
Discovering Reference Models by Mining
Process Variants Using a Heuristic Approach

Chen Li1 ?, Manfred Reichert2, and Andreas Wombacher1

1 Computer Science Department, University of Twente, The Netherlands
lic@cs.utwente.nl; a.wombacher@utwente.nl

2 Institute of Databases and Information Systems, Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract. Recently, a new generation of adaptive Process-Aware Infor-
mation Systems (PAISs) has emerged, which enables structural process
changes during runtime. Such flexibility, in turn, leads to a large number
of process variants derived from the same model, but differing in struc-
ture. Generally, such variants are expensive to configure and maintain.
This paper provides a heuristic search algorithm which fosters learning
from past process changes by mining process variants. The algorithm
discovers a reference model based on which the need for future process
configuration and adaptation can be reduced. It additionally provides
the flexibility to control the process evolution procedure, i.e., we can
control to what degree the discovered reference model differs from the
original one. As benefit, we cannot only control the effort for updating
the reference model, but also gain the flexibility to perform only the
most important adaptations of the current reference model. Our mining
algorithm is implemented and evaluated by a simulation using more than
7000 process models. Simulation results indicate strong performance and
scalability of our algorithm even when facing large-sized process models.

1 Introduction

In today’s dynamic business world, success of an enterprise increasingly depends
on its ability to react to changes in its environment in a quick, flexible and
cost-effective way. Generally, process adaptations are not only needed for con-
figuration purpose at build time, but also become necessary for single process
instances during runtime to deal with exceptional situations and changing needs
[11, 17]. In response to these needs adaptive process management technology has
emerged [17]. It allows to configure and adapt process models at different levels.
This, in turn, results in large collections of process variants created from the
same process model, but slightly differing from each other in their structure. So
far, only few approaches exist, which utilize the information about these variants
and the corresponding process adaptations [4].
? This work was done in the MinAdept project, which has been supported by the

Netherlands Organization for Scientific Research under contract number 612.066.512.

2

Fig. 1 describes the goal of this paper. We aim at learning from past process
changes by ”merging” process variants into one generic process model, which
covers these variants best. By adopting this generic model as new reference
process model within the Process-aware Information System (PAIS), need for
future process adaptations and thus cost for change will decrease. Based on the
two assumptions that (1) process models are well-formed (i.e., block-structured
like in WS-BPEL) and (2) all activities in a process model have unique labels, this
paper deals with the following fundamental research question: Given a reference
model and a collection of process variants configured from it, how to derive a
new reference process model by performing a sequence of change operations on
the original one, such that the average distance between the new reference model
and the process variants becomes minimal?

…

Original reference process model S
customization & adaptation

Process variant S1 Process variant S2 Process variant Sn
mining & learning

Discovered reference process model S’ Control
differences

Fig. 1. Discovering a new reference model by learning from past process configurations

The distance between the reference process model and a process variant is
measured by the number of high-level change operations (e.g., to insert, delete
or move activities [11]) needed to transform the reference model into the variant.
Clearly, the shorter the distance is, the less the efforts needed for process adapta-
tion are. Basically, we obtain a new reference model by performing a sequence of
change operations on the original one. In this context, we provide users the flex-
ibility to control the distance between old reference model and newly discovered
one, i.e., to choose how many change operations shall be applied. Clearly, the
most relevant changes (which significantly reduce the average distance) should
be considered first and the less important ones last. If users decide to ignore less
relevant changes in order to reduce the efforts for updating the reference model,
overall performance of our algorithm with respect to the described research goal
is not influenced too much. Such flexibility to control the difference between the
original and the discovered model is a significant improvement when compared
to our previous work [5, 9].

Section 2 gives background information for understanding this paper. Section
3 introduces our heuristic algorithm and provides an overview on how it can be
used for mining process variants. We describe two important aspects of our

3

heuristics algorithm (i.e., fitness function and search tree) in Sections 4 and 5.
To evaluate its performance, we conduct a simulation in Section 6. Section 7
discusses related work and Section 8 concludes with a summary.

2 Backgrounds

Process Model . Let P denote the set of all sound process models. A partic-
ular process model S = (N, E, . . .) ∈ P is defined as Well-structured Activity
Net3[11]. N constitutes the set of process activities and E the set of control edges
(i.e., precedence relations) linking them. To limit the scope, we assume Activity
Nets to be block-structured (like BPEL). Examples are depicted in Fig. 2.
Process change . A process change is accomplished by applying a sequence of
change operations to the process model S over time [11]. Such change operations
modify the initial process model by altering the set of activities and their order
relations. Thus, each application of a change operation results in a new process
model. We define process change and process variants as follows:

Definition 1 (Process Change and Process Variant). Let P denote the
set of possible process models and C be the set of possible process changes. Let
S, S′ ∈ P be two process models, let ∆ ∈ C be a process change expressed in
terms of a high-level change operation, and let σ = 〈∆1,∆2, . . .∆n〉 ∈ C∗ be a
sequence of process changes performed on initial model S. Then:

– S[∆〉S′ iff ∆ is applicable to S and S′ is the (sound) process model resulting
from application of ∆ to S.

– S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ = Sn+1, and Si[∆i〉Si+1

for i ∈ {1, . . . n}. We denote S′ as variant of S.

Examples of high-level change operations include insert activity, delete ac-
tivity, and move activity as implemented in the ADEPT change framework [11].
While insert and delete modify the set of activities in the process model, move
changes activity positions and thus the order relations in a process model. For
example, operation move(S, A,B,C) shifts activity A from its current position
within process model S to the position after activity B and before activity C.
Operation delete(S, A), in turn, deletes activity A from process model S. Issues
concerning the correct use of these operations, their generalizations, and formal
pre-/post-conditions are described in [11]. Though the depicted change opera-
tions are discussed in relation to our ADEPT approach, they are generic in the
sense that they can be easily applied in connection with other process meta mod-
els as well [17]; e.g., life-cycle inheritance known from Petri Nets [15]. We refer
to ADEPT since it covers by far most high-level change patterns and change
support features [17], and offers a fully implemented process engine.

