The Proviado Access Control Model
for Business Process Monitoring Components

Manfred Reichert!, Sarita Bassil?, Ralph Bobrik?®, Thomas Bauer*

nstitute of Databases and Information Systems, Ulm University, Germany
manfred.reichertQuni—ulm.de
2Computer Science Department, Marshall University, USA
bassil@marshall.edu
3Detecon AG, Switzerland
ralph.bobrik@detecon.com
4Group Research and Advanced Engineering, Daimler AG, Germany
thomas.tb.bauer@daimler.com

12th August 2010

Abstract

Integrated process support is highly desirable in environments where
data related to a particular business process are scattered over distribu-
ted, heterogeneous information systems. A business process monitoring
component is a much-needed module in order to provide an integrated
view on all these process data. Regarding process visualization and
process data integration, access control (AC) issues are very important
but also quite complex to be addressed. A major problem arises from
the fact that the involved information systems are usually based on
heterogeneous AC components. For several reasons, the only feasible
way to tackle the problem of AC at the process monitoring level is
to define access rights for the process monitoring component, hence
getting rid of the burden to map access rights from the information
system level. This paper presents the Proviado process visualization
framework and discusses requirements for AC in process monitoring,
which we derived from our case studies in the automotive domain. It
then presents alternative approaches for AC: the view-based and the
object-based approach. The latter is retained, and a core AC model
is proposed for the definition of access rights that meet the derived
requirements. AC mechanisms provided within the core model are key
ingredients for the definition of model extensions.

1 Introduction

In order to streamline their way of doing business, today’s companies are
dealing with a large number of processes involving different domains, orga-
nizations, and groups (Weske, 2007; Mutschler et al., 2008). As discussed
by Bobrik et al. (2005), an integrated process support is highly desirable
in such an environment where data (e.g., business data, audit trails and
reports) related to a particular process (instance), and with different degrees
of sensitivity, are often scattered over heterogeneous information systems
(IS) (cf. Fig. 1). A process monitoring component is a much-needed module
in order to provide an integrated and abstracted view on all these data
(Junginger et al., 2004; Muehlen, 2001; Polyvyanyy et al., 2009). Despite its
importance, many existing process-aware information systems do not offer
such component. For example, a process monitoring component is specifically
responsible for displaying the status of process instances (McGregor and
Kumaran, 2002), for dispatching specific activities to corresponding actors
(Rinderle and Reichert, 2005), for providing an integrated view on process
and application data (Rinderle et al., 2006), or for enabling business perfor-
mance monitoring (Costello and Molloy, 2008; McGregor, 2002; Muehlen,
2001; Junginger et al., 2004).

9
{ technicians gﬁ manager
PR = (=) = 7 D A0 SN
—— e LRh N T
L3 £

Audit trails & reports

‘ I'

. E process B process C

process A
AC module 47&;

Information systems { ‘ m ‘ AC module @

CAD

Figure 1: Process Data Integration with Multiple Perspectives

1.1 Problem Statement

Different user groups or roles (e.g., technicians, engineers, managers) usually
have different perspectives over processes and related data. In this context,

Bobrik et al. (2007), Polyvyanyy et al. (2008) and Reijers et al. (2009) suggest
providing adequate views for the different user groups. This is of particular
importance when dealing with complex, long-running business processes with
dozens up to hundreds activities (see Fig. 2 for an example from one of
the projects we conducted in the automotive domain). Regarding process
data integration and process monitoring (Junginger et al., 2004; Polyvyanyy
et al., 2009), in addition, access control (AC) issues are very important to
be addressed, but have been neglected in existing approaches so far. In this
context, a major problem is that involved IS are usually based on different
AC components implying facts such as

o heterogeneity regarding the meta-models based on which organizational
models and related access rights are defined (e.g., users / groups and
actors / roles),

o different notions for the same entity/entity type (e.g., user and actor),
and

 non-registration of particular user(s) in all of the involved IS.

Figure 2: Model of a Complex Engineering Process (Partial View)

To preserve integrity of AC information, AC constraints applied at the
process monitoring level should be consistent with the constraints set out
by the different IS. However, in our case studies it has turned out that the
integration of heterogeneous AC components is difficult to achieve for several
reasons:

1. Access rights are not always explicitly described, but might be “hard-
coded”; and hence difficult to retrieve;

2. AC modules do not always provide (application programming) inter-
faces in order to facilitate the access to information about AC rules
(“black-box” AC modules); and

3. Rights at the IS level mainly deal with process definition and execution,
and have been not designed for the monitoring of process data by
different users. Process definition and execution require administration
rights, permissions to create new instances, rights to work on specific
activities (Wainer et al., 2003), delegation rights (Wainer et al., 2007),
and rights to change processes (Weber et al., 2005). By contrast,
monitoring requires rights to visualize specific process activities, to
display specific activity attributes, to visualize application data in the
context of active process instances, or to show different abstractions
on a process (cf. Fig. 3a+b).

Taking this into account, the only feasible way to tackle the problem of
AC at the process monitoring level is to (re-)define AC rights for the process
monitoring component, hence getting rid of the burden to inherit AC rights
from the IS level. Of course, if possible, existing AC rights at the IS level
should be automatically mapped to the ones at the process monitoring level,
but we cannot assume this in general. Explicitly, specifying AC rights at the
monitoring level also makes it possible to define them at a finer-grained level
when compared with what is already defined at the IS level.

1.2 Contribution

The AC approach presented in this paper was developed in the Proviado
project (Bobrik et al., 2005, 2006, 2007). Proviado proposes a solution
for visualizing in a secure way data related to a particular process or to
a collection of processes. This paper significantly extends the work we
presented in (Bassil et al., 2009). We give additional insights into our process
visualization framework, describe an AC module for it, provide an evaluation
of this AC module, and elaborate related work in more detail.

We first discuss issues relevant for the realization of a process visualization
(monitoring) component in general as well as requirements for the definition
of related AC rights in particular. These requirements have resulted from
case studies we conducted in the automotive domain. Amongst others we

analyzed processes in areas like automotive engineering, release management,
change management, vehicle repair, and production planning. We discuss two
alternative approaches for AC, mainly a view-based and an object-based one.
The retained solution (i.e., the object-based approach) is used as backbone
in order to provide a comprehensive core AC model. This model allows for
the (compact) definition of AC rights at a fine-grained level. Moreover, AC
rights are meant to meet the spectrum of confidentiality possibly defined
on process data. Proposed AC mechanisms will be key ingredients in future
definitions of extended AC models for process monitoring.

The remainder of this paper is organized as follows: Section 2 sets the
context of our research and introduces the Proviado visualization framework,
but without including AC issues. Section 3 then exposes the major AC
requirements to be met by such a component. Two alternative approaches
for AC are studied and compared in Section 4. In Section 5, we introduce
our logical AC model. Section 6 provides an evaluation of our approach
and Section 7 discusses related work. Finally, Section 8 concludes with a
summary and an outlook.

2 The Proviado Approach

This section sets the context of our research. It first introduces basic notions
by distinguishing between model and instance level. Then we exemplarily
show how sophisticated process visualization is realized in Proviado. For
illustrating purposes, we consider a real case from one of our projects in the
automotive domain.

2.1 Basic Considerations

Generally, we distinguish between model and instance level (cf. Fig. 3). The
former gathers different kinds of enterprise models such as organizational mo-
dels, functional models, data models, IT-system models, and process models.
Each of the first four models gives input to the process model defined as a set
of one or more linked activities, which collectively realize a particular business
objective. Specifically, these activities are carried out in a coordinated way
by different processing entities (including humans and software agents) to
reach a goal, such as changing the design of a car, delivering merchandise,
or operating a patient. User- and pre-defined attributes may be associated
with process models or activities (e.g., costs, needed resources). Examples of
frameworks supporting the integrated modeling of the different enterprise
aspects include ArchiMate (Groenewegen et al., 2010), ADONIS (Kihn et al.,
2003) and ARIS (Davis, 2008).

In Proviado (Bobrik et al., 2005, 2006, 2007), at the model level, we focus
on the secure visualization of data related to a particular process model.
As example consider the model of a change request process as it can be

Model level Instance level User-adapted views

Organizational model

Access control on visualization:

. @) Abstraction at the state level.
Worklists @

(b) Restricted view on activity
instances and activity
attributes.

