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During the last years a new generation of adaptive Process-Aware Information Systems
(PAIS) has emerged, which enables dynamic process changes at runtime, while preserving
PAIS robustness and consistency. Such adaptive PAIS allow authorized users to add
new process activities, to delete existing activities, or to change pre-defined activity
sequences during runtime. Both this runtime flexibility and process configurations at
build-time, lead to a large number of process variants being derived from the same process
model, but slightly differing in structure due to the applied changes. Generally, process
variants are expensive to configure and difficult to maintain. This paper presents selected
results from our MinAdept project. In particular, we provide a clustering algorithm that
fosters learning from past process changes by mining a collection of process variants.
As mining result we obtain a process model for which average distance to the process
variant models becomes minimal. By adopting this process model as reference model
in the PAIS, need for future process configuration and adaptation decreases. We have
validated our clustering algorithm by means of a case study as well as comprehensive
simulations. Altogether, our vision is to enable full process lifecycle support in adaptive
PAIS.

Keywords: process-aware information system; process change; process variants; process
mining; process learning

1. Introduction

Economic success of an enterprise increasingly depends on its ability to react to
changes in its environment (e.g., market changes or changes of legal regulations) in a
quick, flexible and cost-effective way 39,55,40,9. Along this trend a variety of process
support paradigms as well as corresponding process specification and execution

* This work was done in the MinAdept project, which has been supported by the Netherlands
Organization for Scientific Research (NWO) under contract number 612.066.512.
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languages have emerged. Using WS-BPEL4, for example, a process can be composed
out of existing services. At runtime, the execution of these services is orchestrated
by the Process-Aware Information System (PAIS) according to the defined process
logic.

Generally, different scenarios for adaptive and configurable processes exist.70

Process adaptations are not only needed for configuration purposes at build-time
16,52, but also become necessary during runtime to deal with exceptional situations
and changing needs 41,69,24; i.e., for single process instances, it should be possible to
dynamically adapt their structure, by inserting, deleting or moving process activities
and process fragments respectively.

In response to this need adaptive process management technology has
emerged.68,70 Basically, it enables adaptation and configuration of process models
at different levels. This, in turn, results in large collections of process model vari-
ants (process variants for short), which are created from the same process model,
but slightly differ in structure from each other. Generally, a large number of pro-
cess variants may exist in a PAIS 31,70,17. For example, according to a case study
we performed in healthcare domain (details are discussed in Section 5), we have
identified more than 90 process variants for one particular healthcare procedure.

In most approaches which allow to adapt and configure process models, the re-
lated process variants have to be maintained separately.16 Then even simple changes
in process behavior (e.g. due to new laws) might require manual re-editing of a large
number of related process variant models. Over time this leads to degeneration and
divergence of these models, which aggravates PAIS maintenance significantly.

1.1. Problem Statement

Though considerable efforts have been made to ease process configuration and adap-
tation 16,41,52, we have not utilized the knowledge resulting from these process model
changes yet.69 Fig. 1 describes the goal of our paper. We aim at learning from past
process changes by ”merging” existing process variants into one generic process
model, which ”covers” these variants best. By adopting this generic model as ref-
erence process model within the PAIS, cost of change and need for future process
adaptations will decrease. Based on the two assumptions that (1) process models
are well-formed (i.e., block-structured like in WS-BPEL) and (2) all activities in a
process model have unique labelsa, we deal with the following fundamental research
question:

Given a collection of process variants (i.e., process models), how to derive a
reference process model out of them such that the average distance between the dis-
covered reference model and the process variants becomes minimal?

The distance between reference process model and process variant is measured in

aThe block-structure constraint is discussed in detail in Section 2. Regarding the constraint in
respect to unique labeling, we refer to 11 for an approach matching activities with different labels
in different process variants.
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Fig. 1. Mining a new reference model

terms of the number of high-level change operations (e.g., to insert, delete or move
activities 41) needed to transform the reference model into the model of the respec-
tive variant. Furthermore, change distance directly represents the efforts needed for
process adaptation and customization, and average distance between a reference
model and a collection of process variants directly measures the configuration ef-
forts for particular reference process model. Obviously, the challenge is to find the
”best” reference model, i.e., the one with minimal average distance to the known
variants. Note that we only need a collection of process variants as input of our
analysis. We do not need a change log, which specifically documents all change op-
erations performed during the configuration of process variants 15. In fact, even the
original reference process model from which the variants are derived is not strictly
required. In the following we present a clustering technique to deal with these chal-
lenges.

1.2. Contribution

This paper significantly extends our work previously presented in 25 and provides
more technical details and validation results. For example, we relax the constraint
of requiring a unique activity set, i.e., we provide an approach to cope with process
variants having different activity sets. Further, we consider more workflow patterns
(e.g., loop structures) when compared to previous work. For practical validation of
our approach, a case study performed in the healthcare domain is added. Finally,
this paper includes a detailed description of the implemented proof-of-concept pro-
totype and conducts a simulation to examine scalability of our mining algorithm.

The clustering algorithm presented in this paper is completely different from the
heuristics algorithm introduced in 27: it has less rigid requirements regarding input
data (e.g., an original reference process model is not required), and it can provide
more detailed information on the discovered model (e.g., to what degree a certain
part of the discovered model matches to the variants). Complexity of our clustering
algorithm is polynomial, which is significantly lower than the NP-hard algorithm
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presented in 27.
The remainder of this paper is organized as follows. Section 2 gives background

information needed for understanding this paper. In Section 3 we describe funda-
mental goals for mining process variants and discuss why we need an approach
which differs from traditional process mining techniques. Section 4 introduces a
method to represent process variant models in a way such that they can be mined
effectively. We discuss a case study which we performed in healthcare filed in Sec-
tion 5. Section 6 presents our basic clustering algorithm for mining process variants.
Section 7 extends it such that variants with different activity sets can be considered
as well. We validate our algorithm in Section 8 by comparing its performance with
existing process mining techniques. We formally specify our algorithm and sketch a
proof-of-concept prototype in Section 9. Finally, Section 10 discusses related work
and Section 11 concludes with a summary and outlook.

2. Backgrounds

We first introduce basic notions needed in the following:
Process Model : Let P denote the set of all sound (i.e., correct) process mod-

els. We denote a process model as sound if there are no deadlocks or unreachable
activities in the process model 41,62. In our context, a particular process model
S = (N, E, . . .) ∈ P is defined in terms of an Activity Net 41: N constitutes the set
of activities {a1, . . . , an} and E the set of control edges (i.e., precedence relations)
linking them.b More precisely, Activity Nets cover the following fundamental pro-
cess patterns: Sequence, AND-split, AND-join, XOR-split, XOR-join, and Loop 60.c

These patterns constitute the core set of any workflow specification language (e.g.,
WS-BPEL 4 and BPMN 5) and cover most of the process models we can find in
practice 75,33. Furthermore, based on these patterns we are able to compose more
complex ones if required (e.g., an OR-split can be mapped to AND- and XOR-splits
37). Finally, when restricting process modeling to these basic process patterns, we
obtain models that are better understandable and less erroneous 36,34. A simple
example of an Activity Net is depicted in Fig. 3a. For a detailed description of
Activity Nets and relating correctness issues we refer to 41.

Block Structuring : To limit the scope, we assume Activity Nets to be block-
structured, i.e., sequences, branchings (based on the aforementioned split and join
patterns), and loops are represented as blocks with well-defined start and end nodes.
These blocks may be nested, but must not overlap; i.e., the nesting must be reg-
ular 41,22. In a process model S, a block may be a single activity, a self-contained
part of S, or S itself. As example consider process model S from Fig. 3. Here
{A}, {A,B}, {C,F}, and {A,B,C,D,E,F,G} describe possible blocks contained in

bAn Activity Net contains more elements than node set N and edge set E, which can be factored
out in the context of this paper.
cThese patterns can be mapped to other languages as well. For example, in WS-BPEL (Business
Process Execution Language), XOR-split / -join can be represented using ’If’ or ’Pick’. Further-
more, AND-split / -join can be represented using ’Flow’, and Loops using ’RepeatUntil’ 4.
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S. Note that we can represent a block B as activity set, since the block struc-
ture itself becomes clear from process model S. For example, block {A,B} corre-
sponds to the parallel block with corresponding AND-split and AND-join nodes
in S. The concept of block-structuring can be found in service composition lan-
guages like WS-BPEL and XLANG 4. Furthermore, adaptive process management
systems like AristaFlow BPM Suite 8 and CAKE2 38 have emerged, which are ap-
plied in a variety of application domains and whose process modeling language is
block-structured as well. When compared with non-block-structured process mod-
els, block-structured ones are easier understandable for users and have less chances
of containing errors 45,34,35,36,7. In a case study we conducted in another project, we
investigated 214 process models expressed in different languages, like Event Process
Chains, UML Activity Diagrams and WS-BPEL. More than 98% of these models
were block-structured 57. Finally, if a process model is not block-structured, in most
practically relevant cases we can transform it into a block-structured one 66,36,22.
For all these reasons, we consider our approach for mining block-structured process
variant models as being practically relevant.

Process change : A process change is accomplished by applying a sequence of
high-level change operations to a given process model S over time 41. Such oper-
ations structurally modify the initial process model by altering its set of activities
and/or their order relations. Thus, each application of a change operation results
in a new process model. We define process change and process variant as follows:

Definition 2.1. (Process Change and Process Variant) Let P denote the set
of possible process models and C be the set of possible process changes. Let S, S′ ∈ P
be two process models, let ∆ ∈ C be a process change, and let σ = 〈∆1, ∆2, . . . ∆n〉 ∈
C∗ be a sequence of changes performed on initial model S. Then:

• S[∆〉S′ iff ∆ is applicable to S and S′ is the (sound) process model resulting
from the application of ∆ to S.

• S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ = Sn+1, and Si[∆i〉Si+1

for i ∈ {1, . . . n}. We also denote S′ as process variant of S.

