
Ulm University | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science
Institute of Databases and
Information Systems

Transformation of Activity-based Busi-
ness Process Models to Complex User
Interfaces: A Model-Driven Approach
Master Thesis Ulm University

Author:
Paul Hübner
paul.huebner@uni-ulm.de

Reviewers:
Prof. Dr. Manfred Reichert
Prof. Dr. Peter Dadam

Advisor:
Dipl.-Inf. Jens Kolb

2012

Version January 30, 2012

c© 2012 Paul Hübner

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative Commons, 543
Howard Street, 5th Floor, San Francisco, California, 94105, USA.
Typeset: PDF-LATEX 2ε

Danksagung - Acknowledgments

Mein Dank gilt allen Personen die mich bei der Erstellung dieser Arbeit unterstützt haben.

Besonderer Dank gilt Herrn Prof. Dr. Manfred Reichert, unter anderem für die Themen-
findung und Vermittlung der vorliegende Arbeit. Des Weiteren gilt mein Dank meinem
Betreuer Jens Kolb, der mich zielorientiert durch diese Masterarbeit geführt hat und der
mich durch seine kritischen Anmerkungen stets vorantrieb.

Meiner Familie und Meiner Freundin danke ich für ihre Geduld und Unterstützung.

Zusammenfassung

Graphische Benutzeroberflächen sind eine wesentliche Voraussetzung für die Bearbeitung
von Geschäftsprozessen. Hierbei stellen die Konzeption und Implementierungen graphischer
Oberflächen einen Großteil des gesamten Entwicklungsaufwandes im Geschäftsprozessman-
agement dar.

Um den Aufwand der Implementierung zu verringern, wird in der folgenden Arbeit ein Trans-
formationsmodell zur ganzheitlichen und automatisierten Erzeugung graphischer Benutze-
roberflächen, basierend auf Prozessmodellen, vorgestellt. Hierbei folgen alle Komponenten
des Modelles dem Separtaion-Of-Concerns Grundsatz modellgetriebener Entwicklung. Die
wichtigsten Komponenten bilden hierbei die Transformation Patterns, welche die Benutzer-
oberfläche generieren. Teil der Transformation Patterns sind die Elementary Transformation
Patterns (ETP), diese erzeugen aus den einzelnen Prozessaktivitäten Interaktionselemente,
welche durch die Complex Transformation Patterns (CTP) ergänzt werden. Diese erzeugen
für komplexere Prozessmodellteile entsprechende Benutzeroberflächenelemente. Die Pat-
terns werden durch einen Gruppierungsmechanismus ergänzt. Dieser ermöglicht unter an-
derem das Erzeugen von rollenspezifischen Benutzeroberflächen. Mittels einem Mapping
Meta Model beschreibt das Transformationsmodell einen generischen Transformationsal-
gorithmus, zum ganzheitlichen erzeugen von komplexen Benutzeroberflächen. Zusätzlich
erzeugt das Transformationsmodell eine bidirektionale Abbildung von Änderungen an der
Benutzeroberfläche im Prozessmodell. Diese Fähigkeiten zur Abbildung von Änderungen
ermöglicht wiederum das Umsetzten weiterführender Konzepte, wie beispielsweis die An-
passung einer Benutzeroberfläche zur Prozesslaufzeit und das nachträgliche Modifizieren
des Prozesskontrollflusses.

Teile des Transformationsmodells wurde im Rahmen einer Machbarkeitsstudie implemen-
tiert. In dieser prototypischen Implementierung wurde die Transformation Patterns, der
Gruppierungsmechanismus und der generischen Transformationsalgorithmus umgesetzt. Ab-
schließend wurden in Tests, basierend auf vorher definierten unterschiedlichen Anwendungs-
fällen, komplexe rollenspezifische Benutzeroberflächen für komplette Prozessmodelle gener-
iert, um so das Transformationsmodell zu verifizieren.

Abstract

An important but neglect aspect of Business Process Management (BPM) are the user
interfaces required for human interactions during process execution. Moreover, user inter-
faces design and implementation requires a notable amount of all BPM related development
efforts. Therefore in this thesis a model-driven approach for the overall automated gener-
ation of complex user interfaces for activity-based process models has been developed. A
component-based Transformation Model is the core part of this approach. The components
follow the separation of concerns principle of model-driven development.

The core component provides a hierarchical set of Transformation Patterns. Thereby El-
ementary Transformation Patterns (ETP) handle the aspects of user interface generation
of single process activities. Supplemented by Complex Transformation Patterns (CTP) to
transform complex process model fragments to user interfaces. These Patterns are supple-
mented with an advanced Grouping Mechanism, e.g., to enable the generation of role specific
user interfaces. Through a Mapping Meta Model, the Transformation Model describes an
overall generic Transformation Algorithm to generate complex user interface based on pro-
cess models. In addition the Transformation Model enables a bidirectional propagation of
user interface based changes to a process model and vice versa. These change propagation
capabilities are the basis for more advanced features like user interface modification during
the run-time of processes and retrospective modification of process control-flow.

As a proof of concept parts of the Transformation Model, more precisely, the Transforma-
tion Patterns, the grouping aspect and the overall Transformation Algorithm have been
implemented in a prototype. Tests based on different use cases resulted in an overall au-
tomated approach for the generation of role-specific complex user interface for complete
process models.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 3
1.3 Organization of the Thesis . 4

2 Related Work 7
2.1 Research Work . 7

2.1.1 Task Models . 8
2.1.2 User Interface Generation Approaches 9

2.2 Tool Support . 11
2.2.1 AristaFlow BPM Suite . 11
2.2.2 IBM WebSphere Lombardi Edition . 12

2.3 Limitations & Challenges . 13

3 Fundamentals 17
3.1 Business Process Management . 17

3.1.1 Block-oriented Process Models . 18
3.1.2 Process Life Cycle . 22

3.2 User Interface Models . 24
3.2.1 Model-Driven User Interface Development 24
3.2.2 Transformation User Interface Model 25

4 Requirements 29
4.1 Use Case Process Models . 29

4.1.1 Use Case 1: Issue Management . 29
4.1.2 Use Case 2: Car Configurator . 31
4.1.3 Use Case 3: Bank Account Creation 32

4.2 Complex User Interface Requirements . 33

vii

Contents

5 Transformation Patterns 37
5.1 Transformation Model Compendium . 37
5.2 Overview of Transformation Patterns . 39
5.3 Elementary Transformation Patterns . 40

5.3.1 Human Resource Process Activities . 41
5.3.2 Data Transformation . 44

5.4 Complex Transformation Patterns . 50
5.4.1 Control-Flow Block Transformation 51
5.4.2 Behaviour Block Transformation . 58

6 Transformation Model Composition 63
6.1 Activity Allocation . 63

6.1.1 Role-based Activity Grouping . 64
6.1.2 Variability of Process Granularity . 68
6.1.3 Resulting Limitations . 73

6.2 Process Model to User Interface Transformation 75
6.2.1 Mapping Meta Model . 76
6.2.2 Control-Flow Block Processing Basics 79
6.2.3 Transformation Algorithm . 81
6.2.4 Propagating Changes . 87
6.2.5 Application of the Transformation Algorithm to the Use Cases 92

7 Runtime Aspects 97
7.1 User Interface Generation Compendium . 97
7.2 UI Element Modifications . 99

7.2.1 Basic UI Element Modifications . 99
7.2.2 Advanced UI Modifications . 103

7.3 Sequence Modifications . 109
7.4 Discussion . 112

8 Prototypical Implementation 115
8.1 Methodology . 115
8.2 Implementation . 117
8.3 Results . 120

9 Summary 125

viii

Contents

9.1 Results . 125
9.2 Further Research Questions . 126
9.3 Conclusion . 128

Bibliography 129

A Appendix 139
A.1 User Interface Generation Approaches . 140
A.2 Sample Process Models . 141

ix

Contents

x

List of Figures

2.1 Issue Management Example ConcurTaskTree 9
2.2 User Interface Modelling in IBM WebSphere Lombardi Edition 12

3.1 Catalog of Primitive Process Model Elements 19
3.2 Different Types of Data Access Modelled with BPMN 20
3.3 Sequence Control-Flow Block . 20
3.4 Parallel Control-Flow Block . 21
3.5 XOR (exclusive choice) Control-Flow Block 21
3.6 Loop Control-Flow Block . 21
3.7 Process Model Element Hierarchy relevant for User Interface Generation . . . 22
3.8 Process Life Cycle, with User Interface Generation Phases highlighted 23
3.9 User Interface Model to Screen Element Relations 26

4.1 Process Model Example, Use Case 1: Issue Management 30
4.2 Process Model Example, Use Case 2: Car Configurator 31
4.3 Process Model Example, Use Case 3: Bank Account Creation 32

5.1 Transformation Model to generate User Interfaces 38
5.2 Elementary Transformation Patterns in the Transformation Model 41
5.3 UI Widget Generation for a List-based Business Objects 50
5.4 Complex Transformation Patterns in the Transformation Model 50
5.5 Resulting UI Model Data Structure for XOR Block of CTP3 Example 55
5.6 Edit Activity Process Model . 60
5.7 Validate Activity Input Data Process Model 60

6.1 Activity Allocation in the Transformation Model 64
6.2 Group Transformation Hierarchy Structure 65
6.3 Steps of Group Transformation . 67
6.4 Immutable Activity to UI Template Mapping in the Transformation Model . 69

xi

List of Figures

6.5 Granularity Problems in Process Models . 70
6.6 Granularity Problem in Process Models solved by introduction of new Activities 71
6.7 Immutable Grouping Mechanism . 72
6.8 Manual Tagging to Solve the Sequence Problem 73
6.9 Mapping Meta Model between Process Model and User Interface Model . . . 76
6.10 Processing Order of Nested Control-Flow Block Elements 79
6.11 Resulting UI Screen after processing the sample Process Model 80
6.12 Comparison of Process Model Blocks and UI Model Element Hierarchy 80
6.13 UI Widget Mock-up Generation Steps for Process Model Control-Flow Blocks 81
6.14 Overall Transformation Algorithm . 82
6.15 Change Propagation: From User Interface Representation to Process Model . 87
6.16 Steps of Change Propagation through Transformation Model Components . . 88
6.17 Steps for adding new UI Widgets to an existing generated User Interface . . . 89
6.18 Use Case 1: Issue Management, Complex UI Result 93
6.19 Use Case 2: Car Configurator, Complex UI Result 94
6.20 Use Case 3: Bank Account Creation, Complex UI Result 95

7.1 Process Instance Impact for Adding new Elements to a User Interface 100
7.2 Advanced Modification Area and Respective Process Instance 103
7.3 UI-based Add Operation during Process Run-time 104
7.4 Affected parts in a UI Model Instance for Add Options 105
7.5 UI-based Move Operation during Process Run-time 106
7.6 Advanced Move Operation in a UI Model Instance 107
7.7 User Interface based Deletion of an Activity 107
7.8 Advanced Delete Operation in an UI Model Instance 108
7.9 UI Model ControlFlowNavigation UML Class Diagram 109
7.10 Process Model Snippet for Sequence Modification Example 110
7.11 Sequence Modification Example: Car Configurator 111

8.1 Conceptual Data Model first Iteration Transformation Algorithm Prototype . 116
8.2 Complex User Interface Generation Prototype Layer Architecture 118
8.3 Vaadin-based Representation Implementation 119
8.4 Regions in the Complex User Interface . 121
8.5 Generated Complex User Interface Result, Use Case 1 122
8.6 Generated Complex User Interface Result, Use Case 2 122

xii

List of Figures

8.7 Generated Complex User Interface Result, Use Case 3 123

A.1 Process Model Example: Details Car Configurator, first part 142
A.2 Process Model Example: Details Car Configurator, second part 143
A.3 Process Model Example: Details Bank Account Creation, first part 144
A.4 Process Model Example: Details Car Configurator, second part 145
A.5 Process Model Example: Bank Account Creation, UI Allocation 146

xiii

List of Figures

xiv

List of Tables

2.1 From Model to User Interface Elements . 15

5.1 Process Model to User Interface Model Transformation Patterns Overview . . 39
5.2 ETP1: Human Activity to User Interface Transformation 42
5.3 ETP2: Non-Human Activity Transformation 43
5.4 ETP3: Data Transformation . 44
5.5 ETP3.1: WRITE Data Transformation . 45
5.6 ETP3.2: READ Data Transformation . 46
5.7 ETP3.3: READ-WRITE Data Transformation 47
5.8 ETP3.4: Primitive Data Type Transformation 48
5.9 ETP3.5: Business Object Data Type Transformation 49
5.10 CTP1: Sequence Transformation . 52
5.11 CTP2: Parallel Block Transformation . 53
5.12 CTP3: XOR Block Transformation . 54
5.13 CTP4: Loop Block Transformation . 56
5.14 CTP5: Subprocess Block Transformation . 57
5.15 CTP6: Background Activity Transformation 59

6.1 Hierarchy Level Links: Process Model to User Interface Model 77
6.2 Classification of Problems to Provide User Interface-based Changes 91
6.3 Effects of User Interface-based Changes on the Process Model 92

7.1 User Interface Generation in the Process Life Cycle 98
7.2 Effects on Process Model Instance by User Interface Element Modifications . 102

A.1 From Model to User Interface Elements, Approach Comparison 140

xv

1 Introduction

The intensification of globalization in the last decades, forces the need for management of
companies to revise their business processes [KLL09, vdAtHW03a]. Key success factors like
the demand of quickly reacting on market changes, general higher productivity according
to the overall product supply chain are only two examples, which indicate the need of us-
ing IT support for business processes to optimize them [vdAtHW03a, WSR09, DRRM+10].
This requirements lead to the development of what is known as Business Process Manage-
ment (BPM) which in short can be summarized as the management of all artifacts includ-
ing the respective IT support, resources and people involved in business process execution
[vdAtHW03a]. An important but neglect aspect for the execution of IT-based business
processes are the user interfaces to support the required human interactions. These user
interfaces take a notable amount of all BPM related efforts for their development [SMV10].
Especially, if business processes change it is common that the related user interfaces have to
be re-implemented from scratch. This huge development effort for business process-related
user interfaces is the starting point for this thesis.

1.1 Motivation

The acceptance and introduction of Business Process Management in companies has raised
constantly during the last decade and is still a mayor key factor for successful business
development in most areas [Wes07, Ham10]. In addition, the scientific community has
discovered the various fields of BPM trying to address its different domains, with particular
addiction to the involved formal methods [Dum05, vdAtHW03b]. In the course of this
scientific movement, Van der Aalst et al. define Business Process Management (BPM) as
”methods, techniques and software to design enact, control and analyze operational processes
involving human organizations, applications, documents and other source of information
supporting business processes” [vdAtHW03a].

1

1 Introduction

The business processes, which are defined in process models capture the activities taking part
during daily work in a company. These process models have to be executed to IT support
BPM through the implementation and usage of so called Business Process Management
Systems (BPMS). These are enterprise information system with direct support for modelling
and execution of business processes models. Within this, the identification and definition
of business processes is typically separated into two modelling levels. The first modelling
level is used for the identification and functional definition of business process models and
serves as an base for the second modelling level. On this second level, the functional process
models are enriched with all, especially technical, details to deploy and execute the created
business process models in the BPMS. This process models are also called technical process
models.

BPM research and existing Business Process Management Systems address both modelling
levels including the processes execution in a variety of details. A fundamental aspect during
business process execution is the integration of user interactions and thus in consequence
the user interfaces necessary. Since a lot of business processes are based on user interactions
during the overall processing of business data, the involved user interfaces become a major
part for efficient and user-friendly process execution [SSR+07]. Despite its significance in
the context of BPM, the user interface creation is only handled to a certain extent.

A fundamental problem according to user interface creation for process execution is the
overall semi-automated, in a lot of cases manual, approaches and thus the huge development
efforts for implementing adequate user interfaces [SSR+07, ZZHM07]. An important aspect
at this point is, when manually creating user interfaces, often a lot of process logic is captured
implicitly in user interfactes instead explicitly in the process model. Thus, a distinct mapping
between multiple activities in the process model and a user interface is not possible. This,
in turn, results in additional manual efforts by adapting user interfaces if changes in the
business process are necessary. No matter if the cause of these changes are based on the
redesign of the business process model or the corresponding user interface [SMV10].

Since technical process models include detailed information which are necessary for user in-
terface generation, e.g., executing agent of an activity and processed data, these models can
be used as a base for user interface generation. This is the basic starting point for the ap-
proach followed in this thesis. Using technical process models as an input for the automated
generation of agent role specific, complex user interfaces. With the additional effort to keep
a well defined two-way relationship between particular business process models and user

2

1.2 Contribution

interface elements. Therefore a generic business process to user interface Transformation
Model has been developed. The following chapter gives a clear and more detailed definition
of the contribution by the developed Transformation Model.

1.2 Contribution

The contribution of the thesis is the development of an approach to generate user interfaces
based on technical process models in an automated manner. The generated user interfaces
are capable for the execution of the business process of the underlying process models. The
developed approach links a business process model to a user interface and can be described
in the three following steps:

1. Prerequisite: A block-oriented technical business process model, including detailed
data flow definitions.

2. Transformation: Defined by the model-based approach developed in this thesis.

3. Result: User interfaces for handling the user interactions during business process
execution.

In actual BPMS the user interface development is only addressed to certain extends [SMV10].
At least if more complex user interfaces, which are based on multiple process activities,
should be created, at lot of manual development efforts are required. Therefore, the de-
veloped Transformation Model captures the user interface generation not only for multiple
activities but also for complete process model instances. Moreover, it includes the possibility
to allocate activities by grouping criteria. This results in a reduction of the development ef-
forts for user interfaces and in complex user interfaces that are capable of processing multiple
activities in a single step.

Another contribution of this thesis is to address the previously mentioned problem of losing
the mapping between process model and user interface elements. Changes in process models
may lead to additional changes to align the existing user interfaces. Alternatively, seen
from a different perspective, at first the user interfaces are adopted to the new operational
execution order and at second the underlying process models are aligned with the update
user interfaces. This outlines the bidirectional manner of propagating changes in a BPMS.
Independent of the chosen direction to implement the changes it is essential to know where,
according to the process models and user interfaces, these changes have to take place.

3

1 Introduction

Especially this should be addressed through this thesis resulting in an overall automated
bidirectional mechanism for element mapping. The following listing outlines the two sup-
ported mapping directions:

1. Process model elements ⇒ user interface elements

2. User interface elements ⇒ process model elements

1.3 Organization of the Thesis

The general methodology throughout this thesis was based on an iterative course of action.
In the following, the single most important parts are described as they are listed in the
chapters of the thesis. The starting point has been a detailed study of research literature ac-
cording to model-based user interface development and business process management related
user interfaces. The results of this study are presented in Chapter 2. Further an analysis
of two existing BPMS with special focus on their UI generation capabilities is provided in
this chapter. In Chapter 3, some fundamental prerequisites according to process models
and user interface models are outlined. Including the definition of a User Interface Model,
which describes all required process model related user interface (UI) elements. In Chapter
4 requirements for complex user interface generation, based on uses cases and the related
work are defined.

The user interface generation requirements are the basis for the Transformation Model which
is introduced in Chapter 5. This Transformation Model, for user interface generation based
on process models, is build up of Transformation Patterns and additional grouping capabil-
ities. The Transformation Patterns describe how to instantiate elements of the previously
defined User Interface Model. This, in turn, can be used for the generation of a user interface.

Chapter 6 starts with the discussion of additional grouping criteria of activities to take into
account for user interface generation, e.g., organizational concerns to achieve role specific
UIs. In the following, a Transformation Algorithm, which uses all parts of the Transfor-
mation Model is presented. Additionally this chapter discusses the aspects of delegating
changes from user interfaces to process models and vice versa.

Chapter 7 covers process model run-time related aspects of user interface generation. These
aspects include different granularity levels of UI-based changes during the run-time of a
process instance and the retroactive modification of control-flow triggered by a generated

4

1.3 Organization of the Thesis

complex user interface. The prototype which was developed as proof of concept during this
thesis is presented in Chapter 8. It uses the concept of view generation for process models
to implement the grouping aspects of the Transformation Model. For this view generation
concept a the proView [RKBB12] prototype is extended. Finally, the thesis concludes with
Chapter 9 summarizing the results of the previous chapters including some further research
questions.

5

1 Introduction

6

2 Related Work

Even though user interface are treated in a neglected manner in the area of Business Pro-
cess Management System (BPMS) there exist some interesting research approaches, which
should be discussed in this chapter. In addition, the general aspects of modeling user inter-
actions and user interface, including their generation, should be introduced. Since these are
important prerequisites for the approach of generating complex user interfaces for business
process models.

Therefore this chapter starts with the presentation of well-establish task-oriented concepts
according to UI modelling, supplemented with more business process related user interface
research work in Chapter 2.1. In Chapter 2.2 two state-of-the-art BPMS are presented
and analysed based on their user interface generation capabilities. Chapter 2.3 outlines the
limitations of the presented approach according to an overall process model to user interface
transformation.

2.1 Research Work

In general user interface (UI) development for IT systems is a various and complex field
[HMZ11]. Research in the field of user interfaces has proposed model-driven development
and thus the underlying modelling techniques to improve UI development. With the help
of these modelling techniques, UI development should be simplified and more intuitive. In
addition, such UI modelling techniques can be used for the creation of more formal definitions
of UIs and the related requirements. In the field of model-driven user interface development
there exist several modelling techniques for addressing different UI modeling related aspects
[TKVW10]. One of them is the definition of user interactions by using task models [LV04].
Some of these task modelling techniques are of special interest according to the user interface
generation for business process models, e.g., for the specification of required user interaction
for process execution [KRW12]. Thus in the following some basics according to task models

7

2 Related Work

are introduce. These basics are supplemented by UI modelling and generation approaches
for business process models.

2.1.1 Task Models

Basically, a task, can be described as an element to specify user interactions. A more gen-
eral definition with respect to user interface development is given by Paternò [Pat00]. He
defines a task as the steps necessary to reach a certain goal. In the field of Human Computer
Interaction (HCI) this basic definition is shared by all reviewed task modelling approaches.
In this sense task modelling is used to describe the interaction of a user in the context of
model-driven user interface development [Szw11]. In their work for the comparison of dif-
ferent kind of task modelling approaches for user interface design Limbourg et al. [LV04]
give a overview of relevant existing task modelling approaches. This overview includes fun-
damental HCI principles like the Goals, Operators, Methods, and Selection rules (GOMS)
[CNM83] and Hierarchical Task Analysis (HTA) [AD67]. The most interesting task prin-
ciple for our concerns according to UI generation is the so called ConcurTaskTree, (CTT)
modelling notation [PMM97]. This is a mostly engineering-oriented approach, which uses
the five concepts of tasks, objects, actions, operators and roles for the creation of models.

In ConcurTaskTrees the single tasks are arranged in a hierarchical tree. The root of the
tree describes an abstract task which is refined by multiple sub-tasks contained on the next
tree level. In addition, each task is of a certain kind (User, Abstract, Interaction, and
Application) and is connected to adjacent tasks on the same hierarchy level by temporal
relations. With the help of these temporal relations, it is possible to express the execution
order of task, e.g. the necessity of parallel execution for two tasks. Figure 2.1 shows a sample
CTT task model for an issue management application. This CTT is partitioned in three
hierarchy levels and contains tasks for creating assigning and closing an issue. Additional
to the user interaction tasks, it includes tasks for required system interactions like storing
the data for an issue (details for this scenario can be found in 4.1.1).

The ConcurTaskTree approach has evolved towards a de facto standard for the description
of user interactions in the field of model-based UI development [Szw11, GVC08, LV04]. Fur-
thermore, there exist well-defined techniques to use CTTs as direct input for the generation
of user interfaces [PS03, LVM+05]. This leads to next chapter, which presents several ap-
proaches for the generation of user interfaces to support the execution of business processes.

8

2.1 Research Work

[Reopen Issue] Store IssueStore IssueStore IssueClose IssueStore IssueResolve IssueStore IssueIn Progress

Store IssueCreate Issue

Process Issue

Edit Issue*

Abstract Task

Interactive TaskSystem Task

Temporal Relation

Hierarchical Relation

Figure 2.1: Issue Management Example ConcurTaskTree using CTT [MPS02]

2.1.2 User Interface Generation Approaches

FlowiXML [GVC08] is the implementation of a task model-oriented approach to support
the generation of user interfaces for workflow systems. Workflow systems are predecessor of
BPMS that mostly address the technical concerns of process execution. FlowiXML extends
the UsiXML (USer Interface eXtensible Markup Language) UI modelling standard, which
is based on task modelling, with additional capabilities required for workflow system user
interfaces [LVM+05]. In FlowiXML UIs are described by tasks, enriched with process model
related characteristics like the description of workflow sequences and organisational concerns,
e.g., assignment rules for tasks [RvdAtHE05]. The declarative task model of FlowiXML is
based on ConcurTaskTrees. In it, XML notation is used to model a task. With the help
of a generation tool these XML task descriptions are translate to a so-called abstract user
interface (AUI), which, in turn is the input for the generation of a real user interface, e.g.,
based on web technology.

Sousa et al. use FlowiXML as technological input for their Business Alignment Framework
[SMV10]. In this framework, a four-step approach is described in which a method is intro-
duced to align the business process of an enterprise with the used information system as well
as the user interfaces required for user interactions. In this Business Alignment Framework,
the activities of a business process model are used as the basis for user interface generation.
For each relevant activity, a CTT task model has to be created to describe a user interface
on a conceptual level. Afterwards the ConcurTaskTree model is supplemented by a domain
model [Ben96] which describes implementation concerns relevant for the connection of user
interfaces with IT systems. Based the ConcurTaskTree model and the domain model Flow-
iXML generates a abstract user interface which in a final step is transformed to concrete
user interfaces for the execution of business processes [Sou09].

9

2 Related Work

An interesting addition of this Business Alignment Framework is the possibility to track
change requirements between user interfaces and business process models in a bidirectional
manner. This is realized by the definition of rules for the direct transformation of process
model elements to task model elements and rules which define changes in the process model
based on changes in the task model, e.g., adding a new task would result in adding a new
activity in the process model [SMV10].

Guerrero et al. define a approach for the transformation of workflows, which they define as
the technical realization of a business processes, to user interfaces [GVGW08]. The approach
also uses CTT for task modelling and is to a certain extend similar to the approach of
Sousa et al. [SMV10]. Differences are that Guerrero et al. address more technical and
implementation related concerns but omit the tracking of changes between UIs and process
models.

Zhao et al. describe an approach for the specific use case of generating user interfaces based
on business process definitions for e-commerce systems [ZZHM07]. They use process model
data, e.g., like the names of single activities, and transformation rules to map the extracted
data to certain task-oriented user interface transformation rules. For example, if an activity
is named search product it is mapped to a search task, for which, in turn, a specific UI to
perform a search is generated

The PHILharmonic Flows research project includes an example for a different paradigm to
model and generate user interfaces for business process execution [KR11b]. This approach is
based on the data object-oriented view of business processes. Therefore a business processes
is described as the changing states of data objects within process execution and the relation
between this changing data objects. Supplemented with user specific access rules for each
data object and transformation rules for data types, role specific user interfaces for execution
processes can be generated [KR11a].

The limitations of the presented user interface generation approaches and the challenges
for an overall complex user interface generation are outlined in Chapter 2.3. The following
chapter analyses user interface generation as supported by actual BPMS.

10

2.2 Tool Support

2.2 Tool Support

In the following, the principles of user interface generation by two actual BPMS are analyzed.
Starting with AristaFlow1, which is based on ADEPT [Rei00] project and offers user interface
generation options for process model activities. IBM WebSphere Lombardi Edition2, is the
second BPMS which is analyzed according to its user interface generation capabilities. It
offers the feature to model processes on two hierarchical levels, which are interconnected
with each other. Based on this, the second hierarchy level is used to model the basic course
of action inside user interface forms.

2.2.1 AristaFlow BPM Suite

The AristaFlow BPM Suite offers capabilities for the realization of a complete process-
oriented IT environment. Since we want to focus on the particular aspects of user interface
generation in the following, this AristaFlow aspects are introduced. An important compo-
nent of AristaFlow is the Process Template Editor. It is used for the graphical modelling of
processes and to connect the process models with required IT Systems for their execution.
In addition, the Process Template Editor offers the functionality required for user interface
creation. A basic concept of AristaFlow is the separation of its graph-based process model
from the actions that have to be performed in the nodes (activities) of this model. The con-
cept for this abstraction mechanism is called Activity Template and implemented as defined
by the ADEPT process model [Rei00].

By the use of Activity Templates, it is possible to assign different kind of actions to nodes
(activities) of a process model, e.g., there is an Activity Template for fetching data from a
previously defined database. The Activity Template mechanism is also used if for a certain
node a user interface form should be generated. The only thing to do while creating a
process model is to assign the respective Activity Template (Generated Form or User Form)
to a node. During the run-time of process instances for each of the nodes with an assigned,
Activity Template for user interface generation a simple form is generated. This form is
based on the data-flow of the node, which has to be defined in advance. In addition, it
is possible to remove single data elements to omit them during form element generation.
Summing up the user interface generation in AristaFlow consist of the following four steps

1http://www.aristaflow.com/AristaFlow_BPM-Suite.html (in German), last checked January 30, 2012
2http://www.ibm.com/software/integration/lombardi-edition/, last checked January 30, 2012

11

http://www.aristaflow.com/AristaFlow_BPM-Suite.html
http://www.ibm.com/software/integration/lombardi-edition/

2 Related Work

1. Process model creation, including the detailed definition of the respective data-flow.

2. User Interface form specific Activity Template assignments to process model nodes,
which require user interaction.

3. Individual Modifications (removing/adding) of the single data elements considered for
user interface form generation.

4. Standardized user interface generation during process run-time based on the process
instance data for all process model nodes with appropriate assigned Activity Templates
taking the previously user defined data element modifications into account.

2.2.2 IBM WebSphere Lombardi Edition

IBM WebSphere Lombardi Edition is based on IBM WebSphere Server and the integra-
tion of the Lombardi TeamWorks BPMS after the acquisition of Lombarid by IBM in 2010
[YSW+10]. Further, it offers a wide range of BPM functionality including extended capa-
bilities according to process modelling and user interface generation.

View Offer

View Offer

Data
Accept Offer

Reject Offer

Load Offer

Data

Cancel

OK

1. Business

Process

Modelling

Level

2. User

Interface

Course Of

Action

Modelling

Level

(a) IBM WebSphere Lombardi Edition two Process Model Levels

Leads to “Reject

Offer“ Form

Leads to „Accept

Offer“ Form

(b) Resulting User Interface

Figure 2.2: User Interface Modelling in IBM WebSphere Lombardi Edition

Figure 2.2 shows a conceptual example for the hierarchical process model creation in the
IBM Lombardi Authoring Environment. The process models are defined on two connected
modelling levels. The first of these levels is used for the definition of global process models
whereas the second level can be used for the definition of required fine-grained actions.
In the case of user interface generation, this second modelling level can be used for more
technical process models as they are needed for the processing of user interfaces during the

12

2.3 Limitations & Challenges

run-time of a process. Figure 2.2a shows an example for such a user interface processing
related workflow. This includes the subsequent user interface related actions to perform for
the different kind of processing options provided by the offer form of Figure 2.2b. As shown
in the example depending on the action performed by a user during process run-time, either
an subsequent accept offer form (user clicks on OK) or an reject offer form (user clicks on
cancel) is displayed.

The user interface generation is triggered by assigning Coaches to the activities on the sec-
ond hierarchy modelling level. These Coaches trigger a user interface generation, which
uses a previously modelled data-flow for the creation of single form elements, similar like
in the Activity Template approach of AristaFlow (cf. Chapter 2.2.1). Another addition is
the possibility for arrangements of elementary form elements with help of an graphical user
interface editor. As shown in Figure 2.2 during process run-time the previously modelled
user interfaces internal workflows are implemented by the process engine. For the presented
sample case this would include the displaying and processing of two different forms if the
activity View Offer is executed. At first a form which shows the data of an offer is dis-
played followed by either an accept offer form or a reject offer form depending on the action
performed by the executing user.

2.3 Limitations & Challenges

In the following previously presented research work and Business Process Management Sys-
tems are reviewed according to an overall complex user interface generation. Additionally
the concepts of model based user interface derivation with special focus on task modelling
are analyzed.

Research work which discusses business process model related user interface concerns like
[GVGW08, SMV10] presented in Chapter 2.1.2 focuses on more general principles of user
interface generation instead of concerning the combination of multiple process model parts
for user interface generation. The focus of task-oriented approaches is a more detailed
interaction description, which should result in user interface with better usability and in
turn enable a more effective process execution. The tracking of changes between business
process and the user interface required for their execution as described by Sousa et al. is
an interesting aspect [SMV10, SV11]. This enables the detection of user interface artifacts,
which are concerned form changes in business process models and vice versa.

13

2 Related Work

The approach of FlowiXML mainly covers the generation of declarative UIs by using task
models but also does not cover the consideration of multiple activities for one screen element
[GVC08]. This is what all previous research seems to have in common, a complex user
interface which covers multiple process model activities to summarize them in a single screen
element, has not been described yet.

The de facto situation for existing Business Process Management Systems is very similar. For
advanced more complex requirements, for user interface related concerns additional manual
development efforts are necessary. This is also the case for the presented AristaFlow BPM
Suite. The integration of complex user interfaces is possible but requires significant manual
development efforts. A supporting approach for their automated generation is missing.

IBM WebSphere Lombardi Edition offers possibilities to model more complex user interface
related concerns with help of its two level-separated process-modelling environment. This
approach is to a certain extend similar to the task modeling research approaches. The
second modelling level can be used to specify user interface interaction details, which is
also the basic intent of using task models. However, the IBM WebSphere Lombardi Edition
modelling environment is rather complex and if the interaction details necessary for a user
interface are more elaborate as in the presented example, additional manual development
efforts are required.

