
Contextual Generation of Declarative Workflows
and their Application to Software Engineering Processes

Gregor Grambow and Roy Oberhauser
Computer Science Department

Aalen University, Germany
{gregor.grambow, roy.oberhauser}@htw-aalen.de

Manfred Reichert
Institute for Databases and Information Systems

Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract—Process management can increase the efficiency and
effectiveness of process activities by structuring and
coordinating their execution. However, its application can
become problematic in dynamic environments such as software
engineering, since rigidly pre-specified process models are not
capable of adequately handling dynamic aspects of the
processes. Therefore, this work presents a declarative,
problem-oriented process modeling technique that enables the
modeling of dynamic sets of candidate activities from which a
subset is automatically selected for execution. The system
selects the subset based on the contextual properties of
situations and subsequently utilizes it to build executable
workflows. Thus, the same process model is used to generate
various workflows matching the properties of different
situations. Preliminary results suggest this technique can be
beneficial in addressing both high workflow diversity and
workflow modeling effort reduction while providing useable
process guidance.

Keywords-application of semantic processing; domain-
oriented semantic applications; automated workflow adaptation;
situational method engineering; process-aware information
systems; software engineering environments

I. INTRODUCTION
This article extends previous work in [1] that describes a

solution for dynamically generating workflows according to
situational properties extraneous to the SE process. Business
process management (BPM) and automated human process
guidance have been shown to be beneficial in various
industries [2][3]. However, existing BPM technology is often
based on rigid models making its application difficult in
highly dynamic and possibly evolving domains with diverse
workflows such as software engineering (SE) [4]. SE is
characterized by multiform and divergent process models,
unique projects, multifarious issues, a creative and
intellectual process, and collaborative team interactions, all
of which affect workflow models [5][6]. These challenges
have hitherto hindered automated concrete process guidance
and often relegated processes to generalized and rather
abstract process models (e.g., Open Unified Process [7] and
VM-XT [8]) with inanimate documentation for process
guidance. Manual project-specific process model tailoring is
typically done via documentation without investing in
automated workflow guidance. While automated workflows
could assist overburdened software engineers by providing

direct orientation and activity guidance, the latter must
coincide with the reality of the situation or the guidance will
be ignored, and may cause the entire system to be mistrusted
or ignored. To further adopt automated workflow guidance
in SE environments (SEEs), adaptation and pertinence to the
dynamic and diverse SE situations is requisite.

A. Problem Statement
While SE process models support development

efficiency [9], it remains difficult to provide comprehensive
operational level guidance for activities. The reason is that
process models often remain rather abstract, do not cover all
executed activities, and do not reach the involved actors [10].
Another issue in this dynamic discipline stems from the fact
that reality often diverges from rigidly pre-defined processes
[11][5].

In this paper, we distinguish between two types of
workflows to be processed in any SE project: Intrinsic
Workflows denote workflows covered by the SE process
model. Extrinsic Workflows, in turn, are not part of the
process model, but cover issues that frequently recur in SE
projects and are thus neither explicitly governed nor
supported nor traceable. Examples of such intrinsic and
extrinsic workflows are illustrated in Figure 1. As a
fundamental part of a software development project,
expected activities for source code development and testing
are mostly covered by the SE process model. Other activities
often related to maintenance like bug fixing, test failure
analysis, or refactoring due to quality threshold violations
often exemplify extrinsic workflows since they are unplanned
and occur unpredictably.

Figure 1. Intrinsic vs. extrinsic workflows.

Intrinsic workflows may lend themselves to foreseeable

common workflows with conformant sequences because
they are mostly planned. However, the diversity and ad-hoc

nature of extrinsic workflows presents a challenge in respect
to their modeling and otherwise. Considering SE, guidance is
desirable for issues such as specialized refactoring, fixing
bugs, technology switches, customer support, etc., yet it is
generally not feasible to pre-specify workflows for SE issue
processing, since SE issue types can vary greatly (e.g., due to
tool problems, API issues, test failure reproduction,
component versioning, merge problems, documentation
inconsistencies, etc.). Either one complex workflow model
with many execution paths becomes necessary, taking all
different use cases into account, or many workflow variants
need to be modeled, adapted, and maintained for such
dynamic environments [12]. The associated exorbitant
expenditures thus limit workflow usage to well-known
common sequences as typically seen with industrial BPM
usage.

In this paper, we use a simplified example of an extrinsic
workflow to demonstrate the problem as well as the
developed solution.

Example 1 (Bug Fixing Issue): As mentioned before, SE
issues that are not modeled in the standard process flow of
defined SE processes (such as OpenUP [7] and VM-XT [8])
include bug fixing, refactoring, technology swapping, or
infrastructural issues. Since there are so many different
kinds of issues with ambiguous and subjective delineation, it
is difficult and burdensome to universally and correctly
model them in advance for acceptability and practicality.
Many activities may appear in multiple issues but are not
necessarily required, bloating different SE issue workflows
with many conditional activities if pre-modeled. Figure 12
shows such a workflow for bug fixing that contains nearly 30
activities (i.e., steps), many of these being conditionally
executed for accomplishing different tasks like testing or
documentation. One example is static analysis activities that
are eventually omitted for very urgent use cases.
Furthermore, there are various reviewing activities with
different parameters (such as effectiveness or efficiency)
where the choice can be based on certain project parameters
(e.g., risk or urgency). The same applies to different testing
activities. Moreover, it has to be determined if a bug fix
should be merged into various other version control
branches.

The resulting workflow problems for environments such
as SE are first that the exorbitant cost of modeling diverse
workflows results in the absence of extrinsic workflow
models and subsequently automated guidance for these types
of workflows, yet these special use cases are often the ones
where guidance is especially helpful and desirable. Second,
rigid, pre-specified workflow models are limited in their
adaptability, thus the workflows become situationally
irrelevant and are ignored [13]. Third, entwining the complex
modeling of situational property influences (e.g., risk or
urgency) on workflows within the workflows themselves
incorporates an implicit modeling that unduly increases their
complexity and aggravates maintenance. The cognitive effort
required to create and maintain large process models
syntactically [14] can lower the attention towards the
incorporated semantic problem-oriented content.

B. Contribution
This paper contributes a more comprehensive support of

automation for SE. Since the terms of workflow and process
will be used extensively throughout this paper, they are
informally defined here and delimited against each other in
alignment with other definitions, as the ones from Gartner
Research [15] or the Workflow Management Coalition [16].

Business Process Management deals with the explicit
identification, implementation, and governance of processes
as well as their improvement and documentation. This
incorporates different aspects such as organizational and
business aspects or strategic alignment of the activities.
Workflow Management, in turn, deals with the automation of
business processes; i.e., a workflow is the technical
implementation of a process.

Our previous work has described CoSEEEK (Context-
aware Software Engineering Environment Event-driven
frameworK), a holistic approach to support the SE process
that includes semantic technologies for enabling SE
lifecycles [17] and context-awareness [18]. On this basis,
different approaches have been developed. For example, [19]
presents a workflow modeling language for SE that supports
the connection of abstract SE process models with concretely
executed activities. Further, a combination of SE processes
with SQA (software quality assurance) is described in
[20][21][22], enabling the automated integration of software
quality measures into executing SE workflows.

This article, focuses on engendering context-awareness
by utilizing semantic processing and situational method
engineering (SME) [23] for automatically adapting
workflows executed by a process-aware information system
[24]. Support is provided for both intrinsic and extrinsic
workflows. The modeling of contextual property influences
is transferred from the workflows themselves to an ontology,
simplifying that modeling and making property effects
explicit. Dynamic on-the-fly workflow generation and
adaptation using contextual knowledge for a large set of
diverse workflow variants is thus supported, enabling
pertinent workflow guidance for workers in such
environments. As SE workflows, and especially the extrinsic
ones, are very dynamic, the traditional imperative way of
modeling these might not always be appropriate for
capturing their dynamic properties. Declarative approaches
offer a way of modeling that integrates a certain amount of
flexibility into the models [25]. This can be beneficial in
situations, when the exact set of needed activities is not
known prior to execution. Therefore, our work on declarative
workflow modeling and automated generation [26] is also
integrated and extended to form a holistic solution capable of
the following features:

- Incorporating extrinsic workflows including automated

execution support,
- Problem-oriented modeling of extrinsic workflows,

facilitating their systematic creation,
- Support for the easy modeling and reuse of process

fragments, and

- Automated workflow generation and adaptation
matching various situations using SME in alignment
with the workflows.

The remainder of this paper is organized as follows:

Section II elicits the requirements for the approach we
developed, whereas Section III describes the solution. In
Section IV, the realization is portrayed followed by an
evaluation in Section V. Related work is discussed in Section
VI, followed by our conclusion in Section VII.

II. REQUIREMENTS
This section presents detailed requirements that have to

be satisfied to enable comprehensive automated process
support for SE as described in the preceding section. These
requirements have been elicited based on experiences
collected at industrial partner companies of this project
supported by a literature study. The requirements have been
split up into three areas: Process coverage, process modeling,
and the modeling of contextual factors in alignment with the
process.

