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Abstract Key to broad use of process management

systems (PrMS) in practice is their ability to foster and

ease the implementation, execution, monitoring, and

adaptation of business processes while still being able

to ensure robust and error-free process enactment. To

meet these demands a variety of mechanisms has been

developed to prevent errors at the structural level (e.g.,

deadlocks). In many application domains, however, pro-

cesses often have to comply with business level rules and

policies (i.e., semantic constraints) as well. Hence, to

ensure error-free executions at the semantic level, PrMS

need certain control mechanisms for validating and en-

suring the compliance with semantic constraints. In this

paper, we discuss fundamental requirements for a com-

prehensive support of semantic constraints in PrMS.
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Moreover, we provide a survey on existing approaches

and discuss to what extent they are able to meet the

requirements and which challenges still have to be tack-

led. In order to tackle the particular challenge of pro-

viding integrated compliance support over the process

lifecycle, we introduce the SeaFlows framework. The

framework introduces a behavioural level view on pro-

cesses which serves a conceptual process representation

for constraint speci�cation approaches. Further, it pro-

vides general compliance criteria for static compliance

validation but also for dealing with process changes.

Altogether, the SeaFlows framework can serve as for-

mal basis for realizing integrated support of semantic

constraints in PrMS.
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1 Introduction

Due to continuously changing market conditions, or-

ganisations are forced to frequently adapt their busi-

ness strategies in order to stay competitive [4,13,17,

59,71]. Hence, there is a strong demand for process-

aware information systems facilitating fast implemen-

tation and deployment of business processes and allow-

ing for their �exible adaptation. Process management

systems (PrMS) are supposed to ful�l these demands

and therefore are gaining increasing importance. Key

to the application of PrMS technology in practice is

their ability to allow for fast and �exible realization

of business processes on the one hand, while still being

able to ensure error-free process executions on the other

hand [14].
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So far, research emphasis has been put on avoiding

errors at the structural level [2,47,58,59]. For example,

by checking whether a process model contains deadlocks

or incorrect data links at design time, a PrMS can guar-

antee for the absence of structural errors during pro-

cess execution. Even if processes have to be adapted

in order to handle exceptional situations (e.g., by in-

serting additional activities, moving activities to other

positions, or by performing even more complex change

operations [57]), these checks can be used for ensuring

the structural correctness of process changes [58]. Re-

spective control mechanisms for process modelling and

execution make PrMS an appealing development and

execution environment for business processes.

1.1 Problem Statement

Supporting solely checks at the structural level of pro-

cesses, however, is not su�cient to ensure their error-

free execution. In many application domains, processes

are subject to business level rules and policies stemming

from domain speci�c requirements (e.g., standardisa-

tion, legal regulations) [47,60]. In the clinical domain,

for example, clinical guidelines and pathways [38,53]

can be considered as examples thereof. To clearly distin-

guish between structural constraints and business level

constraints stemming from compliance requirements,

we refer to the latter as semantic constraints. Semantic

constraints may express various dependencies such as

ordering and temporal relations between activities, in-

compatibilities, and existence dependencies. Hence, the

semantic constraints addressed in this paper can be con-

sidered a subset of business rules [64,66]. As examples

consider the constraints we have collected from di�erent

domains (particularly healthcare, banking, and product

release management) in Tab. 1.

The feasibility of manually assessing whether or not

processes comply with imposed semantic constraints is

very limited. This especially becomes true when consid-

ering complex processes involving hundreds of tasks and

related data �ows [12]. Validating and ensuring compli-

ance with semantic constraints will get even more chal-

lenging if dynamic process changes are allowed during

process execution [57]. Hence, there is an evident de-

mand for control mechanisms enabling PrMS to sup-

port the validation and enforcement of semantic con-

straints at the system level.

Compliance validation has been addressed from var-

ious perspectives (e.g., business process compliance [60,

51,22,23,40,36], and compliance of cross-organisational

work�ows with business contracts [28,32], compliance

of work�ow transactions with prede�ned dependencies [9,

63]). Most existing approaches either follow the paradigm

Table 1 Examples of semantic constraints

Semantic constraints in natural language

c1 A patient should not be administered the drugs

Aspirin and Marcumar within 5 days due to

possible unwanted interactions.

c2 For patients older than 75 an additional toler-

ance test prior to the examination is required

due to an increased risk.

c3 No endoscopic examinations shall take place

within one week after radiological examina-

tions using non-water-soluble contrast agents.

c4 A radiological examination of an inpatient has

to be followed by a ward round (whereas ambu-

latory radiological examinations do not require

subsequent ward rounds).

c5 The patient has to be informed prior to invasive

procedures.

c6 The approval of loan applications with a loan

amount greater than 60.000 e has to be

checked by the manager of the loan department

before granting.

c7 The assembly always has to be followed by a

technical acceptance and a test run. Addition-

ally, no further adaptations must take place

between the technical acceptance and the test

run.

of compliance validation at process model level (de-

sign time) or compliance monitoring at process instance

level (runtime). However, taking the process lifecycle [49,

68] into account, we believe that PrMS have to provide

more comprehensive support of semantic constraints.

In particular, PrMS must be able to ensure compliance

over the complete process lifecycle (life time compli-

ance).

1.2 Contribution

In previous work [43], we introduced a basic set of se-

mantic constraints (i.e., binary exclusion and depen-

dency constraints) expressing interdependencies between

process activities. Furthermore, we presented optimiza-

tion techniques for validating processes against these

constraints by restricting the set of relevant constraints

based on the semantics of the applied change opera-

tions [44]. This approach provides mechanisms for en-

suring compliance not only at design time, but also at

runtime. In the course of further studies, however, we

noticed that many application scenarios require even
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more expressive constraints (cf. Tab. 1). This poses

additional requirements on their integrated support in

PrMS.

In this paper, we discuss the challenge of support-

ing semantic constraints in PrMS from a holistic point

of view. For this purpose, we �rst provide a detailed

discussion on fundamental requirements for supporting

semantic constraints in a comprehensive manner. Fur-

thermore, we discuss to what extent existing approaches

are able to meet these requirements and show which

challenges still have to be tackled.

In the second part of the paper, we address the par-

ticular challenge of enabling life time compliance. We

advocate that life time compliance can only be achieved

by providing an overall framework with adequate mech-

anisms for supporting compliance in each phase of the

process lifecycle. To tackle this, we propose a gen-

eral framework developed in the SeaFlows project.

The SeaFlows framework introduces a trace-based be-

havioural level view on processes which serves a con-

ceptual process representation for constraint speci�ca-

tion approaches. This conceptual representation is a

suitable underlying logical model for compliance vali-

dation throughout the process lifecycle. Based on the

behavioural level view, the framework further provides

general compliance criteria for assessing the compliance

of processes with semantic constraints in all phases of

the process lifecycle. Furthermore, it provides criteria

for assessing the e�ects of process changes regarding

compliance with semantic constraints. Altogether, the

SeaFlows framework can serve as formal foundation

for realizing integrated support of semantic constraints

throughout the process lifecycle. The SeaFlows proto-

type implementing ideas of the framework shows direc-

tions of our future research.

The remainder of this paper is organised as follows.

Fundamental requirements are elaborated in Sect. 2. In

Sect. 3, state of the art is discussed with regard to these

requirements. Our vision of enabling life time compli-

ance is presented in Sect. 4. Sect. 5 introduces the for-

mal framework providing the foundations for realizing

this vision. The basic ideas are described in Sect. 5.1.

The behavioural level view on processes is explained

in Sect. 5.2. Based on this, formal compliance criteria

are introduced in Sect. 6. Sect. 7 provides considera-

tions on applying the formal framework and presents

the SeaFlows prototype. Finally, a summary and an

outlook on future research are provided in Sect. 8.

2 Fundamental Requirements for Supporting

Semantic Constraints

For supporting semantic constraints in PrMS, existing

PrMS concepts have to be complemented by mecha-

nisms for specifying respective constraints and for as-

signing them to processes. Furthermore, mechanisms

for validating and ensuring the compliance of processes

with the semantic constraints have to be provided. From

case studies (particularly of clinical processes, e.g. [37])

we derived fundamental requirements which have to be

considered by a comprehensive approach and which are

discussed in the following.

2.1 Specifying and Integrating Constraints

2.1.1 A Formal Language for Constraint Speci�cation

(Req. 1)

When designing or choosing a constraint speci�cation

language we have to deal with several trade-o�s. On

the one hand, a constraint speci�cation language has

to provide the expressiveness necessary to model real

world semantic constraints. On the other hand, the

expressiveness must not be achieved at the expense

of validation and analysis costs. Especially large con-

straint sets demand for mechanisms for formal anal-

ysis to ensure their consistency (i.e., no contradicting

constraints). This, in turn, demands for a constraint

speci�cation language which has a sound formal foun-

dation [60]. In addition, the complexity of the speci�-

cation language must neither become an obstacle for

constraint speci�cation nor for the validation of pro-

cesses against constraints. Thus, the main challenge is

to �nd an appropriate balance between expressiveness,

formal foundation, and e�cient analysis.

2.1.2 Constraint Organisation (Req. 2)

Though there exists semantic constraints only relevant

for one particular process (i.e., process-speci�c con-

straints), many constraints are relevant to multiple pro-

cesses. An example thereof is the relation between the

endoscopic examinations and radiological examinations

with non-water-soluble contrast agents (cf. Tab. 1).

Hence, an appropriate way of organising semantic con-

straints (e.g., in a constraint repository [43] or a direc-

tory [60]) has to be provided in order to support the

process-spanning speci�cation and (re)use of semantic

constraints.

Similar to processes, semantic constraints may

change and thus, are subject to an evolution process.

