment it is very hard or expensive to �ndall important rules or parameters in�uencing the process. As improvement of modelswith CCBR is more continuous than reengineering the rule base, a starting model ismore �exibly adapted to the starting and continuously changing environment. Casesenable users to express immediate manual adaptions and serve as a decision supportsystem. The selective transfer of cases into rules di�erentiates one-time exceptions from
76



3. Related approachesmore systematic changes caused by new circumstances. Due to its high frequency, thelatter is abstracted into the model and becomes more e�cient because it is executedfully automated.WorkBrain WorkBrain is a system presented byWargitsch et al. in [WWT97,WWT98]that integrates an evolutionary work�ow management system with an OrganizationalMemory Information System (OMIS). A work�ow management system being evolution-ary addresses here a step-by-step development of the work�ow that involves its partici-pants in incremental process design.The concept of an Organizational Memory represents an organization's ability to retainpreviously made experience, so-called "learned lessons". Its existence is desirable asit leads to improved performance and higher e�ectiveness. Usually it does not existimplicitly within an organization's structure but has to be established explicitly. AnOMIS tries to implement the concept of an organizational memory with informationtechnology. On its own, an OMIS does not di�er substantially from common informationsystems or databases that span over a large knowledge domain. Therefore, it does su�erthe same weaknesses because its access methods are often insu�cient to �nd data andto interpret them correctly: Usability is hard to manage for potentially many types ofinvolved users, the costs for maintenance in order to keep the data basis up-to-date,consistent and correct are high.By integrating an OMIS with a work�ow management system, WorkBrain attempts toovercome each individual system's de�ciencies6. In order to put its evolutionary idea intopractice, its concrete learning approach is twofold: Learning by example enables work�owusers to introduce spontaneously new elements into the process. This provides a morecreative way of design and positions its results closer to operations. At the same time,process designers observe and re�ect those changes of the users and apply revisions thatare more durable and e�cient. This part of an evolving work�ow management systemis called learning by supervision. Together, these learning cycles form a double-looplearning approach that is depicted in Figure 3.4.

6The de�ciencies of a regular work�ow management system were presented in Section 1.1
77



3. Related approaches
Process 

designer

Process

user

General 

knowledge

Cases

Organizational

memory

Modification

Analysis

Archiving

Execution

Planning

Outer cycle: Inner cycle:

“Learning by examples”“Learning by supervision”Figure 3.4.: Double-loop learning (compare [WWT98] Figure 1)Central component of double-loop learning is the organizational memory. One part is acase base �lled with terminated work�ows and related audit data. The other part bearsdomain speci�c knowledge. Both learning loops are attached to the organizational mem-ory, "learning by supervision" as the outer cycle and "learning by examples" as the innercycle. The process designer analyzes cases within the organizational memory by observ-ing their structure and frequency and modi�es process models accordingly. Process usersplan their activities and process executed instances. For treatment of upcoming excep-tions during execution, they rely on the organizational memory. Subsequent solutionsfor exceptions are archived as cases in the case base.In order to simplify usage, partial processes called "single building blocks" are storedas cases rather that entire processes. By this modularization, the number of variationswithin cases decreases signi�cantly. Building blocks exist on various level of granularity,that is, blocks are based on a varying level of detail. The lowest level represents anelementary activity, intermediate levels are sets of activities or subprocesses. The toplevel is represented by a complete process phase. For each level, a catalog describes theavailable cases within the case base.A further implemented concept is separation of control: Organized in two layers, a man-agement layer de�nes milestones, beneath actions are self-managed by subunits and usersin a second layer. On the management layer the process is automated and for subunitsan ad-hoc changeable subprocess allows optimization and more control on details.The advantage of using an OMIS is that it integrates processes and information. Knowl-edge becomes explicitly stored and does not get lost when employees leave an organiza-tion. Both parties, process users and designers apply changes to process instances andtypes respectively. Thus processes can adapt to changing internal and external require-78



3. Related approachesments. Due to the outer learning cycle, continuous analysis makes it easy to check forperformance, goal attainment and to apply benchmarking and monitoring methods.The WorkBrain approach appears very similar to CCBR: Both improve the processincrementally by allowing the user to make adaptions according to his current situationusing a case base. However, in contrast to CBRFlow, WorkBrain interprets and usesthe case base in a broader sense as a part of an organizational memory. While in CCBRa case base is a set of deviations, exceptions and adaptions, in WorkBrain it containsboth fundamental and supplemental data.Exception handling with CBR Hwang et al. aim in [HHT99] at supporting users onexception handling with a case base of past exceptions. When a new exception shows up,the system proposes solutions of previously experienced exceptions based on similaritymeasures.Two types of exceptions are di�erentiated: Those that are expected and are treated byimplementing explicit modeling for exceptions. These are typically adaptive work�owapproaches, such as ADEPT [RD98]. The other type of exceptions which occur com-pletely unexpected are dealt with in this approach: Reactions for exceptions includeignoring them, retry the failed activity, perform a partial rollback of the process, addcompensation activities or delete planned activities and make general evaluations forcorrectness.Their idea of exception handling has two steps: First, a rule base is consulted. Each rulerefers to a type of exceptions. If a matching rule could be found, then the rule tells howto resolve the exception. The rule base represents domain speci�c knowledge that makesit possible to specify instantly the correct treatment of a prede�ned type of exception.If the rule base fails, then in a second step the user searches through a case base �lledwith exceptions for similar exceptions and their resolution. Search is done by a similaritymetric, that is based on a number of attributes that characterize a particular exception:
• Process instance status holds the execution state of a process instance and allits constituent activities (compare Section 2.4.2)
• Activity describes which activity caused the exception
• Event gives a semantic description of the type of exception speci�ed by keywordsand/or free text
• Who experienced/noticed the exception?
• When in time did the exception happen?A complete matching between all attributes of the current exception and an storedexception in the case base is very unlikely. In order to implement a similarity measure,79



3. Related approachesa key idea of this project is to formalize and classify the relevance of attributes and theirin�uence on the similarity of exceptions in concept hierarchies. For each attribute type,concepts are ordered hierarchically in a tree structure such that the most general conceptis the root of the tree and more speci�c concepts are organized in branches. Withinhierarchic trees, the depth of a node denotes its distance from the root. Levels in contrastdescribe the depth of a node i with regard to the tree's lowest leaves. That is, leveli =
depthm − depthi with m = max{depthn|n ∈ T , n is a node, T is a concept tree}.Example 19. A concept hierarchy for the attribute Activity corresponds to a taskdecomposition of the activity as shown in Figure 3.5.

Window power 

lifter assembly

ME components EE components SD components

Button GearsMotor Controller SensorsActors Firmware Software

Level

2

0

1

Figure 3.5.: Example: Concept hierarchy of a window power lifter assemblyThe assembly of a window power lifter constitutes components from the three disciplinesmechanical engineering, electrical engineering and software development. The leafs ofthe tree represent the lowest level 0. With each parent node, the level increments.Let the tuple < a1, a2, . . . , ak > be a number of k attributes that describe the currentexception. This is matched against the attributes of solutions < s1, s2, . . . , sk > in thecase base. A function leastCommonAncestor(< ai, si >) takes two attributes as inputand returns the least common ancestor l of both in the concept tree. That is, it returnsthe node l in the concept tree at the lowest level possible, that contains both ai and siin its child branches. The level of l is an measure for the similarity of the compared pairof problems and solutions with respect to the ith attribute: The lower the level of l, themore similar is the solution to the given problem.

80



3. Related approachesExample 20. This example illustrates the least common ancestor concept buildingon Example 19. Suppose a problem is described among others by an attribute ai thatspeci�es the activity type. Two solutions s and s′ are found in the case base. The valuesfor each one of these attributes are shown in Figure 3.6.
Window power 

lifter assembly

ME components EE components SD components

Button GearsMotor Controller SensorsActors Firmware Software

Level

2

0

1

ai si s’i

li

l’i

Figure 3.6.: Example: Least common ancestor in a concept hierarchyThe least common ancestor li for < ai, si > and < ai, s
′

i > has level 1 and level 2respectively. Because of its lower common ancestor level, solution si is preferable over
s′i: This makes sense because an exception that occurred during the assembly of gearsis more similar to an exception on button assembly than an exception during �rmwareupload.If additionally a weight function is de�ned, the relevance of each attribute can beweighted individually. Adding the weighted attributes up returns a similarity indexbetween the current exception and the solution. Based on this index, the best matchingsolution is proposed. The best solution with the lowest overall index matches as themost relevant solution on the lowest level in the concept tree.Apart from e�ciency and implementational issues7, the concept tree approach is limitedby two issues: First, a weight function in�uences the matching process heavily and hasto be set for each upcoming problem individually in order to optimize results. Findinga generic weight function that matches most problems well might to turn out to be veryhard. Second, the foundational assumption of concept trees is that all attributes can bebroken down hierarchically. This is not necessarily true for all types of attributes and canbe ambiguous, too. An Activity attribute might be decomposed either in a more logicalfashion or a way that re�ects better the temporal aspects of the tasks that constitutethe activity. The �rst would be formally more correct, while the second re�ects betteron reality.7Implementational issues are discussed in [HHT99] in detail81



3. Related approaches3.1.3. Assessment of usefulnessCBR in general bears many useful aspects for Emergent Work�ow: Its learning & reuse-based approach has bene�ts for handling recurring problems more e�ciently. In ap-plication, it has been identi�ed to be well suitable for slight variations around clearlyidenti�able tasks. As an integrated approach, CBR must be combined with new casecreation methods in order to be useful.CODAW on page 70 introduces multiple interesting aspects for Emergent Work�ow: ItsXML based process model and instance represents a lightweight alternative to BPEL,XPDL and other standardization e�orts. In fact, this may be due to the fact thatCODAW including its case representation has been developed for an engineering appli-cation �eld which allows to reduce generic constructs. With respect to the EmergentWork�ow requirements summarized in Table 2.4, Section 2.3.10, these representationscan be used for temporary instance representation (R1a, R1b) and permanent storage ofprocess models (R2c) and fragments (R2d). In particular, this instance representationallows annotations (RE9) (this feature is here meant for administrators, but could beused by users as well). Its state-space declarative representation allows the represen-tation of task compositions (R2e). As the representation is XML based, basic accessmethods like XQUERY for full-text search exist(R4). Furthermore, the similarity �ood-ing schema matching algorithm is versatile enough to be used in the process matchingengine for searches with qualitative constraints (PM1). It performs an approximate,schema-matching search (PM2, PM3) on syntactic similarity (PM4) and allows �lteringof its outputs (PM5). The planning algorithm SHOP can be used for automated caseselection and planning supporting the recognition of cases (RE5). As it is able to com-pose and decompose composite tasks, it may be used by process designers for fragmentcomposition (UI1).CCBR on page 75 improves human-machine interaction: Fundamental to this approachis the separation of automatic rules and manual cases. A mixed-initiative, conversation-based case �nding enhances usability of a system (UI2). Furthermore, reinstantiation of ade�ned case is done manually but already prede�ned (RE5). It invokes an exact matchingalgorithm (PM2) based on descriptive and quantitative attributes and constraints (PM2,PM3). The analysis of the case base is done manually (RE5).WorkBrain on page 77 introduces the concept of an Organizational Memory InformationSystem. This integrates general knowledge with cases representing archived instances(R2d). The dictionary and organizational model in Emergent Work�ow can be seenas a reduced version or a part of the organizational memory (R2a, R2b). Double-looplearning addresses the evolution of process models initiated by work�ow users (RE6,RE9) and revised and permanently implemented by process designers (RE4, RE7).The work by Hwang et al. on exception handling on page 79 introduces exception han-dling (RE6) by using a rule base for automated handling and a case base that supportsmanual resolution of exceptions (RE5). Based on their idea of concept hierarchies, this
82



