
Ensuring Business Process Compliance
Along the Process Life Cycle

David Knuplesch and Manfred Reichert

Abstract
Business processes are subject to semantic constraints that stem from regu-
lations, laws and guidelines, and are also known as compliance rules. Hence,
process-aware information systems have to ensure compliance with those rules
in order to guarantee semantically correct and error-free executability as well
as changeability of their business processes. This report discusses how com-
pliance rules can be defined and how business process compliance can be
ensured for the different phases of the process lifecycle.

1 Motivation

In many past publications [1, 2] the correctness of a pre-specified process
model was directly related to its syntactical properties and behavioral sound-
ness (i.e., state consistency). However, these are not the only constraints, a
pre-specified process model has to obey. Typically, process models and corre-
sponding process instances are also subject to semantic constraints stemming
from a variety of sources like standards, regulations, guidelines, corporate
policies, and laws (e.g. Basel or Sarbanes-Oxley-Act). In the following these
semantic constraints are denoted as compliance rules, and techniques for en-
suring the compliance of a business process with these rules are covered under
the term business process compliance.
Compliance rules typically restrict the order in which process activities may
be executed. Hence, a compliance rule can be defined as a function that
recognizes whether or not a process instance – represented by its execution
trace – complies with the rule (cf. Definition 1). Generally, syntactically cor-

Institute of Databases and Information Systems
Ulm University, Germany

e-mail: {david.knuplesch,manfred.reichert}@uni-ulm.de

1

2 Knuplesch, Reichert

rect and sound process models still can violate compliance rules. When being
confronted with large process models or numerous compliance rules, however,
traditional approaches like manual auditing are not feasible. This, in turn,
raises the demand for techniques automatically ensuring business process
compliance in all phases of the process lifecycle.

Definition 1 (Compliance Rule). Let Σ be the set of all activities
and let Σ? be the set of all possible execution traces of processes based
on activities from Σ. Then: A compliance rule φ defines a function
φ : Σ? → Boolean that considers any trace σ =< e1, . . . , ek > ∈ Σ?

either to be true (i.e., to be compliant with φ) or false (i.e. to violate φ
or to be not compliant with it). We further denote σ|= φ :⇔ φ(σ) and
say trace σ satisfies compliance rule φ.

S
u

rg
ic

a
l
S

u
it
e

discharge letter

for referring phys.

O
u

tp
a

ti
e

n
t
D

e
p

a
rt

m
e

n
t

S
u

rg
ic

a
l
W

a
rd

M
T

A
P

h
y
s
ic

ia
n

P
h

y
s
ic

ia
n

N
u

rs
e

Admit

patient

Perform

checkup
Examine

patient
Inform about

risks

Inform about

anesthesia
Make

decision

Check

patient record

Admit

patient

Schedule

surgery

Write

discharge letter

Write

discharge letter

Make

lab test

Create

surgery report

Provide

postsurgical care

Discharge

patient

patient referral

to hospital

Transport

patient to ward

surgery

ok

Perform

surgery

Prepare

patient

Send patient

to surgical suite

Fig. 1 Pre-Specified Process Model Smed

Ensuring Business Process Compliance Along the Process Life Cycle 3

Example 1 (Compliance Rules). Consider the process model Smed from
Figure 1. It shows a pre-specified process model for planning and per-
forming a keyhole surgery in a hospital. Further, consider the informal
compliance rules from Table 1, which must be satisfied by all medical
processes of the respective hospital. In particular, these compliance rules
have to be obeyed by the pre-specified process model from Figure 1 as
well. When analyzing the dynamic behavior of the process model, its
soundness [1, 2] can be easily verified. However, having a closer look
at the model and the compliance rules from Table 1, one can recognize
that the process model contains semantic errors; i.e., it violates some of
the given compliance rules. For example, according to the process model
the surgical ward may send the patient to the surgical suite before he is
prepared; the surgery could be even performed without having prepared
the patient at all. Obviously, this violates compliance rule c1. Further,
in the given process model the patient is either informed about anes-
thesia or risks, but not about both. However, according to compliance
rule c3 the patient must be always informed about the risks after the
examination. Hence, c3 is potentially violated.

Table 1 Examples of Compliance Rules for Medical Processes

c1 Before a surgery may be performed the patient has to be prepared for it and be sent to

the surgical suite.

c2 After examining the patient a decision has to be made. However, this must not be done

before the examination.

c3 After the examination, the patient has to be informed about the risks of the (planned)
surgery.

c4 Before scheduling the surgery the patient has to be informed about anesthesia.

c5 If a surgery has not been scheduled it must not be performed.

c6 After a patient is discharged a discharge letter has to be written.

c7 After performing the surgery and before writing the discharge letter, a surgery report
must be created and a lab test be made.

Generally, ensuring business process compliance not only concerns the model-
ing phase of the process lifecycle [3], i.e., the definition of pre-specified process
models. Additionally, compliance has to be monitored for process instances
during their execution. This is crucial for process instances being defined or
adapted on-the-fly [4], i.e., for which there is no fully pre-specified process
model. Further, compliance monitoring at run-time is required if a priori
compliance checking is not feasible, e.g., if the process model is too large
or the compliance rules are too complex. Finally, for completed process in-

4 Knuplesch, Reichert

stances, a PAIS needs to be able to determine whether or not these instances
were executed in compliance with given regulations, laws and guidelines. For
this purpose, execution logs need to be analyzed accordingly.
Independent from the process lifecycle phase for which business process com-
pliance has to be ensured, compliance rules have to be specified in a machine-
readable way. Hence, this report first deals with issues related to the modeling
of compliance rules in Section 2. Following this, it will be shown how compli-
ance can be ensured during the different phases of the process lifecycle. More
precisely, Section 3 addresses a priori compliance checking in the process
modeling phase. Then, Section 4 shows how compliance rules can be moni-
tored during the execution of process instances, whereas Section 5 discusses
issues related to the compliance of completed process instances. Section 6
further illustrates how compliance can be ensured in the context of process
changes. We address the user perspective in Section 7 and present existing
approaches enabling business process compliance in Section 8. The report
closes with a summary in Section 9.