This is particularly true for third party constraints.
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Implementation level constraints

High level constraints

process experts, process performers, business people

IF: 
Patient.Age > 75
THEN: 
ToleranceTest before Examination

IF: 
ComputeAge(Today,AdmitPatient.getParameter(DateOfBirth)) > 75
THEN: 
ExecuteActivity(ToleranceTest) before ExecuteActivity(PerformExamination)

Process management system

System level

Constraint 
implementation

Process validation

Fig. 1 Support of two abstraction levels for semantic constraints

Clinical guidelines, for example, may change due to new

evidences in healthcare [53,38]. Since the lifecycle of

constraints and the lifecycle of processes do not neces-

sarily coincide, mechanisms for versioning and propa-

gating constraint changes to relevant processes have to

be provided to support constraint evolution.

2.1.3 Views on Semantic Constraints at Di�erent

Abstraction Levels (Req. 3)

We identi�ed two oppositional requirements regarding

the abstraction level of employed in semantic constraints

(cf. Fig. 1). Since semantic constraints need to be un-

derstood, managed, and speci�ed by domain experts

(e.g., process performers, business people) [36], a high

level view on semantic constraints abstracting from im-

plementation details has to be provided. Further, con-

straints (or what they refer to) may be implemented

in various ways in a particular process. Thus, specify-

ing semantic constraints at implementation level (i.e.,

hard-wiring constraints) would restrict the (re)use of

the constraints (cf. Req. 2). This will be particularly

important if process implementations may be replaced

or changed over time. In this case, a constraint not

abstracting from process implementation details would

have to be revised and adapted to match the new pro-

cess implementation even though its semantics has not

changed. For example, consider the constraint c2 from

Tab. 1. For the semantics of c2, it is irrelevant how the

age of a patient will be �nally determined in a particu-

lar process implementation; i.e., whether there will be

a designated context data element in the process corre-

sponding to the patient's age or whether the latter will

have to be computed from the patient's date of birth.

This example indicates the demand for an abstract view

on semantic constraints. However, implementation level

constraints are indispensable for process validation. For

example, for validating whether or not an additional

tolerance test for a patient is required in a particular

process (according to c2), the PrMS has to know ex-

actly how to determine the patient's age in this pro-

cess. In summary, both a high level (i.e., conceptual)

Age

Tolerance test

ExaminationAdmit 
patient

Age ≤ 75

Age > 75

Process model P1

XOR split

XOR join

Parallel split

Parallel join

Process data

Fig. 2 A compliant process model

view on constraints focussing on their semantics and

an implementation level view for constraint evaluation

are essential. This, in turn, also raises the requirement

of providing adequate mechanisms for mapping these

views onto each other.

2.2 Ensuring Compliance

2.2.1 Support of Life Time Compliance (Req. 4)

Taking the process lifecycle [49,68] into account, we

identify four scenarios for semantic process validation:

Compliance Validation at Design Time

(Req. 4.1)

Generally, it is desirable to ensure compliance of a pro-

cess with semantic constraints already at the modelling

level (compliance by design [60]). A process model will

be denoted as compliant with a set of semantic con-

straints, if it only allows for the execution of process

instances not violating these constraints. Thus, by en-

suring compliance at process model level, it is ensured

that corresponding process instances are compliant as

well. As example consider process model P1 in Fig. 2.

P1 only allows for executing process instances which are

compliant with constraint c2 (i.e., P1 is compliant with

c2). For enforcing compliance at process model level,

mechanisms have to be provided in order to validate

process models.

Compliance Validation at Runtime (Req. 4.2)

Being able to validate process models against constraints

is essential to enable compliance by design. However, it

is not always feasible to enforce compliance with all con-

straints imposed on a process model at design time (i.e.,
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by �compiling� the constraints into the process model).

As example consider a process which has to comply

with a large set of clinical guidelines with directives

on what actions to take in exceptional cases (e.g., in

case of a particular allergy). Enforcing the compliance

with all these context-related constraints at the pro-

cess model level might lead to a highly complex process

model since each possible case described in a constraint

has to be accounted for in the process model (e.g., by

inserting corresponding conditional branches into the

process model). Hence, depending on the nature of the

constraints (e.g., how often an allergy occurs), it could

be more practicable to postpone the enforcement of

compliance with these constraints until runtime.

Semantic constraints involving unexpected events (e.g.,

if a patient's leukocyte count suddenly falls below a

threshold, a drug for raising the leukocyte count will

have to be administered the same day) also require ad-

equate mechanisms for runtime monitoring and valida-

tion. Such events cannot be anticipated and, thus, the

constraint cannot be enforced properly at model level

without overcomplicating the process model.

Validation of Process Changes (Req. 4.3)

Compliance validation also becomes necessary when

process instances have to be modi�ed during runtime

in order to deal with exceptional situations [44]. Partic-

ularly if a process instance is frequently modi�ed in an

ad hoc manner by various agents with only restricted

view on the process, con�icts between process changes

and semantic constraints may occur. An example of how

a process change can lead to a semantic inconsistency

is given in Fig. 3. Instance I1 is modi�ed by delet-

Age

Tolerance test

ExaminationAdmit 
patient

Age ≤ 75

Age > 75

Process instance I1

ChangeOperation: Delete(Tolerance test)

Age = 83
Activity markings of 
process instances

executed

running

activated

...

Fig. 3 A process instance change leading to semantic inconsis-
tencies

ing the tolerance test (e.g., due to lack of time). This

deletion, however, violates constraint c2 since no toler-

ance test is carried out though the patient is older than

75. To allow for �exible process execution and to avoid

that �exibility leads to semantic inconsistencies in pro-

cesses, PrMS have to provide mechanisms to validate

the compliance of process changes. For this purpose,

semantic constraints potentially a�ected by the process

change have to be identi�ed and evaluated. Note that

it might become necessary to reevaluate semantic con-

straints with regard to the requested process changes.

Moreover, mechanisms to enforce compliance, for exam-

ple, by warning the user of con�icting changes become

essential as well. Since runtime validation often involves

interaction with end users, e�cient runtime checks are

needed.

Compliance Validation for Process Evolution

(Req. 4.4)

When a process model is adapted (e.g., due to process

optimization) it is often desirable that instances being

executed according to the old model version also bene�t

from these changes [58,59] (change propagation).

Checking whether process instances can be migrated

to the new process model (i.e., whether changes to the

model can be propagated to running instances) with

regard to semantic constraints is not a trivial ques-

tion. Firstly, the number of instances to be checked

can become very large as there might be thousands

of running process instances of a process model in a

process-aware information system [57]. Secondly, pro-

cess instances may have been individually modi�ed. For

example, instance I2 in Fig. 4 has been modi�ed by in-

serting a CT examination. Hence, changes at the model

level may be con�icting with changes at the instance

level [44]. For example, the propagation of the inser-

tion of the endosonography in P2 to I2 could be con-

�icting with regard to c3. To deal with such scenarios

adequate checks supporting the propagation of process

model changes to process instances in terms of compli-

ance with semantic constraints are essential.

2.2.2 Support Process-spanning Scenarios (Req. 5)

Processes may be semantically related to each other.

For example, it can become necessary to split an over-

all process into several physical processes in a PrMS

(e.g., complex treatment processes involving di�erent

organisational departments). However, business pro-

cesses which are as such independent from each other

may also be interrelated due to being carried out for the

same artefacts (e.g., several instances of treatment pro-

cesses for one patient or several insurance claims for the

same client). This leads to the situation that the scope

of semantic constraints may reach across multiple pro-

cesses. Consider, for example, the process instances de-

picted in Fig. 5. Two examinations have been initiated

for patient Smith. These instances cause a potential

con�ict with regard to constraint c3 from Tab. 1 since

an endoscopy is about to be carried out after a radiolog-

ical examination (i.e., the CT examination). Hence, the

situation described above shows the necessity to ensure

the compliance with semantic constraints across multi-

ple processes. This demands for mechanisms which al-
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Inform patient

Prepare patient

Treatment process P2

Admit 
patient

ExaminationLab test Release 
patient

Endosonography
Inform patient

Prepare patient

Process instance I2 of P2

Admit 
patient

CT 
examination

Lab test Release 
patient

Endosonography

Examination

Propagation of process model changes to I2
possible with regard to semantic constraints?

Fig. 4 Process evolution and resulting requirements for semantic constraint support

Administer 
constrast agent

CT examination

Patient Smith

Admit 
patient

Instruct 
patient

Check 
allergies

CT

Inform patient

Prepare patient

Write 
report

Endosonography

Patient Smith

Admit 
patient

Instruct 
patient

Endoscopy

Potential violation of c3

Fig. 5 Two process instances for the same patient causing a
potential violation

low to identify the relevant processes in the �rst place

(e.g., the treatment processes for patient Smith). Fur-

thermore, technical solutions are required in order to

validate and ensure the compliance of constraints across

process boundaries.

2.2.3 Providing Intelligible Feedback (Req. 6)

Semantic constraints are supposed to govern process ex-

ecutions to ensure a semantically consistent behaviour.

Thus, many interactions with users may occur (e.g.,

in case of constraint violations). Therefore, intelligible

feedback is highly important for user acceptance. Espe-

cially in case of (potential) constraint violations, help-

ful feedback providing an error diagnosis is required.

In addition, feedback to assist the user in applying ade-

quate con�ict avoidance (e.g., abstaining from a process

change) and compensation strategies (e.g., inserting a

compensatory activity) is essential as well.