3. Related approachesapproach performs similarity matching between exceptions using exception attributes.This is a quantitative (PM1) and exact (PM2) matching type based on a descriptive(PM3) search for structural similarity (PM4). The concept of least common ancestorsallows to put an index on results and to sort them (PM5).3.2. Process mining3.2.1. FundamentalsExplicit creation of process models is a lengthy task and its outcomes do not alwaysre�ect the real process accurately. The goal of process mining is to reverse the processand collect data at run time to support work�ow design and analysis. Van der Aalst etal. describe process mining respectively work�ow mining in [ADH+03] as follows:The term process mining refers to methods for distilling a structured processdescription from a set of real executions. Because these methods focus onso-called case-driven process that are supported by contemporary work�owmanagement systems, we also use the term work�ow mining.
Diagnosis

Process

design

System configuration

Process

enactment

Workflow mining

Traditional approach

Delta analysis

Figure 3.7.: Work�ow mining in the business process life cycle (compare [ADH+03] Fig-ure 1)The business process life cycle has already been introduced in Section 1.1 (Figure 1.1 onpage 2). In Figure 3.7, the role of work�ow mining is shown in the context of the business83



3. Related approachesprocess life cycle. While the traditional approach starts with process design and developsmodels which are later enacted, work�ow mining takes the outputs of process enactmentand supports process design. This is possible because implicitly processes do alwaysexist, even if they were not explicitly modeled in a preceding design phase. Involvedsoftware such as an ERP system usually keeps track of events and transactions andprovides logging functionality. Process mining can use this information as a startingpoint for the derivation of a formalization of the ongoing process. A delta analysiscompares bidirectional the designed process models with mined real processes from theenactment phase. This "delta" gap between a model and its actual behavior showsdiscrepancies that can indicate weaknesses of models. These are very useful e.g. foriterative process improvement.Input & output A minimum input for a work�ow mining algorithm is a sequentiallist of entries describing an event of the execution of a process instance each. This listis also referred to as a log. A log �le must meet following minimum requirements:
• Each log event refers to a task
• Each log event refers to an instance
• The log events are totally orderedA minimal log is shown in Table 3.1.Instance identi�er Task identi�erInstance 1 Task AInstance 2 Task AInstance 1 Task BInstance 2 Task C... ...Table 3.1.: Simplistic minimum activity logWhen real-life information systems record protocols of events, usually much more in-formation is put into a log �le: For each event, an event type is speci�ed such as"start/stop". Additionally, a time stamp as well as further context-speci�c can be sup-plied for each entry. Such would be a transaction status, indication of exceptions, a usercausing the event or a case description within a certain instance. Notice that such addi-tional information is necessary for a more sophisticated semantic analysis as EmergentWork�ow intends to do (see Section 2.3.6).The output of a mining algorithm is a representation of a process model or an incompletetemplate indicating its schema. The outcome determines how much of the businessprocess cycle can be skipped by mining (see Figure 3.7 on page 83) a log �le. Work�ow84



3. Related approachesmining is either able to step over the whole process design phase if resulting models areready for enactment or gives a starting point for process designers who revise a providedtemplate.Problem de�nition Mining a process graph can be seen as two subproblems:
• Finding of a schematic graph structure that generates the log output.The extraction of a set of structural dependencies (which are usually visualizedin a process graph) from a set of logged events is what most mining algorithmsare dealing with. With some limitations, this can be done based on a minimuminput log by a syntax-analyzing algorithm without user interaction. Notice thatmost algorithms do not focus on the reconstruction of the exact generating graphbut create a sound and equivalent graph which has the same output. That is, anyreachable marking state in the graph is legal and terminates correctly with thesame functional result as the original.
• Finding of edge conditions. The second step of recreating a process model isless straightforward as it requires an understanding of the semantics of a process.Real processes make use of conditional constructs such as exclusive branching andloops. During the �rst step, the fact that a conditional construct exists has beendetected � now it has to be added what the condition was. If this is planned to bedone by information provided by the process log only, then the process log mustbe enriched with supplemental data describing a task's and instance's context. Forexample an exclusive conditional splits up two distinct alternatives identi�ed bya condition. If these two cases can be identi�ed, then it is possible to derive acondition.Complexity & Incompleteness One can look at a graph that represents a processmodel PM as a �nite state automaton8. The process schema de�nes here a grammaron an alphabet ∑ whose symbols are tasks. A formal language L on ∑ is then de�nedby any subset of ∑

∗. L consists of all words that can be generated by a given grammarover ∑. Then there exists an onto9 function that maps each process instance that wasenacted on PM to a word of L. The existence of such a function is evident becauseinstances are not only speci�ed by their sequence of tasks, but also by their context.What process mining actually tries to do is to draw a conclusion on the process schemafrom a limited set of instances. As real-life business processes are rather large, this setis almost certain to be incomplete. This situation equals to having an incomplete setof words of an unknown language. Now one tries to guess a grammar that creates theunknown language. This procedure is very unlikely to yield a correct guess. Therefore,8See any book introducing language theory, e.g. M. Sipser "Introduction to the Theory of Computa-tion".9Note to German readers: "Onto" translates into German "surjektiv".85



3. Related approachesthere will be always a di�erence between the real process and its mined reconstruction,even though mining techniques attempt to make a very realistic guess that matches theoriginal process model for certain classes of processes quite well.Example 21. In this example, the conceptual idea of the α-algorithm [AWM03]is given: The α-algorithm inputs an event log as shown in Table 3.1 and outputs aPlace/Transition net (P/T-net). P/T-nets extend the Petri Net formalism for use withmultiple concurrently running tokensa.Fundamental for most mining algorithms is the idea of causal relations. It is de�nedas follows: An activity B follows an activity A (A → B) if either B starts after thetermination of A or there exists an activity C such that C follows A and B follows C(A → C ∧C → B) in each instance log. If A → B ∧B 9 A, then B causally follows A.If A → B ∧ B → A or A 9 B ∧ B 9 A, then A and B are independent.The basic functionality of the α-algorithm is the following: A task exists in the resultingnet if it appears in any log trace. A task is either the �rst task of a process model orhas an ingoing edge for each task that this task causally follows. In an analogy, a taskis either the last task of a process model or has an outgoing edge for each task thatcausally follows it. If a task is neither the �rst or last task in a process model nor does ithave any causal relations, then it does not receive any ingoing and outgoing edges. Thisversion of the α-algorithm mines simply structured graphs (including sequence, paralleland conditional branching) mostly correct, but fails on structures containing short loops,invisible or duplicate tasks and other advanced constructs. Support for them requiresextensions which are further discussed in [ADH+03, MAW03].aSee W. Reisig and G. Rozenberg in "Lectures on Petri Nets I: Basic Models", volume 1491 of "LectureNotes in Computer Science".Di�culties Besides the conceptual problems of process model recovery from log �les,additional conditions complicate the functionality of process mining.Noise in process logs describes the fact that process logs can be not only incomplete,but also incorrect. Due to human or technical errors, a log �le is possibly disorderedor events themselves contain wrong information. Even with correct input logs, wrongmodels can be mined due to coincidentally colliding events that are not related but aremisinterpreted by mining algorithms. Certain mining approaches try overcome this bythe introduction of stochastic models and frequency tables that help to detect and ignoreerroneous entries10.Privacy is a non-functional issues that has major impact of the usability of processmining. As an event log contains personalized information about individuals interactingwith an information system, the storage and processing of process logs may be subjectto restriction due to federal legislation or corporate ethics. Functionality to anonymizedata before collecting it in an event log may be required in certain situations.10Compare the work of Herbst and Karagiannis referred to in [ADH+03]86



3. Related approaches3.2.2. Multi-phase process miningVan Dongen and van der Aalst present in [DA04] a process mining approach in a control-�ow perspective, that creates visualizations of individual process instances. It splits themining process up into two phases: The �rst step creates representations for each runninginstance individually, the second step optionally merges the instance representations intoan overall process model.This is motivated by the fact that, during run time, analysis of performance is inter-esting, such as the average time to transfer a task from one person to another. Theimplemented processes however di�er from actual execution, therefore their analysis isnot su�cient. Rather, individual execution trails are discovered by mining an individualprocess instance history from process logs. So the basic idea is to look at each instanceindividually rather that looking at a combined, overall trace of events.Without giving formal speci�cs, instance graphs are created as follows: A process logconsists of a sequence of log entries that refer to multiple process instances. Processesare mined by �rst extracting an instance net and transforming that into an instancegraph. An instance net is based on an instance domain which links each log entry to atask. This is necessary as duplicate tasks may appear in a log �le. The instance domainindexes the log entries and enables their clear referral. The instance net is an orderedset of log entries which stem from one process instance. As an instance net has alreadybeen executed in the past, no choice or loop constructs are needed. The properties ofthis ordering relation (referred to as � in the following list) are:
• � is irre�exive, asymmetric and acyclic
• If an entry i appears before an entry j in the log, then j � i can not exist
• For any i� j there is no common intermediate element k such that i�k and k �+ j.The symbol �+ expresses that there may exist any sequence of 0 . . . n intermediateordering relations � between k and j.
• If duplicate tasks appear in the log, then they must be related with �+This ordering creates relations between the closest tasks, each of which have a causalrelation. As a causal relation indicates a sequential structure, no symmetric causalrelations with the exception of short loops are allowed.Creating an instance graph from an instance net is straightforward: Each task from theinstance net represents a node in the instance graph and each causal relation createsan edge. If tasks have no causal relation with their predecessor or successor, their noderepresentation are parallel branches. Due to the retrospective view on the process as alog, choice branching is not supported. Finally, a start and end node are added with in-and outgoing edges respectively going into nodes that have no predecessor or successor.An instance graph holds the property of being strongly connected. Furthermore, an87