Since the popularity of task models for user interface generation in the following an analyze
of how user interfaces can be derivated from such task models is presented. This is supple-
mented by some general remarks of actions required to obtain user interface elements from
model based UI descriptions. As mentioned before a task is a description mechanism for user
interactions. At which a task consist of the steps required to reach a certain goal [Pat00].
Since this is a rather abstract description, a well-defined task environment is required to
use such a description for the generation of user interfaces from (e.g. UsiXML [LVM+05]).
As outline in the related work chapter, UsiXML uses XML and multiple connected context
levels to generate a user interface description based on tasks.

Table 2.1 shows a comparison of the user interface generation approaches previously intro-
duce. For more details an enlarged version of this table can be found in appendix A.1 (Table
A.1). The presented approaches are derived into conceptual- and implementation steps that
have to be performed to obtain a user interface. The task model based user interface gen-
eration of the UI Business Alignment approach by Sousa et al. is based on UsiXML. It
can be seen as an adoption for UsiXML to generate user interface for business processes.

14

2.3 Limitations & Challenges

derivate hierarchical process models from data

object processing in information systems by :

1. Decied How to Create Presentations for Tasks (1. Same

for All Task Types, 2. Different for all Task Types,

Combination of 1. & 2.)

Prerequisite: Detailed Data Type Model
4. Validate the Set of enabled Tasks about Contained

Task Patterns

For Each Data Type: define a Micro Process (=

finite state machine)

5. Choosing Presentation Template based on Task

Semantic

Connection of DataInstances (Micro

Proecesses) = Macro Process

6. Considering Temporal Relation between Tasks (This

Seems to be a good Input for the CTPs (cf. Paterno

Model Based Design Book p 82.)

Rolse specific Acces on Macro & Micro Level

defined in a Authorisation Tabel

7.
Processing The connections between multiple Enabled

Task Sets (= CTP Pattern nesting & Block Processing)

Authorisation Tabel is used to generate Role

Specific Forms, by using data type & data

access based transformation rules

8.
 Ordering UI Elements for Processed Data based on

their priority (level in the cct)

BP Model

Task Model

Abstract UI

User Interface without

Representation Form

based on CTT Model

2.

Transformation From Task Model to UI Architekture

Model = Map Tasks to SW UI Objects (interactors) cf.

Paterno Model Based Design Book p. 115 R1) -R3)

Concret UI

AUI + Representation

Form (default form is

'graphical'), Plattform

indetent

3.

Connect the Interactors to support Information Flow, cf.

Paterno Model Based Design Book p, 116 R4) - R19)

Final UI

Implementation of CUI by

transformation to e.g.

HTML

4.

Task Patterns describe Common UI Usecases e.g.

"search", Theses UsesCases imply a certain Task

Structure connected with a certain UI design

From Model to User Interface Elements

UsiXML

(CAMELEON

Reference

Framework

default

Implementation),

FlowiXML

process/

Workflow

Extension for

UsiXML

OWLAPI (OWL

Ontology

Processing);

SWRL Bridge

(Transform

SWRL Rules in

OWL); Drools

(Manage

Models)

ConcurTaskTrees (Paterno et al.)

Identifiy which Task can be grouped in one User

Interface by checking which Tasks can be enabeld at

the same time

2.

Decied How to Arrange the Functionality of theses

Tasks in a UI by considering Data and Control Flow

Connections

3.

Philharmonic Flows (Künzle et al.)

C
o

n
c

e
p

tu
a

l
S

te
p

s
Im

p
le

m
e

n
ta

ti
o

n

No information about the concret steps taken could be

found. The basic principal is as described in the last

conceptual step:

The Authorisation Table is ued to gerate Role Specific

Forms for the processing of data objects. To achieve

this data type and data access based transformation

rules are applied

1.

2.

1. Macro Processes = Data Object Interaction

2. Micro Processes = Data Object Behvaior

1.

2.

Based on

UsiXML /

FlowiXML

UI Bussines Alignment (Sousa et al.)

List of Mapping Busines Process to Task Model Elements

Basend on BPMN , Separated into Mappings for:

1. Bussines Elements to Task Elements

2. Activity Attributes to Taks Properties

ConcurTaskTrees (Global Task Model Based on Complete

BP Model, with Sub Task Models based on BP Activities)

BPMN

3. Process Activities and Task Types

1. Creat Conceptual Models (Task

Models, Data Models, User Models)

Four Development Steps:

4. Create Final UI (FUI) based on CUI

(e.g. html, swing etc.)

3. Create Concret UI (CUI) based on AUI

2. Create Abstract UI (AUI) using UsiXML

and the Conceptual Models

Use Arichtectural Model to describe UI Components

(Consists of Several Sub Models e.g. MVC, or model to

describe interactions)

1.

Table 2.1: From Model to User Interface Elements, Approach Comparison

In the PHILharmonic Flows approach description of how to generate user interface is only
available at a conceptual level. Any explanatory notes about implementation technology
related things are missing. This is similar for the CTT approach with the difference that
this primarily was develop as a conceptual approach [PMM97].

The general problem in the overall UI generation approaches is the missing of concrete
required actions to transform specific model elements to specific user interface elements (UI
Widgets). These are often only described on a conceptual level or if implementation specific
only vague formulated. This results in a limitation of mapping a task model to a user
interface and vice versa since many different resulting UIs derived from a task model are
possible [SV11].

The special focus of task based user interface modelling are usability aspects. Task modelling
tries to create a hierarchical, task oriented description of all execution sequences a user
requires to perform needed actions. This is somehow in contrast to the approach of this
thesis, which tries to describe a standardized complex user interface that enables a user

15

2 Related Work

to perform the actions required for the execution of a business process. In consequence,
usability aspects are only treated subordinate. In the following Chapter, the fundamentals
required for a complex user interface generation approach, are presented. This includes
process and user interface modelling definitions.

16

3 Fundamentals

In this chapter, the fundamentals required for the development of an automated transforma-
tion mechanism from business process models to complex end user interfaces are introduced.
These fundamentals are separated into two parts. In Chapter 3.1, all required definitions
according to BPM, mainly considering process modelling, are specified. Chapter 3.2 out-
lines all user interface related prerequisite with a special focus on automated generation of
user interfaces. In addition the so-called User Interface Model that offers a model-based
declaration mechanism for user interface elements, used and referenced in subsequent, is
introduced.

3.1 Business Process Management

In the following BPM concepts required for the description of a user interface generation
approach are introduced. This includes the definition of a process model specification. For
the definition of business process models there exist several different notations. In their
Business Process Management (BPM) standards overview paper Ryan et al. introduce pop-
ular business process modeling approaches including a classification of them [KLL09] . The
classification is based on the purpose of such a modeling standard. Whereas the authors dis-
tinguish between graphical, execution, interchange or diagnostic intended process-modeling
standards. As an example in this classification BPMN [OMG11a] would be categorized as
a graphical modeling standard whereas BPEL [OAS07] would be categorized as execution
standard. For our purpose of user interface generation, we want to focus on executable
process models. Since only if a business process can be executed, there is a need of user
interaction and thus user interfaces are required for process execution.

The ADEPT1 [Rei00, DR09, DRRM+10] process model fits ideal for the needs of user
interface generation. It has a block structured executable process model notation with clear

1The name ADEPT is a acronym for Application DEvelopment based on pre-modeled Process Templates
[Rei00], but is used self-contained by now.

17

3 Fundamentals

semantic definitions. It offers features like correctness by construction, advanced process
run-time capabilities including process (model-) ad-hoc changes.

In the following the required process model elements for build block-oriented process models
which serve as input for complex user interface generation are described. For this pur-
pose Business Process Model and Notation (BPMN) is used as graphical process modeling
notation [OMG11a].

3.1.1 Block-oriented Process Models

Before defining the single process model elements used subsequently a definition of the
term block-oriented is given. In their work about guidelines for reducing process model
complexity, La Rosa et al. introduce the block-oriented process model paradigm as most
important guideline to make a process model understandable [LRWM+11]. For their pattern
based definition of this guideline they refer to the Seven process modeling guidelines in which
block-oriented modeling was denoted as important aspect for an intuitive understanding of
process models [MRvdA10].

In this sense in a block-oriented process model each element, which splits the control-flow to
multiple possible paths, requires a corresponding join element for merging the paths again.
The type of the join and merge element have to be the same. In addition, it is possible to
nest such join and merge pairs (blocks) in a proper way. Whereas proper refers to the fact
that an intersection between blocks, which have a different nesting level, is not allowed.

The core for all subsequent process model elements and the definition of their control-
flow is based on an attributed directed graph [Rei00]. The nodes of this graph represent
the activities of the process model. At which the edges between the nodes represent the
control-flow. This graph and the respective nodes are arranged in a block-oriented manner.
Additionally the graph has a single start and end node and each node (expect the start
node) has at least one predecessor and one successor (expect the end node).

Figure 3.1 shows a catalog of primitive graphical process model elements (using BPMN)
that are used for the definition of all required advanced block-oriented constructs. The
primitive elements and their semantics are introduced in the following. The first element
Human Activity represents an activity (node in the graph) which has to be executed by
a human resource. Followed by the Service Activity element which refers to all system-
oriented activities, e.g. database operation or service calls to any kind of IT-System. The

18

3.1 Business Process Management

third element is Subprocess Activity this is a placeholder for a complete process model, it is
used to reduce complexity of single process models and to express process model modularity.
In this sense the fourth and last activity element Loop Activity has similar semantic as the
Subprocess Activity. The difference is that it additionally expresses the requirement that
the underlying activity elements are executed multiple times.

Service ActivityHuman Activity Subprocess Activity Loop Activity
Sequence

Control-Flow

Parallel

Gateway

XOR

Gateway

Sequence

Data-Flow

DataType:Name

Data

Object
Start

Event

End

Event

Figure 3.1: Catalog of Primitive Process Model Elements using BPMN [OMG11a] notation

The next element Sequence Control-Flow represents an edge in the process graph. It is
used to connect single activities with each other. The Parallel Gateway is a special node
which splits the Sequence Control-Flow in multiple parallel sequences. Based on the block-
oriented process model paradigm each splitting parallel gateway requires a joining parallel
gateway. The XOR Gateway also defines the splitting of the Sequence Control-Flow to
multiple sequences. Based on a exclusive decision only one of this multiple control-flow
splitting sequence is executed. The Start Event and the End Event element represent the
respective start and end nodes in a process graph.

The last two process model elements to introduce differ from the previous elements since
they do not directly refer to the process model control-flow. The Data Object element is
used for modelling the data elements required in a process model. The Data Object can
be connected with any kind of the previously presented activity or gateway elements using
the Sequence Data-Flow element. For the Data Object the textual notation Datatype:Name
on top of the graphical element defines the data type and the name of the Data Object.
The data type can either be primitive (Integer, Float, Boolean, String, Date and URI) or
complex (use case specific data objects).

Additionally the direction of the dotted edge for moddeling the Sequence Data-Flow indicates
by an arrow in which manner a Data Object element is accessed by an activity. Figure 3.2
illustrates the different possible characteristic of data access. If the arrow points from
the data object to the activity, the activity reads the data (cf. Figure 3.2a). Whereas
if the arrow points from the activity to the Data Object the activity writes the data (cf.
Figure 3.2b). A combination of those two options results in an activity editing the data (cf.
Figure 3.2c). The modelling of process model data-flow is essential for the presented user

19

3 Fundamentals

DataType:Name

Read Data

Activity

(a) Read Data Access

DataType:Name

Write Data

Activity

(b) Write Data Access

DataType:Name

Edit Data

Activity

(c) Edit Data Access

Figure 3.2: Different Types of Data Access Modelled with BPMN

interface generation approach. Thus, more particular details about data types and access
are described in Chapter 5.3, which deals with the handling of activity data-flow in the case
of user interface generation.

With the help of the introduced primitive process model elements now the more advanced
elements are introduced. As mentioned before these element are based on the ADEPT
process model [Rei00]. The most important of these process model elements is the Control-
Flow Block. It is the base element to build a block-oriented process model and consist of a
set of nodes and edges. Additionally a Control-Flow Block always consists of an opening and
closing primitive process model element (node) and can be nested with other Control-Flow
Blocks [LRWM+11]. Control-Flow Blocks can be defined by using the primitive process
model notation elements introduced before. In the following a set of five Control-Flow
Blocks with different semantics are introduced.

Activity A Activity B Activity C

Figure 3.3: Exmaple Sequence Control-Flow Block

The most basic Control-Flow Block (CFB) is the Sequence CFB. By definition it arranges
activities or other Control-Flow Blocks in sequence with each other. Figure 3.3 shows an
example for such a Sequence CFB. In this the three activities (Activity A, Activity B,
Activity C) are executed in sequential manner starting with Activity A followed by Activity
B etc.

20

3.1 Business Process Management

Activity A

Activity B

Parallel Block

Open Gateway

Parallel Block

Close Gateway

Figure 3.4: Exmaple Parallel Control-Flow Block

Figure 3.4 shows an example Parallel CFB. A Parallel CFB consists of a opening and
closing parallel gateway and of a set of activities or different Control-Flow Blocks which are
executed in parallel. Referring to the example of 3.4 this indicates Activty A and Activty
B are executed simultaneously in parallel order.

Activity A

Activity B

XOR Block

Close Gateway
XOR Block

Open Gateway

Figure 3.5: XOR (exclusive choice) Control-Flow Block

The XOR CFB also consists of an opening and closing gateway but of the type XOR (ex-
clusive choice). And a set of activities or different control-flow blocks. Figure 3.5 shows an
example for an XOR Control-Flow block. In addition, the blocks contained in a XOR CFB
are assigned to a set of, at least two, execution paths. The starting XOR Gateway decides
by data input which of the execution paths is activated and executed.

Loop Activity

Block
Repeat ?

yes

Loop

Sequence

Activity 1

Loop

Sequence

Activity n
... no

Loop Activity Loop control flow block: block oriented details for Loop Activity

Loop Block

Start Gateway

Loop Block

End Gateway

Figure 3.6: Example Loop Control-Flow Block

A Loop CFB as shown in Figure 3.6 is used to describe the iterative execution of a set of
Activities or Control-Flow Blocks. For an informal process model, a single Loop Activity
element can be used to model a loop. According a block-oriented definition the left-sided

21

3 Fundamentals

loop notation of Figure 3.6 is required. This includes a start and end Loop Block Gateway
to define which nested Activities are executed iteratively. Additionally the Loop Block End
Gateway requires data input to decide about quitting the Loop CFB.

The last Control-Flow Block is the Subprocess CFB this a special marker or placeholder
Control-Flow Block linking to a different process model which has to be executed if the
Subprocess Control-Flow Block is reached during process execution.

#blocks

#orgModel

ProcessModel

1 *

#type

#subBlocks

ControlFlowBlock

1

*

#type

#orgEntities

#dataFlow

Activity

1 *

#input

#output

DataFlow

1 *

s
u
b
B

lo
c
k
s

subBlocks

a
c
ti
v
it
ie

s

d
a
ta

F
lo

w

Actvities are stored

in subBlocks list

Figure 3.7: Process Model Element Hierarchy (as UML Object diagram) relevant for User
Interface Generation based on ADEPT [Rei00]

With the help of these different Control-Flow Blocks now a more specific definition of a
process model, which will be used for user interface generation, can be given. In this sense a
process model consist of a basic Sequence Control-Flow Block. This basic Sequence Control-
Flow Block consists of arbitrary activities or different Control-Flow Blocks.

An additional aspect to mention for process models, if referring to user interface generation
concerns, is the Organizational Model used in those process models. An Organizational
Model can be summarized as the definition of roles, functions and positions for human
resources in a organization [CT12]. Such an Organizational Model is in turn used to allocate
the activities of a process model to specific human resources. Figure 3.7 summarizes the
user interface generation relevant aspects of the block-oriented process model definition in
a hierarchical UML Object diagram.

3.1.2 Process Life Cycle

The so called Process Life Cycle describes the development and execution of business process
models as cyclic phases [WSR09, HBR08]. In [WSR09] the four cyclic phases are defined
as illustrated in Figure 3.8. The design phase is defined as the phase in which business

22

3.1 Business Process Management

Monitoring

Design Execution

Modelling

Usage of generated UI for user

interactions during 'process

(instance) runtime' inclduing

advanced UI modification options

Initial UI generation and

indiviudal adjustments

Figure 3.8: Process Life Cycle [WSR09], with User Interface Generation relevant phases
highlighted

processes are developed on an abstract management-oriented level. In the modelling phase
these abstract process models are enriched with execution information and transformed
into an executable definition like Petri nets or ADEPT. These technical, executable process
models are the entry point for the introduced complex user interface generation approach.
In the execution phase the previously defined process models are instantiated. Thus, the
generated user interfaces are used for human interactions during the process execution. The
last phase in the process life cycle is the monitoring phase. There post execution analysis
is performed.

This leads to two phases in the process life cycle, which are relevant for user interface
generation:

1. Process modelling phase. In this phase, a customizable user interface preview can be
generated. This preview of the of a user interface during process run-time can enable
an individual adoption of single UI elements or even modifications of the complete
look of the UI. The single steps necessary for this are described in the Chapter 5 and
Chapter 6.

2. Process execution phase. In this phase, the generated user interface has to be con-
nected with the process execution engine and instantiated with run-time data. With
the help of the ADEPT, it is possible to enable UI-based modifications of the pro-
cess during its run-time. This might result in actions like adding the UI elements for
a new activity to add this new activity in the process model instance. Additionally
advanced process control-flow modifications [RDB03], like stepping backwards and
choosing different options resulting in a different execution path, will be enabled by
generated complex user interfaces. The process run-time related aspects of complex
user interfaces are presented in Chapter 7

23

3 Fundamentals

With the help of the block-oriented process model specifications including their graphical
notation and the user interface generation related requirements according to process life
cycle phase, now it is possible to describe the transformation of such a process model to a
user interface. Before describing this process model to user interface transformation some
general remarks and definitions about user interface and their model-based development are
required. These are outlined in the following.

3.2 User Interface Models

This Chapter is intended to give a brief introduction to model driven user interface devel-
opment since the UI generation approach developed in this thesis is based on model-driven
engineering techniques. Therefore, in Chapter 3.2.1 some general concerns according to
model driven user interface development are presented. Followed by Chapter 3.2.2 in which
the User Interface Model used for the process model to user interface generation is intro-
duced.

3.2.1 Model-Driven User Interface Development

Model-Driven Development (MDD) in general is an important way of developing software
with the help of models [HMZ11]. In the sense of MDD a model can be seen as abstract
representation of certain system aspects. A model is often either represented visual e.g.
by using Unified Modeling Language (UML) [OMG11b] or in a textual form e.g. by using
Extensible Markup Language (XML) [WWWC08] or a combination of both. In MDD ori-
ented software development all involved development artifacts are called a model [PEGM94].
Model transformation is used to transform a model into another less abstract model and
finally into implementation code. MDD approaches now provide the concepts and tools to
deal with such model artifacts [HMZ11].

Model-Driven User Interfaces development applies the principles of MDD to the domain of
UI development. A lot of approaches for model-based user interface development have been
proposed since the emerge of model-based development in the 1990s [PEGM94, TMN04,
XJ07]. However, a widely accepted standard for model-based UI development is nowadays
still out of reach but there exist several competing approaches [XJ07, PM97, GVC08]. Some
of them mostly for specific use cases and domains seem to work well and are accepted in

24

3.2 User Interface Models

their area [GBP+01]. In general, UI development is still a time consuming complex manual
development task [LW07].

The basic principles of model-driven user interface development are directly adopted from
MDD. The first of them to mention is the separation of different concerns in different models.
In which the so called task modelling for the definition of user interactions in a more or less
abstract form is an important aspect (cf. Chapter 2.1.1). The second important aspect is
the hiding of UI implementation specific technical details. Since modern UI development
relies on a huge pre-assembled software stack build upon various frameworks and libraries
and is additionally often a computing platform specific task [HMZ11]. The third and last
important aspect to mention is the purpose of separating the content respectively the data
from the design (how the data is displayed).

To achieve this content and design separation the concept of domain models for user inter-
faces has been developed [Ben96]. Using this, it is possible to extend UI development with
capabilities for flexible adaptable look and feel of generated user interfaces. This, in turn,
results in domain specific user interfaces that can fulfill established usability specific re-
quirements, e.g., by adopting, cooperate design and styleguides in this domain model. After
this short model-driven user interface development overview the following chapter presents
the User Interface Model developed to realize a business process model to user interface
transformation.

3.2.2 Transformation User Interface Model

The User Interface Model (UI Model) presented in the following is described by a hierarchical
data structure that describes display elements which are used in user interfaces for the
execution of process instances. In the sense of model-driven development, it is used for
separating the concerns of execution a process workflow from a graphical representation
required for necessary user interactions. With help of the UI Model, it is possible to generate
a user interface template during the process modelling phase and to generate a user interface
for executing process instances.

Figure 3.9a shows hierarchical conceptual model structure. Figure 3.9b illustrate a sample
representation for the conceptual UI Model elements as user interface mock up. In an
implementation like the proof of concept prototype the mock up, elements are replace by
their real UI Widgets equivalents. In Figure 3.9 the single elements of the conceptual model

25

3 Fundamentals

UserInterface

CFNavigation

Next

FormTabTemplate

CFNavigationElement

1 3

CancelPrevious

FormElementGroup

1 *

FormElement

1 *

1

1

InputElement

OutputElement

1 *

EditElement

1 2 3 4

5

6

7

8 9

1

*

1

*

(a) UML Class Diagram of hierarchical conceptual User Interface Model

1
2

3 3

4

5

6

7

8
9

(b) User Interface Model: Sample Screen Elements

Figure 3.9: User Interface Model to Screen Element Relations

are linked with the sample user interface elements by numbering IDs (1 - 9). Subsequently
the single elements and their relations with each other are introduced.

The topmost element of the UI Model is called UserInterface (ID: 1), it is a container
element for all subsequent elements. The UserInterface element includes another container
elements called FormTabTemplate (ID: 2). FormTabTemplates are used to arrange all
subsequent user interface form elements which are necessary to manipulate data based on a
form. The accordion UI mock up element on the left side of Figure 3.9b is used to indicate
the circumstance of multiple FormTabTemplates. Additionally it groups for a user form
elements which logically belongs together. FormTabTemplate elements can contain multiple
ElementGroups (ID: 3) which are used to arrange and group (complex) data input and

26

3.2 User Interface Models

output elements. For instance, a complex data element would result in an ElementGroup
containing all its subsequent data elements. Labeled with the name of the complex data
element as heading (right sided ID: 3). In addition, ElementGroups can be used to arrange
data elements according to their associated overall semantic (left sided ID: 3). Similar
as FormTabTemplates ElementGroups can be nested in each other for more advanced UI
element arrangements. Due to the possibility of nesting elements, an instantiated UI Model
becomes a tree like data structure.

A FormElement (cf. Figure 3.9a) is the abstract base element for all interaction ele-
ments contained in a FormTabTemplate (ID: 4 - 7 & 9). The two major representations
of FormElement are OutputElement (ID: 5) and InputElement (ID: 6). InputElements
are used for the input of new data and OutputElements to show existing data. A special
case is the EditElement (ID: 7) this represents FormElements, which are a combination of
both aspects from Input- and OutputElement. For example, the edit behaviour is needed if
existing data is displayed and this existing data should be revised.

The last major aspect of the UI Model is the ControlFlowNavigation (ID: 8). This is
a special FormElementGroup which is used for the explicit navigation between the single
FormTapTemplates. Each FormTapTemplate contains exactly one ControlFlowNavigation
element. The ControlFlowNavigation exist of exactly three ControlFlowNavigationEle-
ments. The most important of them is the Next ControlFlowNavigationElement (’OK’
button in the sample screen of Figure 3.9b) (ID: 9). It is used for completing (send) a
FormTabTemplate and thus all underlying data, including potential input data validations.
The Cancel element just deletes all new input data of the actual FormTapTemplate. The
Previous ControlFlowNavigationElement (’«’ button in the sample screen of Figure 3.9b)
can be used to get one step back, according to the set of FormTabTemplate elements con-
tained in a UI Model.

For the present, these are enough general UI Model specifications to defined and understand
the Transformation Patterns, which are introduced in Chapter 5.3 and Chapter 5.4. Specific
details are discussed, in turn, during the presentation of single Transformation Patterns, as
they are needed. Once again, it should be mentioned that the UI Model is a data structure
that describes user interface elements and not the data structure for the UI elements itself.
In other words, the UI Model stores the metadata that is necessary to create real user
interface elements.

27

3 Fundamentals

28

4 Requirements

In subsequent requirements for the generation of complex user interfaces based on block-
oriented process models are defined. Starting with the presentation of sample use cases
for complex user interfaces in Chapter 4.1. Followed by a definition of such complex user
interface requirements in Chapter 4.2, which includes a discussion of user interface generation
issues based on previously presented research work.

4.1 Use Case Process Models

In this chapter, three use cases will be introduced. Together with the related work, they
build the based for the subsequent extraction of UI generation requirements. Use Case 1 in
Chapter 4.1.1 describes a process for issue management. Use Case 2, presented in Chapter
4.1.2, handeles the configuration and ordering of a new car through an online configurator.
Use Case 3 in Chapter 4.1.3 describes the creation of a new bank account.

For each of the presented use cases an initial description including the process models course
of action is described. In addition, the special purposes according to UIs and their generation
are outlined.

4.1.1 Use Case 1: Issue Management

The issue management process model shown in Figure 4.1 is based on the process of issue
management systems, e.g., as they are used in the software development domain. In this
simplified example, the processing of an issue contains of the following five activities:

1. In the Open Issue activity the issue is initial created an assigned to a user.

2. In the Progress Issue activity, the assigned user marks the issue as started and takes
care of the issue.

29

4 Requirements

Reopen

Issue

Progress

Issue

Resolve

Issue

Close

Issue

Open

Issue

Issue:issueData

Figure 4.1: Process Model Example, Use Case 1: Issue Management

3. In the Resolve Issue activity the user checks whether the issue is resolved or not and
marks it resolved which includes the writing of a necessary comment about the issues
solution.

4. In the Close Issue activity the default end of an issue life cycle is reached, this results
in a removal of the issue in the list of actual issues of a user.

5. The Reopen Issue activity is a optional step, e.g., if the solution was not adequate.

In this sample, process there exits two roles. The default role is the editor, which is allowed to
execute the Open, Progress and Resolve activities. The administrator role has permission
to execute all activities including Close and Reopen. The single activities of the process
are all modelled as subprocesses. Each of the subprocess expect the Open activity the
processed issue data is loaded from a storage system (service activity), edited by a user
(human activity) and then stored again (service activity). The Open activity differs from
this default subprocess since it does not contain the initial activity that loads the issue data.
All subprocesses expect the open step are included in XOR control-flow blocks that include
an empty execution path to bypass the activities since they are all optional.

The intent for this process model according to the user interface generation approach is to
provide a comparatively simple example for initial testing. However, this process model
addresses the feature of control-flow block detection and the distinction for role specific user
interfaces.

30

4.1 Use Case Process Models

4.1.2 Use Case 2: Car Configurator

The car configurator process use case is based on a web-based car configurator application
like most of the car manufacturer provide on their web pages1. Figure 4.2 shows the simpli-
fied version of such a car configuration process a car dealership in which most of the single
steps have been replace by subprocesses. A more detailed process model can be found in
appendix A.2 (Figures A.1 and A.2). In the following, the single simplified activities of this
model are described:

Select Car

Model Type

Select Car

Mode

Configure

Model
Requiers Typ

Selection
YES

NO

Check

Availability

Enter

Customer

Data
Send Order

New Or

Existing

Order

Existing

Order

Select Order

Figure 4.2: Process Model Example Overview, Use Case 2: Car Configurator

1. New Or Existing Order In this first activity the clerk has to decide if a new order
item should be created or an existing one should be reloaded, e.g., by asking the
customer.

2. XOR Control-Flow Block This block consists of the two following execution paths
(options):

a) Create a new Order This is the default execution path of the XOR control-flow
block in which the following activities have to be executed to create a new car
order:

i. Select Car Model In this activity (subprocess) a list with all existing car
models is loaded and presented to the clerk. The clerk has to select one of
the car models

ii. Select Car Model Type The Select Car Model Type activity is embedded
in a XOR block since only for some of the car models different types are
available.

iii. Configure Model In this activity the car can be configured individually
to the requirements of a customer. The activity can only be finished if the
selected configuration is valid.

1An example for such an car configruator e.g. can be found at: http://konfigurator.audi.de/, last
checked January 30, 2012

31

http://konfigurator.audi.de/

4 Requirements

iv. Check Availability After the car has been configure in this activity the
configuration system has to check the availability of the car and calculate a
respective date of delivery.

v. Enter Customer Data The last activity of creating a new order is the en-
tering of the customers personal data like his name, address, etc. In addition,
a test drive date is appointed.

b) Reload an Existing Order This is the alternative execution path of the XOR
control-flow block in which a existing order is reloaded.

i. Select Order In this subprocess the clerk selects a order item from a list of
already existing orders. This is possible since the order item could have been
created at an earlier time.

3. Send Order In this activity the clerk can decide between placing the order or storing
the order for placing it at a later time. E.g., if the customer needs time to think about
to buy the new car or not and if he or she has made the decision and comes back the
already created order can just be reloaded from the system.

In this process model use case there exists only a single role, which is the clerk entering the
data in the car configuration system as required by a customer. Hence this will results in
the generation of a single UI Model instance. This car configuration process model use case
consists of a more complex nesting-deep of control-flow blocks, which will in turn result in
a more complex user interface then the previously outlined issue management example.

4.1.3 Use Case 3: Bank Account Creation

Enter

Customer

Data

Setup

Contact Data

Create

Account

Review

Account

Inform

Customer

Figure 4.3: Process Model Example Overview: Bank Account Creation

Figure 4.3 illustrates an use case of the creation of a business banking account. Again,
the single control-flow blocks haven been replace with subprocess elements as placeholder
for simplicity reasons. The details of this process model can be found in the appendix A.2
(Figures A.3 and A.4). The basic concern behind this process is the creation of a new

32

4.2 Complex User Interface Requirements

business account at a bank for a new or an existing customer. In the following some details
for the course of action of the single steps as activities in Figure 4.3 are presented:

1. Enter Customer Data In this first step a bank clerk of the accounts division has to
verify if the customer who wants to create an account is a new customer or an existing
customer and create or edit the customer data afterwards.

2. Setup Contact Data In the next step the contact type according to the required
communication for this new business account has to be specified. This might involve
the update of existing contact data.

3. Create Account This step is determinate to specify all the required details for the
account setup including the choice of the account type and customer specific adjust-
ments.

4. Review Account As control mechanism this has to be performed by the head of the
accounts division. It requires the verification of the business account data to create
and a decision whether to accept or reject the account creation.

5. Inform Customer As a last step the clerk has to create a letter which informs the
customer about the creation of his/her new account or inform him/her that the request
was rejected.

This bank account creation process model combines the quirks of both previous use Cases.
On the one hand, two role specific UI Model instances have to be created. On the other hand
both UI Model instances and thus the resulting user interfaces are more or less complex
according to the overall user interface elements to create and the nesting deep of these
elements.

4.2 Complex User Interface Requirements

In the following, the previously presented use cases will be discussed according to their re-
quirements for a user interfaces, which enables a user to effectively execute process instances.
An efficient process execution is the meta requirement for other requirements. The use cases
UI requirements are supplemented with aspects, which have been discussed in the related
work chapter. The result of this discussion is a list of requirements for complex user interface
generation.

33

4 Requirements

For use case Issue Management each of the activities requires a similar looking user interface
screen for processing the respective data elements. For each single primitive data element,
it is important to distinguish between the different kinds of accessing data elements. For
instance the system specific ID of an issue is a read only data field that is not allowed to be
changed by a user, a generated user interface has to take care of this. This leads to another
requirement according to this use case. There exist two different roles, thus role specific
user interfaces are required. Since the user with the role editor is not allowed to execute the
close and reopen activity.

The second use case Car Configurator, consists of a process model with more single activities
and a more complex control-flow structure. For a user interface that enables an effective
execution of such a car configuration it is necessary to summarize the processing of multiple
activities in one user interface screen element. In addition, it is necessary to initialize the
single user interface elements in conjunction with the decisions made by the user during the
process executing. For instance, a user requires a total different user interface if an existing
order element is loaded instead of creating a new order.

The process model for the Bank Account Creation use case consists of multiple control-flow
block elements, which are connected in sequence with each other. Therefore an element in
the user interface indicating the overall process execution state would result in a usability
improvement. Loop elements, which result in executing activities for multiple times during
process execution, have to be supported by the user interface. For instance, if data input
made by a user is not valid and he or she has to enter the data values another time, a
highlighting of the wrong data input including an error message is eligible. Another user
interface related requirement to the third use case is the possibility of stepping back in the
control-flow and retroactive adjusting a decision made before. For example, to change the
contact data of the customer after the configuration of the account is already finished. To
realize this it would be necessary to step back in the control-flow and re-execute the edit
customer contact activity.

To realize the user interface requirements of the use cases, it is essential to keep the relation
between single UI elements and process model elements. Sousa et al. have already pro-
posed this in their work about user interface alignment with companies business processes
[SMV10]. For the generation of role specific UIs a definition for different roles is required.
This can be realized by linking the process activities to an organizational model, or more
precisely to entities (e.g. a specific agent definition) of an organizational model [ZZHM07].

34

4.2 Complex User Interface Requirements

The introduced task models somehow cover the summarizing of single activities. Based on
mapping the definition of a task as steps to reach a certain goal, multiple activities can be
grouped and displayed in a single UI screen for their processing. The following list sum-
marizes the requirements for the generation of complex user interfaces based on process
models:

1. Distinction between different process model activities and different used data elements

2. Analyze of the process model control-flow structure

3. Traceable reference to an organizational model for role specific allocation of activities

4. Reference between process model and user interface elements and vice versa

5. Interaction options for retrospective activity modifications

6. Indication mechanism for the actual process execution state

7. Multiple UI instantiation options to consider conditional executed process model parts

With the help of this requirements, the User Interface Model and the process model defini-
tions, in the next chapter the basis for an overall process model to user interface transfor-
mation is defined.