Functional | process instances ' i
model ! ! i

Process model
And-: Spll[

.-':l: i } I
E {]
1 1 T
i
1 ! H
]
i
Data model
C (. | Activity attributes
—
v : completed activity
-- IT-System model »: running activity

Figure 3: Basic Considerations

found in the automotive domain (cf. Fig. 4). This process model comprises
five phases with 20 activities in total. Furthermore, control and data flow,
exceptional paths, role assignments, and IT system resources are depicted.
Using this example, we will show how a process model can be enriched with
instance data and then be displayed to authorized users. Thereby, Proviado
enables flexible configuration and personalization of the generated process
visualizations.

Other kinds of models have not been considered for visualization yet, but
will be added later on. Different types of data may be involved in a process
model such as process relevant data and application data (Weske, 2007). We
are particularly interested in providing a secure way to visualize application
data. These data are in general strictly managed by the application(s)
supporting the process model.

At the instance level, we focus on the secure monitoring of running
process instances. A process instance is defined as the representation of a
single enactment of a process model (i.e., a concrete business case). Concepts
such as user worklists (i.e., lists of work items derived from process instance
activities), activity execution state (e.g., Running), and activity execution
cost are associated with the instance level.

Phase I: Creation of CR

[cR nitator |

Rollback in Exceptions (Faults)

Change Reason, 22
Description, Involved

Vehicle Project, Plants’
PartNames |

] Change Request
PartNo, Weight, Document
Supplier, Costs
(in PDM format)

PartNo, Weight,

Supplier, Costs

Modify Change
Request 21

Initiate Change
Request 1 [
@
| Chief Eng. Specﬁg;g\golved Sl
Phase II: Evaluation by Engineering
Request .
[cR Manager Expertises 3]‘
Product Data Get Part Data
Mgmt System| fromPDM 4
Y
Transform Part Data
Change Request
Document

Types 5
Generate Electric Generate Body Generate Engine
Expertise 6 Expertise 7 Expertise 8

“Electri;ng.]\é\ﬂ Body Eng.] ‘ Engine Eng. ‘
Body Expertise ‘_] [Engine Expertise‘_]
T A

Generate Engineering
Expertise 9

)
Document Archive
Mgmt System| n Expertises 10

Phase III:|Evaluation by other Domains

Request
Evaluations 11
&

23

Engineering Expertise

Purchase
Planning
Change Request - -
Identify Responsible
(DEENTET Purchaser by Part 14

Evaluate Production Evaluate Quality Evaluate Part
Planning 12 Influences = 13 Costs 15

[Plam Quality Mgr | -».___..“ Purchaser '
Evaluation PP_J [Evaluation Qualigy_l J Evaluation Cost§_]
Phase V] Decision) =

CR Board
24

Approve Change
Request 16

Document Archive -
Mgmt System i Decision 17

Phase V:|Execution of Change
Instruct

Realization

Change Request
Decision
Change Request
Document

26

18"

Realize
Change 19

®

Close Change
Request 20

Abort Change Request

() activity ([A]automatic) [_] role (actor) assigned & ANDsplitorjoin ~ <— control-flow edge
input / output data [system called &® XORsplitorjoin < data-flow edge

Figure 4: Process Model of a Change Request (CR)

2.2 Process Visualization with Proviado

The Proviado framework targets at flexible and configurable visualizations of
business processes. In particular, these visualizations should to be adaptable
to the needs of different user groups (i.e., business performers) along the
following three dimensions: First, it must be possible to reduce process
complexity for users by discarding or aggregating information which are not
relevant in the given context or for which the user does not have sufficient
access rights. Second, the appearance of process elements (e.g., activities,
data objects, control and data connectors) must be customizable independent
from the representation of the source process model. Third, different diagram
types (e.g., process graph, swim lane, calendar, Gantt diagram, table) should
be supported.

2.2.1 Process View Concept and Template Mechanism

For realizing a particular drawing of a process model and process instance
respectively, a visualization model can be specified separately from the
process. Among other things, such visualization model comprises parameters
for configuring which process elements are to be displayed and which notation
shall be used. This configuration can be specified at a high level of abstraction
based on a powerful view concept and a flexible template mechanism.

Proviado View Concept. The process view concept we developed in
Proviado allows reducing the complexity of a business process visualization.
This is achieved by applying well-defined transformation rules based on
process graph reduction and process graph aggregation respectively. The
reduction operation can be used to remove process objects from a process
model. As example consider Fig. 5 where activities E, F and G are removed
from the given process model and a new control edge is inserted instead.
Fig. 5 also gives an idea of the aggregation operation. Aggregate(B,C,H,K),
for example, aggregates four activities by replacing them with one abstract
node in the process graph. Depending on the concrete structure of the
sub-graph induced by the set of activities to be aggregated, different graph
transformations may have to be applied. While in some cases the aggregated
process view can be realized by simple graph transformations, in other
scenarios this necessitates a more complex restructuring of the process graph.
Generally, aggregated process views are more difficult to realize than reduced
ones. In particular, relations to satellite objects (e.g., data elements, org.
roles) have to be preserved (cf. Fig. 5) and attribute values for the abstract
activity node resulting from the aggregation have to be calculated. Finally,
aggregation operations are provided for all process aspects including data
flow, and actor assignments.

It is important to mention that view building operations as provided by
Proviado maintain a sound process model if desired. However, to introduce

Figure 5: Proviado View Concept

additional flexibility for process visualizations, operations "violating" structu-
ral model constraints (e.g. DeleteEdge) are considered as well. Higher level
operations built on top of aggregation and reduction operations exist that
automatically derive the set of activities to be processed. This facilitates
maintenance of view definitions when changing the process models they are
based on.

Proviado Template Mechanism. While the described view concept
allows us to define which process elements shall be displayed, the Proviado
Template Mechanism (for details see (Bobrik et al., 2006)) enables us to
configure the graphical appearance of the different process elements. In this
context a template represents the concrete notation (i.e., the symbols) to be
used for visualizing a particular process element (e.g., an activity or a data
object). Its graphical appearance (e.g., shape, arrow) is described based on
Scalable Vector Graphics (SVG). By using this XML-based format, to a large
degree, we can define templates graphically with a standard SVG Editor.

Each template comprises a set of data fields (i.e., parameters) which can
be filled with concrete process data values (e.g., activity name or state) at
visualization time. We use XPath expressions to establish the relationship
between symbol definition and data fields. Required data transformations
(e.g. date format conversion) can be realized via ECMA-Script expressions.
Altogether, a complete notation for process visualization consists of a set
of templates. More precisely, each process element has to be linked to a
template. This link can be established statically (i.e., remain unchanged) or
dynamically based on selected process data (e.g., the runtime status of the
process element). The latter enables, for instance, to use different symbols
for activities, e.g., depending on their state or on the actor working on them.
Finally, Cascading Style Sheets are used to vary the look of process drawings.

All in all the sketched Template Mechanism enables us to use a process
notation in an unambiguous and easy to maintain manner. In combination
with the view concept personalized process visualizations become possible.
While non-relevant process elements can be removed or aggregated with

-
S

4
&
R

visualization model

7N build assign fillu adapt
o oWl Sl S bos | (5D ae e
[view symbols symbols style / \
-A D E L |
activity: - symbol: - color: | @
D * M| aggregate actviy.def P1 [. \-/ -
&3> red%ce X Ml + — o §i3 .
process model TR = fonts:
. o : Arial 10)
A.state = running “remove name :g:l:‘r?r:r?al 7’:13(" RIOCESS) (SVG)
.) : activities of actor:
x:hnk = file://X.doc ' p2" name
instance data H — —
H 3
'

Figure 6: Generating a Process Visualization in Proviado

other objects, the visualization of relevant process elements can be adapted
to specific user or application needs.

2.2.2 Configuring a Process Visualization

Fig. 6 shows the basic steps necessary to automatically generate a process
visualization. Starting point is an integrated process model, which correlates
(fragmented) process data from different source systems in an harmonized way.
First, we restrict this visualization content to that information needed by the
user (S0). This is realized by a view component which applies aggregation
and reduction techniques to process models. Step S0 is followed by formatting
steps S1, S2 and S3: S1 fixes the graphical symbols designed for the different
process elements. Thereby we consider information from a wisualization
model; S2 fills graphical symbols with real attribute values related to the
process model or process instance to be displayed; within S3 formatting
parameters are customized to user preferences, e.g., by coloring the process
visualization in accordance to cooperate identity guidelines.