2 Modeling Compliance Rules

As prerequisite for verifying business process compliance of pre-specified pro-
cess models, process instances or process execution logs, corresponding com-
pliance rules need to be provided in a machine-readable way. In literature,
there exist different approaches for this. One way to define and represent
compliance rules is the usage of Linear Temporal Logic (LTL) [5]. LTL is
a modal temporal logic with modalities referring to time. It enhances ordi-
nary propositional logic with additional temporal operators as specified in
Definition 2.

Definition 2 (Syntax of Linear Temporal Logic). A formula <
LTL > is a syntactical correct LTL formula if it complies with the
following grammar (expressed in BNF):

<LTL>::= > | ⊥ |¬ <LTL> | (<LTL>)
| X <LTL> |F <LTL> |G <LTL>

| <LTL> ∧ <LTL> | <LTL>⇒<LTL>

| <LTL> ∨ <LTL> | <LTL> U <LTL>

| <LTL> W <LTL>

In Definition 2, X , F , G , U , and W correspond to temporal operators: X
means next, F means eventually, G means global, U means until, and W

Ensuring Business Process Compliance Along the Process Life Cycle 5

means weakly until. Further, <LTL> may contain propositional variables.
In our context, these variables correspond to the execution of activities (e.g.
G (Discharge patient⇒ F Write discharge letter)).
The temporal operators enable the navigation from point to point on a time
line. Definition 3 provides the formal semantics of these temporal operators
using recursive equitations.

Definition 3 (Semantics of Linear Temporal Logic). LTL is
defined on infinite traces. Hence, for any execution trace σ =<
e1, e2, e3, . . . , en > we first define its infinite extension σ :=<
e1, e2, e3, . . . , en, ∅, ∅, · · · > by adding empty events after event en. Fur-
ther let φ and ψ be LTL formulas.

σ|= φ :⇔ σ|= φ

σ =< e1, e2, e3, · · · > |= Xφ :⇔ < e2, e3, · · · > |= φ

1. σ|= Fφ :⇔ σ|= φ ∨X Fφ
2. σ|= Gφ :⇔ σ|= φ ∧X Gφ
3. σ|= φUψ :⇔ σ|= ψ ∨ (φ ∧X (φUψ))

whereby ψ has to occur eventually (i.e., Fψ holds).
4. σ|= φWψ :⇔ σ|= ψ ∨ (φ ∧X (φWψ))

whereby ψ need not occur eventually (i.e., G¬ψ is allowed).

Example 2 illustrates how LTL can be used for modeling compliance rules.

Example 2 (Modeling Compliance Rules with LTL). Table 2 provides
examples illustrating the use of LTL. More precisely, the informal com-
pliance rules from Table 1 are now formally defined based on LTL.

Obviously, the formal definition of compliance rules by the use of LTL or other
temporal logics (e.g., Table 2) requires expert knowledge. In particular, LTL
expressions will be not understandable to domain experts. Hence, graphi-
cal notations like Compliance Rule Graphs (CRGs) have been suggested [6].
CRGs allow modeling compliance rules on a higher level of abstraction based
on graphs. CRGs further define a compliance rule by means of an antecedent
pattern complemented by a consequence pattern. Both, the antecedent and the
consequence pattern consist of occurrence and absence nodes. These nodes
are connected by directed edges that may also connect antecedent nodes with
consequence nodes. While nodes require the existence or absence of activities,
the edges connecting them describe respective activity sequences. Note that
edges must not connect two absence nodes.

6 Knuplesch, Reichert

Table 2 Representing the Compliance Rules from Table 1 in LTL

c1 ¬Perform surgery W (Prepare patient
∧ (¬Perform surgery W Send patient to surgical suite))

c2 (G (Examine patient ⇒ F Make decision))

∧ (¬Make decision U Examine patient)

c3 G (Examine patient ⇒ F Inform about risks)

c4 ¬Schedule surgery W Inform about anesthesia

c5 (G¬Schedule surgery) ⇒ (G¬Perform surgery)

c6 G (Discharge patient ⇒ F Write discharge letter)

c7 G (¬Perform surgery ⇒ (F Write discharge letter

⇒ ((¬Write discharge letter U Create surgery report)

∧ (¬Write discharge letter U Make lab test))))

The semantics of an CRG is as follows: Each trace will be compliant with
the CRG, if for any match of the antecedent pattern to the trace’s entries
the related consequence pattern has to find at least one suitable match as
well. Further, if there exists no match of the antecedent pattern the trace
will be compliant as well. The latter kind of compliance is denoted as trivial
compliance.
Any match of the antecedent pattern to a trace is a mapping from each an-
tecedent occurrence node to one of the entries of the trace. For sequenced
antecedent occurrence nodes, whose sequence is expressed by edges, the cor-
responding trace entries have to obey the same sequence. Further, for each
antecedent absence node, there must be no trace entry of the antecedent ab-
sence node’s activity that obeys the sequences with trace entries of adjacent
antecedent occurrence nodes denoted by appropriate edges. A suitable match
of the consequence pattern maps any consequence occurrence node to a cor-
responding trace entry as well. Further those trace entries have to consider
the sequence denoted by the edges as well. In addition, there must be no trace
entry of the consequence absence node’s activity that obeys sequences with
trace entries of adjacent antecedent and consequence occurrence nodes that
are denoted by appropriate edges. Examples 3 and 4 illustrate the semantics
of CRG-based constraints.