35

4 Requirements

36

5 Transformation Patterns

With the help of the basic process model concepts, the User Interface Model and the cog-
nition of the related work, including its outlined limitations, previously introduced, this
chapter starts with an overview of the developed Transformation Model. This Transfor-
mation Model allows the transformation of block-oriented, activity-based process models to
user interfaces. Therefore the model follows a top-down approach separated into four general
steps (Chapter 5.1). This is followed by Chapter 5.2, which defines the concept of patterns
according to our user interface generation approach and outlines a classification overview of
the subsequent defined Transformation Patterns.

Chapter 5.3 and 5.4 consequently present the developed Transformation Patterns as the
core part of the Transformation Model. Whereas Elementary Transformation Pat-
terns (ETPs) in Chapter 5.3 handle basic process model transformations. The Complex
Transformation Patterns (CTPs) in Chapter 5.4 then, in turn, link ETPs to realize the
transformation of process control-flow blocks to user interfaces.

5.1 Transformation Model Compendium

The Transformation Model presented in this chapter enables the overall transformation
of activity-based, block-oriented process models to user interfaces. This user interfaces
enable end users to execute process instances of the respective process models. Figure 5.1
shows a UML class diagram of the hierarchical Transformation Model and its core parts.
The diagram includes the interconnection, illustrated as UML compositions, between the
single parts. In the following, four core parts of the Transformation Model are introduced,
according to their numbering in Figure 5.1.

1. Activity Transformation covers the elementary aspect of generating user interface
elements for each activity which needs user interaction. The specific details are de-
scribed by the so called Elementary Transformation Patterns in Chapter 5.3.

37

5 Transformation Patterns

Masterarbeit Zwischenvortrag | From Business Process to User Interface: A Model-Based Approach Seite 16

Activity Transformation

Process Transformation

Structure Transformation

Group Transformation

!
"

""

Transformation Patterns

! "

Group Criterion

1

*

!

"

Transformationsmodell für Prozessmodelle

Elementary Transformation
Patterns (ETP) 1.

Complex Transformation
Patterns (CTP) 2.

Activity Allocation
3.

Transformation
Algorithm 4.

Figure 5.1: Transformation Model to generate User Interfaces for Activity-based Block-
oriented Process Models

2. The Structure Transformation analyses the control-flow structure of a process
model and extracts control-flow blocks. The extracted control-flow blocks are then,
in turn, processed by the Complex Transformation Patterns which are introduced
in Chapter 5.4. These CTPs apply the Activity Transformations described by the
ETPs for each relevant activity included in the control-flow block, which they process.
An important aspect for processing the control-flow blocks of a process model is the
consideration of their nesting and their connection with each other.

3. TheGroup Transformation deals with the aspect that activities executed by human
resources can be assigned to certain access groups. Access groups are often defined in
an organizational model for human resources [LRD11]. In respect to this access groups
the activities have to be allocated to different user interfaces since the execution of
such a multiple role processes requires the interaction of different human resources.
For each human resource role, a distinct user interface is needed. Due to the fact that
the aspect of Group Transformation itself is substantial and rather complex and
its interconnection with the overall process model transformation has to be defined, it
is described in the Chapter 6.1.

4. The overall Process Transformation is the central component which links the Trans-
formation Patterns and the Group Transformation. It interconnects the single parts
in a well-defined Transformation Algorithm which is presented in Chapter 6.2.3.

38

5.2 Overview of Transformation Patterns

Beside this short introduction of the Transformation Model core parts, in the following a
classification overview of the Transformation Patterns is given. The classification is supple-
mented with some general prerequisite for the definition of patterns.

5.2 Overview of Transformation Patterns

Elementary Transformation Patterns (ETP)

Category: Process Activity
ETP 1 Human Activity to User In-

terface Transformation
ETP 2 Non-Human Activity Trans-

formation
Category: Data Type
ETP 3.4 Primitive Data Types
ETP 3.5 Complex Data Types (Busi-

ness Objects)

ETP 3 Data Transformation
Category: Data Access
ETP 3.1 Read Transformation
ETP 3.2 Write Transformation
ETP 3.3 Read-Write Transformation

Complex Transformation Patterns (CTP)

Category: Control-Flow Block Transformation
CTP 1 Sequence Block Trans.
CTP 2 Parallel Block Trans.
CTP 3 XOR Block Trans.

CTP 4 Loop Block Trans.
CTP 5 Subprocess Block Trans.

Category: Behaviour Block Transformation
CTP 6 Background Activity Trans.

Table 5.1: Process Model to User Interface Model Transformation Patterns Overview

As Table 5.1 shows, the major differentiation between the single Transformation Patterns
is based on their operational level. The Elementary Transformation Patterns (ETPs) are
applied on the level of a single process elements (e.g., activity, data elements). Whereas
the Complex Transformation Patterns (CTPs) are used for the transformation of process
control-flow blocks or certain activity groups. Since only a combined execution of both
pattern types can lead to an overall end-user interface, the order of the pattern application
is an important point. In general, the pattern application is based on a top down approach.
Which means in the case of distinction between ETPs and CTPs, first to apply the CTPs
to transform all detected blocks of a process, followed by the application of the ETPs to
transform the single activities contained in this blocks.

39

5 Transformation Patterns

The ETPs are split into three subcategories, the first subcategory is Process Activity which
consists of two patterns to determine between activities which are executed by a human
resource and those executed by the BPMS. The second subcategory is Data Type and the
last is Data Access since the processed data elements of an activity are a key indicator for
the Elementary Transformation Patterns.

CTPs are split into two subcategories. The base elements for all CTPs are control-flow
blocks or certain parts of a process model. Thus, the first subcategory of CTPs is Control-
Flow Block Transformation, which consists of patterns which are used to transform the most
common control-flow blocks in process models, as defined in Chapter 3.1.1, to User Interfaces
Model elements.

The subcategory Behaviour Block Transformation refers to a group of activities which rep-
resent a desired behaviour according to data processing and its relation to user interfaces.
The patterns for this category are not completed yet. It is listed here since previous research
has shown up that there are more parts or certain groups of activities in process models
which need special handling according to the generation of complex user interfaces [Kam11].
More insides of the cause for this special handling are presented in the subsequent CTP
related Chapter 5.4.2. The details of the single Transformation Patterns and of the intro-
duced pattern categories are handled in the subsequent chapters starting with Elementary
Transformation Patterns in the following.

5.3 Elementary Transformation Patterns

Elementary Transformation Patterns (ETP) are patterns, which describe basic process
model to user interface transformations, e.g., how input fields for complex data elements
of an activity are generated. The application level of ETPs is always a single activity. The
source for the ETPs is a formalization of the state of the art way as actual BPMS, like
presented in Chapter 2.2, generate user interfaces for single human activities. Referring to
the requirements of the presented use cases, ETPs realize the requirement of differentiating
between different activity types and analyze the used data elements. As outlined in Chapter
2.1.2 some of the aspects according to data in process models described by ETPs are more
or less covered in previous work. In Künzle et al. the transformation of different (primi-
tive) data types to respective form elements is introduced, but with a data object focused
perspective of process models instead of activity based [KR11a]. The patterns according to

40

5.3 Elementary Transformation Patterns

Masterarbeit Zwischenvortrag | From Business Process to User Interface: A Model-Based Approach Seite 16

Activity Transformation

Process Transformation

Structure Transformation

Group Transformation

!
"

""

Transformation Patterns

! "

Group Criterion

1

*

!

"

Transformationsmodell für Prozessmodelle

Elementary Transformation
Patterns (ETP) 1.

Complex Transformation
Patterns (CTP) 2.

Activity Allocation
3.

Transformation
Algorithm 4.

'

&

$

%

'

&

$

%

'

&

$

%
Figure 5.2: Elementary Transformation Patterns in the Transformation Model

data-flow and data visibility in process models, introduced by Russel et al. can be seen as
a prerequisite for the here introduced Transformation Patterns [RtHEvdA05]. Since these
data-flow patterns capture the more common aspects according to data in process models,
like visibility of data, the kind of data interaction and the way data is transferred between
single process components.

ETPs are used by CTPs to transform the single activities of more complex control-flow blocks
or groups of activities to distinct form elements described by the User Interface Model. In
addition, the application order of single ETPs is relevant to realize an overall process model
to end-user interface transformation. Thus the ETPs described in the following chapters
are ordered according to their execution in the overall process model transformation (c.f.
Chapter 5.1). Starting with Human Resource Process Activities in Chapter 5.3.1 followed
by patterns which are responsible for the correct transformation of an activity’s data flow
in Chapter 5.3.2.

5.3.1 Human Resource Process Activities

The definition for the Transformation Patterns used in the following has been aggregated by
reviewing the several works about patterns according to process models and BPM in general
[WRR07, vdAtHKB03, RtHEvdA05, LRtHW+11, LRWM+11]. Table 5.2 holds the defini-
tion for the first of the Transformation Patterns, ETP1. It is defined by a unique Pattern
Name including an acronym for later reference as heading of the table. The Description

41

5 Transformation Patterns

gives a short, general textual explanation of the pattern. With the help of an Example the
pattern is linked to a real life problem. A Figure illustrates the required actions to trans-
form a certain process model element (specified using BPMN) to a user interface. The user
interface is illustrated as screen mock-up. The Problem description refers to the situation
in which the application of the pattern is necessary. The Prerequisites define required pre-
requisites for a process model to enable the implementation and application of the pattern.
The Implementation property defines how the pattern can be implemented with reference
to the Prerequisites and to the instantiation of required UI Model elements (c.f. Chapter
3.2.2). The Related Patterns definition references related patterns.

ETP1: Human Activity to User Interface Transformation

Description: Human Activities (i.e., activities which need a human resource for
their execution) with input and/or outputdata elements need a
(G)UI-based form for their execution.

Example: A bank clerk has to edit the data of a customer.

Edit

Customer
⇒

Problem: Human Activities need a User Interface.
Prerequisites: Data about the type of Activities is required.
Implementation: All activities of the type human (need a human resource for their

execution) need to be considered for user interface generation. Re-
ferring to the UI Model elements for each activity a FormElement-
Group has to be generated.

Related Patterns: ETP2

Table 5.2: ETP1: Human Activity to User Interface Transformation

An elementary precondition for the user interface generation based on process models is
the recognition of activities, which need a human resource for their execution. Thus, the
distinction of those human resource activities between activities which do not need a human
resources for their execution is necessary. The patterns of the category Human Resource
Process Activities introduced in this chapter handle this aspects. ETP1 describes the basics
required for the recognition and transformation of human resource activities. The details for
the allocation of human resources activities to distinct User Interface Model elements are a

42

5.3 Elementary Transformation Patterns

complex topic. It is addressed by the Complex Transformation Patterns in Chapter 5.4 and
in subsequent Chapter 6 with covers the various details of activity allocation. Therefore,
ETP1 listed in Table 5.2 only describes the fact that it is necessary to generate User Interface
elements based on the UI Model introduced in Chapter 3.2.2 for the processing of such a
human resource activity. In addition, it is necessary to interconnect the newly create UI
Model elements with existing ones, e.g., the parent UI Model elements generated for the
control-flow block this activity belongs to.

ETP2: Non-Human Activity Transformation

Description: Non-Human Activities are only indirect relevant for UI generation.
They have to be considered for the generation of source code.

Example: A customer data set has to be fetched from an external CRM
system.

Fetch

Customer

Data
⇒

public class AccountCreationProcess{

public Customer fetch(Integer customerID){

// fetch customer data from CRM system

Customer customerData = ...

return customerData;

}

}

Problem: To generate a user interface that is capable of executing process
instances it is necessary to generate source code for the non-human
(service) activities and their interactions between the human ac-
tivities.

Prerequisite: Data about the type of Activities and their data- and control-flow
are required.

Implementation: For all non-human (service) activities, source code stubs have to be
generated which serve as interconnecting code for human activities.

Related Patterns: ETP1

Table 5.3: ETP2: Non-Human Activity Transformation

The counterpart to ETP1 is the pattern ETP2: Non-Human Activity Transformation. As
ETP1 it builds upon the criteria to differ between human- and non-human activities. Listed
in Table 5.3 the pattern describes the fact that it is necessary not just to ignore activities,
which do not need direct user interaction. Since the overall process model to end-user
interface generation should result in a set of user interfaces which are capable to execute
process instances, it is even essential to generated code stubs for this non-human activities.
This is caused by the fact that the process data-flow can include all kind of activities and if
the non-human or service ones would be ignored a suitable data element processing would

43

5 Transformation Patterns

be impossible. A simple example for such a situation would be a non-human activity,
which fetches data from an external system, to display this data to a user in a subsequent
human activity. If the non-human activity was just ignored the result would be that there
is nothing to display to the user. The more specific details about the integration of non-
human activities in the user interface transformation process are covered in Chapter 6.2.3.
The following chapters presents all Elementary Transformation Patterns, which are relevant
according to data transformation specifics.

5.3.2 Data Transformation

ETP3: Data Transformation listed in Table 5.4 is the base Transformation Pattern for the
data transformation category of all ETPs. It describes the fact that UI Model FormElements
are generated based on the interaction of process model activities with data elements.

ETP3: Data Transformation

Description: If human activities use data elements, the generated user interfaces
need FormElements (that include a prefix label) which have to be
generated according to the data types of the data elements.

Example: In an activity, the data of a customer is edited.

Edit

Customer

DataType:Name

⇒

Problem: Human activities, which interact with data elements, need forms
with fields and labels for these data elements.

Prerequisite: Detection of relevant data elements based on the activities data
input and output elements.

Implementation: The FormElementGroups generated by ETP1 have to be filled with
FormElements according to the data elements used by an activity.

Related Patterns: ETP1, ETP2

Table 5.4: ETP3: Data Transformation

The following three patterns build upon ETP3 and deal with the differences between data
element access of activities. Thus for ETP3.1, ETP3.2 and ETP3.3 the type of data element

44

5.3 Elementary Transformation Patterns

access by an activity is a shared prerequisite. The first of this three data transformation
patterns handles the FormElement generation for data elements that are accessed in a writing
manner by activities in a process model. Thus, it describes that FormElements with the
possibility of data input have to be generated. Table 5.5 holds the details for this pattern
called ETP3.1: WRITE Data Transformation.

ETP3.1: WRITE Data Transformation

Description: A WRITE data element requires an input field inside the user
interface form of the respective activity. The value entered in the
UI Widget associated with an UI Model InputField is used as value
for the WRITE data element.

Example: In an activity, the new data values for a customer are entered by
an agent in a customer edit form.

WRITE Data

Access

Edit

Customer

DataType:Name

⇒

Problem: To write data elements for an activity a user interface with the
possibility of interaction is needed.

Prerequisite: Data elements have to be handled different, according to the way
they are accessed (read, written or read & written) by an activity.

Implementation: During the FormElement generation UI Model InputFields have
to be generated according to the used WRITE data elements of
an activity.

Related Patterns: ETP1, ETP2, ETP3

Table 5.5: ETP3.1: WRITE Data Transformation

As a counterpart to ETP3.1, ETP3.2 which is the second of the data Transformation Pat-
terns handles the FormElement generation for data elements which are accessed in a reading
manner by activities in a process model. Therefore, it defines the generation of UI Model
OutputElements. Table 5.6 lists the details for this pattern called ETP3.2: READ Data
Transformation.

The last of the three data Transformation Patterns is EPT3.3: READ-WRITE Data Trans-
formation. Table 5.7 shows the details for ETP3.3. The pattern is a combination of ETP3.1

45

5 Transformation Patterns

ETP3.2: READ Data Transformation

Description: A READ (only) data element creates a label with the value of the
data element inside the element group of the respective activity.

Example: During editing of customer data, some of the data elements, e.g.
a customer ID, are immutable. Thus, these elements are only
displayed to an agent processing the respective activity.

READ Data

Access

Edit

Customer

DataType:Name

⇒

Problem: For Read data elements, the possibility to display their values to
a user is required.

Prerequisite: Data elements have to be handled different, according to the way
they are accessed (read, written or read & written) by an activity.

Implementation: During the processing of READ data elements of an activity UI
Model OutputElements are generated and allocated to the respec-
tive FormElementGroup. As shown in the example OutputEle-
ments have two different options for their UI Widget implementa-
tion (disabled input field & text label).

Related Patterns: ETP1, ETP2, ETP3

Table 5.6: ETP3.2: READ Data Transformation

and ETP3.2. It specifies the situation in which a data element is access in both, read
and write (edit), manner. The notation as additional pattern is necessary since a sim-
ple application of ETP3.2 followed by application of ETP3.3 would result in two separate
FormElements. One form InputElement for writing the data element and one form Out-
putElement to display the read value of the data element. However, this is not the desired
behaviour. Only a single edit element should be generated. This UI Model EditElement is,
in turn, filled with the value of the read data element. The value of the input form can be
change (edited) by a user and is used to write the data element during the processing of the
activity, e.g., if sending the respective FormTabTemplate by pressing the OK button.

The now following two Transformation Patterns handle the differences according to the
data types of the data elements used by activities. Therefore pattern ETP3.4 and ETP3.5

46

5.3 Elementary Transformation Patterns

ETP3.3: READ-WRITE Data Transformation
Description: A READ-WRITE (edit) data element creates an input field with

the value of the data element inside the element group (form) of
the activity. The value in the input field can be changed (edited).
After sending the respective form the value of the input field is used
as new value for the data element. This pattern is a combination
of ETP3.1 & ETP3.2.

Example: In a customer edit form, already existing customer data values can
be changed.

READ Data

Access

WRITE Data

Access

Edit

Customer

DataType:Name

⇒

Problem: To read & write (edit) the same data element a user interface with
the possibility of interaction & to display values is needed.

Prerequisite: Data elements have to be handled differently, according to the way
they are accessed (read, written or read & written) by an activity.

Implementation: During the processing of an activity’s data elements that are ac-
cessed in READ & WRITE manner UI Model EditElements have
to be generated. If the respective activity is started, the EditEle-
ments have to be initialized with read data value. If the respective
activity is finished the updated value has to be written to the
EditElement. The UI Widget representation for an EditElement
is an input form field.

Related Patterns: ETP1, ETP2, ETP3, ETP3.1, ETP3.2

Table 5.7: ETP3.3: READ-WRITE Data Transformation

share the data type as a common criteria. The first of them ETP3.4: Primitive Data Type
Transformation listed in Table 5.8 describes the FormElement generation for a limited set
of primitive data types. The data types Integer, Float, Boolean, String, Date and URI
where selected since they have been identified as the most important primitive data types
used in BPM systems and therefore in process models [RtHEvdA05]. The details for this
identification can be found in Russel et al. a previously mentioned work about so called
Workflow Data Patterns [RtHEvdA05].

Pattern ETP3.4 describes a (set) of FormElements for each of this primitive data types
which are generated during the activity to user interface transformation process. ETP3.4

47

5 Transformation Patterns

is related to the patterns EPT3.1, EPT3.2 and EPT3.3, since the type of data access by
an activity directly affects the kind of generated form elements. E.g., if a String data type
is accessed in a reading manner (cf. ETP3.2 in Table 5.6) a label holding the String value
is generated. In contrast an input field is generated if the String data type is accessed in a
writing manner (cf. ETP3.1 in Table 5.5).

ETP3.4: Primitive Data Type Transformation

Description: Different primitive data types require the generation of different
user interface form elements.

Example: A form for editing customer data requires the processing of dif-
ferent primitive data types thus different interactions elements are
required.

Edit

Customer

Integer:Data1

Float:Data2

Boolean:Data3

String:Data4

Date:Data5

URI:Data6

⇒
⇒
⇒
⇒
⇒
⇒

Problem: For different primitive data types of data elements used by activ-
ities, different form elements have to be generated.

Prerequisite: The characteristic (Integer, Float, Boolean, String, Date) of the
primitive data type of the data elements used by an activity.

Implementation: For the generation of applicable UI Widgets the created UI Model
FormElements have to take the data type of an activities data
elements into account.

Related Patterns: ETP1, ETP3

Table 5.8: ETP3.4: Primitive Data Type Transformation

The last of the ETPs is ETP3.5: Business Object Data Type Transformation. It covers the
fact that data types used in process models are often complex types represented as so called
business objects [HYZL10]. These business objects or complex data types are composed
of primitive data types and other business objects nested in the original business object.

48

5.3 Elementary Transformation Patterns

Table 5.9 illustrates how to handle activities using such nested data objects according to UI
Model FormElement generation for user interfaces. The general approach at this is to create
FormElementGroups for the grouping of the data elements a business object consist of.
An important supplementation to the transformation of business objects or more general

ETP3.5: Business Object Data Type Transformation

Description: For each business object, the primitive data types of which the
business object consists have to be extracted. If a business object
contains other nested business objects, the primitive data element
extraction has to be done for each of this nested business objects
recursively. For the extracted primitive data element form ele-
ments have to be generated like described in ETP3.4.

Example: A Customer business object instance should be displayed in a form
for editing customer data. This Customer business object can
consists of several different business objects, e.g., the address of
the customer, the account the customer is associated with, etc.

Edit

Customer

Customer:CustomerData

#firstName : string

#lastName : string

#address : Address

#accounts : Account

Customer

#street : string

#street2 : string

#houseNumber : int

#zip : int

Address

1 *

#amount : double
#...

Account

1

*

Customer business

data object

UML class diagram

representation of

the business object

⇒

Problem: Business objects contain multiple primitive data elements which
have to be extracted to use them to generate form elements.

Prerequisite: The characteristic (complex, primitive) of data elements.
Implementation: Before generating FormElements all primitive data elements of a

business object have to be extracted. FormElements are grouped
according to their business object membership.

Related Patterns: ETP3, ETP3.4

Table 5.9: ETP3.5: Business Object Data Type Transformation

complex data objects is the handling of list based data types. The term list based data
types refers to all kind of data types which are based on multiple instances of another data
type. These kinds of data types require list-oriented or table-oriented UI Widgets for their
display with an option to edit the data if this is necessary according to the respective process

49

5 Transformation Patterns

model data-flow. In the sense of the UI Model no additional elements are required since the
single entities of each entry line are still FormElements. The allocation of single UI Model
FormElements to a table structure is specified by an additional property of the FormElement.
Figure 5.3 shows an example for the resulting UI Widgets for the transformation of a list of
transaction business objects.

Show

Transactions

List<Transaction>:transactions

List-based
Business Object

⇒

Figure 5.3: UI Widget Generation for a list of Transactions, Transformation of List-based
Business Objects

Based on their limitations according to a single activity it is obvious that ETPs are not
sufficient enough for the overall generation of complex user interfaces to handle complete
processes instances. The interconnection, especially according to the process model control-
flow, of activities has to be taken into account. The Complex Transformation Patterns
introduced in the next address this facet.

5.4 Complex Transformation Patterns

Masterarbeit Zwischenvortrag | From Business Process to User Interface: A Model-Based Approach Seite 16

Activity Transformation

Process Transformation

Structure Transformation

Group Transformation

!
"

""

Transformation Patterns

! "

Group Criterion

1

*

!

"

Transformationsmodell für Prozessmodelle

Elementary Transformation
Patterns (ETP) 1.

Complex Transformation
Patterns (CTP) 2.

Activity Allocation
3.

Transformation
Algorithm 4.

'

&

$

%

'

&

$

%

'

&

$

%
Figure 5.4: Complex Transformation Patterns in the Transformation Model

50

5.4 Complex Transformation Patterns

Complex Transformation Patterns (CTP) realize the complex control-flow structure transfor-
mation of a process model. They generate UI Model FormTabTemplate elements and inter-
connect them with each other as required according to process model control-flow structure.
In addition, they use the ETPs introduced in the previous chapter for the transformation of
the single activities included in the control-flow blocks. Process models which are addressed
by these CTPs have to be block-structured like defined in Chapter 3.1.1.

The complex user interfaces respectively the UI Model elements, as they are generated by
these control-flow block CTPs are to a certain extent obvious. Nevertheless they also follow
user interface modelling principles, e.g., as defined by Paternò in the context of task-based UI
modelling [Pat00] and hierarchical ConcurTaskTrees notation [PMM97]. ConcurTaskTrees
notation has been introduced in Chapter 2.1.1.

These control-flow block CTPs are supplemented with so called Behaviour Block CTPs.
The Behaviour Block CTPs are a perspective CTP category which seem to be reasonable
according to previous conducted research work [Kam11]. The try to handle the semantics
of certain process model snippets according to particular user interface generation issues.
Referring to the complex user interface requirements (cf. Chapter 4.2) the CTPs realize
the requirement of analyzing the control-flow block structure to transform this structure
to a user interface. Additionally they address the aspect of realizing multiple instantiation
options for a user interface. Similar to the application of ETPs a definition for the application
of the CTPs is required. This definition is a important part of the overall Transformation
Algorithm for user interface generation and is handled in Chapter 6.2.2.

5.4.1 Control-Flow Block Transformation

The first of the Complex Transformation Patterns (CTPs) is CTP1: Sequence Block Trans-
formation which describes the aspects of transforming an arbitrary number of activities or
detected blocks connected with each other by the process control-flow. Table 5.10 specifies
the details for this pattern. Based on our process model definition, activities and control-flow
blocks can be handled in the same manner. For each of them a UI Model FormTabTemplate
element is generated and connected with the parent UI Model element according to the
process model control-flow block nesting structure.

An additional point to mention according to the transformation of sequence blocks is based
on the general conditions of our process model limitations (cf. Chapter 3.1.1). Consequential

51

5 Transformation Patterns

CTP1: Sequence Block Transformation

Description: Activities or more precise control-flow blocks, which are connected
in sequence should result in a distinct user interface screen.

Example: During the configuration of a car an agent has to select a car model
in a first activity followed by an activity in which the type of the
car model is selected.

Sequence Block

Select Car

Model

Select Car

Model Type
⇒

Problem: For each activity or control-flow block contained in a sequence
block a distinct user interface screen for the required interactions
is necessary. If one form in a screen is completed the next form
screen according to the process control-flow has to follow.

Prerequisite: Sequence conrtol-flow structure of activities or control-flow blocks.
Implementation: For each activity or control-flow block contained in a sequence

block a UI Model FormTabTemplate element, including a Con-
trolFlowNavigation element to link to precursor and successor, is
generated and arranged in sequence.

Related Patterns: ETP1, ETP2, ETP3, CTP2

Table 5.10: CTP1: Sequence Transformation

a process model consist of one basic sequence control-flow block at the topmost hierarchy
level. Thus, the resulting UI Model always consists of a set of FormTabTemplate elements
arranged in sequence at its topmost hierarchy level. At which an extreme would be a
FormTabTemplate set with only a single element, e.g., if the whole process model consists of
a single global XOR control-flow block. On a first look, the sequence transformation seems
to be obvious. However, previous research [Kam11] has shown that it is useful to combine
the processing of activities arranged in a sequence in a single user interface form. This
controversy is handled as Sequence Problem in Chapter 6.1.2 in which a possible solution
could be a manual marking of activities to achieve their processing in a single form.

Table 5.11 introduces CTP2, which transforms parallel process model control-flow blocks.
The results of the application of this pattern are similar as the processing of a single activity.
However, the pattern covers more than the transformation of two parallel-arranged activities.
It also includes the aspect of processing arbitrary control-flow blocks parallel arranged to user

52

5.4 Complex Transformation Patterns

CTP2: Parallel Block Transformation

Description: Activities or nested control-flow blocks which are inside a parallel
block can be summarized in a single user interface form for their
processing.

Example: While entering the data of a customer the selection for an appoint-
ment date can be performed in parallel.

Parallel

Block Enter

Customer

Data

Select

Appointment

Date

⇒

Problem: Activities of a process model, which are in a parallel control-flow
block, should be performed parallel when a single user or a specific
user group performs it.

Prerequisites: Parallel control-flow structure of activities or control-flow blocks,
noticeable by parallel split and join gateways.

Implementation: During form generation, parallel control-flow blocks have to be de-
tected for each branch (execution path) of this blocks UI Model
FormElementGroups associated with a FormTabTemplate, which
represents the complete block in the UI Model have to be gener-
ated.

Related Patterns: ETP1, ETP2, ETP3, CTP1

Table 5.11: CTP2: Parallel Block Transformation

interface elements. For instance, the replacement of one of the parallel-arranged activities by
a complete sequence control-flow block would result in always displaying the form elements
of the single activity in combination with each of the form elements from the sequence
activities.

Additionally, the pattern is required for the traceable covering of all associations between
process model and user interface elements as defined by the complex user interface require-
ments (cf. Chapter 4.2). In the sense of this traceable association, covering an important
aspect is the consideration of process control-flow inside single user interface forms. Without
that, it would be impossible to track the relation between interaction elements like input
fields (represented by UI Model FormElements and its derivates) and the according data
elements as well as activities of a process model. With the help of this so called micro level

53

5 Transformation Patterns

process modelling more advanced user interfaces can be generated [KR11a]. E.g., with the
possibility to specify the order in which data should be entered in a form by splitting a single
activity in multiple activities arranged in parallel or sequence with each other. The details
for the additional topic of user interface to process model element linking is rather complex
and thus covered by Chapter 6.2.4.

CTP3: XOR Block Transformation
Description: Activities or nested blocks which are inside a XOR (exclusive de-

cision) control-flow block require multiple different user interface
form elements based on the number of possible execution paths.
The decision for which execution path the widgets are drawn inside
a complex user interface is only possible during process run-time.

Example: If a customer already exists, the edit customer form is displayed.
If not a create new customer form has to be displayed instead.

XOR

Block
Edit

Customer

Create New

Customer

⇒

Problem: Conditional executed paths of an XOR control-flow block in a pro-
cess model require the generation of all UI Model elements for each
of this paths during modelling time. While during run-time, only
the elements of the chosen execution path are instantiated.

Prerequisite: XOR control-flow blocks, noticeable by XOR split and join gate-
ways. During run-time additionally the decision element which
triggers execution path selection of the XOR split gateway.

Implementation: A placeholder UI Model FormTabTemplate that holds all execu-
tion paths, which in turn link to all UI Model elements in this
execution path, has to be generated for each XOR control-flow
block. During run-time, only the elements of the chosen execution
path are displayed inside of the placeholder element.

Related Patterns: ETP1, ETP2, ETP3, CTP2

Table 5.12: CTP3: XOR Block Transformation

CTP3: XOR Block Transformation, described in Table 5.12, is the first of the control-
flow block patterns for which a direct and adequate visualization with the help of a single
user interface mock-up is impossible. Since, it requires the generation of multiple distinct
independent UI Model elements. To be more precisely, the generation of all UI Model

54

5.4 Complex Transformation Patterns

elements, which are required for each execution path, the XOR control-flow block consists
of. The decision for which execution path and its corresponding UI Model elements user
interface widgets have to be drawn is impossible if there is only a process model. For this
decision, run-time data of a corresponding process instance is necessary. Thus, it is only
possible to generate real UI widgets during process run-time based on the process instance
data. In particular, the required data for the decision which of the execution paths of the
XOR control-flow block to execute is required.

This results in a limitation for the creation of complex user interfaces for process models,
which include XOR blocks during the process modelling phase. To deal with this, also in
respect to a visual complex user interface editor, a placeholder FormTabTemplate element
that holds all possible execution paths and their referenced UI Model elements is generated
for the XOR control-flow block. Figure 5.5 shows the resulting UI Model data structure for
the XOR control-flow block sample of CTP3 (cf. Table 5.12) which includes the respective
UI Model elements for both of the execution paths.

FormTabTemplate:

XOR Block Placeholder

FormElementGroup:

Edit Customer

FormElementGroup:

Create New Customer

Execution

Path 1

Execution

Path 2

Sub Elements

generated by ETPs

Sub Elements

generated by ETPs

Figure 5.5: Resulting UI Model Data Structure for XOR Block of CTP3 Example

The last important thing about the XOR block transformation again refers to the run-time
of process instances. During this, a decision data element that triggers the XOR gateway
and thus defines which execution path is executed is required. By default, the decision data
element is send by an activity, which is previous of the XOR gateway in the process model
control-flow. However, it is also possible that external circumstances trigger a XOR based
decision, e.g., the time of day could be such an external circumstances, which is completely
independent from the process instance data.

The details of CTP4: Loop Block Transformation Complex Transformation Pattern are
shown in Table 5.13. Similar to previously introduced CTP3 it is not directly possible to
create a UI mock-up to visualize the specific UI Model related implementation details for it.
Based on our process model definitions from in Chapter 3.1.1, it is possible to nest arbitrary
control-flow blocks and of course activities inside of loop blocks. CTP4 now defines that for
each loop block a UI Model FormTabTemplate has to be generated and all process model

55

5 Transformation Patterns

CTP4: Loop Block Transformation
Description: Activities or nested control-flow blocks, which are inside a loop

block require additional UI Model actions according to their exe-
cution semantic.

Example: The data processed by an activity for editing a customer data set
is validated by a validation service activity. The corresponding
edit customer data activity is executed as long as the performing
agent has entered invalid data. In each iteration, a specific error
message is generated and displayed to the agent.

Update

Customer

Edit

Customer

Validate

Customer

Data

OK

Invalid

⇒

Problem: Loop control-flow blocks can consist of multiple nested activities
and control-flow blocks. In each loop iteration, the UI Model el-
ements and their respective UI widgets in these nested activities
have to be instantiated with correct data.

Prerequisite: Loop control-flow blocks, noticeable by Loop start and end gate-
ways. During process runtime the decision element which decides
about quitting the loop.

Implementation: All child UI Model elements of a loop block have to be associated
with a FormTabTemplate element. In each iteration during process
run-time, the value of the decision element for leaving the loop has
to be checked.

Related Patterns: ETP1, ETP2, ETP3, CTP1, CTP2, CTP3

Table 5.13: CTP4: Loop Block Transformation

elements nested in this loop block are associated with it. If the loop block contains more than
a single human activity this results in a nested sequence control-flow block inside the loop
block by default. Another similarity with CTP3 is the requirement of a decision element
whereupon in CTP4 this decision element is required to decide about quitting the loop.
The loop decision element has to be generated based upon the execution and the respective
data processing inside the loop control-flow block during the execution of a process instance.
Summing up CTP4 can be characterized as a marker pattern since it defines that all elements
nested in a loop control-flow block have to be repeated based upon the interpretation of the
value of a decision element.