3 A formal definition of a Well-structured Activity Net contains more than only node
set N and edge set E. We omit other components since they are not relevant in the
given context [18].

4

Definition 2 (Bias and Distance). Let S, S′ ∈ P be two process models.
Distance d(S,S′) between S and S′ corresponds to the minimal number of high-
level change operations needed to transform S into S′; i.e., we define d(S,S′) :=
min{|σ| | σ ∈ C∗ ∧ S[σ〉S′}. Furthermore, a sequence of change operations σ
with S[σ〉S′ and |σ| = d(S,S′) is denoted as bias B(S,S′) between S and S′.

The distance between S and S′ is the minimal number of high-level change
operations needed for transforming S into S′. The corresponding sequence of
change operations is denoted as bias B(S,S′) between S and S′.4 Usually, such
distance measures the complexity for model transformation (i.e., configuration).
As example take Fig. 2. Here, distance between model S and variant S1 is 4, i.e.,
we minimally need to perform 4 changes to transform S into S′ [7]. In general,
determining bias and distance between two process models has complexity at
NP −hard level [7]. We consider high-level change operations instead of change
primitives (i.e., elementary changes like adding or removing nodes / edges) to
measure distance between process models. This allows us to guarantee soundness
of process models and provides a more meaningful measure for distance [7, 17].
Trace . A trace t on process model S = (N, E, . . .) ∈ P denotes a valid and
complete execution sequence t ≡< a1, a2, . . . , ak > of activity ai ∈ N according
to the control flow set out by S. All traces S can produce are summarized in
trace set TS . t(a ≺ b) is denoted as precedence relation between activities a and
b in trace t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b.
Order Matrix . One key feature of any change framework is to maintain the
structure of the unchanged parts of a process model [11]. To incorporate this in
our approach, rather than only looking at direct predecessor-successor relation
between activities (i.e., control edges), we consider the transitive control depen-
dencies for each activity pair; i.e., for given process model S = (N,E, . . .) ∈ P,
we examine for every pair of activities ai, aj ∈ N , ai 6= aj their transitive order
relation. Logically, we determine order relations by considering all traces the
process model can produce. Results are aggregated in an order matrix A|N |×|N |,
which considers four types of control relations (cf. Def. 3):

Definition 3 (Order matrix). Let S = (N,E, . . .) ∈ P be a process model
with N = {a1, a2, . . . , an}. Let further TS denote the set of all traces producible
on S. Then: Matrix A|N |×|N | is called order matrix of S with Aij representing
the order relation between activities ai,aj ∈ N , i 6= j iff:

– Aij = ’1’ iff [∀t ∈ TS with ai, aj ∈ t ⇒ t(ai ≺ aj)]. If for all traces containing
activities ai and aj, ai always appears BEFORE aj, we denote Aij as ’1’,
i.e., ai always precedes aj in the flow of control.

– Aij = ’0’ iff [∀t ∈ TS with ai, aj ∈ t ⇒ t(aj ≺ ai)]. If for all traces containing
activities ai and aj, ai always appears AFTER aj, we denote Aij as a ’0’,
i.e. ai always succeeds aj in the flow of control.

4 Generally, it is possible to have more than one minimal set of change operations to
transform S into S′, i.e., given process models S and S′ their bias does not need to
be unique. A detailed discussion of this issue can be found in [15, 7].

5

– Aij = ’*’ iff [∃t1 ∈ TS , with ai, aj ∈ t1 ∧ t1(ai ≺ aj)] ∧ [∃t2 ∈ TS , with
ai, aj ∈ t2∧ t2(aj ≺ ai)]. If there exists at least one trace in which ai appears
before aj and another trace in which ai appears after aj, we denote Aij as
’*’, i.e. ai and aj are contained in different parallel branches.

– Aij = ’-’ iff [¬∃t ∈ TS : ai ∈ t ∧ aj ∈ t]. If there is no trace containing
both activity ai and aj, we denote Aij as ’-’, i.e. ai and aj are contained in
different branches of a conditional branching.

Given a process model S = (N, E, . . .) ∈ P, the complexity to compute its
order matrix A|N |×|N | is O(2|N |2) [7]. Regarding our example from Fig. 2, the
order matrix of each process variant Si is presented on the top of Fig. 4.5 Variants
Si contain four kinds of control connectors: AND-Split, AND-Join, XOR-Split,
and XOR-join. The depicted order matrices represent all possible order relations.
As example consider S4. Activities H and I never appear in same trace since they
are contained in different branches of an XOR block. Therefore, we assign ’-’ to
matrix element AHI for S4. If certain conditions are met, the order matrix can
uniquely represent the process model. Analyzing its order matrix (cf. Def. 3) is
then sufficient in order to analyze the process model [7].

It is also possible to handle loop structures based on an extension of order
matrices, i.e., we need to introduce two additional order relations to cope with
loop structures in process models [7]. However, since activities within a loop
structure can run an arbitrarily number of times, this complicates the definition
of order matrix in comparison to Def. 3. In this paper, we use process models
without loop structures to illustrate our algorithm. It will become clear in Section
4 that our algorithm can easily be extended to also handle process models with
loop structures by extending Def. 3.