2.2.3 Application Example

Consider again the process model from Fig. 4. Assume that an instance of
this process shall be visualized for an actor from the engineering domain. For
this purpose non-relevant process elements have to be discarded. Automated
steps for transforming and exchanging data (e.g. Steps 4 and 5), for example,
shall be not displayed. The same applies to selected interactive steps (e.g.
Steps 2 and 3). Finally, control edges capturing forward and backward jumps
shall be removed. Altogether this process view can be realized by applying
the following view operations (listed in brackets for each operation):

Aggregation:* {1, 2}, {11, 12, 13, 14, 15}
Reduction: {3}, {4, 5}, {10}, {17, 18}, {20}, {21}

!Bach operation is listed in brackets. The aggregations result in the activities "Request
Creation" and "CR Evaluation"

10

dpovedo =lolx)
. e | : I . | = I 5 | i | U [0
& o - It DT
Change Request #123BF17 in Project R123
Description: | Readability of Speed e
Reason: Customer Benefit
v v
[Request Creation [Generate Electric [Generate [Approve Change [Realize Change.
[Expertise Engineering Request
Experti |
a i Ergina o goars S —
oter Smit, Paul Clark JSus Spogs ol iy el Fiig
17 [L1.61 2007 =107 0.01.2007 -
[Detailed Description: accepie cceped (ot decaed]
f
dial and
nole in
console s necessar i .
Pthaps control it s Parts Involved in CR:
|affected.
o Enginar)]
an Voun Number ~ Name Owner Modification required
A1728 Speedometer Dial Adam Young yes
A1729 Speedometer Pointer Adam Young yes
E rmm i v AO512 Console Rick Right yes
Frostias E3272 Control Unit Interior Sue Spears no
Engine Enginsor
I Sandr
fior
ot

Figure 7: Visualization of a CR Process Instance for Engineers

DeleteEdge: {22, 23, 24}, {25, 26}

The resulting process view would still contain a large number of satellite
nodes (representing actors, systems, etc.) which usually shall not be displayed.
Our visualization model allows to omit such nodes and to assign their
data values to other visualization objects, e.g., activity boxes (cf. Fig. 7).
Furthermore, with the Proviado Template Mechanism any desired appearance
of the process view to be displayed can be realized. For example, the
visualization from Fig. 7 contains information like change reason, change
description, and involved parts. Furthermore, a header has been added. Other
data like a detailed CR description can be accessed via a tool tip. Finally,
activities which are of particular importance for engineers are highlighted.

Note that the created process drawing as depicted in Fig. 7 constitutes one
possible abstracted visualization of the process model from Fig. 4. Depending
on specific user requirements, for example, Proviado allows to provide different
visualizations of the same process view, e.g., using a standardized notation
like BPMN. Basic to this exchangability of visual representations is the
described Proviado Template Mechanism. Generally, different information
and layouts can be presented. Furthermore, new process views (with same
or different appearance) can be easily realized. For example, for managers
each of the five phases of the CR process could be aggregated to one single
activity and only information about deadlines, delays, resources, and the
final decision be visualized (cf. Fig. 8)

We now have to additionally consider access rights in respect to visualized
process data. Generally, at model and instance levels, different kinds of
rights need to be defined; e.g., administration rights, data access rights,
permission to create instances from a given process model, rights to execute
a particular work item, or delegation rights. At the model (instance) level,
the visualization (monitoring) of user-adapted views (see above) derived

11

[z

|Request Creation EXpertis_e CR Evaluation Cha_nge Request chav_lge_

\4 \4 \4
2 Peter Smith, Paul 2 Sue Spears, Adam R Carolyn Winter, Mike| 2 Nick Field 2-

Figure 8: Visualization of a CR Process Instance for Managers

from specific process models (instances) is required. These views must take
into account access rights of the involved user. Access rights may be defined
on different aspects related to the model and instance levels; e.g., process
model, activity, process instance, activity instance, data elements, pre- and
user-defined attributes, attribute current value, and attribute history. In
the following we discuss major requirements for access control in process
monitoring and then present the access control model used in Proviado.

3 Access Control Major Requirements

We conducted case studies in the automotive domain in which we studied
processes relating to car engineering, change management, vehicle repair, and
release management (Miiller et al., 2006; Bobrik, 2008). We complemented
this by also considering a large number of processes from the healthcare
domain (Lenz and Reichert, 2007). As fruit of these case studies, we derived
major requirements for AC in process monitoring.

Requirement 1 (Definition of AC rights at a fine-grained level).
AC rights for process monitoring should meet the spectrum of confidentiality
defined on data related to a particular process. Moreover, they should be
definable on different aspects/objects of the model and instance levels (e.g.,
the process itself and its activities, attributes, and data elements).

Requirement 1.1 (Meeting a spectrum of confidentiality). A distinction
should be made between at least three levels of confidentiality: a first level
in which all available information can be accessed, a second one where only
high-level information can be accessed, and a third one where no information
is available at all. We provide some examples to illustrate this:

o Example 1. Considering the (simplified) process of managing change
requests (cf. Fig. 9a), for example, we may think about a (pre-defined)

12

attribute (e.g., activity cost) associated with a specific activity (e.g.,
generate expertise). Such an activity may require a “two days by
person” cost? to be accomplished. One may have the right to access this
information (i.e., the exact value of the attribute), to access abstracted
information such as “less than one week (i.e., less than five days by
person)”, or to access nothing.

Example 2. Another example could be the "costs" for applying a
change to a car. "Costs" may be modeled as an output data element of
the Generate Ezpertise activity. Again, the three levels of confidentiality
discussed above may be applied in order to access either the exact
value assigned to "costs" (e.g., 12.875 Euros), or an approximate value
(e.g., less than 15.000 Euros), or to completely hide the information.

Example 3. The spectrum of confidentiality may also be restricted
to only two levels: “give” or “don’t give information”. In change
management, for example, an external partner may design part of the
car; internally, a verification of this component may be done before it
is integrated with the overall design of the car. The external partner
might or might not have the right to know about the ezxistence of the
verification activities.

Example 4. Specific data (e.g., business/technical documents) may
be given as input to activities such as generate expertise, provide
evaluation, or provide comments; one may have or may not have the
right to know about the ezistence of these documents. In our example
from Fig. 9a, specific departments (car body engineering, electronic
engineering, motor engineering) are responsible for generating expertise,
i.e., three generate expertise activities are modeled in parallel. The
different departments might or might not be allowed to access results
of the other departments, or at least not before they generate their
own expertises. These results may be considered as output data (e.g.,
Expertise documents) of the different generate expertise activities.

Requirement 1.2 (AC rights definable on different objects of the model /

instance levels). We define “object” as entity of a process model and process
instance respectively; e.g., an expertise document produced as output of a
generate expertise activity is considered as data object. The generate
expertise activity itself as well as the change request (CR) process model
are considered as two different objects. Moreover, a group of objects also

2The "days by person' measure is known in project management. Suppose we have one
person working on a specific task, this measure specifies the number of days she needs in
order to accomplish this task.

3A similar example stems from the "Articles Review" process. Consider reviewers of a
specific article. Any of these reviewers is not allowed to access other reviewers’ evaluation
unless she finishes her own evaluation.

13

constitutes an object; e.g., AC rights may be defined 1) on all running CR
process instances, or 2) on specific ones. We then define different levels of
abstractions on objects. AC rights should be definable at these different
levels of abstractions (cf. Requirement 3).

Example 5. For example, we need to distinguish between the AC rights
defined on all change request (CR) process instances currently running and
the AC rights defined on a specific CR process instance. An external partner
may not have the right to access any of the running instances, while a CR
initiator may not have the right to access specific process instances corres-
ponding to change requests not initiated by her.

(a
®

generate provide
expertise evaluation
(CR-init 7 (CRMQFW chief eng]
initiate request generate generate request provide ’"
CR Expertise expertise expertise evaluation evaluation

expertise evaluation
Ol ©
pravide
=
comments)\ -
request approve instruct instruct
CR realization realization control
provide flow edge
comments, . AND-split
join
provide abort ’ OR-split/
@ comments, join

(b,

View 1

. L Lyl com >
[wtlatmmH&xpemse}{eva\uatmn menmgHapprnva\Hea\\zat\nm cnmc\usm}
generate
expertize
oy eng

generate
expertise

mofar eng

generate
Expertise

View 3

request
expertise

generate

View 2 expertise

(Cravigr) ((CR-Mar)

(CRMgr) (CRavigr) (CRMgr)
request request request instruct conclude
expertise evaluation comments realization CR

abort

Figure 9: Automotive Domain — (a) Simplified Process of Dealing with
Change Requests (CR), (b) Different Views on CR Process

Requirement 2 (Definition of static AC rights). We distinguish bet-
ween “static” AC rights that are independent from the execution of a process
instance, and “dynamic” AC rights for which this is not the case. The latter
are based on elements such as activity status and control principles (e.g.,
separation of duties, dual control, and inter-case constraints) (Schaad and
Moffett, 2002; Botha and Eloff, 2001).