56

5.4 Complex Transformation Patterns

CTP5: Subprocess Block Transformation
Description: The elements of an underlying process model of a subprocess

should be integrated in the parent process model for complex user
interface generation.

Example: A subprocess for updating a customer, according to an overall
bank account creation process, consists of three sequential activ-
ities. Edit the customer data, followed by configure the account
options and finally choose a contact type for the customer. The
user interface widgets required for this three activities should be
integrated in the global complex UI of the parent process.

Edit

Customer

Configure

Account

Choose

Contact Type

Update

Customer

⇒

Problem: If a process model contains subprocess blocks the underlying pro-
cess models for this subprocesses (respectively the process model
elements they consist of) have to be integrated into the parent
process model for an overall complex user interface generation.

Prerequisite: Detection of subprocess blocks, resulting overall process model
control-flow blocks nesting deep.

Implementation: This pattern has to be executed before all other CTPs since it
extracts the process model elements of the subprocesses to the
global process model. In addition, a UI Model FormTabTemplate
should be generated as parent element for all UI Model elements
generated for the subprocess block.

Related Patterns: ETP1, ETP2, ETP3, CTP1, CTP2, CTP3, CTP4

Table 5.14: CTP5: Subprocess Block Transformation

The details about pattern CTP5: Subprocess Block Transformation are defined in Table
5.14. It differs from all previously introduced patterns because it can be seen as a meta
pattern. In this case, the term meta refers to the aspect that it is necessary to perform
CTP5 before all other CTPs. Since it describes the requirement to extract the underlying
process models of all subprocesses and integrate them in a global process model. If this
subprocesses extraction has finished it is necessary to perform all other CTPs.

This approach is limited since depending on the complexity of the overall resulting process
model, with special respect to the nesting deep of its control-flow blocks, this might result in
potentially too complex overall user interfaces. Thus to get the possibility to generate new

57

5 Transformation Patterns

complex user interface instances for the subprocess blocks a UI Model FormTabTemplate has
been generated by the CTP5 as marker element for each subprocess control-flow block. The
reason for this is to keep the information that these elements belong to a certain subprocess
in the UI Model and if the nesting deep of control-flow blocks reaches a certain limit create
new UI Model instance for each subprocess. With the help of the marker FormTabTemplate
it is now possible to link the UI Model instances of the subprocesses with the global one.

During the execution of a process, which contains subprocesses the generated global com-
plex user interface would be hidden, if a subprocess placeholder FormTabTemplate element is
reach in the control-flow. Instead, a new complex user interface based on the process model
of the subprocess would be displayed. If the subprocess instance has finished the global user
interface would be displayed again with the state it was before leaving it for the subpro-
cess execution. And according to the state of the UI Model after the FormTabTemplate
placeholder element for the subprocess.

5.4.2 Behaviour Block Transformation

As mentioned already previous research has shown up that there exist process models which
require special treatment according to the generation of respective user interface elements
[Kam11]. Analyzing of several process models according to their required user interfaces
during this work supplement this demand (cf. Chapter 4.1). In this sense, a process model
is an arbitrary set of activities. In the samples presented in the following these models are a
well-defined combination of human and services actives including their associated data-flow.
Such a process model is called Behaviour Block in the following, since it links a set of process
model elements to a set of user interface elements including a desired behaviour.

Table 5.15 shows the details for an example of a Behaviour Block Transformation Pattern,
called CTP6: Background Activity Transformation. It defines the circumstance that it is
necessary to load data elements by a service activity between two human activities. This data
loading activity is triggered by the first human activity, performed by the service activity
and the results of this data loading are displayed by the second human activity. The term
background refers to the fact that in a corresponding user interface the data is loaded if
passing from the UI screen of the first activity to the UI screen of the second activity in the
background.

58

5.4 Complex Transformation Patterns

CTP6: Background Activity Transformation

Description: While human task activities are executed none human task activ-
ities can be executed in the background.

Example: An agent selects a customer name in a form for editing customer
data. After the agent has selected the name all other customer
data fields in the form should be filled with the data of the cus-
tomer loaded from a CRM system.

Select

Customer

Fetch

Customer

Data

Edit

Customer

Data

String:CustomerID Customer:CustomerData

Background
Activity

⇒

Problem: Human task activities, which are connected to a background ac-
tivity, should result in a dynamic form. Dynamic refers to the
automated loading of data and the automated displaying of new
form elements in the context of a user interface.

Prerequisite: Detection of non-human task (service) activities, which are back-
ground activities.

Implementation: Dynamic forms, which contain background activities, need a
change listener mechanism to detect user inputs a react on these
inputs.

Related Patterns: ETP1, ETP2, CTP1

Table 5.15: CTP6: Background Activity Transformation

Another example for such a process model snippet with additional semantics according to
user interface generation is shown in Figure 5.6. It covers the quite common aspect of editing
existing data by a human resource. It consists of three activities whereupon the first and
last activities are service activities. In the first service activity existing data is loaded e.g.,
from an external storage system. In the second activity, this data is displayed to a user with
the option to edit the single data elements by providing an adequate user interface. If this
edit activity is finished by submitting the user interface form the updated data values are
stored by the execution of the subsequent service activity.

The last example of a process model that can be handled standardized according to its
user interface related behaviour is shown in Figure 5.7. It is a semantic extension to the
previously presented CTP4: Loop Block Transformation (cf. Table 5.13). It handles the

59

5 Transformation Patterns

Load Issue
Resolve

Issue
Store Issue

Issue:IssueData Issue:IssueData

Figure 5.6: Edit Activity Process Model

aspect that the input of data in a form has to be repeated until the input data is corrected
according to predefined validation criteria. The generated user interface elements can be
build by the previously defined CTPs and ETPs. The addition of this pattern is the semantic
according to quitting the loop. This is triggered by a service activity at the end of the loop.
The service activity uses the data elements generated by previous activities inside the loop
block to trigger the decision for quitting the loop.

Activities

Creating New

Input Data

Validate

Input Data
OK

Invalid

Complex:ValidationData Boolean:DecisionConsits of arbitrarily sub-

elements producing the

data to validate
Decision element for

reapeating the loop

Figure 5.7: Validate Activity Input Data Process Model

The actual presented three behaviour block transformation CTPs are just a starting point for
more detailed research into the direction of semantic process model interpretation, according
to complex user interface generation concerns. A starting point to identify and classify such
constructs, would be a detailed analyze of existing process models from various domains
according to their corresponding user interfaces.

In this chapter a Transformation Model has been introduced as a framework for an overall
process model to user interface transformation. The Transformation Model takes care of
separating the different concerns according to complex user interface generation in distinct
components (parts). Moreover, it includes a description of how the single components are
connected with each other. Two of the Transformation Model components have been in-
troduced in this chapter. One the one hand Elementary Transformation Patterns, which
describe the basic aspects of how to handle process model activities and their respective
data flow according to user interface generation. On the other hand, Complex Transforma-

60

5.4 Complex Transformation Patterns

tion Patterns, which handle the process model control-flow structure transformation to User
Interface Model elements. Additionally, the control-flow structure CTPs are supplemented
with Behaviour Block CTPs, which describe User Interface Model element generation based
on a interpretation of process model semantics.

Referring to the uses cases defined in 4.1 some of the complex user interface requirements
are still not treated. The execution of the correct CTPs for each control-flow block of a
process model including the nested execution of ETPs is not sufficient for the realization
of an overall complex user interface generation. There are more advanced requirements
especially according to the generation of role specific UIs and the interconnection of the
single Transformation Model components. In addition, one should keep in mind that the
Transformation Patterns only describe the generation of UI Model elements, which is not
the same as a user interface. All theses aspects are addressed in the subsequent chapter,
which handles role specific grouping, describes an overall UI Transformation Algorithm and
last but not least specifies how a UI widgets for a complex user interface can be generated
based on a UI Model.

61

5 Transformation Patterns

62

6 Transformation Model Composition

The Transformation Patterns introduced in Chapter 5 are not sufficient to realize a com-
plete transformation from a process model to all user interface elements needed to execute
process instances. To realize this, rules for the application of the patterns are necessary. Ad-
ditionally, the allocation of activities to be considered for the generation of a user interface
instance, based on grouping criteria, has to be discussed. With the help of this role-specific
user interfaces can be generated.

Therefore Chapter 6.1 discusses the way of grouping activities and the influence of this
grouping according to the overall process model transformation. Chapter 6.2 introduces
a Mapping Model as basis for the generic process model to user interface Transformation
Algorithm. The algorithm applies the Patterns of Chapter 5, the Activity Grouping Mecha-
nism and considers the logical process steps to describe the generation of end-user interfaces
from process models. Furthermore, the actions that are necessary to delegate changes from
a user interface to a process model and vice versa are specified.

6.1 Activity Allocation

In this chapter all important aspects of allocating activities during user interface generation
are discussed. The term of allocating activities on the one hand refers to the action of
considering activities for the generation of a certain user interface instance and others not.
On the other hand, it describes the merge or split of activities to fulfill additional user
interface requirements. Thus in the Chapter 6.1.1 the most important aspect, a role model
used by a process model, for grouping activities is introduced. This is followed by Chapter
6.1.2 which discusses implications about the detail levels of process models supplemented
by an approach to countervail this detail level differences and concludes with necessary
requirements for process models to achieve useable results by a user interfaces generation.

63

6 Transformation Model Composition

6.1.1 Role-based Activity Grouping

Masterarbeit Zwischenvortrag | From Business Process to User Interface: A Model-Based Approach Seite 16

Activity Transformation

Process Transformation

Structure Transformation

Group Transformation

!
"

""

Transformation Patterns

! "

Group Criterion

1

*

!

"

Transformationsmodell für Prozessmodelle

Elementary Transformation
Patterns (ETP) 1.

Complex Transformation
Patterns (CTP) 2.

Activity Allocation
3.

Transformation
Algorithm 4. '

&

$

%

'

&

$

%

'

&

$

%
Figure 6.1: Activity Allocation in the Transformation Model

The grouping of activities is an important aspect during the overall end-user interface gen-
eration process. It has direct influence on whether an activity is taken into account for the
creation of a certain user interface or not [ZZHM07]. Figure 6.1 shows the direct connection
between Group Transformation and the overall Process Transformation. In the following,
all aspects of Group Transformation are discussed in detail.

First of all a clear definition is required for the term Group Transformation. In this sense,
Group Transformation covers the aspect that there are certain, later discussed, criteria in-
fluencing either the assignment or not assignment of activities to certain end-user interfaces.
For this purpose Figure 6.2 shows the hierarchical structure of all aspects which are relevant
to realize a Group Transformation as UML class diagram. The only thing not covered in
Figure 6.2 is the aspect that a complete process model transformation can consist of multiple
Group Transformations. This is covered by the aggregation between Group Transformation
and Process Transformation in Figure 6.1. A Group Transformation, in turn, is based on
an abstract Group Criterion. For this abstract Group Criterion, there are two essential
characteristics to distinguish:

1. a manual defined Group Criterion, which can be seen as a fall back solution if the
automated detection and processing of Group Transformations fails and

2. a Group Criterion either elementary or complex which is extracted from the
activities of the process model.

64

6.1 Activity Allocation

Group TransformationGroup Criterion 11

Agent Org. Unit Super Org. Unit Org. Unit Set

Manual Tag

1

*

Elementary Criterion Complex Criterion1*

General group

hierarchy

Process Model

specific group

hierarchy

Figure 6.2: Group Transformation Hierarchy Structure

The special characteristics of Group Criteria depend on the specifics of the process model
in use. In the following general characteristics, as shown in Figure 6.2, are explained. The
base for the grouping model is the organizational model, which is used by the process model
to transform. The application of abstract elementary or complex Grouping Criteria enables
a simple but flexible grouping of process activities. Finally yet importantly this decouples
the overall Group Transformation from a concrete process model implementation.

Based on this, there are two elementary Grouping Criteria. The first of them is the Agent.
The term agent refers to a specific person, which is needed to execute a certain activity,
e.g., only Mrs. Doe the CFO is allowed to confirm orders which have an amount above one
Million Dollar. The second of them is the Org. Unit (Organizational Unit). This Group
Criterion refers to the issue that the human resource executing an activity has to be part of
a certain organizational unit, e.g., an agent has to be a member of the shipping department
to confirm the shipping message send to a customer.

As shown in Figure 6.2 a complex Group Criterion can consist of multiple elementary Group
Criteria. Furthermore, it can be composed by multiple different complex Group Criteria. In
addition to its grouping nature based on elementary Grouping Criteria, there are two special
characteristics of the complex Group Criterion explained in the following. The Super Org.

65

6 Transformation Model Composition

Unit (Super Organizational Unit) is a parent organizational unit for basic organizational
units as mentioned in the elementary Group Criteria case. An example of a Super Org.
Unit could be a production department, which consists of several child departments, like an
order department, a development department, a shipping department, etc. The Org. Unit
Set Group Criterion is used to express that multiple organizational units are used to realize
a Group Transformation, but instead of being in a hierarchical order like in the Super Org.
Unit case, the underlying departments can be completely indecent form each other.

After this introduction of the different Group Criteria characteristics now, the application
of these criteria in the overall end-user interface generation process will be exposed. This
application is called Group Transformation in the following (cf. Figure 6.2). It tries
to allocate the activities of a business process model, according to their Group Criterion
characteristics, to certain end-user interfaces templates. In which a user interface template
is the resulting generated UI-based on a User Interface Model and a user interface instance
is the instantiation of such a user interface template during process run-time.

These templates act as an input basis for the Transformation Patterns introduced in Chapter
5. The main purpose of the Group Transformation in our approach is to realize the gener-
ation of user role specific user interface instances. Details for this UI instances generation
are discussed in Chapter 6.2.4. As outlined e.g. in [ZZHM07] role specific user interfaces are
important based on the aspect of information overload and privacy. This results in present-
ing only this kind of information to a user, which are relevant to perform the role specific
actions.

Thus, in the following the realization of a Group Transformation for user role-specific UI
instances is described. This transformation is separated in four overall processing steps.
Figure 6.3 illustrates theses steps, which are described in the following:

1. Group Criterion Detection: Detect all Human Tasks in a process model and their
respective Group Criterion. In Figure 6.31 the Group Criterion is predefined as ’Orga-
nizational Unit’. This results in separate User Interface templates for each Org. Unit
found in the process model. Instead of using a predefined Group Criterion, it would
be possible to extract all valid Group Criteria from the Process Model and suggest
them to a user for selection.

2. Group Criterion Composition: Create a mapping from distinct Group Criteria
found in the process model to the corresponding activities. In Figure 6.32 one can
see that the human activities found in the previous step have been grouped by color

66

6.1 Activity Allocation

Select

Customer

Fetch

Customer

Data

Edit

Customer

Choose

Contact Type

Edit

Customer

Contact

Select

Account

Type

Configure

Account

Select

Default

Account

Confirm

Account

Creation

Review

Account

Creation

Accept new

Account

Decline new

Account

Inform

Customer

Create new

Customer

Existing OR
new customer

Store

Customer

Data

Store

Customer

Contact Data

Store

confirmend

Account

Update

Account &

customer

Data

Send

appointment

message

Send reject

message

Update

Account &

customer

Data

invalid

OK
Validate

Account Data

(1) Selection of all Human Activities (orange highlighted), predefined Group Criterion is ’Organizational Unit’

Select

Customer

Fetch

Customer

Data

Edit

Customer

Choose

Contact Type

Edit

Customer

Contact

Select

Account

Type

Configure

Account

Select

Default

Account

Confirm

Account

Creation

Review

Account

Creation

Accept new

Account

Decline new

Account

Inform

Customer

Create new

Customer

Existing OR
new customer

Store

Customer

Data

Store

Customer

Contact Data

Store

confirmend

Account

Update

Account &

customer

Data

Send

appointment

message

Send reject

message

Update

Account &

customer

Data

invalid

OK
Validate

Account Data

(2) Human Activities grouped by their executing Organizational Units (roles)

Select

Customer

Fetch

Customer

Data

Edit

Customer

Choose

Contact Type

Edit

Customer

Contact

Select

Account

Type

Configure

Account

Select

Default

Account

Confirm

Account

Creation

Review

Account

Creation

Accept new

Account

Decline new

Account

Inform

Customer

Create new

Customer

Existing OR
new customer

Store

Customer

Data

Store

Customer

Contact Data

Store

confirmend

Account

Update

Account &

customer

Data

Send

appointment

message

Send reject

message

Update

Account &

customer

Data

invalid

OK
Validate

Account Data

(3) First Level of detected control-flow blocks relevant for User Interface generation

Head of

Acounting

Activity

Template

Activities for Organizational Unit:

'Head of Accounting Department'

Clear Activity

Template

Activities for Organizational Unit:

'Clerk of Accounting Department'Head of Accounting

UI Template

Clerk of Accounting

UI Template

Select

Customer

Fetch

Customer

Data

Edit

Customer

Choose

Contact Type

Edit

Customer

Contact

Select

Account

Type

Configure

Account

Select

Default

Account

Confirm

Account

Creation

Review

Account

Creation

Accept new

Account

Decline new

Account

Inform

Customer

Create new

Customer

Existing OR
new customer

Store

Customer

Data

Store

Customer

Contact Data

Store

confirmend

Account

Update

Account &

customer

Data

Send

appointment

message

Send reject

message

Update

Account &

customer

Data

invalid

OK
Validate

Account Data

(4) Allocation of control-flow blocks and the respective activities to role-specific User Interface templates

Figure 6.3: Steps of Group Transformation

highlighting. The green colored activities are linked to the Org. Unit ’Clerk of Ac-
counting Department’ and the red colored activities are linked to the Org. Unit ’Head
of Accounting Department’ instead.

3. Process Model Aggregation: Based on the Group Criterion Composition for each
Group Criterion a separate Process Model is created. In each of the Group Criterion
specific process models, the intersection points with other Group Criterion specific
process models have to be stored. This is necessary to enable a multi-role-specific
user interface for a collaborative process execution. If a certain intersection point
is reached, an information message has to be send to all roles participating in the
execution of the process instance. Figure 6.33 shows the intersection points for the
sample case process model including all detected control-flow blocks which are relevant
for successive transformation steps.

67

6 Transformation Model Composition

4. Transformation Execution: All control-flow blocks and the respective activities
belonging to a certain Group Criterion are mapped to one end-user interface template.
This is realized using the Group Criterion-specific process models from the previous
step. For each of this Group Criterion-specific process models the transformation to a
user interface template is executed. This action can be summarized by, detecting all
control-flow blocks followed by the application of the Transformation Patterns (CTPs
and ETPs) previously introduced. The exact details about the execution of the overall
transformation are described in subsequent Chapter 6.2. Figure 6.34 shows the Org.
Unit-Specific user interface templates, which are the results of executing the overall
process model to user interface transformation.

Another important aspect, according to the allocation of process model activities to end-user
interface templates, is the separation of the model in logical execution steps. This might
result either in an additional merge of activities or even in a split of single activities according
to their end-user interface template allocation. This secondary fragmentation of the overall
process model has to be taken into account before defining the overall process model to user
interface transformation. Therefore, the following chapter outlines the so-called Granularity
Problem followed by an approach how to deal with this logical process execution steps in
respect of the overall end-user interface generation process.

6.1.2 Variability of Process Granularity

The detail level of a process model depends on different parameters [LK01, RM08, HRL09].
One of them is the application domain of the process model [EKO07]. This results in a
wide range of different model types, which reaches from process models which are build for
documentation only with the help of word processing office software, to detailed technical
models specified in process languages like BPEL [OAS07], ready for execution in BPMS.
Even if the process model definition environment and the usage of the model is well-defined,
like in our case, the developed models distinguish in a wide range according to the granularity
of activities and the respective modeled data objects [EKO07, MSBS03]. Such different
detail granularity often depends on the background of the user modelling the process model
[GVGW08] and on the process modelling environment setup in use [MS08].

The different detail levels of process models result in implications for the user interface gen-
eration. To handle this different detail levels during end-user interface generation process an
abstraction mechanism is needed to map process model activities to certain user interface

68

6.1 Activity Allocation

Masterarbeit Zwischenvortrag | From Business Process to User Interface: A Model-Based Approach Seite 1

Activity Transformation

Process Transformation

Structure Transformation

Group Transformation

!
"

""

Transformation Patterns

! "

Group Criterion

1

*

!

"

Transformationsmodell für Prozessmodelle

Elementary Transformation
Patterns (ETP) 1.

Complex Transformation
Patterns (CTP) 2.

Activity Allocation
3.

Transformation
Algorithm 4.

Immutable Activity

to User Interface

Template Mapping

Figure 6.4: Location points in the Transformation Model for Template Activity to User
Interface Template Mapping

templates in an immutable manner. This mapping should on the one hand be independent
from the transformation process steps described before, but on the other hand extend them
with the required capabilities as needed for desired results during user interface generation.
The immutable activity to user interface template mapping has to be defined before the
application of the Transformation Patterns. The reason for this is to avoid undesired alloca-
tion of activities based on the default interpretation of process model control-flow because
of the Transformation Pattern application. Figure 6.4 illustrates possible location points
for the creation of an immutable activity to user interface template mapping in the overall
Transformation Model.

For a better understanding of the outlined Granularity Problem Figure 6.5 shows two process
models with different granularity levels. Figure 6.5b has insufficient distinct activities for
a resulting user interface with good usability whereas Figure 6.5a has too much distinct
activities. In this sense, there are two different cases according to the activity detail level
of process models, which should be considered while developing a Transformation Model.
They are described in the following:

1. Too much details according to modeled activities: The example process model
in Figure 6.5a shows an example of a process model with its six for user interface
generation relevant human activities highlighted. A simple application of the Trans-
formation Patterns would result in a user interface as shown on the right side. For
each single activity a FormTabTemplate element would be generated in the user inter-

69

6 Transformation Model Composition

Enter

Personal

Data

Confirm DataValidate Data

Person

Enter

Location

Choose

Way of travel

at arrival

Choose

participants

Confirm

Business Trip

Location Travel Participants Trip

Store Data

(a) Process Model with too many activities, including resulting user interface

Enter

Personal

Data

Confirm DataValidate Data Store Data

ComplexDataObject

(b) Process Model with insufficient activities, including resulting user interface

Figure 6.5: Granularity Problems in Process Models

face template resulting in six tabs overall. However, this is not the desired result. In
the process model, the activities represent only primitive tasks. Thus they are to fine
grained and result in a to complex FormTabTemplate set.

2. Insufficient details according to modeled activities: The process model exam-
ple in Figure 6.5b shows an activity chain of two human activities. Thus, its transfor-
mation will result in a user interface template with two FormTabTemplate elements.
However, this is not the desired behaviour, according to the complexity of the modeled
activities. If the complexity of activities is high it might even be necessary to split a
single activity in multiple ones to get the desired results for user interface generation.

The both outlined examples showed that for some process models additional, logical process
execution steps, have to be taken into account for the user interface template generation.
This might result either in additional grouping (case 1. too detailed) or in a splitting (case
2. insufficient details) of activities in respect to their allocation to, or even the creation of,
certain user interface templates.

For this logical process execution steps in the following the term task is used. Such a
task can be described as the amount of work done in a single step by one human resource
during the execution of a business process instance, independent of the activities contained
in the process model. In addition, the usage of the term task is conform according to its
introduction in the Chapter 2.1, e.g., in [SMV10, PMM97] a task has been defined as the
amount of work to reach a certain goal.

70

6.1 Activity Allocation

Place Travel Request

Enter

Personal

Data

Confirm DataValidate Data

Person

Enter

Location

Choose

Way of travel

at arrival

Choose

participants

Confirm

Business Trip

Location Travel Participants Trip

Store Data

(a) Multiple activities grouped in a single Activity now resulting in a User Interface with three Tab elements

Confirm DataValidate Data Store Data

ComplexDataObject

Enter Personal Data

Create

Account
Create Order

(b) Complex activity split into two Activities now result in User Interface with three Tab elements

Figure 6.6: Granularity Problem in Process Models solved by introduction of new Activities

Figure 6.6 shows a potential solution for the Granularity Problem example of Figure 6.5.
This illustrates that it is necessary to arrange activities from the process model to parent
activities (Figure 6.6a) or split activities into sub-activities (Figure 6.6b). These parent or
sub-activities are the previously mentioned tasks. Tasks or so-called task modells [MPS02]
represent a general approach to describe the logical activities to reach a certain goal in the
field of Human Computer Interaction (HCI) [Pat00]. Moreover, as outlined in Chapter 2.1,
task modelling is established to describe user interactions for model-driven user interface
development.

For good user interface generation result for process models with different granularity level
a method to decide about the grouping or splitting of activities is necessary. An obvious
approach is the analyze of the amount of data objects (based on overall primitive data types)
used by an activity, e.g. as proposed in [ZZHM07]. This would require the definition of a
minimum and maximum amount (range) of primitive data objects processed in one screen of
a user interface presented to a user. Based on the amount of metadata included in a process
model this approach is realizable even in an overall complete automated process model to
user interface transformation. However, it might not be sufficient to solve all the undesired
results during a user interface generation. Therefore, additional actions are required.

Based on the Manual Tagging option of the Group Transformation approach, it is possible to
provide a user with the capabilities needed to assign activities individually to user interface
elements. Additionally required for this is the possibility to distinct between different kinds

71

6 Transformation Model Composition

Group TransformationGroup Criterion 11

Agent Org. Unit Super Org. Unit Org. Unit Set

Manual Tag

1

*

Elementary Criterion Complex Criterion1*

Immutable Tag

1

*

immutableTags

Process Model

specific group

hierarchy

General group

hierarchy including

immutabel tagging

Figure 6.7: Manual Tag Group Transformation extended by Immutable Grouping Mecha-
nism

of manual tags. The standard manual tag, which is a replacement for the overall Grouping
Transformation and an additional manual tag, which can be used to mark activities as a
immutable group. This additional immutable group manual tag has to be considered in
the overall Transformation Algorithm as well. Figure 6.7 shows the relevant section of
the Group Transformation UML class diagram extended with necessary immutable group
manual tag mechanism. With the help of this it is possible to handle the previously outlined
Granularity Problem and the Sequence Problem introduced in the Complex Transformation
Pattern chapter (cf. Chapter 5.4.1).

Therefore Figure, 6.8 illustrates a possible solution for the Sequence Problem. Whereas
the Sequence Problem is the default resulting user interface for a arbitrary sequence of
human activities in a process model, e.g. as shown on the bottom left side of Figure 6.8.
This is caused by the recognition as sequence control-flow block with six activities and the
consequential transformation of each activity to a single FormTabTemplate and thus a tab
element. This will result in more distinct tab elements as required for a user interface
with well usability and force the user to numerous unnecessary interactions. Therefore, the
sequence of six activities is tagged with two immutable grouping tags, which changes the
generated user interface consisting of two tab elements instead of six.

72

6.1 Activity Allocation

For comparison: Default resulting User

Interface with six tab elements.
Adapted User Interface with two tab elements

by Immutable Group Tagging of Actvities

Content for

Activity A
Content for

Activity A
Content for

Activity B

Content for

Activity C

First Immutable Grouping Tag Second Immutable Grouping Tag

A B C D E F

Figure 6.8: Manual Tagging to Solve the Sequence Problem

The outlined problems and requirements to realize a sensible activity allocation independent
and as a prerequisite for the process model control-flow structure transformation lead to
some general limitations for the performance of the overall process model to user interface
transformation. These limitations are summarized in the following.

6.1.3 Resulting Limitations

In the following prerequisites according to process model design to achieve good results
according for usability of user interface generation are specified. Furthermore, the results of
the activity allocation chapter are summarized.

First general point to mention about process modeling is the granularity of activities. For
optimal user interface generation results the granularity level should be consistent in the
overall process model. In addition, it makes sense to think about the required resulting
user interface while creating a process model. Based on this, the human activities should be
arranged in conjunction with the service activities and the control-flow blocks. For instance,
it would be possible to arrange multiple sequential activities in a parallel control-flow block
to merge them for their processing in a single screen (FormTabTemplate element) of the
user interface.

73

6 Transformation Model Composition

Second, during the creation of a process model is the aspect of levels of nesting control-flow
blocks. This should be limited to a reasonable amount of levels. Even though in theory it
is possible to create and handle an endless nesting deep of control-flow blocks during user
interface generation. The resulting user interface would be too complex and confusing for a
user. However, it would be possible to generate new user interface instances from a specified
control-flow block nesting level on and link them with the global user interface instance.
This would in turn result in a much more complex handling during the overall user interface
transformation.

Third, the creation of process models for good user interface results is the assignment of
roles from an organizational model to single human activities. For this it is necessary to
stay on the same hierarchy level based on the Group Transformation hierarchy introduced
in Chapter 6.1.1. For example, if a single human activity is assigned by an agent all of the
human activities should be assigned by agents as well instead of assigning them by an Org.
Unit Set.

Thus, the conclusion about process modeling for user interface results with good usability is
to keep anything in a consistent way in the complete process model. This includes consistent
allocation of used role granularity, consistent granularity of activities and even a consistent
nesting deep of control-flow blocks.

The grouping of process model activities based on metadata like an assignments resulting
from an organizational model is an essential prerequisite for control-flow structure trans-
formation. Indeed, it would be not possible to generate role specific user interfaces from a
process model without a Grouping Mechanism. A crucial part in the course of grouping is
the interconnection of single grouped user interface instances based on intersection points,
especially during the execution of process instances based on generated user interfaces. For
the overall generation of user interfaces, which are capable for the execution of process in-
stances, requiring multiple roles the implementation of such an intersection point feature is
mandatory.

As mentioned before a granularity level of activities equal for the overall process model will
fit best for user interface generation. Different activity granularity can have effects on the
performed grouping of activities. Nevertheless, to have the possibility to achieve acceptable
results independent of activity granularity during user interface generation additional efforts
are necessary. Two approaches for handling granularity differences have been presented.

74

6.2 Process Model to User Interface Transformation

The first possible solution could be the analyze of complexity of single activities, based on
counting the processed primitive data elements. With the advantage, that such an approach
can be integrated in a fully automated user interface generation process. However, the
disadvantage that process and activity semantics are completely ignored. For instance, it
might be possible that a process model and a possible resulting user interface rely on the
different granularity levels of activities.

An alternative to the analysis of complexity approach is the presented manual immutable
group tagging approach. This extends the manual tagging from the default Grouping Mech-
anism with the required capabilities to create immutable groups of activities. This in turn
opens up the possibility to aggregate activities to complex user interfaces, which are capable
for the processing of multiple process model activities in a single user interface screen, in-
cluding the important aspect of making this immutable activity groups independent of the
standard transformation. The major advantage of this approach is its very simple but flex-
ible manner. With it a variety of (to be defined) problems including the outlined Sequence
Problem, can be handled. The disadvantage is the requirement of manual user interference
during a fully automated process model to user interface transformation.

With the help of this immutable group tagging approach, the previously introduced Grouping
Mechanism and the Transformation Patterns (cf. Chapter 5), now it is possible to illustrate
the overall Transformation Algorithm implemented in the Transformation Model. This
Transformation Algorithm interconnects the single steps necessary for end-user interface
generation to an overall transformation process. The following chapter describes this overall
transformation process in detail.

6.2 Process Model to User Interface Transformation

In this chapter, the developed overall Transformation Algorithm from process models to user
interfaces is presented. It applies the Transformation Patterns by a well defined manner
of control-flow block processing and considers the activity allocation aspects according to
grouping outlined in Chapter 6.1.1.

First, the definition of a so called Mapping Meta Model in Chapter 6.2.1 is presented. This
Mapping Meta Model is a clear definition of how User Interface Model elements can be
mapped to process model elements and vice versa. It serves as the base to perform an
overall process model to user interface transformation. This is supplemented by Chapter

75

6 Transformation Model Composition

6.2.2, which presents basics according to the processing of control-flow blocks in the trans-
formation. The algorithm to execute such a transformation is introduced and illustrated in
Chapter 6.2.3. To support the bidirectional propagation of changes from a user interface
template to a process model additional efforts and definitions are necessary, e.g., restricting
the allowed change operations to achieve sensible user interface and process model results.
Hence Chapter 6.2.4 deals with the aspects of how to delegate changes from one (model) side
to another. Finally, Chapter 6.2.5 concludes with the application of complex user interfaces
generated on the basis of the use cases (cf. Chapter 4.1).

6.2.1 Mapping Meta Model

Process Model Mapping Model User Interface11

1 *

Process Transformation

1
1

Figure 6.9: Interconnection between Process Model, User Interface Model and Process
Transformation by the Mapping Meta Model

The Mapping Meta Model is based on the block-oriented process model introduced in Chap-
ter 3.1 and the User Interface Model introduced in Chapter 3.2. As illustrated in Figure 6.9
it serves as an interconnection (meta model) between those two models. It is used to map
process model elements with respective User Interface Model elements during the handling
of the process model while performing the Transformation Algorithm. To realize the needed
mappings it is separated into four hierarchy levels. Table 6.1 gives an overview of these map-
ping levels including the effected elements from both sides and a potential representation
for the User Interface Model elements. The four hierarchically subdivided mapping levels
are named after the respective entities they link with each other. In the following each of
these mapping levels are described in detail.

Level 1: Process Model ⇔ User Interface On the first level for each processed process
model respective User Interface Model elements are created. The fact that based on grouping
multiple User Interface Models are required for a single process model has to be considered

76

6.2 Process Model to User Interface Transformation

 SubBlocks SubTabs BaseTabSequence

Control-Flow Block

Form Tab Template

Porcess Modell

User Interface

Process Activity

Form Element Group

Data Element

Form Element

UserInterface

1

*

FormTabTemplate

1

*

FormElementGroup

FromElement

1

*

ControlFlowNavigation

ProcessModel

ControlFlowBlock

1

*

Activity

1

*

1

*

DataElement

1

*

11

1

*

Mapping Block-Structured

Process Model

User Interface Model Sample User

Interface Element

1

2

3

4

Table 6.1: Links between Hierarchy Levels of Block-oriented Process Model Elements and
User Interface Model Elements

in a mapping model implementation. The default use case for this is that one process model
is linked to a set of role specific User Interface Models. Base on these role-specific UI Models
a role specific generation of a concrete user interface instance is possible.