3. Related approachesentry in the log only appears if all its predecessors in the directed graph have alreadyappeared in the graph11. These assure the correctness of the reconstructed �ow of tasksin terms of executability and conformance with the records provided by the process log.Instance mining may be bene�cial when process logs are not complete as their complete-ness is not required to produce useful results. Primary ways of usage include instantinstance visualization and other related functionality supporting the analysis, controland planning of processes. As a secondary option, an instance graph can be either usedto be transformed into other data formats12 which may o�er further processing such asthe aggregation of multiple instance graphs into one process schema. Usage limitationsapply when dealing with erroneous logs that require preceding �ltering steps. Moreover,meaningful aggregation is hard to accomplish when more complex routing structures areinvolved.3.2.3. Assessment of usefulnessThe process mining approach clearly aligns with the functional requirements of theprocess creation engine of Emergent Work�ow (see Section 2.3.6). All requirementsreferences in paranthesis refer to the requirements summary in Table 2.4, Section 2.3.10if not noted otherwise.In Emergent Work�ow, the audit trail composed of user interaction and system eventsrepresents an event log enriched with context data (see Section 2.3.7 on page 33) whichmeets the process creation engine's input requirements (PC1, PC I/O). Regular work�owmining as described on page 83 proposes algorithms that require as input completed logsof su�ciently many instances in order to function properly. Therefore, they are focusedon ad posteriori analysis. With respect to the di�erent purposes of documentation shownin Table 2.2 on page 29, work�ow mining o�ers means to document for later reuse, butdoes not support planning or synchronization of ongoing operations (PC2). In order toachieve robustness against real-life circumstance such as noisy log �les, advanced miningmethods have been proposed (PC3).Multi-phase process mining on page 87 is a mining approach of particular interest forEmergent Work�ow. Its �rst phase performs individual instance mining which alignsperfectly with the creation of process fragments by a process creation engine (PC2). Itis not as complicated as regular process mining because it restricts itself to log analysisof single instances. Thereby, the outputted metamodel is simpler as for example noconditional branching is allowed and necessary (PC4). Moreover, its output format canbe easily transformed into other representations (PC4). Most noticeable is the fact thatinstance-based mining is useful for immediate and individual support for work�ow users.While regular work�ow mining is rather a post-hoc analysis, instance-based mining canbe done during execution as it does not require completeness of its input (PC2, PC3).11Compare [DA04] page 8/369 for proofs12Such as an Instance Event-driven Process Chain in [DA04] page 8/369 et sqq.88



3. Related approachesFinally, one can compare the results of instance-based process mining with the plannedoverall process. This allows an analysis of the �exibility of process models and theiraverage level of deviation from the planned process.3.3. Flexibility approachesApproaches that introduce �exibility on process models during run time can be classi�edinto two categories: Ad-hoc change of process instances applied to instances during runtime and schematic changes applied to process models. As already motivated in Section2.3.7 on page 40, instance-based changes are used for exceptional situations or changesa�ecting only selected instances. Schematic changes indicate incremental systematicchange that applies to all instances and causes the process type to evolve.3.3.1. Schema evolution and propagationSchema evolution consists of a static part modifying the process models and a dynamicpart which refers to managing the migration of running instances [CCPP96].A static evolution is the issue of modifying the work�ow description and includes check-ing for syntactic correctness. Dynamic evolution refers to managing running instanceswhose type was modi�ed. They require some form of assistance to adapt to the new re-quirements formulated by the type change. Their consistency regarding their executionstate needs to be checked and assured.Change operations on a process can have an impact on any one of its perspectives(see Figure 2.14 on page 54): For instance the assignment of tasks to users or theorganizational structure can change as well as associated applications and use data.The modi�cation of the control �ow is focused in the following Section due to its highrelevance.A set of operations modifying the control �ow holds characteristics such as being com-plete, minimal and consistent. Completeness is achieved if any schema can be trans-formed into any other schema. Minimality refers to the fact that only a minimum set ofoperations is o�ered that meets the completeness requirement. Consistency means thatthe change operation reinduces no errors during run time.Dynamic schematic changes occur during work�ow execution when the process modeladapts to a changing environment. Possible strategies to handle these changes duringexecution are:
• Flushing the system. The enactment of new instances is delayed until allrunning instances have terminated. Then changes are applied and enactment is

89



3. Related approachesrestarted. This strategy is safe but time costly and not acceptable when dealingwith many and long-running instances.
• Abortion of all jobs in progress. Running instances are aborted, the processmodel is altered and instances are re-run using the new schema. Again, thisstrategy is unacceptable due to the high costs of restarting all instances and redoingall the work to reach the originating state.
• Run old and new versions simultaneously. Here, running instances remainrunning on the "old" process model while newly enacted instances use the newprocess model. The old process model remains active until all old instances haveterminated. This strategy is potentially unsafe and inconsistencies are especiallylikely if the schematic change interferes with data dependencies or the changedownsizes the model (see below).
• Safe migration of instances from one version to another. The change isapplied to the process model and running instances are individually migrated toconform with the new process schema. Here, safety is an issue because correctnessand consistency need to be checked explicitly.Obviously, a safe migration of executed instances upon schematic change is the mostchallenging and promising strategy at the same time.Synthetic cut-over change Ellis et al. deal in [EKR95] with the dynamic changeproblem and ways to verify the correctness of one class of dynamic change. They presenta certain class of processes for which the consistency of migrated instances can be proved.Their approach is to de�ne a change region as that part of a process model which is beinga�ected by a structural change. The old change region existing prior to the change is thenreplaced with a new change region containing the change while obeying the proceduralspeci�cations in order to maintain correctness. Correctness is maintained if all instancesresume and �nish according to either the old version or the new version of the procedure.A special class of changes referred to as synthetic cut-over change is observed when thenew change region contains both the old and the new region.A Petri Net formalism13 is chosen to represent process models as marked networks. InPetri Nets, a change is a replacement of a marked subnet by another marked subnet.The old change region is de�ned as the smallest net containing all activities a�ectedby the change operation. Those parts of the net connecting the change region to itscontext are described as the interface. Thus communication between change-a�ectedand non-a�ected regions is restricted to the interface. Intuitively, the changed networkis obtained by removing the old change region from the network and plugging the newchange region into the interface.13An basic introduction to the Petri Net formalism is given e.g. in [EKR95] p. 14 et sqq.90



3. Related approachesDynamic change correctness with respect to the used formal model splits in three keyissues: Fault prevention means to disallow any changes such that the marked networkcan not reach a terminal (�nal) marking state. Assuming that the initial marking ofthe old and new network both comply with the fault prevention property, a systemreplacement which cancels all instances in progress and restarts everything should main-tain correctness as well. If the system is not restarted, then the consistency of hybridexecuting sequences needs to be assured. A hybrid sequence consists of a pre-changesequence and a post-change sequence which is supposed to continue the work initiatedbefore the change. Hence, each marking state that leads to a valid terminal state in theold network must do so as a pre-change part of a hybrid sequence on the new networkas well. Additionally, all hybrid sequences must be valid execution sequences of the newnetwork.A dynamic change can be either immediate of delayed. In the prior case, any changeoperation takes e�ect on all involved instances immediately as the change region isreplaced and existing tokens representing instances have immediately migrated into anew schematic environment. The proposed solution to delay a change operation ismotivated by increased safety in certain cases. The idea named synthetic cut-over changeis to maintain the old and new change region both at the same time within the processmodel. Already existing tokens in the old change region practically do not take noticeof the change operation whereas new tokens entering the change region will only get intouch with the new change region. The change appears to be immediate for all tokensbut those in the old change region. The following example visualizes a synthetic cut-overchange.Example 22. Suppose a product development process. Part of this process is theconstruction of a component. As depicted on top of Figure 3.8 and named "The oldchange region", the activity "Construction" is followed by component integration andsimultaneously the analysis of upcoming problems. Upon the completion of both activ-ities, an interdisciplinary meeting is held in order to discuss the encountered problems.Notice that the shaded circles indicate the interface of the change region. Let us nowassume that in this scenario the parallel processed activities "Integration" and "Problemanalysis" are changed into a sequential order "Integration", "Problem analysis". In or-der to achieve a delayed change, the old change region is transformed in the new changeregion shown on the bottom of Figure 3.8. It consists of the old change region and thenew sequential procedure whose output interface is connected. This assures that newlygenerated tokens traverse the new schema whereas existing tokens in the old changeregion will not notice the change.
91



3. Related approaches

Interdisciplinary

meeting

Interdisciplinary

meeting

Construction Integration

Construction

Integration

Problem 

analysis

Problem analysis

The new 

change region

Interdisciplinary

meetingConstruction

Problem analysis

Integration

The old 

change region

Figure 3.8.: The old and new change region in the case of a synthetic cut-over changeThe formal distinction between immediate and delayed changes is justi�ed by di�eringchange safety. Change regions can be split up into a number of elementary operations.Depending on the change operation, properties called upsizing and downsizing can beinformally established as follows: If the new change region contains all elements of theold change region (it can "do more" such as the insertion of a new activity), then thechange is called upsizing. In the reverse case the old change region contains all elementsof the new change region (e.g. a delete operation) and the change is downsizing. Ellis etal. prove14 the correctness of any immediate upsizing change. However, only the delayedversion of a downsizing change is always provable correct.3.3.2. Ad-hoc instance changeAd-hoc adaptive work�ow with ADEPT In static work�ow management system,process designers create process models and take responsibility for producing only modelswhose instantiations run and terminate correctly. When alterations are made to themspontaneously by users, correctness and consistence is usually no longer guaranteed.14Compare Ellis C., Keddara, K., Rozenberg, G., "The Modeling of Dynamic Change Within Work�owSystems" 92



3. Related approachesADEPT15 presents a framework that allows a user to perform ad-hoc changes on runninginstances without shifting the responsibility for correctness to him. ADEPTflex byReichert and Dadam [RD98, Rei00] contains a set of change operations applied to processinstances and foots on the designated ADEPT work�ow model.The ADEPT work�ow model holds a number of characteristics which are essential forthe functionality of dynamic structural change methods. Fundamental to the structuraldesign of ADEPT is its concept of symmetrical control structures. It means that tasks arepartitioned into symmetrical blocks with well-de�ned start and end nodes. These blocksare not allowed to overlap but can be nested. Elements of control structure are appliedto whole blocks in the same way as they are applied to primitive tasks. In the followingparagraphs, an overview of ADEPT's control �ow, data �ow, change management andundo capabilities of temporary changes is given.ADEPT's control �ow is represented by a directed structured graph. Available basiccontrol structures are sequence and parallel processing (n-of-n split and join), exclusiveconditional routing (1-of-n split and join) and parallel branching with �nal selection (n-of-n split and 1-of-n join). It does also provide advanced control structures such as loops,failure edges and synchronization edges. Loops allow cyclic structures within the processgraph by inserting a loop edge that connects a unique start node with a unique end nodewithin a block. A loop condition at the end node is used to check whether the loop edgeor the next task is chosen next. A failure edge is a second outgoing edge from an activity
nfailed that points to another activity nrestart that precedes nfailed. This edge is signaledon failure of the activity and resets all activities succeeding nrestart and preceding nfailure.Synchronization edges are introduced in order to enable synchronization of tasks fromdi�erent branches that are processed in parallel.A control �ow is considered correct, if from every reachable state a correct terminalstate can be reached by a number of valid state transitions (safeness) and each node isreachable by a number of valid state transitions from the start node (reachability).Data �ow in ADEPT constitutes data elements, I/O parameters and auxiliary services.Data elements are global elements within a work�ow representing data objects thatare collaboratively read and wrote by tasks. Input and output parameters of tasksreferring to data elements de�ne the data �ow within a work�ow schema. As varioustasks implement di�erent data input and output formats, auxiliary services are meantto provide a common interface to data elements for all tasks. They are individuallyassociated with each task and transform data inputs and outputs accordingly.In order to uphold correctness with regard to the data �ow, all input and output para-meters and auxiliary services have to be available in time. That is, input and auxiliaryservices are required to be ready before execution and output before termination. Glob-ally accessible data elements bear the possibility of data inconsistency if tasks manipu-late data elements concurrently without synchronization. Therefore, tasks of an instance15ADEPT stands for Application Development Based on Encapsulated Premodeled Process Templates93