Process coverage: To enable comprehensive process

support, a tool for process governance should cover the
actual activities as closely as possible. This particularly
includes extrinsic activities mostly unaddressed by standard
process models.

Requirement R:CovInEx (Intrinsic / extrinsic support):
There should be a facility to support both intrinsic and
extrinsic activities by an automated system or framework.

Requirement R:CovU (Uniform workflow realization):
Both intrinsic and extrinsic activities should be executed in a
uniform way to support uniform assistance for the user and
to enable easy tracking and analysis of executed workflows.

Modeling: To support the users not only at executing the

workflows but also at creating them, an easy way of
modeling shall be provided that also accommodates the
special properties of the extrinsic workflows.

Requirement R:ModDy (dynamic modeling): Compared
to intrinsic workflows, extrinsic workflows are more
dynamic and less foreseeable. Their modeling should enable
coverage of various possible situations without bloating
process models or making them too complex.

Requirement R:ModRe (modeling for reuse): The
workflow modeling itself should remain easy and foster the
reuse of modeled solutions or the parts thereof.

Requirement R:ModHi (hide complexity): The workflow
modeling should hide the inherent complexity of the
workflow models to assist the user with problem-oriented
creation of the models.

Contextual modeling: To be able to generate workflows

matching various situations, a method of modeling
contextual influences and connecting them to the workflow
models is required. Facilities to gather contextual
information is also necessary.

Requirement R:CtxGet (Gather contextual information):
There should be facilities to automatically gather information

on the current situation from users or the development
environment.

Requirement R:CtxInf (Model contextual influences): The
modeling environment should be capable of modeling
contextual influences to be able to use situational
information directly.

Requirement R:CtxCon (Connect workflow and context):
A facility to model the connections of contextual properties
to workflow activities is required to enable their automated
situational selection.

III. SOLUTION APPROACH
This section describes the concepts we developed to

address the aforementioned requirements.

A. Solution Procedure
The solution developed in this paper utilizes CoSEEEK.

It incorporates a set of sensors that enable the automatic
gathering of contextual information as, e.g., state transitions
of certain SE tools or SE artifacts (cf. R:CtxGet). In this
paper, facilities are developed to model contextual properties
that can be used to describe a situation as, e.g., ‘Risk’ or
‘Complexity’ (cf. R:CtxInf). These properties, in turn, have
calculated values that can be derived from various sources as
the skill level of a user executing an activity or the measured
code complexity of a processed source code artifact. To be
able to contextually integrate process execution into the
projects and thus enable the process to be influenced by the
properties of various situations, explicit connections of
process management concepts to context properties are
introduced (cf. R:CtxCon).

As concrete workflow execution is often relatively
dynamic in SE, a rigid pre-planning of activity sequences is
not always advantageous. Therefore, we provide a means of
declaratively modeling candidate activities for a workflow at
build-time that enables a system to automatically select
appropriate activities for various situations at run-time (cf.
R:ModDy). The modeling is designed to be hierarchical,
separating workflow models into several nestable blocks.
These blocks can be modularized and be logically treated as
simple activities, fostering their reuse in multiple workflow
models and simplifying these (cf. R:ModRe). To support
process engineers in modeling declarative context-dependent
workflows, an easy way of specifying context properties,
workflows, contained blocks, and activities is provided (cf.
R:ModHi).

Utilizing this modeling method, extrinsic workflows can
be addressed (cf. R:CovInEx). To unite this with traditional
imperative process modeling that is still useful for more
predictable processes [24], our approach unites both ways of
modeling under a common process management concept (cf.
R:CovU). The succeeding sections will provide details on
CoSEEEK and will introduce the different parts of the
concept: contextual extensions to process models, modeling
of contextual influences, gathering of contextual information,
and declaratively modeling processes.

B. Software Engineering Environment
To be able to provide the aforementioned features, a

system or framework must incorporate certain facilities:

A. A technical facility to automatically gather and process
information from the development environment.

B. A facility to manage all contextual information and to
relate it to process management.

C. A facility to govern workflows to support process
execution.

D. Flexible and reliable data storage and communication to
connect all modules of the framework and thus all parts
of the solution.

This section gives a brief overview of CoSEEEK and

how it realizes these facilities. CoSEEEK is founded on a
hybrid semantic computing approach towards improved
context-aware SEEs [18]. Its conceptual architecture is
shown in Figure 2.

The environment (cf. Facility A) in a SE project consists
of artifacts and SE tool usage. The collection and processing
of information concerning these items is realized by two
CoSEEEK modules: Event Extraction provides sensors
acquiring events of state changes from various SE tools like
IDEs (Integrated Development Environments) or source
control systems. Event Processing, in turn, is used to process
the detected events. It enables the combination of multiple
low-level events (e.g., switching to the debug perspective in
an IDE) to derive higher-level events (e.g., the user is doing
bug fixing).

The management of high-level contextual information is
realized by Context Management (cf. B) that utilizes
semantic web technologies such as an ontology and a
reasoner.

Figure 2. CoSEEEK conceptual architecture.

Workflow governance and support (cf. Facility C) is
done by Process Management. To respond to the dynamicity
of SE workflow execution, this module enables dynamic
workflow execution, meaning that it is capable of correctly
and dynamically adapting running workflows.

Shared data (cf. Facility D) is provided by the Data
Storage module, which is realized as a tuple space [27]. A
loosely-coupled communication infrastructure is provided
with each module able to store and receive events.

CoSEEEK provides comprehensive automated process
support to address the aforementioned challenges. While the

automated support provided for intrinsic workflows is
imperatively modeled and described in [28], both the support
for extrinsic workflows as well as the method for their
semantic, problem-oriented modeling (utilizing situational
method engineering) are an emphasis of this paper.

C. Context-aware Business Process Management
CoSEEEK aims to provide holistic infrastructural support

for SE projects concerning software development process
execution. This is achieved by assisting project participants
during their various activities. The process is tightly
integrated with contextual information and the project
environment. This section introduces the basic contextual
extensions to process management on which most
framework features rely. In our prior work [22][21] we
developed these extensions for standard intrinsic workflow
execution. Together with [1] and [26], this article now
extends this approach with support for a greater degree of
workflow dynamicity as well as for extrinsic workflows. To
elucidate the overall concept, we first summarize how the
contextual extension of process management concepts is
realized.

To enable the contextual integration of process execution
into SE projects, the Context Management module and the
Process Management module are tightly integrated. The
main responsibility of the Process Management module is to
govern the activities in both intrinsic and extrinsic
workflows. This includes dynamic adaptations to running
workflows as well as correctness guarantees (e.g., absence of
deadlocks and correct data flow) for both workflow
execution and adaptation [29][30]. The Context Management
module has three main responsibilities:

- It collects and aggregates contextual information

retrieved from users or SE tools.
- It adds annotations to the process management concepts

and extends these.
- It has high-level workflow governance authority,

connecting context information using the logical
capabilities provided by semantic web technology and
the functionalities of the Process Management module.
This connection is illustrated in Figure 3.

The Process Management module shows three sample

workflows ‘A’, ‘B’, and ‘C’ which have been modeled based
on standard workflow patterns such as AND- or XOR-gates
(see [31][32][33] for readings on different kinds of workflow
patterns). These three workflows as well as each of the
contained activities have mappings in the Context
Management module that are directly connected to them. A
workflow is mapped by a so-called Work Unit Container,
and an activity is mapped by a so-called Work Unit. Note
that the horizontal governance (governance of the activities
in a workflow) is handled by the Process Management
module, while the vertical governance (governance of the
connection between the different workflow levels) is
managed by the Context Management module. This
enhances connection flexibility as illustrated in Figure 3.

Figure 3. Context-aware process management.

For example, the termination of the Work Unit ‘A2’ does
not depend on a sub-workflow, but on another activity in
another process (Work Unit ‘B3’ in Figure 3); refer to [22]
for further details. The Work Unit Container ‘B’ illustrates
the extensions made in the Context Management module: it
enables an explicit definition of human tasks on multiple
levels. The Assignment represents a high-level activity that
requires multiple steps and is therefore connected to a Work
Unit Container. An example for this is the development of a
new component like a new GUI screen. The steps needed to
complete such an Assignment are the Assignment Activities
that are connected to the Work Units. Examples of the former
include ‘Implement Solution’ or ‘Implement Developer
Test’. These activities, in turn, can be decomposed into
smaller tasks that involve interaction with certain tools.
These tasks are called Atomic Tasks in our approach and
include checking out source code, modifying a source file in
an IDE, etc. These different levels of activities enable fine-
grained activity support and the automatic connection of
these activities with the project environment. For example,
activities that are planned via project management software
like microTOOL inStep [34] can be both automatically
imported and guided by Assignment Activities related to that
type of Assignment. Further, system awareness of what the
developer is really doing is facilitated via Atomic Tasks.
These are automatically inferred by the events and extracted
by sensors of the corresponding tools. That procedure is
further detailed in [22]. The contextual extensions also
include other concepts that may appear in SE process models
like VM-XT’s Activity Groups.

