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Abstract. In various cases we need to transform a process model into a
matrix representation for further analysis. In this paper, we introduce the
notion of Order Matrix, which enables unique representation of block-
structured process models. We present algorithms for transforming a
block-structured process model into a corresponding order matrix and
vice verse. We then prove that such order matrix constitutes a unique
representation of a block-structured process model; i.e., if we transform
a process model into an order matrix, and then transform this matrix
back into a process model, the two process models are trace equivalent;
i.e., they show same behavior. Finally, we analyze algebraic properties
of order matrices.

1 Introduction

In various cases we need to transform a process model into a matrix represen-
tation for further analysis. For example, in graph theory adjacency matrices
are often used for various kinds of graph analysis (e.g., reachability analysis or
derivation of minimal spanning tree [25]). In process mining, causal matrices are
used to represent the relationship between transitions in Petri nets. Causal ma-
trices are further applied in genetic process mining to discover a process model
which covers the execution traces of a collection of process instances best [7]. In
the field of data mining, matrices are used to classify, cluster or associate data
[26, 20]. However, all these techniques are focusing on the nodes and edges of a
graph or process model, and cannot be applied in respect to the management of
process changes [12].

In this paper, we introduce the notion of order matrix, which represents all
transitive relations between the activities of a block-structured process model.
In the context of managing process variants [8], for example, we have already
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applied this kind of matrix for measuring the structural similarity between two
process models [13]. We have further used order matrices for mining structurally
different process variants. Here, we aim at discovering a process model that
structurally covers a collection of process variants best [11, 14]. The present paper
focuses on basic concepts, algorithms and formal properties of order matrices,
and less on their use.

The remainder of this paper is organized as follows: Section 2 introduces some
basic definitions needed for understanding this paper. Section 3 then provides the
formal definition of an order matrix and gives an illustrative example. Section 4
presents an algorithm for transforming a block-structured process model into an
order matrix. Section 5 presents an algorithm for transforming an order matrix
back into a block-structured process model. In Section 6, we prove that there
exists a one-to-one mapping between a process model and its order matrix, i.e.,
if one transforms a process model into an order matrix, and then transform
this matrix back into a process model, the two models will be same. Finally, we
present algebraic properties of order matrices in Section 7.

2 Backgrounds

We first introduce basic notions needed in the following:
Process Model : Let P denote the set of all sound (i.e., correct) process

models. We denote a process model as sound if there are no deadlocks or un-
reachable activities in the process model [21, 28]. In our context, a particular
process model S = (N,E, . . .)4 ∈ P is defined in terms of an Activity Net [21].
N constitutes the set of activities and E the set of control edges (i.e., precedence
relations) linking them. More precisely, Activity Nets cover the following funda-
mental process patterns: Sequence, AND-split, AND-join, XOR-split, XOR-join,
and Loop [27].5 These patterns constitute the core set of any workflow specifica-
tion language (e.g., WS-BPEL [3] and BPMN [4]) and cover most of the process
models we can find in practice [36, 15]. Furthermore, based on these patterns
we are able to compose more complex ones if required (e.g., an OR-split can
be mapped to XOR- and AND- splits [19]). Finally, when restricting process
modeling to these basic process patterns, we obtain models that are better un-
derstandable and less erroneous [18, 16]. A simple example of an Activity Net is
depicted in Fig. 1a. For a detailed description and correctness issues we refer to
[21].

Block Structuring : To limit the scope, we assume Activity Nets to be
block-structured, i.e., sequences, branchings (with aforementioned split and join
semantics), and loops are specified as blocks with well-defined start and end
nodes. These blocks may be nested, but must not overlap, i.e., the nesting must
4 A Well-structured Activity Net contains more elements than only node set N and

edge set E, which can be ignored in the context of this paper.
5 These patterns can be mapped to other languages as well. For example in Business

Process Execution Language (BPEL), XOR-Split / -join can be represented by ’If’
or ’Pick’, AND-Split / -Join by ’Flow’, and Loops by ’While’ or ’RepeatUntil’ [3].
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be regular [21, 10]. A block in a process model S can be a single activity, a
self-contained part of S, or even S itself. As example consider process model
S from Fig. 1. Here {A}, {A,B}, {C,F}, and {A,B,C,D,E,F,G} describe pos-
sible blocks contained in S. Note that we can represent a block B as activ-
ity set, since the block structure itself already becomes clear from the process
model S. For example, block {A,B} corresponds to the parallel block with corre-
sponding AND-split and AND-join nodes in S. The concept of block-structuring
can be found in languages like WS-BPEL [3]. When compared with non-block-
structured process models, block-structured ones are easier understandable for
users and have less chances of containing errors [23, 16–18]. If a process model is
not block-structured, in most practically relevant cases we can transform it into
a block-structured one (see [31, 18, 10]).

Definition 1 (Trace). Let S = (N,E, . . .) ∈ P be a process model. We define
t as a trace of S iff:
– t ≡< a1, a2, . . . , ak > (with ai ∈ N) constitutes a valid and complete exe-

cution sequence of activities considering the control flow defined by S. We
define TS as the set of all traces that can be produced by process instances
running on process model S.

– t(a ≺ b) is denoted as precedence relationship between activities a and b in
trace t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b.

We only consider traces composing ’real’ activities, but no events related
to silent activities, i.e., nodes in a process model having no associated action
and only existing for control flow purpose [13]. At this stage, we consider two
process models as being the same if they are trace equivalent, i.e., S ≡ S′ iff
TS ≡ TS′ . Like most process mining approaches [30, 7, 34], the stronger notion
of bi-similarity [9] is not considered in our context.