2.2.4 Support of Flexible Constraint Handling (Req. 7)

Semantic constraints are often not stringent. For exam-

ple, physicians may deviate from prede�ned recommen-

dations in clinical guidelines [38]. Hence, constraint-

awareness of PrMS must not con�ict with the need for

�exible processes. In particular, constraint violations

need not necessarily be an error but could also be in-

tended. Prohibiting constraint overriding in such cases

could annoy users and might even cause them to bypass

the system. Therefore, it must be possible to override

semantic constraints during process execution depend-

ing on the constraint and the situation. This, in turn,

necessitates the introduction of enforcement levels and

corresponding classi�cation of constraints in the �rst

place. Further, to de�ne enforcement strategies (e.g.,

"Only physicians are permitted to override this con-

straint"), it must be possible to relate constraints to

organisational structures (e.g., roles). Here we can ben-

e�t from the research on business rules and particularly

on business rules classi�cation and properties [50]. Since

the semantic constraints addressed in this paper essen-

tially constitute a subclass of business rules (i.e., con-

straints or action assertions) [64], these results can be

adopted for constraint classi�cation as well. For exam-

ple, enforcement levels (e.g., strict, deferred, override,

and guideline [65]) and modalities [54] stemming from

modal logic [11] from the business rules world can be

adopted to enable the de�nition of advanced strategies

for �exible constraint handling in PrMS.

At the technical level, overriding of constraints at

the process instance level also unfolds further challenges

when dealing with process evolution (cf. Req. 4.4). In

particular, process models and process instances not

necessarily obey the same constraints due to constraint

overriding for individual process instances. This possi-

bly a�ects the propagation of process model changes to

running process instances.

2.2.5 Support of Traceability (Req. 8)

Since traceability is highly important in general, the re-

sults of semantic process checks have to be documented.

Then, it becomes possible to reconstruct past compli-

ance checks and corresponding results. This is particu-

larly necessary when it comes to constraint violations or

constraint overriding. In this case, it has to be recorded

who initiated the overriding and for what reasons. In

the clinical domain, for example, such information is

needed to establish interdependencies between the ad-

herence to guidelines and the process outcome [38,55].
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3 State of the Art

In PrMS research, emphasis has been put on developing

techniques for ensuring structural correctness of pro-

cesses [2,58,59,71]. These techniques address the vali-

dation of both control and data �ow. Due to recent com-

pliance requirements (e.g., Sarbanes-Oxley Act [45] and

EuroSOX [1]) business process compliance has dramat-

ically gained importance for organisations and also in

BPM research [60]. Enabling PrMS to support the com-

pliance of processes with imposed semantic constraints

can be regarded as one step towards the implementa-

tion of business process compliance [36].

There are many approaches addressing the parti-

cular issue of constraint acquisition, speci�cation,

and formalisation. Many of these stem from business

rules research [66,64] and standardisation (e.g., OMG

SBVR [54]). The detailed discussion of constraint spec-

i�cation and formalisation approaches could easily con-

stitute a separate paper. For this reason such a discus-

sion is beyond the scope of this paper. The interested

reader is referred to [31,50,54] for detailed discussions.

In this section, we discuss approaches from PrMS re-

search as well as related research areas (e.g., SOA and

web services) which focus on ensuring the compliance of

processes with constraints in a broader sense. Existing

approaches are �rst elaborated with regard to the vali-

dation scenario they focus on (cf. Req. 4). A discussion

of the other requirements follows in Sect. 3.5.

3.1 A Priori Compliance � Design Time Validation

Common to approaches in this category is the basic

idea to achieve compliance by validating a process spec-

i�cation (i.e., a process model) against certain con-

straints already at design time (cf. Req. 4.1). Existing

approaches vary in used constraint speci�cation lan-

guages, validation techniques, and backgrounds.

In [61], an approach for achieving �exible processes

is described which allows for the late modelling of

subprocesses. Constraints expressing dependencies be-

tween activities are introduced for restricting composi-

tion possibilities. Before a subprocess is executed, it is

validated against the constraints. This approach par-

ticularly allows for balancing between �exibility and

control. This is achieved by enabling the de�nition of

process models ranging from fully modelled to mainly

constraint-based. In [15], an approach for compliance

validation based on concurrent transaction logic (CTR)

is introduced. For validating a process model against

constraints speci�ed in CTR, the process graph is trans-

formed into a CTR formula. This allows for the appli-

cation of reasoning techniques for identifying semantic

con�icts. Förster et al. [20] present an approach for vali-

dating process models against quality constraints. Qual-

ity constraints are speci�ed in terms of process patterns

in process pattern speci�cation language (PPSL). PPSL

patterns, in turn, can be transformed into speci�cations

in linear temporal logic (LTL). Process models are val-

idated against quality constraints by applying model

checking techniques. Ghose et al. [22] introduce an ap-

proach for auditing BPMN process models for compli-

ance by annotating activities with e�ects. The latter

correspond to propositions in LTL. This enables the

application of model checking techniques for validation.

Lu et al. [41] introduce an interesting approach for

measuring the compliance distance between a process

model and a set of control objectives (comparable to

constraints). The latter are speci�ed in formal contract

language (FCL) [28]. Compliance is measured by com-

paring possible execution traces of the process model

against ideal and sub-ideal execution traces. In [27], an

approach based on annotating activities with their ef-

fects represented by logical propositions is introduced.

FCL is used to formulate constraints (i.e., FCL rules

specifying under which state conditions certain obli-

gations arise). By propagating the e�ects of activities

throughout the process model, obligations sure to arise

during process execution can be detected and evalu-

ated. A similar propagation approach is used in [69]

in order to approximate compliance checking. This ap-

proach aims at detecting states of the process execution

in which prede�ned constraint clauses are violated.

In the context of web service composition and coor-

dination, the question arises whether or not a choreog-

raphy complies with certain constraints. In [72], Yu et

al. introduce an approach for the speci�cation of prop-

erties and for the property-based validation of BPEL

processes. The properties are based on property pat-

terns [16]. For process validation, a model checking ap-

proach is employed. Model checking has also been ap-

plied to process validation by several other approaches

[21,40]. Foster et al. [19] introduce an approach for

validating the interactions of web service compositions

against obligation policies speci�ed using message se-

quence charts. For validation, an approach based on

labelled transition systems is employed.

In [28], compliance validation is addressed from the

business contract perspective using FCL for specifying

contracts. The compliance of a BPMN process with a

given contract is validated by transforming the process

model into a form similar to the contract notation. This

allows for the detection of contract violations in the

process model by applying reasoning techniques.

Most a priori validation approaches address depen-

dencies which can be expressed at the activity level.
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However, the validation of context-related constraints

(e.g., constraints depending on a patient's allergies, a

customer's insurance sum, or the outcome of a cer-

tain activity) is more complex since the incorporation

of context data can lead to state explosion. This, in

turn, results in high validation costs. In order to still be

able to provide compliance reports for context-related

constraints at the process model level, mechanisms for

dealing with state explosion have to be integrated.

3.2 Runtime Compliance Validation

A large number of existing approaches focus on run-

time compliance validation. The basic idea is to vali-

date compliance by monitoring process-related events

during runtime. Early approaches stem from research

on rule-based transactions (e.g., [9,63]). Their main fo-

cus is to schedule upcoming processing requests (e.g., a

commit request) such that prede�ned constraints (e.g.,

commit dependencies) are not violated. For specify-

ing and enforcing constraints, logic-based formalisms

and techniques (e.g., event algebra [63], temporal log-

ics [9]) are used. In [56], an approach for specifying

declarative process models using LTL is presented. For

process enactment, the LTL formulas are synthesized

into state automatons. In [30], an approach for syn-

chronizing concurrent process instances is introduced.

Constraints are speci�ed using an extension of regular

expressions. For scheduling process instances according

to the constraints an FSM-based coordinator is used.

Monitoring runtime compliance has also been

addressed from the business contract perspective

(e.g., [32,46,8,23]). In [46], process events are mon-

itored to detect contract violations. In [8], contract

clauses are speci�ed in a rule-based form using the no-

tion of happened, expected, and not-expected events. At

runtime, events are recorded in a knowledge base which

allows for reasoning about contract compliance. [7] em-

ploys a similar approach for monitoring the compliance

of web service executions with choreographies.

In [52], a semantic mirror (i.e., a knowledge base

of process data) is continuously updated according to

the current execution status of a process instance. This

allows for monitoring the compliance of the instance

with constraints speci�ed in terms of event-condition-

action rules (ECA). Agrawal et al. [6] also advocate the

use of process monitoring for detecting non-compliance.

In [29,48], an approach for rule-based automatic in-

stance adaptation is proposed. The ECA rules are spec-

i�ed using active temporal frame logic (an extension of

frame logic by temporal notions such as durations). At

runtime, upon occurrence of certain events and condi-

tions (such as high blood pressure), the process is auto-

matically adapted according to the rule's action part.

Runtime compliance validation is particularly im-

portant for constraints involving runtime context infor-

mation (cf. Req. 4.2). However, as a limitation most

monitoring approaches do not allow for �look-aheads�.

In particular, possible future process behaviour is

treated as unknown. Decisions (e.g., enforcement de-

cisions such as to reject a commit request) can only be

made based on execution history so far. This will lead

to shortcomings, if the future process behaviour is also

relevant to constraints. In the scope of business pro-

cess management, process models to a certain extend

provide a description of the process behaviour. Hence,

the process structure described by process models can

be exploited at runtime in order to predict and thus

avoid non-compliance in advance. For this purpose, the

integration of an approach for monitoring the state of

the process execution into an a priori process valida-

tion approach is vital. One challenge for intelligent and

e�cient monitoring is to trigger the process validation

only if necessary (e.g., when new data relevant to a

constraint is available). In addition, in order support

process users to adequately deal with violations, it is

necessary to also enable mechanisms for determining

whether violations are still healable at a certain point

in time. In this paper, we introduce the basis for dealing

with changes of the process execution state. In partic-

ular, we discuss the possible e�ects of state changes on

the compliance with semantic constraints. In addition,

we introduce a basic notion of healable violations.