14

Example 6. Regarding our CR process, a person from a specific depart-
ment (e.g., motor engineering) responsible for generating expertise might
not be allowed to access the expertise document generated by the other
departments (e.g., car body engineering and electronic engineering) unless
she finishes generating her own expertise. — This paper focuses on static
access control rights.

Requirement 3 (Usability and maintainability of AC rights). AC
rights should be simple to define and easy to maintain. As discussed in
Tolone et al. (2005), a challenge is to balance collaboration and flexibility;
i.e., we need to ensure that the advantages provided by process-aware IS
are not reduced by AC rights being too rigidly defined. For this purpose,
abstractions are required at the objects’ level. In order to specify AC rights
at different levels of granularity, we need to define hierarchies on objects;

Example 7. Regarding our CR scenario, it might be reasonable to
authorize a manager to access all running CR process instances. However,
regular users might only have access to specific CR instances (e.g., CR
initiators only have the right to access CR process instances that correspond
to change requests initiated by them).

Table 1 gathers major requirements identified. The ones highlighted (i.e.,
R1, R2, and R3) are addressed by the solution proposed in Section 5.

Table 1: Access Control Major Requirements

Requirements Requirements’ description

R1 Definition of AC rights at a fine-grained level
R1.1 Meeting a spectrum of confidentiality
R1.2 AC rights definable on diff. aspects of the mod./inst. levels

R2 Definition of static AC rights

R3 Usability and maintainability of AC rights

R4 Definition of dynamic AC rights

R5 Definition of AC rights on the visualization of a collection of processes
R6 Definition of AC rights for the look-ahead problem

R7 Completeness of the AC component

4 Candidate Solution Approaches for Access Control

Among a list of possible AC approaches, we feature two candidate solutions
that we study and compare: the view- and the object-based approach. In
both approaches we follow the main idea proposed by a generalized AC
approach; i.e., RBAC (Role-Based Access Control) as described by Ferraiolo
et al. (2001). In RBAC models AC rights are not directly linked to concrete
users, but to roles.

15

The view-based approach consists of defining one basic view per user role;
this view implicitly reflects the AC rights of the role over a process by only
showing the information to be accessed by users with the respective role.
The object-based approach, in turn, consists of defining, for each role, AC
rights on the different aspects of a process (e.g., activity, activity attributes,
process instance).

Section 4.1 illustrates the two featured approaches. Section 4.2 then
summarizes their advantages and drawbacks. This helps us to clearly motivate
the object-based approach as the one retained and elaborated in the following.

4.1 Description of Solution Approaches

View-based Approach. Considering a particular process model such as
the CR process (cf. Fig. 9a), a number of views could be (manually) defined
on this process. Each of them would then reflect the information accessible
for users with a particular role. Access rights over the process may be derived
implicitly from each view. Suppose the following views are defined on the

CR process (cf. Fig. 9b):
1. View 1. High-level view on CR process,
2. View 2. View on expertise activities of CR process, and
3. View 3. View on request activities of CR process.

Then one basic view per role may be defined: (“general manager”, View
1), (“CR manager”, View 2), and (“engineer”, View 3). Each of the views
implicitly reflects the read access rights of the particular role:

o A general manager may access high-level activities like initiation,
expertise, evaluation, commenting, and so on.

o CR managers may access activities request expertise, request
evaluation, request comments, instruct realization, and conclude
CR.

o Engineers may access concrete activities request expertise and
generate expertise.

Object-based Approach. It consists of explicitly defining an extensible
set of access rights for each role:

o (“general manager”, {initiation, expertise, evaluation, commenting,
approval, realization, conclusion}, Read)

o (“CR manager”, {request expertise, request evaluation, request
comments, instruct realization, conclude CR}, Read)

16

o (“engineer”, {request expertise, generate expertise}, Read)

A view may then be dynamically generated for a specific user based
on the access rights associated with the role(s) played by this user. As an
example, a view such as View 3 illustrated in Fig. 9b would be generated for
motor engineer John Smith.

4.2 Solution Approaches: Advantages and Drawbacks

We discuss the merits and shortcomings of these two approaches.

View-based Approach. The most obvious advantage comes from the
fact that an existing concept (e.g., View Definition Language (Bobrik, 2008))
can be explicitly reused in order to reflect the access rights over processes.
Hence, there is no need for defining a new AC language assuming that the
process-aware IS clearly supports a View Definition Language). However,
three drawbacks can be identified:

o Costly maintenance of views: Consider a process model P together
with the views derived from it. Suppose a modification is brought to
P: (1) the views affected by this change have to be identified possibly
among a large number of existing views; (2) the identified views have
to be adapted to reflect the change of P. This adaptation should be
done without any failure; (3) the adapted views imply an implicit
modification over AC rights.

o Complexity of views combination: Since a user may play more than
one role (e.g., John Smith being a general manager as well as a motor
engineer), we must be able to combine multiple views (e.g., View 1
and View 8). The resulting view, automatically generated or manually
modeled out of multiple views, will be shown to the user. On the
one hand, we are facing a combinatorial problem (i.e., the different
ways of arranging views in order to combine them). On the other
hand, conflicts may exist between access rights reflected by the views
to be combined. Such conflicts, first, must be detected, and second,
be solved, probably by applying specific conflict resolution policies
(di Vimercati et al., 2005; Jajodia et al., 2001) in order to correctly
derive the combined view to be shown to the user.

e Occurrence of redundant information due to lack of abstraction: Sup-
pose that a specific role R has access, among other things, to a specific
activity A in all processes involving A. Using the view-based approach,
this access right would be reflected by showing A within all the views
respectively defined on the processes containing A. This leads to re-
dundant information due to the definition of access rights at the level

17

of process models, not involving functional models (cf. Section 2.1).
The redundancy of information is an issue not only for the view-based
approach, but for other approaches as well, as long as the notion of
abstraction is missing (e.g., at the level of activities). However, redun-
dancy has more impact in conjunction with the view-based approach
than in conjunction with the object-based one since for the latter the
definition of abstractions is easier to achieve (cf. Section 5.3).

Object-based Approach. The main advantage of this approach is
threefold. Indeed, the drawbacks identified for the view-based approach
appear to be advantages here. First, there is no maintenance of views; the
cost behind the maintenance operation is abolished. Second, views do not
have to be combined and hence the complexity behind this operation does
not exist. Third, if it is possible to define different levels of abstractions
on objects, this will reduce redundancy when specifying access rights. The
object-based approach may be criticized for not being intuitive since AC
rights, instead of basic views, are initially defined for each role. However when
compared with the drawbacks of the view-based approach, we voluntarily
accept this only criticism, and select the object-based approach in order to
elaborate the core solution for our logical AC model.

Table 2 summarizes the most important criteria that play either in favor
of or against each of the considered approaches. As we can see, among five
criteria, three play in favor of the object-based approach, while only one
criterion plays in favor of the view-based approach.

Table 2: Comparison of the View-based and Object-based Approaches

Criteria/Approaches View-based Object-based
Ease of AC rights definition + -

Ease of AC rights maintenance - +

Ease of conflicts resolution - -

Ease of AC rights combination - +*
Redundancy-free - +

+ Criterion plays in favor of the approach
- Criterion plays against the approach
* This criterion is reduced to the “Ease of conflicts resolution” criterion

5 An Access Control Model

An AC model for process monitoring must allow to restrict access to au-
thorized users only. Section 5.1 presents our formal framework for defining
and manipulating AC rights. Section 5.2 and Section 5.3 discuss AC model
extensions for coping with the problem of users playing multiple roles, and
for addressing usability and maintainability issues.

18

5.1 Core AC Model

The specification of an AC module at the process monitoring level requires,
first and foremost, the definition of access rights. A first step towards meeting
Req. R1 (cf. Table 1) consists of defining access rights on attributes associated
with specific process aspects that we call objects.

Activities, process models or process instances are examples of accessed
objects; attributes, indeed, reflect fine-grained characteristics of such objects.
We first formally define the link between an object and its associated attri-
butes; i.e., we define function attributeSet which determines all attributes
associated with an object obj.

Definition 1 (Set of Attributes Associated with an Object) Let Ob-
jSet be the set of objects and AttSet be the set of attributes involved in the
process monitoring component. Then: attributeSet: ObjSet — AttSet? with
Vatt € attributeSet(obj): att is a valid attribute defined on obj.