3 Basic Definition of an Order Matrix

One key feature of our ADEPT change framework is to maintain the struc-
ture of the unchanged parts of a process model [21, 6, 33]. For example, when
deleting an activity this neither influences successors nor predecessors of this
activity, and therefore also not their order relations [24, 22]. To incorporate this
feature in our approach, rather than only looking at direct predecessor-successor
relationships between activities (i.e. control edges), we consider the transitive
control dependencies for each pair of activities; i.e., for a given process model
S = (N, E, . . .) ∈ P, for activities ai, aj ∈ N , ai 6= aj we examine their structural
order relations (including transitive order relations). Logically, we determine or-
der relations by considering all traces in trace set TS producible by model S.

Fig. 1a shows an example of a process model S. This model comprises process
patterns like Sequence, AND-block, XOR-block, and Loop-block [27]. Here, trace
set TS of S constitutes an infinite set due to the presence of the loop-block in S
(cf. Fig. 1b). Such infinite number of traces precludes us to perform any detailed
analysis of the trace set. Therefore we need to transform such infinite trace sets
into a finite representation for further analysis.
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3.1 Simplification of Infinite Trace Sets

One common approach to represent a string with infinite length is to represent
it as finite set of n-gram lists [5]. The general idea behind an n-gram list is to
represent a single string by an ordered list of substrings with length n (so-called
n-grams). In particular, only the first occurrence of an n-gram is considered, while
later occurrences of the same n-gram are omitted in the n-gram list. Thus, an
n-gram list represents a collection of strings with different length. In particular,
an infinite language can be represented as finite set of n-gram lists. For example,
a string < abababab > can be represented as 2-gram < $a, ab, ba, b# >, where
$ (#) represents the start (end) of the string. Such approach is commonly used
for analyzing loop structures in process models [35, 2], or - more generally - in
the context of text indexing for substring matching [1]. Inspired by the n-gram
approach, we define the notion of Simplified Trace Set as follows:

Definition 2 (Simplified Trace Set).
Let S be a process model and TS denote the trace set producible on S. Let Bk,

k = (1, . . . , K) be Loop-blocks in S, and TBk
denote the set of traces producible on

Bk. Let further (tBk
)m be a sequence of m (m ∈ N) traces < t1Bk

, t2Bk
, . . . , tmBk

>

with tjBk
∈ TBk

, j ∈ {1, . . . , m}. We additionally define (tBk
)0 =<> as an

empty sequence. If we only consider the activities corresponding to Bk, in any
trace t ∈ TS producible on S, t either has no entries 6 or must have structure
< t∗Bk

, (tBk
)m >, with t∗Bk

∈ TBk
representing the first loop iteration and m ∈ N0

being the number of additional iterations loop-block Bk is executed in trace t.
We can simplify this structure by using < tBk

, τk > instead, where τk refers to
(tBk

)m. When simplifying trace set TS this way, we obtain a finite set of traces
T ′S, denoted as Simplified Trace Set of process model S.

In our representation of a trace t ∈ TS , we only consider the first occurrence
of trace t∗Bk

producible by block Bk while omitting others that occur later within
trace t. Instead, we represent such repetitive entries by a silent activity τk, which
has not associated action but solely exists to indicate omission of other tBk

appearing later in trace t, i.e., τk represents the iterative execution of loop-block
Bk captured in trace t.7 When omitting repetitive entries within trace set TS ,
we obtain a finite trace set T ′S that we can use for further analysis. Note that
when dealing with nested loops (e.g., a loop-block Bk contains another loop-
block Bj), we first need to analyze Bj and then Bk; i.e., we need to first define
τj to represent the iterative execution of loop-block Bj as captured in trace t
and then define τk to represent loop-block Bk.

As example consider process model S in Fig. 1a. Loop-block B, which is
surrounded by a loop-backward edge, is the block comprising activities C and

6 i.e., the loop-block Bk has not been executed at all.
7 Though this approach is inspired by n-gram, it is different from n-gram representa-

tion of a string. In n-gram the length of the sub-string is a fixed number n, while
in our approach we use τk to represent traces producible by the Loop-block Bk.
Obviously, traces producible by Bk do not necessarily have same length.
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<A,B,D,E,G>;   <B,A,D,E,G>;<A,B,D,C,F,τ,G>;  <B,A,D,C,F,τ,G>S
A

C

B E

F

D G

Trace set S
Simplified trace set S

<A,B,D,E,G>;   <B,A,D,E,G>;<A,B,D,C,F,G>;  <B,A,D,C,F,G>;<A,B,D,C,F,C,F,G>;<B,A,D,C,F,C,F,C,F,G>;
…… 

S(a) (b) (c)

Fig. 1. a) Process model and b) related order matrix

F; consequently the trace set this block can produce is {< C, F >}. Therefore,
any trace t ∈ TS producible on S has structure < C,F, (C,F)m > with m ∈ N0

depending on the number of times the loop iterates. For example, < C,F >,
< C,F,C,F > and < C,F,C,F,C,F > are all valid traces producible by the
loop-block. Let us define a silent activity τ corresponding to block B. Then
we can simplify these traces by < C,F, τ > where τ refers the to the sequence
of the traces producible on B. This way, we can simplify infinite trace set TS

to finite set T ′S = {< A,B,D,E,G >,< B,A,D,E,G >,< A,B,D,C,F,τ, G >,<
B,A,D,C,F,τ, G >} (cf. Fig. 1b).