As described, extrinsic workflows have other properties
than their intrinsic counterparts. On the one hand, they are
extraneous to the SE process. Thus, they are not modeled as
part of the latter and they are hard to trace. Some of these
workflows may be automatically or semi-automatically
initiated, while others may rely on manual activation by
users. On the other hand, their internal governance is more
difficult. The concrete activity configuration can largely
depend on situational properties like time pressure or quality
goals. Therefore, the imperative way of modeling as favored

by traditional process management may not always be
suitable. Hence, our approach introduces a declarative way
of modeling including contextual influences, to
accommodate the dynamicity of such workflows.

Including the aforementioned properties, there are three
dimensions in which the workflows can differ: their
affiliation to the SE process (i.e., intrinsic vs. extrinsic), the
type of workflow modeling (i.e., imperative vs. declarative),
and the automation level of their initiation (i.e. automatic vs.
manual). Figure 4 illustrates this by different concrete use
cases the system will enable, situated in a three-dimensional
space where the x-axis denotes the process affiliation, the y-
axis illustrates the type of modeling, and the z-axis depicts
the automation level for workflow enactment triggering.

Figure 4. Workflow modeling dimensions.

The first use case (red sphere) deals with standard
process execution. This implies workflows belonging to the
SE process (intrinsic) whose activity sequencing is known a
priori (imperative modeling). To integrate these activities
with external project planning, the Assignments are imported
from, for instance, project management software and the
associated workflow for an Assignment is subsequently
started.

In contrast, issues occurring during projects (yellow
sphere) are ad-hoc, do not belong to the process, and are very
dynamic, relying on the properties of the situation. From our
interactions with industrial partners, this is not unusual. One
of these is the following situation: A requirements’ analyst
prepares a special build of the produced software for a
customer demonstration. He notices that some crucial
function does not work in that build and, because of the time
pressure, directly contacts a developer about this issue. The
developer immediately starts working on the issue and,
within an hour, delivers a fix directly to the analyst, enabling
him to hold a successful customer presentation.

Another use case (orange sphere) is illustrated by so-
called follow-up activities that are extrinsic but can be
required by the outcome of an intrinsic activity. For
example, if a developer changes code belonging to an
interface component, it may be required to not only adapt
unit tests, but also to reflect these changes in the architecture
specification or the integration tests. However, these
activities may have to be processed by other actors in other

teams, like architects or the test team. [35] introduced a
CoSEEEK facility to automatically reason about such
coherences and to automatically initiate and govern the
follow-up activities.

The last example (green sphere) is enabled by the
combination of imperative and declarative modeling.
Assume a situation where an activity sequence is clear and
therefore imperatively pre-specified by a process engineer.
Though the sequencing of the entire workflow might be
deliberately rigid and most of the activities selected, it might
nevertheless be useful to introduce limited dynamicity in that
imperative workflow: at build-time, for some activities the
category might be clear, but not the concrete characteristic.
Consider review activities as an example. It might be clear
that a review activity shall be integrated, but there are
different variants in that category like ‘Peer Review’, ‘Code
Review’, or ‘Code Inspection’. Each of them has different
properties like effort, duration, or error detection rate. For
such activities, a set of candidate activities can be defined,
enabling the system to choose the corresponding one upon
execution. For example, if there is significant schedule
pressure when the workflow is executed, an activity will be
chosen that has low duration. Of course, a variety of other
combinations is possible as, e.g., semi-automatically started
declarative, extrinsic workflows like bug fixing initiated by
the import of new high priority defects from a defect tracking
system.

D. Applying Situational Method Engineering
Situational method engineering adapts generic methods

to the actual situation of a project [23]. This is done based on
two different influence factors called process properties,
which capture the impact of the current situation, and
product properties that realize the impact of the product
currently being processed (in this context the type of
component, e.g., a GUI or database component). To strike a
balance between rigidly pre-specified workflows and the
absence of process guidance, the idea is to have a basic
workflow for each use case that is then dynamically
extended with activities matching the current situation. The
construction of the workflows utilizes a so-called case base
as well as a method repository. The case base contains a
workflow skeleton of each of the use cases. In the following
these use cases, which are associated to an SE issue and have
an attributed workflow, will simply be called cases. The
workflow skeleton belonging to a case only contains the
fundamental activities always being executed for that case.
The method repository contains all other activities whose
execution is possible according to the case. To be able to
choose the appropriate activities for the current artifact and
situation, the activities are connected to properties that
realize product and process properties of situational method
engineering.

Each SE issue, such as refactoring or bug fixing, is
mapped to exactly one case relating to exactly one workflow
skeleton. To realize a pre-selection of activities (e.g., Create
Branch or Code Review) which semantically match an issue,
the issue is connected to the activity via an n-to-m relation.
The activities are connected, in turn, to properties specifying

the dependencies among them. The selection of an activity
can depend on various process as well as product properties.
To model the characteristic of an issue leading to the
selection of concrete activities, the issue is also connected to
various properties. The properties have a computed value
indicating the degree in which they apply to the current
situation. Utilizing the connection of activity and property,
selection rules for activities based on the values of the
properties can be specified. The following example
illustrates these concepts by means of an extremely
simplified bug fixing workflow.

Example 2 (Situational workflow extension): Figure 5
shows different parts of our concept for a bug fixing issue.
On the left side of the figure, the relating case and the
skeleton workflow are shown. That skeleton workflow is then
extended with activities that match the values of the
properties: Activity B (could be e.g., ‘Run Regression Tests’)
is added because of the property ‘Criticality’ and activity C
(could be e.g., ‘Validation to Requirements’) is added
because of the property ‘Complexity’.

ActivityWorkflow Instance /
Work Unit Container

AND-
Gate

OR-
Gate

Communication

A B C

Case

Complexity

Criticality

Bug
Fixing

User SensorContext
Property

A

Bug
Fixing

Figure 5. SME example

E. Information Gathering
To leverage the automatic support for extrinsic

workflows, the computation of the property values
constitutes a key factor. Our approach unifies process and
product properties in the concept of the property, which can
be influenced by a wide range of factors. The integration of
different modules and applications as well as the unification
of various project areas in CoSEEEK enable the automatic
computation of the values comprising contextual knowledge.
On the one hand, tool integration can provide meaningful
information about the artifact being processed in the current
case. For example, if the artifact is a source code file, static
code analysis tools (such as PMD) can be used to execute
various measurements on that file, revealing various
potential problems. If a high coupling factor was detected,
this would raise the product property ‘risk’ associated to that
file. On the other hand, the integration of various project
areas like resource planning entails contextual knowledge
about the entire development process. An example is the
raising of the process property ‘risk’ if the person processing
the current case is a junior engineer.

Both of these aspects deal with implicit information
gathering. Since not all aspects of a case are necessarily
covered by implicit information, and not all options for
gaining knowledge about the case are always present, the
system utilizes explicit information gathering from the user
processing the case. To enable and encourage the user to
provide meaningful information, a simple response
mechanism is integrated into the CoSEEEK GUI (shown in
the next section). Via this mechanism, the user can directly
influence process as well as product properties. To keep the
number of adjustable parameters small, the concept of
product category was introduced. The product category
unites the product properties in a pre-specified way. An
example of this would be a database component or a GUI
component: the database component is likely to have more
dependencies, whereas the GUI component presumably has
more direct user impact. The influence of the product
categories on the different properties is specified in advance
and can be adapted to fit various projects. Selected process
properties can be set directly. The computation of all other
influences on the properties is explained in the following
section.

F. Declarative Workflow Modeling
After completing the computation of the property values,

activities must be selected and correctly sequenced to enable
dynamic construction of the workflow for an SE issue. This
is done utilizing the connection between properties and
activities. An activity can depend on one or more properties.
Examples include selection rules such as:

• ‘Choose activity code inspection if risk is very high,

criticality is high, and urgency is low’ or
• ‘Choose activity code review if risk and criticality are

both high’.

The sequencing of the chosen activities in our initial

approach [1] was very simple and did not allow for choices
or the parallel execution of activities. Therefore, this section
integrates our work from [26] and extends it. Declarative
workflow modeling approaches incorporate a certain amount
of flexibility in the workflow models [25] and thus enable
the latter to be applicable for different situations. However,
the declarative way of modeling can be difficult to
understand [36] and can produce models that are hard to
maintain [37]. Therefore, our declarative workflow modeling
approach is based on very simple constraints and so called
Building Blocks that enable further structuring of the
workflow and structural nesting.

This modeling type is illustrated and compared to
classical workflow modeling in Figure 13. The figure shows
the modeling of the Work Unit Containers above and the
derived workflows for execution below. ‘Work Unit
Container 1’ shows a simple, imperatively modeled
workflow that is also executed in that form (as ‘Workflow
1’). ‘Work Unit Container 2’ illustrates declarative modeling
of the same workflow: the exact structure of the workflow is
not rigidly pre-specified. There are only simple constraints
connecting activities in the workflow. Examples in Figure 13

are ‘Requires’, expressing that one activity requires the
presence of another, and ‘Parallel’, expressing that both
activities should be executed in parallel. The generated
workflow for these constraints looks exactly like the
imperatively modeled ‘Work Unit Container 1’. Activities in
the declarative approach also have relations to contextual
properties in order to enable the system to select a subset of
the pre-specified activities for the execution workflow.
Finally, ‘Work Unit Container 3’ demonstrates the use of
Building Blocks. These are used for further structuring the
workflow. Three Building Blocks are shown for sequential,
parallel, and repeated execution of the contained elements in
Figure 13. ‘Workflow 3’ shows how a workflow is built
based on constraints and the Building Blocks. Furthermore, it
demonstrates contextual relations, in this case assuming that
the contextual properties of the situation led the system to the
selection of activities ‘1’, ‘2’, ‘3’, and ‘5’ while omitting
activities ‘4’ and ‘6’.