3 Overview of our Heuristic Search Algorithm

Running Example. An example is given in Fig. 2. Out of original reference
model S, six different process variants Si ∈ P (i = 1, 2, . . . 6) are configured.
These variants do not only differ in structure, but also in their activity sets. For
example, activity X appears in 5 of the 6 variants (except S2), while Z only ap-
pears in S5. The 6 variants are further weighted based on the number of process
instances created from them; e.g., 25% of all instances were executed according
to variant S1, while 20% ran on S2. We can also compute the distance (cf. Def.
2) between S and each variant Si. For example, when comparing S with S1

we obtain distance 4 (cf. Fig. 2); i.e., we need to apply 4 high-level change op-
erations [move(S, H,I,D), move(S, I,J, endF low), move(S, J,B, endF low) and
insert(S, X,E,B)] to transform S into S1. Based on weight wi of each variant Si,
we can compute average weighted distance between reference model S and its
variants. As distances between S and Si we obtain 4 for i = 1, . . . , 6 (cf. Fig.
2). When considering variant weights, as average weighted distance, we obtain
4×0.25+4×0.2+4×0.15+4×0.1+4×0.2+4×0.1 = 4.0. This means we need
to perform on average 4.0 change operations to configure a process variant (and
5 Due to lack of space, we only depict order matrices for activities H,I,J,X,Y and Z.

6

Process configuration

original
reference model

S1 S2
S3 S4
S5 S6

Average weighted distance = 4 change / instance

G
E B

I J

A
F

C D
H

E Y B J

G
I H

C Z D

A

F
X

G

E B
A

F
I

X J

DC
H

G
H

C D

E B
I
J

A

F
X

G
Y H

C D

B

I

E J
A

F
X

Distance: d(S,S1)= 4
Distance: d(S,S3)= 4

d(S,S5)= 4 d(S,S6)= 4

d(S,S4)= 4
d(S,S2)= 4

insert(S, X, E, B), insert(S, Y, startFlow, B), move (S, J, B, endFlow), move (S, H, I, C)B(S,S6)=insert(S, Y, {A,F}, B), insert(S, X, E, Y), insert(X, Z, C, D), move (S, J, B, endFlow) B(S,S5)=

move(S, J, {A,F}, B), insert(S, X, E, J), Insert (S, Y, startFlow, I), move(S, I, D, H)B(S,S3)=
insert(S, Y, E, B, con), move(S, C, startFlow, I), move (S, J, B, endFlow), move (S, I, D, H)B(S,S2)=
move(S, H, startFlow, I), move (S, I, B, endFlow), insert(S, X, E, B), move (S, J, B, endFlow, con)B(S,S4)=

D

A
F

I

E B
Y

J

G
C H

E
B

Y
J

G
I

H C D

A

F
X

AND-Split AND-Join XOR-Split XOR-Join

S :

Weight: w1 = 25%

Weight: w3 = 15%
Weight: w5 = 20%

Weight: w2 = 20%

Weight: w4 = 10%
Weight: w6 = 10%

move (S, H, I, D), move(S, I, J, endFlow), move (S, J, B, endFlow), insert(S, X, E, B) Bies: B(S,S1)=
Bies:

Bies: Bies:

Bies:

Bies:

Distance: Distance:

Distance:

Distance:

Fig. 2. Illustrating example

related instance respectively) out of S. Generally, average weighted distance be-
tween a reference model and its process variants represents how ”close” they are.
The goal of our mining algorithm is to discover a reference model for a collection
of (weighted) process variants with minimal average weighted distance.

Heuristic Search for Mining Process Variants. As measuring distance
between two models hasNP−hard complexity (cf. Def. 2), our research question
(i.e., finding a reference model with minimal average weighted distance to the
variants), is a NP − hard problem as well. When encountering real-life cases,
finding ”the optimum” would be either too time-consuming or not feasible. In
this paper, we therefore present a heuristic search algorithm for mining variants.

Heuristic algorithms are widely used in various fields, e.g., artificial intelli-
gence [10] and data mining [14]. Although they do not aim at finding the ”real
optimum” (i.e., it is neither possible to theoretically prove that discovered re-
sults are optimal nor can we say how close they are to the optimum), they are

7

No
constraint

Snc : Search result
without constraint

Si :Variants d=1d = 2d = 3 S: Original
reference
model

Discovered Reference ModelOriginal Reference model Process variants Intermediate search result Search steps
Sc: Search result
with constraint

Force 1:
close to variants

Force 2:
close to reference

Fig. 3. Our heuristic search approach

widely used in practice. Particularly, they can nicely balance goodness of the
discovered solution and time needed for finding it [10].

Fig. 3 illustrates how heuristic algorithms can be applied for the mining of
process variants. Here we represent each process variant Si as single node (white
node). The goal for variant mining is then to find the ”center” of these nodes
(bull’s eye Snc), which has minimal average distance to them. In addition, we
want to take original reference model S (solid node) into account, such that we
can control the difference between the newly discovered reference model and the
original one. Basically, this requires us to balance two forces: one is to bring
the newly discovered reference model closer to the variants; the other one is to
”move” the discovered model not too far away from S. Process designers should
obtain the flexibility to discover a model (e.g., Sc in Fig. 3), which is closer to
the variants on the one hand, but still within a limited distance to the original
model on the other hand.

Our heuristic algorithm works as follows: First, we use original reference
model S as starting point. As Step 2, we search for all neighboring models with
distance 1 to the currently considered reference process model. If we are able
to find a model Sc with lower average weighted distance to the variants, we
replace S by Sc. We repeat Step 2 until we either cannot find a better model
or the maximally allowed distance between original and new reference model is
reached.

For any heuristic search algorithm, two aspects are important: the heuristic
measure (cf. Section 4) and the algorithm (Section 5) that uses heuristics to
search the state space.