3.2 Defining an Order Matrix

For process model S, the analyzing results of its trace set TS are aggregated in
an order matrix A, which considers five types of order relations (cf. Def. 3):

Definition 3 (Order matrix). Let S = (N,E, . . .) ∈ P be a process model
with activity set N = {a1, a2, . . . , an}. Let further TS denote the set of all traces
producible on S and let T ′S be the simplified trace set of S (cf. Def. 2). Let Bk,
k = (1, . . . ,K) denote loop-blocks in S. For every Bk, we define silent activity
τk, k = (1, . . . , K) to represent the iterative structure producible by Bk in T ′S.
Then:

A is called order matrix of S with Aaiaj representing the order relation
between activities ai,aj ∈ N

⋃{tk
∣∣k = 1, . . . , K}, i 6= j iff:

– Aaiaj = ’1’ iff (∀t ∈ T ′S with ai, aj ∈ t ⇒ t(ai ≺ aj))
If for all traces containing activities ai and aj, ai always appears BEFORE
aj, we denote Aaiaj as ’1’, i.e., ai always precedes of aj in the flow of control.

– Aaiaj = ’0’ iff (∀t ∈ T ′S with ai, aj ∈ t ⇒ t(aj ≺ ai))
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If for all traces containing activities ai and aj, ai always appears AFTER
aj, we denote Aaiaj as a ’0’, i.e. ai always succeeds of aj in the flow of
control.

– Aaiaj
= ’+’ iff (∃t1 ∈ T ′S , with ai, aj ∈ t1 ∧ t1(ai ≺ aj)) ∧ (∃t2 ∈ T ′S , with

ai, aj ∈ t2 ∧ t2(aj ≺ ai))
If there exists at least one trace in which ai appears before aj and another
trace in which ai appears after aj, we denote Aaiaj as ’+’, i.e. ai and aj are
contained in different parallel branches.

– Aaiaj
= ’-’ iff ( ¬∃t ∈ T ′S : ai ∈ t ∧ aj ∈ t)

If there is no trace containing both activity ai and aj, we denote Aaiaj
as ’-’,

i.e. ai and aj are contained in different branches of a conditional branching.
– Aaiaj = ’L’, iff ((ai ∈ Bk ∧ aj = τk) ∨ (aj ∈ Bk ∧ ai = τk))

For any activity ai in a Loop-block Bk, we define order relation Aaiτk
between

it and the corresponding silent activity τk as ’L’.

The first four order relations {1,0,+,-} specify the precedence relations be-
tween activities as captured in the trace set, while the last order relation ’L’
indicates loop structures within the trace set. Fig. 1c presents the order ma-
trix of process model S. Since S contains one Loop-block, a silent activity τ
is also added to this matrix. This order matrix contains all five order relations
as described in Definition 3. For example, activities E and C will never appear
in same trace belonging to the simplified trace set since they are contained in
different branches of an XOR block. Therefore, we assign ’-’ to matrix element
AEC. Further, since in all traces which contain both activities B and G, B always
appears before G, we can obtain order relation ABG = ’1’ and order relation AGB
= ’0’. Special attention should be paid to the order relations between the silent
activity τ and the other activities. The order relation between τ and activities
C and F is set to ’L’, since both C and F are contained in the Loop-block; for all
remaining activities, τ has same order relations with them as activities C or F
have. Note that the main diagonal of the order matrix is empty, since we do not
compare an activity with itself.

As one can see, elements Aaiaj and Aajai can be derived from each other. If
activity ai is a predecessor of activity aj , (i.e. Aaiaj = 1), we can always conclude
that Aajai = 0 holds and if Aaiaj ∈ {’+’,’-’, ’L’}, we obtain Aajai = Aaiaj .

4 Transforming a Process Model into an Order Matrix

Clearly, it is not realistic to first enumerate all traces of a process model and
analyze the order relation based on them. The trace set of a process model can
be extremely large particularly if the model contains several AND-blocks or even
infinite if there are loop-blocks. In the following, we introduce Algorithm 1 to
compute the order matrix for a process model in polynomial time. Note that
this algorithm is also able to cope with loop structures.

In Algorithm 1, we first define set P (ai) for each activity ai ∈ N , which
contains all (direct and indirect) predecessors of ai (Line 1). An activity aj is
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input : A process model S = (N, E, . . .)
output: Its order matrix A

For each activity ai ∈ N, i = (1, . . . , n), define P (ai) as the predecessor set of ai ;1

Define Set C as the set of activities which are already parsed;2

Define L as the set of Loop-blocks Bk;3

P (ai) = ∅ for i = (1, . . . , n), C = ∅ and L = ∅ /* initial state */;4

Set parseModel (Node tstart, Node tend, Set C) begin5

/* Compute predecessor sets for activities between node tstart and

tend. Returns a new C’ */

while (tstart 6= tend) do6

if (Sequence) then7

P (tstart) = P (tstart).addAll(C) ;8

C′ = C.add(tstart) ;9

tstart = tstart.nextNode;10

else if (XOR-block) then11

foreach branch i in XOR-split, i = (1, . . . , m) do12

ni = XOR-split.nextNode in branch i;13

C′i = parseModel (ni, XOR-join, C) ;14

C′ = C.addAll(
⋃m

i=1 C′i) ;15

tstart = XOR-join.nextNode;16

else if (AND-block) then17

foreach branch i in AND-split, i = (1, . . . , m) do18

ni = XOR-split.nextNode in branch i;19

C′i = parseModel (ni, XOR-join, C) ;20

foreach branch k in AND-split, k = (1, . . . , m) do21

Ck =
⋃m

i=1,i6=k C′i ;22

parseModel (AND-split, AND-join, Ck);23

C′ = C.addAll(
⋃m

i=1 C′i) ;24

tstart = AND-join.nextNode;25

else if (Loop-block) then26

L.add (parseModel (Loop-start.nextNode, Loop-end, ∅)) ;27

C’ = C.addAll (parseModel (Loop-start,Loop-end, C)) ;28

tstart = Loop-end.nextNode;29

return C′ ;30

end31

computeOrderRelationBasedOnPredecessorSets () begin32

/* Compute order relation based on predecessor sets */ ;
foreach ai, aj ∈ N, i 6= j do33