Example 3 (Compliance of Simple CRGs). We consider Figure 2 in or-
der to exemplarily describe the semantics of CRGs. More precisely, two
CRGs and related execution traces are provided in Figure 2A and Fig-
ure 2B respectively. Furthermore, for each trace we indicate whether
the corresponding process instance complies with the respective CRG
or violates it.

Ensuring Business Process Compliance Along the Process Life Cycle 7

A B

Antecedent
occurrence node

Consequence
occurrence node

σ = < E, D, F, G, B >

σ = < C, A, B, D, B >

σ = < A, F, A, D, B >

σ = < G, C, F, D, G >

σ = < G, C, B, A, D >

σ = < A, D, B, G, A >

BA C

Antecedent
absence node

Consequence
absence node

σ = < A, B, F, C, D >

σ = < B, F, D, B, A >

σ = < G, F, E, D, E >

σ = < G, D, B, F, D >

σ = < B, G, E, C, D >

σ = < B, A, B, F, C >

1

2

3

4

5

6

7

8

9

10

11

12

trivial compliant

compliant

trivial compliant

compliant

violation

violation

trivial compliant

compliant

compliant

trivial compliant

violation

violation

A

BA

Antecedent pattern

Antecedent pattern

A B

Consequence pattern

BA C

no match

< C, A, B, D, B >

< A, F, A, D, B >

< A, F, A, D, B >

no match

< G, C, B, A, D >

< A, D, B, G, A >

< A, D, B, G, A >

Consequence pattern

-

< C, A, B, D, B >, < C, A, B, D, B >

< A, F, A, D, B >

< A, F, A, D, B >

-

no match

< A, D, B, G, A >,

no match

A)

B)

no match (< B, A, B, F, C >)

< B, F, D, B, A >

< B, F, D, B, A >

no match

< G, D, B, F, D >

< B, G, E, C, D >

< B, A, B, F, C >

(not < B, A, B, F, C >)

-

< B, F, D, B, A >

< B, F, D, B, A >

-

< G, D, B, F, D >

no match (< B, G, E, C, D >)

no match (< B, A, B, F, C >)

-

Fig. 2 Simple Compliance Rule Graphs

Regarding the two CRGs from Figure 2, for example, trivial com-
pliance holds for σ1, σ4, and σ9. Obviously, for each of theses traces at
least one antecedent occurrence node can not be mapped to any trace
entry; e.g., A does not occur in σ1. Trace σ7 constitutes another ex-
ample of trivial compliance although the antecedent occurrence node
B can be mapped to a trace entry; however, trace σ7 also contains an
entry of activity A (preceding the entry of B) which corresponds to the
antecedent absence node (i.e., this entry prevents the antecedent pat-
tern from matching with σ7). To allow for a match of the antecedent
pattern in the given context there should not occur an A preceding the
B in σ7.

Consider now the non-trivial compliant traces: σ2, σ3, σ8, and σ10.
Concerning σ2, the antecedent pattern A matches once, and there are
two suitable matches of the consequence pattern B. Regarding σ3, A

8 Knuplesch, Reichert

occurs twice. Since B succeeds both occurrences of A, there is a suitable
mapping of the consequence pattern in both cases. The same applies
to σ8 and the CRG depicted in Figure 2B: There are two mappings
of the antecedent pattern in terms of the two B that do not have a
preceding A (but a succeeding one). Further, for both mappings there
is no C succeeding the B. Hence, trace σ8 is compliant with the CRG
depicted in Figure 2B. Finally, σ10 contains exactly one mapping of the
antecedent pattern B. Since no C is following, the consequence pattern
maps as well.

Finally, let us consider the non-compliant traces σ5, σ6, σ11, and σ12.
σ5 violates the CRG from Figure 2A since the antecedent pattern maps
on the A, but no suitable mapping of the consequence pattern with a
B following the A can be found (the only occurring B precedes A). Re-
garding σ6, the antecedent pattern maps twice. However, while for the
first A there exists a suitable mapping of the consequence pattern with
the B, the second A is not followed by any B; i.e., trace σ6 violates the
CRG depicted in Figure 2A. Regarding the CRG from Figure 2B and
σ11, the B allows for the antecedent pattern to match, while the suc-
ceeding C prohibits the consequence pattern to match. Finally, consider
the violation of the CRG from Figure 2B by σ12: Due to the presence
of the A, the antecedence pattern cannot map to the second occurrence
of B, but only to the first one. Due to the presence of the C at the end
of the trace, however, no suitable match of the consequence pattern is
possible.

Example 4 (Compliance of Complex CRGs). Figure 3 provides two ad-
ditional CRGs and related execution traces. Again, for each trace it is
indicated whether the corresponding process instance complies with the
respective CRG or violates it.

Regarding Figure 3A, for example, trivial compliance holds for σ13

and σ16. Obviously, for each of theses traces at least one antecedent
occurrence node can not be mapped to any trace entry. Furthermore,
σ15, σ21, and σ22 also constitute examples of trivial compliance although
the antecedent occurrence nodes can be mapped to trace entries; how-
ever, the traces contain entries of the antecedent absence nodes’ ac-
tivities as well (i.e., those prevent the antecedent patterns from being
matched). Regarding σ15 there should be no B between A and D to al-
low for a match of the antecedent pattern of the CRG from Figure 3A.
Regarding σ21 and σ22 no A should occur, in turn, to allow for a match
of the antecedent pattern of the CRG from Figure 3B.