4 Fitness Function of our Heuristic Search Algorithm

Any fitness function of a heuristic search algorithm should be quickly com-
putable. Average weighted distance itself cannot be used as fitness function,
since complexity for computing it is NP − hard. In the following, we introduce
a fitness function computable in polynomial time, to approximately measure
”closeness” between a candidate model and the collection of variants.

8

4.1 Activity Coverage

For a candidate process model Sc = (Nc, Ec, . . .) ∈ P, we first measure to
what degree its activity set Nc covers the activities that occur in the considered
collection of variants. We denote this measure as activity coverage AC(Sc) of Sc.
Before we can compute it, we first need to determine activity frequency g(aj)
with which each activity aj appears within the collection of variants. Let Si ∈ P
i = 1, . . . , n be a collection of variants with weights wi and activity sets Ni. For
each aj ∈

⋃
Ni, we obtain g(aj) =

∑
Si:aj∈Ni

wi. Table 1 shows the frequency
of each activity contained in any of the variants in our running example; e.g., X
is present in 80% of the variants (i.e., in S1, S3, S4, S5, and S6), while Z only
occurs in 20% of the cases (i.e., in S5).

Activity A B C D E F G H I J X Y Z

g(aj) 1 1 1 1 1 1 1 1 1 1 0.8 0.65 0.2
Table 1. Activity frequency of each activity within the given variant collection

Let M =
⋃n

i=1 Ni be the set of activities which are present in at least one
variant. Given activity frequency g(aj) of each aj ∈ M , we can compute activity
coverage AC(Sc) of candidate model Sc as follows:

AC(Sc) =

∑
aj∈Nc

g(aj)∑
aj∈M g(aj)

(1)

The value range of AC(Sc) is [0, 1]. Let us take original reference model S
as candidate model. It contains activities A, B, C, D, E, F, G, H, I, and J,
but does not contain X, Y and Z. Therefore, its activity coverage AC(S) is 0.858.

4.2 Structure Fitting

Though AC(Sc) measures how representative the activity set Nc of a candidate
model Sc is with respect to a given variant collection, it does not say anything
about the structure of the candidate model. We therefore introduce structure
fitting SF (Sc), which measures, to what degree a candidate model Sc structurally
fits to the variant collection. We first introduce aggregated order matrix and
coexistence matrix to adequately represent the variants.

Aggregated Order Matrix. For a given collection of process variants, first,
we compute the order matrix of each process variant (cf. Def. 3). Regarding our
running example from Fig. 2, we need to compute six order matrices (see to
of Fig. 4). Note that we only show a partial view on the order matrices here
(activities H, I, J, X, Y and Z) due to space limitations. As the order relation
between two activities might be not the same in all order matrices, this analysis
does not result in a fixed relation, but provides a distribution for the four types
of order relations (cf. Def. 3). Regarding our example, in 65% of all cases H
succeeds I (as in S2, S3, S4 and S6), in 25% of all cases H precedes I (as in S1),
and in 10% of all cases H and I are contained in different branches of an XOR

9

0 1

* -

‘0’ : successor
‘1’ : predecessor
‘*’ : AND-block
‘-’ : XOR-block

Order matrices

Aggregated
order matrix

V

S 1 :25% S 2 :20% S 3 :15% S 4 :10% S 5 :20% S 6 :10%

V H I = (0.65, 0.25, 0, 0.10)
‘0’ : 65%
‘1’ : 25%
‘*’ : 0%
‘-’ : 10%

Fig. 4. Aggregated order matrix based on process variants

block (as in S4) (cf. Fig. 4). Generally, for a collection of process variants we
can define the order relation between activities a and b as 4-dimensional vector
Vab = (v0

ab, v
1
ab, v

∗
ab, v

−
ab). Each field then corresponds to the frequency of the

respective relation type (’0’, ’1’, ’*’ or ’-’) as specified in Def. 3. For our example
from Fig. 2, for instance, we obtain VHI = (0.65, 0.25, 0, 0.1) (cf. Fig. 4). Fig. 4
shows aggregated order matrix V for the process variants from Fig. 2.

Coexistence Matrix. Generally, the order relations computed by an aggre-
gated order matrix may not be equally important; e.g., relationship VHI between
H and I (cf. Fig. 4) would be more important than relation VHZ, since H and
I appear together in all six process variants while H and Z only show up to-
gether in variant S5 (cf. Fig. 2). We therefore define Coexistence Matrix CE
in order to represent the importance of the different order relations occurring
within an aggregated order matrix V . Let Si (i = 1 . . . n) be a collection of

Fig. 5. Coexistence Matrix

10

process variants with activity sets Ni and weight wi. The Coexistence Matrix
of these process variants is then defined as 2-dimensional matrix CEm×m with
m = |⋃ Ni|. Each matrix element CEjk corresponds to the relative frequency
with which activities aj and ak appear together within the given collection of
variants. Formally: ∀aj , ak ∈

⋃
Ni, aj 6= ak : CEjk =

∑
Si:aj∈Ni∧ak∈Ni

wi. Table
5 shows the coexistence matrix for our running example (partial view).