Examples of high-level change operations include insert activity, delete activity,
and move activity, but also more complex adaptations like move process fragment
(i.e., a whole block) or surround process fragment with a loop structure as im-
plemented in the ADEPT change framework 41,8. While insert and delete enable
modifying the set of activities in a process model, move changes activity positions
and thus the structure of the process model. A formal semantics of these change
patterns can be found in 50. For example, change operation move(S, A,B,C) moves
activity A from its current position within process model S to the position after
activity B and before activity C. Operation delete(S, A), in turn, deletes activity A

from process model S. Finally, change operation insert(S, A,B,C) adds activity A to
the position after activity B and before activity C. Issues concerning the correct use
of these change operations, their generalization, and formal pre-/post-conditions are
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described in 41. Though the depicted change operations are discussed in relation to
our ADEPT change framework, they are generic in the sense that they can be easily
applied in connection with other process meta models as well 50,68. For example,
a process change as realized in the ADEPT framework can be mapped to the con-
cept of life-cycle inheritance known from Petri Nets 58. We refer to ADEPT since
it covers by far most high-level change patterns and change support features when
compared to other adaptive PAIS 68. Furthermore, with AristaFlow BPM Suite 8,
an industrial-strength version of the ADEPT technology emerged, which has been
already applied in a variety of application domains.d

Based on the given set of change operations, we define the notions of distance
and bias as follows:

Definition 2.2. (Bias and Distance) Let S, S′ ∈ P be two process models.
Then: Distance d(S,S′) between S and S′ corresponds to the minimal number of
high-level change operations needed to transform S into S′; i.e., we define

d(S,S′) = min{|σ|
∣∣ σ ∈ C∗ ∧ S[σ〉S′} (1)

Furthermore, a sequence of change operations σ with S[σ〉S′ and |σ| = d(S,S′) is
denoted as bias between S and S′.

The distance between process models S and S′ corresponds to the minimal
number of high-level change operations needed for transforming S into S′. The
corresponding sequence of change operations is denoted as bias BS,S′ between S

and S′.e Usually, such distance measures the complexity for model transformation
(i.e., model configuration). As example consider Example 1 in Fig. 2. Here, distance
between reference process model S and process variant S1 is one, since we only
need to perform change operation move(S, B,A,C) to transform S into S1

26. In
general, determining bias and distance between two process models has complexity
at NP-hard level 26,59. We consider high-level change operations instead of change
primitives (i.e., elementary changes like adding or removing nodes or edges in a
process graph) to measure the distance between process models. Amongst others,
this helps us to guarantee soundness of process models and further provides a more
meaningful measure for distance 26,68.

Finally, we define the notion of trace:

Definition 2.3. (Trace) Let S = (N,E, . . .) ∈ P be a process model. We define
t as a trace of S iff:

• t ≡< a1, a2, . . . , ak > (with ai ∈ N) constitutes a valid and complete exe-
cution sequence of activities considering the control flow defined by S. We

dVisit www.aristaflow-forum.de for details.
eGenerally, it is possible to have more than one minimal set of change operations to transform
S into S′, i.e., given process models S and S′ their bias does not need to be unique. A detailed
discussion of this issue can be found in 58,26.
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define TS as the set of all traces that can be produced by process instances
running on process model S.

• t(a ≺ b) is denoted as precedence relationship between activities a and b in
trace t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b.

We only consider traces composing ’real’ activities, but no events related to
silent ones, i.e., nodes within a process model having no associated action and only
existing for control flow purpose 26. Fig. 4 depicts some examples. At this stage,
we consider two process models as being the same if they are trace equivalent, i.e.,
S ≡ S′ iff TS ≡ TS′ . Like in most process mining approaches, the stronger notion
of bi-similarity 18 is not considered in our context.

3. Mining Process Variants: Goals and Issues

This section discusses the major goal in respect to the mining of process variants,
namely to derive a generic process model from a collection of process variants. This
shall be done in a way such that the existing variants (as well as future ones) can
be efficiently configured out of the discovered generic model. We measure efforts for
corresponding process configurations in terms of the number of high-level change
operations needed to transform the discovered generic model into the respective
model variant. The challenge is to find a generic model such that the average number
of high-level change operations needed (i.e., the average distance) becomes minimal
with respect to the given variant collection.

To make this more clear, we first compare process variant mining with traditional
process mining.61 Process mining has been extensively studied in literature. Its
key idea is to discover a process model by analyzing the execution behavior of
(completed) process instances as captured in execution logs.61 Different mining
techniques like alpha algorithm 63, heuristics mining 71 or genetic mining 10 have
been proposed in this context. Obviously, input data for traditional process mining
differs from the one for process variant mining. While traditional process mining
operates on execution logs, mining of process variants is based on a collection of
process model variants. Of course, such high-level consideration is insufficient to
prove that existing mining techniques do not provide optimal results with respect
to the aforementioned goal. In principle, existing process mining techniques 63,10

can be applied to our problem as well. For example, we could derive all traces
producible by a given collection of process variants 73 and then apply existing mining
algorithms to them. To make the difference between process and process variant
mining more evident, in the following we consider behavioral similarity between
two process models as well as structural similarity based on their bias (cf. Def. 2.2).

The behavior of a process model S can be represented by the set of traces (i.e.,
TS) it can produce. Therefore, two process models can be compared based on the
difference between their trace sets.63,73 By contrast, biases can be used to express
the (structural) distance between two process models 26, i.e., the minimal number of
high-level change operations needed to transform one model into the other (cf. Def.
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2.2). While the mining of process variants addresses structural similarity, traditional
process mining focuses on behavior. Obviously, this leads to different choices with
respect to the design of mining algorithms and also suggests different mining results.

Fig. 2 depicts two very simple examples. First, consider Example 1 which shows
two process variants S1 and S2. Assume that 55 process instances are running on
S1 and 45 instances on S2. We want to derive a generic process model such that the
efforts for configuring the 100 process instances out of the generic model become
minimal. If we focus on behavior, like existing process mining algorithms do 63, the
discovered process model will be S; all traces producible on S1 and S2, respectively,
can be produced on S as well, i.e. TS1 ⊆ TS and TS2 ⊆ TS . However, if we adopt
S as reference model and relink process instances to it, all instances running on
S1 or S2 will have a non-empty bias. More precisely, we would need to move B in
S to either obtain S1 or S2; i.e., S[σ1〉S1 with σ1 = move(S, B,A,C) and S[σ2〉S2

with σ2 = move(S, B,C,D) (cf. Def. 2.2). Using the number of instances as weight
for each variant, average weighted distance between S and Si (i = 1, 2) is one; i.e.,
for each process instance we need on average one high-level change operation to
configure S into S1 and S2 respectively.

By contrast, if we focus on biases, we should choose S′ as reference model. While
no adaptations become necessary for the 55 instances running on S1, we need to
move B for the 45 instances based on S2, i.e. S′[σ′〉S2 with σ′ = move(S′, B,C,D).
Therefore, average weighted distance between S′ and variants Si (i = 1, 2) corre-
sponds to 0.45. Though S′ does not cover all traces variants S1 and S2 can produce
(i.e., TS2 * TS′), adapting S′ rather than S as the new generic model requires per
average less efforts for process configuration, since average weighted distance be-
tween S′ and the instances running on both S1 and S2 is 55% lower than when
using S.

Regarding Example 2 from the bottom of Fig. 2, activity X is only present in
S2, but not in S1. When applying traditional process mining, we obtain model S

(with X being contained in a conditional branch). If we want to minimize average
change distance, in turn, we need to choose S′ as reference model. Note that we
only consider very simple process models in Fig. 2 to illustrate basic ideas. As we
show in the following, our approach works for process models with more complex
structure (e.g., AND- XOR-branching and Loops) as well.

Our discussions on the difference between behavioral and structural similarity
also demonstrate that current process mining algorithms do not consider struc-
tural similarity based on bias and change distance. (We quantitatively compare
our mining approach with existing algorithms in Section 8.) First, a fundamental
requirement for traditional process mining concerns the availability of a critical
number of instance traces. An alternative method is to enumerate all the traces
the process variants can produce (if it is finite) to represent the process model,
and to use these traces as input source (i.e., logs) for traditional process mining
algorithms. Unfortunately, this does also not satisfy our need to minimize average
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Fig. 2. Mining focusing either on Behavior or on Minimization of Biases

distances since it focuses on covering behavior as captured in execution logs (see
Examples 1 and 2). Clearly, enumerating all the traces would be also a tedious and
expensive task. For example, if a parallel branching block contains five branches
and each branch contains five activities, the number of traces for such structure will
be (5× 5)!/(5!)5 = 623360743125120.

4. Representing Block-structured Processes as Order Matrices

One key feature of our ADEPT change framework is to maintain the structure of
the unchanged parts of a process model 41,8,70. For example, if we delete an activity
from a process model, the remaining process model will still be valid and the order
relations (e.g., predecessor or successor) between other activities will remain the
same 50,44. To incorporate this feature in our approach, rather than only looking
at direct predecessor-successor relationships between activities (i.e. control edges),
we consider the transitive control dependencies for each pair of activities; i.e., for
a given process model S = (N, E, . . .) ∈ P, for activities ai, aj ∈ N , ai 6= aj we
examine their structural order relations (including transitive one). Logically, we
determine order relations by considering all traces in trace set TS producible on
model S (cf. Def. 2.3).