Ensuring Business Process Compliance Along the Process Life Cycle 9

σ = < A, C, B, G, C >

σ = < E, A, E, C, D >

σ = < E, A, E, B, D >

σ = < G, B, E, G, D>

σ = < A, F, D, G, B >

σ = < A, F, D, C, D >

13

14

15

16

17

18

19

20

21

22

23

24

Antecedent pattern

Antecedent pattern

Consequence pattern

no match

< E, A, E, C, D >

no match (< E, A, E, B, D >)

no match

< A, F, D, G, B >

< A, F, D, C, D >

< A, F, D, C, D >

Consequence pattern

-

< E, A, E, C, D >

-

-

no match

< A, F, D, C, D >

no match

C)

D)

< E, D, F, G, B >

< D, F, C, E, B >

no match (< A, B, C, E, D >)

no match (< G, C, B, A, D >)

< C, F, B, G, E >

< C, F, D, E, B >

< E, D, F, G, B >

< D, F, C, E, B >

-

-

no match

no match (< C, F, D, E, B >)

C

B
DA

A

DC

B A B A

DC

B

trivial compliant

compliant

trivial compliant

trivial compliant

violation

violation

σ = < E, D, F, G, B >

σ = < D, F, C, E, B >

σ = < A, B, C, E, D >

σ = < G, C, B, A, D >

σ = < C, F, B, G, E >

σ = < C, F, D, E, B >

compliant

compliant

trivial compliant

trivial compliant

violation

violation

B
DA

C

B
DA

Fig. 3 More Complex Compliance Rule Graphs

Consider now the non-trivial compliant traces σ14, σ19, and σ20. σ14

contains an A succeeded by a D; between these entries there is no B
such that the antecedent pattern of respective CRG (cf. Figure 3A)
matches. Furthermore, the consequence pattern also matches since σ14

contains an entry of the required C between A and D. With a B and
no A the two traces σ19 and σ20 allow for mappings of the antecedent
pattern. Further, both traces contain a D not preceded by C (while
C in σ20 succeeds the D, σ19 contains no C at all); i.e., both traces
allow for a suitable mapping of the consequence pattern, and are thus
compliant with the CRG from Figure 3B.

Finally, let us consider the non-compliant traces σ17, σ18, σ23, and
σ24. Regarding Figure 3A and trace σ17, the antecedence pattern can
be mapped to the trace entries A and D, since the B is not in between;
however, the consequence pattern cannot match since σ17 contains no

10 Knuplesch, Reichert

C. Trace σ18 even enables two matches of the antecedent pattern of the
CRG from Figure 3A: the first one consists of the A and the D in the
middle, while the second match consists of the same A and the D at the
end. Since the latter is preceded by C, the second match can be enriched
with a suitable mapping of the consequence pattern. Nevertheless, trace
σ18 violates the CRG from Figure 3A, since there is no C between the
A and the D of the first mapping. Regarding trace σ23, the antecedent
pattern maps to the B, but the D of the consequence pattern is missing
(i.e., the C does not matter). Indeed, σ24 even contains a D, but this
is preceded by a C; i.e., the consequence pattern cannot map while
the antecedent pattern maps. Hence, σ24 violates the CRG depicted in
Figure 3B.

Example 5 (Modeling Compliance Rules by the Use of CRGs). In Fig-
ure 4, the compliance rules from Table 1 and Table 2 respectively are
re-modeled by means of CRGs.

Antecedent

occurrence

Antecedent

absence

Consequence

occurrence

Consequence

absence

Inform about

risks

Inform about

anesthesia

Send patient to

surgical suite

Discharge

patient

Write discharge

letter

Perform

surgery

Write discharge

letter

Create surgery

report

Make lab test

Schedule
surgery

 Perform
surgery

Schedule

surgery

Perform

surgery

 Make
decision

Examine

patient

Make

decision

Prepare

patient

c1

c

cc

c c

c

2

6

75

4

3

Examine

patient

Fig. 4 Representing the Compliance Rules from Tables 1 and 2 as CRGs

3 A-priori Compliance Checking

Once the compliance rules have been modeled (e.g., by using CRGs), com-
pliance of pre-specified process models with those rules can be checked. This
is denoted as a-priori compliance checking since the compliance of processes

Ensuring Business Process Compliance Along the Process Life Cycle 11

with regulations is checked before their execution, i.e., before any process
instance is executed based on the pre-specified process model. According to
Definition 4, a pre-specified process model totally complies with a given com-
pliance rule, if and only if the model solely allows for traces being compliant
with the rule. Further, we define the notions of partial compliance and partial
violation as well as total violation.

Definition 4 (Compliance of Pre-specified Process Model). Let
S be a pre-specified process model and let φ be a compliance rule (cf.
Definition 1). Further, let QSS ⊆ Σ? be the set of all complete traces
producible on S; i.e., σ ∈ QSS represents a completed process instance.
Then:

• S (totally) complies with φ, if and only if all complete traces σ being
producible on S comply with φ; i.e., ∀σ ∈ QSS : φ(σ).

• S partially complies with φ, if and only if there exists a complete trace
σ being producible on S and complying with φ; i.e., ∃σ ∈ QSS : φ(σ)

• S partially violates φ, if and only if there exists a complete trace σ
being producible on S and violating φ; i.e., ∃σ ∈ QSS : ¬φ(σ).