if P (ai)contain(aj) ∧ ¬P (ai)contain(aj) then Aij = ’1’;34

else if ¬P (ai)contain(aj) ∧ P (ai)contain(aj) then Aij = ’0’;35

else if P (ai)contain(aj) ∧ P (ai)contain(aj) then Aij = ’+’;36

else if ¬P (ai)contain(aj) ∧ ¬P (ai)contain(aj) then Aij = ’-’;37

end38

addSilentActivitiesForLoopStructure (Set L, OrderMatrix A) begin39

/* Add loop on order matrix */ ;
foreach Bk ∈ L do40

Define silent activity τk; N = N ′⋃{τk} ;41

foreach ai ∈ N ′ do42

if (ai ∈ Bk) then43

Aaiτk = ’l’ ; Aτkai = ’l’ ;44

else if (ai ∈ N ′ \ Li) then45

Let aj ∈ Li ;46

Aaiτk = Aaiaj ; Aτkai = Aajai ;47

end48

Algorithm 1: Computing order matrix for process model
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a predecessor of ai iff ∃t ∈ T ′S : t(aj ≺ ai). In addition, we define set L which
contains all Loop-blocks Bk of the process model. Following that, three functions
are specified. Function parseModel (Lines 5 to 31) first parses the process model
S and computes the predecessor sets P (ai) for each activity of the model. Fur-
ther, it determines set L which contains all Loop-blocks Bk of S. Then function
computeOrderRelationBasedOnPredecessorSets (lines 32 to 38) calculates the
order relations for every pair of activities of model S based on their predecessor
sets. Finally, function addSilentActivitiesForLoopStructure (lines 39 to 48)
specially handles the loop structures of process model S.

Function parseModel has three input parameters: Nodes tstart and tend mark
the start and the end of the block Bi we need to analyze; set C corresponds to
the set of activities already been analyzed. After computing predecessor sets and
Loop-blocks for the activities from block Bi, we obtain new set C’ comprising
original set C and all activities of Bi. Initially, tstart is set to the start-flow of S,
tend to the end-flow of S, and C to an empty set (Line 5).

In our analysis, we consider four process patterns:

– Sequence. This pattern is analyzed in Lines 7 to 10 in Algorithm 1. Assume
that blocks Bi, Bj and Bk are three blocks of process model S, where Bi

precedes Bj and Bj precedes Bk. Let ai ∈ Bi and aj ∈ Bj . For any trace
t ∈ TS containing both ai and aj , we obtain t(ai ≺ aj). Therefore, for every
aj ∈ Bj , we need to add Bi to its predecessor set P (aj). Similarly, for every
ak ∈ Bk, we need to add both Bi and Bj to its predecessor set P (ak). In
Algorithm 1, we first add Bi to set C, and then add C to every P (aj) ∈ Bj .
Finally we add Bj to C (lines 7-9). We repeat same procedure when analyzing
Bk, i.e., we add C to every P (ak) with ak ∈ Bk, and then add Bk to C.

– XOR-block. This pattern is analyzed in Lines 10 - 15 in Algorithm 1. Since
the activities in one branch of an XOR-block can never appear in trace t
together with activities of another branch of same XOR-block, we analyze
each branch of an XOR-block separately. Every branch i is considered as
block of S, which can be analyzed independently by the parseModel func-
tion. In this case, tstart shall point to the first node on branch i and tend to
the XOR-join node. Further we need to use same set C for analyzing each
branch i in the XOR-block (line 14). This way, we can ensure that activities
from a particular branch do not appear in the predecessor sets of activities
from another branch of the XOR-block. After every branch is analyzed, we
add all activities of this XOR-block to new set C’ (Line 15).

– AND-block. This pattern is analyzed in Lines 17 - 25 of Algorithm 1. Sim-
ilarly to XOR-blocks, we analyze each branch of an AND-block separately.
For every branch i, tstart shall point to the first node in branch i and tend

to the AND-join node. Further we use same set C for every branch i in the
AND-block (Line 20). Obviously, an AND-block differs from an XOR-block,
since all its branches are executed concurrently. Therefore, for two activities
ai and aj from two different branches in such AND-block, ai can appear
before aj in one trace but appear after aj in another trace. Let BAND rep-
resents the AND-block, and BAND

i be the block representing branch i of
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BAND. As reflecting on the predecessor set P (ai) for each ai ∈ BAND
i , we

need to add all activities from other branches BAND \ BAND
i to its prede-

cessor set. In Algorithm 1, Line 22 computes set BAND \ BAND
i and Line

23 adds them to the predecessors sets P (ai), ai ∈ BAND
i . This way, we can

ensure that two activities from different branches of an AND-block always
appear in the predecessor sets of each other.