Structure Fitting SF (Sc) of Candidate Model Sc. Since we can repre-
sent candidate process model Sc by its corresponding order matrix Ac (cf. Def.
3), we determine structure fitting SF (Sc) between Sc and the variants by mea-
suring how similar order matrix Ac and aggregated order matrix V (representing
the variants) are. We can evaluate Sc by measuring the order relations between
every pair of activities in Ac and V . When considering reference model S as
candidate process model Sc (i.e., Sc = S), for example, we can build an aggre-
gated order matrix V c purely based on Sc, and obtain V c

HI = (1, 0, 0, 0); i.e., H
always succeeds I. Now, we can compare VHI = (0.65, 0.25, 0, 0.1) (representing
the variants) and V c

HI (representing the candidate model).
We use Euclidean metrics f(α, β) to measure closeness between vectors α =

(x1, x2, ..., xn) and β = (y1, y2, ..., yn): f(α, β) = α·β
|α|×|β| =

∑n
i=1 xiyi√∑n

i=1 x2
i×
√∑n

i=1 y2
i

.

f(α, β) ∈ [0, 1] computes the cosine value of the angle θ between vectors α and
β in Euclidean space. The higher f(α, β) is, the more α and β match in their
directions. Regarding our example we obtain f(VHI, V c

HI) = 0.848. Based on
f(α, β), which measures similarity between the order relations in V (representing
the variants) and in V c (representing candidate model), and Coexistence matrix
CE, which measures importance of the order relations, we can compute structure
fitting SF (Sc) of candidate model Sc as follows:

SF (Sc) =

∑n
j=1

∑n
k=1,k 6=j [f(Vajak

, V c
ajak

)·CEajak
]

n(n− 1)
(2)

n = |Nc| corresponds to the number of activities in candidate model Sc. For
every pair of activities aj , ak ∈ Nc, j 6= k, we compute similarity of corresponding
order relations (as captured by V and Vc) by means of f(Vajak

, V c
ajak

), and the
importance of these order relations by CEajak

. Structure fitting SF (Sc) ∈ [0, 1]
of candidate model Sc then equals the average of the similarities multiplied by
the importance of every order relation. For our example from Fig. 2, structure
fitting SF (S) of original reference model S is 0.749.

4.3 Fitness Function

So far, we have described the two measurements activity coverage AC(Sc) and
structure fitting SF (Sc) to evaluate a candidate model Sc. Based on them, we
can compute fitness Fit(Sc) of Sc : Fit(Sc) = AC(Sc)× SF (Sc).

As AC(Sc) ∈ [0, 1] and SF (Sc) ∈ [0, 1], value range of Fit(Sc) is [0,1] as
well. Fitness value Fit(Sc) indicates how ”close” candidate model Sc is to the
given collection of variants. The higher Fit(Sc) is, the closer Sc is to the variants
and the less configuration efforts are needed. Regarding our example from Fig.

11

2, fitness value Fit(S) of the original reference process model S corresponds to
Fit(S) = AC(S)× SF (S) = 0.858× 0.749 = 0.643.

5 Constructing the Search Tree

5.1 The Search Tree

Let us revisit Fig. 3, which gives a general overview of our heuristic search
approach. Starting with the current candidate model Sc, in each iteration we
search for its direct ”neighbors” (i.e., process models which have distance 1 to
Sc) trying to find a better candidate model S′c with higher fitness value. Generally
for a given process model Sc, we can construct a neighbor model by applying
ONE insert, delete, or move operation to Sc. All activities aj ∈

⋃
Ni, which

appear at least in one variant, are candidate activities for change. Obviously,
an insert operation adds a new activity aj /∈ Nc to Sc, while the other two
operations delete or move an activity aj already present in Sc (i.e., aj ∈ Nc).

Generally, numerous process models may result by changing one particular
activity aj on Sc. Note that the positions where we can insert (aj /∈ Nc) or move
(aj ∈ Nc) activity aj can be numerous. Section 5.2 provides details on how to
find all process models resulting from the change of one particular activity aj

on Sc. First of all, we assume that we have already identified these neighbor
models, including the one with highest fitness value (denoted as the best kid
Sj

kid of Sc when changing aj). Fig. 6 illustrates our search tree (see [8] for more
details). Our search algorithm starts with setting the original reference model
S as the initial state, i.e., Sc = S (cf. Fig. 6). We further define AS as active
activity set, which contains all activities that might be subject to change. At the
beginning, AS = {aj |aj ∈

⋃n
i=1 Ni} contains all activities that appear in at least

one variant Si. For each activity aj ∈ AS, we determine the corresponding best
kid Sj

kid of Sc. If Sj
kid has higher fitness value than Sc, we mark it; otherwise, we

remove aj from AS (cf. Fig. 6). Afterwards, we choose the model with highest

SsibSBkidSAkid …

A B C YZ

Best kid when changing A

A B Z

…

Best kid when changing Z Best kid when changing YBest kid when changing B Best sibling of all best kids

B

Best kid is better than parentBest kid is NOT better than parent
Terminating condition: No kid is better than its parent

Start / End

Original reference model S

Search result
SZkid SYkid

Fig. 6. Constructing the search tree

12

fitness value Sj∗
kid among all best kids Sj

kid, and denote this model as best sibling
Ssib. We then set Ssib as the first intermediate search result and replace Sc by
Ssib for further search. We also remove aj∗ from AS since it has been already
considered.

The described search method goes on iteratively, until termination condition
is met, i.e., we either cannot find a better model or the allowed search distance
is reached. The final search result Ssib corresponds to our discovered reference
model S′ (the node marked by a bull’s eye and circle in Fig. 6).

5.2 Options for Changing One Particular Activity

Section 5.1 has shown how to construct a search tree by comparing the best kids
Sj

kid. This section discusses how to find such best kid Sj
kid, i.e., how to find all

”neighbors” of candidate model Sc by performing one change operation on a
particular activity aj . Consequently, Sj

kid is the one with highest fitness value
among all considered models. Regarding a particular activity aj , we consider
three types of basic change operations: delete, move and insert activity. The
neighbor model resulting through deletion of activity aj ∈ Nc can be easily de-
termined by removing aj from the process model and the corresponding order
matrix [7]; furthermore, movement of an activity can be simulated by its deletion
and subsequent re-insertion at the desired position. Thus, the basic challenge in
finding neighbors of a candidate model Sc is to apply one activity insertion such
that block structuring and soundness of the resulting model can be guaranteed.
Obviously, the positions where we can (correctly) insert aj into Sc are our sub-
jects of interest. Fig. 7 provides an example. Given process model Sc, we would
like to find all process models that may result when inserting activity X into Sc.
We apply the following two steps to ”simulate” the insertion of an activity.