• S only partially complies with φ, if and only if S par-
tially complies with φ as well as S partially violates φ; i.e.,
∃σ1, σ2 ∈ QSS : φ(σ1) ∧ ¬φ(σ2)

• S (totally) violates φ, if and only if all complete traces σ being pro-
ducible on S violate φ; i.e., ∀σ ∈ QSS : ¬φ(σ).

In case S totally complies with φ, for brevity we also use the phrase ”S
complies with φ”. The same applies if S totally violates φ. In this case
we also say ”S violates φ”.

Example 6 illustrates the different notions.

Example 6 (Compliance of a Pre-specified Process Model). Reconsider
the pre-specified process model Smed from Figure 1 and the compliance
rules from Table 1 and Fig. 4 respectively. Process model Smed (to-
tally) complies with compliance rules c2, c5, c6, and c7. It only partially
complies with compliance rules c3 and c4, while compliance rule c1 is
(totally) violated.

12 Knuplesch, Reichert

One common way to perform a priori checking is the usage of model checking
techniques [5]. These allow for verifying models and systems against temporal
formulas. In this context tools exist that provide efficient implementations of
model checking algorithms. Generally, one can distinguish between explicit
model checking and symbolic model checking . In the context of LTL, explicit
model checking means to first create a state-based automaton that represents
the negated formula. Then, this automaton and the state space of the pro-
cess model are explored in combination. Symbolic model checking, in term,
transforms both the process model and the compliance rule into propositional
logic expressions and then applies a satisfiability check. When applying model
checking to the verification of compliance rules not being modeled in terms
of temporal logic (e.g., compliance rules that are modeled based on CRGs),
these rules first have to be transformed into temporal logic.

4 Compliance Monitoring

Checking business process compliance of a pre-specified process model a pri-
ori at build-time is not always feasible, e.g., if the process model is too large
or compliance rules are too complex or depend on run-time data. Besides,
loosely specified and dynamically evolving processes require support for en-
suring compliance during run-time as well. Hence, compliance monitoring
is required that allows process engineers to control and monitor compliance
rules during the execution of single process instances. However, at the process
instance level it is not sufficient to only consider one snapshot, i.e. to state
whether or not the process instance violates a particular compliance rule at a
certain point in time. On the one hand, the violation of a certain compliance
rule can often be cured later on when the process instance progresses. On the
other hand, there are violations for which no adequate continuation exists.
Hence, Definition 5 not only distinguishes between process instances being
compliant and those violating a compliance rule, but also between curable
and incurable violations of process instances regarding an imposed compli-
ance rule.

Definition 5 (Compliance and Curability of Process In-
stances). Let I be a process instance represented by its current trace
σI . Further, the process model based on which I has been executed may
not be known. Finally, let φ be a compliance rule. Then:

• I complies with φ, if and only if σI complies with φ; i.e., φ(σI).

• I violates φ, if and only if holds σI violates φ; i.e., ¬φ(σI).

Ensuring Business Process Compliance Along the Process Life Cycle 13

• I curably violates φ, if and only ifσI violates φ, but the execution of
I can be continued in such a way that the resulting trace complies
with φ; i.e., ¬φ(σI) ∧ ∃τ ∈ Σ? : φ(σIτ).

• I incurably violates φ, if and only if σI violates φ and any continua-
tion of I violates φ as well; i.e., ¬φ(σI) ∧ ∀τ ∈ Σ? : ¬φ(σIτ).

Example 7 illustrates Definition 5.

Example 7 (Compliance and Curability of Process Instances). Consider
the compliance rules c2, c3 and c4 from Table 1 (see also Table 2 and
Figure 4). Further, consider the traces σI1 and σI2 of the running process
instances I1 and I2 respectively (cf. Figure 5). Obviously, I1 violates
c2, while it complies with c3 and c4. Further, c2 is curably violated,
since σI1 can be continued by executing activity Make decision. Finally,
I2 complies with c2 and c3. However, I2 incurably violates c4 since
no continuation of σI2 contains the activity Inform about anesthesia
preceding Schedule surgery.

σ σ

1 Admit patient 1 Admit patient
2 Perform checkup 2 Perform checkup
3 Examine patient 3 Examine patient
4 Inform about risks 4 Inform about risks

5 Make decision
6 Schedule surgery

I1 I2

Fig. 5 Snapshots of Instance Traces

In practice, it is not always feasible to only deploy process models being to-
tally compliant; i.e., there may be pre-specified process models that only par-
tially comply with imposed compliance rules. As will be shown in Example 8,
instances of respective pre-specified process model need to be monitored at
run-time to determine whether or not a compliance violation can be cured in
the following. According to this, Definition 6 distinguishes between different
levels of criticality of curable violations.

14 Knuplesch, Reichert

Definition 6 (Temporary and Permanent Compliance Viola-
tions). Let I = (S, σI) be a process instance running on a process
model S. Further, let QSS be the set of all complete traces producible
on S and φ be a compliance rule. Then:

• I temporarily violates φ, if and only if I currently violates φ, but any
continuation on S will comply with φ at least at one future point in
time:

I curably violates φ ∧ ∀τ ∈ Σ? with σIτ ∈ QSS :
∃υ, ω ∈ Σ? with υω = τ ∧ φ(σIυ).

• I potentially violates φ temporarily, if and only if I currently violates
φ and it holds: On the one hand, I may be continued in a way such
that it will comply with φ at least at one future point in time. On
the other hand, I may be also continued in a way such that it will
never comply with φ again; i.e.,
I curably violates φ ∧ ∃τ1, τ2 ∈ Σ? : for σIτ1, σIτ2 ∈ QSS it holds:

(∃υ1, ω1 ∈ Σ? with υ1ω1 = τ1 : φ(σIυ1))∧
(∀υ2, ω2 ∈ Σ? with υ2ω2 = τ2 : ¬φ(σIυ2)).