– Loop-block. This pattern is analyzed in Lines 26 - 29 in Algorithm 1.
We first determine which activities are contained in Loop-block B by call-
ing function parseModel and adding B to set L (Line 27). Then, we con-
tinue parsing the model using function parseModel to analyze the activi-
ties inside this Loop-block (Line 28). Note that the analysis of the prede-
cessor sets is based on the simplified trace set (cf. Def. 2), i.e., we only
consider the first appearance of trace tB ∈ TB producible by block B,
while later appearances of tB (caused by the iterative executions of this
Loop-block) are not considered any longer. It will handled later by function
addSilentActivitiesForLoopStructure.

Since blocks may be arbitrarily nested, function parseModel in Algorithm 1
is realized as recursive function. We consider sequence structures as basic ele-
ments of a process model. Whenever there is an AND- or XOR-block, we consider
its branches as blocks and analyze them separately. This division continues until
all AND- and XOR-blocks are resolved into blocks which only contains sequence
structures with elementary activities. This way we are able to compute prede-
cessor set P (ai) of each activity ai in a straightforward way (Lines 7 - 10 in
Algorithm 1). Complexity of function parseModel, therefore, is O(n2), where n
equals the number of activities in process models.

As example take process model S in Fig. 1. Table 1 shows analysis results
after every step of function ParseModel from Algorithm 1. It indicates which
node function parseModel points to, which activities are processed, which pro-
cess patterns it belongs to, to which set C changes afterwards, and what are
the predecessor sets or loop-blocks obtained in this step. For example, Step 1
shows initial state of this function. Steps 2 and 3 analyze the two branches of the
AND-block separately, and results are merged in Step 4. After processing activ-
ity D in Step 5, the algorithm handles the XOR-block in Steps 6-12. Note the
differences between Step 4 and Step 12 when dealing with XOR- and AND-joins
respectively: additional changes are performed on predecessor sets for activi-
ties corresponding to an AND-block. The Loop-block in S, in turn, is handled
in Steps 8 - 11, during which we identify which activities are included in this
Loop-block.

After obtaining predecessor sets P (ai) for every activity ai ∈ N using func-
tion parseModel, we can determine order relations between two activities as
follows:

– If ((ai ∈ P (aj)) ∧ ¬(aj ∈ P (ai))), Aaiaj = ’1’, i.e., ai always precedes aj .
– If (¬ (ai ∈ P (aj)) ∧ (aj ∈ P (ai))), Aaiaj = ’0’, i.e., ai always succeeds aj .
– If ((ai ∈ P (aj)) ∧ (aj ∈ P (ai))), Aaiaj = ’+’, i.e., ai appears before aj in

some traces while it succeeds aj in other traces.
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Step
Node Processed Workflow Parsed activity Predecessor set P (ai)

pointing at activities pattern set C / Loop-block set Bk

1 AND-split AND-block ∅
2 A A Sequence ∅ P(A) = ∅
3 B B Sequence ∅ P(B) = ∅
4 AND-join A,B AND-block {A,B} P(A) = {B}

P(B) = {A}
5 D D Sequence {A,B,D} P(D) = {A,B}
6 XOR-split XOR-block {A,B,D}
7 E E Sequence {A,B,D,E} P(E) = {A,B,D}
8 Loop-start Loop-block {A,B,D}
9 C C Sequence {A,B,D,C} P(C) = {A,B,D}
10 F F Sequence {A,B,D,C,F} P(F) = {A,B,D,C}
11 Loop-end Loop-block {A,B,D,C,F} Bk = {C,F}
12 XOR-join E,C,F XOR-block {A,B,D,E,C,F}
13 G G Sequence {A,B,D,E,C,F,G} P(G) = {A,B,D,E,C,F}

Table 1. Analysis result for process model S from Fig. 1 when applying parseModel

in Algorithm 1

– If (¬(ai ∈ P (aj)) ∧ ¬ (aj ∈ P (ai))), Aaiaj = ’-’, i.e., ai and aj never appear
together.

The abovementioned method is described by function computeOrderRelationBasedOnPredecessorSets
in lines 32 - 38 in Algorithm 1. The computation of these four order relations
{1,0,+,-} is straightforward since it directly matches with the definition of an
order matrix (cf. Def. 3).

As discussed in Section 3, if a process model S contains Loop-blocks, its
trace set TS becomes infinite. Therefore we need to reduce TS to simplified
trace set T ′S for further analysis (cf. Def. 2). We can achieve this reduction
by defining one silent activity τk for every Loop-block Bk to represent the it-
erative behavior of the traces producible by Bk (cf. Section 3). After adding
activity τk to the order matrix, the challenge is to determine order relations
between τk and the other activities. In the following, we introduce function
addSilentActivitiesForLoopStructure (Lines 39 - 48 in Algorithm 1) to de-
termine order relations between τk and others. In principle, we can divide activ-
ities into two groups:

– ai ∈ Bk. If ai is contained in the Loop-block, order relation between ai and
τk is straightforward. According to Definition 3, Aaiτk

=′ L′ and Aτkai =′ L′

must hold.
– ai ∈ N \ Bk. In this case, we need to determine order relation between τk

and activity ai which is outside the loop block Bk. Since our process model
is block-structured, we can consider whole Loop-block Bk as single ”process
step” in this context. Therefore, ”process step” should have unique order
relations with the remaining activities. This implies that all activities be-
longing to block Bk, including silent activity τk, should have same order
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relation in respect to the activities located outside this block. We can there-
fore determine relation between τk and ai ∈ N \ Bk by considering another
activity aj ∈ Bk. Since both τk and aj belong to a same Loop-block, Aaiτk

can be assigned to A′aiaj
. Similarly, we obtain Aτkai = A′ajai

.