3.3 Check Point Metaphor

Business rule management systems (e.g., ILOG

JRules [35]) allow for managing and evaluating busi-

ness rules in a business rule engine (BRE) by employ-

ing techniques from knowledge-based systems. In the

context of PrMS, a BRE is primarily used for decision

making. For this purpose, decision points have to be

prede�ned. At runtime, the rule evaluation will be in-

voked when reaching a decision point. In the context of

service-oriented architecture (SOA), rule evaluation can

be implemented as a service encapsulating details spe-

ci�c to the rule engine [39]. In IBM Websphere, for ex-

ample, hard coded rules and checks are assigned to en-

forcement points where the rule service will be invoked

at runtime [24]. Commercial business process compli-

ance tools (e.g., Bonapart SOX Analyzer [18] and ARIS

Solution for GRC [34]) enable the enrichment of pro-

cesses with risks, controls, and tests. Based on these,

work�ows for testing the controls can be scheduled.

Generally, the check point paradigm complements other
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validation scenarios. However, it is not suitable when

more �exible checks become necessary (e.g., when pro-

cesses are adapted) [67].

3.4 A Posteriori Compliance Analysis

In [5], an approach for validating processes a posteriori

against constraints is presented. Constraints speci�ed

in LTL are veri�ed over process logs. Unfortunately,

this approach is not suitable for scenarios in which non-

compliance may a�ect the outcome of a process. How-

ever, we consider a posteriori compliance validation an

appealing complement to other validation paradigms.

3.5 Further Aspects and Discussion

Though the expressiveness varies, common to most ap-

proaches discussed is a certain degree of formal founda-

tion of the speci�cation language (cf. Req. 1).

With SBVR [54] OMG introduces a meta-model

which allows for formalising the semantics of business

vocabulary and business rules. The formalisation is sup-

posed to enhance the interchange of rules and vocabu-

lary among organisations. The adoption of the di�eren-

tiation between concept meaning, representation, and

expression as proposed by SBVR could be relevant for

supporting high level and implementation level speci�-

cations and the mappings between the levels (Req. 3).

Whether this is already su�cient, however, still has to

be investigated. Constraint organisation (Req. 2) and

particularly the reuse of existing constraints could also

bene�t from the formalisation of business vocabulary

and rules. The requirement of high level and imple-

mentation level constraints (Req. 3) is also addressed

by [52]. However, it is not quite clear to what extent it is

possible to abstract from implementation details when

specifying semantic constraints with this approach.

Monitoring approaches (cf. Sect. 3.2) are potentially

able to deal with constraints with process-spanning

scope (Req. 5) by nature. This particularly applies to

approaches dealing with monitoring compliance with

process contracts (e.g. [32,46]). This is because they

are designed to deal with cross-organisational scenar-

ios. To evaluate to what extent these approaches are

suitable for dealing with semantic constraints, however,

a more detailed analysis is required. Many of the other

requirements are not within the scope of existing ap-

proaches (due to their various backgrounds) and, thus,

are not directly addressed (e.g., Req. 2 changes to se-

mantic constraints and Req. 8). In [52], recovery strate-

gies for control violations are proposed (e.g., rollback or

ignoring the violation). This is an interesting approach

which treats constraint violations the same way as pro-

cess exceptions. However, these recovery strategies are

applied after a constraint has already been violated.

Ghose et al. [22] propose interesting compliance pat-

terns which can be applied for con�ict resolution. The

abstract patterns basically capture commonly occur-

ring violations and provide heuristics to deal with them.

In [26], Governatori proposes an interesting strategy for

dealing with violations by integrating contrary-to-duty

obligations into constraints. Contrary-to-duty obliga-

tions represent reparational obligations which arise in

case of violations. The notion of contrary-to-duty is par-

ticularly helpful in order to distinguish between di�er-

ent ways of satisfying a constraint.

Generally, in case of violations, mechanisms are re-

quired to determine which strategies for dealing with

violations are applicable (e.g., which users have the

rights to override the corresponding constraint). The

latter may also depend on the enforcement level of a

constraint for a particular process (instance) (cf. Req.

7). For dealing with violations we can also draw further

inspiration from other research areas. In agent systems,

for example, agents often have to behave in accordance

to a prede�ned protocol. Hence, agent systems research

also deals with determining whether or not agents vio-

late constraints and how to deal with violations.

Regarding the requirement of supporting life time

compliance (Req. 4), most of the existing approaches

either focus on validating process models at design time

(Req. 4.1) or on compliance monitoring during runtime

(Req. 4.2). In addition, approaches supporting com-

pliance monitoring often do not consider possible fu-

ture behaviour of processes. The validation of process

changes (Req. 4.3) has not been addressed. The same

applies to change propagation (Req. 4.4). Hence, al-

though many related approaches o�er inspiring solu-

tions for particular facets, to our best knowledge, there

is no approach which covers all validation scenarios and

allows for integrated compliance support with regard

to the process lifecycle. In the second part of this pa-

per, we address Req. 4 and present our ideas on en-

abling life time compliance. The SeaFlows framework

proposed in the remainder of the paper employs the

notion of event traces. As discussed, the event notion

is also used by some other approaches [63,5,7,8]. In

contrast to these, however, we do not propose a partic-

ular constraint speci�cation language and correspond-

ing validation mechanisms. In fact, the SeaFlows frame-

work rather uses the event trace notion to provide an in-

tegrated conceptual process representation. This is nec-

essary in order to provide an underlying logical model

which is suitable for each lifecycle phase. Hence, our ap-

proach is also related to approaches dealing with struc-
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tural correctness such as [13,17,58,59]. In addition, the

SeaFlows framework also introduces general compliance

criteria as basis for static but also for dynamic compli-

ance validation.

4 Towards Life Time Compliance � A Vision

For achieving compliance throughout the process lifecy-

cle, adequate mechanisms for supporting and ensuring

compliance in each phase are required. Fig. 6 depicts the

process lifecycle [49,68] within PrMS enriched with key

mechanisms needed for integrated compliance support.

In the following, we explain the particular mechanisms

envisaged for each lifecycle phase. Due to space limita-

tions, we abstain from presenting our ideas on change

propagation (Req. 4.4).

4.1 Design Time: Process Modelling and Composition

4.1.1 Constraint Speci�cation

In order to enable automatic process validation, high

level semantic constraints �rst will have to be trans-

formed into constraints using process artefacts (i.e., im-

plementation level constraints). For this purpose, the

PrMS provides an interface for constraint speci�ca-

tion based on the process artefacts (e.g., process ac-

tivities, subprocesses, and process context data) of the

domain (cf. Fig. 6 (A)). Depending on how high level

constraints are modelled (e.g., formal or informal) the

process engineer may transform them by mapping con-

straint artefacts or by respecifying constraints using the

artefacts of the interface. Many approaches for con-

straint speci�cation have been proposed in literature

(e.g., LTL [22,56] and FCL [28]). To identify a suit-

able constraint speci�cation language, a detailed anal-

ysis of relevant semantic constraints is vital. Semantic

constraints may be stored in a constraint repository and

assigned to categories for facilitating constraint reuse

(cf. Fig. 6). To assign semantic constraints to a process,

the process engineer can browse the constraint reposi-

tory for relevant existing constraint sets (e.g., drug in-

teractions) or create new ones.

4.1.2 Process Model Validation

Following Req. 4.1, the PrMS provides mechanisms for

process model validation already during design time

(cf. Fig. 6 (B)). At this stage, only the process model

serves as input for compliance validation. However,

many semantic constraints involve runtime information

(e.g., context conditions) as well. These context infor-

mation is not available at design time. Hence, in order

to provide the process engineer with helpful validation

reports we envisage detailed compliance notions (e.g.,

conditional violations or de�nite violation, cf. Fig. 6

(C)). These will allow for more �ne-grained compliance

prognoses and feedback, which, in turn, might help the

process engineer to evaluate and to enhance the process

model.

4.2 Runtime: Process Execution and Process Instance

Adaptation

It is not always feasible to enforce all semantic con-

straints at the process model level (cf. Req. 4.2). Hence,

it must be also possible to create process instances from

a process model which does not enforce all semantic

constraints at the structural level. This, in turn, de-

mands for adequate runtime monitoring and validation

mechanisms in order to ensure compliance with the con-

straints not yet enforced. For this purpose, relevant

events of the process execution have to be monitored

(e.g., availability of relevant context information).

The evaluation of corresponding constraints based on

the runtime context then has to be carried out dur-

ing process execution (cf. Fig. 6 (D)). Our objective is

to predict potential con�icts (i.e., violations) as early

as possible in order to allow for timely application of

strategies for averting con�icts. Hence, not only the cur-

rent execution history of the process instance has to be

accounted for, but also the possible future behaviour of

the instance (i.e., no mere monitoring).

Compliance checks at design time are less costly

than corresponding checks at runtime. Hence, to re-

duce validation costs, design time and runtime checks

should not be performed in an isolated manner. In fact,

their interplay has to be supported. For this purpose, it

is vital to determine which constraints still have to be

monitored and evaluated during execution and which

constraints have already been enforced at process model

level and thus, do not require costly compliance checks

at runtime (cf. Fig. 6 (C)). To further optimize the in-

terplay between design time and runtime validation and

particularly to exploit the synergy e�ects, a detailed

analysis of the problem space is required.

Following the requirement for validating process

changes (Req. 4.3), corresponding compliance checks

have to be integrated into existing process adaptation

mechanisms of PrMS (cf. Fig. 6 (E)). Note that a pro-

cess change may require the reevaluation of semantic

constraints which have already been enforced before

the change. In order to reduce validation costs, the se-

mantics of the process change to be carried out can
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be exploited. In [44], we introduced an approach for

(re)evaluating only semantic constraints which might

be violated by the particular process change. So far,

this approach has been restricted to activity-level con-

straints and will be extended to handle more expressive

constraints.