Level 2: Control-Flow Block ⇔ Form Tab Template The second hierarchy level and all
its subjacent hierarchy levels are used to fill the base User Interface Model element created
on the first level with content elements that describe forms and form elements used for the
generation of user interfaces, for handling process instance based on the respective process
models. Consequently, on the second level container elements for the single steps while
executing a process, the so-called FormTabTemplates (cf. Chapter 3.2.2) are generated.
For each control-flow block of the process model, a FormTabTemplate is generated. This
FormTabTemplate element can consist of the contents based on the transformation of single
or multiple activities, or of nested FormTabTemplate elements (called SubTabs in Table 6.1)
that are generated for nested control-flow blocks.

77

6 Transformation Model Composition

In addition, each FormTabTemplate element is connected with a ControlFlowNavigation ele-
ment. This ControlFlowNavigation element is used to link FormTabTemplates based on the
control-flow of the process model with each other. Based on this control-flow information, or
in other words what is the next and previous step according to the process model, concrete
user interface elements can be linked with each other. This, in turn, enables the genera-
tion of user interface instances with the possibility of bidirectional navigation between each
displayed screen. The details for this navigation options are rather complex and therefore
discussed in Chapter 7.3.

Level 3: Process Activity ⇔ Form Element Group On the third hierarchy level, for each
activity of a process model control-flow block, a FormElementGroup User Interface Model
element is generated. The FormElementGroup is allocated to a FormTabTemplate based
on the allocation of the underlying activity to a control-flow block in the process model.
By the nature of a control-flow block, multiple activities and therefore multiple FormEle-
mentGroups can be assigned to a FormTabTemplate. For example, if a parallel control-flow
block consists of multiple human activities which have the same Grouping Criteria the gen-
erated FormElementGroups will all be associated with a single FormTabTemplate element.
This in turn will result in a user interface instance containing multiple FormElementGroup
elements.

Level 4: Data Element ⇔ Form Element The fourth level of the Mapping Meta Model
is responsible for the generation of FormElements of the UI Model based on the data ele-
ments used by an activity of the process model. FormElement is an abstract base type for
concrete input and output elements of a form. By analyzing the data-flow of an activity
and the distinction between input and output data elements as it is realized by the Elemen-
tary Transformation Patterns (cf. Chapter 5.3), it is possible to generate a complete User
Interface Model data structure from a process model.

Since the Mapping Meta Model is a model that describes how to transfer from one model
(process model) to another (UI Model), in the terms of model-driven development, it is a
meta model. The general operation purpose of the Mapping Meta Model during execution
of the transformation is the generation of UI Model elements while respective process model
elements are handled in the algorithms implementation. The result of executing a process
model to User Interface Model transformation is a fully instantiated UI Model. This fully
instantiated User Interface Model serves as an abstract description for the creation of a single

78

6.2 Process Model to User Interface Transformation

or even multiple concrete user interface instances. It can be used to generate presentations
of any kind, e.g., a HTML presentation for a web-based user interface. Subsequently it
is possible to describe the overall Transformation Algorithm with all its details using the
currently described Mapping Model as base data model. Therefore, the next Chapter starts
with some basics according to the transformation of control-flow blocks.

6.2.2 Control-Flow Block Processing Basics

All process model control-flow block elements belong to one or more parent block elements,
since it is possible to nest block elements with each other. This nesting aspect is address by
a recursive application of the CTPs. The Transformation Model covers this by a composite
like aggregation association between single CTP instances. The control-flow block elements
are transformed starting with the outmost block element of the nested control-flow block
elements. Thus, Figure 6.10 visualizes the basic aspects of the control-flow block structure
transformation order based on a small process model example.

Option A

Option B

Parallel

Subprocess

Sequence 1 Sequence 3

1. 2. 3.

4.

Figure 6.10: Processing Order of Nested Control-Flow Block Elements

In this example, there are four nested control-flow block elements. They are processed
according to their numbering. The first detected control-flow block element is a sequence of
three sub elements. In this sequence control-flow block, the start element (activity Sequence
1) and the end element (activity Sequence 3) are activities. The second element of the
sequence control-flow block (2.) is a parallel control-flow block element. This parallel block
in turn consists of two control-flow branches. The control-flow block building the upper

79

6 Transformation Model Composition

branch is a subprocess control-flow block (3.). The lower branch (4.) contains a XOR
control-flow block and is the last detected control-flow block. This XOR control-flow block
in turn consists of two control-flow branches (execution paths). Each of the branches contains
a single activity (respectively Option A and Option B).

Figure 6.11: Resulting UI Screen after processing the Process Model in Figure 6.10

Figure 6.11 shows the resulting UI screen mock-up for processing of the sequence block
elements. According to the UI Model, each of the sequence control-flow block elements
results in a FormTabTemplate element arranged by its parent elements, e.g., the global
UserInterface element. The association of the hierarchical tree-oriented data structures
between the process model and the UI Model is visualized in Figure 6.12.

Sample Process Model

Sequence 1 Parallel Block Sequence 3

Parallel Subprocess XOR Block

Option 1 Option 2

2.

1.

4.

3.

(a) Process Model control-flow block structure Hierarchy

User Interface Model Root Element

FormTabTemplate 1 FormTabTemplate 2 FormTabTemplate 3

FormTabTemplate 2.1 FormTabTemplate 2.2

FormElementGroup 1 FormElementGroup 2

2.

1.

4.

3.

(b) UI Model Hierarchy

Figure 6.12: Comparison of Process Model Blocks and UI Model Element Hierarchy

As introduced in Chapter 6.2.1, each of the process model elements can be mapped to an
UI Model element counterpart. For a better understanding of how nested block elements

80

6.2 Process Model to User Interface Transformation

must be processed according to the creation of UI Model elements and how a corresponding
UI Widget creation could look like Figure 6.13 visualize the four steps of container element
(FormTabTemplate & FormElementGroup) generation for the example process. For a better
usability, all contents are displayed in a single user interface. The visualization of the four
steps can be mapped to the levels of the hierarchical tree data structure of the UI Model.
In which step 2 in Figure 6.13d of the visualization has no direct counterpart level in the
tree since it is implemented by replacing the otherwise empty second FormTabTemplate
of the Sequence control-flow block. With the help of these basics about the processing of

(a) Step 1: Sequence block (b) Step 2: Parallel block

(c) Step 3: Parallel block contents (d) Step 4: XOR block contents

Figure 6.13: UI Widget Mock-up Generation Steps for Process Model Control-Flow Blocks

process model control-flow blocks, it is now possible to define the overall process model to
user interface Transformation Algorithm.

6.2.3 Transformation Algorithm

The algorithm presented in this chapter describes the overall transformation from a business
process model to complex user interfaces. The resulting complex user interfaces are enabled
for executing of respective process instances. Therefore, it connects the single parts for user
interface generation as already presented. Namely, it combines the grouping aspects with
the application of Complex and Elementary Transformation Patterns. The result of the

81

6 Transformation Model Composition

transformation is a fully initialized User Interface Model. This User Interface Model is the
base for the generation of a concrete user interface implementation. Thus, the presented
algorithm is completely independent of any user interface implementation related technology.
Figure 6.14 illustrates the single parts realizing the Transformation Algorithm and their
nested call hierarchy. In the following a short overall introduction for the algorithm is given.

1. Main

2. Transform

3. Apply Transformation

4. Apply CTP

5. Apply ETPs

Transform

Apply

Transfor-

mation

Apply

CTP

Apply

ETPs
Main

Actual transformed Block

contains Sub-Blocks?

Figure 6.14: Overall Transformation Algorithm

Figure 6.14 shows that the algorithm is separated into five parts or modules. The Main
module is used as a general setup mechanism, e.g., for setting up the process model as
need for the latter transformation and a definition of the grouping to be used. Additionally,
it is responsible for drawing a resulting User Interface Model. The Main module calls
the Transform module. In the Transform module groups are extracted from the process
model and based on this extracted groups for each of them a group-specific user interface is
generated. This is done by creating an initial group-specific User Interface Model and calling
theApplyTransformationmodule. The ApplyTransformation module is recursively called
as long as the actual processed control-flow block of the process model contains more nested
control-flow blocks. In it for each processed control-flow block, the respective User Interface
Model elements are generated. The generation of these UI Model elements is realized by
fetching and Applying the fitting Complex Transformation Pattern (CTP) for the
actually processed control-flow block. In addition, after the CTP application the processed
block is checked whether it contains activities. If this is the case for all activities inside
the block the ETPs are Applied for each of them. After this short abstract of the overall
algorithm in the following, the single distinct modules are presented in detail.

82

6.2 Process Model to User Interface Transformation

1. Transformation Algorithm: Main Part As mentioned, the purpose of the Main module
is the performance of the setup required for a process model to be enabled for performing the
execution of the process model to user interface transformation and for drawing the results
of the transformation. Listing 6.1 shows the single steps necessary for this in a pseudo code.

Listing 6.1: Process Model Transformation Algorithm Main Module
1 Main (ProcessModel pm)
2 ProcessModel pm = expandProcessModel (pm)
3 Grouping grouping = def ineGrouping (pm)
4 Map<Group , Use r In t e r f a c e >r e s = Transform (grouping , ProcessModel)
5 for (U s e r I n t e r f a c e u i : r e s . va lue s ())
6 Representat ion rep = crea t eRepre s en ta t i on (u i)
7 rep . draw ()
8 // Main END

The transformation setup starts with passing in a process model instance as input. This has
to fit the process model definitions outlined in Chapter 3.1. In line two the process model is
expanded. This includes the extraction of all contained subprocesses and their subsequent
inclusion in a single hierarchically flattened process model. In line three of Listing 6.1
the Grouping Criteria as described in Chapter 6.1.1 is chosen. This can either be done
automatically based on the Organizational Model entities linked with the human activities
of the process model or manually by a user. Thus, this is also applied when the immutable
groups definitions outlined in Chapter 6.1.2 occur. If activities should be allocated to an
immutable group these activities of the process model are tagged respectively. After this two
basic setup steps in line four the Transformation module is called passing over the expanded
process model instance and the Grouping Criteria. The results of a Transformation are
Grouping Criteria specific User Interface Models.

The subsequent lines of Listing 6.1 handle the processing of the Transformation results. If
the call to the Transformation module returns resulting User Interface Models, for each of
these Models a Representation is created. A Representation is an abstraction mechanism
to take care of creating a real user interface including all necessary widgets based on a User
Interface Model and to delegate UI-based changes to an underlying process model. More
details about Representations are given in Chapter 6.2.4. The last call in the Main module
takes care for the initial drawing of the Representations created based on the User Interface
Models.

83

6 Transformation Model Composition

2. Transformation Algorithm: Transformation Part Listing 6.2 shows the second module
that performs the general group specific setup for the performance of a process model to
user interface transformation. It is started with a Grouping Criteria and a process model
as input. These inputs are assigned by the call of the Transform module in the previous
described Main module. In line two of Listing 6.2 all Groups based on the defined Grouping
Criteria are extracted from the process model. For each of the extracted groups a User
Interface Model is created. This is done by initializing a User Interface Model instance
with group specific data, e.g., the name of the group is used as name for the User Interface
Model. This is followed by extracting the group-specific process model and fetching the
base control-flow block (cf. Chapter 3.1.1) from this group specific process model. With
the initialized User Interface Model, the group specific process model and the base control-
flow block the subsequent ApplyTransformation module is called. The result of the call to
ApplyTransformation is stored in a map, which is returned to the Main module after all
groups extracted from the process model have been processed.

Listing 6.2: Process Model Transformation Algorithm Transform Module
1 Transform (GroupingCr i te r ia grouping , ProcessModel pm)
2 L i s t groups = getGroups (grouping , ProcessModel)
3 Map<Group , Use r In t e r f a c e > r e s u l t = new HashMap<Group , Use r In t e r f a c e >()
4 for (Group group : groups)
5 U s e r I n t e r f a c e uiModel = createUIModel (group)
6 ProcessModel groupPM = fetchProcessModelForGroup (group , pm)
7 ControlFlowBlock base = groupPM . fetchBaseBlock ()
8 ApplyTransformation (uiModel , groupPM , base)
9 r e s u l t . put (group , uiModel)

10 return r e s u l t ;
11 // Transform END

3. Transformation Algorithm: ApplyTransformation Part Listing 6.3 shows the third
module, which uses the hierarchically control-flow structure, stored in the process model to
perform the application of CTPs and ETPs and thus in consequent the creation of a fully
initialized User Interface Model instance. In line three of Listing 6.3 the respective Com-
plex Transformation Pattern implementation for the actual processed control-flow block is
fetched. For example, if the actual processed control-flow block is a parallel block the Com-
plex Transformation Pattern implementation CTP2 is returned, which is aware of creating
and or updating the necessary User Interface model elements. The application of the Com-
plex Transformation Pattern is performed in line four. This application of the CTP instance

84

6.2 Process Model to User Interface Transformation

in turn includes the application of all Elementary Transformation Patterns. The details for
these Transformation Pattern applications are described in detail in subsequent chapters.

Listing 6.3: Process Model Transformation Algorithm ApplyTransformation Module
1 ApplyTransformation (U s e r I n t e r f a c e uiModel , ProcessModel pm,
2 ControlFlowBlock block)
3 CTP ctp = fetchCTP (block)
4 ctp . apply (uiModel)
5 i f (base . hasSubBlocks ())
6 for (ControlFlowBlock subBlock : base . getSubBlocks ())
7 ApplyTransformation (uiModel , groupPM , SubBlock) // r e c u r s i o n c a l l
8 // ApplyTransformation END

Since the application of the CTP for each nested control-flow block (contained in the ac-
tual processed control-flow block) only creates empty place holder elements (defined as
FormTabTemplate elements in Chapter 3.2.2) in the User Interface Model, after the appli-
cation of the CTP the actual processed block has to be checked for sub-blocks. If the actual
block contains any sub-blocks, for each of them the ApplyTransformation module has to
be called reclusively with the sub-block as input parameter (cf. recursion call comment
in Listing 6.3). This recursive call causes a full initialization of the User Interface Model,
independent of control-flow block nesting deep in the process model. For a better under-
standing what happens in detail if the Apply method of a CTP implementation is called this
is described in the following.

Listing 6.4: Process Model Transformation Algorithm CTPs Apply Method
1 Apply (U s e r I n t e r f a c e uiModel)
2 // c r e a t e UI Model e lements f o r ControlFlowBlock , the a b s t r a c t method
3 // has to be implemented in each conc re t e CTP implementation f o r the
4 // gene ra t i on o f UI Model e lements as de f i ned by the pattern
5 ApplyCTP()
6 i f (ControlFlowBlock . h a s A c t i v i t i e s ())
7 for (Ac t i v i ty a : ControlFlowBlock . g e t A c t i v i t i e s ())
8 ApplyETPs(a , uiModel) // c r e a t e UI Model e lements f o r A c t i v i t i e s
9 // Apply END

4. Transformation Algorithm: ApplyCTP Part Listing 6.4 shows the most important
part of the fourth module in the call hierarchy. This is implemented in the Apply method
of CTPs abstract base implementation. It is responsible for the performance of UI Model
modifications, which are defined in each CTP implementation. This includes the execution of
all ETPs in correct order. The different CTP implementations have to take care for creating

85

6 Transformation Model Composition

respective UI model elements, or update existing ones, based on the actual processed control-
flow block. This is realized by the call to the ApplyCTP method in line five of Listing 6.4.

In the CTP implementation, only one nesting level is processed. This results in the creation
of empty ForTabTemplate elements for a control-flow block, which is nested in another
control-flow block in one iteration. In the following iteration, which processes the nested
control-flow blocks, previously created ForTabTemplate elements are fetched from the UI
Model and updated with the required content elements.

The Apply method in the CTP base implementation is responsible for the correct execution
of the ETPs. Thus, in line six of Listing 6.4 the control-flow block processed by the CTP
implementation is checked for contained activities. If the block contains activities for all
these activities the ApplyETPs method is called with the currently processed activity and
the UI Model instance as parameter. In the following chapter the important details about
the ApplyETPs method are outlined.

Listing 6.5: Process Model Transformation Algorithm ApplyETPs Method
1 ApplyETPs (A c t v i t i t y a , U s e r I n t e r f a c e uiModel)
2 // human a c t i v i t y check
3 i f (! new ETP1(a , uiModel) . Apply ())
4 // non−human a c t i v i t y p r o c e s s i n g
5 new ETP2(a , uiModel) . Apply ()
6 else
7 // UI element gene ra t i on
8 new ETP3(a , uiModel) . Apply ()
9 // ApplyETPs END

The Elementary Transformation Patterns (ETPs) are executed in the order as listed and
numbered in the Chapter 5.3. This results in the ETPs execution chain as shown in Listing
6.5. In line three of this listing, ETP1 is used to check if an activity is relevant for UI Model
element generation. The result of ETP1 defines if the activity is either a non-human activity
or a human activity.

For non-human activities, source code that is required for connecting these activities to the
human activities has to be generated. Since this source code generation is a rather complex
topic for itself it is only handled in a limited way during this Thesis, e.g., in the Chapters
6.2.4, 7.2 and 7.3. The ETP implementation for ETP2 Non Human Task Transformation
as defined in Chapter 5.3 encapsulates this source code generation (line five of Listing 6.5).
For human activities an ETP3 instance is created and executed (line eight of Listing 6.5).

86

6.2 Process Model to User Interface Transformation

This includes the execution of all ETPs (ETP3.1 - ETP3.5) to generate UI Model elements
for concrete input, output and edit elements.

After finishing the ETP execution by quitting the ApplyETPs method for all control-flow
blocks of a process model, the overall initialization of the User Interface Model is finished.
This User Interface Model can be used to generate a concrete user interface based on a
certain specific UI technology. In Addition it is a important part for tracking changes made
in a User Interface implementation to a process model and vice versa. These aspects are
discussed in the subsequent chapters.

6.2.4 Propagating Changes

To enable the propagation of changes made in a generated user interface, to a process model
and vice versa further aspects have to be discussed. In this chapter this tripartite aspects
are described staring with an introduction in the following. The first part is build by the
definition of new required components. The second part describes the mechanism how to
propagate a change in both directions (from UI to process model), including an example.
The chapter finishes with the suggestion of assistant user restrictions according to potential
changes made in a user interface.

Process Model Mapping Model User Interface11

1 *

Process Transformation

1
1

Representation

1 *

4. 2.

1.

3.

1
1

Figure 6.15: Change Propagation: From User Interface Representation to Process Model

Figure 6.15 shows the components required for the realization of change propagation. All
components expect the Representation have been introduced in all details previously. As pre-
viously mentioned the Representation component is an abstraction mechanism for drawing
User Interface Models. Thus, it is possible to implement different types of Representations,
e.g., a web based implementation for a web browser user interface or a desktop implemen-
tation, e.g., based on Java Swing. This, in turn, leads to the fact that a Representation
implementation manages all User Interface technology related things. In first place, it takes
care of creating all required UI Widgets. In second place, it creates the possibility for
delegating changes on UI Widget modifications to process model elements.

87

6 Transformation Model Composition

Since the creation of UI Widgets is very implementation technology related thing specific
details about this are described in Chapter 8. Summarized, it can be outlined as a parsing
and compilation of the previously created User Interface Model. In which parsing is the
extraction of the single UI Model elements and compilation the iteration through these
elements creating respective UI Widgets for each of the UI Model elements.

In the following, the details of the change propagation aspects are specified. The first
requirement for delegating a change made in a user interface instance and thus, in turn, in
a Representation is to know the affected UI Widgets. There are two cases to distinguish for
this affected UI Widgets detection. The first case is the modification of an existing User
Interface Representation element, e.g., changing a UI element that displays data to a UI
element to edit data. In this case, the detection of the effected UI Widget is trivial since the
UI Widget to change already exists and has to be selected by a user to trigger the change.
The second case is the adding of new UI Widgets, e.g., adding a new input field to a form.
In that case the first thing to do is the detection of the container UI Widget in which the
new UI element should be added.

1.) Representation
2.) User Interface

Model

3.) Mapping Meta

Model
4.) Process Model

Figure 6.16: Steps of Change Propagation through Transformation Model Components

With help of the information, which UI Widgets are affected by a change it is then possible
to use the Representation to get the underlying User Interface Model element in order to
use the Mapping Meta Model to track the places in the process model, which are affected by
user interface changes. Hence, it is a fundamental requirement for a Representation to keep
the link between UI Widgets and UI Model elements. For a better understanding Figure
6.16 visualizes the path through steps of the single components required for delegating user
interface changes to a process model. The following listing summarizes the purpose of the
components in the case of change delegation in the order of their occurrence.

1. Representation, creates UI Widgets based on a User Interface Model and keeps the
links for each single UI Widget to its respective User Interface Model element, detects
the affected UI Widgets for changes in a user interface instance, creates new User
Interface Model elements and updates existing ones

2. User Interface Model, holds all metadata required to generate a user interface
instance and is used by the Representation to detect affected parts in a process model

88

6.2 Process Model to User Interface Transformation

3. Mapping Meta Model, links each User Interface Model elements with its corre-
sponding Process Model elements and therefore enables the detection of affected parts
in a process model

4. Process Model, describes the process order of activities and requires capabilities to
check if a change triggered by a Representation (based on user interface change) is valid,
it is used in the Mapping Meta Model to handle changes send from a Representation

This propagation procedure can be performed in reverse order from a process model to a
Representation as well. To keep the implementation of such an reverse change propagation
from a process model to a user interface as simple as possible it would make sense to re-
execute the overall process model to user interface Transformation Algorithm as described
in previous chapters and rebuild the underlying User Interface Model and Representation
instances in the background.

(a) Change Propagation Steps in a User Interface (editor) to add new UI Widgets

Add new UI

Widget

Update UI

Model

Find Affected

Process Model

Parts

Update Affected

Process Model

Parts

Representation

User Interface Model

Mapping Model

Process Model

4.2.1. 3.

(b) Change Propagation Steps and Component Involvement

Figure 6.17: Steps for adding new UI Widgets to an existing generated User Interface

Due to this implementation option for the propagation of changes from a process model
to a user interface Representation the following explanations and definitions for change
propagations are restricted to changes taking place in a user interface. Figure 6.17a shows
an example for adding new UI Widget elements to an existing generated user interface
instance. In this example, two new input fields should be added to a form for editing

89

6 Transformation Model Composition

customer data. These two new fields are a field for the date of birth of the customer and a
field for adding textual notes to a customer data record. In a user interface editor this new
fields can be added by dragging and dropping this new elements to the existing user interface
(template) instance. The user interface editor can highlight the affected parent UI elements
and if the operation of adding new elements was successful display the new resulting user
interface with the newly added fields highlighted. After a save operation for the updated
user interface instance the highlighted elements would appear as normal like all other fields.

Figure 6.17b shows the corresponding operations including the involvement of the previously
introduced components as color bars for the example presented in Figure 6.17a. In the first
step, the new UI Widget element is created and added to the existing Widgets of the current
screen. Based on the placement of the new UI Widget the corresponding parent UI Widget
is detected. With the help of the new and the parent UI Widget elements it is possible to
update the User Interface Model in a second step, since the parent UI Widget can be used
to find the place in the UI Model for the newly added elements. This can be realized by a
listener mechanism, which listens for changes in the user interface (template) or rather the
Representation. This listener mechanism has to trigger the required User Interface Model
changes proactively and delegate message like errors if a change made by a user is not valid
according to process model restrictions to the Representation. After updating the UI Model
it is possible to find the affected process model parts with the help of the Mapping Meta
Model in a third step. In the fourth and last step, the respective process model parts are
created and updated as needed. A validation if a change in a process model triggered from a
user interface change is allowed has to be realized by the process model implementation. If
the process model change validation results in an exception, the change in the user interface
instance has to be disabled and an error message has to be displayed to a user.

The previous outlined example showed that a restriction of change operations made in a
user interface (template) makes sense according to the avoidance of errors. Thus UI-based
changes should be limited in a way to only allow such operations that are supported by the
underlying process model. The question according to the limitation of change operations
is which factors can be used for the calculation of a set of allowed operations? A starting
point to answer this question is the classification of change operations not only to their kind
(new or edit UI element) but in extend to the way they affect a process model. For this, we
distinguish between local and extended UI-based change operations.

90

6.2 Process Model to User Interface Transformation

Whereas local changes are limited to a single screen of a UI and use the overall data-flow of
a process model including an analysis of all used data types to provide a set of valid change
operations. For extended changes the additional question which kind of change operations
make sense if they are executed in a user interface (template) has to be answered. This limits
the level of complexity of such kind of change operations, e.g., adding a new branch in a XOR
control-flow block is easy in a process model editor but hardly impossible if done by directly
editing a user interface (template). Therefore the extended UI-based change operations are
limited to, adding new human activities or rearranging existing human activities according
to the underlying process model. Table 6.2 summarizes and classifies the problems to solve
for user interface changes including the major requirements to provide solutions for them.

Problem Classification Facilitate Options
Change Granularity local extended
Affected Area . . .
. . . in the Process Model single activity, single

control-flow block
single control-flow block in-
cluding nested blocks

. . . in the UI Model (Screen) single FormElementGroup,
single FormTabTemplate

multiple FormTabTemplates

Supported Operations Edit, New Edit (Move & Rearrange),
New

Guidance Generation based on process model
data-flow and data types

based on process model
control-flow

Table 6.2: Classification of Problems to Provide User Interface-based Changes

Limiting the user interface change operations to capabilities like the existing data-flow of
the underlying process model leeds to strong restrictions of the possible changes. This
especially affects the creation of new Input and Output fields in a user interface editor since
new fields only can be created if they are available in the process model data-flow. A possible
improvement for this restriction would be the suggestion of adding new data objects to the
process model data flow if a user wants to create new input or output fields in a user interface
(template). However, this would lead to the problem of how to supply this new data objects
with values by using the existing process model and then in turn result in the requirement
of changing the process model, e.g., by adding a new activity, which creates and supplies
these new data values.

Table 6.3 summarizes the effects and required actions on a process model for changes made
in a user interface (template) editor. It groups the changes based on User Interface Model
elements since all UI Widgets based changes result in User Interface Model changes. With

91

6 Transformation Model Composition

Affected UI Widget Step Tab
UI Model Object FormTabTemplate
UI Change Operation New Edit
Effect on Process Model Create new Activity Rearrange under-

lying Activity or
control-flow block

Affected UI Widget Form Group
UI Model Object FormElementGroup
UI Change Operation New Edit
Effect on Process Model Create new, Activity which is in

a parallel branch located in a sur-
rounding parallel block of the actvity
representing the current form

Update / Rear-
range underlying
Activity

Affected UI Widget Input & Output Fields
UI Model Object FormElement
UI Change Operation New Edit
Effect on Process Model Check if new FormElement can be

supplied by the existing data-flow, if
not create a service activity, as direct
predecessor activity of the human ac-
tivity linked to the affected form in
the process model, which creates and
supplies the data object

Update the re-
spective data
elements of the
underlying activ-
ity

Table 6.3: Effects of User Interface-based Changes on the Process Model

the help of these definitions, it is possible to proceed with the discussion of user interface
changes made during the run-time of process instances. The run-time change related aspects
are covered in Chapter 7. These run-time aspects include additional solutions for some of the
problems outlined here. For instance, how to solve the missing data element provisioning
and enable a UI for more advanced change operations by concerning declarative process
modeling techniques [PvdA06]. Before starting with this the following chapter presents
some results for generated user interfaces based on the use case process models introduce in
Chapter 4.1.

6.2.5 Application of the Transformation Algorithm to the Use Cases

The User Interface Model presented in this chapter have been generated by the previously
described Transformation Algorithm (cf. Chapter 6.2.3). Obviously, this also includes the
usage of the Transformation Patterns (ETPs and CTPs). The presented UI Model trees
represent all required elements until the level of the single activities for the respective process

92

6.2 Process Model to User Interface Transformation

models. For simplicity reasons, the processed data elements have been modeled as UML class
diagrams, which are included in the respective UI Model figures.

UI State 2
UI State 1

FTT:

Loo

UI Model
FTT

Seq

FTT

FTT:

XOR

FEG FEG

FTT:

Seq

FTT:

XOR

FEG

FEG

FTT:

XOR

FTT:

XOR

FEG

21 21 21 21

L

base

#reporter : string
#assignee : string
#created : Date
#dueDate : Date
#titel : string
#type : int
#description : string
#status : int
#comment : string

Issue

UI Model Tree Legend

FTT:

XOR

FTT:

Par

FTT:

Bac
FTT FEG 1

FTT:

Seq

FTT:

Loo
L baseUI Model

U
se

r
In

te
rf
a
ce

M
o
d
e
l I

n
st

a
n
ce

F
o
rm

T
a
b
T
e
m

p
la

te

S
e
q
u
e
n
ce

 B
lo

ck
F
o
rm

T
a
b
T
e
m

p
la

te

P
a
ra

lle
l B

lo
ck

F
o
rm

T
a
b
T
e
m

p
la

te

X
O

R
 B

lo
ck

F
o
rm

T
a
b
T
e
m

p
la

te

L
o
o
p
 B

lo
ck

F
o
rm

T
a
b
T
e
m

p
la

te

B
a
ck

g
ro

u
n
d
 A

ct
iv

ity

B
lo

ck

F
o
rm

T
a
b
T
e
m

p
la

te

S
in

g
le

 A
ct

iv
ity

F
o
rm

E
le

m
e
n
tG

ro
u
p

(S
in

g
le

 A
ct

iv
ity

)
E

xe
cu

tio
n
 P

a
th

L
o
o
p
 E

xe
cu

tio
n
 P

a
th

F
o
rm

T
a
b
T
e
m

p
la

te

S
e
q
u
e
n
ce

Issue Data Model

(a) Issue Management UI Model with UI States and Data Model for Role Administrator

(b) Issue Management, UI State 1 (c) Issue Management, UI State 2

Figure 6.18: Use Case 1: Issue Management, Complex UI Result

Figure 6.18a shows the role-specific resulting UI Model in a tree-oriented notation, for the
Issue Management use case (cf. Chapter 4.1.1) based on the administrator role. It includes
a legend for the UI Model elements, which are used in the subsequent samples. Moreover,
it includes the data model for an issue data object, which is the single data entity type
processed by all activities of the underlying process model. In addition, two states in the
UI Model are highlighted. Such a UI state refers to a certain state in the process model.
More precisely, it illustrates the complex user interface capabilities by using the UI Model,

93

6 Transformation Model Composition

to refer to the execution of certain activities or control-flow block elements of the process
model.

Figure 6.18b show the corresponding user interface for UI State 1. This UI state represents
the activity Create New Issue in the underlying process model. Whereas Figure 6.18c shows
the user interface for UI State 2 and thus represents the corresponding Close Issue activity
in the process model. For each of the XOR control-flow blocks both execution paths are
included in the UI Model whereupon the empty path is always marked with 2. Choosing
this path at execution time would always result in directly skipping over to the next step.

#CarType : string
#CarModel : string
#Components : string
#TestDrive : Date

CarConfiguration

-OrderID : int
#Configuration : CarConfiguration
#Customer : Customer

Order

1 1

#CustomerID : int
#FirstName : string
#LastName : string
#Address

Customer

11

UI State 2

UI State 1
FTT:

XOR

UI Model
FTT:

Seq

FTT FTT

FTT:

Bac

FTT FTT

FEGFEG

FTT:

Seq

FTT:

XOR

FTT:

Loo

FTT:

Par

FEG FTT:

XOR

FEGFTT:

Bac

FTT FTT

FEG FEG

FEG
FTT

FEG

FTT:

Bac

FTT FTT

FEGFEG

FEGFEG

1 2

1 2

1 2

L

base

Car Configurator

Data Model

(a) Car Configurator UI Model with Sample States

(b) Car Configurator, UI State 1 (c) Car Configurator, UI State 2

Figure 6.19: Use Case 2: Car Configurator, Complex UI Result

94

6.2 Process Model to User Interface Transformation

Figure 6.19 shows the resulting UI Model, for the Car Configurator use case introduced in
Chapter 4.1.2. On the lower left side the corresponding data model is included as UML
class diagram. It consist of, a configuration object that stores the individual configuration
for a car model (CarConfiguration), the customer data (Customer) and the order that links
a customer to an individual car configuration. The user interface for the highlighted UI
State 1 shown in Figure 6.19b represents the activity New or Existing Order in the process
model. The user interface for UI State 2, shown in Figure 6.19c, cannot be mapped to a
single activity. It represents the editing of an existing customer data set (CTP6 Background
Activity) while choosing a test drive date (CTP2 Parallel Block) for the car to order.

UI State 2

UI State 1

FTT:

XOR

UI Model
FTT

Seq

FTT
FTT:

PAR
FTT

FEG FEGFTT:

Bac

FTT FTT

FEG FEG

FTT:

Loo

FTT:

Seq

FEG FTT:

XOR

FEG FEG

FEG

FTT

FEG FEG

1 2

21

1 2L

FEG FEG

base

Bank Account Creation Data Model

#accounts : Account
#messages : Message
#firstname : string
#lastname : string
#contact : string
#adress1 : string
#adress2 : string
#zip : string

Customer

#customer : Customer
#balance : double
#limit : double
#type : string

Account

#receiver : Customer
#sender : string
#content : string

Message

1
*

1
*

(a) Bank Account Creation UI Model with UI States for Role Clerk

(b) Bank Account Creation, UI State 1 (c) Bank Account Creation, UI State 2

Figure 6.20: Use Case 3: Bank Account Creation, Complex UI Result

Figure 6.20a shows the role-specific resulting UI Model, for the Bank Account Creation use
case introduced in Chapter 4.1.3. For simplicity reasons only the UI Model for the role Clerk
is shown. For the role Head of Accounting a separate UI Model has to be generated. The
processed data (UML class diagram on the right side) is based on the entities Customer,

95

6 Transformation Model Composition

Message and Account. At which multiple Messages and Accounts can be linked to on
customer data set. For the highlighted UI State 1 Figure 6.20b shows the resulting user
interface. It represents the parallel control-flow block in which customer data is edited and
the type of contact for customer communication is chosen. Figure 6.20c shows the user
interface in the UI State 2. This represents the activity Send appointment Message in last
XOR block of the process model. In it, a message that informs the customer about the
conditions of its newly created account is written by the clerk and send to the customer.