3. Related approacheswork on individual copies of the data element instead of the original. Upon successfultask termination, the global data element is replaced with the most recent version butnot discarded though. This holds two advantages: First, tasks in parallel branches canwork independently on local data copies. In order to maintain correctness, their updateson termination must be synchronized. Second, in case of a rollback (which is an essentialexceptional scenario within �exible work�ow management as further discussed below)data elements can be reset to their initial state as their history is still available.ADEPTflex represents a set of operations that allows dynamic schema changes on run-ning work�ow instances. Analogous with properties presented for schema change opera-tions, the main focus designing these operations is put on the following three properties:
• Correctness/consistency: The application of a change operation to a work-�ow instance should neither a�ects its structural schematic correctness nor theconsistency of its execution state.
• Adequacy/completeness: Each change operation should be applicable to anykind of correct and consistent work�ow instance. Completeness is met if any kindof structural change can be achieved by the application of a sequence of basicchange operations.
• Minimality: The set of operations is minimum if the removal of any operationviolates the completeness requirement.ADEPTflex consists of the following basic operations:
• Insertion of a task into the process graph
• Deletion of a task from the process graph
• Changing task sequence during run timeThese are used to skip tasks for fast forwarding, to jump to currently inactive parts of theprocess graph, to serialize previously parallel tasks and to rollback and undo temporarychanges. Higher level operations can be achieved by repetition and/or a composition ofthese basic operations. For example an ad-hoc work�ow de�nition can be achieved bystarting with an empty work�ow and applying an insert operation repetitively on it.Change management Problematic scenarios can arise when multiple work�ow in-stances are changed concurrently. Exemplarily a few are mentioned: For instance di�er-ent changes can be made to multiple instances of the same type concurrently. Changescan also be made to an already changed type. Some changes may require secondary ad-ditional changes (concomitant changes) in order to preserve correctness and consistencyof the underlying work�ow model. Finally, there exist changes that last only temporarilyand have to be undone some time after their application.94



3. Related approachesIn order to enable proper handling of such scenarios, each work�ow instance pi maintainsthe following information:1. A process graph Pall representing the current process schema which includes allchanges and state information of pi.2. A process graph Pperm whose graph structure contains only permanent changes �temporary changes as well as state information is left out.3. A change history C which is a chronologically ordered vector of all changes appliedto pi. Each change record consists of the following information:
• The type of a change operation
• The durability of a change (can be either temporary or permanent)
• The initiator of a change
• The start region of the change in order to determine whether and when toundo a change
• Additional concomitant changes to maintain correctness/consistency
• A list of the applied change primitives in order to break down change opera-tions into graph modi�cation primitivesTemporary changes ct are done by �rst checking for correctness and consistency aftertheir application to Pall. If unresolvable problems persist, the user has to resolve excep-tions an other issues manually. The change is performed and it is added to end of thechange list C. Permanent changes require consistency checking for Pall as well as Ppermbefore a change operation cp can be applied to both of them.Undo temporary changes Particular changes can be undone by removing them fromthe graph structure Pall. Part of each change record is the de�nition of a start regionthat describes a set of nodes in the process graph: If each node within the start regionis within a terminal state, the undo function of the temporary change is triggered.Undoing a temporary insert or delete change operation cl works similar to the roll-back/recovery concept of a transaction oriented system16 as visualized in Figure 3.9: Achange list consists of n sequential changes where c1 represents the oldest and cn thelatest change. As undoing cl can cause a state change for a set of nodes (the so-calledbackward region), other changes whose start region overlaps with the backward regionneed to be undone as well. (1) Hence, the oldest change ck (1 ≤ k ≤ l ≤ n) whosestart region interferes with the backward region of cl has to be found. (2) Then bothpermanent and temporary changes are undone in reversed order starting from cn up to

ck. (3) Finally, all permanent changes between ck and cn are redone in forward direction.16Compare e.g. the lecture notes on "Database Systems � winter term 2003", University of Ulm95



3. Related approachesTemporary changes are redone if their start region is not covered by cl's backward regionand correctness and consistency of Pall remains.
c1 c2 ck-1 ck ck+1... ...

1. Find first influenced change

cl-1 cl cl+1... cn-1 cn

2. Traverse and undo all changes 

3. Traverse and redo permanent changes Figure 3.9.: Undoing a change within a change list3.3.3. Integration of schema evolution and ad-hoc instancemodi�cationProcess-aware information system (PAIS) A very recent approach byWeber, Rinderleet al. [WRWR05, RWRW05] named PAIS proposes the integration of the systemsADEPT (see Section 3.3.2 on page 92) and CBRFlow (see Section 3.1.2 on page 75)which were introduced earlier in this thesis. Its goals are to o�er reusability of instance-based ad-hoc changes and to accomplish a derivation of evolutionary schematic changes.ADEPT contributes to this composite project with the abilities of a full-feature work�owmanagement system including modeling, analysis, execution and monitoring capabilities[RD98]. As already mentioned before, ad-hoc change functions are provided by ADEPT.Additionally, it o�ers schema change operations for process types. Its process represen-tation based on symmetrical control structures allows on-the-�y migration of runninginstances while preserving process consistency for most classes of instances (see Rinderleet al. [RRD02, RRD04]). The shortcoming of this system is however that its ad-hocadaptions are not reusable.CBRFlow contributes a case-based reasoning (CBR) approach including all of CBR'scharacteristic features (see Section 3.1). It documents the reason for instance changesand makes them reusable for the future.This joint approach now aims at covering the whole process life cycle with a combinationof both functionalities: Figure 3.10 illustrates how ad-hoc changes and type changes areintegrated with reuse of altered instances in a case base. From a given schema, processinstances are created. As now the user experiences an exception during run time, herequests similar cases from the case base and either retrieves a matching case or adds anew one. Deviations are modeled with change constructs and a documentation on thecase is added which makes the case immediately reusable. The reuse of existing casesis counted and in case a de�ned maximum number (the threshold) is exceeded, processdesigners are triggered with a noti�cation indicating the possible need for a process typechange. In case the process type was updated, existing cases in the case base must be96



3. Related approaches
Updated process 

schema
Process schema

Process Schema
Process Schema
Process Instances

Process Schema
Process Schema

Changed process 

Instances

Process instance change

Case usage threshold 

exceeded

User

Process 

designer

Case 

retrieval/addition

CCBR
Case base

Process type change

Instantiation

Case base

migration

Figure 3.10.: Process life cycle of the integrative PAIS approach (compare [WRWR05]Figure 2)migrated to the new schema. Due to both system's characteristics, correct and consistentad-hoc modi�cation can be assumed along with a memorization of changes and adaptiveprocess types.An extended CBR cycle (compare Figure 3.1 on page 68) is realized by PAIS in thefollowing way: Upon the addition of a new case to the case base, a free textualdescription of the exception is given along with a set of question-answer pairs describingthe exception's reason. A subset of the change operations made available by ADEPTand supplemented with parameters are available to process-creating users to specify theresolving action which is taken by the case. Notice that a retained case refers to aspeci�c process schema version.Case retrieval works in the same way as it did for CBRFlow: A dialog is initiatedwhich consists of a set of questions and answers. The user's answers and additionalparameters specify a matching on cases, which is re�ned by optionally given operationsand a subject. Based on that information, the case base is �ltered and a similaritymeasure similar to the one shown in Example 17 is used to present the best matches to97



3. Related approachesa requesting user.Case reuse is assisted by case retrieval as described above. Change operations o�eredby ADEPT are used to revise the case. However their application requires some ex-perience and is not in any case straightforward, because changes may imply additionalconcomitant changes in order to uphold correctness and consistency. The number ofreuses is counted for each case.Case evaluation as a part of case retainment is a feedback channel describing the useful-ness of an applied case. A task containing a simple evaluation (positive/neutral/negative)and a descriptive text �eld is added at the end of a reused/retained case. This yields aranking of reputation amongst cases and is displayed during retrieval. It helps �ndingthe most successfully used cases in the past.Case revision foots on the evaluation system and is invoked when a case receivesnegative feedback. This triggers process designers to either revise the case or to removeit from the case base.As requirements evolve, exceptions show up more frequently. The derivation of aprocess type change is started when CBRFlow noti�es that certain exception typesare used very frequently. Process designers can react on this situation with a processtype change. The noti�cation is sent out as soon as a certain threshold of reuse fre-quency has been exceeded. However, type change induces a migration of running cases:ADEPT makes a distinction between compliant and not compliant instances. The for-mer designates a class of instances on which the change can be applied. Not compliantchanges can not be changed and the respective cases continue running on the old schema.Compliant cases can be either biased if they contain ad-hoc changes or unbiased if theydo not. Unbiased cases are directly relinked to the new process schema, whereas biasedcases require additional correctness checks.3.3.4. Assessment of usefulnessFlexibility of process models and their instances is the decisive requirement for theruntime engine of Emergent Work�ow if we leave elementary functionality like (RE1 -RE3 with respect to Table 2.4 in Section 2.3.10) aside.The introduced work by Ellis et al. on page 90 considers schema evolution (RE4) andpresents an approach to verify correctness for migrating instances to a new schema(RE7). On the underlying Petri Net formalism, immediate changes are potentially un-safe. That is why Ellis et al. propose to arti�cially delay the transition of runninginstances to the new schema by a construct named synthetic cut-over change. This as-sures for certain types of changes a consistent migration of Petri Nets in the middle ofexecution (RE7). Notice however that if this is put into practice and applied more oftento a schema (which is surely the case for Emergent Work�ow), it grows more and more"dead" branches. As a matter of fact, for iterative changes clean-up steps that cut the98



3. Related approachesold change regions o� are mandatory in order to maintain a meaningful process model.Next, ADEPT is presented on page 92 as a fully functional process management frame-work. Notice that only the ad-hoc change functionality of this framework is consideredhere [RD98](RE6). Fundamental for all aspects of ADEPT's properties are its sym-metrical control structures which cause a highly rigid block structure. This is why itsschematic elements are roughly outlined �rst. Among others, powerful control structuressuch as loops and failure edges are included in ADEPT which increase its expressivepower, but induce also a more di�cult handling. For instance the loop construct createsthe necessity for an advanced change management and methods for undoing temporarychanges, which complicate its handling. The most distinguishing feature however is atthe same time the biggest bene�t of ADEPT over other approaches: The application ofits set of change operations does not shift the responsibility for correctness and consis-tency checking to a user or process designer, Instead, ADEPT is able to a assure bothfor most cases on-the-�y (RE7).The last presented �exibility approach on page 96 is PAIS by Weber, Rinderle et al. Itsdecisive quality is that it integrates many features from two approaches which are alreadypowerful by themselves: ADEPT mentioned above and CBRFlow. It o�ers the full rangeof functional features o�ered by both systems plus some synergetic e�ects. Schemaevolution (RE5) with automatic consistency assurance for instance migration (RE7)and ad-hoc changability (RE6) are integrated in the CBR cycle. Conversational case-based reasoning allows the reuse of cases (RE5) and annotates them with descriptions(RE9). On top of that, the CBR cycle is extended with case evaluation functionalitywhich improves the accuracy of individual cases.