Fig. 3a shows an example of a process model S. This model is based on the
patterns Sequence, AND-block, XOR-block, and Loop-block 60. Here, trace set TS

of S constitutes an infinite set due to the presence of the loop-block in S (cf. Fig.
3b). Such infinite number of traces precludes us to perform any detailed analysis of
the trace set. Therefore we need to transform it into a finite representation before
conducting further analysis.
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4.1. Simplification of Infinite Trace Sets

One common approach to describe a string with infinite length is to represent it as
finite set of n-gram lists 6. General idea behind an n-gram list is to represent a single
string by an ordered list of substrings with length n (so-called n-grams). In partic-
ular, only the first occurrence of an n-gram is considered, while later occurrences
of same n-gram are omitted in the n-gram list. Thus, an n-gram list represents a
collection of strings with different length. In particular, an infinite language can be
represented as finite set of n-gram lists. For example, a string < abababab > can be
represented as 2-gram < $a, ab, ba, b# >, where $ (#) represents the start (end) of
the string. Such approach is commonly used for analyzing loop structures in pro-
cess models 73,3 or - more generally - in the context of text indexing for substring
matching 2. Inspired by the n-gram approach, we define the notion of Simplified
Trace Set as follows:

Definition 4.1. (Simplified Trace Set) Let S be a process model and TS

denote the trace set producible on S. Let Bk, k = (1, . . . , K) be Loop-blocks in S,
and TBk

denote the set of traces producible by loop body Bk. Let further (tBk
)m be a

sequence of m ∈ N traces < t1Bk
, t2Bk

, . . . , tmBk
> with tjBk

∈ TBk
, j ∈ {1, . . . , m}. We

additionally define (tBk
)0 ≡<> as empty sequence. If we only consider the activities

corresponding to Bk, in any trace t ∈ TS producible on S, t either has no entries
f or must have structure < t∗Bk

, (tBk
)m >, with t∗Bk

∈ TBk
representing the first

loop iteration and m ∈ N0 being the number of additional iterations loop-block Bk

is executed in trace t. We can simplify this structure by using < tBk
, τk > instead,

where τk refers to (tBk
)m. When simplifying trace set TS this way, we obtain a finite

set of traces T ′S which we denote as Simplified Trace Set of process model S.

Order matrix AProcess model S

AND-Split AND-JoinXOR-Split XOR-JoinControl Flow Loop

A
A
B

B C D E F G

C
D
E
F
G

11 1 1 11 1 1 1 11 11 1 1 1110 0 00 00 0 00 00 0 0 00 0 0 0
+

+

-

- -
-

τ

τ

111
-010 0 0L L-

LL
‘0’ : successor ‘1’ : predecessor
‘+’ :  AND-block ‘-’ :  XOR-block
‘L’ :  Loop

<A,B,D,E,G>;   <B,A,D,E,G>;<A,B,D,C,F,τ,G>;  <B,A,D,C,F,τ,G>S
A

C

B E

F

D G

Trace set S
Simplified trace set S

<A,B,D,E,G>;   <B,A,D,E,G>;<A,B,D,C,F,G>;  <B,A,D,C,F,G>;<A,B,D,C,F,C,F,G>;<B,A,D,C,F,C,F,C,F,G>;
…… 

S(a) (b) (c)

block

Fig. 3. a) Process model, b) (simplified) Trace set, and c) related order matrix

f i.e., the loop-block Bk has not been executed at all.
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In our simplified representation of a trace t ∈ TS , we only consider the first
occurrence of trace t∗Bk

producible by loop-block Bk, while omitting others that
occur later within trace t. Instead, we represent such repetitive entries by a silent
activity τk, which has no associated action, but solely exists to indicate omission
of other tBk

appearing later in trace t; i.e., τk represents the iterative execution
of loop-block Bk as captured in trace t.g When omitting repetitive entries within
trace set TS , we obtain a finite trace set T ′S that we can use for further analysis.
Note that when dealing with nested loops (e.g., a loop-block Bk contains another
loop-block Bj), we first need to analyze Bj and then Bk; i.e., we need to first define
τj to represent the iterative execution of loop-block Bj as captured in trace t and
then we define τk to represent loop-block Bk.

As example consider process model S in Fig. 3a. Loop-block B = {C,F}, which is
surrounded by a loop-backward edge, constitutes the block that comprises activities
C and F. Consequently, the trace set this block can produce corresponds to {<
C, F >}. Therefore, when only considering activities C and F, any trace t ∈ TS

producible on S has structure < C,F, (C,F)m > with m ∈ N0 depending on the
number of times the loop iterates. For example, < C,F >, < C,F,C,F > and <

C,F,C,F,C,F > are all valid traces producible by the loop-block. Let us define
a silent activity τ corresponding to block B. Then we can simplify these traces
by < C,F, τ > where τ refers the to the sequence of the traces producible on B.
As illustrated in Fig. 3b, we can simplify infinite trace set TS to finite set T ′S =
{< A,B,D,E,G >,< B,A,D,E,G >,< A,B,D,C,F,τ, G >,< B,A,D,C,F,τ, G >}.

4.2. Representing Process Models as Order Matrices

For process model S, the analysis results concerning its trace set TS are aggregated
in an order matrix A, which considers five types of order relations (cf. Def. 4.2):

Definition 4.2. (Order matrix) Let S = (N, E, . . .) ∈ P be a process model
with activity set N = {a1, a2, . . . , an}. Let further TS denote the set of all traces
producible on S and let T ′S be the simplified trace set of S according to Def. 4.1.
Finally let Bk, k = (1, . . . ,K) denote loop-blocks in S and for every Bk, let τk,
k = (1, . . . ,K) be a silent activity representing the iterative structure producible by
Bk in T ′S. Then:

A is called order matrix of S with Aaiaj representing the order relation between
activities ai,aj ∈ N

⋃{τk

∣∣k = 1, . . . , K}, i 6= j iff:

• Aaiaj = ’1’ iff (∀t ∈ T ′S with ai, aj ∈ t ⇒ t(ai ≺ aj))
If for all producible traces containing activities ai and aj, ai always

appears BEFORE aj, we set Aaiaj to ’1’, i.e., ai always precedes aj in the

gThough this approach has been inspired by n-gram, it is somewhat different from n-gram rep-
resentation of a string. In n-gram the length of the sub-string is a fixed number n, while in our
approach we use τk to represent traces producible by loop-block Bk. Obviously, traces producible
by Bk do not need to have same length.
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flow of control.
• Aaiaj = ’0’ iff (∀t ∈ T ′S with ai, aj ∈ t ⇒ t(aj ≺ ai))

If for all producible traces containing activities ai and aj, ai always
appears AFTER aj, we set Aaiaj

to ’0’, i.e. ai always succeeds aj in the
flow of control.

• Aaiaj
= ’+’ iff (∃t1 ∈ T ′S with ai, aj ∈ t1 ∧ t1(ai ≺ aj)) ∧

(∃t2 ∈ T ′S with ai, aj ∈ t2 ∧ t2(aj ≺ ai))
If there exists at least one producible trace in which ai appears before aj

and another one in which ai appears after aj, we set Aaiaj to ’+’; i.e., ai

and aj are contained in different parallel branches.
• Aaiaj = ’-’ iff ( ¬∃t ∈ T ′S : ai ∈ t ∧ aj ∈ t)

If there is no producible trace containing both activity ai and aj, we
set Aaiaj to ’-’, i.e. ai and aj are contained in different branches of a
conditional branching.

• Aaiaj = ’L’, iff ((ai ∈ Bk ∧ aj = τk) ∨ (aj ∈ Bk ∧ ai = τk))
For any activity ai in a Loop-block Bk, we define order relation Aaiτk

between it and the corresponding silent activity τk as ’L’.

The first four order relations {1,0,+,-} specify the precedence relations between
activities as captured in the trace set, while the last order relation ’L’ indicates
loop structures within the trace set. As example consider Fig. 3c which depicts the
order matrix of process model S. Since S contains one loop-block, a silent activity
τ is added to this order matrix as well. Note that the order matrix contains all five
order relations as described in Def. 4.2. For example, activities E and C will never
appear in same trace of the simplified trace set, since they are contained in different
branches of an XOR block. Therefore, we assign ’-’ to matrix element AEC. Further,
since in all producible traces, which contain both activity B and activity G, B always
appears before G, we obtain order relations ABG = ’1’ and AGB = ’0’ respectively.
Special attention should be paid to the order relations between silent activity τ and
the other activities. The order relation between τ and activities C and F is set to ’L’,
since both C and F are contained in the loop-block; with all remaining activities τ

has same order relations as C (or F) have. Note that the main diagonal of an order
matrix is empty since we do not compare an activity with itself.

Generally, it is not a good idea to first enumerate all traces of a process model
and then to analyze the order relations captured by them. Note that the trace set
of a process model can become extremely large, particularly if the model contains
multiple AND-blocks or even infinite at the presence of loop-blocks. In 29, we have
introduced two algorithms for transforming a block-structured process model into
its corresponding order matrix and vice verse. Complexity of these two algorithms is
O(2n2), where n equals the number of activities plus the number of loop-blocks con-
tained in the process model; we have further proven that an order matrix constitutes
a unique representation of a block-structured process model; i.e., if we transform
a process model into an order matrix and then transform the latter back into a
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process model, the two process models are trace equivalent ; i.e., they cover same
behavior 18.

Based on an order matrix representation, we can easily identify activities belong-
ing to the same block. In particular, such activities have the same order relations
with respect to activities from outside this block. As example, take the order matrix
depicted in Fig. 3. If we ignore the internal relation between activities A and B, the
order relations between A and all other activities are the same as for B (as marked
up in Fig. 3 where the first two rows are identical when ignoring the order relation
between A and B). Based on the order matrix, we can determine a process block
containing A and B. Furthermore, these activities are contained in different branches
of an XOR-block (as indicated by AAB = ’-’).

5. Hospital Case and Running Example

To illustrate our mining approach along a real-world example and to also validate
it in this context, we first introduce a real-world case from one of the projects we
conducted in the healthcare domain.

5.1. Case Study Description

Context. We conduct a case study in a large clinical centre (with more than 1000
beds) in Germany. In this clinical centre the diagnostic and therapeutic processes of
a patient usually involve various, organizationally more or less autonomous units.
For a patient treated in a department of internal medicine or surgery, for exam-
ple, tests and procedures at the laboratory and the radiology department have to
be ordered. In this context, medical procedures must be planned and prepared,
and appointments be made. Further, specimen or the patient himself have to be
transported, physicians from other units may need to come and see the patient,
and medical reports have to be written, sent, and evaluated. Thus, the cooperation
between organizational units as well as the medical personnel is a vital task, with
repetitive, but non-trivial character.