For example take S from Fig. 1. Table 1 depicts predecessor set P (ai) of
each activity ai, and the set L for Loop-blocks which we obtain when applying
function parseModel in Table 1. Based on this, we can compute order ma-
trix A using functions computeOrderRelationBasedOnPredecessorSets and
addSilentActivitiesForLoopStructure. The result is shown in Fig. 1b. Spe-
cial attention should be paid to the order relations between silent activity τ and
the other activities: except the order relations between τ on the one hand and C
and F on the other hand are ’L’, the order relations between τ and the remaining
activities are same as the ones C and F have.

Complexity of Algorithm 1 is O(2n2) where n equals the number of activ-
ities the process model has. To be more precise, the complexity of function
parseModel is O(n2) and complexity of the other two functions corresponds to
O(n2) in total. This polynomial complexity allows us to quickly transform a
(large) process model into its order matrix for further analysis.

5 Transforming an Order Matrix back into a Process
Model

In Section 4, we have introduced an algorithm for transforming a process model
S into its corresponding order matrix A. In this section, we show how such an
order matrix A can be transformed back into a process model S. This approach
is described by Algorithm 2.

Algorithm 2 starts with defining a hashtable which maps activities from the
order matrix (the key of the hashtable) to their corresponding blocks (the value
of the hashtable). Initially, every activity from the order matrix constitutes a
block itself (Line 2). The key idea of Algorithm 2 is to merge such blocks. More
precisely, two blocks can form a bigger one iff they have same order relations
in respect to all remaining blocks within the order matrix (Lines 6 - 9). If two
blocks Bi and Bj can be merged into a bigger block Bij , we can build the new
block based on these two smaller blocks and their order relation (Lines 11 - 12).
The newly created block Bij replaces Bi and Bj in the hashtable. We can then
map such block to activity ai in the order matrix and remove the corresponding
row and column for aj in A (Lines 13 - 15). Therefore, in every iteration, we
reduce one row and one column of the order matrix. Merging blocks continues
iteratively until there are only two blocks remaining in the order matrix. We
merge these two blocks in the last step (Line 23).

Function createModel(Block Bi, Block Bj , OrderRelation 3) creates a pro-
cess model by merging two blocks Bi and Bj based on their order relation 3
(Lines 19 - 35 in Algorithm 2). If 3 represents a predecessor or successor relation,
we just need to add one edge between start and end of these two blocks. If the
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input : An order matrix A
output: A process model S = (N, E, . . .)

Define Hashtable Map;1

Define each activity ai as a block Bi; Map.put(ai, Bi) i = (1, . . . , n);2

iteration = 0; /* initial state */ ;
while iteration < n− 2 do3

foreach ai, aj ∈ N, ai 6= aj do4

merge = True ;5

for ak ∈ N \ {ai, aj} do6

if Aaiak 6= Aajak then7

merge = False;8

/* two blocks can merge into a bigger one, iff they

have same order relations to the others */ ;
break ;9

if merge then10

createModel (Map.getValue(ai), Map.getValue(ai), Aaiaj )11

/* create a new block based on the two blocks and their

order relation */ ;
Bij = buildBlock (Map.getValue(ai), Map.getValue(ai), Aaiaj ) ;12

/* Merge these two block based on their order relation */ ;
Map.remove(ai); Map.remove(aj) /* change the blocks */ ;13

A.remove(aj) /* change order relations */ ;14

Map.put (ai, Bij) ;15

break;16

iteration ++;17

S = createModel (Map.getValue(a1), Map.getValue(a2), Aa1a2) /* Merge last18

two blocks */ ;
createModel (Block Bi, Block Bj , OrderRelation 3) begin19

if 3 = ’0’ then20

/* Merge block Bi and Bj based on their order relation 3 */

addEdge (Bj .end, Bi.start);
else if 3 = ’1’ then21

addEdge (Bi.end, Bj .start);22

else if 3 = ’+’ then23

addNode (AND-split); addNode(AND-join) ;24

addEdge (AND-split, Bi.start); addEdge (AND-split, Bi.start);25

addEdge (Bj .end, AND-join); addEdge (Bj .end, AND-join) ;26

else if 3 = ’-’ then27

addNode (XOR-split); addNode(XOR-join);28

addEdge (XOR-split, Bi.start); addEdge (XOR-split, Bi.start);29

addEdge (Bj .end, XOR-join); addEdge (Bj .end, XOR-join) ;30

else if 3 = ’l’ then31

Let Bi = τ ; addNode (loop-start); addNode(loop-end) ;32

addEdge (loop-start, Bj .start); addEdge (Bj .end,loop-end);33

addEdge (loop.end, loop-start, loop) ;34

end35

Algorithm 2: Transforming an order matrix into a process model
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two blocks have order relation ’+’ or ’-’, we add them to different branches of
an AND- or XOR-block. If order relation 3 corresponds to ’L’, there must be a
Loop-block in the process model and either Bi or Bj correspond a silent activity
τ . Reason is that any silent activity τ can only be clustered with Loop-block
B that it corresponds to. If Bi equals τ , we only need to surround Bj with a
loop-backward edge.