99



4. Architectural proposal"Grasp and reuse"Emergent Work�ow is aiming at a way to grasp the current procedures and processesand to reuse them in a way which is most simple, fast and �exible enough to be acceptedby users. From a functional point of view, no single approach presented in Chapter 3does cover all aspired aspects of Emergent Work�ow. In order to receive the focusedgoals of Emergent Work�ow, relevant ideas of di�erent approaches have to be bundledand integrated into one system.Not only technical issues are decisive factors, but in the �rst place users representingthe human factor are. It may be emphasized at this point that the major motivation forEmergent Work�ow is to overcome acceptance de�ciencies that conventional work�owmanagement systems are confronted with.It appears recommendable to propose a staged introduction of an Emergent Work�owSystem for a number of reasons: First, the high complexity of a system implementing allkinds of desired functions and related technologies would be hard to implement, manage,administer and use for all involved groups � developers, process designers, administratorsand users. Second, a step-by-step introduction is more likely to be accepted by userswhich is a crucial success factor for Emergent Work�ow in particular. Finally the emer-gent approach implies that small-scale responsibility for process creation and planning isshifted to users. These are however demanding tasks that require knowledge, predictivethinking and not at last experience. Introduction phases allow users to slowly adjustto new procedures and give them the chance to get acquainted with new tools and tomaster their new tasks before they become mission-critical.Creative activities are the most valuable and at the same time the most critical andfragile part of knowledge intensive work. Therefore a major amount of care is suggestedwhen any kind of change is applied to them as their reaction to change is most sen-sitive. The introduction of information technology such as Emergent Work�ow has amassive impact on the way creative processes function. That is why it is proposed thatthose components of Emergent Work�ow that introduce the most profound changes areintegrated at last.The main objective of the architectural �rst stage is to gain user acceptance. It focusesrather on non-functional issues. Work�ow technology is used at this stage in a way in-visible to the user and grasps information. However, functional improvements and reuse
100



4. Architectural proposalaspects are postponed to the next stage. The second stage brings functional changesinto play: It introduces a work�ow management system enriched with components for�exibility enhancement used for routine process parts only. Exception handling is herepioneering Emergent Work�ow's ability to reuse past experience. The �nal third stageshifts controls and initiative to users. This o�ers a high potential to reuse past processfragments and the work�ow becomes "emergent", but at the same time becomes alsomore complex to handle.4.1. Stage 1 � Basic functionalityThe goal of the introduction of basic functionality in the �rst stage is to obtain useracceptance for a minimum set of functions in the �rst place. A critical user shoulddecrease rejective opinions by observing that the new system "actually does not harm"or even "helps a little". The idea is to keep as much familiarity of the user with tools heis used to instead of throwing him into a radically newly designed system environment.Automatizing some minor routine work should help decrease aversion.
User

Appl Appl Appl

GUI

Appl

Process creation 

engine

Organizational 

model

Interaction protocol

Process

 designer

Analysis

Figure 4.1.: Proposal stage 1Figure 4.1 shows the arrangement of some basic work�ow components introduced by the�rst stage. A Graphical User Interface (GUI) is presented to work�ow users which inte-grates their applications into one common interface. The GUI creates a rough interactionprotocol and forwards it to the process creation engine. Supported by an organizationalmodel, it helps process designers to analyze the interactions of users.Notice that at this stage, no formal work�ow management is introduced regarding theprocess perspective (see Figure 2.14 on page 54). Work�ow components have only pas-sive, "observing" functionality for analysis and prepare next steps. That implies that101



4. Architectural proposalexisting work patterns are not harmed or changed. Only behind the curtains � invisiblefor the user � changes and analysis take place in the form of process creation. Thefollowing paragraphs give more details on the function of components at this stage.Integrated GUI A common interface that integrates most applications and tools is acornerstone for building an Emergent Work�ow. Functionally, this GUI must be ableto create and output a protocol of user interactions. This includes basic informationsuch as which application have been started or stopped. Additionally, it o�ers a genericinterface to client applications who can plug into the common architecture. First, anextensible application interface helps to �ll the user interaction stream with details onintra-application interaction. Combined, an interaction protocols tells what applicationsa user chose (e.g. started billing software) and what actions were performed inside theapplications (e.g. chose customer order overview, edited the latest order, sent out bills).Second, the application interface facilitates the invocation of applications with parame-ters specifying a context, e.g. a customer ID. For certain roles, user de�ned variablesdetermining a stateful GUI can automatically set application parameters, e.g. a partnumber set once is a parameter for all applications. Moreover, di�erent groups of usersemploy di�erent applications. Therefore, this interface must be tailored individually foreach user type, e.g. by using authentication mechanisms. This suggests the creation of abasic organizational model: If users and their roles are known, then the interface can becomposed of modular role-dependent elements such that a user receives an individuallycomposed desktop. Finally, an abstraction from the operating system of a GUI is desir-able in terms of look and feel. If the look and feel of an interface is easily con�gurableon each given platform, then future hard- and software changes will hardly a�ect usersany more.Organizational model With respect to the work�ow perspectives (Figure 2.14 on page54) the organizational perspective is the only perspective of a work�ow managementsystem which is visible for users at this stage. It is represented by an organizationalmodel (see Figure 2.12 on page 2.12 for an example) that is used to abstract roles andgroups from individuals. At this stage, the focus lies rather on role/user translationthan on hierarchical relations between roles as it is mainly used for role-resolution bythe GUI and the process creation engine.Process creation engine A basic version of the process creation engine collects in-teraction protocols from users and o�ers basic data mining functionality. That includesan instance-based visualization of interaction protocols and elementary �ltering options.Process designers rely on it to get an overview of the structure and types of individ-ual users' activities. If privacy is an issue, anonymization of captured information byrole abstraction helps to protect privacy and reduces user rejection and disapproval. Itdoes neither focus on cross-role or departmental process relation nor does it present itsoutputs as feedback to users. 102



4. Architectural proposalMetamodel As neither a real work�ow management system nor a formal process repre-sentation is present, only a very limited work�ow metamodel is needed at this stage andcomprises two parts: First, the organizational model formalizes roughly the corporatehierarchy. Role abstraction by itself does not capture formal collaborative dependenciesin the form of project or work groups. Second, the basic process creation engine is usedby process designers to get an idea of the structure of each individual's tasks. Hence, asimple representation of process instances being fragments of a more complete processis necessary. That includes simple activities, basic control structures and no explicitlyde�ned granularity level.4.2. Stage 2 � Advanced functionalityThe second stage provides advanced functionality and introduces a more complete work-�ow support and a reuse aspect while trying to maintaining simplicity. After users havegotten used to a new interface, now it is the goal to introduce functionality that createsa positive user experience like "This saves really time!" or "I had to type this only once!"At this stage, the desired result is the retainment of current work for later reuse withoutintermediate steps involving third parties such as process designers.A work�ow management system is introduced which is meant to support routine work,but not creative work. As it is known that the acceptance of a regular work�ow manage-ment system would be too low due to its in�exibility and rigidity, two things are done:Support is restricted to rather static small-scale routine processes and deviations fromroutine are handled by a case base.During the �rst stage, process designer were able to observe and analyze activities ofusers and to identify recurring routine tasks. Now designers create simple process modelrepresentations of these processes and o�er them to users in the integration GUI. Ifdeviations from common procedures occur, users can document the situation, applyinstance-level changes and put the case into a case base for later reuse.As Figure 4.2 shows, additional components extend the system introduced in stage 1.These new components focus on the support of routine work. Any kind of work (includingcreative work) is being captured by an interaction protocol, but only parts identi�edby process designers as routine work are further considered. In fact, by analyzing theinteraction protocols, process designers choose static recurring processes, create a processmodel (not shown in the picture) and add it as a default case to the case base. Usersperforming routine work can (1) retrieve the default case and (2) enact it on the runtimeengine. If one encounters an exceptional situation, it can be documented and ad-hocchanges inside the system are applied. After termination, (3) the case is retained andcan be retrieved for later reuse. Documentation makes use of the dictionary by usingexisting or new keywords to describe the stored case. This description helps to �ndcases of a certain type during retrieval. Notice that the organizational model is here a
103



4. Architectural proposal

Dictionary

Appl Appl Appl

GUI

Appl

Process creation 

engine

Organizational model

Interaction protocol

Process

 designer

Analysis

Runtime 

engine

Ad-hoc 

changes

Case base

1. Case 

retrieval

3. Case 

retainment

2. Case

Enactment

Case addition

Routine work Creative work

User

Figure 4.2.: Proposal stage 2component commonly used by all other components � connecting edges are left out inFigure 4.2 for better readability.Case base Initially, process designers populate the case base with regular cases of dif-ferent types. As only routine work is put into cases, deviations from cases are usuallycaused by exceptional situation which have to be indicated explicitly by users. When en-tering a new case, the creator must provide a description characterizing the case. A casedescription answers for instance the following questions: When happened what type ofexception and what is the compensation action? Was the exception compensated insideor outside the system? That information allows to classify types of exceptions. Com-pensation of exceptions can be taken care of inside the system by the ad-hoc adaptionabilities of the runtime engine.As cases inside the case base must be structured according to their type of exception,the description of a case does not only comprise free text, but also keywords. Thesekeywords are de�ned in the dictionary attached to the case base. It represents a simpleontology of keywords that describes the attributes of all exceptions. Process designers104