4.3 Process Evaluation and Mining

Following the requirement for traceability (Req. 8), run-

time compliance checks have to be tied with logging

mechanisms. This is particularly important when con-

straints can be overridden during execution (Req. 7).

Then, the validation logs can provide meaningful input

for process mining (cf. Fig. 6 (F)).

In the context of continuous process learning, a log

analysis can help to evaluate and enhance existing se-

mantic constraints (e.g., constraint re�nement based on

insights on frequently occurring constraint overriding

due to a particular reason). This may serve as input

to constraint evolution (cf. Req. 2). In addition, a log

analysis may also contribute to evaluate the quality of

the process by relating process outcome and constraint

adherence.

5 A Formal Framework for Integrated

Compliance Support

An integrated formal model and corresponding compli-

ance criteria supporting all lifecycle scenarios are pre-

requisites for enabling integrated compliance support as

sketched in Sec. 4. These foundations are provided by

the SeaFlows framework introduced in the remainder of

this paper. In this paper, we focus on single process sce-

narios as the basis for compliance validation (i.e., Req.

5 is not addressed). Thus, we do not address synchro-

nisation and scheduling constraints (e.g., as addressed

in [30]) which particularly become relevant when multi-

ple processes need to be scheduled. A basic idea how to

extend the concepts in this paper in order to deal with

multiple process scenarios is sketched in the outlook.

In the following, we �rst introduce the basic ideas

of the SeaFlows framework. Then, the notions consti-

tuting the foundations of the framework are de�ned

in Sect. 5.2. In Sect. 6, formal compliance notions are

introduced. Sect. 7 considers the application of the

framework and introduces a prototype developed in the

SeaFlows project.

5.1 Fundamentals

Semantic constraints typically impose conditions on

how processes should be carried out. Consider, for ex-

ample, the constraints from Tab. 1. Constraints c1 to
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c5, for example, impose conditions on the proper ex-

ecution of patient treatment processes. Basically, they

specify what must or must not happen during the exe-

cution of a treatment process.

From a technical point of view a process execution

can be regarded as a sequence of process-related events

(e.g., the execution of a particular activity). Hence, con-

straints on the proper process execution, in turn, can be

regarded as constraints on the occurrences and the re-

lations of such events. The SeaFlows framework makes

use of this principle. In particular, the framework uses

event traces to provide a behavioural level view on pro-

cesses. This enables the speci�cation of semantic con-

straints as constraints on the proper structure of event

traces representing process executions.

The trace notion has already been applied to

provide a logical model for dealing with process

changes [17] and process evolution [13,58]. In the

SeaFlows framework, the use of event traces allows for

abstracting from concrete process meta-models. Hence,

events and event traces can be regarded as interface be-

tween constraints and processes (cf. Fig. 6 (A)). This

allows constraints, their formal semantics as well as

formal compliance criteria to be developed extensively

independent from concrete process meta-models. Fur-

thermore, event traces are a suitable underlying logical

model for an integrated support throughout the process

lifecycle since they are applicable in all lifecycle phases.

Fig 7 illustrates the behavioural level view and other

concepts of the framework which build upon this view.

Design time Runtime Process analysis

Process models Process instances Process logs

Behavioural level view (event traces)

Classification of structural process changes and state changes

General notion of satisfaction of semantic constraint over event traces

Section 5.2

Section 5.2

Section 6.1

Sections 6.2, 
6.3, and 6.4

Trace-based compliance criteria

Fig. 7 Behavioural level view as basis for integrated support

Based on event traces, the framework introduces a

general notion of satisfaction of semantic constraints

which provides the basis for the trace-based compliance

criteria for assessing the compliance of processes with

semantic constraints. These criteria are applicable in

all phases of the process lifecycle. Based on them, we

provide formal criteria for classifying process changes

and state changes (for compliance monitoring) with re-

gard to their e�ects on the compliance with semantic

constraints. Altogether, these criteria constitute an ad-

equate basis for providing integrated lifecycle support.

5.2 Behavioural Level View for Constraint Integration

A basic concept common to all PrMS are activities.

For a particular application domain (such as treatment

processes in the healthcare domain) it is often possi-

ble to identify a set of activities relevant to processes

of this domain. Activities typically operate on process

context data (cf. Tab. 1). Activities of patient treat-

ment (e.g., inform patient), for example, often require

the patient's ID as input context. Similarly, a tolerance

test may have several context data as outcome (e.g.,

the test results). The integration of such context data

enables context-aware constraints. In this paper, we as-

sume that context data relevant to constraints is avail-

able to the PrMS. Data integration issues will be part

of our future research. Def. 1 provides a general notion

of activities which also considers the activity context.

De�nition 1 (Activity and activity execution)

An activity at is de�ned as a 3-tuple

(t, inputContext, outputContext) with:

� t denotes the activity type

� inputContext = {i1, i2, . . . , in} is the set of input

context parameters of at
� outputContext = {o1, o2, . . . , om} is the set of out-

put context parameters of at

Let at be an activity. Further, let Di
1, D

i
2, ..., D

i
n be the

domains of the parameters in inputContext of at and

let Do
1, D

o
2, ..., D

o
m be the domains of the parameters in

outputContext of at. Then, an activity execution a is a

3-tuple

(t, {i1(x1), . . . , in(xn)}, {o1(y1), . . . , om(ym)}) with:
� xk ∈ Di

k ∪ {undefined}, k = 1, . . . , n and

� yl ∈ Do
l ∪ {undefined}, l = 1, . . . ,m

For a given domain, we denote as A the set of ac-

tivities and as A∗ the set of activity executions. �
An example of an activity execution is given below:

a = (Anamnesis, {PatId(mueller007)}, {HighRisk(false)})

a represents the execution of an anamnesis for a

particular patient (with PatId mueller007 ). In addi-

tion, the patient's anamnesis has led to the result that

he does not have an increased risk.

In a PrMS, activities themselves are subject to a

lifecycle as well. In particular, they are undergoing dif-

ferent states triggered by events during process execu-

tion. Def. 2 formalises the notion of events employed by

the SeaFlows framework.
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De�nition 2 (Event) Let T be the set of event types

of interest. Let A∗ be the set of activity executions for

a given domain. An event e is a tuple e = (t, a) with

� t ∈ T denotes the event type

� a ∈ $A∗ denotes the activity execution and its con-

text data associated with e

We denote as E∗ the set of all possible events for a
given domain. �

Clearly, T determines the granularity of the be-

havioural view on processes. Event traces typically con-

sist of start and complete events [3,58]. Based on

traces using these event types, execution intervals of

the corresponding activities can be obtained. The in-

tervals, in turn, can be used to de�ne temporal de-

pendencies (e.g., temporal distance constraints and in-

terval relations [42]). Generally, traces with start and

complete events provide a good basis for de�ning the

formal semantics of constraint speci�cation formalisms

since they can serve as expressive and general process

representation. In practice, however, the event types

start and complete can be too low-level for the mod-

elling of constraints. In this case, constraint modelling

can be facilitated by introducing abstractions from the

underlying event trace model. In particular, respective

constraint speci�cation approaches should provide ab-

stract concepts (e.g., by de�ning abstract predicates)

such that constraint modellers do not have to directly

deal with start and complete events.

In this paper, we focus on providing general trace-

based compliance criteria and not on introducing an ex-

pressive constraint speci�cation formalism. For the pur-

pose of presenting our ideas, the particular constraint

types start and complete are not relevant. Hence, we

opted for a more compact abstraction from start and

complete events to illustrate our ideas. In particular,

we will use the event type of performing an activity

(i.e., T = {execute}) in the following. The ordering

relation of the execute events can be derived from a

trace with start and complete events by, for exam-

ple, taking the start/start relation of the activities

as basis, respectively. However, note that the ideas pre-

sented in this paper are also applicable to event traces

with start and complete event types.

Since we focus on the event type execute in

this paper, we will use an abbreviation for denot-

ing events in the following. Instead of (execute,

(Anamnesis,...,...)), for example, we omit the

event type and write (Anamnesis,...,...). Due to

the use of activity executions in events, the process con-

text is also captured in an event. This extension is im-

portant as it enables the speci�cation and evaluation of

context-aware semantic constraints.

Clearly, an event trace is suitable for representing

the execution of a process instance. A set of event

traces, in turn, can be used as an abstraction from pro-

cesses (cf. Fig. 7). Formally, an event trace is an ordered

sequence of trace entries which, in turn, are assigned to

events (cf. Def. 3).

De�nition 3 (Event trace) An event trace

σ=<e1,...,en> is an ordered sequence of trace en-

tries ei in which each entry ei ∈ E∗ corresponds to an

event. Further, we denote by ΣE∗ the set of all event

traces over E∗. �

Fig. 8 provides an example of a process execution

and the corresponding event trace.

PatId Age HighRiskProcess context

...

= < e1, e2, e3, e4, e5, ….> with

Anamnesis

Admit patient CT

mueller007 27 false

Event trace 

e1= (AdmitPatient, {}, {PatId(mueller007),Age(27)})

e2= (Anamnesis, {PatId(mueller007)}, {HighRisk(false)})
e3= (CT, {PatId(mueller007)},{})

Process instance I3

Control flow

Fig. 8 A process instance and the corresponding event trace

Note that the information captured in the events

and in the event traces is similar to common log formats

like MXML as used by the process analysis framework

ProM [3]. In particular, MXML has a designated data

�eld for each event to store context data.

The notions of events and event traces provide the

basis for constraint speci�cation in the SeaFlows frame-

work. In particular, a constraint (e.g., from Tab. 1) can

be speci�ed by de�ning rules on the proper occurrences

of respective events and associated context.