By a detailed introduction of the grouping aspects implemented in the Transformation Model
and the description of how to integrate role specific UI capabilities by referencing an orga-
nizational model, further complex user interface requirements (cf. Chapter 4.2) are fulfilled.
More precisely the requirement of generating role specific user interfaces. Moreover, the
discussed advance grouping aspects handle problems like different process model granular-
ity and enable the individual allocation of activities to certain user interfaces in a flexible
manner.

The presented Mapping Meta Model builds the base for the process model to user inter-
face Transformation Algorithm. Thereby it is essential to implement the requirement of
keeping the references between process model and user interface elements. The introduced
Transformation Algorithm uses the single components of the Transformation Model, namely
the Transformation Patterns and the grouping aspects, to describe a generic overall process
model to user interface transformation (cf. Chapter 6.2.3). Its generic nature is based on
the usage of the Mapping Meta Model (cf. Chapter 6.2.1) and the User Interface Model (cf.
Chapter 3.2.2), which decuples the algorithm form any implementation technology specific
concerns. Through the introduction of the Representation component, a mechanism for con-
crete user interface generation based on a UI Model has been described (cf. Chapter 6.2.4).
With help of a Representation and the usage of the Mapping Meta Model the propagation
of changes from a user interface to a process model and vice versa were introduced.

The next chapter handles additional concerns for complex user interfaces according to pro-
cess run-time with special respect to UI-based modifications and to retrospective changes of
the process control-flow.

96

7 Runtime Aspects

In this chapter user interface aspects according to process run-time are discussed. As out-
lined in the Chapter 3.1.2, process run-time is defined as the time in which a business process
model is instantiated and the involved resources execute the generated instances. With the
previously described complex user interfaces, we want to enable advanced operations ac-
cording to process control-flow navigation. In addition, a user should have the possibility
to perform change operations to a user interface, e.g., add a new input field to a form.
To provide these capabilities in the following Chapter 7.1 a more detailed definition about
the involved artifacts and their interactions, which are necessary for user interface genera-
tion and change operations on user interface elements, is given. These basic definitions are
followed by an approach which defines how to handle user interface element modifications
in Chapter 7.2. In Chapter 7.3 the problems according to the retroactive modification of
process control-flow and the thereby resulting implications for user interfaces are discussed.
Finally Chapter 7.4 lists the problems which have to be solved for a proper implementation
of the discussed run-time aspects.

7.1 User Interface Generation Compendium

Table 7.1 shows the relation between user interface and process elements in the modelling
and run-time phase of a business process. As mentioned before, in the course of BPM process
modelling is the phase in which a process model is defined. Process run-time is the phase in
which instances of the previously defined process model are created and executed [Wes07].

As outlined by the Mapping Meta Model and the definitions according to change propagation
in Chapter 6.2, it is possible to propagate changes from a user interface template, with
the help of the User Interface Model, to the underlying process model. Thus, a user has
the possibility to individually rearrange user interface elements, e.g., for usability reasons,
without losing the allocation between those UI elements and the process model. In addition,

97

7 Runtime Aspects

1. Process Modelling 2. Process Run-time

Process

Elements

User Interface

Artefacts

(Generated)

Data

Model

Organizational Model

(Role Model)
Ressources

Process Model Process (Model) Instance

Input

Data

Flow

Modifiy

User Interface Model User Interface Template

Triggered

by a user

Required Org.

Units (Roles)
Required

Ressources

Instantiation

Data

Interaction

Data

Builds upon

Delegate Interaction

Modifiy

User Interface Model User Interface Instance

Choose
Model

Configure
Model

Use Default
Configuration

Observe

User

Interaction

Enter
Personal

Data

Choose
Contact Type

Save Data

Model Data Configuration Data Personal Data

Choose

Model

Configure

Model

Use Default
Configuration

Observe

User
Interaction

Enter

Personal

Data

Choose

Contact Type

Save Data

Model Data Configuration Data Personal Data

UserInterface

FormTabTemplate ControlFlowNavigation

1

*

1 1

1

*

UserInterface

FormTabTemplate ControlFlowNavigation

1

*

1 1

1

*

Table 7.1: User Interface Generation in the Process Life Cycle

it is possible to add new user interface elements and handle the implications, like adding
new data input to an activity, in the process model like discussed in Chapter 6.2.4. These
aspects are summarized by the left-handed Process Modelling column of Table 7.1 and are
the base for the run-time definitions in the subsequent chapters. The right sided Process
Run-time column of Table 7.1 gives an overview how user interface actions during process
run-time are delegated to a process instance. The process instance or an instantiated process
model is the base input to instantiate the User Interface Model with run-time data. The
instantiated User Interface Model is then, in turn, used to generate a concrete user interface
instance by implementing the previously introduced Representation interface. In general,
the user interface instance is a user role-specific UI window, which includes all UI widgets
need to perform the actions required while a process instance is executed.

During the execution of a process instance process run-time information, e.g., which execu-
tion path of a exclusive decision gateway has been chosen, is passed to the User Interface
Model in a successive manner. This information can, in turn, be used to decide which UI
elements to draw and which not. Since the execution progress of a process instance is di-
rectly related to the actions performed by a user in a respective user interface a bidirectional
information exchange between the User Interface instance and the running process instance
is necessary. Thus, the User Interface Model can been seen as an information broker for
process- and corresponding user interface instances.

98

7.2 UI Element Modifications

The broker nature of the User Interface Model during process run-time is also used to enable
the UI instance for ad-hoc modifications like adding new input fields to a form. The details
of these UI element modifications are described in the following chapters. In addition, the
User Interface Model can support modifications to the process instance control-flow. Thus,
a user can step back and pass through the control-flow in a different way up to a certain
extent. These process control-flow rearrangements are discussed in Chapter 7.3.

7.2 UI Element Modifications

Element modification can be summarized as the action of adding new UI elements into an
existing user interface during process run-time. The handling of these new UI elements,
according to the underlying process model, differs significantly based on the type of UI
element to add. Since different UI element types have a different change impact on the
respective process instance. In the following this fact is called change granularity. Based
on the distinction between two general change granularity levels, this chapter is divide into
two subchapters. Chapter 7.2.1 describes possibilities how to deal with simple changes like
adding a new input field to an existing UI element group. Chapter 7.2.2 which supple-
ments the simple UI changes with the handling of more complex ones like adding a new
FormTabTemplate element to a existing tab sequence, e.g., to express an additional exe-
cution option. The base of all run-time modifications presented in the following are the
definitions of how to propagate changes as they have been defined in Chapter 6.2.4.

7.2.1 Basic UI Element Modifications

Basic UI element modifications are defined as changes made in the user interface instance
during process run-time, which have no, or only slight change impacts on the process control-
flow structure. It is equivalent with the local change granularity defined for propagating
changes during process modelling. This covers all modification operations located on the
actual visible UI screen. Based on the previously defined UI Model this refers to modifica-
tions, which are possible inside of a single FormTabTemplate element. Figure 7.1a shows
the modification area of a user interface instance during process run-time. This modification
area is a direct outcome of restricting changes. In addition, this results to restrict the im-
pact of a UI-based changes only to certain control-flow blocks in the process model instance
(cf. Figure 7.1b). For instance, if the FormTabTemplate element represents and parallel

99

7 Runtime Aspects

control-flow block and one of its branches contains a nested control-flow block a change can
affect more than a single control-flow block.

(a) Modification Area based on UI Model FormTabTemplate element

Singel Affected

Control Flow Block

Step 1

Step 2.1 Step 2.2 Step 2.3

Step 3

Execution

Path 2

Sequence Control Flow Block (Step 2)

XOR Control Flow Block (Step 2)

(b) Affected Activity and Control Flow Block in the respective Process Instance

Figure 7.1: Process Instance Impact for Adding new Elements to a User Interface Instance

At first the performing of UI-based changes at run-time is similar as it has been described
for modelling time (cf. Chapter 6.2.4). New UI Widgets can be added in a drag and
drop manner by a user. This results in an update of the User Interface Model. These
update operations are triggered by a Representation implementation. The Representation
implementation creates the respective UI Model elements for the new UI Widgets. With the
help of the Mapping Meta Model, the changes can be delegated to the respective process
model parts.

The big difference is that changes to the user interface do not directly affect the underlying
process model. Instead, they are propagated to the respective process instance and the
corresponding used data model of this. Therefore, all checks for the compliance of user
interface changes are based on their integration ability in the process instance.

Before performing the adding of new UI elements the question about which UI element is
valid to be added in actual user interface state has to be answered. A first simple approach

100

7.2 UI Element Modifications

for this could be allowing all kind of basic UI elements to be added. This would cover all
input and output form elements including group elements. This procedure can have a variety
of effects according to the underlying process instance. First, if new arbitrarily output fields
(labels that display data) are added to a user interface it has to be clarified where the data
to display comes from. This in turn results in a case distinction with three options, which
are listed below:

1. Data to display is provided by previous activity.

2. Data to display is included in the currently used input data objects.

3. Data to display requires a new activity, which creates the necessary data elements.

For the first of these possibilities, the activities, which are connected by process control- or
data-flow, with the respective activity of the modified user interface elements, have to be
observed according to their used data elements. If one of these data elements matches the
newly output field to add, e.g., based on the data type, it can be used as data input. The
second possibility also requires a data observation but for this, it is limited to the input data
objects of the activity. If the first two options are not successful, the third option can be used
as an escalation strategy. For this a new service activity which is directly included before the
actual activity has to be created. This new service activity has to provide the required data
elements and send them to the activity responsible for the current user interface. This, in
turn, leads to the fundamental question where from this ad-hoc create service activity should
take the required data. An example solution for this could be the definition of some kind
of data source for process models whose instances should be enabled for UI-based changes.
More details of this data providing problem are outlined in the Chapter 7.4.

To add new input fields to a user interface the thing that has to be clarified is where do the
new input fields send their data to? As for the output fields this results in a distinction of
three cases, which are listed below:

1. Input data is provided for a subsequent activity.

2. Input data is included in the currently used output data objects.

3. Input data is send to a new activity, which processes the new data elements.

To use the first option a definition of what to do with the data in later process steps is
required. By default an activity, which already processes data, from the underlying activity
of the modified UI screen, can be used as input for the new data values. This leads directly

101

7 Runtime Aspects

to the second option, which can be seen as a special case of the first option. It requires
the activity to output business data objects based on the properties of this business data
objects the values of the new added input data elements can be attached to a matching
business object, again based on an analysis by matching the data types of the business
object properties against the underlying data types of the new input fields.

Another option is the creation of a new service activity directly after the user interfaces
activity, which consumes the data values of the new input data elements. Of course, these
attempts do only make sense if the correct processing of the new data elements is assured,
e.g., an underlying data base system has the capabilities to store the new data values. In
addition to the read and write UI elements it is possible to add UI elements to edit data.
To achieve this correctly according to the process instance in use both criteria the ones for
read data elements and the ones for write data elements have to be fulfilled.

Due to the fact that in our UI Model approach user interface group elements are used to
group the UI elements based on the data-flow of a single activity and to group the primitive
data elements of a business object a distinction if adding a new group element to a UI is
required. If adding a new group element to a UI the desired behaviour has to be specified.
Valid options are the creation of a new activity, which is arranged parallel to the current
activity, or to supplement the current activity with a new business object to process. Table
7.2 summarizes the required actions on a process instance based on the kind of UI element
to add to a user interface.

Kind of UI Element New User Interface Element to Add
Input Output Group

New required Process
Element

Effects on Process Model Instance
Data Output (by pre-
vious Activity)

Data Input (by subse-
quent Activity)

New Activity (Ar-
ranged parallel to
current Activity)
Data Ouput or -Input
based on a Business
Object

Where does the new
Data . . .

Options to achive correct Data Supply

. . . come from? n/a
Previous Activity Previous Activity
Activity Data-Flow Activity Data-Flow
New Activity New Activity

. . . go to?
Subsequent Activity

n/a
Subsequent Activity

Activities Data-Flow Activities Data-Flow
New Activity New Activity

Table 7.2: Effects on Process Model Instance by User Interface Element Modifications

102

7.2 UI Element Modifications

To assure the correct execution of the running process instance it makes sense to restrict
the change operations. One course of action to achieve this would be an analysis of the
data model used by the process instance and the control-flow connections of the activity
representing the current user interface. Based on the results of this analysis a catalog of
possible valid changes to the user interface could be generated. More details about this
change catalog generation are presented in Chapter 7.4. In the following, the required
actions for more complex UI modifications, like adding complete new tab elements to a user
interface, are discussed.

7.2.2 Advanced UI Modifications

In the following, we will outline the properties of advanced modification in user interfaces
during process run-time. The advanced modifications differ from the previously introduced
basic modification because these modification cause changes of the process control flow struc-
ture. This control flow modification is only limited up to a certain extend. The limitation
factor is the practicability of performing these changes in a user interface.

(a) Advanced Modification Area Located in the Process Instance Progress Menu of the UI

Step 1

Step 2.1 Step 2.2 Step 2.3

Step 3

Execution

Path 2

XOR Control Flow Block (Step 2)

Execution Path 1

(b) Process Instance Including the Actual State for User Interface

Figure 7.2: Advanced Modification Area and Respective Process Instance

103

7 Runtime Aspects

Figure 7.2b shows the origin for the advanced UI-based modifications in a complex user
interface. Expect of the basic UI modifications these are located on the left sided process
instance progress menu. Located in this process instance progress menu the operations
add, rearrange (move) and remove (delete) are supported. An important prerequisite before
performing an advance change from within a user interface instance is to check if the change
is possible according to the progress of the underlying process instances. A simple example
for an invalid modification operation would be the adding of a new step (activity) behind
the already processed activities. Figure 7.2b shows the respective minimal example process
instance for the UI of Figure 7.2b, including the actual progress state (the activity of Step 2.2
is activated). For this purpose, the already finished activities are highlighted in grey color
the actual activated activity is marked by a thick border. In the following, this minimal
process instance example is used to discuss the different modification operations.

(a) Two Valid Options for Adding a new Step within a User Interface

Step 1

Step 2.1 Step 2.2 Step 2.3

Step 3

Execution

Path 2

New Step

New Step

XOR Control Flow Block (Step 2)

Execution Path 1

Option 2

Option 1

(b) Two Insertion Options for Resulting new Activities in the Respective Process

Figure 7.3: UI-based Add Operation during Process Run-time

As mentioned before the adding of a new step within a user interface during the run-time
of a process instance requires that the corresponding activity to add in the process model
be after the actual activated activity. Figure 7.3a shows two valid options for adding a new
additional step in sequence to existing ones within a user interface. For this, Figure 7.3b
illustrates the resulting options for adding the respective new activities in the process model.

104

7.2 UI Element Modifications

In Option 1, the activity is added to the actual executed path (Execution Path 1) of the
XOR control-flow block. Whereas in Option 2 the activity is added to the global sequence
control-flow block, between the XOR block and the last activity (Step 3). Based on the
block-oriented process model structure and the therefore resulting complex user interface
structure, the only limitations for adding new steps in a UI are:

1. The new step has to be after the actual execution position based on overall process
model control-flow.

2. Dead execution path like Execution Path 2 are restricted from adding new Elements.
Whereas in the example of Figure 7.3 this is impossible anyway since after Execution
Path 1 has been chosen the complex UI only shows the steps necessary for this exe-
cution path. Thus, all UI-based changes, which are made beside the hierarchy level of
Step 2 result in changes in the correct execution path.

FormTabTemplate:

XOR Block Placeholder Step 2

UserInterface

Subprocess

Placeholder

Execution Path 1 Execution Path 2

Base FormTabTemplate

Sequnece

FormTabTemplate:

Step 1

FormTabTemplate:

Step 3

FormTabTemplate:

Sequence Control Flow Block

FormTabTemplate:

Step 2.1

FormTabTemplate:

Step 2.2

FormTabTemplate:

Step 2.3

Option 2

Option 1

Figure 7.4: Affected parts in a UI Model Instance for Add Options

Referring to our UI Model, the execution of the suggested add operations will always result
in the creation of a new FormTabTemplate element, which contains a single FormElement-
Group. The difference between Option 1 and 2 is the hook in point for this new element.
For Option 1 this hook in point would be the FormTabTemplate of the sequence control-flow
block contained in the first execution path of the XOR block. Whereas for Option 2 this
would be the base FormTabTemplate set contained in the UI Model (cf. Figure 7.4).

However, adding this new steps during the run-time of a process is only one thing to do if
implementing such a user interface based change system. An important question to answer
is what is the semantic of this new activity and what data elements are required for the
desired processing of these new steps and in addition where should read data elements come
from and written data elements go to, to enable a reasonable finishing of the underlying
process instance. For this purpose solutions like they have been described in Chapter 7.2.1
to realize basic element modifications, e.g., analyzing the overall data flow of the process

105

7 Runtime Aspects

model an suggesting respective data elements for the processing in the newly added steps,
could be a basic approach.

(a) Moving a Step within a User Interface

Step 1 Step 3Step 2

XOR Control Flow Block

⇒ Step 1 Step 2Step 3

XOR Control Flow Block

(b) Process Instance before and after the User Interface based Move Operation

Figure 7.5: UI-based Move Operation during Process Run-time

The next possible modification operation is the moving of existing elements in the user
interface. Figure 7.5a illustrates such UI-based moving operation. In this example, the user
interface element Step 2 is moved behind Step 3. This includes the moving of all child
step elements contained in Step 2 (Step 2.1 to Step 2.3) and results in a change of the
execution order. Based on this Figure 7.5b visualizes the change operations necessary in the
underlying process model. The XOR control-flow block (which is shown in a collapsed form
for simplicity reasons) has to be moved from its source position behind the activity for Step
3.

In this example, the effected process model part is a complete control-flow block. The move
operation during process run-time shares the prerequisites according to the state of the
underlying process model instance with the previously described add operation. Thus, it is
only possible to move parts in the UI, which have not been executed to other unexecuted
parts. Additional restriction according to move operations are the control-flow block nesting
level and the data elements which are processed by the moved activities. Move operations
should for simplicity reasons always be based in the same block nesting level deep. A more
important restriction aspect are the data elements processed by activities affected by an

106

7.2 UI Element Modifications

UI-based move operation. If an activity provides data elements for a subsequent activity
and the data providing activity would be moved behind the activity requiring the data, the
process instance would be stocked in a deadlock since the required data could never arrive.

FormTabTemplate:

XOR Block Placeholder Step 2

UserInterface Base FormTabTemplate

Sequnece

FormTabTemplate:

Step 1

FormTabTemplate:

Step 3

Soruce Position

Destination Position

Move Operation

Figure 7.6: Advanced Move Operation in a UI Model Instance

Figure 7.6 visualizes the UI Model changes necessary for the UI-based move operation ex-
ample of Figure 7.5. The implementation of this is rather simple since only the processing
order of the FormTabTemplate elments in the base FormTabTemplate sequence of the UI
Model instance has to be changed.

(a) Deleting a Step within a User Interface

Step 1

Step 2.1 Step 2.2

Step 3

Execution

Path 2

Step 2.3

XOR Control Flow Block (Step 2)

Execution Path 1

Deleted

Activity

(b) Deletion of Corresponding Activity in the Respective Process Instance

Figure 7.7: User Interface based Deletion of an Activity

The last presented advanced modification operation is the deletion of complete steps within
the user interface. For such a delete operation Figure 7.7a shows an example. In this
example, the left sided tab selection UI Widget of Step 2.3 is deleted. This results in

107

7 Runtime Aspects

the deletion of the complete underling form elements and, in turn, in the deletion of the
respective activity in the running process instance. Therefore, Figure 7.7b illustrates the
deletion of the respective activity Step 2.3 in the running process instance. It is just removed
from its position in the corresponding sequence control-flow block.

The prerequisites to allow such a deletion operation are quite similar as for the previously
presented move and add operation. Deletion of steps and, in turn, their underlying activities
is only possible if the activities are prior to the actual execution position of the process
instance according to the overall process control-flow. Additionally it should be mentioned
that the deletion of already executed steps is in some way pointless. Another restriction is
based on the overall data-flow. If an activity is responsible to provide data for subsequent
activities, the deletion of the respective user interface step element is not possible since this
will result in a blocked process instance. The reason for this is the fact that by the deletion
of the step element the respective input form UI Widget that was responsible to create the
later required data is completely missing.

FormTabTemplate:

XOR Block Placeholder Step 2

UserInterface

Subprocess

Placeholder

Execution Path 1 Execution Path 2

Base FormTabTemplate

Sequnece

FormTabTemplate:

Step 1

FormTabTemplate:

Step 3

FormTabTemplate:

Sequence Control Flow Block

FormTabTemplate:

Step 2.1

FormTabTemplate:

Step 2.2

FormTabTemplate:

Step 2.3

Deleted Element

Delete Operation

Figure 7.8: Advanced Delete Operation in an UI Model Instance

Figure 7.8 illustrates the impact of the delete operation on the UI Model instance based
on the delete operation sample of Figure 7.7. The only required change is the removal of
the FormTabTemplate element associated with Step 2.3. Since this FormTabTemplate is
located in a leaf of the tree like data structure, this has no impact on different UI Model
parts.

Summing up advanced UI-based change operations (add, move and delete) during the run-
time of a process instance require a detailed analysis of the further data processing. In
addition the actual execution state of the process instance limits the performance of UI-
based change operations to process elements (control-flow blocks & activities). Thus, it is
only possible to perform changes on UI elements which are associated with process elements
succeeding the actual activated activity according to the overall process control-flow.

108

7.3 Sequence Modifications

7.3 Sequence Modifications

In this chapter the control-flow navigation options of complex user interfaces are discussed.
These navigation options are summarized under the term Sequence Modifications, since
they enable a user to modify the processing sequence of already executed process instance
parts. The navigation options, which are provided in a complex user interface have and
direct associated counterpart in the UI Model. During process run-time, theses control-flow
navigation parts of the UI Model are used to enable or disable the respective actions in the
actual user interface.

ControlFlowNavigation

-previous : Previous

-cancel : Cancel

-next : Next

Next

-nextUIElement : FormTabTemplate

NavigationElement

-enabled : bool

-uiElement : FormTabTemplate

CancelPrevious

-previousUIElement : FormTabTemplate

1 3

Figure 7.9: UI Model ControlFlowNavigation UML Class Diagram

Figure 7.9 shows a UML class diagram for a ControlFlowNavigation element. In the UI
Model such a ControlFlowNavigation instance is associated with each FormTabTemplate
element. This enables the navigation between different single FormTabTemplate elements.
The initialization of the single parts (Previous, Cancel & Next) of this ControlFlowNaviga-
tion is based on the underlying process model respectively the process instance control-flow.
It is realized with help of the previously introduced Mapping Meta Model (cf. Chapter
6.2.1) that enables the passing of the required information, e.g., which is the next activity,
between the process instance and the UI Model. The ControlFlowNavigation can be seen as
the link structure between single entry elements like in a doubly linked list. In the following,
the three actions enabled in a complex user interface by this are presented:

1. The Next Step action is realized as OK button. If this button is pressed by a
user, the form elements shown in the actual user interface screen are processed as
defined by the underlying process model. In general, this is the execution of the
underlying human activities. Following this, the next UI screen elements represented
by a FormTabTemplate of the UI Model are displayed in the complex user interface
and if necessary the left sided process instance progress menu is updated.

109

7 Runtime Aspects

2. The Clear Data action is realized by the Cancel button. It just represents a con-
venient operation, which clears the data of all input form elements in the currently
displayed UI screen.

3. The Previous Step action is realized as Back button. If this button is pressed, the
predecessor UI Model elements according to process model control-flow are loaded.
By default, the associated UI Widgets of this already processed elements are only
displayed all modification options are disabled, since the data elements shown and thus
the respective underlying process instance activities have already been executed. In
some special cases, the enabling of already executed activities is possible. This rather
complex circumstance named Sequence Modifications is discussed in the following.

An example for such a Sequence Modification would be the re-execution of an already
processed XOR gateway by stepping back to the user interface form in which the decision
for a specific execution path of this XOR gateway has been triggered. If this decision was
based on input data made in a user interface form then it would be possible to choose a
different option and thus a different execution path as in the first time executing the form.

Create New

Customer

New Or

Existing

Customer

Select

Customer

Fetch

Customer

Data

Edit

Customer

Boolean:Exists

Step Back ‘<<‘

Sequence

Modification Option

Figure 7.10: Process Model Snippet for Sequence Modification Example

Figure 7.10 shows a sample process instance snippet (taken from the Car Configurator
use case). In this Select Customer is the actual activated activity. In the respective user
interface for this activity it would be possible to step back and re-execute the New Or
Existing Customer activity and choose the option to create a new customer instead of
editing an existing one. The reason for this that in the Select Customer activity no process
instance relevant data elements have been modified. This circumstance can be generalized to
a prediction mechanism whether it is possible to re-execute certain activities or not. Which,

110

7.3 Sequence Modifications

in turn, results in a mechanism for enabling or disabling form elements in a complex user
interface if the Back button is used.

Select Test

Drive Date

Store

Customer

Data

Create New

Customer

New Or

Existing

Customer

Select

Customer

Fetch

Customer

Data

Edit

Customer

Boolean:Exists

Integer:CustomerID Customer:CustomerData

Customer:CustomerData

Date:TestDrive

Check

Acailability

CarConfiguration:Configuration

(a) Car Configurator Process Instance including Processed Data Elements

12

3

4

(b) Resulting Complex User Interface Instance Flow

Figure 7.11: Sequence Modification Example: Car Configurator

This requires an analysis of all already processed activities according to their processed data
elements along the original chosen execution path in the process instance. In a basic imple-
mentation the decision whether a human activity could be re-executed or not could be based
on the criteria if this human activity includes write data elements which are processed by
subsequent service activities or not. More general the distinction between enabling or dis-
abling human activity re-execution is based on the fact if previous activities have generated
relevant data for the later process execution.

111

7 Runtime Aspects

Figure 7.11 shows a more complex example for the calculation of such step back paths in a
process instance. It uses the Car Configurator process enriched with more details like service
activities and the data-flow (cf. Chapter 4.1.2). In Figure 7.11a the activated activates are
Edit Customer and to this parallel activity Select Test Drive Date. The corresponding
user interface instance for this state is labeled with 1 in Figure 7.11b. Starting from this
situation it is now possible to step back two times (user interface instances 2 & 3) since
no data elements for the later resuming of the process instance has been generated. In the
state 3 of the sample UIs a further step back is not possible, but the decision made in this
step can be re-executed with a different choice as before. This results finally in the UI state
4 (activation of the Create New Customer activity).

Concluding this step back path calculation is a possibility for simple, UI-based control-flow
sequence modification based on the analysis of the data element types processed by already
executed activities.

7.4 Discussion

In this chapter, the previously presented concepts of user interface based changes during
process run-time and the modification options for process control-flow are evaluated. The
basis for both concepts are the data elements in use by the process instance activities.
According to element modification and in particular to the case of adding new UI Widgets
to a user interface the general question to answer is: where to get required data and where to
put newly created data to. A general answer for this question is missing. In particular, this
problem can be solved by using data elements, which are already contained in the process
instance at least to display it (new UI Model output elements). Alternatively, by adding
service activities, which process the data of newly create input elements. The problem in
this case is what exactly the new service activity should do with the received data elements.
A general ad-hoc solution for this seems to be impossible. Since on the one hand this
requires technical knowledge how to configure data sources and on the other hand makes
the UI-based change operation to difficult for a regular user.

An option for a partial solution of this problem could be the predefinition of certain domain-
specific changes already within the process model, including potential insertion points. This
would result in a process model which contains additional declarative process model parts,
e.g., as they have been described in [PvdA06]. If during process run-time a user request

112

7.4 Discussion

a change based in the UI a list of actual valid change operations could be presented. An
example for this would be a medical examination, which contains a small set of standard
steps. In which during the examination occurs, additional required steps could be added
from a list of predefined steps.

For user interface-based delete and move operations the situation is similar. The data-flow
related with the respective activities is essential. Move operations are only possible if the
overall data supply of the actual process instance still can be fulfilled. Based on the fact that
input forms often serve as data provider for the directly following activities UI-based move
operations are only possible to a limited extend. For instance, as shown in the example case
if complete process parts are moved. For delete operations the situation is quiet similar. In
addition, the deletion of input form-based UIs will result in more than just the deletion of the
single underlying human activity. Moreover respective service activities which are connected
with the human activity, e.g., for processing the input form data, have to be removed from
the process instance. A complete discussion of this process instance change related aspects
can be found in [WRR07] and should not be included here in all its details. [WRR07] also
discusses the migration from process instance-specific changes to the underlying process
model. This aspect of migrating process instance-specific changes to the underlying process
model is another aspect which could be included in UI-based modifications.

The based for the described sequence modification is calculating possible return paths from
within the actual execution state of a process instance. This calculation is based on processed
data elements. A return in the control-flow is only possible if these data elements are not
relevant for the overall execution of the process instance. If such a step back is performed the
underlying process instance has to be modified respectively, e.g., already executed activities
have to be marked as unexecuted again. A simple situation in which such a return is
impossible is for example the execution of an input form to create a customer data set. If
the form has already been processed and the following activity is activated the situation
for a possible step back is not clear. Since resetting the customer creation activity might
result in the deletion of the underlying customer data set. However if the deletion of data
elements is technically not supported this is just impossible. In such a case, it is possible
to just disable the input fields of the form and display the data the user has entered before
without performing any modifications according to the underlying process instance.

Referring one more time to the complex user interface requirements (cf. Chapter 4.2) defined
based on the introduced use cases (cf. Chapter 4.1), with the help of the described Sequence

113

7 Runtime Aspects

Modifications all of theses requirements are covered. Furthermore, the process run-time
based user interface modification operations are beyond these initial defined requirements.
Thus, in the next chapter a prototypical implementation for the Transformation Model,
covering the most important of these requirements is presented.

114

8 Prototypical Implementation

The developed prototype presented serves as proof of concept for the core aspects of complex
user interface generation as already described. In particular, it implements the Transfor-
mation Patterns (ETPs and CTPs), a simplified Activity Grouping Mechanism and the
Transformation Algorithm including all essential required parts. The UI generation proto-
type has been implemented as part of the proView [RKBB12] research project, which tries
to handle process model complexity by the generation of individual simplified process model
views.

In Chapter 8.1 the methodology according to the performed development is presented. This
is followed by Chapter 8.2, which handles mainly the implementation technique related
concerns of the prototype, supplemented with problems and their solutions occurred during
the development. Finally, Chapter 8.3 discusses the results and outlines some improvement
proposals.

8.1 Methodology

The starting point for the prototype implementation was on the one hand side the definition
of use cases (cf. Chapter 4.1) and on the other hand side a detailed analysis of the ADEPT2
[DRRM+10] process model, since the proView [RKBB12] prototype uses ADEPT2 process
models for its view generation. The storage format for ADEPT2 process models is XML-
based. Thus XSLT has been used for first transformation experiments [W3C07]. The results
for these experiments showed up positive, in the sense that it was possible to extract the
required information about activities (nodes) and the corresponding data-flow. The results
of these experiments have been used as input for the definition of the previously introduced
Transformation Patterns. Based on the Transformation Patterns and the Activity Grouping
aspect a first design draft of the prototype has been created.

115

8 Prototypical Implementation

Primitive Types are :
String, Integer, Float, Boolean,
Date, URI (reference)
Bussines Objects :
These are complex data types which
can consist of other Bussines Objects
and Primitive Types

Node Transformation Activity Transformation

Human Task Transformation Data Transformation

1 *

READ Trans.

WRITE Trans.

Process Transformation

Structure Transformation

1

*

Sequenz Transformation

Parallel Block Transformation

XOR Block Transformation

Group Transformation

Group Criterion

1

1

Agent Org. Unit Super Org. Unit Org. Unit Set

Manual Tag

1

*

Service Task Transformation

Complex Form Generation for Human Task execution
on Activity based Process Models

Loop Block Transformation

1 1

All 'form based' Activities (Form,
GeneratedForm, HTMLTemplate)
will be handeled as Human Task

TODO:
* Is there a Compoistion between Agent -> Org. Unit
* What about READ-WRITE Transformation Type?
 -> added in textual pattern description as ETP2.3
* Does 'Block' (e.g. a XOR Block) need a extra Sub type since each 'Block' is a Group, too?
* Transformations Algorithm (see XSLT)
* Naming for relations and mapping to the Transformation Patterns (TPXX)

Step Transformation

1

*

1

* 1 *

1

*

Background Activity Transformation

Subprocess Transformation

XXX: the composition between Process
 Trans. & Strcuture Trans. is NOT
 necessary since: Process Trans. >>
 Gruop Trans. >> Step. Trans >>
 Structure Trans.
Note: Process Trans. >> Strcuture
 Trans (=Globals Struct)

Elementary Criterion Complex Criterion1*

*

*

Transformation Type

1 1..*

1

*

Jeder Process wird durch ein
Gruppierungskriterium (z.B. Org.
Unit) in einzelne Formulare auf-
geteilt. Jedes dieser durch ein
Gruppierungskriterium bestimmtes
Formular kann nochmals in mehrer
Schritte eingeteilt werden (= Sub
Formulare). Die Schritte werden
durch den Prozesskontrollfluss
bzw. die Prozesslogik bestimmt.

All none 'Human Tasks'
are 'Service Tasks'

Bussines ObjectPrimitive Type

Figure 8.1: Conceptual Data Model for first Iteration Transformation Algorithm Prototype

Figure 8.1 shows the conceptual data model for this prototype. In it, the components
for creating a Representation and integrating a real process model has not been defined.
However, this Transformation Data structure was used for the first implementation of the
Transformation Algorithm. Together with a User Interface Model implementation and based
on manual tests with the use cases, the process model to user interface Transformation
Algorithm has been validated. After this first proof of concept, integration tests according
to the usage of the proView prototype according to its process view generation capabilities
were performed. In addition, the vaadin1 MVC web framework has been analyzed according
to its UI generation capabilities, since it is already in use in the proView prototype. Based
on the results of the Transformation Algorithm prototype and the proView integration tests
a design for a complex UI generation prototype was developed and implemented. The design
and implementation approach of this complex UI generation prototype is described in the
next chapter.