Data Source. We analyze several process model repositories of this clinical
centre. In total, we can identify more than 90 process variants for handling med-
ical orders and procedures respectively (e.g., X-ray inspections, cardiological ex-
aminations). Despite their similarity the different variants are captured in sepa-
rate process models based on different notations (e.g., Event-driven Process Chains
and UML Activity Diagrams) and modeling components (e.g., ARIS Architect,
MQSeries Workflow, ADEPT). All models use standard process patterns like Se-
quence, AND-/XOR-Splits, AND-/XOR-Joins, and Loop, and their size ranges from
7 to 17 activities. Interestingly, for each non-block-structured variant model it is pos-
sible to transform it into a trace equivalent, block-structured representation; i.e.,
it is possible to map the different variant models to a representation following our
process meta model. In this context, we apply simple refactorings (e.g., relabeling
of activities) in order to harmonize considered variant models 67 .
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Sources of Variance. Despite the structural similarity of the variant models,
the latter also comprise parts only relevant for a sub-collection of the variants.
For example, some of the variants require approval of a medical order by a senior
physician, while this is not required in the context of other variants. Similarly, there
exist medical procedures requiring complex scheduling activities, whereas in other
cases no scheduling is required or the patient simply needs to be registered at the site
of the care provider. Depending on the physical condition of the treated patient, in
addition, a transport may have to be organized or not. Similarly, in emergency cases
a short medical report is transmitted immediately after the medical examination to
the requesting unit (e.g., a ward). Other variations of the analyzed models concern
the preparation phases at the site of wards and examination units respectively.

We consider the most relevant 84 process variants which make up more than
95% of the identified ones. Based on the number of corresponding process instances,
we assign weights to the variant models ranging from 0.1% to 8.67%. However, none
of the process variants is dominant or significantly more relevant than others.

5.2. Illustrative Example

Due to space limitations, we cannot show all 84 process variants. Fig. 4 depicts
six process variants Si ∈ P (i = 1, 2, . . . 6) from our hospital case study (to ease
presentation and later discussion we assign to each labeled activity a letter ranging
from A to Q). Furthermore we assign weights to these six variant models according
to their relevance. In the context of our work, we define the weight wi of a process
variant Si as the percentage of process instances executed on basis of Si. In our
example, 20% of instances were executed based on S1 and 5% of instances on S3.
If we only know process variants, but have no runtime information about related
instance executions, we will assume the variants to be equally weighted; i.e., every
process variant then will have weight 1/n, where n corresponds to the number of
variants in the system.

For our following considerations, first of all, we focus on these six variants which
are divided into two parts: Part2 consists of activities J,K,P,Q,L,M and O. These
activities exist in all six process variants S1 - S6, but show different order relations
in these variants. On the contrary, Part1 consists of activities that do not appear
in all process variants. For example, activity E exists only in S1, S2 and S5, but not
in S3, S4 and S6.

In Section 6, we first assume that all process variants have same activity sets,
i.e., we first consider solely Part2 of each process variants. In Section 7, we relax
this constraint by also considering Part1 of the process variants. Finally, Section 7.5
summarizes mining results when applying our clustering algorithm to all 84 process
variants from our healthcare case study.

6. Clustering Approach for Discovering Reference Process Models

We now present a clustering-based algorithm for mining a collection of process
variants. Our goal is to derive a new reference model out of a given collection of
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process variants which is easier configurable than the current one. Since we restrict
ourselves to block-structured process models, we can build the new reference model
by enlarging blocks, i.e., we first identify two activities that can form a block,
then we merge this block with other activities and blocks respectively to form a
larger block, and so forth. This procedure continues until all activities and blocks
respectively are merged into one single block. This block and its internal structure
then represent the new reference process model we are looking for.

Basically, our clustering approach for mining process variants works as follows:

(1) For all process variants calculate their order matrices. Aggregate them to one
high-dimensional matrix representing all variants (cf. Section 6.1).

(2) Use this high-dimensional matrix and determine activities to be clustered in a
block (cf. Section 6.2).

(3) Determine the order relation the clustered activities shall have within this block
(cf. Section 6.3).

(4) After building a new block in Steps 2 and 3, reflect on the clustering of the
activities by adjusting the high-dimensional matrix accordingly (cf. Section 6.4).

(5) Repeat Steps 2, 3 and 4 until all activities are clustered together; i.e., until the
new process model has been constructed by the enlargement of blocks.

6.1. Aggregated Order Matrix

For each variant of the given collection of process variants, we first compute its order
matrix (cf. Def. 4.2). Regarding our example from Fig. 4, we need to determine six
order matrices (cf. Fig. 5). Afterwards, we analyze the order relation for each pair
of activities considering all order matrices derived before. As the order relation
between two activities might be not always the same in all order matrices, this
analysis does not result in a fixed relationship, but provides a distribution for the
five types of order relations (cf. Def. 4.2). Regarding our example, for instance, in
20% of all cases activity O is a successor of activity Q (as in S1), in 15% of all cases
O and Q are contained in different branches of an AND block (as in S4 and S5), and
in 45% of all cases in different branches of an XOR block (as in S2, S3 and S6) (cf.
Fig. 5). Generally, we can define the order relation between two activities a and b

as 5-dimensional vector Vab = (v0
ab, v

1
ab, v

+
ab, v

−
ab, v

L
ab). Each field then corresponds to

the frequency of the respective relation type (’0’, ’1’, ’+’, ’-’ or ’L’) as specified in
Def. 4.2.

Take again our running example and consider Fig. 5. Here, v0
OQ corresponds to

the frequency of all cases with activities O and Q having order relationship ’0’, i.e.,
all cases for which O succeeds Q; we obtain VOQ = (0.2, 0, 0.35, 0.45, 0). Formally,
we define an aggregated order matrix as follows:

Definition 6.1. (Aggregated Order Matrix) Let Si = (Ni, Ei, . . .) ∈ P,
i = 1, 2, . . . , n be a collection of process variants with activity sets Ni. Let further
Ai be the order matrix of Si, and let wi represent the number of process instances
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being executed based on Si. The Aggregated Order Matrix of all process vari-
ants is defined as 2-dimensional matrix Vm×m with m = |⋃ Ni| and each matrix
element vajak

= (v0
ajak

, v1
ajak

, v+
ajak

, v−ajak
, vL

ajak
) being a 5-dimensional vector. For

♦ ∈ {0, 1, +,−, L}, element v♦
ajak

expresses to what percentage, activities aj and ak

have order relation ♦ within the collection of process variants S1, . . . , Sn. Formally:
∀aj , ak ∈

⋃
Ni, aj 6= ak :

v♦
ajak

=

∑
Aiajak

=′♦′ wi

∑
aj ,ak∈Ni

wi
. (2)

The aggregated order matrix V of the process variants from Fig. 4 is shown in
Fig. 5. Generally, the main diagonal of an aggregated order matrix is always empty
since we do not specify the order relation of an activity with itself. For all other
elements, a non-filled value in a certain dimension means it corresponds to zero.

In Section 4 we have shown that we can use an order matrix to determine blocks
in a process model: i.e., two activities can be clustered into a block if they have same
order relation with respect to other activities. As we will show, similar idea can be
applied when analyzing an aggregated order matrix. Our goal is to derive an optimal
reference process model for the given variants based on this representation form.
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6.2. Determining Activities to be Clustered

This subsection describes how we derive the blocks for the reference model to be dis-
covered from an aggregated order matrix, i.e., from a collection of process variants.
There are two fundamental issues we have to consider in this context. First, we have
to decide which activities (and blocks respectively) shall be ”blocked”. Second, we
must choose an order relation for them. This subsection deals with the first issue,
the second one is addressed in Section 6.3.

Regarding an order matrix, two activities can be clustered in a block if they
have same order relations with respect to the other activities (cf. Section 4). We
can apply similar idea when analyzing an aggregated order matrix. However, in
an aggregated order matrix the relationship between two activities is expressed as
5-dimensional vector showing the distribution of the order relations over all process
variants. When determining pairs of activities that can be clustered in a block,
it would be too restrictive to require precise matching as in the case of an order
matrix. To deal with this, we first introduce function f(α, β) which expresses the
closeness between two vectors α = (x1, x2, ..., xn) and β = (y1, y2, ..., yn):

f(α, β) =
α · β

|α| × |β| =
∑n

i=1 xiyi√∑n
i=1 x2

i ×
√∑n

i=1 y2
i

(3)

f(α, β) ∈ [0, 1] computes the cosine value of the angle θ between vectors α and
β in Euclid space. If f(α, β) = 1 holds, α and β exactly match in their directions;
f(α, β) = 0 means, they do not match at all. For example, when comparing closeness
between vLP = (0.55, 0, 0.45, 0, 0) and vMP = (0.75, 0, 0.25, 0, 0), for example, we
obtain f(vLP, vMP) = 0.934. This high value implies that the two vectors are close
to each other though they are not the same.

Using f(α, β) we introduce Separation metrics. It indicates to what degree two
activities of an aggregated order matrix are suited for being clustered in a block.
More precisely, Separation(a, b) expresses how similar order relations of activities
a and b are when compared to the other activities. In our example from Fig. 4,
Separation(J,K) is determined by the closeness (measured in terms of the cosine
value) of f(vJL, vKL), f(vJM, vKM), f(vJO, vKO), f(vLP, vKP), and f(vJQ, vKQ). Gen-
erally, we define cluster separation as follows:

Separation(a, b) =

∑
x∈N\{a,b} f2(vax, vbx)

|N | − 2
(4)

N corresponds to the set of activities. Like most clustering algorithms 56, we
square the cosine value to emphasize the differences between the two compared
vectors. Finally, dividing this expression by |N | − 2 normalizes its value to a range
between [0, 1]. Regarding our example from Fig. 4, we obtain Separation(J,K) =
0.870. This high separation value indicates that activities J and K have a relatively
high similarity regarding their order relations to the remaining activities, i.e., they
have relatively high chance of forming a block.
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We determine the pair of activities best suited to form a block by measuring how
much each activity pair is separated from the other activities. We accomplish this by
computing the separation value for each activity pair. The higher this value is, the
better the two activities are suited for being clustered. Fig. 6 depicts the separation
values for our running example from Fig. 4. We denote this table as separation table.
Obviously, in our example activities P and Q have the highest separation value of
0.929 (marked up in grey color in Fig. 6). We therefore choose P and Q as the
activities forming our first block.