We associate with every object involved in the process monitoring com-
ponent a set of attributes: Vobj € ObjSet: attributeSet(obj) C AttSet

Example 8. In order to illustrate Def. 1, we reconsider the process from Fig.
9a. For the sake of simplicity, we only retain the concrete concept of activity
instead of the generalized one of object. Let ObjSet = {request expertise,
generate expertise, request evaluation, provide evaluation, request
comments, provide comments} be a set of activities involved in the CR pro-
cess. Let further AttSet = {Att), Atte, Atts, Atty, Atts} be the set of
attributes involved in the CR process. Taking into account Def. 1, sup-
pose that the set of attributes associated with each activity is captured as
follows: attributeSet(req. expertise) = {Att;, Atts}; attributeSet(gen.
expertise) = {Atty, Atty, Atty, Atts}; attributeSet(req. evaluation) =
{Atty, Atts}; attributeSet(prov. evaluation) = {Atty, Atte, Atts}; attri-
buteSet(req. comments) = {Att;, Atts}; attributeSet(prov. comments)
= {Att;, Atts}. We may think of Att; as the activity status that could
take values from the set {NotActivated, Activated, Running, Completed,
Skipped}. Atty may be the starting date/time of an activity. Atts could be
the employee black list with possible values {Yes, No} specifying whether
this list should be taken into account (or not) when employees are chosen to
work on a specific task (e.g., generate expertise). If this list is taken into
account, employees on black list may be excluded from those that may work
on the task.

Based on Def. 1, we retain two types of information that may be checked/-
read: the existence and the value of an object’s attribute. We distinguish
between two different spectra of confidentiality defined on this information:
1) “Allow”/“don’t allow” to check existence of an attribute within an object;

19

2) “Allow”/“don’t allow” to read the value of an attribute within an object,
or allow to read another form of the value. From this we derive Def. 2.

Definition 2 (Access Control on Existence/Value of Attribute) Let
(obj, att) (obj € ObjSet, att € attributeSet(obj)) denote an attribute att being
associated with object obj. Then:

0 if not allowed to check existence of att within obj

Existopiare := . . g .
Tistobjatt { 1 if allowed to check existence of att within obj

0 if not allowed to read value of att within obj
Valoyjare = 1 if allowed to read only another form of value
2 if allowed to read value of att within obj

Existopjare determines whether or not it is allowed for someone to check
for the existence of attribute att within object o0bj; Valypj at, in turn, deter-
mines whether or not it is allowed for someone to read the value of attribute
att within object obj.

Example 9. Back to our example from Fig. 9a, suppose role “engineer” has
the following access rights on the CR process: access to activities request
expertise and generate expertise, access to the value of Att; and to
another form of the value of Atts, and access to the existence of Atts within
request expertise. Taking into account Def. 2, the AC on the existence/-
value of the different attributes can be captured as follows:

Valgenerate expertise, Att; — 2, Valgenerate expertise, Atty — 1,
Valrequest expertise, Att; — 27 ExZStrequest expertise, Att3 — 1

By default, we may suppose that the closed policy, considered as a clas-
sical approach for AC (see (Castano et al, 1995)), applies. If not specified
otherwise:

Valoyjare = 0 and Existoyj e = 0,V obj € ObjSet, att € attributeSet(obj)

In this context, two classical approaches for AC are discussed by Castano
et al (1995): closed policy where positive rights need to be specified explicitly,
and open policy where negative rights need to be specified explicitly. The
closed policy approach is known to ensure better protection than open policy.
In the latter, the need for protection is not strong: by default, access is to be
granted. Intuitively, we may also suppose that a specific operation prevails
on another (cf. Fig. 10); e.g., whenever it is allowed to read the value of
an attribute, this implies that it is also allowed to read another form of the
value, and to check the existence of the attribute. Note that positive rights
prevail on negative ones, i.e., positive rights are on bottom of the scale in

20

Fig. 10. This is because of the closed policy adopted.

ravails on prevails an ravails on pravalls on
N & N N
0 Exist =0 Exist 1 Val

actaft actaft =

Val

act,a??=
Figure 10: Prevailment of Access Rights

Example 10. Taking into account this scale, the following set of access
rights is retained in the context of Example 9:
Valgenerate expertise, Att; — 27 Valgenerate expertise, Atto — 17
Valrequest expertise, Att; — 2, ExiStrequest expertise, Atts — 1,
ExiStgenerate expertise, Atts — 07 ExiStgenerate expertise, Atts — 07
Exist activity, Attribute = 0, V Activity € ObjSet \ {request expertise,
generate expertise}, Attribute € attributeSet(Activity)

Definition 3 (Attribute Value) Let Domayser denote the value domain
covering all potential values of attributes from AttSet. Then:

Value: ObjSet x AttSet — Domayser U {Undefined} with Value(obj, att)
either being the current value of attribute att on object obj or the value
“Undefined” if att has not been written yet or att & attributeSet(obj).

AC rights being clearly defined, we present now a mechanism consisting of
two functions that respectively return (1) whether or not an attribute is
associated with an object, (2) the exact value or an abstraction of the value
of an attribute.

Definition 4 (Existence/Value of Attribute) Let FunctionSet be the
set of functions that can be applied on the value of an attribute in order to
provide another form of this value. For setting the specific function that can
be applied on a specific attribute, we define function fa: ObjSet x AttSet —
FunctionSet U {Unde fined} with fa(obj,att) mapping (obj, att) to a specific
function from FunctionSet or to “Undefined” if att ¢ attributeSet(obj) or no
function is defined. Then:

f: ObjSet x AttSet — AttSet U {Undefined}

att if Existopjae = 1 A att € attributeSet(obj)
Undefined otherwise

with f(obj, att) := {

h: ObjSet x AttSet — Domayser U Dompynctionset U {Undefined}

Undefined if Valoyjare =0
with h(obj,att) := < fa(obj,att)(Value(obj, att)) if Valgpjan =1
Value(obj, att) if Valgjare =2

21

Domapset = Uarte attser Domatt

Dom punctionSet = UfctEFunctionSet Domet

Basically, function f returns either the name of attribute att within ob-
ject obj or “Undefined”. Function h, in turn, determines either the value
or another form of the value of attribute att within object obj, or “Undefined”.

Example 11. If we go back to our example, applying Def. 4 would lead to

the following existence / value of the different attributes:
h(generate expertise, Att1) = Value(generate expertise, Att;)
f(generate expertise, Att1) = Att:
h(generate expertise, Attz) = fa(generate expertise, Att;)
(Value(generate expertise, Attz))
generate expertise, Atty) = Atto

I

h(request expertise, Att1) = Value(request expertise, Att1)
f(request expertise, Att1) = Att1

h(request expertise, Att3) = Undefined

f(request expertise, Atts) = Alts

h(

Activity, Attribute) = f(Activity, Attribute) = Undefined

for all other combinations of activities and attributes

The result of applying Def. 4 on our CR process, taking into account
specific access rights assigned to role “engineer”, is illustrated in Fig. 11.

H
Electr. eng. v°

generate
expertise

"Activity status = “Running”
Starting date = “This week”

Activity status = “Completed”
tarting date = “Last week”

(CR»Mgr. ‘/\ (body eng. ﬂ chief eng.
Activity status = “NotActivated”
request generate generate |- giaring date = * Nest week” (expected)
expertise expertise expertise
H
Activity status = “Completed” otor eng. v’ Activity status:
Employee black list generate = v Completed
expertise)77 » Running

Figure 11: View on CR Process Provided to Role “Engineer”

5.2 Extended AC Model - Users Playing Multiple Roles

In this section, we recognize and point out the fact that a user may play more
than one role leading to inconsistencies between the AC rights associated
with each of the different roles.

Example 12. A user may play roles r1 = “manager” and r2 = “engi-
neer” (cf. Fig. 12). On the one hand, engineers may not be given access
to private information. On the other hand, managers may need to access
private documents, and access to such information may be given to them.

22

In the given context, a number of conflict resolution policies are discus-
sed in literature (di Vimercati et al., 2005; Jajodia et al., 2001; Fernandez
et al., 1994; Shen and Dewan, 1992). None of them represents “the perfect
solution”. Whichever policy we take, we will always find one situation for
which it does not fit. di Vimercati et al. (2005) states some problems of
the different policies in conjunction with specific scenarios. Interestingly,
conflicts may result either from explicitly defining negative AC rights, or
from applying the closed policy. In the latter case, a simple solution approach
may be to neglect negative AC rights derived from the used policy. Conflict
resolution policies should be applied in the former case.