In the following, all available constraints and Building
Blocks are shown, as well as conditions to be fulfilled for
declarative modeling and that are later checked by the
framework.

The constraints were designed in a way such that they
remain simple and facilitate basic workflow modeling.
Structures that are more complex can be expressed using
Building Blocks. The constraints are categorized into
sequencing constraints and existence constraints. Existence
constraints govern which activities should be present in a
workflow, while sequencing constraints govern how they
should be arranged in the workflow. The available
constraints are shown in Table I.

TABLE I. DECLARATIVE CONSTRAINTS

Constraint Meaning Type

X hasSuccessor Y if X and Y are present,
X should appear before Y sequencing

X hasParallel Y

if X and Y are present,
they should appear parallel
(like two branches that
are connected by AND
gates in classical process modeling)

sequencing

X requires Y if X is present,
Y must also be present existence

X mutualExclusion Y if X is present,
the presence of Y is prohibited existence

Utilizing these constraints, very basic workflows are

possible, specifying “should” / “should not” appear together
and a sequence or parallel arrangement.

The Building Blocks that enable complex structures have
been developed to mirror standard workflow patterns for
block-structured workflows [38]. This way of structuring
enables easy separation of the workflow into nested blocks.
These blocks can be activities, patterns, or the workflow
itself. Each block must have a unique start and end point
[39][40][41]. The blocks can be regularly nested, meaning
that they may not overlap [42][41][40]. For workflows that
are not structured like this, in most cases a transformation to
a block structured model can be applied [40][43][41]. For
control flow modeling in workflows, the basic patterns are:

Sequence, AND-split, AND-join, XOR-split, XOR-join, and
Loop [31]. With these patterns, most models that are used in
practice can be covered since they are the basis of any
process specification language [44][45][46]. They can also
be easily transformed to formal languages like Petri Nets
[29] and to other widespread process languages like WS-
BPEL [47][48]. There also exist other control flow patterns
like the Multi-Choice / OR-split [31]. This work presumes
the sole usage of the basic control flow patterns, because the
use of other patterns can complicate the process model and
promote error-proneness [43][49][50]. Furthermore, it is
possible to construct other control flow patterns using the
basic ones like, e.g., composing an OR-split with XOR- and
AND-splits [38][51]. The available Building Blocks and
their relation to control flow patterns is shown in Table II.

TABLE II. BUILDING BLOCKS

Building Block Control Flow Pattern(s)
Sequence Sequence
Parallel AND-split, AND-join
Loop Loop

Conditional XOR-split, XOR-join

‘Work Unit Container 3 / Execution Workflow 3’ in

Figure 13 demonstrates how nested Building Blocks are
transformed into the control-flow structure of a workflow.

Compared to [26], the Building Block ‘Conditional’ has
been added to cover all basic workflow patterns. This
Building Block implies a deferred decision about the
executed activities: At run-time, based on a certain variable,
the XOR pattern chooses exactly one activity from a set of
contained activities or, in case one empty branch exists in the
XOR pattern, no activity might be chosen. Furthermore, for
the decision made in the XOR pattern, the value range of the
variable used for the decision should be completely covered
to avoid deadlocks in execution [52][53]. This, combined
with the fact that Building Blocks contain candidate activities
from which a subset is to be chosen, makes it error-prone.
The value range can become only partially covered, and it is
possible that two or more activities (from which a selection
was intended by the modeler) are omitted due to context
properties, leaving no valid choice at run-time. In light of
these problems, two options are supported in modeling a
‘Conditional’ Building Block: the first one contains no empty
branch. For this variant, the system checks the coverage of
the value range during construction and no activities can be
omitted for that block. That way, run-time choices not
dependent on context properties can be modeled. The second
variant contains an empty branch. In that case omitting
activities due to contextual factors is permitted. The system
assigns all uncovered sections of the value range to the
empty branch. That way it is possible to model a deferred
decision that incorporates contextual factors including the
case that none of the activities comes to execution.

However, the usage of Building Blocks not only enables
the modeling of workflow structures containing all basic
structural patterns, but also simplifies modeling since it
fosters the reuse of different fragments of a workflow: in

traditional process management, reuse is limited to
workflows or activities. In contrast, our declarative modeling
approach supports the reuse of fragments of the workflows.
These fragments, captured as Building Blocks, are
encapsulated as simple activities, and thus simplify the
workflow structure and hide its inherent complexity. Another
factor supporting reuse is the relation to context properties:
each simple activity and Building Block can have these
context connections. That way a Building Block can be used
in various different workflows for various situations. The
following example illustrates this.

Example 3 (Building Block): A Building Block for
different code review activities can be defined, containing
review activities with different properties. These are for
example ‘Peer Review’, ‘Code Review’, ‘Walkthrough’, or
‘Code Inspection’. Utilizing connections to context
properties like ‘Urgency’ or ‘Risk’, these activities “know”
the situations to which they apply, and the surrounding
Building Block can thus be easily used for all of these
situations without additional effort.

With this method of declarative modeling, one can model
‘candidate activities’ and relate them to context properties
during build-time, while the system decides at run-time
which of the activities will be used to construct the execution
workflow matching the current situation. This implies that
several activities may be omitted for a certain execution
workflow. To ensure that proper workflows are still
constructible out of a declarative workflow specification, the
system conducts a so-called ‘auto-completion’ on the
specified workflows as illustrated in Figure 6.

A

DC

B

A DC

B D

A: Auto completion B: Workflow Examples

Activity Successor Constraint Parallel Constraint

Figure 6. Workflow auto-completion example.

In Figure 6(A), the red-dashed constraints are added by
the system. This enables the construction of workflows from
subsets of the specified activities as exemplified in Figure
6(B). A set of conditions is verified by the system to ensure
that correct basic modeling and all specified workflows are
properly completed. These conditions concern the workflows
as a whole as well as the different Building Blocks. An
example of such a condition is shown in the following:

Condition C1: Each workflow shall have a unique start

and end point. This promotes simple and understandable
models as suggested in [43].

The conditions and the auto completion feature are

further explained in [26]. Structural integrity of the
workflows is guaranteed upon creation based on the built-in

mechanisms of the process management system, which
imply correctness checks for each change operation applied
to the workflow [52].

G. Workflow treatment dimensions
There are different combinations of intrinsic and

extrinsic workflows that are modeled imperatively or
declaratively, as illustrated in Figure 4. This section briefly
explains how different combinations are enabled. As both
declarative and imperative workflows are realized by sub-
types of the Work Unit Container, it is possible to use both
types for intrinsic as well as for extrinsic workflows.

There are different levels of automation concerning
workflow starts: intrinsic workflows are automatically
started as they belong to the running SE process. In contrast
to this, extrinsic workflows can be started out of different
situations: first, they can be started manually by the user
utilizing the CoSEEEK GUI. Second, they can be started
semi-automatically, e.g., when an activity is assigned to a
user in a bug tracking system monitored by a sensor. The
sensor generates an event that causes the instantiation and
start of a new workflow for the respective user. The third
case is the follow-up activities required by other activities.
These are automatically initiated by the system. That case is
illustrated in the following example.

Example 4 (Follow-up activities): Consider a source
code modification conducted as part of an intrinsic activity.
That modification was applied to an artifact that belongs to
the interface of a component. The change thus only impacts
the component itself and its implementation, but also other
areas. The areas ‘testing’ and ‘architecture’ might also be
impacted since eventually the integration tests or the
architecture specification has to be adapted. The
determination of such impacts from one project area to
another and the governance of the follow-up activities are
described further in [35].

The system shall enable activity support matching
various situations and provide a simple way of modeling.
Therefore, it is not only possible to model dynamic Work
Unit Containers but also dynamic activities. These so-called
Late Binding Activities can be used if it is known that, e.g.,
some type of activity has to be done but it is not known prior
to process execution which exact characteristic the activity
should have [54]. Therefore, the activity is connected to a
Building Block. The latter implies the possibility to model a
set of candidate activities, connect these with context
properties, and govern their sequencing. When the respective
workflow is started, the system determines the matching
activities using the current context properties and integrates
them into the workflow.