J K L M O P

K 0.870
L 0.218 0.507
M 0 0.212 0.672
O 0.198 0.463 0.737 0.517
P 0.521 0.697 0.626 0.345 0.6780.214 0.439 0.745 0.525 0.751 0.929Q

Highest 
separation value 
for Q and P 

Fig. 6. Separation table of aggregated order matrix

6.3. Determining Internal Order Relations

After having decided that activities P and Q are clustered in the first block, we
have to determine the order relation these two activities shall have. In addition,
we measure how good our choice is. For this purpose, we introduce Cohesion
as measure which indicates how significant particular order relations between two
activities of the same cluster are.

In the aggregated order matrix of our running example the relationship between
activities P and Q is depicted as 5-dimensional vector vPQ = (0, 1, 0, 0, 0). It shows
the distribution values of the five types of order relations. Obviously, when building a
reference process model, only one of the five order relations can be chosen. Therefore,
we want to choose that order relation which is most significant. Regarding our
example, the significance of each order relation can be evaluated by the closeness
vector vBC and the five axes in the 5-dimensional space have. These axes can be
represented by five benchmarking vectors: v0 = (1, 0, 0, 0, 0), v1 = (0, 1, 0, 0, 0),
v+ = (0, 0, 1, 0, 0), v− = (0, 0, 0, 1, 0), and vL = (0, 0, 0, 0, 1). Based on this, we can
compute the significance of each order relation using f(α, β) (cf. Section 6.2), with
α = vPQ and β being one of the five benchmarking vectors. Regarding our example,
the closest axis to vPQ is v1 (with f(vPQ, v1) = 1). Therefore, we decide that P shall
precede Q within the newly derived block (cf. Def. 4.2).

We use Cohesion to evaluate how good our choice is:

Cohesion(a, b) =
max♦={0,1,+,−,L}{f(vab, v

♦)} − 0.4472
1− 0.4472

(5)

This measure has value range [0,1] as well. Cohesion(a, b) equals one if there is
a dominant order relation, i.e., vab is on one of the five axes. Cohesion(a, b) equals
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zero if vab = (0.2, 0.2, 0.2, 0.2, 0.2) holds, i.e., no order relation is more significant
than the others. Regarding our example, Cohesion(P,Q) equals 1. This indicates
that activity P precedes activity Q in all variants.

6.4. Recomputing the Aggregated Order Matrix

We have discovered the first block of our reference process model, which contains P
and Q. We have further decided that P shall precede Q, and that the significance of
this order relation is 1. We now have to decide about the relationship between the
newly created block (comprising P and Q) and the other activities.

Regarding the process variants from Fig. 4, activities P and Q do not always
constitute an elementary block (i.e., a block only containing Q and P). To be more
precise, P and Q can form a block in S2, S3, S4 and S6, but not in S1 and S5.
Nevertheless, P and Q are best suited to form a block based on our analysis of
the aggregated order matrix. This, in turn, requires an adaptation of the original
aggregated order matrix in order to represent the situation in which P and Q are
clustered in a block.h We accomplish this adaptation by computing the means
of the order relations between {P, Q} and the remaining activities. For example,
as vPL = (0, 0.55, 0.45, 0, 0) and vQL = (0, 0.2, 0.8, 0, 0) hold, the order relation
between the newly created block (P,Q) and activity L corresponds to (vPL+vQL)/2 =
(0, 0.375, 0.625, 0, 0).i Such computation is applied to all remaining activities outside
this block.

Generally, after clustering activities a and b, the new aggregated order matrix
V ′ can be calculated as follows:

∀x ∈ N \ {a, b} :

{
v′(a,b)x = (vax + vbx)/2
v′x(a,b) = (vxa + vxb)/2

(6)

∀x, y ∈ N \ {a, b} : v′xy = vxy (7)

The aggregated order matrix V ′ we obtain after clustering P and Q is shown
in Fig. 7. Since B and C are replaced by a block containing these two activities,
the matrix resulting after the re-computation is one dimension smaller than V .
Afterwards, we treat this block like a single activity, but keep its internal structure
in order to build up the new reference process model at the end.

6.5. Mining Result for Part 2

After obtaining the newly aggregated order matrix, we repeat the three steps as
described in Sections 6.2, 6.3 and 6.4; i.e., we first identify the two activities (and

hOur approach is different to traditional clustering algorithms 56, in which only distances are
re-computed, but not the original dataset.
iThis approach is an unweighted one; i.e., we simple take the average of the two vectors without
considering their importance; e.g., how many activities are included in the block. In this way, we
can ensure that when merging two blocks of different sizes, the order relations of the resulting
block are not too much dominated by the bigger one. Such unweighted approach is widely used
from other clustering approaches 56.
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Fig. 7. Aggregated order matrix V ′ resulting after the clustering of B and C

blocks respectively) to be clustered next, then we determine their order relation
within the block, and finally we re-compute the aggregated order matrix consid-
ering the newly determined block. In every iteration, we merge two activities and
blocks respectively into one bigger block. This iterative clustering continues until
all activities from the original aggregated order matrix are clustered. Finally, we
obtain our new reference process model. Obviously, the number of required itera-
tions equals the number of activities minus one. Regarding our running example,
Fig. 8 depicts the final result S′Part2 we obtain after running through all iterations
of our clustering algorithm.

O

L
M1QP 1.02KJ 1.0 30.54 4

0.81
5

0.980.99
6

Fig. 8. The discovered process model S′Part2 based on part 2 of process variants

Fig. 8 does not only show process model S′Part2, which we have discovered
through the mining of the variants from Fig. 4, but also the intermediate results
we obtain after every iteration (indicated through the number at the right-bottom
corner of each block). In the first iteration, for example, P and Q are clustered to
form a block. In the second iteration, this block is merged with activity O to form
an XOR- block. Finally, after the sixth iteration, all activities are clustered together
into one single block, which corresponds to the discovered reference model.

Fig. 8 additionally shows cohesion values, which reflect the significance of the
order relations we haven chosen in different iterations. For example, in the second
iteration the cohesion we obtain when clustering activity O and the block containing
P and Q equals 0.54. Since cohesion reflects the significance of the chosen order
relation, it also expresses local fitness of the control flow in the reference model. For
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example, when comparing the cohesion values, it turns out to be of high significance
that activity P precedes activity Q, but less significant that they can form an XOR-
block with activity O. When reconsidering our process variants from Fig. 4, for
example, we can draw similar conclusions as the ones described here.

7. Mining Process Variants with Different Activity Sets

So far, our basic method for mining process variants has assumed that all variant
models comprise the same set of activities. However, process variants may differ
in their activity sets in general. In this section we discuss how to mine process
variants with different activity sets. We illustrate relevant issues as well as necessary
extensions of our basic method by analyzing Part1 of the process variants shown in
Fig. 4.

7.1. Analyzing the Occurrences of Activities

One fundamental challenge is to decide which activities shall be considered in the
resulting reference model and which not. Another challenge is to fix the order rela-
tions between the considered activities, which is not trivial since not all activities
occur in all variant models. Here we first define Coexistence Matrix as follows:

Definition 7.1. (Coexistence Matrix) Let Si = (Ni, Ei, . . .) ∈ P,
i = 1, 2, . . . , n be a collection of process variants with activity sets Ni. Let further
wi represent the percentage of instances that were executed based on Si. The Co-

existence Matrix of process variants S1, . . . , Sn is then defined as 2-dimensional
matrix Em×m with m = |⋃ Ni|. Each matrix element Eajak

corresponds to the
relative frequency with which activities aj and ak appear together within the given
collection of variants. Formally: ∀aj , ak ∈

⋃
Ni :

Eajak
=

∑

Si:aj ,ak∈Ni

wi (8)

Coexistence matrix measures how often activity pairs occur in a collection of
process variants. The main diagonal (ai = ak) measures how often a particular
activity ai occurs in the variants, and the remaining elements in the matrix measure
how frequent two particular activities co-occur in the variants. For our example from
Fig. 4, the Coexistence Matrix is shown in Table 1. Note that silent activity τ is
included to represent the Loop structure in S4 (cf. Def. 4.2).

Table 1 summarizes the relative frequencies of single activities (main diagonal)
as well as co-occurring activity pairs (other matrix elements). For example, activities
A,C,H and N occur in 100% of the process variants while activity E only appears in
55% of the variants (S1, S2 and S5). In MinAdept, the user may set a threshold
value in order to determine which activities shall be contained in the resulting
reference process model and which not. This way we can exclude activities with
low frequency if desired. For example, if we only want to consider activities with a
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relative frequency greater than 40%, activity B as well as silent activity τ will be
excluded from the reference process model (excluding τ means the loop structure
will not be considered). Generally, process engineers have to set respective threshold
values depending on whether they want to add more or fewer activities to the
reference process model. Obviously, a good threshold value is the key to success.
We discuss how to find a suitable threshold in Section 9.3.

7.2. Coping with Unclear Order Relations

Except the main diagonal, the other elements in the coexistence matrix show the
relative frequencies with which activity pairs co-occur in the considered collection
of process variants (and process instances respectively). For example, activities A

and C co-occur in all instances, while A and E only co-occur in 55% of the instances
(cf. Table 1). We can use these numbers when computing the aggregated order
matrix as described in Section 6.1. However, since not all activities are present in
all variants, the absolute frequencies of the different order relations of a particular
activity have to be put in relation to the total number of process instances existing
for the respective variants. For example, though A is a predecessor of B in only
20% of the process instances (only in S4), this corresponds to 100% of all instances
containing this activity pair; i.e., in all process instances containing both A and B,
activity A always precedes activity B. Thus, the execution order between A and B

should be represented by vector VAB = (0, 1, 0, 0, 0) and be reflected in the definition
of the aggregated order matrix (cf. Def. 6.1) accordingly.