Example 13. Consider Process P from Fig. 12a) and its activities. Each
of these activities is associated with a set of attributes for which AC rights
need to be defined. Fig. 12¢) depicts respective AC rights for roles r1 =
“manager” and r2 = “engineer” respectively. For role r1 access to the values
of all attributes of activities A, C and E shall be granted, while users with
role 72 may access the values of attributes Attl and Att3 of all activities.
When applying Definition 2 we obtain the AC rights as depicted on the right
hand side of Fig. 12¢); a graphical illustration is given in Fig. 13a). While
Fig. 13a) only depicts positive AC rights, Fig. 13b) implicitly adds negative
ones as well. Assume now that a user u plays both roles r1 and 2. Then
the question emerges what rights shall be granted to u. Regarding Fig. 13b)
(with explicit positive AC rights and implicit negative AC rights), conflicts
derive from the applied closed policy. In this simple scenario, they can be
automatically handled by defining the set of AC rights for a user having
roles r1 and r2 as the union of the two sets of positve rights (see Fig. 13c)
However, conflicts may also derive from explicitly defining negative AC rights.
As example, consider Fig. 13d): for role r1 a positive right to access Att2 of
activity A exists, while for role r2 a negative right diallowing access to Att2
of activity A has been explicitly assigned. Consequently, a conflict exists
for users having both roles. Then a conflict resolution policy needs to be
applied (e.g., either permissions or denials taking precedence). — Due to lack
of space, we abstain from further discussing this matter here and refer to
existing literature on conflict resolution policies instead (di Vimercati et al.,
2005; Jajodia et al., 2001; Fernandez et al., 1994).

5.3 Extended AC Model - Compact Definition of AC rights

So far, we have expressed that a certain attribute is allowed to be accessed
(or not) within a certain object, particularly a certain activity. However, we
must also be able to state within which processes this is allowed, i.e., what
is the context of the AC to be defined. Candidates for the context are the
entire process monitoring component (All), a group of process models, a
particular process model, a group of process instances related to a particular

23

a) Process P b) User-role hierarchy

All
LA F—{B] LE]
Attl Att4 AttL rl:Manaﬁ' r2:enjineer
Att2 Att5 Attl Att3
Attd Bob John Bill
Att5

b) ACrights for roles rl and r2

1 -ACE } Valyaa =1 Valpae =1 Valgpa =1
- Value of all attributes Valyas =1 Valga =1 Valg gz =1
r2 - All activities } Valpany =1 Valpay =1
- Value of Attl and Att3 Valg g =1 Valg pgs =1

By default, Val,g o = 0

Figure 12: Granting Access Rights to User Roles

u: John; rl: Manager; r2: Engineer

a)

c)

Valyam = 1
Valyaa =1 Valgay =1 Valppay =1
Valg a3 = 1

alaare = 1

alaans = 1

Valy ans = 1 \Valg a3 = 1

Figure 13: Possible Sets of Access Rights for a User with Two Roles

24

process model, and a process instance.

Example 14. The example elaborated in Section 5.1 presents a set of
AC rights defined on a specific process model: CRj;. We may think of
the following representation: (C Ry, Valgenerate expertise, Att; = 2) stating
that the value of Att; from activity generate expertise is allowed to be
read within process model C'Rys. Suppose that AC rights are defined on
a set of process models (e.g., My, My, M3). This would lead to a set of
COUPI‘335 (Mh Valgenerate expertise, Att; — 2)7 (M27 Valgenerate expertise, Att;
= 2)7 (Mg, Valgenerate expertise, Att; — 2)

When considering this example, we recognize the need for abstraction at
the objects’ level in order to compact the definition of AC rights reducing
redundancy as much as possible. Therefore, one feasible way is to organize
objects hierarchically (cf. Fig. 14): “All” at the top level, “Group of process
models” at the next level down, “Process model” at the level just after, etc.,
and to propagate AC rights top-down. This allows us to meet the AC rights
usability and maintainability requirement (cf. R3 in Table 1).

Example 15. Going back to our example, a group of process models
Gy = { My, Ms, M3} would be defined, and the set of three couples would
be reduced to the following couple: (Giar, Valgenerate expertise, Att; = 2)-
This approach would also simplify the definition of exceptions; e.g., it would
be easy to express that no restrictions exist at all regarding accesses within
any of the defined processes except the following: no accesses are allowed to
activity approve CR within the CR process model. This would be reduced to:
(All, Valp1, au = 2) (i.e., access is given to everything in order to bypass the
closed policy), and (CRyr, Existapprove cr, A = 0) (i.e., access is retrieved
from approve CR within CRyy).

All

e Instantiated from
Group of DI Group of <+— Inherited from
process process
models instances Note: Activities and Attributes
CRy, come down in the hierarchy
\ Gy ={M;, M,, Mg}
Process Mode| wrsssessneransens Process Instance

Figure 14: Objects’ Hierarchy

6 Evaluation and Discussion

We have used the change mangagement process introduced at the beginning
of this paper in order to illustrate the basic concepts of our AC model. We

25

have further evaluated the Proviado process monitoring framework and its
access control model, respectively, in different case studies. The evaluation
goal was to find out how well Proviado is suited for the monitoring of
business processes whose data are scattered over distributed, heterogeneous
information systems. In this section we focus on the evaluation of the
Proviado AC model as suggested in this paper.

As sources for our evaluation we considered processes and process-aware
information systems from the automotive domain as well as from healthcare.
Regarding the processes from the automotive domain, we had access to 59
process models and could talk to process owners, process participants and
IT departments. We first looked at electronic change management (ECM)*
and at a supporting process-aware informations system. Furthermore, we
investigated the processes dealing with car repair and car maintenance in
garages, product release management, and product planning. With several
hundred activities the product planning process was certainly the most
complex one we considered. In particular, the implementation of this process
was scattered over dozens of heterogeneous information systems and thus
an integrated process monitoring component was a much needed module in
this domain. As our second major data source we analyzed a process-aware
clinical information system in the field of keyhole surgery. This system, which
had been implemented using a commercial workflow engine an to which we
had access, provided support for both administrative processes (e.g, patient
admission or making appointments) and medical treatment processes (e.g.,
clinical diagnostics). Overall, it comprised 17 process models with up to 25
activities.

For all considered scenarios we identified relevant user roles in alignment
with existing organizational models. We then analyzed the AC rights the
different roles shall have in respect to the monitoring of processes and related
data. This analysis was based on interviews with process owners and process
participants on the one hand, and on a detailed analysis of the aforementioned
information systems on the other hand. Following this, we tried to map the
identified AC rights to our AC model as best as possible. In the following
we will discuss the lessons learned from this.

First of all, the considered scenarios confirmed that the only feasible
way to realize access control at the desired spectrum of confidentiality is to
explicitly define the AC rights within the process monitoring component,
hence getting rid of the burden to map access rights from the level of the
information systems involved. We observed significant differences between
the access control models applied in these information systems. Besides
this, we identified additional user groups and roles respectively (e.g., clinical
directors, business managers, system supervisors) that were particularly

“Regarding ECM standardized process models were published by the German Associa-
tion of the Automotive Industry (VDA) (VDA, 2005).

26

interested in a process monitoring component, but were not directly involved
in the operational processes.

When appyling the presented object-based AC model to the process
monitoring scenarios, which we had identified in our case studies, we could
define corresponding AC rights at the desired level of confidentiality and in
a fine-grained way where required. In particular, we succeeded in using the
described access control concepts to define static AC rights on different kinds
of objects (like single activities, activity groups, single process instances,
and so forth). Regarding the clinical processes, we additionally had to deal
with cases in which users played multiple roles (e.g., a clinician working in
different roles for different units in a university hospital). In most cases,
we could restrict the specification of AC rights to positve rights and apply
simple policies for conflict resolution. A more difficult task was to define
AC rights in a compact and comprehensible manner. This was particularly
challenging for large process models as in the case of product planning.
Basically, the described context-based approach, which allows to specify AC
rights in respect to a certain level within an objects’ hierarchy, helped us
to avoid an inflation of AC rights. More precisely, we applied the objects’
hierarchy as depicted in Fig. 15 in our evaluation. Regarding the product
planning process we explicitly defined additional views using the framework
sketched in Section 2. We then assigned AC rights on the level of these views
as well. — Overall, Requirements R1, R2 and R3 were satisifed by our AC
approach.