In practice, it is often desirable to support the ab-

straction of concrete activities. Consider, for example,

constraint c5. In the healthcare domain, there can be

a broad range of activities which are regarded as inva-

sive procedure (e.g., a punction, a surgery, or an en-

doscopy). The speci�cation of constraints correspond-

ing to c5 based on events for each of these activities

can become a quite laborious task. The same applies to

the maintenance of the respective constraints. Hence, to

increase the ease of constraint speci�cation it can be de-

sirable to introduce the abstract concept invasive proce-

dure (e.g., as an abstract activity) which subsumes the

respective activities. Thereby, a constraint correspond-

ing to c5 can be speci�ed by using events associated

with the abstract activity invasive procedure. Such ad-

ditional concepts and their relations can be modelled
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using techniques from ontological engineering (e.g., us-

ing descriptions logic [10] or OWL [25]). This addi-

tional knowledge can be stored in a knowledge base. The

SeaFlows framework supports such abstractions by in-

troducing an optional knowledge base. The knowledge

base can be integrated to further ease the procedure of

constraint speci�cation and maintenance. The detailed

conception of the knowledge base is beyond the scope

of this paper. In the remainder of this paper, we assume

the existence of a single knowledge base.

Fig. 9 shows the relations of the concepts introduced

so far.

Behavioural level

Constraint 
specification 

language

Activities

Knowledge 
base

Constraint specification Event types

Age Age 27 Age 27
PrMS

Semantic constraints 
on event traces

Constraint specification at the behavioural level

>< e11, e12, e13, e14, e15 , ...
>< e21, e22, e23, e24, e25 , ...

...

Determines 
granularity of event 
traces

Fig. 9 Using the behavioural level view on processes for con-
straint speci�cation

As depicted in Fig. 9, semantic constraints can make

use of the activities and the concepts from the knowl-

edge base (if available). The events serve as artefacts

of semantic constraints. Based on the notion of event

traces, we provide an abstract notion of satisfaction of

semantic constraints. In particular, we abstract from

concrete constraint syntax and focus on the semantics

of a constraint over an event trace. Basically, the se-

mantics of a semantic constraint can be regarded as a

function assigning a boolean value (i.e., true or false)

to an event trace with true indicating that the execu-

tion trace satis�es the constraint and false indicating

the opposite.

De�nition 4 (Satisfaction of semantic con-

straints) Let σ ∈ ΣE∗ be an event trace. Let C be

the set of all semantic constraints and let c ∈ C be a

semantic constraint. Then, the semantics of c is de�ned

as a function sat with:

sat : C×ΣE∗ 7→ {true, false} with

sat(c, σ) =

{
true if σ satisfies c

false otherwise

� For sat(c, σ) = true, σ is a model for c

(formally σ |= c).

� For sat(c, σ) = false, σ is not a model for c

(formally σ 6|= c). �

Note that it is not our objective to propose a partic-

ular constraint speci�cation language. The behavioural

level view provides a suitable logical model for a variety

of speci�cation languages (cf. Fig. 9). Since Def. 4 fo-

cuses on the constraint semantics it also does not imply

a particular constraint speci�cation language. Thus, the

formal framework can be applied to any speci�cation

language which provides formal semantics correspond-

ing to Def. 4.

5.3 Example

In the following, constraints c2 and c5 from Tab. 1 are

speci�ed using �rst order predicate logic (PL1) [33].

Constraint c2 states that prior to each examination of

a patient p who is older than 75, a tolerance test for

patient p needs to take place. Constraint c5 expresses

that prior to each event associated with an invasive pro-

cedure for patient p, another event associated with in-

forming patient p has to take place. Predicate IsOfType

infers whether an event is associated with the given ac-

tivity. Predicate Pred(e1, e2) infers whether event e1 is

the predecessor of event e2 in the event trace.

c2:

∀e1, p, a (IsOfType(e1, examination)

∧ PatientContext(e1, p) ∧AgeContext(e1, a)

∧ a ≥ 75 →
∃e2 IsOfType(e2, toleranceTest)

∧PatientContext(e2, p) ∧ Pred(e2, e1))

c5:

∀e1, p (IsOfType(e1, invasiveProcedure)

∧ PatientContext(e1, p) →
∃e2 IsOfType(e2, informPatient)

∧PatientContext(e2, p) ∧ Pred(e2, e1))

Additionally, a knowledge base containing relations

between activities is given. It relates the activities

surgery, endoscopy, and punction to the abstract ac-

tivity invasive procedure:

∀e (IsOfType(e, surgery) →
IsOfType(e, invasiveProcedure))

∀e (IsOfType(e, punction) →
IsOfType(e, invasiveProcedure))

∀e (IsOfType(e, endoscopy) →
IsOfType(e, invasiveProcedure))

A given event trace and the knowledge base yield an

interpretation of the formulas. Due to the clauses in the
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knowledge base, events associated with the activities

surgery, punction, or endoscopy will match with the

speci�cations concerning the invasive procedure when

evaluating constraint c5.

The use of PL1 for constraint speci�cation only

serves as example. The rationale behind it is that PL1

is intelligible and commonly known. A discussion on

which constraint speci�cation language is suitable for

which applications is beyond the scope of this paper

and part of future research.

6 Formal Compliance Criteria for Lifecycle

Support

With the introduction of the behavioural level view on

processes, we have provided a formal basis for develop-

ing compliance criteria. The latter are addressed in the

following. Moreover, we take a step further by intro-

ducing classi�cation criteria for evaluating structural

process changes and state changes with regard to their

e�ects on the compliance with semantic constraints. Al-

together, these criteria provide the basis for realizing

integrated compliance support throughout the process

lifecycle.

6.1 On Assessing the Compliance with Semantic

Constraints

Taking on the de�nition of semantic constraints (Def. 4)

we can derive satisfaction notions for a set of event

traces as follows:

De�nition 5 (Satisfaction of constraints over

event traces) Let c be a semantic constraint and let

Σ={σ1, σ2, . . . , σn} be a set of traces. Then, we de�ne

the following satisfaction criteria:

� c is violated over Σ:

⇔ ∀ σi, i = 1, ..., n, σi 6|= c holds

Formally: violated(c,Σ)

� c is satis�ed over Σ:

⇔ ∀ σi, i = 1, ..., n, σi |= c, i = 1, ..., n, holds

Formally: satisfied(c,Σ)

� c is violable over Σ:

⇔ ¬violated(c,Σ) and ¬satisfied(c,Σ)

Formally: violable(c,Σ)
�

The satisfaction notions from Def. 5 provide a basis

for assessing the compliance of process models, process

instances, and process executions logs with imposed se-

mantic constraints. How this can be accomplished is

illustrated in Fig. 10. For a process model, the traces

Design time Runtime Process analysis

Process model P Process instance I1 Process instance I2

past

ΣP ΣI1 ΣI2 σ~= {     }

σ~ σ~
>< e11, e12, e13, e14, e15 , ...
>< e21, e22, e23, e24, e25 , ...
>< e31, e32, e33, e34, e35 , ...
>< e41, e42, e43, e44, e45 , ...

future futurepast

>< e1, e2, e3, 
>e24, e25 , ...
>e34, e35 , ...

e14, e15 , ... >< e1, e2, e3, e4, e5 , ...

Fig. 10 Process lifecycle and event traces

which can be derived from it represent the possible pro-

cess behaviour. Therefore, these execution traces are

relevant to compliance checks. For a process instance,

in turn, future behaviour may also depend on its past

behaviour (i.e., σ̃). This has to be taken into account

when assessing the compliance of process instances with

semantic constraints. In order to accomplish an a pos-

teriori analysis of a completed process execution, we

basically will have to check its event history σ̃ for com-

pliance. These considerations are formalised in Def. 6.

De�nition 6 (Compliance of processes with a

semantic constraint)

(A) Let P be a process model and let

ΣP={σ1, σ2, . . . , σn} be the set of traces which

can be derived from P . Let c be a semantic constraint

imposed on P . Then:

� violated(c,P) ⇔ violated(c,ΣP )

� satisfied(c,P) ⇔ satisfied(c,ΣP )

� violable(c,P) ⇔ violable(c,ΣP )

(B) Let I = (P, σ̃) be a process instance with

P being the process model and σ̃ being the cur-

rent event history of I. Let ΣI,σ̃={σ1, σ2, . . . , σm} be

the set of traces which can be derived from I with

ΣI,σ̃={σ ∈ ΣP | ∃ σ̄ ∈ ΣE∗ with σ = σ̃σ̄}1. Further,
let c be a semantic constraint imposed on I. Then:

� violated(c, I ) ⇔ violated(c,ΣI ,σ̃)

� satisfied(c, I ) ⇔ satisfied(c,ΣI ,σ̃)

� violable(c, I ) ⇔ violable(c,ΣI ,σ̃)
�

These trace-based criteria provide the formal means

for assessing the compliance of a process with a seman-

tic constraint at any process lifecycle phase. Moreover,

Def. 6 also provides the foundations for classifying and

evaluating process changes. This becomes necessary for

compliance monitoring as well as for validating process

changes (cf. Req. 4.2 and 4.3). In Sect. 6.2, we �rst de-

rive formal criteria for evaluating state changes. Then,

we address structural process changes in Sect. 6.3. In

Sect. 6.4, we give an idea of how to apply these criteria.

1 σ̃σ̄ denotes the concatenation of σ̃ and σ̄
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The introduced criteria provide the formal foundations

for monitoring process instance executions and for vali-

dating process changes at process model and at process

instance level.

6.2 On Dealing with State Changes

As motivated, a constraint-aware PrMS has to provide

adequate mechanisms for compliance monitoring. These

particularly will become necessary if not all constraints

are enforced at process model level (cf. Sect. 2.2). In this

case, the PrMS has to monitor the execution progress of

process instances (i.e., the execution history of process

instances including their context) and trigger validation

mechanisms if necessary. Since changes to the execu-

tion progress of a process instance can be considered as

changes to its state, we refer to them as state changes.

In this paper, we only consider state changes evolv-

ing within a process instance. This means that state

changes caused by concurrently running instances are

not considered.