Following this approach does not counteract the basic mining method presented
in Section 6. Note that we target at a (reference) process model which covers the
structural relations between the considered activities best. In principle, it is also
possible that an activity is considered in the reference model though it has only low
frequency and therefore co-occurs with other activities in only few cases. Generally,
if the relative frequency of an activity is higher than the specified threshold value,
it will be considered in the reference model to be discovered. For this case, we are
basically interested in the order relations of this activity with respect to the other
activities considered in the reference model.

There may be pairs of activities which do not co-occur in any of the process
variants and process instances respectively (i.e., their co-occurrence is 0), but which

A B C D E H I N τ

A 1.0 0.2 1.0 0.45 0.55 1.0 0.8 1.0 0.2

B 0.2 0.2 0.2 0.2 0.0 0.2 0.0 0.2 0.2

C 1.0 0.2 1.0 0.45 0.55 1.0 0.8 1.0 0.2

D 0.45 0.2 0.45 0.45 0.0 0.45 0.25 0.45 0.2

E 0.55 0.0 0.55 0.0 0.55 0.55 0.55 0.55 0.0

H 1.0 0.2 1.0 0.45 0.55 1.0 0.8 1.0 0.2

I 0.8 0.0 0.8 0.25 0.55 0.8 0.8 0.8 0.0

N 1.0 0.2 1.0 0.45 0.55 1.0 0.8 1.0 0.2

τ 0.2 0.2 0.2 0.2 0.0 0.2 0.0 0.2 0.2

Table 1. Occurrence Matrix
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shall be both included in the new reference process model. Since the two activities
never co-occur, we are unable to derive relative frequencies for the five possible
order relations; i.e., their order relations as reflected in the aggregated order matrix
would be (0,0,0,0,0). Regarding our example, activities D and E do not co-occur in
any process variant. Since f(α, β) (cf. Equation 3) will be invalid if one of the two
vectors α or β equals (0, 0, 0, 0, 0), we need to find ways to handle such unclear
relationship:

(1) Compute separation. When computing separations (cf. Equation 4),
we can ignore these unclear relationships. For example, when computing
Separation(a, b) between activity a and b, we can see that order relation vax is
an unclear one, i.e., it equals (0, 0, 0, 0, 0). We therefore do not include it in the
computation.
To be more precise, let V be an aggregated order matrix and let a, b ∈ N be two
activities considered in V . We can define a set M = {x

∣∣x ∈ N \ {a, b}, vax =
(0, 0, 0, 0, 0) ∨ vbx = (0, 0, 0, 0, 0)} which contains all x with vax or vbx being
(0,0,0,0,0). Then instead of using Equation 4, we use Equation 9 to compute
Separation(a, b) to ignore the influence of unclear relations.

Separation(a, b) =

∑
x∈N\{a,b},x/∈M f2(vax, vbx)

|N | − 2− |M| (9)

(2) Compute cohesion. When computing Cohesion(a, b) (cf. Equation 5), we will
also run into problems if their order relation is (0,0,0,0,0). In this case we can
define cohesion(a, b) := 0, i.e., none of the five order relations is considered
being more significant than the others.

(3) Recompute Aggregated Order Matrix. Since an aggregated order matrix
captures the distribution of the five order relations within the collection of
variants, for each vector vab, a, b ∈ N , we obtain value 1 as the sum of its
elements. However, this does not apply to the unclear order relations. Therefore,
when re-computing the (reduced) aggregated order matrix after the creation of
a new block (cf. Section 6.4), we do not take such unclear order relations into
account.
To be more precise, let V be an aggregated order matrix and let a, b, x ∈ N

be three activities contained in V . Assume further that in one iteration of
our algorithm, activities a and b are clustered into a block. Then we set new
matrix element v′(a,b)x = vax if vbx = (0, 0, 0, 0, 0) holds or v′(a,b)x = vbx if
vax = (0, 0, 0, 0, 0) holds, respectively.

7.3. Mining Result for Part 1 of Our Running Example

Regarding Part1 of our running example (i.e., Part1 of the process variants in Fig.
4), Fig. 9 shows the discovered process model S′Part1 as well as the intermediate
results we obtain after every iteration of our clustering approach (indicated through
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the numbers at the right bottom corner of each block). Note that the discovered
model comprises all process activities in the variants (Part1). This includes silent
activity τ , which represents the loop structure in S4.

H1C 1.0 2BA 1.0 30.04 5 1.0 6D

E

1.0 1.0 7N

I0.771.0 8
Fig. 9. The discovered process model S′Part1 based on part 1 of process variants

Special attention should be paid to the cohesion values between activities D and
E. Cohesion(D, E) equals 0, which means that the order relation between these two
activities is unclear. This can be also observed from the coexistence matrix E for
which EDE = 0 holds. In principle, if the order relation is not clearly indicated
within the collection of variants, any one of the four order relations {0,1,+,-} j can
be applied. We set as default option ’-’ (XOR) in such case. We choose this option
as default taking the behavior of the process variants into account: If two activities
never show up together in a variant (i.e., their co-occurrence is 0), we can assume
that they never co-occur for any process instance.

7.4. Setting Different Threshold for Mining Reference Models

Regarding our example from Fig. 4 we can now consider both parts of the process
variants and apply our algorithm to discover a process model. Fig. 10 depicts the
discovered models when setting different threshold values:
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Fig. 10. Discovered process models when setting threshold at different levels

Regarding Fig. 10 process model S′ contains all activities that have appeared in
at least one of the process variants. Note that we obtain same model when merging
S′Part1 (cf. Fig. 9) and S′Part2 (cf. Fig. 8). In fact, when discovering process model

jTwo activities can have order relation ’L’, if and only if one of the two activities is a silent one
(cf. Def. 4.2).
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S′, we obtain same (sub-)block and cohesion value in each iteration as the ones we
obtained when mining S′Part1 and S′Part2 separately, i.e., only the order of iterations
differs.

Having a closer look at the process models we obtain when setting different
threshold values, we can see that they are similar to each other as well. In particular,
the structure of these models is the same except that their activity sets differ. This
additionally indicates good performance of our algorithm: the structure of process
models discovered by our algorithm is independent from the initial activity set
considered in the model. In Section 9.3, we will discuss how to find a good threshold
value in our context.

7.5. Case Study Results

We applied the presented clustering algorithm to the hospital case described in
Section 5. All 84 process variants as well as their relative weights were considered.
The threshold was set to 50%. Fig. 11 shows the discovered reference process model
S′ as well as the original reference process model S we found in the organizational
handbook of the clinical centre.Select examination Order examination Inform patient about procedure Prepare patient (ward) Perform examination Validate medical reportCreate medical report

Select examination Order examination Prepare patient (exam unit) Perform examination Aftercare for patient Validate medical reportInform patient about procedure Create medical reportCall in patientSchedule examination Prepare patient (ward) S: original reference process model
S’: reference process model discovered  through mining

Fig. 11. Discovered reference process model of the healthcare case study

Average weighted distance between the original reference process model S and
the process variants is 5.307, while average weighted distance between the discov-
ered reference process model S′ and the process variants is only 2.795. This indicate
that by applying our mining algorithm, we can significantly reduce the configura-
tion effort by 47.3%.k Note that the original reference process model S constitutes a
very simple model since it only contains 7 activities that are organized in sequence.
When discussing this reference model with process owners we further learned that
its original purpose was to define the basic organizational steps of an arbitrary med-
ical order and medical process, respectively, but that the different variant models
have evolved over time and thus more or less differ from this reference model. We
showed the newly discovered reference model S′ to the process owners at the clinical

kWhen replacing old reference process model by a new one, we can propagate the changes on
the reference process model to the process instances as well. This means that even the process
instances, which were created and executed according to the old reference process model, can
benefit from the replacement of the reference model. We refer to 48 for further details.
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centre who confirmed that it is closer to the variants than the one from the original
handbook.

8. Validation

The complexity of the mining algorithm described in Section 6 corresponds to
O(n2m + n3), where n equals the number of activities each variant comprises and
m equals the number of variants. O(n2m) corresponds to the complexity needed
to build the aggregated order matrix, while O(n3) corresponds to the complexity
needed to mine the reference model. Consequently, our algorithm has polynomial
complexity.

8.1. Average Weighted Distance

As discussed in Section 1, the goal of our algorithm is to discover a process model
which has minimal average distance to the variants. Therefore, we first need to
define average weighted distance between a reference process model S and its
variants.

Definition 8.1. (Average Weighted Distance) Let S = (N, E, . . .) ∈ P
be a reference process model. Let further M be a set of process variants Si =
(Ni, Ei, . . .) ∈ P, i = 1, . . . , n, with wi representing the relative frequency of process
instances that were executed on basis of Si and d(S, Si) being the distance between
S and Si (cf. Def. 2.2). Average Weighted Distance D(S,M) between S and M
can be computed as follows:

D(S,M) =
n∑

i=1

d(S,Si) · wi (10)

The complexity to compute average weighted distance is NP-hard since the
complexity to compute the distance between two variants is NP-hard (cf. Def. 2.2).
For example, assume that we take the discovered process model S′ (cf. Fig. 10) as
new reference process model. Then distance between S′ and each of the six process
variants Si (cf. Fig. 4) is as follows: d(S′, S1) = 6, d(S′, S2) = 4, d(S′, S3) = 5,
d(S′, S4) = 4, d(S′, S5) = 7, and d(S′, S6) = 4. Taking variant weights into account
as well (cf. Fig. 4), we obtain as average weighted distance

(6× 0.2 + 4× 0.2 + 5× 0.05 + 4× 0.2 + 7× 0.15 + 4× 0.2) = 4.9.
This means we need to perform on average 4.9 high-level change operations to

configure a process variant (and related instance respectively) out of the reference
process model. Generally, average weighted distance between a reference model and
its process variants represents how ”close” they are.