All

Group of «—— Group of
process process
models instances
AM; M, ...})
[CURPI)]
Process Modele= = = = = = —| Process Instance
’ Group of
O ety |)
instances
{Obj, Obj,, ...} %(O“J Obj, .3 } {Objl, Objl, ...}
- @{Objl, Objl, ...}) e
ACtiVItY ¢ = = = = = = = Activity instance

Figure 15: Objects’ Hierarchy as Applied in Our Case Studies

Our case studies also revealed a number of limitations which will require
further extensions of our AC approach. First of all, at the time we conducted
our case studies, it was not possible to specify dynamic AC rights; e.g.,
constraints stating that a certain object may be only accessed by a user with
a specific role and who was involved in the processing of this object before.

27

In this context, it was also not possible to make AC rights dependent on the
state of a process instance; e.g., we could not express that a user may only
access particular objects or object attributes, if the corresponding process
instance (or relating process instances) has reached a particular state. Such
dynamic or state-dependent AC rights were particularly relevant for the
considered processes in electronic change management.

Another observation we made in the context of our clinical scenarios is that
it is difficult to separate AC rights for process and application data. Ideally,
access to the application objects (and their attributes) that are involved
in the enactment of a particular process, should be tightly integrated with
process execution and with access rights to the process. Only then, an
integrated and harmonized definition of the AC rights on all aspects can
be achieved. We believe that fundamental research on a tighter integration
of object-aware and process-aware information systems is required in this
context, rather than integrating all application objects into the monitoring
component.

Finally, our current AC model showed limitations when being confronted
with scenarios in which aggregated views were used (i.e., how to derive
AC rights on abstracted visualizations) or in which a collection of process
instances needs to be visualized in an integrated way. However, we do not see
this as fundamental limitations for using our approach, but rather consider
the concepts needed in this context as extensions of our approach.

7 Related Work

Similarly to the Proviado framework several other approaches target at the
provision of appropriate process views and process visualizations for business
performers. The techniques applied in this context include abstraction,
aggregation, elimination, and modularization. Polyvyanyy et al. (2009, 2008)
enable structural aggregations of the process logic in order to realize different
levels of abstraction for business process models (e.g., by searching for
meaningful process fragments suitable for generalization). Greco et al. (2005)
propose an approach to process mining that combines process discovery
strategies with abstraction methods with the aim of producing hierarchical
views of the process that satisfactorily capture its behavior at different level
of details. Therefore, at the highest level of detail, the mined model can
support the design of executable workflows; at lower levels of detail, the
views can be used in process execution platforms to support monitoring and
analysis. Reijers et al. (2009) target at improved model management based
on aggregated business process models. An extension of event-driven process
chains is proposed, which can be used to describe a set of similar processes
within one single model; i.e., the number of process models to be maintained is
decreased. Like Proviado all these approaches enable abstract and aggregated

28

views on business processes. As opposed to Proviado, however, none of them
deals with access control issues in connection with process monitoring and
process visualization respectively.

The provision of adequate access control mechanisms is indispensable
for any information system, and techniques like access control lists (ACL),
capability lists and role-based access control (RBAC) have been proposed for
dealing with respective security issues. In particular, RBAC models are widely
used in existing information systems (Sandhu et al., 1996; Strembeck and
Neumann, 2003; Wainer et al., 2003). Regarding process-aware information
systems specific access control models have been proposed. Russell et al.
(2005) describe various possibilities for assigning process activities to users.
By contrast, permissions for accessing data and functions are mostly managed
within invoked application systems. To deal with the latter problem Wu
et al. (2002) suggest the concept of instance-based user groups. Each actor
gets access to all data elements of the process instances in which he or she is
involved; i.e., permissions to access data are assigned implicitly. However,
such coarse-grained access to process instance data is not always acceptable
in practice.

Wainer et al. (2003) suggest the W-RBAC access control model, which is
based on a framework that couples an RBAC-based permission service and
a process management component with clear separation of concerns. The
permission service is based on an expressive logic-based language for selecting
users that are authorized to perform certain process tasks. This basic model
is further extended by incorporating exception handling capabilities through
controlled and systematic overriding of security constraints. In Wainer et al.
(2007) this security model is complemented by DW-RBAC, which additionally
enables delegation and revocation of tasks in process management systems.

Over time, additional approaches for dealing in a secure way with specific
issues related to process management were introduced. In the context of
the ADEPT project (Reichert et al., 2003), for example, Weber et al. (2005)
propose an extension to RBAC in order to support process changes safely.
In the CEOSIS project, Rinderle and Reichert (2007) address changes that
occur in respect to organizational structures. They discuss how to support
such changes and how to correctly adapt access rules when the underlying
organizational model is changed (Rinderle-Ma and Reichert, 2008, 2009).

To our best knowledge, none of the above approaches has addressed the
problem of fine-grained AC in conjunction with process data integration and
process monitoring yet (Muehlen, 2001; Junginger et al., 2004). This also
applies in respect to existing process performance management tools (e.g.,
ARIS Process Performance Manager).

Some of the aspects retained in this paper have already been introduced
by others. The fine-grained control was discussed by Tolone et al. (2005) as
one of the collaborative environment factors that determine the usability of
a specific AC model. The authors argue that it is not sufficient to define

29

AC rules only for groups of users on clusters of objects. A user might need
a specific permission on an instance of an object at a particular point in
time in the collaboration session. In Proviado, we were more explicit when
defining AC rights at a fine-grained level: 1) we introduced the spectrum of
confidentiality concept that would reflect the “specific” permission to grant
or to revoke, and 2) we organize objects hierarchically such that AC rights
may be defined in a compact way on the different aspects of the process
model and instances. Strembeck and Neumann (2003) present another
approach for fine-grained AC that uses special purpose RBAC constraints to
base access control decisions on context information. Context dependencies
are defined as dynamic RBAC constraints that check the actual values of
contextual attributes for predefined conditions. If these conditions are met,
the respective access request can be permitted. Accordingly, a conditional
permission corresponds to an RBAC permission which is controlled by one
or more context constraints. With this approach the advantages of RBAC
are preserved on the one hand, while an additional means for defining and
enforcing fine-grained context-dependent access control policies is provided
on the other hand. Basically, such approach would be also beneficial in the
context of business process monitoring.

Kiinzle and Reichert (2009) present a fine-grained AC model for data-
driven processes. With this approach it becomes possible to restrict per-
missions to a selected set of process instances and corresponding object
instances respectively. Thereby, restrictions can be defined depending on the
relationships between users and object instances. Tolone et al. (2005), in
turn, support permissions only being valid for a specific time space. This
is an interesting point to be further investigated in Proviado as well. In
the context of adaptive process-aware information systems, Weber et al.
(2005) propose the definition of process type dependent AC rights . Only
change commands that are useful within a particular context are allowed
(e.g., activity vacation request must not be inserted in a CR process). This
idea can be compared to our approach of specifying the context of an AC
right. However, both approaches focus on different aims. Weber et al. (2005)
further provides assistance for users when performing a change, whereas
in this paper, the context notion is used for defining AC rights in a more
focused way.

Sandhu and Thomas (1997) provide a task-based access control model
that groups permissions for accessing data and functions. Whether or not a
user may perform a particular task (e.g., process activity) depends on the
agreement of another user at runtime. This makes it possible, for example,
to manually approve access to process instances and their data. Similarly,
a task-role based access control model (T-RBAC) is proposed by Oh and
Park (2003). The authors classify tasks and consider them as fundamental
unit of business work or business activity. T-RBAC deals with each task
differently according to its class, and supports task level access control and

30

a supervision role hierarchy. As opposed to Proviado, however, with these
approaches it is not possible to access data outside the scope of a specific task.
Finally, Botha (2002) considers permissions for accessing data and functions
in the context of an activity as well. This concept enables authorization for
optional permissions in respect to data and takes the progress of a process
instance into account as well. However, assignment of users to tasks is not
considered. Since all permissions are defined at the level of object types, it
is not possible to assign different permissions for object instances with same

type.

8 Summary and Outlook

We presented the Proviado framework for process visualization and monito-
ring. In this context, we first introduced the Proviado process visualization
approach. We then identified and discussed fundamental AC requirements.
Following this we presented two possible solution approaches — the view-based
and the objects-based approach — for major requirements, and we motivated
the adavantages of the objects-based approach which we used for proposing
a core AC model for business process monitoring.

We showed in detail how to describe positive and negative AC rights
when using this AC model, and how prevailment of AC rights looks like in
our approach. Further we discussed how to grant access to abstractions of
object attribute values if required. Two extensions to this model were also
presented. The first one deals with the problems that may appear when a
single user plays more than one role; the second extension introduces the
“context” notion and discusses the compact definition of AC rights taking
into account a defined objects’ hierarchy. Major requirements were addressed
using the proposed AC model and its extensions. Finally, our evaluations
have shown that our AC model allows to specify AC rights at the desired
level of confidentiality and in a fine-grained way if required.