Step 1 (Block-enumeration): First, we enumerate all possible blocks the
candidate model Sc contains. A block can be an atomic activity, a self-contained
part of the process model, or the process model itself. Let Sc be a process model
with activity set Nc = {a1, . . . , an} and let further Ac be the order matrix of
Sc. Two activities ai and aj can form a block if and only if [∀ak ∈ Nc \ {ai, aj} :
Aik = Ajk] holds (i.e., iff they have exactly same order relations to the remaining
activities). Consider our example from Fig. 7a. Here C and D can form a block
{C, D} since they have same order relations to remaining activities G, H, I and
J. In our context, we consider each block as set rather than as process model,
since its structure is evident in Sc. As extension, two blocks Bj and Bk can merge
into a bigger one iff [(aα, aβ , aγ) ∈ Bj ×Bk× (N \Bj

⋃
Bk) : Aαγ = Aβγ] holds;

i.e., two blocks can merge into a bigger block iff all activities aα ∈ Bj , aβ ∈ Bk

show same order relations to the remaining activities outside the two blocks. For
example, block {C, D} and block {G} show same order relations in respect to
remaining activities H, I and J; therefore they can form a bigger block {C, D,
J}. Fig. 7a shows all blocks contained in Sc (see [8] for a detailed algorithm).

Step 2 (Cluster Inserted Activity with One Block): Based on the
enumerated blocks, we describe where we can (correctly) insert a particular
activity aj in Sc. Assume that we want to insert X in Sc (cf. Fig. 7b). To ensure

13

a) b) Step 1: Enumerate blocks

G
I J

C D
H {C, D}, {J, H}{C, D, G}{I, C, D, G}, {C, D, G, H}

Blocks containing n activitiesn = 1n = 2n = 3n = 4n = 5n = 6
{I}, {G}, {C}, {D}, {J}, {H}
{I, C, D, G, J}, {C, D, G, J, H}{I, C, D, G, J, H}

Blocks Enumerate blocksSc: a process model Cluster X with block {C, D} by τ= “0” Sc’: one possible resulting model after inserting activity X in ScC D G H I JCDGHIJ
*** * 00000 00 0 00 0 0

1 10 11 11 11 11 1 1X 1
X

* 01 1
*
0
0
1

0 0
1
1τ= “0” Copy of block {C,D}

C D G H I JCDGHIJ
1 1 11111 1111 1 10 00000 00 0 00 0 0

*** * Same order relations
Ac: Order matrix of Sc AS’: Order matrix of Sc’

Step 2: Clustering

G
I J

C D
H

X

56 potential
neighborsCluster X with block {I, C, D, G, J, H} by τ= “1” Cluster X with block {G} by τ= “*”

XG
I

C D HJ

G
I J HX

C D

G
I J

C D
HX Cluster X with block {J, H} by τ= “-”
Some example neighboring models by inserting X into Scc)

Fig. 7. Finding the neighboring models by inserting X into process model S

the block structure of the resulting model, we ”cluster” X with an enumerated
block, i.e., we replace one of the previously determined blocks B by a bigger
block B′ that contains B as well as X. In the context of this clustering, we set
order relations between X and all activities in block B as τ ∈ {0, 1, ∗,−} (cf Def.
3). One example is given in Fig. 7b. Here inserted activity X is clustered with
block {C, D} by order relation τ = ”0”, i.e., we set X as successor of the block
containing C and D. To realize this clustering, we have to set order relations
between X on the one hand and activities C and D from the selected block on the
other hand to ”0”. Furthermore, order relations between X and the remaining
activities are same as for {C, D}. Afterwards these three activities form a new
block {C, D, X} replacing the old one {C, D}. This way, we obtain a sound and
block-structured process model S′c by inserting X into Sc.

We can guarantee that the resulting process model is sound and block-
structured. Every time we cluster an activity with a block, we actually add
this activity to the position where it can form a bigger block together with the
selected one, i.e., we replace a self-contained block of a process model by a bigger
one. Obviously, S′c is not the only neighboring model of Sc. For each block B
enumerated in Step 1, we can cluster it with X by any one of the four order rela-
tions τ ∈ {0, 1, ∗,−}. Regarding our example from Fig. 7, S contains 14 blocks.
Consequently, the number of models that may result when adding X to Sc equals
14× 4 = 56; i.e., we can obtain 56 potential models by inserting X into Sc. Fig.
7c shows some neighboring models of Sc.

5.3 Search Result for our Running Example

Regarding our example from Fig. 2, we now present the search result and all
intermediate models we obtain when applying our algorithm (see Fig. 8).

14

The first operation ∆1 = move(S, J,B, endF low) changes original reference
model S into intermediate result model R1 which is the one with highest fit-
ness value among all neighboring models of S. Based on R1, we discover R2

by change ∆2 = insert(R1, X, E, B), and finally we obtain R3 by performing
change ∆3 = move(R2, I,D,H) on R2. Since we cannot find a ”better” process
model by changing R3 anymore, we obtain R3 as final result. Note that if we
only allow to change original reference model by maximal d change operations,
the final search result would be: Rd if d ≤ 3 or R3 if d ≥ 4.