• I permanently violates φ, if and only if I currently violates φ and
any continuation on S always violates φ; i.e.,

I curably violates φ ∧ ∀τ ∈ Σ? with σIτ ∈ QSS :
∀υ, ω ∈ Σ? with υω = τ : ¬φ(σIυ).

Example 8 applies Definition 6 to selected process instances.

Example 8 (Persistence of Compliance Violations). Reconsider the
compliance rules c2, c3 and c4 from Table 1 (see also Table 2 and
Figure 4). Further consider the traces σI3 and σI4 from Figure 6.
These correspond to the running process instances I3 = (Smed, σI3)
and I4 = (Smed, σI4), which are executed on the pre-specified process
model Smed from Figure 1.

• Obviously, I3 violates c2 and c3, while it complies with c4. Further, c2
is only temporarily violated by I3, since its continuation on Smed will
lead to the execution of Make decision (e.g., σI2 and σI4). However, c3
is potentially temporarily violated, since Smed allows σI3 continuing
with activity Inform about risks (e.g., σI1 and σI2) or without activity
Inform about risks (e.g. σI4).

Ensuring Business Process Compliance Along the Process Life Cycle 15

• I4 violates c3, but complies with c2 and c4. Further, c3 is permanently
violated by I4, since no continuation of I4 on Smed will contain the
required activity Inform about risks.

σ σ

1 Admit patient 1 Admit patient
2 Perform checkup 2 Perform checkup
3 Examine patient 3 Examine patient

4 Inform about anesthesia
5 Make decision
6 Schedule surgery

I3 I4

Fig. 6 Additional Snapshots of Process Instance Traces

5 A-posteriori Compliance Checking

Instead of ensuring compliance a priori (i.e., by checking pre-specified process
models at build-time) or monitoring it during processes execution, compli-
ance may be also checked for completed process instances a-posteriori ; e.g.,
to determine whether these completed instances comply with newly emerg-
ing regulations. Compliance of completed process instances can be directly
decided based on the definition of compliance rules (cf. Definition 1).
Example 9 illustrates a-posteriori compliance checking.

Example 9 (Compliance of Process Execution Logs). Consider the com-
pliance rules c1, c2, c3, c4, c5, c6, and c7 from Table 1 (see also Table 2
and Figure 4). Further consider the execution traces σI5 , σI6 and σI7

from Figure 7, which correspond to the completed process instances I5,
I6 and I7. I5 violates c1 and c4, and complies with c2, c5, c6, and c7.
Further, I6 complies with ci, i = 1 . . . 7 and I7 violates c1 and c3, but
complies with c2, c4, c5, c6, and c7.

Similar to a-priori compliance checking, a-posteriori compliance checking can
be realized based on techniques that build on model checking. The approach
described in [7] transforms LTL-based compliance rules into state-based au-
tomata. Taking an execution log as input, these automata allow deciding

16 Knuplesch, Reichert

σ σ σ

1 Admit patient 1 Admit patient 1 Admit patient
2 Perform checkup 2 Perform checkup 2 Perform checkup
3 Examine patient 3 Examine patient 3 Examine patient
4 Inform about risks 4 Inform about risks 4 Inform about anesthesia

I5 I6 I7

5 Make decision 5 Make decision 5 Make decision
6 Schedule surgery 6 Write discharge letter 6 Schedule surgery
7 Check patient recod 7 Check patient recod
8 Admit patient 8 Admit patient
9 Send patient to surgica suite 9 Send patient to surgica suite
10 Perform surgery + 10 Prepare patient
11 Prepare patient 11 Perform surgery +
12 Transport patient to ward 12 Transport patient to ward
13 Create surgery report 13 Provide postsurgical care
14 Make lab test 14 Make lab test
15 Provide postsurgical care 15 Create surgery report
16 Discharge patient 16 Discharge patient
17 Write discharge letter 17 Write discharge letter

Fig. 7 Execution Traces of Completed Process Instances

whether a completed process instance complies with the original rule or vio-
lates it.

6 Effects of Process Changes on Compliance

As discussed in [8, 9], pre-specified process models as well as process in-
stances running on them may have to be changed and adapted. Obviously,
such changes can affect compliance of the process models and process in-
stances, respectively, with the imposed compliance rules. Depending on the-
ses effects, we define compliance of changes with a given compliance rule (cf.
Definition 7).

Definition 7 (Compliance of Changes). Let S be a pre-specified
process model and let I = (S, σI) be a related process instance. Further,
let ∆ be a change that correctly transforms the pre-specified process
model S into another pre-specified process model S′. Finally, let I =
(S, σI) be correctly migratable to S′, i.e., I = (S′, σI). Then:

• The application of ∆ to S meets compliance rule φ, if and only if the
application of ∆ to S does not weaken the compliance of S with φ;
i.e.,

– S complies with φ⇒ S′ complies with φ.
– S partially complies with φ⇒ S′ partially complies with φ.

Ensuring Business Process Compliance Along the Process Life Cycle 17

• The application of ∆ to I = (S, σI) meets compliance rule φ, if and
only if the application of ∆ to process instance I does not weaken
the compliance of I with φ; i.e.,

– I = (S, σI) complies with φ⇒ (S′, σI) complies with φ.
– I = (S, σI) temporarily violates φ⇒

(S′, σI) temporarily violates φ ∨ (S′, σI) complies with φ.
– I = (S, σI) potentially violates φ temporarily ⇒

(S′, σI) potentially violates φ temporarily ∨(S′, σI) temporarily
violates φ ∨ (S′, σI) complies with φ.