4. Architectural proposalare supposed to initiate the dictionary, but users should be able to extend the dictionarywith new terminology as they describe their case. This makes sure that user experienceis immediately available for further reuse.The goal is to populate a case base around established process types with numerous casesrepresenting solutions for common exception types that were experienced in the past.When new exceptions show up, the case base is searched using descriptive keywordsfrom the dictionary. That way, the organization, description and retrieval are highlyrelated with each other. This bears the advantage that users actually are motivated toadd accurate documentation to their processes. The better a case is described, the morelikely it will be for a user to �nd and reuse a case later on.Example 23. A minimum framework for a dictionary with key informations describingan exception scenario could be given as follows: Who (role, person, group) performedwhat task (type and instance) when (point of time, duration) and what exception (type:functional/nonfunctional, description) happened and was handled using what compen-sation (ad-hoc change operations inside the system/outside the system). Alternatively,the characteristics of exceptions as given in Section 3.1.2 on page 79 by Hwang et al.gives hints on relevant data types.Ad-hoc instance adaption Ad-hoc adaption functionality on instances during run-time allows to compensate or resolve occurring exceptions inside the system. Therefore,individual users must be allowed to apply simple structural and state changes on run-ning instances representing cases from the case base. A relatively small set of changeconstructs is made available to them in order to perform changes that are necessaryfor exception handling. They include the insertion or deletion of a task in sequence orparallel. It is recommended that the set of change operations o�ered to users is mini-mal (not more operations available than needed), but not complete (not every allowedinstance structure can be reached from any given structure) with regard to the givenwork�ow metamodel. As the default cases created by process designers might containadvanced control structures, the complexity of a complete set of change operations wouldvery likely overwhelm common users. For example conditional forks and joins requirethe formulation of boolean expressions. Such tasks may introduce a level of complexitywhich is too high for unfamiliar users. This decision tries to realize treatment of ex-ceptions inside the system by means that are straightforward enough to be applied byunexperienced users.Metamodel In stage 2, a fully functional work�ow management system is introduced.Therefore the organizational model from stage 1 is extended with metamodel constructsbelonging to the process perspective. Process types are de�ned by process designersincluding structural elements to de�ne the control �ow between activities. In order toreduce complexity, no or a very simple data model (compare the information perspective)may be used. An instance of each process model resides as a regular case in the case105



4. Architectural proposalbase and makes the process type accessible to users. Each instance put into the casebase must be supplemented with a description consisting of dictionary-related keywordsand some free text �elds.Basic change operations (insert, delete, both either sequential or parallel) on processinstances are required to enable exception handling. As already mentioned in the pre-vious paragraph, ad-hoc change operations available to users do not cover the completemetamodel used by process designers to create process types.4.3. Stage 3 � Full functionalityThe goal of the third stage is to provide support for all types of tasks. Here the key ideasof Emergent Work�ow are made available for use with �exible tasks. After the user getsacquainted with the functionality, his experience should express something like "I don'tknow how we did our work before we had this system!". This means to create a systemthat formalizes processes relatively detailed without formalizing and complicating theview on them. A user performing creative work will typically receive a roughly structuredbigger task assignment. He requires individual choice and freedom on the way the taskis split up into single steps and accomplished. A supportive system o�ers, but does notforce him to take a look at past executions of similar tasks and eventually adapt andreuse one of them. This stage tries to accomplish that by permanently monitoring theinteractions a user. As he proceeds and requests support, the system may �nd similarpatterns in previously recorded actions and proposes to reuse them. The user can theneither agree to copy his previous procedures or decline and continue on his own.It can be seen from Figure 4.3 that the previous stage's functionality is included andextended. The case-based reasoning cycle is still integrated and the numbering of itssteps are pre�xed with "C". What has been added is the ability for schema evolution ofprocess types in the runtime engine. The dictionary has been extracted from the casebase and forms together with the organizational model a component general knowledge.It is commonly used by all other components. The newly created cycle pre�xed by an"F" represents the �ow of fragments supporting the reuse of creative work patterns.First, the interaction protocol enters the runtime engine (F1) and is consolidated withserver-side events (which are not shown in Figure 4.3) into an audit trail. Notice that thetime management component as speci�ed in Section 2.3.5 is considered an integral partof the runtime engine and is not shown in Figure 4.3 for better readability either. Theprocess creation engine reads the audit trail (F2) and outputs process fragments. A usercan signal in the interaction protocol that he completed a subtask. If, as a consequence,the work�ow fragment represents a completed subtask, then the fragment is storedto a fragment base (F3b). Otherwise, an incomplete fragment is sent to the processmatching engine (F3a) which compares it on-the-�y with stored existing fragments (F4).If su�ciently good matches are found, these are presented to the user who can selectfrom the proposed fragments (F5) and reuse them by reenactment (F6). Apart from106



4. Architectural proposalthat, process designers analyze the fragment base and the case base. On the one hand,they perform schema evolution on the process types in the case base if necessary andtake care of the migration of running instances. On the other hand, they attempt tocompose an overall process out of the process types, cases and stored fragments.
User

Appl Appl Appl

GUI

Appl

Process creation 

engine

Process

 designer

Analysis &

Composition

Runtime 

engine

Ad-hoc 

changes

Case base

C1. Case 

retrieval

F1. Interaction

protocol

F2. Audit trail

Schema 

evolution

Fragment 

base

F3b. 

Fragment

storage

Process 

matching engine

F3a. Fragment

comparison

F5. Fragment

selection

General knowledge

Organizational model Dictionary

F6. Fragment 

enactment

C3. Case 

retainment

C2. Case 

enactment

F4. Fragment

 retrieval

Creative workRoutine work

Process type changes &

 instance migrationFigure 4.3.: Proposal stage 3Schema evolution Schema evolution on the case base resembles the double-loop learn-ing approach of Wargitsch et al. (compare Figure 3.4 on page 78): Work�ow users par-ticipate in the incremental design of non-�exible, slowly evolving processes: They cancreate cases for exceptions and annotate their changes with keywords and descriptions.Users perform changes on a small scale basis as they modify only the process parts theywork on. Process designers rely on these when they adapt routine process types to new107



4. Architectural proposalrequirements. In fact, just as in the example approaches discussed in Section 3.1, processdesigners observe the growing case base. When exceptions get more frequent and show astrong bias towards a certain exception type, they can revise the existing process modelsaccording to the changed requirements and update the regular case of a certain processtype. According to the chosen metamodel, running instances can be either migratedautomatically or need to be handled manually. Notice that on this stage, the part of thesystem handling routine work shows strong functional similarities to the PAIS approachintroduced in the related work Section 3.3.3 on page 96.Process matching engine Captured interaction protocols is now not only an analysistool for process designers, but is also used as a comparison and reuse tool for work-�ow users. A partial in-progress process instance needs to be matched with archivedinstances for criteria given by the user. If the user signals the invocation, a partial audittrail is translated into a process fragment. Due to the �exible nature of creative work,exact matches are highly unlikely. Therefore, the process matching engine needs to im-plement approximate search algorithms that compare syntax and structural similarity.Furthermore, an adjustable �ltering threshold populates and limits the resulting list ofmatches. From there, the user checks manually on the results for semantically similarmatches and eventually chooses one of them.Analysis & Process composition A big danger at this stage is that individual userstake control of the process at a small scale level and a general direction and overviewpasses out of focus. This is where analysis and process composition becomes a vitalpart of the Emergent Work�ow Process � they allow to gather an overview of what isgoing on in order to make big scale adjustments where needed. Furthermore, user-basedchanges need to be consolidated as to avoid collision of incompatible changes.Practically, analysis includes as a major step the creation of current process types fol-lowed by their composition. The analysis and derivation of process models from instance-based fragments o�ers post-hoc insights in characteristics of the real small-scale process:Where show instance of �exible processes commonalities? How do �exible processesevolve over time? Thereby it serves as a foundation for e.g. cross-departmental syn-chronization. Composing an overall process of derived process models yields a "bigpicture" that shows de�ciencies which span over individual users' and groups' horizon.As each user participates with a di�erent view on the process, hierarchical compositionof fragments requires the consideration of each fragments granularity level. However, as�exible process fragments are likely to be very diverse, a common formal process typecan also be very complex. It can yield a composition that looks like totally di�erentinstances were stitched together in parallel which does not help very much. In that case,a separate composition of instance fragment returns a view on the overall process of onesingle individual instance.
108



4. Architectural proposalMetamodel The introduction further functionality at this stage requires an extensionof the process metamodel. First, process types in the case base can now be changedschematically. That induces a set of change operations on process types. As the processtype evolves now, its schema must be versioned in order to be clearly referrable. Asad-hoc alteration of cases is still allowed, instance changes apply to a certain schemaversion only. This leads to an ordered list of ad-hoc and schematic changes associatedwith and applied on each instantiated case from the case base. As already mentionedbefore, type change of running instances is not a trivial problem, therefore the use of asafe process metamodel as proposed by Weber, Rinderle et al. [WRWR05] is suggested.Incomplete process fragments are created during run time and stored for later reenact-ment. They are based on a process model that allows the instantiation of incompletemodels. For each activity, parameters changing during enactment (compare Section2.4.1 pages 57 et sqq.) have to be reset to an initial state. The composition of fragmentsleads to compound instances which hold the same properties as their elements. Foroverlapping and especially hierarchical compositions, a measure for the relative level ofdetailedness of a fragment is introduced. It introduces levels of granularity accordingto hierarchical levels in the organizational model. As all events caused by user activi-ties are captured, one can assume that each individual's interaction protocol presents amaximum level of detail. Therefore the position of a role determines the granularity ofits recorded process.