Def. 7 formalises the notion of state changes. In-

formally, a state change corresponds to changes of the

event history of the process instance, whereas the un-

derlying process model P remains unchanged.

De�nition 7 (State change) Let I = (P, σ̃) be a

process instance with ΣI,σ̃={σ1, σ2, . . . , σm} being the

set of traces which can be generated from I with respect

to σ̃. Then, a state change ∆e on I with respect to σ̃ is

de�ned as:

∆e ∈ E∗ with ∃ σi ∈ ΣI,σ̃ with σi = σ̃∆eσ̆
2, σ̆ ∈ ΣE∗

Further, we denote as I[∆e>I
′ the application of

the state change ∆e to I yielding process instance I ′

with I ′ = (P, σ̂) and σ̂ = σ̃∆e
3. �

A state change may have di�erent e�ects on the sat-

isfaction status of a constraint. Tab. 2 shows the pos-

sible e�ects of state changes with respect to the initial

state of the constraint. In (A), c is initially satis�ed over

I. Then, the state changes do not have any e�ects on

the satisfaction of c. The reason for this is that a state

change ∆e basically corresponds to a selection over the

set of the potential traces of I (i.e., ΣI,σ̃). The same will

apply, if the constraint is initially violated over I. These

considerations have impact on the practical realization

of a constraint-aware PrMS. In particular, these con-

siderations can be exploited and applied to constraint

monitoring. If a semantic constraint is satis�ed over a

process instance, this instance will not require any mon-

itoring with regard to this constraint. By contrast, if a

2 σ̃∆eσ̆ denotes the concatenation of σ̃, ∆e, and σ̆
3 σ̃∆e denotes the concatenation of σ̃ and ∆e

semantic constraint is violated over a process model, it

will not make sense to create instances from this model

as the constraint will always be violated (unless struc-

tural changes happen). In case a semantic constraint is

violable over a process, notions from Tab. 2 can be used

to classify and monitor the constraint. If a state change

led to the violation of a constraint (e.g., violable(c, I )

results in violated(c, I ′)), the administrator of the pro-

cess instance should be noti�ed and compensatory ac-

tions could be proposed.

Example Fig. 11 illustrates how the classi�cation

above can be applied to monitor state changes. In

process instance I4, it is not determined yet whether

or not the CT examination will be carried out with

non-water-soluble contrast agents. Hence, constraint c3
from Tab. 1 is violable over I4. By contrast, the execu-

tion of process instance I'4 has proceeded further (due

to the completion of the CT examination). According to

∆e, which represents the execution of the CT examina-

tion, non-water-soluble contrast agents have been used

for the examination. Hence, the state change denoted

by ∆e has impact on the satisfaction of c3. In partic-

ular, c3 is violated over I'4 (assuming that the CT and

the endosonography are scheduled for the same week).

Therefore, ∆e is a violating state change.

6.3 On Dealing with Structural Process Changes

As pointed out, business processes may be subject to

change (e.g., due to process optimization). In particu-

lar, this necessitates modi�cations of the process struc-

ture (i.e., structural change). Process changes may take

place at process model or process instance level. To

avoid errors, process changes need to be carried out

in a controlled manner [57]. This does not only ap-

ply to structural aspects but also to compliance with

semantic constraints. Hence, mechanisms are required

to evaluate process changes with regard to compliance

with imposed constraints. For this purpose, we provide

a classi�cation of process changes with regard to their

e�ects on the satisfaction of semantic constraints.

Def. 8 introduces a formal notion of structural pro-

cess changes with regard to their e�ects on the pro-

cess behaviour. A process change (i.e., ∆I) consists of

a change operation. Typical elementary change oper-

ations are insert, delete, and move [67]. However,

Def. 8 abstracts from concrete change operations and

focuses on their e�ects instead. Informally, ∆I modi�es

the underlying process model P .

De�nition 8 (Structural process change) Let ∆∗
be a set of process change operations with regard to
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Table 2 Classi�cation of state changes

Initial constraint state Resulting situations (I[∆e>I
′ = (P, σ̂))

(A) satisfied(c, I) satisfied(c, I ′) (∆e has no e�ect on the satisfaction of c)

(B) violated(c, I) violated(c, I ′) (∆e has no e�ect on the violation of c)

(C) violable(c, I) satisfied(c, I ′) (∆e is healing with regard to c)

violated(c, I ′) (∆e is violating with regard to c)

violable(c, I ′) (∆e is neutral with regard to c)

Inform patient

Prepare patient

Process instance I4

Admit 
patient

CT 
examination

Lab test EndosonographyExamination

Non-water-soluble

Inform patient

Prepare patient

Process instance I’4

Admit 
patient

CT 
examination

Lab test EndosonographyExamination

Non-water-soluble
Non-water-soluble(true) 

Δe = <(CTExamination, {}, {Non-water-soluble(true)})>

= < …, (LabTest, ...), (CTExamination, {}, {Non-water-soluble(true)})>σ̂

σ~ = < …, (LabTest, ...)>

Event trace perspective

Fig. 11 Applying the formal criteria for monitoring state changes

a set of activities and corresponding context data of a

particular domain. Further, let P be a process model.

Then, a process change ∆P = <∆P,1, . . ., ∆P,l> with

∆P,i ∈ ∆∗, i = 1, . . . , l is de�ned as a sequence of

change operations.

Further, we denote as P [∆P>P
′ the application of

∆P to P yielding process model P ′ �

Note that a process instance change ∆I can be re-

garded as a special case of process model changes with

I = (P, σ̃) and I[∆I>I
′ = (P ′, σ̃). Hence, we abstain

from providing a separate de�nition for process instance

changes.

Tab. 3 shows the possible e�ects of structural pro-

cess changes with respect to the initial state of the

constraint. In contrast to state changes, which can be

regarded as a selection over the premodelled process

behaviour, structural process changes are capable of re-

ally modifying the process behaviour. How these change

e�ects can be applied to evaluate process changes is

shown in the following.

Example In Fig. 12, process instance I5 is adapted by

inserting a punction after the examination. This results

in process instance I'5. Based on the traces which can

be derived from I'5 the insertion of the punction can be

classi�ed as a violating change. Hence, the process en-

gineer may undo the change to restore compliance with

c5. Being aware of the violation, the process engineer

may also apply further adaptations. Fig. 12 shows two

alternative subsequent process changes to I'5. The ap-

plication of ∆A would yield a process instance which is

violable with regard to c5 (A). Hence, ∆A is a partially

healing change. The application of ∆B , in turn, would

yield a process instance which is satis�ed with regard

to c5 (B). Hence, ∆B is a healing change.

The criteria for evaluating structural process

changes are general and therefore are not restricted to

a particular change framework. However, the criteria

rely on a structural process change framework which

ensures the correctness of process changes with regard

to structural properties. For example, for ensuring that

process changes do not lead to inconsistencies such as

introducing deadlocks or changing the past [59].

6.4 On Dealing with Violations

In many cases in practice, it is not su�cient to solely

�nd out whether or not a constraint is violated over a

process. In order to assist process engineers and process

performers to deal with violations, it becomes necessary

to also �nd out whether a violation is healable. Consider

for example Fig. 13. Process instances I6 and I'6 both

violate constraint c2. Due to the execution state of I6
the violation is still healable (e.g., by inserting a toler-

ance test). In I'6, however, the violation of c2 cannot

be avoided anymore since the examination has already

been carried out4. Def. 9 provides a formalisation of the

notion of healable violations.

4 We assume that reparational actions are also incorporated
into the constraints as it is possible with FCL [28,26]
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Table 3 Classi�cation of structural process changes

Initial constraint state Resulting situations (I[∆I>I
′ = (P ′, σ̃))

(A) satisfied(c, I) satisfied(c, I ′) (∆I is neutral with regard to c)

violated(c, I ′) (∆I is violating with regard to c)

violable(c, I ′) (∆I is partially violating with regard to c)

(B) violated(c,I) satis�ed(c,I') (∆I is healing with regard to c)

violated(c, I ′) (∆I is neutral with regard to c)

violable(c, I ′) (∆I is partially healing with regard to c)

(C) violable(c, I) satisfied(c, I ′) (∆I is healing with regard to c)

violated(c, I ′) (∆I is violating with regard to c)

violable(c, I ′) (∆I is neutral with regard to c)

Prepare patient

Process instance I5

Admit 
patient

Lab test

Examination

Process instance I’5

Write report Release 
patient

Punction

Insert(Punction)

Prepare patient

Admit 
patient

Lab test

Examination Write report Release 
patientPunction

Inform patient

Insert(Inform patient)

Prepare patient

Admit 
patient

Lab test

Examination Write report Release 
patientPunction

BInform patient

Insert(Inform patient)A

Application of ΔA yields traces of type:Alternative succeeding changes to I’5
A

Application of ΔB yields traces of type:B

σ1 = < …,InformPatient(...), Punction(...),  ...>

σ1 = < …,Examination(...), Punction(...),  ...>

σ2 = < InformPatient(...), …,Examination(...), Punction(...), ...>

Application of ΔI5 yields traces of type:

σ = < …,Examination(...), Punction(...), ...>

ΔI5 is a violating change with regard to c5

ΔA is a partially healing change with regard to c5

ΔB is a healing change with regard to c5

Fig. 12 Process changes and their e�ects on compliance

De�nition 9 (Healable violations) Let c be a se-

mantic constraint. Further, let I = (P, σ̃) be a process

instance and let c be violated over I (i.e., violated(c, I )).