H. Concrete Procedure
The concrete procedure for the handling of an SE issue in

is as follows. At first, the workflow for the issue is modeled
declaratively as illustrated in Figure 14. This procedure
comprises composing the workflow out of various Building
Blocks, connecting these to context properties, and
connecting both to a case. After the workflow construction is
completed, the system verifies it. As an entry point for the

execution of a workflow, there is an event indicating that an
SE issue is assigned to a user. This event can come from
various sources. Examples include the assignment of an SE
issue to a person in a bug tracker system or the manual
triggering by a user via the GUI. The next step is to
determine a case for that issue like ‘Bug fixing’ or
‘Refactoring’. Depending on the origin of the event, this can
be done implicitly or explicitly by the user.

When the case is specified, the workflow starts for the
user, applying the workflow skeleton assigned to that case.
The first execution step is to gather contextual information as
illustrated in Figure 14. This information can come from
various sensors that provide information on the state
transitions of SE tools or directly from the user via the GUI.

After having determined the properties of the case, the
additional activities matching the current situation and
product are selected. The set of activities is then checked for
integrity and correctly sequenced utilizing semantic
constraints. Subsequently, the activities are integrated into
the running workflow that provides activity guidance for the
user.

If one or more of the properties change during the
execution of the workflow, the prospective activities are
deleted (if still possible) and a new sequence of activities is
computed.

I. Modeling Effort
The presented approach consists of many components

and introduces a fair amount of complexity. However, this
does not impose complicated modeling or workflow
enactment for the user. The required components are
discussed in the following:
- Context Properties: The system needs explicitly

modeled context properties for the selection of
appropriate activities. These properties have to be
connected to other facts to be automatically computed.
An example for this is ‘If the skill level of the applying
person is low, the risk is increased’. These properties
can be reused for all cases and have thus only to be
modeled once.

- Activities: The workflows consist of activities that have
to be modeled and to be connected to context properties
to enable the system to know when they apply. Like the
properties, the activities only have to be modeled once
and can be reused.

- Building Blocks: Building Blocks are used to group
activities together and to govern their sequencing. They
are further connected to context properties and can be
reused. Building Blocks offer great potential for reuse
and for simplifying modeling: They are encapsulated as
simple activities and thus simplify the structure of the
containing Work Unit Container. Consider the four
code review activities of example 3: These four
activities can be grouped together, e.g., in a Parallel
Building Block called ‘Review Activities’. For future
workflows, the latter can be used instead of
incorporating multiple activities and choices, leaving

the system responsible for selecting the matching
activities for the current situation during run-time.

- Cases: For each concrete issue like ‘Bug Fixing’, one
case is defined. The definition of a case is very simple
since all defined activities, context properties, and
Building Blocks can be reused. The structure of the
cases is also very simple as there are only four
constraints needed for connecting the activities or
Building Blocks. More complex control flow modeling
is handled and encapsulated by the Building Blocks.

IV. REALIZATION
This section describes the concrete implementation of the

SE issue process introduced in the preceding section.

A. Technical component realization
Before describing the procedural realization, the

technical realization of the participating components is
briefly introduced as illustrated in Figure 7.

Figure 7. CoSEEEK realization architecture.

While various other Java (Mantis, inStep, PMD, xRadar,
etc.) and .NET (Visual Studio 2010, Team Foundation
Server) SE Tools are integrated, to exemplify the realization
just a few will be described. Source code and test code
Artifacts are processed via the version control management
system Subversion and the IDE Eclipse. All communication
between the modules is performed using a custom XML
implementation of the Tuple Space paradigm [27] that uses
the eXist XML database [55] for collaborative event storage
and Apache CXF for web service communication. The
Hackystat framework [56], which provides a rich set of
sensors for various applications, is used for Event Extraction
via its tool sensor components and for storage of high
volume basic events in a relational database. Event
Processing is performed via the complex event processing
(CEP) [57] tool esper [58], that detects and triggers higher-
order complex events from the multiple basic events.

The Process Management module requires an adaptable
process-aware information system (PAIS) to cope with the
dynamic nature of SE processes the current approach seeks
to address. Therefore, the AristaFlow BPM suite (formerly
ADEPT2) [52][39] was chosen for its realization. It allows
authorized agents [59] to dynamically adapt and evolve the
structure of process models during run-time. Such dynamic

process changes do not lead to unstable system behavior, i.e.,
none of the guarantees achieved by formal checks at build-
time are violated due to the dynamic change at run-time [42].
Correctness is ensured in two stages. First, structural and
behavioral soundness of the modified process model is
guaranteed, independent from whether or not the change is
applied at the process instance level. Second, when
performing structural schema changes at the process instance
level, this must not lead to inconsistent or erroneous process
states afterwards. AristaFlow applies well-elaborated
correctness principles in this context [60]. Despite its
comprehensive support for dynamic process changes,
ADEPT2 has not considered automated workflow
adaptations so far.

The Context Management module has three main
responsibilities: it realizes the case base, the method
repository, and contains context information about the entire
project. This information is stored in an OWL-DL [61]
ontology to unify project knowledge and to enable reasoning
over it. The use of an ontology reduces portability,
flexibility, and information sharing problems that are often
coupled to relational databases. Additionally, ontologies
facilitate extensibility since they are, in contrast to relational
databases, based on an open world assumption and thus
allow the modeling of incomplete knowledge. To
programmatically access the ontology, the Jena API [62] is
used within the Context Module. Reasoning and
classification of information is provided by the reasoner
Pellet [63].

B. Concrete Procedure
This section illustrates the communication of the modules

by means of a concrete example that is depicted in Figure 15.
Basic event extraction and event processing is presumed. In
that concrete case, the bug tracker Mantis is used in
conjunction with a sensor that generates an ad hoc workflow
event when an SE issue is assigned to a person (1) and is
stored in the XML tuple space. That event contains
information about the kind of issue for case selection and
about the person. In case of a real ad hoc issue not recorded
in a bug tracker, the event for instantiating a workflow can
be triggered from the GUI as well, requiring the user to
select a case manually (1). The GUI is a lightweight web
interface developed in PHP that can be executed in a web
browser as well as preferably directly in the users IDE.
Figure 8(A) shows the GUI: in the upper area, contextual
information is displayed while the lower area is reserved for
workflow governance. The upper area also provides the
option to start a case manually. The event is then
automatically received by the Process Management module
(cf. Figure 15(2)), which instantiates a workflow skeleton
based on the template of the selected case (3). The activity
components of AristaFlow (called environments) for these
workflows are customized to communicate over the Tuple
Space (4) and thus, enable user interaction during the
execution of each activity. The first activity of each SE issue
is ‘Analyze Issue’ to let the user gain knowledge about the
issue and provide information about process and product
properties to the system via the GUI (5). Figure 8(B) shows

the GUI that enables the user to directly adjust process
properties and to choose a product category that affects
product properties.

(A) – Start Case (B) – Property Acquisition
Figure 8. CoSEEEK GUI.

The adaptation of running workflows works as follows:
the workflow skeleton is instantiated, offering the user the
aforementioned ‘Analyze Issue’ task to provide information
as shown in Figure 15(6). The information from the user is
encapsulated in an event received by the process module (7).
The Process Management module sends an event via the
tuple space (8) that is received by the Context Management
module (9). The latter provides the set of activities to be
inserted in the running workflow (10, 11). The Process
Management module utilizes that information to perform the
adaptation of the workflow, inserting all required activities
(12). Thus, the process is already aligned to the current
situation and product when the user continues.

C. Context Module
This subsection describes how the Context Management

module utilizes the ontology to derive property values and to
select appropriate activities. To leverage real contextual
awareness, the ontology features various concepts for
different areas of a project. These are semantic
enhancements to process management utilized for intrinsic
workflows, quality management, project staffing, and
traceability. For process management, the concepts of Work
Unit, Work Unit Container, Assignment, Assignment Activity,
and Atomic Task are used to enrich processes and activities,
and with semantic information as illustrated in Figure 3.
Quality management features the concepts of the Metric,
Measure, Problem, Risk, Severity, and KPI (key performance
indicator) to incorporate and manage quality aspects in the
project context. The concepts of Person, Team, Role, Effort,
Skill Level, and Tool are integrated to connect project
staffing with other parts of the project. To further integrate
all project areas and to facilitate a comprehensive end-to-end
traceability, the concepts of Tag and Event can be connected
and used in conjunction with all other ones. The relevant
concepts are shown in a simplified excerpt from the ontology
in Figure 16.

To predefine the different SE issues, a set of template
classes has been defined with their workflow skeletons and
activities as well as the properties applying to them. Each
Issue Template is connected to a Work Unit Container
Template storing the information about the concrete process
template in AristaFlow. The Work Unit Container Template
has two disjoint subclasses for representing imperative and
declarative workflows: the Imperative Container Template
containing Work Unit Templates, and the Declarative
Container Template containing Building Block Templates.
The latter are used to model candidate activities for
declarative workflows and have various subclasses. These
incorporate the different Building Block types as the
Sequence or the Loop for modeling. However, there are also
concepts used for validation purpose by the reasoner, e.g., to
validate the different Building Blocks. For example, a
Sequence may not contain parallel activities (in that case it
would be classified as an Inconsistent Sequence). Other
concepts are used for structural validation (e.g., Building
Block with Successor, Building Block Start). That way it can
be checked, e.g., if a container has a unique starting point
(otherwise it would be classified as an Inconsistent
Declarative Container). The validation procedure is
explained in [26]. Since Activity is a subclass of the Building
Block, simple Activities and complex Building Blocks are
treated equivalently. The Issue Template is also connected to
one or more Property Templates, yielding the capability to
specify not only a unique set of activities for each Issue, but
also a unique set of Properties with a unique relation to the
activities.