1https://vaadin.com/, last checked January 30, 2012

116

https://vaadin.com/

8.2 Implementation

8.2 Implementation

The goal for the prototype implementation described in this chapter was to realize a complex
user interface generation for block-oriented process models. Since this prototype should serve
as an prove of concept advanced concepts, like the enabling of UI-based changes and the
connection of the prototype to a BPMS for using the generated complex UIs to execute
process instances, have been omitted. This results in the following list of required features
which have to be implemented referring to the previously introduced concepts:

1. Implementations for both kind of Transformation Patterns are necessary, namely:

a) Elementary Transformation Patterns, are necessary for generating the fields
(labels and input fields) representing the single content elements of a complex user
interface.

b) Complex Transformation Patterns, to transform the control-flow block struc-
ture of the process model and with the help of this create a navigation menu and
decide which content elements (created by ETPs) to display in the resulting com-
plex UI.

2. Activity Grouping is used for the generation of role-specific user interfaces based
on the roles described in the process models.

3. The Transformation Algorithm is implemented to provide the overall feature of
complex UI generation.

4. The User Interface Model is partly implemented and used to separate the process
model from user interface related technical implementation concerns.

5. The implemented Representation serves as controller, according to a MVC-oriented
architecture, it handles UI-based interactions (including an initial creation of UI ele-
ments) and performs the resulting operations on the data model.

In the following, details about the single implementation parts and their intent according to
a complex user interface generation are presented. Therefore Figure 8.2 shows an overview
of the layered-based architecture of the prototype including a numbered label (1. to 3.) for
each of the layers on the left side. The first of this layers (1.) is build by the AristaFlow
BPM Suite (cf. Chapter 2.2.1). It implements the ADEPT2 process model which is used
as basic process model implementation in the UI generation prototype [DRRM+10]. The

117

8 Prototypical Implementation

2.

1.

3. User Interface Generation

Process Model

View Wrapper

Representation

Implementation

AristaFlow Server

proView Server proView Client

Client API

REST based

Communication

MINA based

Communication

Process Model

Generation

Agent Specific

Process View

Generation

Agent Specific

Comple User

Interface

Generation

Figure 8.2: Complex User Interface Generation Prototype Layer Architecture

AristaFlow Server provides a Java based Client API this is used by the proView Server in
the second layer of the overall architecture (2.).

The proView Server provides a mechanism to generate views of a process models. A view of
process model is a modified version of the original process model. Typically the modification
operations for creating a process model view remove certain parts (nodes/activities) of the
original process model [RKBB12]. Thus, the process view generation provide by the proView
Server is exactly what is required to implement the Activity Grouping for complex UI
generation. The view generation mechanism is used to create a view of a process model based
on Grouping Criteria, e.g., the agents required for the performance of a certain process. The
proView Server provides a lightweight REST-based interface for various different process
view operations that is implemented by the proView Client. The proView Client, in turn,
provides a Java-based API which is used in the User Interface Generation implementation
(3.)

The User Interface Generation layer (3.) consists of two components. At first, the Process
View Wrapper which implements the features of CTPs, Activity Grouping (by using the
proView Client), the Transformation Algorithm and the User Interface Model. The second
component is the Representation Implementation it realizes the concepts of representing a
user interface as described in Chapter 6.2.4. Hence, the Representation is responsible for the
generation of all user interface elements, their connection with the UI- and process model
and the handling of events triggered by user interface elements (respectively user interactions
with them). In the prototype this Representation has been implemented using the vaadin
MVC web framework.

118

8.2 Implementation

+refreshView(ausg. processModel : ProcessModel)

«interface»

Representation

-processModels : ProcessModel

-processViews : ProcessModel

-mainWindow : ComplexUIWindow

-viewGenerator : ViewGenerator

VaadinRepresentation

1

*

-contents

NavigationMenu

1

1

-contents

-ctps : CTPS

-etps : ETPS

ComplexForm

1

1

+addChild(eing. baseBlock : ControlFlowBlock) : ProcessModel

«interface»

ProcessModel

+addSubBlock(eing. subBlock : ControlFlowBlock, eing. branchId : int)

+getSubBlocks(eing. branchId : int) : ControlFlowBlock

+setParent(eing. parent : ControlFlowBlock) : ControlFlowBlock

«interface»

ControlFlowBlock

-baseCFBs : ControlFlowBlock

ProcessModelWrapper

-subBlocks : ControlFlowBlock

AbstractControlFlowBlock

1
*

1

*

+getViews(eing. processId : int) : ProcessModel

-processViews : ProcessModel

AgentViewGenerator

1 *

+getAllAgentViews(eing. processId : int) : ProcessModel

«interface»

ViewGenerator

1
*

-navMenu

-complexForm

ComplexUIWindow

+valueChange(eing. Event : object)

«interface»

VaadinChangeListener

-context : object

VaadinApplication

-cfb : ControlFlowBlock

ETPS

1*

1

*

Vaadin Components4. proView Client Connection1.Representation Implementation3.

Process Model View Wrapper2.

-pm : ProcessModel

CTPS

Figure 8.3: Vaadin-based Representation Implementation

Figure 8.3 illustrates the vaadin-based implementation of the Representation as UML class
diagram. The proView Client Connection Part (1.) takes care for generating agent (based on
the organizational model used by the underlying process model) specific process model views,
by using the previously introduced proView Client API. This is a basic implementation of
the Activity Grouping aspect. The Process Model View Wrapper (2.) part is used to
transform the ADEPT2-specific process model view into an explicit hierarchical control-flow
block based process model structure as described in Chapter 3.1.1. In addition, it contains
the implementation of the ETPs and CTPs, which are combined in the also contained
Transformation Algorithm implementation. Last but not least the ProcessModelWrapper
class serves as a simplified version of UI Model.

The Representation Implementation (3.) part is the core part and serves as central con-
troller for the whole prototype. Thus, it fetches the process model views by using the
proView Client, passes the received views to the Process Model View Wrapper part, creates
the required internal data structures including mappings and builds the user interface ele-
ments. The building of the user interface elements is realized with the help of the vaadin
MVC web framework. Therefore, the VaadinRepresentation implementation class extends
the VaadinApplication class and uses the respective vaadin widget elements to generate a

119

8 Prototypical Implementation

complex user interface. These vaadin dependent user interface implementation classes are
summarized in the Vaadin Componets (4.) part. The user interface consists of two complex
composite parts. One is a NavigationMenu that is used to indicate which of the respective
process model parts are displayed in a content area. This content area contains a single
ComplexForm UI element. An update of the content area and, thus, the form elements to
display can be triggered by a selection in the NavigationMenu. This results in a call to the
refreshView method in the Representation and finally in a redraw of the complex form area
contents.

8.3 Results

The operation of the complex UI generation prototype can be summarized as described in
the following steps:

1. Selection of a process model from a list of predefined, available ADEPT2 process
models

2. Selection of a grouping criteria-specific process model as process view

3. These two selections trigger the complex UI generation which results in a complex user
interface separated into two parts:

a) A navigation menu, which is generated based on the control-flow block structure
of the process model (process view)

b) An area that contains user interface form elements in which the displayed form
elements depend on the selection made by a user in the navigation menu

Figure 8.4 shows the result for a generated complex user interfaces that is based on Use Case
3: Bank Account Creation. The user interface and its single elements are based on widgets of
the previously mentioned vaadin framework which, in turn, is based on Google Web Toolkit
(GWT)2 and Java web technology. In consequence, the UI generation prototype runs on
a web server and requires a web browser to be accessed. In the following, a more detailed
description of the numbered and highlighted regions of Figure 8.4 is given.

The region labeled with 1 and 2 of Figure 8.4 contains the selection mechanism to trigger
a complex user interface generation. In this 1 is used to select a process model. These

2http://code.google.com/webtoolkit/, last checked January 30, 2012

120

http://code.google.com/webtoolkit/

8.3 Results

3

4

5

 1 2

Figure 8.4: Regions in the Complex User Interface

process models are managed by the underlying proView and AristaFlow infrastructure of
the prototype. After selecting one of the process models from the list in 1 the available
process views (grouping criteria-specific process models grouped based on the used agents
in the process model) for this process model are displayed in 2. The selection of one of these
views triggers the complex user interface generation mechanism. The results for this are
displayed in the regions 3 and 4. In which 3 is a interactive navigation menu based on the
process models control-flow block structure and 4 the content area for generated complex
user interfaces.

The navigation menu (3) is created based on the generated UI Model it is a direct represen-
tation of its tree-like data structure. It is possible to select elements in the navigation menu.
If a element is selected the respective child elements are displayed in the content area 4. The
decision which elements to display is realized by a Mapping Meta Model implementation
(cf. Chapter 6.2.1). With the help of this it is possible to detect the respective required
activities in the process model (process view) and generate form elements based on their

121

8 Prototypical Implementation

(a) Complex User Interface, State Create Issue (b) Complex User Interface, State Close Issue

Figure 8.5: Generated Complex User Interface Result, Use Case 1: Issue Management

data-flow. Region (5) (contained in the lower right of region (4)) represents the control-flow
navigation element for process execution. After this basic introduction of the prototype in
the following, the results for the generated UIs of the use cases are presented.

(a) Complex User Interface, State New Or Exist-
ing Order

(b) Complex User Interface, State Edit Customer

Figure 8.6: Generated Complex User Interface Result, Use Case 2: Car Configurator

Figure 8.5 shows two states for the generated complex UI-based on Use Case 1: Issue
Management. In it, the process view for the agent Administrator has been selected. Figure
8.5a represents the user interface for the Create Issue activity and Figure 8.5b for the
Close Issue activity. The only difference between those UIs is that the Create Issue UI
contains input fields whereas the Close Issue UI contains edit fields. Since the UI generation

122

8.3 Results

mechanism is based on a process model there is no runtime data to display in the form fields
and thus no visible difference between both UIs. In both UI states the field Created has
been selected. Since the corresponding data element in the process model is a date element
this results in displaying a supporting UI Widget to defined a date value.

Figure 8.6 shows two states for the generated complex user interface for Use Case 2: Car
Configurator. Figure 8.6a shows the UI state for the New or existing Order activity whereas
Figure 8.6 shows the UI state for Edit Customer activity. The Edit Customer activity
is contained in a XOR block, this XOR block is, in turn, contained in a parallel block.
Therefore the UI elements for the Select Test Dirve Date activity, which is contained in the
different branch of the parallel block (referring to the New or existing Order activity), are
also displayed. The complexity of the navigation menu element is a result of the nesting
deep, of the underlying process model control-flow block structure. Since the process model
contains only a single agent there is only one view available.

(a) Complex User Interface, State Edit Customer
Contact

(b) Complex User Interface, State Send Appoint-
ment Message

Figure 8.7: Generated Complex User Interface Result, Use Case 3: Bank Account Creation

Figure 8.7 shows two states for the generated complex user interface for Use Case 3: Bank
Account Creation. In this use case there exist two process views since the process model
contains different agents. The sample states are based on the view for the agent Clerk.
Figure 8.7a shows the UI elements for the Edit Customer Contact activity it is contained
in a parallel block and thus the UI elements for the activity Choose Contact Type are also
displayed. The Choose Contact Type UI elements are an example for the special handling
of a list based data type (cf. Chapter 5.3.2). Based on a list of strings with predefined
values a select UI element is generated. Figure 8.7b shows the UI elements for the activity

123

8 Prototypical Implementation

Send Appointment Message. Since this activity is contained in a selected branch of a XOR
block only the UI elements for this activity are display. The division of the screen and the
additional second heading is based on the fact that Appointment Message is a complex data
element (cf. Chapter 5.9) for which an additional UI element group has been generated.

Based on these resulting generated complex user interfaces, in the next chapter the overall
results of the thesis are summarized and discussed. In addition, further research questions
are outlined, including potential approaches for the further development of the presented
prototype.

124

9 Summary

The primary concern of the thesis was to show up the general feasibility of complex user
interface generation based on process models. This concern was implemented and described,
including various detailed aspects like advanced activity-grouping concerns. Nevertheless,
there are still some remaining open questions in particular according to integration and
run-time aspects of complex user interfaces. Therefore this concluding chapter presents
a summary of the overall results in Chapter 9.1. This is followed by Chapter 9.2 which
discusses further research questions that arise from the results and closes with an overall
concluding statement in the final Chapter 9.3.

9.1 Results

The overall Transformation Model as presented in Chapter 5.1 builds a framework for the
connection of the single distinct parts, which are required to implement an overall complex
user interface generation based on process models. The first of this Transformation Model
components to mention here are the Elementary Transformation Patterns which represent
a systematic approach to describe the state of the art user interface generation for single
process model activities based on the data-flow.

The second Transformation Model component is build by the Complex Transformation Pat-
terns. These CTPs enforce one further step for complex user interface generation. An
interpretation of process model control-flow structure and a subsequent mapping of this
structure to user interface elements achieve this. In addition, these CTPs include some
prospective patterns, which deal with usability aspects. In which they interpret certain pro-
cess model fragments and transform them to complex UI elements that follow a predefined
overall behaviour.

The last component of the Transformation Model is build by a Grouping Mechanism. It
is based on process model metadata with special respect to organizational concerns. This

125

9 Summary

enables the possibility to generate role-specific user interfaces. The Transformation Algo-
rithm described in Chapter 6.2.3 uses the single components of the Transformation Model
to realize a modular overall process model to complex user interface generation. With the
help of the User Interface Model (cf. Chapter 3.2.2) and the Representation component
(cf. Chapter 6.2.4) a flexible abstraction mechanism to decouple the overall transformation
from technical related concerns, e.g., UI implementation specific aspects, is realized. Based
on this, in Chapter 6.2.4 a detailed description for the delegation of changes from within a
user interface to a related process model and vice versa has been described.

Complex user interface related run-time aspects including challenging problems have been
discussed in Chapter 7. Based on the previously mentioned UI Model and the Representation
component, the principle practicability of such user interface based (process instance) run-
time changes has been outlined. The suggested solution uses the concepts of declarative
process modelling, to ensure a correct execution of a process instance if a user interface based
change has occurred. This aspect is supplemented with the introduction of a mechanism of
how to deal with a retrospective modification of process instances control-flow from within a
user interface. This retrospective modification uses the processed data elements to determine
if a return from the currently activated activity to its predecessors is possible.

Referring to the complex user interface requirements defined based on use cases and research
(cf. Chapter 4), it can be stated, up to a certain extend they were all addressed. Most of
them, expect the UI-based modification options and retrospective control-flow modifications
where prototypically implemented. Moreover, this prototypical implementation which has
been described in Chapter 8 showed the general practicability of the overall process model
to complex user interface transformation approach.

9.2 Further Research Questions

In this chapter, further arising research questions according to complex user interface gen-
eration are discussed. They are listed in the order of their appearance during the thesis.

With the Elementary Transformation Pattern ETP2: Non-Human Activity Transformation
the basic requirement for handling service (non-human) activities according to an overall
process model to user interface transformation have been described. For this ETP2 more
specific details are necessary to realize a useable integration of the described UI generation

126

9.2 Further Research Questions

approach in an existing BPMS. Without reasonable source code generation, as described by
ETP2, all run-time related aspects cannot be implemented.

For the Complex Transformation Patterns a more detailed evaluation is necessary. This
could be based on analyzing existing process models according to their user interface require-
ments, e.g., by examine the existing user interfaces for this models [WRR07, vdAtHKB03,
LRtHW+11, LRWM+11, RvdAtHE05]. In addition, the existing process models can be
rebuilt to fit in the described UI generation approach and then, in turn, the resulting gener-
ated complex user interface can be compared with the existing ones. The behaviour pattern
aspect introduced as an extension to the structural CTPs is open field. An detailed analysis
of existing process models should help to identify more patterns in this area (cf. Chapter
5.4.2).

The run-time aspects discussed in Chapter 7, like modification during run-time and sequence
modification, should be included in the existing prototype. This would open up further
research questions especially according to end user concerns. Before they are discussed in
the following some general remarks according to the further development of the prototype.
The prototype should not only generate complex user interfaces during process modelling,
additionally it should serve as an advanced user interface template editor. In which user
interfaces can be modified in a drag and drop manner. This can be enabled by the described
change propagation mechanism (cf. Chapter 6.2.4). Based on this it even would be possible
to create a process model, by creating the respective user interface.

Another important prototype related aspect is the connection of the generated complex user
interfaces to a process execution engine. These aspects where somehow described by the
previously mentioned ETP2. However, according to process execution more specific details
are required. A starting point for this could be the definition of an Interaction Service
for each generated UI, which encapsulates the non human activities in a service oriented
manner by providing methods with respective input and output data as required by the
human activities.

As mentioned before, a prototype enriched with the described model and run-time related
aspects, would open up for various psychological and usability related analysis. For in-
stance, evaluations according to time saving concerns in user interface development [SSR+07,
ZZHM07], process execution speed up by generated complex UIs compared to standard UIs,
practicability of complex UI generation in a real world scenario similar as described in

127

9 Summary

[SMV10] and last but not least tests according to the acceptance of run-time related com-
plex UI features like UI-based changes during process execution.

9.3 Conclusion

In summary, it can be stated that it is possible to generate role specific complex user
interfaces for complete block-structured process models. The introduced Transformation
Model and pattern-based approach has proven to be feasible. Finally yet importantly the
implementation of the overall Transformation Algorithm in the prototype represents a proof
of concept for this user interface generation method.

This is somehow in contrast to statements from previous research work which outline the
necessity of task models for process model based user interface generation [Sou09, GVC08].
However, some of these task model related aspects, like the granularity of activities in a
process model, have been implicitly integrated in our approach (cf. Chapter 6.1). To bring
this statements about complex user interface generation for process models to a further level.
More efforts, especially according to the developed prototype and subsequent usability stud-
ies with real users are essential. Altogether the neglect aspect of complex user interface
generation based on process models seem to be promising and worthwhile research direc-
tion. Thus the continuing of its development, e.g. along with the proView research project
[RKBB12], is a desirable option.

128

Bibliography

[AD67] J. Annett and K. D. Duncan. Task Analysis And Training Design. Technical
Report 1, Hull University (England) Departement of Psychology, 1967.

[Ben96] D. Benyon. Domain Models for User Interface Design. In D. Benyon and
P. Palanque, editors, Critical Issues in User Interface Systems Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[CNM83] S. K. Card, A. Newell, and T. P. Moran. The Psychology of Human-Computer
Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1983.

[CT12] M. Chinosi and A. Trombetta. BPMN: An introduction to the standard.
Computer Standards & Interfaces, 34(1):124–134, 2012.

[DBVC09] R. Dividino, V. Bicer, K. Voigt, and J. Cardoso. Integrating Business Process
and User Interface Models using a Model-driven Approach. In Computer and
Information Sciences, 2009. ISCIS 2009. 24th International Symposium on,
pages 492–497, September 2009.

[DR09] P. Dadam and M. Reichert. The ADEPT Project: A Decade of Research
and Development for Robust and Flexible Process Support - Challenges and
Achievements. Computer Science - Research and Development, 23:81–97,
2009.

[DRRM+10] P. Dadam, M. Reichert, S. Rinderle-Ma, A. Lanz, R. Pryss, M. Predeschly,
J. Kolb, L. T. Ly, M. Jurisch, U. Kreher, and K. Göser. From ADEPT
to AristaFlow BPM Suite: A Research Vision Has Become Reality. In
S. Rinderle-Ma, S. Sadiq, F. Leymann, W. M. P. van der Aalst, J. My-
lopoulos, M. Rosemann, M. J. Shaw, and C. Szyperski, editors, Proceedings
Business Process Management (BPM’09) Workshops, 1st Int’l. Workshop on
Empirical Research in Business Process Management (ER-BPM ’09), vol-
ume 43 of Lecture Notes in Business Information Processing, pages 529–531.
Springer Berlin Heidelberg, 2010.

129

Bibliography

[Dum05] M. Dumas, editor. Process-Aware Information Systems : Bridging People
and Software through Process Technology. Wiley, Hoboken, NJ, 2005.

[EKO07] M. Ehrig, A. Koschmider, and A. Oberweis. Measuring Similarity between
Semantic Business Process Models. In Proceedings of the fourth Asia-Pacific
conference on Comceptual modelling - Volume 67, APCCM ’07, pages 71–80,
Darlinghurst, Australia, Australia, 2007. Australian Computer Society, Inc.

[GBP+01] T. Griffiths, P. J Barclay, N. W. Paton, J. McKirdy, J. Kennedy, P. D. Gray,
R. Cooper, C. A. Goble, and P. P. da Silva. Teallach: A Model-Based User
Interface Development Environment for Object Databases. Interacting with
Computers, 14(1):31–68, 2001.

[GVC08] J. G. Garcia, J. Vanderdonckt, and J. M. G. Calleros. FlowiXML: a step
towards designing workflow management systems. Int. J. Web Eng. Technol.,
4:163–182, May 2008.

[GVGW08] J. Guerrero, J. Vanderdonckt, J. M. Gonzalez, and M. Winckler. Model-
ing User Interfaces to Workflow Information Systems. In Proceedings of the
Fourth International Conference on Autonomic and Autonomous Systems,
pages 55–60, Washington, DC, USA, 2008. IEEE Computer Society.

[Ham10] M. Hammer. What is Business Process Management? In J. vom Brocke and
M. Rosemann, editors, Handbook on Business Process Management 1, In-
ternational Handbooks on Information Systems, pages 3–16. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[HBR08] A. Hallerbach, T. Bauer, and M. Reichert. Managing Process Variants in the
Process Life Cycle. In J. Cordeiro and J. Filipe, editors, ICEIS (3-2), pages
154–161, 2008.

[HMZ11] H. Hussmann, G. Meixner, and D. Zuehlke. Model-Driven Development of
Advanced User Interfaces, volume 340 of Model-Driven Development of Ad-
vanced User Interfaces:, Studies in Computational Intelligence, chapter Pref-
ace, pages V–VII. Springer-Verlag Berlin / Heidelberg, 2011.

[HRL09] O. Holschke, J. Rake, and O. Levina. Granularity as a Cognitive Factor in
the Effectiveness of Business Process Model Reuse. In U. Dayal, J. Eder,
J. Koehler, and H. Reijers, editors, Business Process Management, volume

130

Bibliography

5701 of Lecture Notes in Computer Science, pages 245–260. Springer Berlin
/ Heidelberg, 2009.

[HYZL10] A. Hongxin, X. Yusheng, M. Zhixin, and L. Li. Integrating User Interfaces
by Business Object States. In Information Science and Engineering (ICISE),
2010 2nd International Conference on, pages 2900–2903, December 2010.

[Kam11] K. Kammerer. Technische Realisierung des Abklärungsablaufs von Sicher-
heitsausweisen in KMUs mit Hilfe der AristaFlow BPM Suite. Ulm Univer-
sity, June 2011.

[KLL09] R.K.L. Ko, S.S.G. Lee, and E.W. Lee. Business process management (BPM)
standards: A survey. Business Process Management Journal, 15(5):744–791,
2009.

[KR11a] V. Künzle and M. Reichert. A Modeling Paradigm for Integrating Processes
and Data at the Micro Level. In T. Halpin, S. Nurcan, J. Krogstie, P. Soffer,
E. Proper, R. Schmidt, I. Bider, W. M. P. van der Aalst, J. Mylopoulos,
N. M. Sadeh, M. J. Shaw, and C. Szyperski, editors, Enterprise, Business-
Process and Information Systems Modeling, volume 81 of Lecture Notes in
Business Information Processing, pages 201–215. Springer Berlin Heidelberg,
2011.

[KR11b] V. Künzle and M. Reichert. PHILharmonicFlows: Towards a Framework for
Object-aware Process Management. Journal of Software Maintenance and
Evolution: Research and Practice, 23(4):205–244, 2011.

[KRW12] J. Kolb, M. Reichert, and B. Weber. Using Concurrent Task Trees for
Stakeholder-centered Modeling and Visualization of Business Processes. In
S-BPM ONE 2012. Springer, April 2012.

[LK01] A. M. Latva-Koivisto. Finding a complexity measure for business process
models. Technical report, Helsinki University of Technology, Systems Anal-
ysis Laboratory, 2001. 26 pp.

[LRD11] A. Lanz, M. Reichert, and P. Dadam. Robust and Flexible Error Handling
in the AristaFlow BPM Suite. In P. Soffer, E. Proper, W. M. P. van der
Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw, and C. Szyperski, edi-
tors, Information Systems Evolution, volume 72 of Lecture Notes in Business
Information Processing, pages 174–189. Springer Berlin / Heidelberg, 2011.

131

Bibliography

[LRtHW+11] M. La Rosa, A. H. M. ter Hofstede, P. Wohed, H. A. Reijers, J. Mendling, and
W. M. P. van der Aalst. Managing Process Model Complexity via Concrete
Syntax Modifications. Industrial Informatics, IEEE Transactions on, 7(2):
255–265, May 2011.

[LRWM+11] M. La Rosa, P. Wohed, J. Mendling, A. H. M. ter Hofstede, H. A. Reijers, and
W. M. P. van der Aalst. Managing Process Model Complexity Via Abstract
Syntax Modifications. Industrial Informatics, IEEE Transactions on, 7(4):
614–629, November 2011.

[LV04] Q. Limbourg and J. Vanderdonckt. Comparing Task Models for User Inter-
face Design. The handbook of task analysis for human-computer interaction,
6:135–154, 2004.

[LVM+05] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. López-
Jaquero. USIXML: A Language Supporting Multi-path Development of User
Interfaces. In R. Bastide, P. Palanque, and J. Roth, editors, Engineering Hu-
man Computer Interaction and Interactive Systems, volume 3425 of Lecture
Notes in Computer Science, pages 134–135. Springer Berlin / Heidelberg,
2005.

[LW07] X. Lu and J. Wan. Model Driven Development of Complex User Interface. In
A. Pleuß, J. V. den Bergh, H. Hußmann, S. Sauer, and D. Görlich, editors,
Model Driven Development of Advanced User Interfaces (MDDAUI 2007),
volume 297 of CEUR Workshop Proceedings, pages 59–64. CEUR-WS.org,
2007.

[MPS02] G. Mori, F. Paternò, and C. Santoro. CTTE: Support for Developing and
Analyzing Task Models for Interactive System Design. IEEE Trans. Software
Eng., 28(8):797–813, 2002.

[MRvdA10] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst. Seven process
modeling guidelines (7PMG). Information and Software Technology, 52(2):
127–136, 2010.

[MS08] J. Mendling and M. Strembeck. Influence Factors of Understanding Business
Process Models. In W. Abramowicz, D. Fensel, W. M. P. van der Aalst,
J. Mylopoulos, M. Rosemann, M. J. Shaw, and C. Szyperski, editors, Busi-

132

Bibliography

ness Information Systems, volume 7 of Lecture Notes in Business Information
Processing, pages 142–153. Springer Berlin Heidelberg, 2008.

[MSBS03] D. Moody, G. Sindre, T. Brasethvik, and A. Sølvberg. Evaluating the Quality
of Process Models: Empirical Testing of a Quality Framework. In S. Spac-
capietra, S. March, and Y. Kambayashi, editors, Conceptual Modeling — ER
2002, volume 2503 of Lecture Notes in Computer Science, pages 380–396.
Springer Berlin / Heidelberg, 2003.

[OAS07] OASIS. Web Services Business Process Execution Language for Web Ser-
vices version 2.0. OASIS: http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-v2.0.pdf, 2007. Organization for the Advancement of Structured
Information Standards.

[OMG11a] Object Management Group OMG. Business Process Model and Nota-
tion (BPMN). OMG: http://www.omg.org/spec/BPMN/2.0/PDF/, January
2011.

[OMG11b] Object Management Group OMG. Unified Modeling Language (UML).
OMG: http://www.omg.org/spec/UML/2.4.1, August 2011.

[Pat00] F. Paternò. Model-Based Design and Evaluation of Interactive Applications.
Springer London, 236 Gray’s Inn Road, London WC1X 8HB United King-
dom, 1st edition. edition, 2000. 192 pp.

[PEGM94] A. R. Puerta, H. Eriksson, J. H. Gennari, and M. A. Musen. Model-Based
Automated Generation of User Interfaces. In B. Hayes-Roth and R. E. Korf,
editors, AAAI, pages 471–477. AAAI Press / The MIT Press, 1994.

[PM97] A. R. Puerta and D. Maulsby. MOBI-D: A Model-Based Development Envi-
ronment for User-Centered Design. In CHI ’97 extended abstracts on Human
factors in computing systems: looking to the future, CHI EA ’97, pages 4–5,
New York, NY, USA, 1997. ACM.

[PMM97] F. Paternò, C. Mancini, and S. Meniconi. ConcurTaskTrees: A Diagram-
matic Notation for Specifying Task Models. In S. Howard, J. Hammond, and
G. Lindgaard, editors, Proceedings of the IFIP TC13 Interantional Confer-
ence on Human-Computer Interaction, volume 96 of INTERACT ’97, pages
362–369, London, UK, UK, 1997. Chapman & Hall, Ltd.

133

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.omg.org/spec/UML/2.4.1

Bibliography

[PS03] F. Paternò and C. Santoro. A Unified Method For Designing Interactive
Systems Adaptable To Mobile And Stationary Platforms. Interacting with
Computers, 15(3):349–366, 2003. Computer-Aided Design of User Interface.

[PvdA06] M. Pesic and W. M. P. van der Aalst. A Declarative Approach for Flexible
Business Processes Management. In J. Eder and S. Dustdar, editors, Business
Process Management Workshops, volume 4103 of Lecture Notes in Computer
Science, pages 169–180. Springer Berlin / Heidelberg, 2006.

[RDB03] M. Reichert, P. Dadam, and T. Bauer. Dealing with Forward and Backward
Jumps in Workflow Management Systems. Software and Systems Modeling,
2(1):37–58, 2003.

[Rei00] M. Reichert. Dynamische Ablaufänderungen in Workflow-Management-
Systemen. PhD thesis, Ulm University, July 2000.

[RKBB12] M. Reichert, J. Kolb, R. Bobrik, and T. Bauer. Enabling Personalized Vi-
sualization of Large Business Processes through Parameterizable Views. In
27th ACM Symposium On Applied Computing (SAC’12), 9th Enterprise En-
gineering Track. ACM Press, March 2012.

[RM08] H. Reijers and J. Mendling. Modularity in Process Models: Review and
Effects. In M. Dumas, M. Reichert, and M. Shan, editors, Business Process
Management, volume 5240 of Lecture Notes in Computer Science, pages 20–
35. Springer Berlin / Heidelberg, 2008.

[RtHEvdA05] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst.
Workflow Data Patterns: Identification, Representation and Tool Support.
In L. Delcambre, C. Kop, H. Mayr, J. Mylopoulos, and O. Pastor, editors,
Conceptual Modeling – ER 2005, volume 3716 of Lecture Notes in Computer
Science, pages 353–368. Springer Berlin / Heidelberg, 2005.

[RvdAtHE05] N. Russell, W. M. P. van der Aalst, A. ter Hofstede, and D. Edmond. Work-
flow Resource Patterns: Identification, Representation and Tool Support. In
O. Pastor and J. Falcão e Cunha, editors, Advanced Information Systems En-
gineering, volume 3520 of Lecture Notes in Computer Science, pages 11–42.
Springer Berlin / Heidelberg, 2005.

[SMV10] K. S. Sousa, H. Mendonça, and J. Vanderdonckt. A Rule-Based Approach for
Model Management in a User Interface – Business Alignment Framework. In

134

Bibliography

D. England, P. Palanque, J. Vanderdonckt, and P. Wild, editors, Task Models
and Diagrams for User Interface Design, volume 5963 of Lecture Notes in
Computer Science, pages 1–14. Springer Berlin / Heidelberg, 2010.

[Sou09] K. S. Sousa. Model-Driven Approach for User Interface: Business Alignment.
In Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive
computing systems, EICS ’09, pages 325–328, New York, NY, USA, 2009.
ACM.

[SSR+07] N. Sukaviriya, V. Sinha, T. Ramachandra, S. Mani, and M. Stolze. User-
Centered Design and Business Process Modeling: Cross Road in Rapid Pro-
totyping Tools. In C. Baranauskas, P. Palanque, J. Abascal, and S. Barbosa,
editors, Human-Computer Interaction – INTERACT 2007, volume 4662 of
Lecture Notes in Computer Science, pages 165–178. Springer Berlin / Hei-
delberg, 2007.

[SV11] K. S. Sousa and J. Vanderdonckt. Business Performer-Centered Design of
User Interfaces. In Hussmann et al. [HMZ11], chapter Preface, pages 123–
142.

[Szw11] G. Szwillus. Task Models in the Context of User Interface Development. In
H. Hussmann, G. Meixner, and D. Zuehlke, editors, Model-Driven Develop-
ment of Advanced User Interfaces, volume 340 of Studies in Computational
Intelligence, pages 277–302. Springer-Verlag Berlin / Heidelberg, 2011.

[TKVW10] V. Tran, M. Kolp, J. Vanderdonckt, and Y. Wautelet. Using Task and Data
Models for user Interface Declarative Generation. In J. Filipe and J. Cordeiro,
editors, ICEIS (5), pages 155–160. SciTePress, 2010.

[TMN04] H. Trætteberg, P. J. Molina, and N. J. Nunes. Making Model-Based UI
Design Practical: Usable and Open Methods and Tools. In Proceedings of
the 9th international conference on Intelligent user interfaces, IUI ’04, pages
376–377, New York, NY, USA, 2004. ACM.

[vdAtHKB03] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow Patterns. Distributed and Parallel Databases, 14:5–51,
2003.

[vdAtHW03a] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business
Process Management: A Survey. In Weske [vdAtHW03b], pages 1019–1019.

135

Bibliography

[vdAtHW03b] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, editors. Busi-
ness Process Management, International Conference, BPM 2003, Eindhoven,
The Netherlands, June 26-27, 2003, Proceedings, volume 2678 of Lecture
Notes in Computer Science. Springer, 2003.