As example take order matrix A from Fig. 1. Since activities A and B have
same order relations in respect to the remaining activities, we are able to merge
these two activities to an AND-block. After creating this block, we remove ac-
tivity B from order matrix A. For example, the block containing A and B can be
merged with activity D in order to create a bigger block. If we repeat this process
of merging blocks, we finally obtain process model S as depicted in Fig. 1.

6 One-to-one Mapping between a Process model and its
Order Matrix

Section 4 has introduced Algorithm 1 for transforming a process model into its
order matrix. In Section 5, we have further provided Algorithm 2 for transforming
an order matrix back into its corresponding process model. Generally, it is critical
to prove that such transformation constitutes a one-to-one mapping, i.e., if we
first transform a process model S into its order matrix A, and then transform
A back to a process model S′, S′ should be same as S.

When transforming a process model into an order matrix (cf. Algorithm
1), we recursively analyze each block of the process model from start to end.
However, when transforming an order matrix back into a process model (cf.
Algorithm 2), the order in which we merge blocks is more or less arbitrary, i.e.,
we merge two blocks together whenever this is possible. Therefore, it is important
to know whether the order relation satisfies the associative law, i.e., whether the
order to merge small blocks into bigger ones can influence the result.

Let us first consider predecessor-successor order relations ’0’ and ’1’. Assume
process model S contains three blocks Bi, Bj and Bk with Bi preceding Bj

and Bj preceding Bk. Obviously, we obtain ABiBj =′ 1′ and ABjBk
=′ 1′.

Representing this as mathematical equation, we obtain Bi3Bj3Bk with 3 being
’1’. If we need to transform order matrix A into a process model S′, it does not
matter whether we first merge Bi and Bj or we first merge Bj and Bk, i.e.,
(Bi3Bj)3Bk = Bi3(Bj3Bk). It is obvious from Algorithm 2 that we only need
to add control edges between the end of the preceding block and the start of
the succeeding one. Therefore the order of adding edges does not influence the
resulting model. Clearly, such rule also applies if order relation 3 corresponds
to ’0’.

For order relations ’+’ and ’-’, let us re-assume that there are three blocks Bi,
Bj and Bk with same order relation ’-’ among each other, i.e., Bi3Bj3Bk with
3 being ’-’. Fig. 2a shows two models S and S′ that result when merging these
three blocks together. To be more precise, S can be obtained by first merging Bi

and Bj and then merging the intermediate block with Bk (S = (Bi3Bj)3Bk),
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while S′ can be obtained by first merging Bj and Bk and then merging the
resulting block with Bi (S′ = Bi3(Bj3Bk)).

a)
b) AND-SplitAND-Join

XOR-SplitXOR-Join
S S’

S S’

S, S’ and S’’ are trace equivalent 

BkBj
Bi
BkBj
BiBjBi

Bk
BjBi
Bk S’’

S’’

Bi
Bj
Bk
Bi
Bj
Bk

Fig. 2. Trace equivalence for AND and XOR blocks

Obviously, process models S and S′ are structurally different. However, S
and S′ are trace equivalent despite their structural difference, i.e., trace sets
TS and TS′ producible on S and S′ respectively are the same: TS = TS′ =
TBi

⋃ TBj

⋃ TBk
. Note that the two process models are trace equivalent to S′′

as well. Regarding S′′, Bi, Bj and Bk are located in three different branches of
the same XOR-block. In the context of our research, we consider S, S′ and S′′

being the same, since the corresponding process models have same trace set and
therefore show same behaviors.8 This indicates that order relation ’-’ satisfies the
associative law, and consequently the order in which blocks are merged is not
relevant. When first transforming a process model (e.g., S′′) into order matrix A,
and then transforming A back into a process model (e.g., S′), the original and the
newly derived process models are trace equivalent. In our context, we consider
these two models being same. Thus the transformation between process model
and order matrix constitutes a one-to-one mapping. Obviously, same results are
obtained if the order relations between them are ’+’ (cf. Fig. 2b).

For order relation ’L’, the associative law is not applicable in the given context
because Bi3Bj3Bk (with 3 = ’L’) is not possible for an order matrix. If Bi3Bj

holds with 3 = ’L’, either Bi or Bj must be τ . This, in turn, indicates that in
expression Si3Sj3Sk, two out of the three blocks constitute silent activities
τ . Let us assume that Bj and Bk are these two silent activities. Thus such
expression means that block Bi is surrounded by a loop-backward edge to form
a loop-block B′

i and this Loop-block B′
i is immediately surrounded by another

loop-backward edge to form another Loop-block B′′
i , i.e., Bi is surrounded by

two loop-backward edges. In this case, B′
i and B′′

i are trace equivalent, and

8 Like most process mining techniques (e.g. [30, 7, 34]), the stronger notion of bi-
similarity are not considered in our context [9]
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therefore expression Si3Sj3Sk would be simplified to Si3Sj with 3 being ’L’.9

This implies that the condition to analyze the associative law does not hold.
Although associative law is not applicable to order relation ’L’, it cannot

influence the one-to-one mapping between a process model and its order matrix.
Reason is that whenever two blocks have order relation ’L’, one of them must
be a silent activity τ , and this silent activity can only be merged with the
block surrounded by a loop-back edge. Assume that block B is surrounded by a
loop, i.e., has order relation ’L’ with silent activity τ (cf. Def. 3). For any block
Bi which is different from B, there are only two situations: either B contains
activities not in Bi or Bi is a sub-block of B. In the first scenario, for any activity
ai /∈ B, ai must have different order relation in respect to τ than activities in B
have, therefore Bi cannot be clustered with τ ; in the second scenario, there must
be an activity ai ∈ B \Bi having different order relation to τ when compared to
an activity aj ∈ Bi. Therefore Bi can not be clustered with τ . This indicates that
the silent activity τ can only be clustered with the Loop-block it corresponds to.
Consequently, the order of clustering also does not influence results.