Then:

healable(c, I ) ⇔
∃ ∆I with I[∆I > I ′ and satisfied(c, I ′) holds �

According to Def. 9 a violation will be healable if

and only if there exists a set of process change opera-

tions which can be properly applied to the process in-

stance such that the resulting instance satis�es the con-

straint. Note that a constraint which is violable over a

process instance I (i.e., violable(c, I) is true) is always

healable over I. This is because it is possible to cre-

ate a set of change operations which removes exactly

those traces violating the constraint (i.e., traces σ with

σ 6|= c). This can lead to restructuring the process or

inserting additional branches. Def. 9 can be adapted

for process models as well. Note that a violation intro-

duced by a structural process change is always trivially

healable according to Def. 9. This can be achieved by

undoing the structural change.

The notion of healable violations can be exploited

for monitoring process instances (i.e., monitoring of

state changes). For this purpose, when an user inter-

action is requested (such as starting an activity), it is

�rst necessary to relate the requested interaction to cor-

responding state changes. This allows for compliance

validation with regard to the state changes. In case a

violation occurs, it has to be assessed whether the vi-

olation is healable. Clearly, non-healable violations are

more severe than healable ones. Hence, the strategy for

dealing with violations should take this into account.

However, when monitoring process executions, it also

has to be considered whether interactions leading to
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Δe

Fig. 13 Healable and non-healable constraint violations

non-healable state changes are rejectable or not. For

example, the results of a lab test are not rejectable

whereas the administration of a particular drug can be

rejected. This particularly depends on the semantics of

the events but also on other aspects such as time of

events and real execution times. However, employing

the notion of healable violations and rejectable inter-

actions would allow for the de�nition of sophisticated

strategies for dealing with violations.

7 On Applying the SeaFlows Framework

The main objective of the SeaFlows framework is to

provide formal backgrounds which can be used to build

concrete approaches for supporting semantic constraint

upon. The criteria introduced constitute the formal

foundations for assessing the compliance of processes

and process changes in di�erent phases of the process

lifecycle. Due to being based on the notion of event

traces they are general and can be applied to a broad

range of process meta-models.

However, the trace-based criteria are not supposed

to be directly implemented as operational level checks.

This is often not feasible in practice due to e�ciency

reasons. The exploration of event traces is often too

costly to be carried out in practice. How compliance

checking approaches are realized in practice highly de-

pends on the constraint speci�cation approach as well

as on the process meta-model. Nevertheless, there are

general optimizations which are useful for practical re-

alization of compliance checks based on formal frame-

work. These optimizations are presented in Sect. 7.1.

Then, we present the SeaFlows prototype which makes

use of some of these considerations in order to enable

e�cient validation and helpful validation reports.

7.1 Optimizations for Practical Application

Operational level checks The exploration of event

traces is not feasible for practical application, especially

when dealing with complex processes. Moreover, we of-

ten have to deal with in�nite sets of event traces (e.g.,

process models with loops or context parameters with

an in�nite domain). To handle this issue, abstraction

techniques can be applied. For example, the domain of

the context parameter age obviously can be large or

in�nite. However, if it is only relevant to constraints

whether or not the patient is older than 75, we will

be able to abstract from the concrete values and to fo-

cus on the only two relevant cases (i.e., older than 75

and the opposite case). Such abstraction techniques are

widely used for model checking [62]. Clearly, the adop-

tion of abstraction techniques is a viable strategy for

dealing with state explosions.

Context-sensitive checks For monitoring process execu-

tions and for validating process changes, it is not nec-

essary to recheck all constraints. Here, the semantics of

the constraint as well as the semantics of the change

can be exploited in order to decide which constraints

may be a�ected by the change. Based on the change se-

mantics, we can, for example, identify neutral changes

(cf. Tab. 3). In previous work [44], we already pro-

posed a �rst approach to identify potentially a�ected

constraints. This approach will be further extended to

deal with more complex constraints. This will help to

enable more e�cient runtime validation.

Constraint-speci�c re�nements Due to being general,

the formal framework treats semantic constraints as

a black box. Hence, a further optimization could be

achieved by exploiting knowledge about the proper

structure of semantic constraints.

7.2 The SeaFlows Prototype

We have implemented some of the presented ideas in the

SeaFlows prototype. At present, the prototype enables

the speci�cation of complex execution dependencies be-

tween activities. Constraints can be speci�ed over ac-

tivities available in the domain's activity repository and

stored in constraint �les. Multiple constraint �les can

be assigned to a process model. In addition, the proto-

type supports the validation of ADEPT process models

against the assigned constraints.

The validation is not carried out by trace explo-

ration of process models (i.e., behavioural veri�cation).

Instead, we perform checks at the structural level (i.e.,

by checking the process structure which determines
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A B CConstraint editor Process model editor Validation report

Fig. 14 User interfaces of the SeaFlows prototype

the behaviour). This done by automatically deriving

structural correctness criteria from given execution con-

straints and by checking them for ADEPT process

graphs, respectively. Let us explain the basic idea using

a small example: if, for example, an existence depen-

dencies exists between two activities A and B (i.e., B

always needs to be executed after A), then this depen-

dency will only be satis�ed if either A never occurs in

the process (trivial satisfaction) or there exists B in

the process model such that the execution of B is not

optional to A. For validating such structural criteria,

mechanisms similar to data �ow analysis (e.g., for en-

suring the proper supply of data parameters [57]) can be

applied. This structural checking of ADEPT processes

allows for more e�cient validation. In addition, it also

allows for providing sophisticated feedback in case of

constraint violations.

The SeaFlows prototype is integrated into the

AristaFlow BPM Suite 5 by exploiting the Eclipse plug-

in framework. Fig. 14 shows the prototype's user inter-

faces: The constraint editor (A), the AristaFlow process

model editor into which the prototype is integrated (B),

and the validation report (C). Fig. 15 shows the process

validation in more detail. We have modelled two seman-

tic constraints (A). The �rst constraint expresses that

the activity inform patient has to take place prior to the

activity punction. The second constraint expresses that

a check-up has to be carried out between the execution

of the activities CT and endosonography. As shown in

Fig. 15, the prototype provides a detailed validation

report (C). The process from Fig. 15 (B) is not compli-

ant with constraint 1 since inform patient is optional to

the execution of punction. Further, the process violates

constraint 2 since the check-up is optional to the CT

and exclusive to the endosonography. The information

provided by the report can be exploited by the process

engineer to modify the process model accordingly (e.g.,

5 www.arista�ow.com
www.uni-ulm.de/en/in/iui-dbis/research/projects/adept2.html

by moving the check-up such that it is not optional to

CT and not exclusive to the endosonography).

At present, our prototype does not support the

full range of features envisaged for the framework. Ad-

vanced features such as runtime monitoring for context-

aware constraints are still to be implemented. Never-

theless, with the implementation of this prototype, we

have taken the initial steps for the technical realization

of the SeaFlows framework. The prototype will be up-

dated in order to integrate newer concepts and results

from the SeaFlows project. In future work, we will also

consider the application of propagation algorithms as

proposed in [27,70,69]. These propagation mechanisms

can be useful particularly when dealing with context-

aware constraints.

8 Summary and Outlook

Business process compliance has become a big issue

for today's organisations and a challenge for process-

oriented information systems in general. Due to the

heterogeneous IT landscapes in organisations and cross-

organisational processes, business process compliance

management often has to deal with complex scenar-

ios [36]. Enabling PrMS to support the compliance of

processes with imposed semantic constraints can be re-

garded as one step towards the installation of business

process compliance management in practice.

Doubtlessly, compliance requirements have also led

to new requirements on process management system

technology. In this paper, we �rst elaborated on fun-

damental requirements for supporting semantic con-

straints in PrMS. In addition, we provided an overview

on existing approaches and discussed to what extent

they are able to meet the requirements. We showed

that there is a demand for an approach allowing for

integrated compliance support with regard to the pro-

cess lifecycle. In this paper, we addressed the particular

challenge of enabling life time compliance. In particular,
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Fig. 15 Process validation using the SeaFlows prototype

we introduced the SeaFlows framework which makes

two fundamental contributions. Firstly, it introduces a

behavioural level view on processes which serves a log-

ical model for compliance criteria applicable through-

out the process lifecycle. This enables the speci�cation

of constraints as well as compliance criteria abstract-

ing from concrete process meta-models. Secondly, the

framework provides formal trace-based compliance cri-

teria not only for static compliance validation but also

for dealing with process changes (in particular, state

changes and structural changes). These criteria employ

a graded notion of compliance and can serve as for-

mal basis for the implementation of compliance checks.

We also presented our prototype which is based on the

concepts of the framework. Altogether, the framework

proposed in this paper can serve as formal foundation

for developing constraint-aware PrMS.

Clearly, there are also many questions left to future

research. One important challenge is the integration of

ontological concepts for ease of constraint speci�cation

and management. Here, interesting results from exist-

ing approaches on semantic process validation [27,70]

and on domain modelling from AI research will also be

considered. In addition, the development of e�cient op-

erational level checks for assessing compliance is also an

important issue. This is part of ongoing research. We

will also investigate how to deal with context changes

caused by external events. In the SeaFlows framework,

we focused on a rather technical perspective. To be able

to go all the way from high level constraint speci�cation

to implementation level constraints also requires further

research. Here, we can bene�t from ideas and concepts

from the business rules research (e.g., the SBVR stan-

dard [54]). These will have to be further investigated

in more detail to be adopted for supporting semantic

constraints in PrMS. A further challenge is to tackle

the multiple process scenario. One idea is to merge the

(partial) histories of concurrently running process in-

stances which are within the scope of the same con-

straint (e.g., multiple treatment processes for the same

patient). Thus, these processes could be treated as one

process execution at the formal level. This idea still

needs further investigations. Moreover, strategies for

validating and monitoring concurrent processes at the

operational level still have to be developed.

In fact, the support of semantic constraints in PrMS

is a cross-cutting concern. Hence, related research �elds

such as case handling, ontological engineering, multi-

agent systems, and enterprise knowledge management

can also provide further solutions and inspiration for

future developments.
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