109



5. DiscussionAs many aspects of Emergent Work�ow and its requirements were already discussed inChapters 2 and 3, the following discussion will con�ne itself to issues which may arisefrom the integration of approaches presented in the architectural proposal, Chapter 4.Functional issues of integrationNamely, Case-based reasoning (CBR), ad-hoc adaption of instances, schema evolution,process mining and process composition were introduced throughout this thesis. Thefollowing Table 5.1 couples approaches pairwise and assigns each pair a number. Re-ferring to that enumeration, the following paragraphs discuss shortly the problems ofcoupling the two approaches, if they have not been discussed yet and are relevant.Ad-hocadaption Schemaevolution Processmining CompositionCBR (1) (2) (3) (4)Ad-hoc adaption (5) (6) (7)Schema evolution (8) (9)Process mining (10)Table 5.1.: Composition of ideas(1) CBR and Ad-hoc adaption As it has become evident in Section 3.1 on case-basedreasoning, ad-hoc adaption can be made an integral component of CBR: Caserevision implies the adaption of a retrieved case before its enactment. Ad-hocadaption as a revision tool can actually extend the allowed revision phase to thecomplete enactment phase. That makes the CBR cycle more �exible and allowsthe ad-hoc adjustment of cases to any upcoming situation. However, the allowanceof changed cases can also lead to a problem of classi�cation: If a complete set ofchange operations is provided, theoretically one case can be modi�ed in such a waythat at the end it resembles more to another case than the originating case. Thisarises the question whether during case retainment, it should be stored as case ofthe �rst or the second case type. One can either choose to keep the case systemrigid or �exible. The latter allows to change a case type during run time whereasthe former keeps the case type static as soon as a case has been instantiated. A�exible case management must allow the re-classi�cation of a case at any given time110



5. Discussionbefore retainment. Static case management requires the establishment of commoncriteria for cases as within case types, structural correspondence of instances cannot be guaranteed. Case classi�cation needs to be based on parameters that remainunchanged by any ad-hoc adaption.(2) CBR and Schema evolution The integration of CBR and schema evolution hasbeen issued in the introduction of PAIS in Section 3.3.3.(3) CBR and Process mining Integration of CBR and process mining is twofold: Ifcases are enacted and the events of execution are used for process mining, nothingspecial happens. That is not surprising, because after all, cases are during en-actment regular process instances with a supplementary categorization. Withoutfurther engagement, it is however problematic to add instance-based mining out-puts to a case base. The reason therefore lies in the fact that common audit trailsdo not indicate by default the association of a running instance with a case type.Actually case creation or retrieval happens before process enactment. Therefore,no documented activity inside a process instance indicates a case type.There exist two possible resolutions for that matter: The �rst possibility is tomerge case attributes of each instance into the audit trail. That makes it easilypossible to identify the case a�liation of each single event. The alternative to thisvery verbose and redundant marking is to embrace case selection or retrieval for anew process instance as explicitly mentioned �rst task to the instance. That way,the runtime engine can execute the virtual "assignment" task and one single eventidentifying the case shows up in the audit trail.(4) CBR and Composition Issues caused by the integration of CBR and fragmentcomposition are strongly dependent on the way a case base is used: If it is usedto model exceptions around a regular case which corresponds to the underlyingprocess de�nition, then cases make no di�erence to a post-hoc composition ofarchived instances. See for that case (7) Ad-hoc adaption and Composition.Either way, composition has to deal with instances that deviate from the givenprocess model in a rather unstructured way. The other application of case baseis for processes that have no regular case but a couple of equivalent cases. Here,composition may be only able to compose cases of the same type as each caserepresents a distinctive sub-type of a process de�nition. Cross-case compositionwould result in syntactically inhomogeneous and semantically incorrect overallprocesses.(5) Ad-hoc adaption and Schema evolution The roles and cooperative functions ofad-hoc instance adaption and schema evolution have been issued in Chapter 2,Sections 2.3.7 and 2.4.(6) Ad-hoc adaption and Process mining Commonly, process mining does not recog-nize whether an event in the log was caused by a regular or by an exceptionalactivity. Consequently, changed instances containing adaptions that were caused111



5. Discussionby exceptional circumstances are rated equivalent to those instances with a reg-ular schema and course of state transitions. Without further consideration, thiswould lead to the creation of wrong process types. In order to resolve this sit-uation, a di�erentiation of regular and changed/exceptional events is required toenable process mining to recognize the status of events. Having this knowledge,policies that handle event types with di�erent weights can be put into practice.The desired outcome is a process model whose structure is in�uenced by the levelof importance of its contained events. Notice that this idea is comparable to min-ing algorithms that use stochastic models and frequency tables to �lter out noisefrom the audit trail. Here, varying types of events have to be recognized, classi�edand are integrated into a preliminary process model. Finally, only those eventsexceeding a minimum weight threshold are integrated into the process model.(7) Ad-hoc adaption and Composition Ad-hoc changes are applied to fragments ofthe overall process by each user individually. When composing fragments, thesenumerous views are aggregated into the overall process. Let now an exception occurat a certain point in the process. Multiple users with di�erent perspectives on theprocess will encounter the exception. The composition of fragments contributedby them will be overlapping at the exceptional point. The question here is whetherall of them interpret the situation in the same way. If they do, then all of themwill apply comparable ad-hoc adaptions that resolve the situation from their pointof view. In that case, fragment composition should work �awlessly. If however,each user develops a di�erent understanding of the situation, then people will takecompensating actions that do match semantically. As a result, composition offragments will either not yield a meaningful result or the di�erence are so strongthat fragments collide already syntactically.In order to enable successful combination of ad-hoc adaption and the compositionof fragments, a minimum level of synchronization between users is required toallow a common understanding and adaption of such situations. Then overlappingfragments match a common problem and their composition delivers an overallunderstanding.(8) Schema evolution and Process mining As the schema of a process de�nition evolves,process instances being enacted on di�erent schema versions look di�erent. As ithas already been broadly discussed in Section 3.3.1, the migration of already run-ning instances from an old to a new schema is a complicated issue. These kinds ofinstances also complicate the outcomes of process mining. The entries in an audittrail created by a migrated instance refer half to the old schema and half to thenew schema. Consequently mining algorithms applied on events from migratedinstances deliver hybrid process fragments and types. These kinds of outputs arenot useful for purposes such as composition or reenactment.Therefore, the runtime engine needs to indicate instance migration either by mark-ing a�ected instances or creating a system event in the audit trail. This helps a
112



5. Discussionprocess mining application to recognize events from migrated instances and toignore them.(9) Schema evolution and composition What has been observed on intra-fragmentscale in the previous paragraph (8) holds for the overall process when schemaevolution is coupled with fragment composition. If process types are changed atany time, an overall process that started before the change and ended after it,contains potentially three types of archived instances: Those according to theold schema, hybrid instances containing both schemata and instances enacted onthe new schema. Thus, one can consider it an overall hybrid process. From a use-oriented point of view, this kind of composition is highly interesting as it documentsin detail how well the overall process handled the migration. Di�culties thatshowed up either before, after or during the schematic transition become evidentfrom the composition.The critical momentum can be seen in a situation where no hybrid instance existsbut all instances either terminated before or started after the process type evolved.If fundamental di�erence were introduced by the type change, it might become hardto compose syntactically and semantically di�ering instances. Eventually, processdesigners need to insert an additional transiting instance which connect the gapbetween old and new instances.(10) Process Mining and Composition Processes are composed vertically and hori-zontally: Vertical composition of fragments represents the alignment of di�erentviews and hierarchies related to a common part of the overall process. Horizon-tal integration relates causally dependent process parts either sequentially or inparallel.As already mentioned in Section 4.3, vertical composition of process fragmentsis based on an explicit speci�cation of their granularity (compare also Section2.4). As multiple fragments yield multiple overlapping views on common processparts, hierarchical correlations have to be identi�ed. Moreover, composition canonly be accomplished with activities containing a su�cient amount of descriptivecharacteristics in order to detect equivalences. For horizontal composition, thosematching activities represent the interfaces between the individual views. However,the more detailed activities on fragment is, the less likely it is to match them withother interfaces. Therefore, one needs to identify attributes which are instance-speci�c, but not view-speci�c, such as temporal constraints.

113



5. DiscussionExample 24. In a quality gate-driven process, all engineers have to reach a certaindevelopment stage until a deadline (the quality gate), which was speci�cally given for thisproject (the overall instance). The activity "Delivery of results for the current qualitygate" may be named di�erently for engineers in di�erent disciplines and have di�eringrelated objects, roles, applications etc. � these attributes are view-speci�c. In the audittrail, the common interface events can be identi�ed by for example the timestampsof their execution. They are all alike for each discipline, but instance-speci�c as thedeadline was given for this project only.

114



6. Conclusion6.1. Summary and conclusionIn the industry and many other �elds of work, organizations have aligned their businessaccording to processes. Work�ow management systems o�ering technological support forprocesses bear in principle many advantages. However until today, these gains could notbe widely realized as the traditional business process cycle tends to be too in�exible formany applications. As a result, knowledge and process awareness gets lost because userscircumvent the work�ow management system and resolve issues outside the system.Emergent work�ow has the vision to o�er individual users immediate support withoutthe need for pre-modeled processes. By capturing fragments of the real process, it aspiresto gain user acceptance, improve reuse of work pattern and increase process transparency.The contribution of this thesis to Emergent Work�ow is a detailed requirements analy-sis, an introduction of related work, a conceptual proposal and a discussion of possibleobstacles. The identi�cation and speci�cation of use cases, components, interfaces anda suitable process metamodel represents about half of this thesis. It identi�es numerousfunctional and nonfunctional aspects in a structured manner. Moreover, selected relatedwork is considered and assessed according to the outcomes of the preceding requirementsanalysis. The related work part surveys work on case-based reasoning, process miningand �exible work�ow management and restricts its view on fundamentals and someinteresting advanced work. The conceptual draft for the architecture of an EmergentWork�ow Management System proposes a successive introduction of features with in-creasing functionality and complexity. As the proposal integrates ideas collected fromvarious related work, a �nal discussion re�ects on upcoming obstacles with integrationand further practical aspects of the proposal.As a conclusion on this work, we observe that for most of the requirements consideredisolated from each other, practical approaches and partial solutions exist. From our pointof view, the true challenge for Emergent Work�ow is the integration of manifold ideasinto one functional and usable system. Given the set of requirements, one is tempted tofocus technical and functional aspects only and to forget that a resulting highly complexwork�ow management system does not solve the problems it was meant to overcome.Therefore, we would formulate as a maxim for further work on Emergent Work�ow:"Try to accomplish as much as possible with as few as possible."
115



6. Conclusion6.2. Omitted and future workAs this thesis we settled on a conceptual level, working on it resulted in covering a verybroad range of involved topics. We have to say that the related work part mentionedherein represents a very incomplete and punctual view on the �eld of relevant relatedwork. As a result, many topics with high relevance were either not mentioned at all ornot treated adequately with respect to their importance. The following list mentionssome topics worth of further investigation:
• Access methods for client applications on various levels of interactivity. Theyenable work�ow users to make use of collections of fragments, process types, casesand terminology.
• Process designer applications used for fragment analysis and composition.
• Design of a dictionary ontology and organizational model with respect totheir creation, maintenance and usability.
• Work�ow security that manages user allowance to access, modify, create andextend any types of data.
• Transaction support of business processes including suitable constructs andexecution models.
• Inter-work�ow coordination to allow an integration of the Emergent Work�owapproach with other types of work�ow management systems.As this thesis has an introducing character on Emergent Work�ow at best, future workon this topic is manifold. Based on the given conceptual architectural proposal, a moreconcrete architectural speci�cation has to follow. That starts with conceptual decisionsbased on the given requirements: From the available approaches, those may be chosenwhich show best functional and integrative abilities. Then more speci�c questions re-garding algorithms, protocols, ontologies and storage issues have to be answered. As bynow, the �nal step would be marked by a prototypical implementation.