7 Algebraic Properties of Order Relations

In addition to associativity of order relations, we have analyzed their algebraic
properties. Let Si, Sj , Sk ∈ P be three sound process models. In this context,
we denote a process model as sound if there are no deadlocks or unreachable
activities in the process model [21, 28]. Let further 3 = {0, 1,+,−, L} be the
order relations as set out by Definition 3. Then, the algebraic system < P,3 >
has the properties depicted in Table 2:

Algebraic property Order relation 3
Name Mathematical expression 0 1 + - L

Closure Si3Sj ∈ P Yes Yes Yes Yes Yes

Commutativity Si3Sj = Sj3Si No No Yes Yes Yes

Transitivity Si3Sj ∧ Sj3Sk ⇒ Si3Sk Yes Yes No No Yes

Associativity (Si3Sj)3Sk = Si3(Sj3Sk) Yes Yes Yes Yes - 10

Identity element I Si3I = Si I = ∅ I = ∅ I = ∅ None I = ∅ 11

Table 2. The algebraic properties of order relation

9 We can easily identify such situation from the process model or the order matrix. If
a block is surrounded by two loop-back edges in a process model, we only need to
keep one of them so that the model is still trace equivalent to the original one. In an
order matrix, we can easily identify such situation by checking whether two silent
activities τ is able to merge or not. If yes, then we can remove one of them.

9 According to the analysis in Section 6, conditions for analyzing associative law does
not exist

11 If two blocks Si and Sj have order relation ’L’, at least one of them must be silent
activity τ . Therefore, we consider the identity element also being existent for order
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In details, Table 2 summarizes 5 algebraic properties of the order matrix,
namely, closure, commutativity, transitivity, associativity and identity element.
The analysis is based on function createModel as defined in Algorithm 2. Using
this function we can merge two process models Si and Sj (a process model is
also a block) into another process model Sij based on order relation 3.

– Closure. For all five order relations, the closure property is satisfied, i.e., if
we merge two sound process model Si and Sj based on any of the five order
relations 3 = {0, 1,+,−, L}, we obtain another sound process model Sij .
This is a very important property since it guarantees soundness of the re-
sulting model when merging two process models using function createModel
(cf. Algorithm 2). Consequently, when transforming an order matrix into a
process model using Algorithm 2, the resulting process model must be sound
as well, since the algorithm constructs a process model by merging blocks
(cf. Algorithm 2). The theoretical background to guarantee soundness of
the resulting model when merging two blocks can also be found in ADEPT
change framework [21] (or see also inheritance rule in Petri Nets [29]).

– Commutativity. Commutativity is represented by the relation of the el-
ements in an order matrix. If Aaiaj = 3 with 3 ∈ {+,-,L} holds, we will
obtain Aajai = Aaiaj (since the respective order relations satisfy commuta-
tive law). On the contrary, if Aaiaj = ’0’ holds, we can obtain Aajai = ’1’
and vice verse. This implies that, in most cases it is sufficient to only analyze
the upper or lower part of the triangle in the order matrix.

– Transitivity. Transitive law applies to order relations ’0’, ’1’ and ’L’, but
not to the others. This property is important for Algorithm 1 because the
key construct in this algorithm is a sequence structure with start- and end-
node. Since order relations ’0’ and ’1’ are transitive, but not commutative,
for a given process model S with finite number of activities, there must
be a start- and end-node. Reason is that if an algebraic system with finite
number of elements is transitive, but not commutative, this algebraic system
must be bounded [25], i.e., there must be an element which does not have
predecessors (the start of process model) and an element which does not
have any successor (the end of process model).

– Associativity. The associative law has been discussed in Section 6. This
property guarantees that when transforming a process model S into an order
matrix A, and then transforming resulting order matrix back to a process
model S′, S and S′ are trace equivalent. This property is important in order
to guarantee the one-to-one mapping between a process model and its order
matrix.

– Identity element. The identity element is important for dealing with silent
activities in a process model. Since silent activities constitute the identity ele-
ment for order relations ’0’, ’1’, ’+’ and ’L’, we do not need special treatment
for them (i.e., they will not influence the result). This property is important,

relation ’L’, since an ”empty” process model remains an ”empty” process model,
even after surrounding it within a loop structure.
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especially when changing a process model and its corresponding order ma-
trix. Note that such changes often introduce silent activities [13, 29, 21, 32].
The only exception is provided by order relation ’-’. When merging a process
model Si with a silent activity based on order relation ’-’, we obtain a new
block Sj . Consequently, we need to add one more empty trace t (producible
by the silent activity, i.e., a trace contains no activity) into trace set TSi

in
order to obtain trace set TSj . Therefore, if t /∈ TSi , we obtain TSi 6= TSj . We
refer to [13] for an approach to handle silent activities for order relation ’-’.

8 Conclusion

This paper provides a matrix representation of a process model, which we denote
as order matrix. We have presented an algorithm to transform a process model
into its order matrix, and an algorithm to transform an order matrix back to a
process model. We have further shown that the mapping between process model
and its order matrix is one-to-one, i.e., we basically obtain same process model
when transforming a process model into an order matrix and then transforming
the resulting order matrix back to a process model. Finally, we have discussed
algebraic properties of order relations and their influences on the algorithms as
well.
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