When completing the modeling, the workflow is checked
for correctness utilizing various conditions for the workflow
itself and the contained Building Blocks. One example of
these conditions is ‘Condition 1’ introduced in Section III.F.
The realization of this condition in the ontology is discussed
in the following:

Condition C1: To check whether a unique start and end
point are specified, the BuildingBlock has two sub-classes
BuildingBlock_Start and BuildingBlock_End. A
BuildingBlock is classified as a BuildingBlock_Start if it has
no predecessor. If multiple parallel BuildingBlocks are
executed at the beginning of the workflow, none of them
should have any predecessor. The same applies to
BuildingBlock_End and successors:

redecessorBlockWithPl.BuildinghasParalle
ssorhasPredeceockBuildingBlock_StartBuildingBl

¬∃∧
¬∃∧≡

Two concepts define a BuildingBlock with a successor or
predecessor:

orhasSuccessockBuildingBlcessorockWithSucBuildingBl
ssorhasPredeceockBuildingBldecessorockWithPreBuildingBl

∃∧≡
∃∧≡

To validate a modeled workflow, the concepts

Consistent_SME_Workflow_Container and Inconsis-
tent_SME_Workflow_Container are used. The condition is
that if a container has two BuildingBlock_Start individuals
not connected in parallel, it constitutes an inconsistent

container. Currently, the check is implemented
programmatically via the Jena framework. After validating
the workflow, the completion procedure also mentioned in
Section III.F is conducted, enabling the system to construct
consistent workflows out of subsets of the specified
activities. We refer interested readers to [26] for further
details.

When a new SE Issue is instantiated, it derives the Work
Unit Container and the Properties from its associated Issue
Template. Each Property holds a value indicating how much
this Property applies to the current situation. These values
can be influenced by various factors also defined by the
Property Template. Figure 16 exemplifies three different
kinds of influences currently used. Future work will include
the integration of further concepts of the ontology that
influence the Properties, as well as extending the ontology to
fully leverage the context knowledge available to CoSEEEK.

The ProductCategory specified in the GUI has a direct
influence on the product Properties. Furthermore, there can
be Problems relating to the processed Artifact, e.g., indicated
by violations of source code metrics. The Skill Level of the
Person dealing with the SE Issue serves as example for an
influence on the process properties here. There are four
possible relations between entities affecting the Properties,
and the Properties capture strong to weak negative as well as
positive impacts. These are all used to compute the values of
the Properties. The values are initialized with ‘0 (neutral)’
and are incremented / decremented by one or two based on
the relations to the different influences. The values are
limited to a range from ‘-2 (very low)’ to ‘2 (very high)’,
thus representing five possible states of the degree to which
the property applies to the current situation.

To select appropriate Building Blocks according to the
current properties, six possible connections are utilized.
These are ‘weaklyDependsOn’, ‘stronglyDependsOn’, and
‘dependsOn’, meaning the Activity is suitable if the value of
the Property is ‘1 (high)’ or ‘2 (very high)’, or just positive
and the other three connections for negative values. Each
Building Block can be connected to multiple Properties.
Based on an Issue, for each attributed ActivityTemplate a
SPARQL query is dynamically generated which returns the
corresponding Activity if the Properties of the current
situation match. Listing 1 shows such a query for an Activity
‘act’ that is based on an ActivityTemplate ‘at’ and depends on
two different Properties ‘prop1’ and ‘prop2’ which are, in
turn, based on Property Templates ‘pt1’ and ‘pt2’.

Listing 1 Activity selection SPARQL query

PREFIX project:
<http://www.htw-aalen.de/coseeek/context.owl#>
SELECT ?act
WHERE {

?act project:basedOnActivityTemplate ?at.
?at project:title "AT_CodeReview".
?issue project:title "CodeFixRequired".
?issue project:hasProperty ?prop.
?prop project:basedOnPropertyTemplate ?pt.
?at project:weaklyDependsOn ?pt.
?prop project:weight "1".
?issue project:hasProperty ?prop2.

?prop2 project:basedOnPropertyTemplate ?pt2.
?at project:stronglyDependsOn ?pt2.
?prop2 project:weight "2".}

Based on this activity selection, the Work Unit Container

comprises all applicable Building Blocks and Activities.
Based upon this, the workflow skeleton is adapted and Work
Units are generated for the Activities that are to be executed.
This is described in detail in [18].

The significance of this contribution is, on the one hand,
that workflows for SE issues, which are extrinsic to
archetype SE processes, are not only explicitly modeled, but
also dynamically adapted to the current issue and situation
based on various properties derived from the current product,
process, the context, and the user. Thus, it is possible to
provide situational and tailored support as well as guidance
for software engineers processing SE issues. On the other
hand, the proposed approach shows promise for improving
and simplifying process definition for extrinsic workflows.
The initial effort to define all the activities, issues, properties,
and workflow skeletons may not be less than predefining
huge workflows for the issues, but the reuse of the different
concepts is fostered. Thereafter, the creation of new issues is
simplified since they only need to be connected to activities
they should contain. The latter are later automatically
inserted to match the current situation. Yet the main
advantage is of semantic nature: the process of issue creation
is much more problem-oriented using the concepts in the
ontology versus creating immense process models. The
process engineer can concentrate on activities matching the
properties of different situations rather than investing
cognitive efforts in the creation of huge rigid process models
matching every possible situation. Likewise, the analysis of
issues allows simple queries to the ontology returning
problem-oriented knowledge such as ‘Which activities apply
to which issues’ or ‘Which activities are applied to high-risk
time critical situations’.

D. Modeling Effort
This section provides further details about the real

modeling effort required for specifying declarative
workflows including contextual properties. A web-based
GUI was developed to support this kind of process modeling,
multiple screenshots of which are shown in Figure 17. The
screens on the left side depict the full GUI, while the ones on
the right side show only selected relevant parts.

The GUI enables the easy creation of context properties,
activities, Building Blocks, and cases. For each of these, one
screen in the GUI enables the creating, editing, and deleting
of these items. Figure 17(C) shows the screen containing the
list of Building Blocks. From that list, the screen for editing /
creating Building Blocks can be accessed, as shown in Figure
17. (B). It enables defining a name, a description, and a
category for the Building Block. The type of Building Block
can also be selected and, according to the type, the special
properties of the block. Figure 17(B) shows this for a
‘Sequence’: on the left, the contained activities / Building
Blocks can be specified, and on the right, the context
properties to which the specified Building Block should

apply. Activities can be defined similarly as shown in Figure
17(D): A name, a description, and a category can be defined,
as well as context properties to which the activity shall
apply.

The definition of context properties is depicted in Figure
17(D). For them, a name, a description, and influences can
be defined. The example shows the ‘Skill Level’ of the
person processing the activity as influence, which is defined
to enhance the context property ‘Risk’ when it is low. The
definition of cases can be easily accomplished as well (cf.
Figure 17(A)). Besides a name and a description, the user
can define how Building Blocks or activities shall be
included utilizing the four basic constraints.

E. Case learning
Taking the variety of possible SE issues into account, it is

not likely that all of them will be modeled a priori. To
support the integration of cases for new issues into the
system, our approach features the so-called ‘Case learning’
functionality. It enables the user to start a new issue even if
the latter is not known by the system. The user can then
choose which activities to process for that issue and the
system records it. The relevant part of the CoSEEEK GUI is
shown in Figure 9. Via the lower part of that GUI, the user
can name the issue he is processing and choose an activity
category and activity to process. When he clicks ‘Process
Activity’, the activity chosen is recorded for that new issue.
When the issue is finished, the user clicks ‘Complete Issue’
to stop the issue recording.

Figure 9. GUI with case learning feature.

A process engineer can then utilize that information to
model workflows for new cases. That way, if an unknown
issue was recorded multiple times, the applicable Building
Blocks to cover that various possibilities can be derived by a
process engineer. Future work can even consider deriving
new workflow templates automatically, similar to the
approach shown in [46][64]. It considered the automatic
generation of new process models from different instance
variants derived from the same model to provide models that
better match real execution.

V. EVALUATION
This section illustrates the advantages of the proposed

approach via a synthetic, but concrete practical scenario
generated in a lab environment. Future work will include
analysis of currently ongoing industrial case studies utilizing
CoSEEEK with partners of the research project.

A. Scenario Solved
For the bug fix issue presented in Section I.A, the

concrete scenario considered two possible generated
workflows. More precisely, for this scenario, a set of
properties has been defined as well as activities and their
dependencies on these properties. The first case deals with an
urgent fix of a GUI component. That component is assumed
to be part of a simple screen not often used by customers.
The second case deals with a database component. The fix is
assumed to have an impact on multiple tables in the
database. Table III depicts the product and process properties
that were selected for cases in this scenario as well as the
values that were chosen for them by the developer via the
CoSEEEK web GUI.