G

E B

I J

A
F

C D
H

G

E B

I H

A
F

C D

J

G
E B

H

A

F

C D

JX

I

G

E B

I H

A

F

C D

JX

S: reference model

∆1=Move (S, J, B, endFlow)
S[∆1>R1

R1 : result after one change R2 : result after two changes
R3 : result after three changes

(Final result)

∆2=Insert (R1, X, E, B) R1[∆2>R2
∆3= Mpve(R2, I
, D, H)

R 2[∆ 3>R 312 34

Fig. 8. Search result after every change

We further compare original reference model S and all (intermediate) search
results in Fig. 9. As our heuristic search algorithm is based on finding process
models with higher fitness values, we observe improvements of the fitness values
for each search step. Since such fitness value is only a ”reasonable guessing”, we
also compute average weighted distance between the discovered model and the
variants, which is a precise measurement in our context. From Fig. 9, average
weighted distance also drops monotonically from 4 (when considering S) to 2.35
(when considering R3).

Additionally, we evaluate delta-fitness and delta-distance, which indicate rel-
ative change of fitness and average weighted distance for every iteration of the
algorithm. For example, ∆1 changes S into R1. Consequently, it improves fitness
value (delta-fitness) by 0.0171 and reduces average weighted distance (delta-
distance) by 0.8. Similarly, ∆2 reduces average weighted distance by 0.6 and
∆3 by 0.25. The monotonic decrease of delta-distance indicates that important
changes (reducing average weighted distance between reference model and vari-
ants most) are indeed discovered at beginning of the search.

Another important feature of our heuristic search is its ability to automat-
ically decide on which activities shall be included in the reference model. A
predefined threshold or filtering of the less relevant activities in the activity set
is not needed; e.g., X is automatically inserted, but Y and Z are not added. The
three change operations (insert, move, delete) are automatically balanced based
on their influence on the fitness value.

15

5.4 Proof-of-Concept Prototype

The described approach has been implemented and tested using Java. We use
our ADEPT2 Process Template Editor [12] as tool for creating process variants.
For each process model, the editor can generate an XML representation with
all relevant information (like nodes, edges, blocks). We store created variants
in a variants repository which can be accessed by our mining procedure. The
mining algorithm has been developed as stand-alone service which can read the
original reference model and all process variants, and generate the result models
according to the XML schema of the process editor. All (intermediate) search
results are stored and can be visualized using the editor.

6 Simulation

Of course, using one example to measure the performance of our heuristic mining
algorithm is far from being enough. Since computing average weighted distance
is at NP−hard level, fitness function is only an approximation of it. Therefore,
the first question is to what degree delta-fitness is correlated with delta-distance?
In addition, we are interested in knowing to what degree important change oper-
ations are performed at the beginning. If biggest distance reduction is obtained
with the first changes, setting search limitations or filtering out the change opera-
tions performed at the end, does not constitute a problem. Therefore, the second
research question is: To what degree are important change operations positioned
at the beginning of our heuristic search?

We try to answer these questions using simulation; i.e., by generating thou-
sands of data samples, we can provide a statistical answer for these questions. In
our simulation, we identify several parameters (e.g., size of the model, similarity
of the variants) for which we investigate whether they influence the performance
of our heuristic mining algorithm (see [8] for details). By adjusting these param-
eters, we generate 72 groups of datasets (7272 models in total) covering different
scenarios. Each group contains a randomly generated reference process model
and a collection of 100 different process variants. We generate each variant by
configuring the reference model according to a particular scenario.

We perform our heuristic mining to discover new reference models. We do not
set constraints on search steps, i.e., the algorithm only terminates if no better
model can be discovered. All (intermediate) process models are documented (see
Fig. 8 as example). We compute the fitness and average weighted distance of
each intermediate process models as obtained from our heuristic mining. We

S R1 R2 R3
0.643 0.814 0.854 0.872
4 3.2 2.6 2.35

0.171 0.04 0.017
0.8 0.6 0.25

Fitness
Average weighted distance

Delta-fitness
Delta-distance

Fig. 9. Evaluation of the search results

16

Fig. 10. Execution time and correlation analysis of groups with different sizes

additionally compute delta-fitness and delta-distance in order to examine the
influence of every change operation (see Fig. 9 for an example).

Improvement on average weighted distances. In 60 (out of 72) groups
we are able to discover a new reference model. The average weighted distance of
the discovered model is 0.765 lower than the one of the original reference model;
i.e., we obtain a reduction of 17.92% on average.

Execution time. The number of activities contained in the variants can
significantly influence execution time of our algorithm. Search space becomes
larger for bigger models since the number of candidate activities for change
and the number of blocks contained in the reference model become higher. The
average run time for models of different size is summarized in Fig. 10.

Correlation of delta-fitness and delta-distance. One important issue
we want to investigate is how delta-fitness is correlated to delta-distance. Ev-
ery change operation leads to a particular change of the process model, and
consequently creates a delta-fitness xi and delta-distance yi. In total, we have
performed 284 changes in our simulation when discovering reference models. We
use Pearson correlation to measure correlation between delta-fitness and delta-
distance [13]. Let X be delta-fitness and Y be delta-distance. We obtain n data
samples (xi, yi), i = 1, . . . , n. Let x̄ and ȳ be the mean of X and Y , and let sx

and sy be the standard deviation of X and Y . The Pearson correlation rxy then
equals rxy =

∑
xiyi−nx̄ȳ

(n−1)sxsy
[13]. Results are summarized in Fig. 10. All correlation

coefficients are significant and high (> 0.5). The high positive correlation be-
tween delta-fitness and delta-distance indicates that when finding a model with
higher fitness value, we have very high chance to also reduce average weighted
distance. We additionally compare these three correlations. Results indicate that
they do not show significant difference from each other, i.e., they are statistically
same (see [8]). This implies that our algorithm provides search results of sim-
ilar goodness independent of the number of activities contained in the process
variants.