However, as discussed in Section 6 our evaluation also revealed additional
challenges, e.g. regarding the management of dynamic AC rights and the
tighter integration of process and data. We will address the discussed
challenges in future work. In future research work will also include the
investigation of advanced issues such as the aggregation and the definition
of AC rights on data elements and other process aspects. Furthermore, in
the PHILharmonic project, we are currently targeting at a close integration
between process and data management. In this context, we consider access
to processes and related objects in an integrated way taking into account
dynamic aspects as well (e.g., the state of a process or object instance).

31

References

Bassil S, Reichert M, Bobrik R, Bauer T (2009) Access control for monitoring
system-spanning business processes in Proviado. In: Proc. EMISA’09, pp
125-139

Bobrik R (2008) Konfigurierbare Visualisierung komplexer Prozessmodelle.
PhD thesis, University of Ulm

Bobrik R, Reichert M, Bauer T (2005) Requirements for the visualization
of system-spanning business processes. In: Proc. DEXA’05 Workshops,
Copenhagen, pp 948-954

Bobrik R, Bauer T, Reichert M (2006) Proviado — personalized and configu-
rable visualizations of business processes. In: Proc. EC-WEB’06, LNCS
4082, pp 61-71

Bobrik R, Reichert M, Bauer T (2007) View-based process visualization. In:
Proc. BPM’07, LNCS 4714, pp 8895

Botha R (2002) Cosawoe - a model for context-sensitive access control in
workflow environments. PhD thesis, Rand Afrikaans University

Botha R, Eloff J (2001) Separation of duties for access control enforcement
in workflow environments. IBM Systems Journal 40(3):666—682

Castano et al S (1995) Database Security. Addison Wesley

Costello C, Molloy O (2008) Towards a semantic framework for business
activity monitoring and management. In: AAAT’08 Spring Symposium

Davis R (2008) ARIS Design Platform: Advanced Process Modelling and
Administration. Springer

Fernandez E, Gudes E, Song H (1994) A model for evaluation and administra-
tion of security in object-oriented databases. IEEE ToKDE 6(2):275-292

Ferraiolo D, Sandhu R, Gavrila S, Kuhn D, Chandramouli R (2001) Proposed
NIST standard for role-based access control. ACM TolSS 4(3):224-274

Greco G, Guzzo A, Pontieri L (2005) Mining hierarchies of models: From
abstract views to concrete specifications. In: Proc. 3rd Int’l Conf. Business
Process Management (BPM’05), pp 32-47

Groenewegen J, Hoppenbrouwers S, Proper E (2010) Playing archimate mo-
dels. In: Enterprise, Business-Process and Information Systems Modeling.
11th Int. Workshop BPMDS’10 and 15th Int. Conference EMMSAD’10,
Lecture Notes in Business Information Processing, vol 50, pp 182-194

32

Jajodia S, Samarati P, Sapino M, Subrahmanian V (2001) Flexible support
for multiple access control policies. ACM ToDS 26(2):214-260

Junginger S, Huehn H, Bayer F, Karagiannis D (2004) Workflow-based
business monitoring. In: Workflow Handbook 2004, Future Strategies,
Lighthouse Point, pp 6580

Kithn H, Bayer F, Junginger S, Karagiannis D (2003) Enterprise model
integration. In: Proc. 4th Int. Conf. E-Commerce and Web Technologies
(EC-Web’03)

Kiinzle V, Reichert M (2009) Integrating users in object-aware process
management systems: Issues and challenges. In: Proc. Business Process
Management Workshops 2009, Springer

Lenz R, Reichert M (2007) IT support for healthcare processes - premises,
challenges, perspectives. Data and Knowledge Engineering 61(1):39-58

McGregor C (2002) The impact of business performance monitoring on
WFMC standards. In: Fischer L (ed) Workflow Handbook’02, pp 51-64

McGregor C, Kumaran S (2002) Business process monitoring using web ser-
vices in b2b e-commerce. In: Proc. Int. Parallel and Distributed Processing
Symposium (IPDPS?02)

Miiller D, Herbst J, Hammori M, Reichert M (2006) IT support for release
management processes in the automotive industry. In: Proc. BPM’06, pp
368-377

Muehlen M (2001) Workflow-based process controlling. In: Workflow Hand-
book 2001, Future Strategies, Lighthouse Point

Mutschler B, Reichert M, Bumiller J (2008) Unleashing the effectiveness
of process-oriented information systems: Problem analysis, critical suc-

cess factors and implications. IEEE Transactions on Systems, Man, and
Cybernetics 38(3):280-291

Oh S, Park S (2003) Task-role-based access control model. Information
Systems 28(6):533-562

Polyvyanyy A, Smirnov S, Weske M (2008) Process model abstraction: A
slider approach. In: Proc. EDOC’08, pp 325-331

Polyvyanyy A, Smirnov S, Weske M (2009) The triconnected abstraction of
process models. In: Proc. BPM’09, pp 229-244

Reichert M, Dadam P, Bauer T (2003) Dealing with forward and backward
jumps in workflow management systems. Software and Systems Modeling
2(1):37-58

33

Reijers H, Mans R, van der Toorn R (2009) Improved model management
with aggregated business process models. Data and Knowledge Engineering
68(2):221-243

Rinderle S, Reichert M (2005) On the controlled evolution of access rules in
cooperative information systems. In: Proc. 13th Int’l Conf. on Cooperative
Information Systems (CoopIS’05), pp 238-255

Rinderle S, Reichert M (2007) A formal framework for adaptive access control
models. In: Journal of Data Semantics, IX, LNCS 4601, pp 82-112

Rinderle S, Bobrik R, Reichert M, Bauer T (2006) Businesss process vi-
sualization - use cases, challenges, solutions. In: Proc. 8th Int’l Conf. on
Enterprise Information Systems (ICEIS’06), Track on Information Systems
Analysis and Specification, pp 204-211

Rinderle-Ma S, Reichert M (2008) Managing the life cycle of access rules in
CEOSIS. In: Proc. EDOC’08, pp 257266

Rinderle-Ma S, Reichert M (2009) Comprehensive life cycle support for access
rules in information systems: The CEOSIS project. Enterprise Information
Systems 3(3):219-251

Russell N, van der Aalst W, ter Hofstede A, Edmond D (2005) Workflow
resource patterns: Identification, representation and tool support. In:
CAiSE’05, pp 216-232

Sandhu R, Thomas R (1997) Task-based authorization controls (TBAC): A
family of models for active and enterprise-oriented authorization manage-
ment. In: Proc. IFIP’97, pp 166181

Sandhu R, Coyne E, Feinstein H, Youman C (1996) Role-based access control
models. IEEE Computer 29(2):38-47

Schaad A, Moffett J (2002) A framework for organisational control principles.
In: Proc. ACSAC’02, Las Vegas, pp 229-238

Shen H, Dewan P (1992) Access control for collaborative environments. In:
Proc. CSCW’92, pp 51-58

Strembeck M, Neumann G (2003) An integrated approach to engineer and
enforce context constraints in rbac environments. ACM Trans Inf Syst
Secur 7(3):392-427

Tolone W, Ahn GJ, Pai T (2005) Access control in collaborative systems.
ACM Computing Surveys 37(1):29-41

VDA (2005) German association of the automotive industry, engineering
change management. part 1: V 1.1., doc. no. 4965

34

di Vimercati SDC, Samarati P, Jajodia S (2005) Policies, models, and
languages for access control. In: Proc. Int’l Workshop DNIS’05, Aizu-
Wakamatsu, pp 225-237

Wainer J, Barthelmess P, Kumar A (2003) W-rbac - a workflow security
model incorporating controlled overriding of constraints. Int J Cooperative
Inf Syst 12(4):455-485

Wainer J, Kumar A, Barthelmess P (2007) DW-RBAC: A formal security
model of delegation and revocation in workflow systems. Information
Systems 32(3):365-384

Weber B, Reichert M, Wild W, Rinderle S (2005) Balancing flexibility and
security in adaptive process management systems. In: CoopIS’05, LNCS
3760, pp 59-76

Weske M (2007) Business Process Management: Concepts, Languages, Ar-
chitectures. Springer

Wu S, Sheth A, Miller J, Luo Z (2002) Authorization and access control of
application data in workflow-systems. Journal of Intelligent Information
Systems 18:71-94

35