S
ur

gi
ca

l S
ui

te

discharge letter
for referring phys.

O
ut

pa
tie

nt
 D

ep
ar

tm
en

t
S

ur
gi

ca
l W

ar
d

M
TA

P
hy

si
ci

an
P

hy
si

ci
an

N
ur

se

Admit
patient

Perform
checkup

Examine
patient

Inform about
risks

Inform about
anesthesia

Make
decision

Check
patient record

Admit
patient

Schedule
surgery

Write
discharge letter

Write
discharge letter

Make
lab test

Create
surgery report

Provide
postsurgical care

Discharge
patient

patient referral
to hospital

Transport
patient to ward

surgery
ok

Perform
surgery

Prepare
patient

Send patient
to surgical suite

Δ1: delete (S, Schedule surgery)

Δ2: delete (S, inform about risks)

Fig. 8 Changes Potentially Affecting the Compliance of Process Model Smed

σ σ

1 Admit patient 1 Admit patient
2 Perform checkup 2 Perform checkup
3 Examine patient 3 Examine patient

4 Inform about anesthesia

I8 I9

Fig. 9 Further Examples for Snapshots of Process Instance Traces

When applying Definition 7 in a straightforward manner, one would have
to re-check compliance of a process model with all defined compliance rules
whenever changing this model. This might become necessary in the context
of ad-hoc adaptations of single process instances or changes of a pre-specified
process models solely at the process type level (i.e., without propagating
the type change to already running process instances). However, re-checking
business compliance for large collections of running process instances might
be too expensive. More precisely, for each of these hundreds up to thousands
of process instances it has to be determined whether or not it still meets the

18 Knuplesch, Reichert

imposed compliance rules when migrating the process instance to the new
process model version. To cope with this challenge, changes and compliance
rules have to be analyzed (e.g., by considering the affected activities) in order
to restrict the set of compliance rules to be re-checked.

Example 10 (Effects of Changes on Process Model Compliance). Take
compliance rules c4 and c5 from Table 1 (see also Table 2 and Fig-
ure 4) and consider change ∆1 of the pre-specified process model Smed

as depicted in Figure 8. Obviously, ∆1 meets c4. While S only partially
complies with c4, S′ totally complies with this rule. By contrast, ∆1 vi-
olates c5 since S totally complies with c5, but S′ only partially complies
with this rule.

Example 11 (Effects of Changes on Process Instance Compliance). Con-
sider now compliance rule c3 from Table 1 (see also Table 2 and Figure 4)
and change ∆2 from Figure 8 that transforms Smed into S′

med. Further,
consider the process instances I8 = (Smed, σI8) and I9 = (Smed, σI9)
from Figure 9 that both depend on the pre-specified process model Smed

from Figure 1. Regarding I8, ∆2 violates c3: I8 = (Smed, σI8) potentially
violates c3 temporarily, whereas (S′

med, σI8) permanently violates this
rule. However, regarding I9, ∆2 meets c3 since I9 = (Smed, σI9) perma-
nently violates c3 which also applies to (S′

med, σI9) permanently.

7 User Perspective

This section gives an idea how compliance checking looks like from the per-
spective of the user. Currently, only few tools exist that allow ensuring busi-
ness process compliance at the process type or the process instance level. One
of them is the SeaFlows Toolset [10], which provides a comprehensive and ex-
tensible framework for checking business compliance of pre-specified process
models. For this purpose, the SeaFlows Toolset provides a user-friendly en-
vironment. For modeling compliance rules SeaFlows uses CRGs as presented
in Section 2.
The SeaFlows Toolset allows enriching process models with these rules and
checking for compliance with them. Furthermore, compliance checking con-
siders data as well as efficiency issues by applying a number of abstraction
strategies. Finally, violations of compliance rules are illustrated by means of a

Ensuring Business Process Compliance Along the Process Life Cycle 19

Fig. 10 Modeling Compliance Rules with the SeaFlows Graphical Editor

counter example (cf. Figure 11). At the technical level the applied compliance
checking approach uses the model checker SAL [11].

original
process graph

counterexample as
process graph

counterexample
as process log

data-aware
compliance rules

visualization of the
counterexample’s steps

Fig. 11 Compliance Checking with the SeaFlows Toolset

Additionally, a structural compliance checking approach is delivered. It first
derives structural criteria from compliance rules. Then it applies those cri-

20 Knuplesch, Reichert

teria to check business process compliance of cycle-free process models (cf.
Figure 12).

Fig. 12 Structural Compliance Checking with the SeaFlows Toolset

8 Existing Approaches Enabling Business Process
Compliance

Existing approaches enabling business process compliance follow different
paradigms to model compliance rules. In first position there are approaches
using temporal logic. For example, the work discussed in [12] applies LTL
and the one presented in [13] applies CTL for modeling compliance rules.
Further, these approaches apply model checking for enabling a priori com-
pliance checking. Other logic-based approaches consider the modalities of
compliance rules (e.g., obligations or permissions) and use deontic logic as
formal basis [14, 15]. As discussed in Section 2, however, logic expressions are
less comprehensible to end users. To improve this situation, a pattern-based
notation is suggested by Dwyer et al. in [16]. Finally, several approaches use
graphical notations (including CRGs) [6, 17, 12].
Model checking is the most common technique for verifying compliance rules
(e.g. [13, 17, 12, 18]). However, model checking depends on the exploration of
the state space of pre-specified process models. In particular, the state space