TABLE III. EXAMPLE SME PROPERTIES OF CASES

 Component GUI (Case 1) DB (Case 2)
Product criticality o +

Properties user impact ++ o
 dependencies - +
 complexity o +
 risk o +

Process risk - o
Properties urgency + -

 complexity - +
 dependencies o o

It is assumed that no other influences exist for the

properties. The activities being part of this scenario are
shown in Figure 18. The figure illustrates different levels of
encapsulated Building Blocks that foster easy modeling,
while hiding the inherent complexity of the approach: on the
top level, where the ‘Case’ is modeled, there is only a simple
sequence consisting of activities and Building Blocks that
realize the workflow structure. The scenario also shows the
advanced flexibility of the approach. Activities can be
flexibly integrated: the ‘Validation to Requirements’ activity
will not always be required. Therefore it is simply integrated
and connected to a very high value (++) of the complexity
property. (This connection is not shown in Figure 18 to
preserve better readability.) The testing activities were
integrated, mutually excluding each other in the initial
workflow. In the declarative specification, they are grouped
in a Parallel Building Block and connected to different
situational properties. Thus, the situation determines the
execution of more than one or none of them. The two types
of Conditional Building Blocks are also included. The review
activities are mutually exclusive and it is possible that none
of them comes to execution. Opposed to this, the
‘Integration’ Building Block requires one of the two mutually
exclusive activities to be executed. To support better
readability, Figure 18 shows only a selection of the mutual

connections between Building Blocks and the connections of
Building Blocks to situational properties.

The chosen values lead to the selection of different
activities for the different workflows as illustrated in Figure
10. Because of the low complexity of the GUI case, the bug
fix needs no special preparation or design. Due to the direct
user impact of the GUI component, a GUI test and the
documentation in the change log has been chosen. The unit
test activities have been modeled to be applicable only for
cases that are not urgent and thus they were omitted. Due to
the risk and complexity of the database component and the
task relating to it, the creation of a separate branch as well as
an explicit check for dependencies have been prescribed. In
the given case, the ‘Design Solution’ activity was
nevertheless omitted since it was modeled to be only
applicable if ‘Complexity’ is very high (++). Unit as well as
regression test activities were included because of low
urgency and high criticality, whereas the creation of a
regression test was conditionally integrated depending on the
presence of regression tests. A code review has also been
prescribed due to the complexity and criticality of the case.
The higher dependencies of the database component also
caused the inclusion of an activity to inform other team about
the changes. The integration activities are also more complex
here for working with multiple branches. A requirement
constraint ensures the presence of the ‘Branch Integration’
activities if a separate branch was created.

Analyze
Issue

ActivityEnd PointStart Point XOR-Gate

GUI Case Workflow

Database Case Workflow

Implement
Solution GUI Test

Document in
Change Log

Integrate and
Build Close Issue

Analyze
Issue

Close Issue

Create CR
Branch

Check
Dependencies

Implement
Solution

Adapt Unit
Test

Run Unit
Test

Code
Review

Check for other
Branches

Integrate and
Build

Create
Patches

Run Regression
Test

Run Unit
Test

Create
Regression Test

Inform other
Team

Adapt Unit
Test

Figure 10. Examples of generated workflows.

These workflows are much simpler than the pre-modeled
example mentioned in the Problem Scenario section.
Assuming the presence of an activity and Building Block
library, the modeling is also simpler and more problem-
oriented. The automated adaption supports workflow
diversity, reducing complexity and maintenance compared to
all-encompassing models. The scenario illustrates the
usefulness of the guidance via the chosen activities by these
two considerably different workflows containing tasks
matching the situation as well as the processed artifact.
Future case studies will be used to further evaluate the

practicality of the workflows and to refine the properties and
their relation to the activities.

B. Further examples of use cases
This section illustrates other use cases that typically

occur in SE projects to show the broader applicability of the
approach and its reuse and simplicity capabilities. These use
cases deal with technology swapping, migration, customer
support, and infrastructural issues and are illustrated in
Figure 11.

Development
Cycle

Analyze
Issue

Prepare
Transfer Documentation Testing Integration Close Issue

Additional Cases

Technology Swap / Migration:

Infrastructural Issue:

Customer / 3rd Level Support:

Support
Treatment

Analyze
Issue

Contact
Actuator Close Issue

Infrastructure
Treatment

Analyze
Issue

Contact
Actuator Close Issue

Figure 11. Additionally modeled use cases.

‘Migration’ deals with the migration to a new software
version of a supporting technology as, for instance, a web
services framework. ‘Technology Swap’, in turn, deals with
the replacement of a technology. Both of them are similar
with the main difference being that ‘Technology Swapping’
is more complex and riskier. Therefore, they can be
consolidated into one case. That use case includes a ‘Prepare
Transfer’ Building Block containing activities to, e.g.,
analyze the new technology or technology version.
Subsequently, the activities ‘Development Cycle’ and
‘Documentation’ are attached. The latter is extended to also
include internal documentation, since in case of migrations
or technology swaps internal documents of the developers
may have to be adjusted. After that, the activities for testing
and integration are included.

The case of ‘Customer / 3rd level Support’ deals with
situations where developers provide direct support to
customers and start with the receipt of a support request. At
the top level it has a very simple workflow: the actuator of
the support request is to be contacted and the support activity
is to be executed. The ‘Contact Actuator’ Building Block
therefore contains multiple conditional activities for
contacting the customer by mail, telephone, or directly. The
Building Block for the treatment, in turn, contains conditional
activities for direct and deferred treatment. Direct treatment
means the immediate fixing of a problem and contains the
aforementioned activities for development, testing, etc.
Deferred treatment, in turn, includes activities for creating a
new entry in the bug tracking system. Both of the top level
Building Blocks described here also contain the option not to
execute any activity. That way various situations can be
handled. For example, if the developer realizes that the
problem was only caused by misunderstanding or customer
misconduct, he can just contact the customer to sort out the
problem and close the case.

The ‘Infrastructural Issue’ use case deals with problems
relating to the infrastructure that are reported to the
responsible person. For this case, the ‘Customer / 3rd level

Support’ case can almost be completely recycled since there
may also be the necessity to contact the actuator of the
request to gain additional info or to provide support on it.
The second activity, the resolution of the issue, if required,
contains slightly modified activities compared to the other
cases. There is also the option for deferred treatment
involving the creation of a new bug report. Immediate
treatment is split into two activities: for simple cases such as
a version change or simple compatibility issue, the issue can
be directly resolved, but in more complex cases such as
instability or licensing changes, further clarification, e.g.,
with the project manager might be required.

VI. RELATED WORK
This section discusses work in different areas related to

the presented concept.

A. Contextual Integration of Process Management
The combination of semantic technology and process

management technology has been used in various
approaches. The concept described in [65] utilizes the
combination of Petri Nets and an ontology to achieve
machine-readable process models for better integration and
automation. This is achieved creating direct mappings of
Petri Net concepts in the ontology. The focus of the approach
presented in [66] is the facilitation of process models across
various model representations and languages. It features
multiple levels of semantic annotations such as the meta-
model annotation, the model content annotation, and the
model profile annotation as well as a process template
modeling language. The approach described in [67] presents
a semantic business process repository to automate the
business process lifecycle. Its features include checking in
and out as well as locking capabilities and options for simple
querying and reasoning that is more complex. Business
process analysis is the focus of COBRA presented in [68]. It
develops a core ontology for business process analysis with
the aim to improve analysis of processes to comply with
standards or laws like the Sarbanes-Oxley act. The approach
described in [69] proposes the combination of semantic and
agent technology to monitor business processes, yielding an
effective method for managing and evaluating business
processes. A similar approach is followed by SeaFlows [70].
While these approaches feature a process-management-
centric use of semantic technology, CoSEEEK not only aims
to further integrate process management with semantic
technology, it also integrates contextual information on a
semantic level to produce novel synergies alongside new
opportunities for problem-oriented process management.

B. Automated Process Support
With regard to automatic workflow support and

coordination, several approaches exist. CASDE [71] utilizes
activity theory to provide a role-based awareness module
managing mutual awareness of different roles in the project.
CAISE [72], a collaborative SE framework, enables the
integration of SE tools and the development of new SE tools
based on collaboration patterns. Caramba [73] features
support for ad-hoc workflows utilizing connections between

different artifacts, resources, and processes to provide
coordination of virtual teams. UML activity diagram
notation is used for pre-modeled workflows. For ad-hoc
workflows not matching a template, an empty process is
instantiated. In that case, work between different project
members is coordinated via so-called Organizational
Objects. Finally, EPOS [74] applies planning techniques to
automatically adapt a process instance if certain goals are
violated. These approaches primarily focus on the
coordination of dependencies between different project
members and do not provide unified, context-aware process
guidance incorporating intrinsic as well as extrinsic
workflows.

C. Flexible Process Models
The problem of rigid processes unaligned to the actual

situation is addressed in different ways by approaches like
Provop [12], WASA2 [75], ADEPT2 [52], Worklets [76],
DECLARE [77], Agentwork [78], Alaska [79],Pockets of
Flexibility (PoF) [80], ProCycle [81][82], and CAKE2 [83].