116



A. Supplementary Listings and FiguresA.1. CODAWA.1.1. Process data model1 <?xml version="1.0"?><!DOCTYPE WorkflowSchema []>2 <WSID> WS2</WSID>3 <WSName> Market-Pull Workflow </WSName>4 <WSType> ProductDevelopment</WSType>5 <WSDesc> A product development process for a new chip </WSDesc>6 <TaskList> (Project_Selection, Product_Definition,... ) </TaskList>7 <ComponentWorkflowsUnModified> WS21 </ComponentWorkflowsUnModified>8 <ComponentWorkflowsModified> Null </ComponentWorkflowsModified>9 <WorkflowInstances> (WFIns1 WFIns22 WFIns23) </WorkflowInstances>10 <WFFormalModel>11 <PNModel>12 PN-WS213 </PNModel>14 </WFFormalModel>15 <Tasks>16 <Task>17 <TaskType> Business </TaskType>18 <TaskName> Project_Selection</TaskName>19 <TaskDesc> Selects a list of new product ideas to work on </TaskDesc>20 <TaskID> 1 </TaskID>21 <TaskDesign>22 <Parameters>23 <Param> ?project_list </Param>24 <Param> ?total_budget</Param>25 <Param> ?resource_list</Param>26 </Parameters>27 <PreConditions>28 <Predicate> (available ?project_list) </Predicate>29 <Predicate> (available ?resource_list) </Predicate>30 </PreConditions>31 <PostEffects> 117



A. Supplementary Listings and Figures32 <Effect> (add (new_proj_list ?new_list)) </Effect>33 <Effect> (add (new_budget ?new_budget)) </Effect>34 </PostEffects>35 <SubWF> WS25 - A subprocess36 </SubWF>37 </TaskDesign>38 <TaskFormal>39 <FSP> PS = ( init -> sort_by_cost -> review -> vote -> select </FSP>40 </TaskFormal>41 <TaskDefn>42 <Agent> General_Manager </Agent>43 <Agent> Marketing </Agent>44 <Agent> Engg_Design </Agent>45 <Agent> Manfg </Agent>46 <Agent> QA </Agent>47 <Agent>Purchasing</Agent>48 <Agent> Customer_Service</Agent>49 <Procedure>50 <ProcedureName> Select_Project </ProcedureName>51 <ProcedureSource> HandBook </ProcedureSource>52 <Implementation_type> Manual_Team_Execution </Implementation_type>53 </Procedure>54 <Inputs>55 <DataItem> budget </DataItem>56 <DataItem> resources </DataItem>57 <DataItem> projects </DataItem>58 </Inputs>59 <Outputs>60 <DataItem> selected_projects </DataItem>61 <DataItem> remaining_budget </DataItem>62 </Outputs>63 </TaskDefn>64 </Task>

118



A. Supplementary Listings and FiguresA.1.2. Instance level work�ow schema
WFInstance WFInstanceID

WFSchemaID

WFDataInputs

WFDataOutput

WFDateStarted

WFDateCompleted

PerformanceMetrics

EventsList

SysAdminComments

NameVal

NameVal

TotalTime

AgentTime

Event EventID

DuringTask

EventType

EventCause

EventRepair

Figure A.1.: CODAW instance schema (compare [MZ03] Figure 7)

119



Bibliography[Aal02] W.M.P. van der Aalst. Business Process Management: A personal view,2002.[ADH+03] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Marustera,G. Schimm, and A. J. M. M. Weijters. Work�ow mining: A survey ofissues and approaches. Data & Knowledge Engineering, Volume 47, Issue2 , November 2003, pages 237�267, November 2003.[AH02] W.M.P. van der Aalst and K.M. van Hee. Work�ow Management: Models,Methods, and Systems. MIT press, Cambridge, MA, 2002.[AHKB02] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, andA. P. Barros. Work�ow Patterns. QUT Technical report, FIT-TR-2002-02, Queensland University of Technology, Brisbane, 2002. (See alsohttp://www.tm.tue.nl/it/research/patterns.).[AJ00] W.M.P. van der Aalst and S. Jablonski. Dealing with Work�ow Change:Identi�cation of Issues and Solutions. International Journal of ComputerSystems, Science, and Engineering, 15(5):267�276, 2000.[AP94] Agnar Aamodt and Enric Plaza. Case-based reasoning: foundational issues,methodological variations, and system approaches. AI Communications,7(1):39�59, 1994.[AWM03] W.M.P. van der Aalst, A. Weijters, and L. Maruster. Work�ow mining:Discovering process models from event logs, 2003.[Bus01] Christoph Bussler. The Role of B2B Protocols in Inter-Enterprise ProcessExecution. Lecture Notes in Computer Science, 2193:16�34, 2001.[CCPP96] Fabio Casati, Stefano Ceri, Barbara Pernici, and Guiseppe Pozzi. Work�owEvolution. In ER '96: Proceedings of the 15th International Conference onConceptual Modeling, pages 438�455, London, UK, 1996. Springer-Verlag.[DA04] Boudewijn F. van Dongen and Wil M. P. van der Aalst. Multi-phase ProcessMining: Building Instance Graphs. In ER, pages 362�376, 2004.[DFAB98] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-Computer Interaction 2nd Edition. Prentice Hall, 1998.120



Bibliography[DS90] T. H. Davenport and J. E. Short. The new industrial engineering: Informa-tion technology and business process redesign. Sloan Management Review,pages 11�27, Summer 1990.[EKR95] Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg. Dynamic ChangeWithin Work�ow Systems. In COCS '95: Proceedings of conference onOrganizational computing systems, pages 10�21, New York, NY, USA, 1995.ACM Press.[GAHL01] P. Grefen, K. Aberer, Y. Ho�ner, and H. Ludwig. CrossFlow: Cross-organizational Work�ow Management in Dynamic Virtual Enterprises.International Journal of Computer Systems, Science, and Engineering,15(5):277�290, 2001.[HHJHS97] J. Hagemeyer, T. Herrmann, K. Just-Hahn, and R. Striemer. Flexibilitätbei Work�ow-Management-Systemen. In Usability Engineering: Integra-tion von Mensch-Computer-Interaktionen und Software-Entwicklung, Fach-tagung Software-Ergonomie 1997, Dresden, 3.-6.3.97, Stuttgart, pages 179� 190. Teubner, 1997.[HHT99] San-Yih Hwang, Sun-Fa Ho, and Jian Tang. Mining Exception Instances toFacilitate Work�ow Exception Handling. In DASFAA, pages 45�52, 1999.[Hol95] David Hollingsworth. Work�ow Management Coalition Speci�cation. TheWork�ow Reference Model, January 1995. Document Status - Issue 1.1.[HSW97] Thomas Herrmann, August-Wilhelm Scheer, and Herbert Weber.Verbesserung von Geschäftsprozessen mit �exiblen Work�ow-Management-Systemen 1. Physica-Verlag, 1997.[JB96] Stefan Jablonski and Christoph Bussler. Work�ow Management � Mod-eling Concepts, Architecture and Implementation. International ThomsonComputer Press, 1996.[KR93] James E. Kurose and Keith W. Ross. Computer Networking. A Top-DownApproach Featuring the Internet, volume Second Edition. Addison-Wesley,2993.[LS97] K. Lei and M. Singh. A Comparison of Work�ow Metamodels, 1997.[MAW03] A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Work-�ow Mining: Current Status and Future Directions. In R. Meersman et al.,editor, CoopIS/DOA/ODBASE 2003, volume LNCS 2888, pages 389 � 406.Springer-Verlag Berlin Heidelberg, 2003.[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity �ood-ing: A versatile graph matching algorithm and its application to schemamatching. In ICDE, pages 117�128, 2002.121



Bibliography[MGR02] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A VersatileGraph Matching Algorithm and its Application to Schema Matching. InProc. 18th ICDE, San Jose, CA, February 2002.[Müh96] Michael zur Mühlen. Der Lösungsbeitrag von Metamodellen und Kontroll-�uÿprimitiven beim Vergleich von Work�owmanagementsystemen. Master'sthesis, Westfälische Wilhelms-Universität Münster, September 1996.[MZ03] Therani Madhusudan and J. Leon Zhao. A Case-Based Framework forWork�ow Model Management. Springer-Verlag Berlin Heidelberg, 2003.[MZM04] Therani Madhusudan, J. Leon Zhao, and Byron Marshall. A case-basedreasoning framework for work�ow model management. Data Knowl. Eng.,50(1):87�115, 2004.[RD98] Manfred Reichert and Peter Dadam. Adept�ex-supporting dynamic changesof work�ows without losing control. J. Intell. Inf. Syst., 10(2):93�129, 1998.[Rei00] Manfred Reichert. Dynamische Ablaufänderungen in Work�ow-Management-Systemen. PhD thesis, Universität Ulm, 2000.[RRD02] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. E�zienteVerträglichkeitsprüfung und automatische Migration von Work�ow-Instanzen bei der Evolution von Work�ow-Schemata. Inform., Forsch. En-twickl., 17(4):177�197, 2002.[RRD04] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness criteriafor dynamic changes in work�ow systems - a survey. Data Knowl. Eng.,50(1):9�34, 2004.[RWRW05] S. Rinderle, B. Weber, M. Reichert, and W. Wild. Integrating ProcessLearning and Process Evolution - A Semantics Based Approach. submittedfor publication., 2005.[Shn98] Ben Shneiderman. Designing the User Interface 3rd Edition. Addison-Wesley, 1998.[SM95] D. M. Strong and S. M. Miller. Exceptions and exception handling incomputerized information processes. ACM Transactions on InformationSystems, 13(2):206�233, 1995.[Ver04] Verein Deutscher Ingenieure, editor. VDI 2206. Entwicklungsmethodik fürmechatronische Systeme - Design methodologies for mechatronic systems.VDI-Gesellschaft Entwicklung Konstruktion Vertrieb, June 2004.[Wor99] Work�ow Management Coalition. Terminology & Glossary, 1999. DocumentNumber WFMC-TC-1011.
122



Bibliography[WRWR05] Barbara Weber, Stefanie Rinderle, Werner Wild, and Manfred Reichert.CCBR-Driven Business Process Evolution. In Proc. 6th Int'l Conf. onCase-Based Reasoning (ICCBR'05) (accepted for publication), Chicago, IL,August 2005.[WWB04] B. Weber, W. Werner, and R. Breu. CCBR�enabled adaptive work�ow man-agement. In Proc. European Conf. on Case-Based Reasoning (ECCBR'04),LNCS 3155, Madrid, 2004.[WWT97] Christoph Wargitsch, Thorsten Wewers, and Felix Theisinger. Workbrain:Merging Organizational Memory and Work�ow Management Systems. InProceedings on 21st Annual German Conference on AI '97, 1997.[WWT98] Christoph Wargitsch, Thorsten Wewers, and Felix Theisinger. AnOrganizational-Memory-Based Approach for an Evolutionary Work�owManagement System - Concepts and Implementation. In HICSS '98: Pro-ceedings of the Thirty-First Annual Hawaii International Conference onSystem Sciences-Volume 1, page 174. IEEE Computer Society, 1998.

123





Erklärung
Name: Florian BerteleMatrikelnummer: 463675Ich erkläre, dass ich diese Diplomarbeit selbst verfasst und keine anderen als die angegebe-nen Quellen und Hilfsmittel verwendet habe.
Ulm, den 29. April 2005

125