Since computing average weighted distance has NP-hard complexity 26, our
algorithm does not aim at finding the global optimum, i.e., the model which has
minimal average weighted distance to the variants. However, this is a rather uncrit-
ical issue. Note that most clustering techniques and other data mining algorithms
aim at finding a local optimum rather than a global one since it is almost impossible
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to find the global optimum in reasonable time.56 Our suggested clustering algorithm
constitutes a heuristic approach which tries to solve a complex combinatorial opti-
mization problem in polynomial time. As benefit we can solve a large scale problem
in reasonable time. However as our algorithm only searches for a local optimum,
neither we can theoretically prove that the discovered model is the one with minimal
average weighted distance to the variants, nor we can claim how close the discov-
ered model is to the global optimum. Section 9.3 presents comprehensive simulation
results to show performance of our clustering algorithm in different scenarios.

8.2. Candidate Reference Process Models

In order to validate our mining method, we compare the process model discovered
with other candidate models. For this purpose, for each candidate model Scand we
assume that it is considered as new reference model. We then calculate average
weighted distance between Scand and the six variants S1 − S6 (cf. Fig. 4). For
example, average weighted distance between S′ (cf. in Fig 10) and the six variants
corresponds to 4.9 (cf. Section 8.1), which reflects how close the discovered reference
model is to these process variants. Using the same method, we can compute the
average weighted distance the other candidate reference models show in respect to
the given variant collection.

There are two groups of process models that are candidates for becoming the
new reference model. The first group contains all models we already know. Clearly,
the six process variants S1, S2, S3, S4, S5 and S6 (cf. Fig. 4) belong to this group.
Comparing these models with the one we obtain through process variant mining,
already shows that it is not sufficient to simply set the reference model to the most
frequently used process variant.

The second group of candidate reference process models are the ones we can dis-
cover through mining. Clearly, process model S′ (cf. Fig. 10) we obtained with our
algorithm belongs to this group. So far there has been no algorithm directly sup-
porting the mining of process variants. Therefore, we apply traditional techniques
from the field of process mining 61, and compare them with our approach as well.
The goal of process mining techniques is to discover process models from execution
logs. An execution log typically documents the start/end of each activity execution
in a PAIS, and therefore reflects the behavior of its implemented processes. In our
case, we assume that the behavior of all process variants is fully covered by an
execution log, i.e., we enumerate all traces producible by each process variant (see
72 for a technique we apply in this contextl). The trace sets generated by different
variants are merged together into one trace set. When determining the number of
instances for each trace 61, we also take the weight of each variant into consider-
ation. For example, since weight w1 of variant S1 corresponds to 20%, we ensure

lIn principle, a process model containing loop structure can generate infinite number of traces. To
ease the comparison without loosing generality, we assume that a loop in a process model is either
not triggered or is triggered maximally once.
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that the number of instances generated by S1 accounts for 20% of the total number
of instances as well.

The enumerated trace set is imported to ProM framework, which is one of the
most popular tools for process mining and process analysis 64. We consider Alpha
algorithm 63, Heuristics Mining 71, Multi-phase Mining 65, DWS Mining 14 and
Genetic Mining 10, which are some of the most well-known algorithms for discovering
process models from execution logs. For each of these algorithms, we consider two
cases. In the first one we consider all activities in the trace set, while the second
case only includes activities which occur in more than 20% of the instances. The
discovered process models are depicted in Fig. 12. We do no consider the model
discovered by genetic mining here any longer, since it is too complex in structure,
i.e., it results in a complex model with 13 silent activities.
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Fig. 12. The candidate process models

8.3. Comparison Results

We now compute average weighted distances between each candidate model Scand

from the two groups and the given collection of process variants S1 − S6. Com-
parison results are depicted in Fig. 13. When compared with traditional process
mining techniques, it is clear that our algorithm can find reference models which
have shorter average weighted distances: independent from the threshold we set on
occurrences, the discovered model using our algorithm is better than the ones gen-
erated by other process mining algorithms. If we set the threshold of occurrence to
20%, the discovered model is also better than all the process variants existing in the
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variants. Clearly, setting different threshold values would lead to different resulting
models and consequently result in different average weighted distances to the vari-
ants. We discuss in detail on how to find a good threshold value later in Section
9.3. Altogether, results from Fig. 13 show that S′ (cf. Fig. 10) – the process model
resulting from the approach we suggest – has shortest average weighted distance to
the given process variants; i.e., setting S′ as new reference process model requires
lowest efforts for configuring the variants. More precisely, we only need to perform
on average 3.7 changes to configure a process variant out of S′. Similar results are
obtained when mining other collections of process variants.
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Fig. 13. Average weighted distance between candidate process models and process variants

Obviously, it is not possible to enumerate all process models, since the number
can be infinite. However, as depicted in Fig. 13, the discovered process model is
at least better than the existing ones and the ones we can discover by traditional
process mining algorithms based on traces. Keeping our search at local optimum also
makes our approach applicable to real-world scenarios, since we can limit complexity
to polynomial level.

Of course, our comparison results do not imply that process variant mining is
better than process mining. Each of them has different inputs and goals. When
compared to process mining, which tries to discover the underlying process model
by learning from PAIS behavior, process variant mining focuses on discovering a
reference process model which can be easily configured to the different process
variants. If we apply the process mining evaluation criteria to measure the result of
process variant mining, obviously, the discovered process model S′ (cf. Fig. 10) will
be also not good in terms of behavior.54 Reason is that the behavior of S′, which
can be expressed by the trace set producible on S′, is limited when compared to
the trace sets the variants can produce.

9. Implementation and Simulation

In this section, we formally describe our algorithm, sketch our proof-of-concept
implementation, and provide some simulation results.

9.1. The MinAdept Algorithm

In pseudo code, the MinAdept clustering algorithm to perform process variants
mining (cf. Sections 6 and 7) can be expressed as follows:

The mining starts with deciding on the set of activities to be included in the
(new) reference process model (Lines 1-4). If the relative occurrence of an activity is
larger than the specified threshold, we include it in the reference model. Following
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Fig. 14. Algorithm for discovering a reference process model by mining process variants

this we can construct the aggregated order matrix based on the order matrices of
each process variant (cf. Section 6.1). Afterwards we apply our mining approach as
described in Section 6, i.e., we cluster activities and blocks iteratively until all ac-
tivities are contained in one block (lines 8-13 in Fig. 14). This block then represents
the discovered reference model. Note that if there are unclear order relations, we
apply the techniques described in Section 7.2. Finally, we can evaluate this model
by computing average weighted distance of the reference model. Since computing
this metrics has NP-hard complexity, this step is optional.

9.2. Proof-of-Concept Prototype

The described approach was implemented and tested using Java. Figure 15 depicts
a screenshot of our prototype. We used the ADEPT2 Process Template Editor 43

as tool for creating and visualizing process variants. For each process model, the
editor can generate an XML representation with all relevant information (like nodes,
edges, blocks) being marked up. We store created variants in a variants repository
(cf. Fig. 15) which can be accessed by our mining procedure.

The mining algorithm was developed as stand-alone Java program, independent
from the process editor. It can read the process variants and generate the discovered
reference model according to the XML schema of the process editor. The obtained
model is stored in the folder ”miningResult” and can be visualized by again using
the ADEPT2 editor.

ADEPT2 is a next generation adaptive process management tool, which enables
flexible execution of process instances. Particularly, the ADEPT2 framework enables
ad-hoc changes of single process instances during runtime as well as changes at the
process type level and their propagation to running process instances if desired and
possible.42 In the meanwhile, an industrial-strength version of the ADEPT2 process
management technology called AristaFlow BPM Suite is available for both academic
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Fig. 15. Screenshot of the prototype

and industrial use.8 The presented mining approach constitutes an important step
towards full process life cycle support for dynamic processes.

9.3. Simulation

In Section 7, we have discussed how to mine process variants with different activity
sets. One important step is to determine which activities should be considered in
the reference model. In our approach, we apply a user-defined threshold to select
activities: the reference model may only contain activities whose occurrence within
the variants exceeds this threshold (see MinAdept algorithm in Fig. 14).

Clearly, determining a good threshold is critical. If the threshold is set too low
(i.e., too many non-relevant activities are considered in the reference model), this
will increase efforts for configuring process variants based on the discovered model.
Then we need to delete non-relevant activities when configuring the variants. On the
contrary, if the threshold is set too high (i.e., only few activities are considered in the
reference model), configuration efforts might increase since we need to frequently
insert activities to configure specific variants. Therefore, the influence of the chosen
threshold value on our algorithm is of high interest.

Consider our illustrating example from Fig. 4. Fig. 10 shows the reference process
models we can discover when setting different threshold values. When computing
average weighted distance between these reference models and the six process vari-
ants, we obtain 4.9 for S′, 3.7 for S′0.2, 3.6 for S′0.45, 3.7 for S′0.55, and 3.95 for S′0.8.
This example indicates to set the threshold value at around 0,5 in order to obtain
a reference process model with minimal average weighted distance.

Clearly, concluding this based on one example is not sufficient. We perform
a simulation to analyze the influence of the threshold value. In our simulation,
more than 5000 process models are generated and analyzed. We describe how the
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simulation is setup in the next subsection, and discuss simulation results afterwards.

9.3.1. Simulation Setup

In order to obtain profound simulation results, we consider different parameters
when generating the datasets for our simulation. Amongst others, these parame-
ters include the size and the similarity of process models. We described our data
generation method in detail in a Technical Report.28. In summary, we generate 54
groups of datasets according to different scenarios. Each dataset group contains:

(1) A reference process model, i.e., a randomly generated model from which we
configure the process variants (see our report 28 for an algorithm).

(2) 100 process variants. We generate each variant by configuring the reference
model according to a particular scenario. For each group of datasets, we generate
100 process variants.

In total, we generated 5454 process models in our simulation. Note that the
scenario just describes certain properties of the collection of variants configured
from the reference model, but does not control the way a particular variant is
generated; i.e., the 100 variants belonging to the same group are not the same, but
share certain properties (e.g., having the same number of activities).

Since the variants are generated by configuring a given reference model, we
can statistically control the occurrence of activities within the given collection of
variants (see our Technical Report 28 for the method). In each group, we control
the occurrence of the activities by inserting new activities with certain probabilities
during the configuration of the process variants. The probabilities for inserting
activities range from 0% to 100%. Consequently we obtain activities with different
frequencies appearing in the variants. This way, setting different threshold values
would result in different activity sets, and consequently different process model (as
discovered by our clustering algorithm).