Ensuring Business Process Compliance Along the Process Life Cycle 21

explosion problem constitutes a big obstacle for the practical use of model
checking techniques. To tackle this challenge, techniques like graph reduction
and sequentialization of parallel flows as well as predicate abstraction are
applied [12, 17, 19]. Besides model checking, there exist other techniques
ensuring business process compliance a priori. For cycle-free process models,
for instance, [20] and [21] provide efficient algorithms.
Generally, compliance rules should not be restricted to the behavior perspec-
tive, but be applicable to other perspectives of a PAIS as well (e.g., the infor-
mation or time perspectives). Compliance checking of process models having
state-based data objects (i.e., enumerations), for instance, is suggested by
Awad et al. [22]. Further, [19] enables data-aware compliance checking for
larger data types (e.g., integers or reals). The verification of cycle-free pro-
cess models against temporal compliance rules is addressed by Eder et al.
[23], while [18] considers both the information and the time perspective.

9 Summary

This report dealt with issues related to business process compliance. Compli-
ance can be checked a-priori for pre-specified process models as well as for
running process instances or completed ones (i.e., execution logs). For each of
these artifacts it can be verified whether or not it complies with compliance
rules imposed from regulations, laws and guidelines. This report presented
two ways for modeling compliance rules: LTL and CRGs. It first discussed
how to apply a-priori compliance checking to pre-specified process models
and then gave insights into compliance monitoring and different kinds of
compliance violations including compliance checking. Following this, it dis-
cussed the potential impact of process changes (at both the type and the
instance level) on business process compliance. Finally, the report discussed
the user perspective as well as recent approaches enabling business process
compliance.

References

1. Weske, M.: Workflow management systems: Formal foundation, conceptual design, im-
plementation aspects. Habilitation Thesis, University of Münster, Germany. Springer

(2007)
2. van der Aalst, W.M.P.: The application of petri nets to workflow management. Journal

of Circuits, Systems, and Computers 8(1) (1998) 21–66
3. Weber, B., Reichert, M., Rinderle-Ma, S., Wild, W.: Providing integrated life cycle

support in process-aware information systems. Int. Journal of Cooperative Information
Systems (IJCIS) 18(1) (2009) 115–165

22 Knuplesch, Reichert

4. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows

without losing control. Journal of Intelligent Information Systems, Special Issue on
Workflow Management Systems 10(2) (1998) 93–129

5. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about

systems. Cambridge University Press (2004)
6. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable com-

pliance rule graphs in process-aware information systems. In: Proc. 22nd Int. Conf.

Advanced Systems Engineering (CAiSE’10), Springer (2010) 9–23
7. van der Aalst, W.M.P., de Beer, H., van Dongen, B.: Process mining and verification

of properties: An approach based on temporal logic. In: Proc. 13th Int. Conf. Coop.
Inf. Systems (CoopIS’05), Springer (2005) 130–147

8. Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity – dynamic process lifecycle support.

Computer Science – Research and Development 23(2) (2009) 47–65
9. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information

systems. Transactions on Petri Nets and Other Models of Concurrency II 2 (2009)

115–135
10. Ly, L., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M., Dadam,

P.: Seaflows toolset – compliance verification made easy for process-aware information

systems. In: Proc. CAISE’10 Forum - Information Systems Evolution. (2011) 76–91
11. Bensalem, S., et al.: An overview of SAL. In: Proc. of the 5th NASA Langley Formal

Methods Workshop, NASA Langley Research Center (2000) 187–196

12. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and
temporal logic. In: Proc. 6th Int. Conf. Business Process Management (BPM’08),

Springer (2008) 326–341
13. Ghose, A.K., Koliadis, G.: Auditing business process compliance. In: Proc. 5th Int.

Conf. Service-Oriented Computing (ICSOC’07), Springer (2007) 169–180

14. Alberti, M., et al.: Expressing and verifying business contracts with abductive logic
programming. In: Proc. 2nd Int. Conf. Normative Multi-agent Systems (NorMAS’07).

Dagstuhl Seminar Proceedings (2007)

15. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations
and permissions. In: Proc. BPM’06 Workshops, Springer (2006) 5–14

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-

state verification. In: Proc. 2nd Workshop Formal Methods in Software Practice
(FMSP’98), ACM (1998)

17. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business

process models. IBM Systems Journal 46(2) (2007) 335–261
18. Kokash, N., Krause, C., de Vink, E.: Time and data aware analysis of graphical

service models. In: Proc. 8th Int. Conf. Software Engineering and Formal Methods
(SEFM’10), IEEE Computer Society (2010)

19. Knuplesch, D., Ly, L., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-aware

compliance checking of business process models. In: Proc. 29th Int. Conf. Conceptual
Modeling (ER’2010), Springer (2010)

20. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business pro-

cesses and business contracts. In: Proc. 10th Int. Enterprise Distributed Object Com-
puting Conf. (EDOC’06), IEEE Computer Society (2006) 221–232

21. Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In: Proc.
3rd Int. workshop on Semantic Business Process Management (SBPM’08). (2008)

22. Awad, A., Weidlich, M., Weske, M.: Specification, verification and explanation of

violation for dataaware compliance rules. In: Proc. of 7th Int. Conf. Service Oriented

Computing (ICSOC’09), Springer (2009) 500–515
23. Eder, J., Tahamtan, A.: Temporal conformance of federated choreographies. In: Proc.

19th Int. Conf. Database and Expert Sys. App. (DEXA’08), Springer (2008) 668–675