[VVK08] J. Vanhatalo, H. Völzer, and J. Koehler. The Refined Process Structure
Tree. In M. Dumas, M. Reichert, and M. Shan, editors, Business Process
Management, volume 5240 of Lecture Notes in Computer Science, pages 100–
115. Springer Berlin / Heidelberg, 2008.

[W3C07] World Wide Web Consortium W3C. XSL Transformations (XSLT) Version
2.0. W3C: http://www.w3.org/TR/xslt20/, January 2007.

[Wes07] M. Weske. Business Process Management : Concepts, Languages, Architec-
tures. Springer, Berlin; Heidelberg; New York, September 2007. 368 pp.

[WRR07] B. Weber, S. Rinderle, and M. Reichert. Change Patterns and Change Sup-
port Features in Process-Aware Information Systems. In J. Krogstie, A. Op-
dahl, and G. Sindre, editors, Advanced Information Systems Engineering,
volume 4495 of Lecture Notes in Computer Science, pages 574–588. Springer
Berlin / Heidelberg, 2007.

[WSR09] B. Weber, S. Sadiq, and M. Reichert. Beyond Rigidity – Dynamic Process
Lifecycle Support: : A Survey on Dynamic Changes in Process-aware Infor-
mation Systems. Computer Science - Research and Development, 23:47–65,
2009.

[WWWC08] W3C World Wide Web Consortium. Extensible Markup Language (XML).
W3C: http://www.w3.org/TR/2008/REC-xml-20081126/, November 2008.

[XJ07] Lu X. and Wan J. User interface design model. In Software Engineering, Ar-
tificial Intelligence, Networking, and Parallel/Distributed Computing, 2007.
SNPD 2007. Eighth ACIS International Conference on, volume 3, pages 538–
543, August 2007.

[YSW+10] S. Yang, Y. Sun, J. Waterhouse, D. Lau, and T. Al-Hamwy. Modeling and
Implementing a Business Process Using WebSphere Lombardi Edition 7.1.
In Proceedings of the 2010 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’10, pages 374–375, Riverton, NJ, USA,
2010. IBM Corp.

136

http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/2008/REC-xml-20081126/

Bibliography

[ZZHM07] X. Zhao, Y. Zou, J. Hawkins, and B. Madapusi. A Business-Process-
Driven Approach for Generating E-Commerce User Interfaces. In G. Engels,
B. Opdyke, D. Schmidt, and F. Weil, editors, Model Driven Engineering
Languages and Systems, volume 4735 of Lecture Notes in Computer Science,
pages 256–270. Springer Berlin / Heidelberg, 2007.

137

Bibliography

138

A Appendix

139

A Appendix

A.1 User Interface Generation Approaches

d
e
ri

v
a
te

 h
ie

ra
rc

h
ic

a
l
p
ro

c
e
s
s
 m

o
d
e

ls
 f
ro

m
 d

a
ta

o
b
je

c
t
p
ro

c
e
s
s
in

g
 i
n
 i
n
fo

rm
a
ti
o
n
 s

y
s
te

m
s
 b

y
 :

1
.

D
e
c
ie

d
 H

o
w

 t
o
 C

re
a
te

 P
re

s
e
n
ta

ti
o
n
s
 f
o
r

T
a
s
k
s
 (

1
.
S

a
m

e

fo
r

A
ll

T
a
s
k
 T

y
p
e
s
,
2
.

D
if
fe

re
n
t
fo

r
a
ll

T
a
s
k
 T

y
p
e
s
,

C
o
m

b
in

a
ti
o
n
 o

f
1

.
&

 2
.)

P
re

re
q
u

is
it
e
:

D
e
ta

ile
d
 D

a
ta

 T
y
p
e
 M

o
d
e

l
4

.
V

a
lid

a
te

 t
h

e
 S

e
t
o

f
e
n

a
b
le

d
 T

a
s
k
s
 a

b
o
u
t

C
o
n
ta

in
e
d

T
a
s
k
 P

a
tt
e

rn
s

F
o
r

E
a
c
h
 D

a
ta

 T
y
p
e
:

d
e

fi
n
e
 a

 M
ic

ro
 P

ro
c
e
s
s
 (

=

fi
n
it
e
 s

ta
te

 m
a
c
h
in

e
)

5
.

C
h
o
o

s
in

g
 P

re
s
e
n
ta

ti
o
n
 T

e
m

p
la

te
 b

a
s
e
d
 o

n
 T

a
s
k

S
e
m

a
n
ti
c

C
o
n
n

e
c
ti
o
n
 o

f
D

a
ta

In
s
ta

n
c
e
s
 (

M
ic

ro

P
ro

e
c
e
s
s
e
s
)

=
 M

a
c
ro

 P
ro

c
e
s
s

6
.

C
o
n
s
id

e
ri

n
g
 T

e
m

p
o
ra

l
R

e
la

ti
o
n
 b

e
tw

e
e
n

 T
a
s
k
s
 (

T
h
is

S
e
e
m

s
 t
o
 b

e
 a

 g
o
o
d

 I
n
p
u

t
fo

r
th

e
 C

T
P

s
 (

c
f.
 P

a
te

rn
o

M
o
d
e

l
B

a
s
e
d
 D

e
s
ig

n
 B

o
o
k
 p

 8
2
.)

R
o
ls

e
 s

p
e
c
if
ic

 A
c
c
e
s
 o

n
 M

a
c
ro

 &
 M

ic
ro

 L
e
v
e
l

d
e
fi
n
e
d

 i
n
 a

 A
u
th

o
ri

s
a
ti
o
n
 T

a
b
e

l

7
.

P
ro

c
e
s
s
in

g
 T

h
e
 c

o
n
n

e
c
ti
o
n
s
 b

e
tw

e
e
n

 m
u
lt
ip

le
 E

n
a
b

le
d

T
a
s
k
 S

e
ts

 (
=

 C
T

P
 P

a
tt
e

rn
 n

e
s
ti
n
g
 &

 B
lo

c
k
 P

ro
c
e
s
s
in

g
)

A
u
th

o
ri

s
a
ti
o
n
 T

a
b
e

l
is

 u
s
e
d
 t

o
 g

e
n
e

ra
te

 R
o
le

S
p
e
c
if
ic

 F
o
rm

s
,
b
y
 u

s
in

g
 d

a
ta

 t
y
p
e
 &

 d
a

ta

a
c
c
e
s
s
 b

a
s
e
d
 t

ra
n
s
fo

rm
a
ti
o
n
 r

u
le

s

8
.

 O
rd

e
ri

n
g
 U

I
E

le
m

e
n
ts

 f
o
r

P
ro

c
e
s
s
e
d
 D

a
ta

 b
a
s
e
d
 o

n

th
e

ir
 p

ri
o
ri

ty
 (

le
v
e
l
in

 t
h

e
 c

c
t)

B
P

 M
o

d
e
l

T
a
s
k

 M
o

d
e
l

A
b

s
tr

a
c
t

U
I

U
s
e
r

In
te

rf
a
c
e
 w

it
h
o

u
t

R
e
p
re

s
e
n
ta

ti
o
n
 F

o
rm

b
a
s
e
d
 o

n
 C

T
T

 M
o
d
e

l

2
.

T
ra

n
s
fo

rm
a
ti
o
n
 F

ro
m

 T
a
s
k
 M

o
d
e

l
to

 U
I
A

rc
h
it
e
k
tu

re

M
o
d
e

l
=

 M
a
p
 T

a
s
k
s
 t
o
 S

W
 U

I
O

b
je

c
ts

 (
in

te
ra

c
to

rs
)

c
f.

P
a
te

rn
o
 M

o
d
e

l
B

a
s
e
d
 D

e
s
ig

n
 B

o
o
k
 p

.
1
1
5

 R
1
)

-R
3
)

C
o

n
c
re

t
U

I

A
U

I
+

 R
e
p
re

s
e
n
ta

ti
o
n

F
o
rm

 (
d
e
fa

u
lt
 f
o

rm
 i
s

'g
ra

p
h

ic
a
l')

,
P

la
tt
fo

rm

in
d
e

te
n

t

3
.

C
o
n
n

e
c
t
th

e
 I
n
te

ra
c
to

rs
 t
o
 s

u
p
p

o
rt

 I
n
fo

rm
a
ti
o
n
 F

lo
w

,
c
f.

P
a
te

rn
o
 M

o
d
e

l
B

a
s
e
d
 D

e
s
ig

n
 B

o
o
k
 p

,
1
1
6

 R
4
)

-
R

1
9
)

F
in

a
l
U

I

Im
p
le

m
e
n
ta

ti
o
n
 o

f
C

U
I
b
y

tr
a
n
s
fo

rm
a
ti
o
n
 t

o
 e

.g
.

H
T

M
L

4
.

T
a
s
k
 P

a
tt
e

rn
s
 d

e
s
c
ri

b
e
 C

o
m

m
o
n
 U

I
U

s
e
c
a
s
e
s
 e

.g
.

"s
e
a
rc

h
",

 T
h
e
s
e
s
 U

s
e
s
C

a
s
e
s
 i
m

p
ly

 a
 c

e
rt

a
in

 T
a
s
k

S
tr

u
c
tu

re
 c

o
n
n

e
c
te

d
 w

it
h
 a

 c
e
rt

a
in

 U
I
d
e

s
ig

n

F
ro

m
 M

o
d

e
l

to
 U

s
e
r

In
te

rf
a
c
e
 E

le
m

e
n

ts

U
s
iX

M
L

(C
A

M
E

L
E

O
N

R
e
fe

re
n
c
e

F
ra

m
e
w

o
rk

d
e
fa

u
lt

Im
p
le

m
e
n
ta

ti
o
n
),

F
lo

w
iX

M
L

p
ro

c
e
s
s
/

W
o
rk

fl
o
w

E
x
te

n
s
io

n
 f

o
r

U
s
iX

M
L

O
W

L
A

P
I
(O

W
L

O
n
to

lo
g
y

P
ro

c
e
s
s
in

g
);

S
W

R
L
 B

ri
d
g
e

(T
ra

n
s
fo

rm

S
W

R
L
 R

u
le

s
 i
n

O
W

L
);

 D
ro

o
ls

(M
a
n
a

g
e

M
o
d
e

ls
)

C
o

n
c

u
rT

a
s
k
T

re
e
s
 (

P
a
te

rn
o

 e
t

a
l.

)

Id
e
n

ti
fi
y
 w

h
ic

h
 T

a
s
k
 c

a
n
 b

e
 g

ro
u
p

e
d
 i
n
 o

n
e
 U

s
e
r

In
te

rf
a
c
e

b

y
 c

h
e
c
k
in

g
 w

h
ic

h
 T

a
s
k
s
 c

a
n
 b

e
 e

n
a

b
e
ld

 a
t

th
e

 s
a
m

e
 t
im

e

2
.

D
e
c
ie

d
 H

o
w

 t
o
 A

rr
a
n
g

e
 t
h

e
 F

u
n
c
ti
o
n
a

lit
y
 o

f
th

e
s
e
s

T
a
s
k
s
 i
n
 a

 U
I
b
y
 c

o
n
s
id

e
ri

n
g
 D

a
ta

 a
n
d

 C
o
n
tr

o
l
F

lo
w

C
o
n
n

e
c
ti
o
n
s

3
.

P
h

il
h

a
rm

o
n

ic
 F

lo
w

s
 (

K
ü

n
z
le

 e
t

a
l.

)

Conceptual Steps Implementation

N
o
 i
n
fo

rm
a
ti
o
n
 a

b
o

u
t
th

e
 c

o
n
c
re

t
s
te

p
s
 t
a
k
e
n
 c

o
u
ld

 b
e

fo
u

n
d

.
T

h
e

 b
a

s
ic

 p
ri

n
c
ip

a
l
is

 a
s
 d

e
s
c
ri

b
e

d
 i
n

 t
h

e
 l
a

s
t

c
o
n
c
e
p
tu

a
l
s
te

p
:

T
h
e
 A

u
th

o
ri

s
a
ti
o
n
 T

a
b
le

 i
s
 u

e
d
 t
o

 g
e

ra
te

 R
o
le

 S
p
e
c
if
ic

F
o
rm

s
 f
o
r

th
e
 p

ro
c
e
s
s
in

g
 o

f
d

a
ta

 o
b

je
c
ts

.
T

o
 a

c
h
ie

v
e

th
is

 d
a

ta
 t

y
p
e
 a

n
d

 d
a

ta
 a

c
c
e
s
s
 b

a
s
e
d
 t

ra
n
s
fo

rm
a
ti
o
n

ru
le

s
 a

re
 a

p
p
lie

d

1
.

2
.

1
.
M

a
c
ro

 P
ro

c
e
s
s
e
s
 =

 D
a
ta

 O
b
je

c
t
In

te
ra

c
ti
o
n

2
.
M

ic
ro

 P
ro

c
e
s
s
e
s
 =

 D
a
ta

 O
b
je

c
t
B

e
h
v
a
io

r

1
.

2
.

B
a
s
e
d
 o

n

U
s
iX

M
L
 /

F
lo

w
iX

M
L

U
I

B
u

s
s
in

e
s
 A

li
g

n
m

e
n

t
(S

o
u

s
a
 e

t
a
l.

)

L
is

t
o
f

M
a
p
p

in
g
 B

u
s
in

e
s
 P

ro
c
e
s
s
 t
o
 T

a
s
k
 M

o
d
e

l
E

le
m

e
n
ts

B
a
s
e
n
d

 o
n

 B
P

M
N

 ,
 S

e
p
a

ra
te

d
 i
n
to

 M
a
p
p

in
g
s
 f
o
r:

1
.
B

u
s
s
in

e
s
 E

le
m

e
n
ts

 t
o
 T

a
s
k
 E

le
m

e
n
ts

2
.
A

c
ti
v
it
y
 A

tt
ri

b
u
te

s
 t
o
 T

a
k
s
 P

ro
p
e

rt
ie

s

C
o
n
c
u
rT

a
s
k
T

re
e
s
 (

G
lo

b
a

l
T

a
s
k
 M

o
d
e

l
B

a
s
e
d
 o

n
 C

o
m

p
le

te

B
P

 M
o
d
e

l,
 w

it
h
 S

u
b
 T

a
s
k
 M

o
d
e

ls
 b

a
s
e
d
 o

n
 B

P
 A

c
ti
v
it
ie

s
)

B
P

M
N

3
.
P

ro
c
e
s
s
 A

c
ti
v
it
ie

s
 a

n
d
 T

a
s
k
 T

y
p
e
s

1
.
C

re
a
t

C
o
n
c
e
p
tu

a
l
M

o
d
e

ls
 (

T
a
s
k

M
o
d
e

ls
,
D

a
ta

 M
o
d
e

ls
,
U

s
e
r

M
o
d
e

ls
)

F
o
u
r

D
e
v
e
lo

p
m

e
n
t

S
te

p
s
:

4
.
C

re
a
te

 F
in

a
l
U

I
(F

U
I)

 b
a

s
e
d
 o

n
 C

U
I

(e
.g

.
h
tm

l,
 s

w
in

g
 e

tc
.)

3
.
C

re
a
te

 C
o
n

c
re

t
U

I
(C

U
I)

 b
a

s
e
d
 o

n
 A

U
I

2
.
C

re
a
te

 A
b
s
tr

a
c
t
U

I
(A

U
I)

 u
s
in

g
 U

s
iX

M
L

a
n

d
 t

h
e

 C
o

n
c
e

p
tu

a
l
M

o
d

e
ls

U
s
e
 A

ri
c
h
te

c
tu

ra
l
M

o
d
e

l
to

 d
e
s
c
ri

b
e
 U

I
C

o
m

p
o
n

e
n
ts

(C
o
n
s
is

ts
 o

f
S

e
v
e
ra

l
S

u
b
 M

o
d
e

ls
 e

.g
.
M

V
C

,
o
r

m
o
d
e

l
to

d
e
s
c
ri

b
e
 i
n
te

ra
c
ti
o
n
s
)

1
.

Table A.1: From Model to User Interface Elements, Approach Comparison

140

A.2 Sample Process Models

A.2 Sample Process Models

141

A Appendix

L
o

a
d

 C
a

r

M
o

d
e

l
D

a
ta

S
e

le
c
t
C

a
r

M
o

d
e

l

L
o

a
d

 C
a

r

M
o

d
e

l
T

y
p

e

D
a

ta

Li
st

:C
ar

M
o

d
el

s
C

ar
M

o
d

el
:M

o
d

el

S
e

le
c
t
C

a
r

M
o

d
e

l
T

y
p

e

C
ar

M
o

d
el

:M
o

d
el

N
O

 T
yp

e
Se

le
cz

io
n

R

eq
u

ir
ed

R
e

q
u

ie
rs

 T
y
p

S
e

le
c
ti
o

n

C
ar

M
o

d
el

:M
o

d
el

Ty
p

e

L
o

a
d

C
o

n
fi
g

u
ra

ti
o

n

O
p

ti
o

n
s

C
o

n
fi
g

u
re

M
o

d
e

l

C
ar

M
o

d
el

:M
o

d
el

Ty
p

e

V
a

lid
a

te

C
o

n
fi
g

u
ra

ti
o

n

In
v
a

lid
e

G
e

n
e

ra
te

E
rr

o
r

M
e

s
s
a

g
e

M
es

sa
ge

:E
rr

o
rM

es
sa

ge

C
ar

C
o

n
fi

gu
ra

ti
o

n
:

C
o

n
fi

gu
ra

ti
o

n

V
al

id
e

C
h

e
c
k

A
c
a

ila
b

ili
ty

C
ar

C
o

n
fi

gu
ra

ti
o

n
:

C
o

n
fi

gu
ra

ti
o

n

S
e

le
c
t
T

e
s
t

D
ri
v
e

 D
a

te

C
ar

C
o

n
fi

gu
ra

ti
o

n
:C

o
n

fi
gu

ra
ti

o
n

S
to

re

C
u

s
to

m
e

r

D
a

ta

C
re

a
te

 N
e

w

C
u

s
to

m
e

r

N
e

w
 O

r

E
x
is

ti
n

g

C
u

s
to

m
e

r

S
e

le
c
t

C
u

s
to

m
e

r

F
e

tc
h

C
u

s
to

m
e

r

D
a

ta

E
d

it

C
u

s
to

m
e

r

V
e

ri
fy

 O
rd

e
r

S
e

n
d

 O
rd

e
r

J
u

s
t
S

to
re

a
n

d
 Q

u
it

S
to

re
 O

rd
e

r

D
a

ta
P

e
rf

o
rm

O
rd

e
r

N
e

w
 O

r

E
x
is

ti
n

g

O
rd

e
r

N
e

w

O
rd

e
r

Ex
is

ti
n

g
O

rd
er

L
o

a
d

 O
rd

e
r

L
is

t
S

e
le

c
t
O

rd
e

r
L

o
a

d
 O

rd
e

r

D
a

ta

Li
st

:O
rd

er
s

In
te

ge
r:

O
rd

er
ID

B
o

o
le

an
:E

xi
st

s

O
rd

er
:O

rd
er

D
at

a

B
o

o
le

an
:E

xi
st

s

In
te

ge
r:

C
u

st
o

m
er

ID
C

u
st

o
m

er
:C

u
st

o
m

er
D

at
a

C
u

st
o

m
er

:C
u

st
o

m
er

D
at

a

D
at

e:
Te

st
D

ri
ve

O
rd

er
:O

rd
er

D
at

a
O

rd
er

:O
rd

er
D

at
a

O
rd

er
:O

rd
er

D
at

a

B
o

o
le

an
:P

er
fo

rm
B

o
o

le
an

:T
yp

eR
eq

u
ir

ed

Figure A.1: Process Model Example: Details Car Configurator , first part

142

A.2 Sample Process Models

L
o

a
d

 C
a

r

M
o

d
e

l
D

a
ta

S
e

le
c
t
C

a
r

M
o

d
e

l

L
o

a
d

 C
a

r

M
o

d
e

l
T

y
p

e

D
a

ta

Li
st

:C
ar

M
o

d
el

s
C

ar
M

o
d

el
:M

o
d

el

S
e

le
c
t
C

a
r

M
o

d
e

l
T

y
p

e

C
ar

M
o

d
el

:M
o

d
el

N
O

 T
yp

e
Se

le
cz

io
n

R

eq
u

ir
ed

R
e

q
u

ie
rs

 T
y
p

S
e

le
c
ti
o

n

C
ar

M
o

d
el

:M
o

d
el

Ty
p

e

L
o

a
d

C
o

n
fi
g

u
ra

ti
o

n

O
p

ti
o

n
s

C
o

n
fi
g

u
re

M
o

d
e

l

C
ar

M
o

d
el

:M
o

d
el

Ty
p

e

V
a

lid
a

te

C
o

n
fi
g

u
ra

ti
o

n

In
v
a

lid
e

G
e

n
e

ra
te

E
rr

o
r

M
e

s
s
a

g
e

M
es

sa
ge

:E
rr

o
rM

es
sa

ge

C
ar

C
o

n
fi

gu
ra

ti
o

n
:

C
o

n
fi

gu
ra

ti
o

n

V
al

id
e

C
h

e
c
k

A
c
a

ila
b

ili
ty

C
ar

C
o

n
fi

gu
ra

ti
o

n
:

C
o

n
fi

gu
ra

ti
o

n

S
e

le
c
t
T

e
s
t

D
ri
v
e

 D
a

te

C
ar

C
o

n
fi

gu
ra

ti
o

n
:C

o
n

fi
gu

ra
ti

o
n

S
to

re

C
u

s
to

m
e

r

D
a

ta

C
re

a
te

 N
e

w

C
u

s
to

m
e

r

N
e

w
 O

r

E
x
is

ti
n

g

C
u

s
to

m
e

r

S
e

le
c
t

C
u

s
to

m
e

r

F
e

tc
h

C
u

s
to

m
e

r

D
a

ta

E
d

it

C
u

s
to

m
e

r

V
e

ri
fy

 O
rd

e
r

S
e

n
d

 O
rd

e
r

J
u

s
t
S

to
re

a
n

d
 Q

u
it

S
to

re
 O

rd
e

r

D
a

ta
P

e
rf

o
rm

O
rd

e
r

N
e

w
 O

r

E
x
is

ti
n

g

O
rd

e
r

N
e

w

O
rd

e
r

Ex
is

ti
n

g
O

rd
er

L
o

a
d

 O
rd

e
r

L
is

t
S

e
le

c
t
O

rd
e

r
L

o
a

d
 O

rd
e

r

D
a

ta

Li
st

:O
rd

er
s

In
te

ge
r:

O
rd

er
ID

B
o

o
le

an
:E

xi
st

s

O
rd

er
:O

rd
er

D
at

a

B
o

o
le

an
:E

xi
st

s

In
te

ge
r:

C
u

st
o

m
er

ID
C

u
st

o
m

er
:C

u
st

o
m

er
D

at
a

C
u

st
o

m
er

:C
u

st
o

m
er

D
at

a

D
at

e:
Te

st
D

ri
ve

O
rd

er
:O

rd
er

D
at

a
O

rd
er

:O
rd

er
D

at
a

O
rd

er
:O

rd
er

D
at

a

B
o

o
le

an
:P

er
fo

rm
B

o
o

le
an

:T
yp

eR
eq

u
ir

ed

Figure A.2: Process Model Example: Details Car Configurator, second part

143

A Appendix

U
s

e
r:

 H
e

a
d

 o
f

A
c

c
o

u
n

ti
n

g
 D

e
p

a
rt

m
e

n
t

U
s

e
r:

 C
le

rk
U

s
e

r:
 C

le
rk

S
e

le
c
t

C
u

s
to

m
e

r

F
e

tc
h

C
u

s
to

m
e

r

D
a

ta

E
d

it

C
u

s
to

m
e

r

C
h

o
o

s
e

C
o

n
ta

c
t
T

y
p

e

E
d

it

C
u

s
to

m
e

r

C
o

n
ta

c
t

S
e

le
c
t

A
c
c
o

u
n

t

T
y
p

e

C
o

n
fi
g

u
re

A
c
c
o

u
n

t

S
e

le
c
t

D
e

fa
u

lt

A
c
c
o

u
n

t

C
o

n
fi
rm

A
c
c
o

u
n

t

C
re

a
ti
o

n

R
e

v
ie

w

A
c
c
o

u
n

t

C
re

a
ti
o

n

A
c
c
e

p
t
n

e
w

A
c
c
o

u
n

t

D
e

c
lin

e
 n

e
w

A
c
c
o

u
n

t

In
fo

rm

C
u

s
to

m
e

r

C
re

a
te

 n
e

w

C
u

s
to

m
e

r

Ex
is

ti
n

g
O

R

n
ew

 c
u

st
o

m
er

S
to

re

C
u

s
to

m
e

r

D
a

ta

S
to

re

C
u

s
to

m
e

r

C
o

n
ta

c
t
D

a
ta

S
to

re

c
o

n
fi
rm

e
n

d

A
c
c
o

u
n

t

U
p

d
a

te

A
c
c
o

u
n

t
&

c
u

s
to

m
e

r

D
a

ta

S
e

n
d

a
p

p
o

in
tm

e
n

t

m
e

s
s
a

g
e

S
e

n
d

 r
e

je
c
t

m
e

s
s
a

g
e

U
p

d
a

te

A
c
c
o

u
n

t
&

c
u

s
to

m
e

r

D
a

ta

B
o

o
le

an
:C

u
st

o
m

er
Ex

is
ts

In
te

ge
r:

C
u

st
o

m
er

ID
C

u
st

o
m

er
:C

u
st

o
m

er
D

at
a

C
u

st
o

m
er

:C
u

st
o

m
er

D
at

a
C

u
st

o
m

er
:C

o
n

ta
ct

D
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
C

u
st

o
m

er
:C

u
st

o
m

er
D

at
a

M
es

sa
ge

:A
p

p
o

in
m

en
t

M
es

sa
ge

:R
ej

ec
t

C
u

st
o

m
er

:C
u

st
o

m
er

D
at

a
C

u
st

o
m

er
C

u
st

o
m

er
D

at
a

in
v
a

lid

O
K

B
o

o
le

an
:A

cc
o

u
n

tO
K

V
a

lid
a

te

A
c
c
o

u
n

t
D

a
taA
cc

o
u

n
t:

A
cc

o
u

n
tD

at
a

Figure A.3: Process Model Example: Details Bank Account Creation with different Roles
highlighted, first part

144

A.2 Sample Process Models

U
s

e
r:

 H
e

a
d

 o
f

A
c

c
o

u
n

ti
n

g
 D

e
p

a
rt

m
e

n
t

U
s

e
r:

 C
le

rk
U

s
e

r:
 C

le
rk

S
e

le
c
t

C
u

s
to

m
e

r

F
e

tc
h

C
u

s
to

m
e

r

D
a

ta

E
d

it

C
u

s
to

m
e

r

C
h

o
o

s
e

C
o

n
ta

c
t
T

y
p

e

E
d

it

C
u

s
to

m
e

r

C
o

n
ta

c
t

S
e

le
c
t

A
c
c
o

u
n

t

T
y
p

e

C
o

n
fi
g

u
re

A
c
c
o

u
n

t

S
e

le
c
t

D
e

fa
u

lt

A
c
c
o

u
n

t

C
o

n
fi
rm

A
c
c
o

u
n

t

C
re

a
ti
o

n

R
e

v
ie

w

A
c
c
o

u
n

t

C
re

a
ti
o

n

A
c
c
e

p
t
n

e
w

A
c
c
o

u
n

t

D
e

c
lin

e
 n

e
w

A
c
c
o

u
n

t

In
fo

rm

C
u

s
to

m
e

r

C
re

a
te

 n
e

w

C
u

s
to

m
e

r

Ex
is

ti
n

g
O

R

n
ew

 c
u

st
o

m
er

S
to

re

C
u

s
to

m
e

r

D
a

ta

S
to

re

C
u

s
to

m
e

r

C
o

n
ta

c
t
D

a
ta

S
to

re

c
o

n
fi
rm

e
n

d

A
c
c
o

u
n

t

U
p

d
a

te

A
c
c
o

u
n

t
&

c
u

s
to

m
e

r

D
a

ta

S
e

n
d

a
p

p
o

in
tm

e
n

t

m
e

s
s
a

g
e

S
e

n
d

 r
e

je
c
t

m
e

s
s
a

g
e

U
p

d
a

te

A
c
c
o

u
n

t
&

c
u

s
to

m
e

r

D
a

ta

B
o

o
le

an
:C

u
st

o
m

er
Ex

is
ts

In
te

ge
r:

C
u

st
o

m
er

ID
C

u
st

o
m

er
:C

u
st

o
m

er
D

at
a

C
u

st
o

m
er

:C
u

st
o

m
er

D
at

a
C

u
st

o
m

er
:C

o
n

ta
ct

D
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
A

cc
o

u
n

t:
A

cc
o

u
n

tD
at

a
C

u
st

o
m

er
:C

u
st

o
m

er
D

at
a

M
es

sa
ge

:A
p

p
o

in
m

en
t

M
es

sa
ge

:R
ej

ec
t

C
u

st
o

m
er

:C
u

st
o

m
er

D
at

a
C

u
st

o
m

er
C

u
st

o
m

er
D

at
a

in
v
a

lid

O
K

B
o

o
le

an
:A

cc
o

u
n

tO
K

V
a

lid
a

te

A
c
c
o

u
n

t
D

a
taA
cc

o
u

n
t:

A
cc

o
u

n
tD

at
a

Figure A.4: Process Model Example: Details Bank Account Creation with different Roles
highlighted, second part

145

A Appendix

H
e

a
d

 o
f

A
c
o

u
n

ti
n

g

A
c
ti
v
it
y

T
e

m
p

la
te

A
c
ti
v
it
ie

s
 f
o

r
O

rg
a

n
iz

a
ti
o

n
a

l
U

n
it
:

'H
e

a
d

 o
f
A

c
c
o

u
n

ti
n

g
 D

e
p

a
rt

m
e

n
t'

C
le

a
r

A
c
ti
v
it
y

T
e

m
p

la
te

A
c
ti
v
it
ie

s
 f
o

r
O

rg
a

n
iz

a
ti
o

n
a

l
U

n
it
:

'C
le

rk
 o

f
A

c
c
o

u
n

ti
n

g
 D

e
p

a
rt

m
e

n
t'

H
e

a
d

 o
f

A
c

c
o

u
n

ti
n

g

U
I
T

e
m

p
la

te

C
le

rk
 o

f
A

c
c

o
u

n
ti

n
g

U
I
T

e
m

p
la

te

S
e

le
c
t

C
u

s
to

m
e

r

F
e

tc
h

C
u

s
to

m
e

r

D
a

ta

E
d

it

C
u

s
to

m
e

r

C
h

o
o

s
e

C
o

n
ta

c
t
T

y
p

e

E
d

it

C
u

s
to

m
e

r

C
o

n
ta

c
t

S
e

le
c
t

A
c
c
o

u
n

t

T
y
p

e

C
o

n
fi
g

u
re

A
c
c
o

u
n

t

S
e

le
c
t

D
e

fa
u

lt

A
c
c
o

u
n

t

C
o

n
fi
rm

A
c
c
o

u
n

t

C
re

a
ti
o

n

R
e

v
ie

w

A
c
c
o

u
n

t

C
re

a
ti
o

n

A
c
c
e

p
t
n

e
w

A
c
c
o

u
n

t

D
e

c
lin

e
 n

e
w

A
c
c
o

u
n

t

In
fo

rm

C
u

s
to

m
e

r

C
re

a
te

 n
e

w

C
u

s
to

m
e

r

Ex
is

ti
n

g
O

R

n
ew

 c
u

st
o

m
er

S
to

re

C
u

s
to

m
e

r

D
a

ta

S
to

re

C
u

s
to

m
e

r

C
o

n
ta

c
t
D

a
ta

S
to

re

c
o

n
fi
rm

e
n

d

A
c
c
o

u
n

t

U
p

d
a

te

A
c
c
o

u
n

t
&

c
u

s
to

m
e

r

D
a

ta

S
e

n
d

a
p

p
o

in
tm

e
n

t

m
e

s
s
a

g
e

S
e

n
d

 r
e

je
c
t

m
e

s
s
a

g
e

U
p

d
a

te

A
c
c
o

u
n

t
&

c
u

s
to

m
e

r

D
a

ta

in
v
a

lid

O
K

V
a

lid
a

te

A
c
c
o

u
n

t
D

a
ta

Figure A.5: Process Model Example: Bank Account Creation, Role-specific UI Allocation

146

Name: Paul Hübner Matrikelnummer: 708619

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Paul Hübner

	Introduction
	Motivation
	Contribution
	Organization of the Thesis

	Related Work
	Research Work
	Task Models
	User Interface Generation Approaches

	Tool Support
	AristaFlow BPM Suite
	IBM WebSphere Lombardi Edition

	Limitations & Challenges

	Fundamentals
	Business Process Management
	Block-oriented Process Models
	Process Life Cycle

	User Interface Models
	Model-Driven User Interface Development
	Transformation User Interface Model

	Requirements
	Use Case Process Models
	Use Case 1: Issue Management
	Use Case 2: Car Configurator
	Use Case 3: Bank Account Creation

	Complex User Interface Requirements

	Transformation Patterns
	Transformation Model Compendium
	Overview of Transformation Patterns
	Elementary Transformation Patterns
	Human Resource Process Activities
	Data Transformation

	Complex Transformation Patterns
	Control-Flow Block Transformation
	Behaviour Block Transformation

	Transformation Model Composition
	Activity Allocation
	Role-based Activity Grouping
	Variability of Process Granularity
	Resulting Limitations

	Process Model to User Interface Transformation
	Mapping Meta Model
	Control-Flow Block Processing Basics
	Transformation Algorithm
	Propagating Changes
	Application of the Transformation Algorithm to the Use Cases

	Runtime Aspects
	User Interface Generation Compendium
	UI Element Modifications
	Basic UI Element Modifications
	Advanced UI Modifications

	Sequence Modifications
	Discussion

	Prototypical Implementation
	Methodology
	Implementation
	Results

	Summary
	Results
	Further Research Questions
	Conclusion

	Bibliography
	Appendix
	User Interface Generation Approaches
	Sample Process Models