Following this, for each dataset group we apply our algorithm to discover a
reference model by setting threshold values to 0%, 10%, 20%, . . ., and 100%. We
further evaluate these results by computing average weighted distance of the dis-
covered model. We apply the described approach to all 54 dataset groups. In order
to compare results from different groups, the absolute average weighted distance
values are of less interest since each group has different features and covers differ-
ent parts of the search space. Therefore, in each group we set the model discovered
with a threshold value of 0% as basic model. We then evaluate the remaining models
that were discovered when using other threshold values by comparing their average
weighted distances to the one of the basic model. In the next subsections, we present
the results we obtained from the 54 groups (5400 variants) of datasets.

9.3.2. Simulation Results: Influence of Threshold Values

Fig. 16 shows relatively changes of average weighted distances when applying dif-
ferent threshold values. We identified two types of clusters in the 54 groups of
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datasets with each cluster containing 27 groups of datasets. The results from Fig.
16 are plotted as mean of the correlative values in each group.m
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Fig. 16. Average weighted distances of discovered reference models when setting different threshold
values

The two clusters all start at 1 when setting the threshold to 0%. This is easy to
comprehend since this is the model based on which we compare the results in each
group. In both clusters the relative distances decrease with increasing threshold until
around 50%. This indicates that if we filter out the activities with low occurrence,
the discovered reference model will have a shorter distance to the variants, and
consequently will require less configuration efforts. When the threshold value reaches
50%, the two clusters start to show different behaviors. While average weighted
distance in Cluster1 begins to increase with increasing threshold, the one in Cluster2
remains relatively stable. This difference triggered us to perform further analysis
on the datasets.

For the datasets in Cluster1, the positions where the activities are inserted in
the reference model to configure the variants are relatively stable. Therefore, when
considering these frequent changes in the discovered reference model, we can po-
tentially reduce its average weighted distance to the variants. As shown in Fig. 16,
when filtering out these activities (i.e., not considering these frequent changes n),
average weighted distance of the discovered reference increases. For the datasets in
Cluster2, the positions where the activities are inserted in the reference model dur-
ing process configurations are not stable. Therefore, it does not matter that much
whether or not to include these activities in the discovered reference model. Since
the positions of these activities are not stable, even if we include them in the new
reference model, there will be a frequent need to move them to their respective posi-
tions in the different variants. This explains why changing the threshold value does
not influence the average weighted distance too much for the datasets in Cluster2.

mData of each group is available online at http://wwwhome.cs.utwente.nl/ lic/Resources.html.
nactivity insertions in our case
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Besides analyzing the means of the average weighted distances for the models
resulting from each dataset group (cf. Fig. 16), we analyzed their standard devia-
tions. In both clusters, standard deviations are low and stable when using different
threshold values. Except the cases for which the threshold value is 0%, the stan-
dard deviations of the distances for all threshold values are around 0.115 (with
plus/minus of 0.02). Such stable and low standard deviations indicate that in all
groups the results follow almost the same trend as depicted in Fig. 16. Therefore,
our conclusion has very low probability of being drawn by randomness.

For a given collection of variants, knowing which cluster it belongs to can greatly
help for deciding about a good threshold value. However, it is very difficult to know
whether or not the positions of an activity within a collection of variants are stable.
We are able to obtain such information since we can control how the variants are
generated in our simulation. Therefore, in order to obtain a model with shorter
average weighted distance, we suggest setting the threshold to around 50%. In this
interval, both clusters show relatively better results when compared to other values.

9.3.3. Simulation Results: Running Time

Besides analyzing the influence of threshold values on the end results, we also ana-
lyze how fast our clustering algorithm runs. In our simulation, we evaluate scenarios
in which the process models contain per average 10, 20, and 50 activities in each
group o The average running time for the 54 groups of datasets (each group contains
100 variants) is summarized in Fig. 17.

0.013 0.022
0.181

00.050.10.150.2
10 20 50Number of activitiesAverage computa

tion time (s)

Fig. 17. The average running time for process model with different sizes

We use Dell Latitude D630 laptop (2.4GHz CUP and 3.5 GB RAM) to run the
simulation under Windows environment. It is clear from Fig. 17 that the average
running time required for even large process models (containing 50 activities) is
0.18 seconds, which is a significant low number.

oAccording to a recent study 34, process models containing more than 50 activities have a high
risk of errors. Following this guideline, we set the largest size of a process model to 50 activities
in our simulation.
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10. Related Work

Though the flexible support of process variants is highly relevant in practice, only
few approaches for process variant management exist. In particular, there is no
adequate solution for learning from the model adaptations that have been applied
when configuring the process variants out of a given process model.

Structural process changes during runtime and approaches for flexible pro-
cess configuration have been intensively discussed in literature for several
years.46,47,68,70,44 A comprehensive analysis of theoretical and practical issues re-
lated to (dynamic) process changes, for example, has been provided in the context
of the ADEPT2 change framework.41,44 Furthermore, there exist theoretical frame-
works for dynamic structural changes of Petri nets 58. Based on these theoretical
considerations, the AristaFlow BPM Suite 43,8 and tools for configurable workflow
models 12 have emerged.

There exist approaches which provide support for the management and retrieval
of separately modeled process variants. For example, the approach described in 31,32

provides support for storing, managing, and querying large collections of process
variants within a process repository. Graph-based search techniques are used in
order to retrieve variants that are similar to a user-defined process fragment. Ob-
viously, this approach requires profound knowledge about the structure of stored
processes, an assumption which does not always hold in practice. Apart from this,
no techniques for analyzing the different process variants and for learning from their
specific customizations are provided.

In the field of process mining, a variety of techniques has been suggested
61,71,10,63,65,14. As illustrated in Section 8, traditional process mining is different
from process variant mining due to its different goals and inputs. The approach
introduced in 21 presents a method to mine configurable process models based on
event logs, but is still focusing on discovering process models from event logs rather
than reducing efforts for process configuration.

There are few techniques which allow to learn from process variants by mining
change primitives (e.g., to add or delete control edges). For example, the approach
presented in 1 measures process model similarity based on change primitives and
suggests mining techniques using this measure. Similar techniques for mining change
primitives exist in the field of association rule mining 56, frequent sub-graph mining
20,23, or graph pattern discovery 74 known from graph theory 53; here common edges
between different nodes are discovered to construct a common sub-graph from a set
of graphs. Such techniques are commonly applied in the field of bioinformatics for
”subdue” discovery, where ”subdue” represents a certain sub-structure of genes
or proteins, which has a certain chemical or biological behavior.19 However, this
approach does not consider important features of process meta model; e.g., it is
unable to deal with silent activities and cannot differentiate between AND- and
XOR-branchings or Loops.

The ProCycle system enables change reuse at the process instance level to ef-
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fectively deal with recurrent problem situations.49,69 ProCycle applies case-based
reasoning techniques to allow for the semantic annotation as well as the retrieval of
process changes. Based on this respective process adaptations can be re-applied in
similar problem context to configure other process instances later on. If the reuse of
a particular change exceeds a certain threshold, it becomes a candidate for adapting
the process schema at type level; i.e., for evolving this schema accordingly and thus
for considering the change for future process instances as well. Though the basic
goal of ProCycle is similar to our approach, the techniques applied are much more
simpler and do not consider variation in changes. An approach similar to ProCy-
cle, which also enables change reuse based on cased-based reasoning techniques, is
provided by CAKE2.38

To mine high level change operations, 15 presents an approach based on process
mining techniques, i.e., the input consists of a change log capturing applied struc-
tural changes and process mining algorithms are applied to discover the execution
sequences of the changes (i.e., the change process). However, this approach simply
considers each change as individual operation such that the result is more like a vi-
sualization of changes. None of the discussed approaches aims at creating a reference
process model, which allows for the easy and cost-effective configuration of process
variants in future. 30 presents a technique to rank activities based on their potential
involvement in process configurations. 27 further provides an approach to discover
a reference model by performing a sequence of changes on the original reference
model. However, this approach has high complexity and does also not provide any
information on how different parts of the reference model fit to the variants.

In Configurable Workflow Models 12 all process variants are merged into one
big reference process model based on inheritance rules known from Petri Nets 58.
Though techniques like questionnaire-based configuration can help users when con-
figuring a variant 51, the reference model resulting from the merging of the variants
turns to be complex and contains many decision points 13. This approach becomes
even more difficult when being confronted with a large collection of process vari-
ants not being equally important. In this case, an extremely large (complex) process
model would result which might contain too many decision points and cannot dif-
ferentiate between important variants and trivial ones.

In summary, none of the discussed approaches is sufficient in supporting the
evolution of reference process model towards an easy and cost-effective model by
learning from process variants in a controlled way.

11. Summary and Outlook

In this paper, we have provided a cluster-based approach for mining block-
structured process variants. Our overall goal is to discover a reference process model
out of a collection of process variants which can be easily configured to these vari-
ants. The proposed algorithm has polynomial complexity (O(n3)), which allows us
to scale up when solving real-world problems. Based on a quantitative analysis, we
have shown that the reference model discovered with our approach is better (i.e.,
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requires a lower number of change operations for configuring the variants) than
all process models known in the system. It is also better than all models we can
discover when applying conventional process mining algorithms 61 to our problem.
Our validation results also imply that current process mining techniques cannot
fulfill the goal of discovering a process model which is easily configurable. To our
best knowledge, this paper has provided the first polynomial algorithm to discover
easy to configure reference process models through the mining of process variants.

Our approach looks promising, but there are still several questions left open.
First we have to include more control structures (like synchronization constraints
for parallel activities) as proposed in the ADEPT framework 41 or in WS-BPEL.
Second, as learned from our case studies, data flow plays a very important role
in process configuration as well. We therefore will consider data flow issues when
designing other algorithms for process variant ming. It will be also advantageous
if we can extend our approach to directly consider non-block-structured process
models. At last, we are planning to integrate our algorithm with process mining
techniques 61 such that the discovered reference process model can take both the
structure and behavior perspective into account.
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