Importance of top changes. Finally, we measure to what degree our al-
gorithm applies more important changes at the beginning. In this context, we
measure to what degree the top n% changes have reduced the average weighted
distance. For example, consider search results from Fig. 9. We have performed
in total 3 change operations and reduced the average weighted distance by 1.65
from 4 (based on S) to 2.35 (based on R3). Among the three change operations,
the first one reduces average weighted distance by 0.8. When compared to the
overall distance reduction of 1.65, the top 33.33% changes accomplished 0.8/1.65

17

= 48.48% of our overall distance reduction. This number indicates how impor-
tant the changes at beginning are. We therefore evaluate the distance reduction
by analyzing the top 33.3% and 50.0% change operations. On average, the top
33.3% change operations have achieved 63.80% distance reduction while the top
50.0% have achieved 78.93%. Through this analysis, it becomes clear that the
changes at beginning are a lot more important than the ones performed at last.

7 Related Work

Though heuristic search algorithms are widely used in areas like data mining [14]
or artificial intelligence [10], only few approaches use heuristics for process vari-
ant management. In process mining, a variety of techniques have been suggested
including heuristic or genetic approaches [19, 2, 16]. As illustrated in [6], tradi-
tional process mining is different from process variant mining due to its different
goals and inputs. There are few techniques which allow to learn from process vari-
ants by mining recorded change primitives (e.g., to add or delete control edges).
For example, [1] measures process model similarity based on change primitives
and suggests mining techniques using this measure. Similar techniques for min-
ing change primitives exist in the field of association rule mining and maximal
sub-graph mining [14] as known from graph theory; here common edges between
different nodes are discovered to construct a common sub-graph from a set of
graphs. However, these approaches are unable to deal with silent activities and
also do not differentiate between AND- and XOR-branchings. To mine high level
change operations, [3] presents an approach using process mining algorithms to
discover the execution sequences of changes. This approach simply considers
each change as individual operation so the result is more like a visualization
of changes rather than mining them. None of the discussed approaches is suf-
ficient in supporting the evolution of reference process model towards an easy
and cost-effective model by learning from process variants in a controlled way.

8 Summary and Outlook

The main contribution of this paper is to provide a heuristic search algorithm
supporting the discovery of a reference process model by learning from a col-
lection of (block-structured) process variants. Adopting the discovered model as
new reference process model will make process configuration easier. Our heuris-
tic algorithm can also take the original reference model into account such that
the user can control how much the discovered model is different from the original
one. This way, we cannot only avoid spaghetti-like process models but also con-
trol how many changes we want to perform. We have evaluated our algorithm by
performing a comprehensive simulation. Based on its results, the fitness function
of our heuristic algorithm is highly correlated with average weighted distance.
This indicates good performance of our algorithm since the approximation value
we use to guide our algorithm is nicely correlated to the real one. In addition,
simulation results also indicate that the more important changes are performed
at the beginning - the first 1/3 changes result in about 2/3 of overall distance

18

reduction. Though results look promising, more work needs to be done. As our
algorithm takes relatively long time when encountering large process models, it
would be useful to further optimize it to make search faster.

References

1. J. Bae, L. Liu, J. Caverlee, and W.B. Rouse. Process mining, discovery, and
integration using distance measures. In ICWS ’06, pages 479–488, 2006.

2. A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven Univer-
sity of Technology, NL, 2006.

3. C.W. Günther, S. Rinderle-Ma, M. Reichert, W.M.P. van der Aalst, and J. Recker.
Using process mining to learn from process changes in evolutionary systems. Int’l
Journal of Business Process Integration and Management, 3(1):61–78, 2008.

4. A. Hallerbach, T. Bauer, and M. Reichert. Managing process variants in the process
lifecycle. In Proc. 10th Int’l Conf. on Enterprise Information Systems (ICEIS’08),
pages 154–161, 2008.

5. C. Li, M. Reichert, and A. Wombacher. Discovering reference process models by
mining process variants. In ICWS’08, pages 45–53. IEEE Computer Society, 2008.

6. C. Li, M. Reichert, and A. Wombacher. Mining process variants: Goals and issues.
In IEEE SCC (2), pages 573–576. IEEE Computer Society, 2008.

7. C. Li, M. Reichert, and A. Wombacher. On measuring process model similarity
based on high-level change operations. In ER ’08, pages 248–262, 2008.

8. C. Li, M. Reichert, and A. Wombacher. A heuristic approach for discovering
reference models by mining process model variants. Technical Report TR-CTIT-
09-08, University of Twente, NL, 2009.

9. C. Li, M. Reichert, and A. Wombacher. What are the problem makers: Ranking
activities according to their relevance for process changes. In ICWS’09, page to
appear. IEEE Computer Society, 2009.

10. G. F. Luger. Artificial Intelligence: Structures and Strategies for Complex Problem
Solving. Pearson Education, 2005.

11. M. Reichert and P. Dadam. ADEPTflex -supporting dynamic changes of workflows
without losing control. J. of Intelligent Information Sys., 10(2):93–129, 1998.

12. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management
with ADEPT2. In ICDE ’05, pages 1113–1114. IEEE Computer Society, 2005.

13. D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures.
CRC Press, 2004.

14. P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-
Wesley, 2005.

15. W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theor. Comput. Sci., 270(1-2):125–203, 2002.

16. W.M.P van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering
process models from event logs. IEEE TKDE, 16(9):1128–1142, 2004.

17. B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering, 66(3):438–466, 2008.

18. B. Weber, M. Reichert, W. Wild, and S. Rinderle-Ma. Providing integrated life
cycle support in process-aware information systems. Int’l Journal of Cooperative
Information Systems (IJCIS), 19(1), 2009.

19. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering workflow models from
event-based data using little thumb. Integr. Com.-Aided Eng., 10(2):151–162, 2003.