Provop provides an approach for the modeling and
configuration of process variants; i.e., starting with a given
process reference model, a particular process model variant
can be configured taking contextual properties into account
as well [84]. As opposed to our approach, however, the
Provop context model is relatively simple and does not
consider ontologies or semantic processing. A similar
approach, which requires form-based user interaction when
configuring a process model variant, is provided in [85].

WASA2 and ADEPT2 constitute examples of adaptive
process management systems. Both enable dynamic process
changes at the process type as well as the process instance
level; e.g., to cope with organizational changes or to deal
with exceptional situations when executing a certain
workflow instance. In particular, ADEPT2 enables the
common application of both kinds of changes [86]. A
detailed overview of these and other adaptive process
management systems can be found in [87].

Worklets feature the capability of binding sub-process
fragments or services to activities at run-time, thus not
enforcing concrete binding at design time. DECLARE, in
turn, provides a constraint-based model that enables any
sequencing of activities at run-time as long as no constraint
is violated. Similarly, Alaska allows users to execute and
complete declarative workflows. A combination of
predefined process models and constraint-based declarative
modeling has been proposed in [80], wherein at certain
points in the defined process model (called Pockets of
Flexibility) it is not exactly defined at design time which
activities should be executed in which sequence. For such a
PoF, a set of possible activities and a set of constraints are
defined, enabling some run-time flexibility. However, the
focus of DECLARE, Alaska and PoF is on the constraint-
based composition and execution of workflows by end users,
and less on automatic workflow adaptations.

Agentwork [78] features automatic process adaptations
utilizing predefined but flexible process models, building
upon ADEPT1 technology [88]. The adaptations are realized

via agent technology and are applied to cope with exceptions
in the process at run-time.

Finally, ProCycle provides integrated and seamless
process life cycle support enabling different kinds of
flexibility support along the various lifecycle stages. In
particular, ProCycle combines the ADEPT2 framework for
dynamic process changes with concepts and methods
provided by case-based reasoning (CBR) technology like
CBRFlow [89]. More precisely, conversational case-based
reasoning is applied to reuse process changes (e.g., ad-hoc
changes of single process instances) in similar problem
context [90]. A comparable approach is provided by CAKE2
[83].

As opposed to the CoSEEEK approach, all these
approaches do not utilize semantic processing and do not
incorporate a holistic project-context that unifies knowledge
from various project areas. For a more in-depth discussion of
flexibility issues in the process lifecycle, we refer to [91].

VII. CONCLUSION AND FUTURE WORK
The SE domain epitomizes the challenge that automated

adaptive workflow systems face. Since SE is a relatively
young discipline, automated process enactment in real
projects is often not mature. One of the issues herein is the
gap between the top-down abstract archetype SE process
models that lack automated support and guidance for real
enactment, and exactly the actual execution with its bottom-
up nature. An important factor affecting this problem are
activities belonging to specialized issues such as bug fixing
or refactoring. These are on the one hand not covered by
archetype SE processes and are on the other hand often so
variegated that pre-modeling them is not feasible or currently
cost-effective.

The approach presented in this article combines a set of
features to support such dynamic process execution:

- Execution support is provided for both intrinsic and

extrinsic workflows. This includes a uniform way of
execution for both although modeled differently.

- The higher level of dynamicity that is inherent to
extrinsic workflows is accommodated by a declarative,
problem-oriented method of modeling. The latter
enables defining a dynamic set of candidate activities
rather than modeling huge rigid workflow templates.

- The hierarchical structure of the declarative modeling
approach featuring the concept of the Building Blocks
supports the modeling in many ways: complexity is
hidden at build-time as well as at run-time. Reuse is
fostered as process models can be separated not only by
sub-processes but also by separating them into logical
blocks.

- Executable workflows are generated as the system
automatically chooses a matching set of activities for
various situations. This is enabled by the use of SME
and the explicit modeling of contextual influences and
the direct integration with process execution.

The broader application of this approach would be

beneficial in domains similar to SE that exhibit dynamics

and high workflow diversity with adaptable workflows for
uncommon workflows. It provides useable context-relevant
guidance while reducing workflow modeling efforts and
maintenance by modeling influences separate from the
workflows themselves.

Our future work will consider refinements and extensions
to the modeling approach that are shown to be beneficial in
our industrial studies. That includes the integration of further
concepts to the ontology that influence the Properties, as
well as extending the ontology to fully leverage the context
knowledge available to CoSEEEK. Automated analysis of
executed workflow instances and the automatic derivation
and recommendation of new workflow templates are also
planned.

ACKNOWLEDGMENTS
The authors wish to acknowledge Stefan Lorenz for his

assistance with the implementation and evaluation. This
work was sponsored by BMBF (Federal Ministry of
Education and Research) of the Federal Republic of
Germany under Contract No. 17N4809.

REFERENCES
[1] Grambow, G., Oberhauser, R., and Reichert, M.: ‘Semantic workflow

adaption in support of workflow diversity’. Proc. 4th Int'l Conf. on
Advances in Semantic Processing, 2010, SEMAPRO 2010, pp. 158-
165

[2] Müller, D., Herbst, J., Hammori, M., and Reichert, M.: ‘IT support
for release management processes in the automotive industry’. Proc.
4th Int'l Conf. on Business Process Management, 2006, pp. 368-377

[3] Lenz, R., and Reichert, M.: ‘IT support for healthcare processes-
premises, challenges, perspectives’, Data & Knowledge Engineering,
61(1), 2007, pp. 39-58

[4] Jaccheri, M.L., and Conradi, R.: ‘Techniques for process model
evolution in EPOS’, Software Engineering, IEEE Transactions on,
19(12), 1993, pp. 1145-1156

[5] Cugola, G., Di Nitto, E., Ghezzi, C., and Mantione, M.: ‘How to deal
with deviations during process model enactment’. Proc. 17th Int'l
Conf. on Software engineering, 1995, pp. 265-273

[6] Dellen, B., and Maurer, F.: ‘Integrating planning and execution in
software development processes’. Proc. 5th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 1996, pp.
170-176

[7] OpenUP, http://epf.eclipse.org/wikis/openup/ [Januray 2012]
[8] Rausch, A., Bartelt, C., Ternité, T., and Kuhrmann, M.: ‘The V-

Modell XT Applied–Model-Driven and Document-Centric
Development’. Proc. 3rd World Congress for Software Quality,
VOLUME III, 2005, pp. 131-138

[9] Gibson, D.L., Goldenson, D.R., and Kost, K.: ‘Performance results of
CMMI-based process improvement’. Technical Report. Software
Engineering Institute, Carnegie-Mellon University, Pittsburgh, 2006

[10] Wallmüller, E.: ‘SPI-Software Process Improvement mit Cmmi und
ISO 15504’ (Hanser Verlag, 2007)

[11] McConnell, S.: ‘The nine deadly sins of project planning’, IEEE
Software, 18(5), 2001, pp. 5-7

[12] Hallerbach, A., Bauer, T., and Reichert, M.: ‘Capturing variability in
business process models: the Provop approach’, Journal of Software
Maintenance and Evolution: Research and Practice, 22(6 7), 2010, pp.
519-546

[13] Reichert, M., Rinderle-Ma, S., and Dadam, P.: ‘Flexibility in process-
aware information systems’, Transactions on Petri Nets and Other
Models of Concurrency II, LNCS, 5460, 2009, pp. 115-135

[14] Weber, B., Reichert, M., Mendling, J., and Reijers, H.A.:
‘Refactoring large process model repositories’, Computers in
Industry, 62(5), 2011, pp. 467-486

[15] Hill, J., Pezzini, M., and Natis, Y.: ‘Findings: confusion remains
regarding BPM terminologies’, Gartner Research, 501(G00155817),
2008

[16] WfMC. 1993. Workflow management coalition. http:// www.
wfmc.org/

[17] Oberhauser, R., and Schmidt, R.: ‘Towards a Holistic Integration of
Software Lifecycle Processes using the Semantic Web’. Proc. 2nd Int.
Conf. on Software and Data Technologies, 2007, pp. 137-144

[18] Oberhauser, R.: ‘Leveraging Semantic Web Computing for Context-
Aware Software Engineering Environments’, in Wu, G. (Ed.):
‘Semantic Web’ (In-Tech, Vienna, Austria, 2010)

[19] Grambow, G., Oberhauser, R., and Reichert, M.: ‘Towards a
Workflow Language for Software Engineering’. Proc. 10th IASTED
Conference on Software Engineering, 2011, pp.130-137

[20] Grambow, G., and Oberhauser, R.: ‘Towards Automated Context-
Aware Selection of Software Quality Measures’. Proc. 5th Intl. Conf.
on Software Engineering Advances, 2010, pp. 347-352

[21] Grambow, G., Oberhauser, R., and Reichert, M.: ‘Employing
Semantically Driven Adaptation for Amalgamating Software Quality
Assurance with Process Management’. Proc. 2nd Int’l. Conf. on
Adaptive and Self-adaptive Systems and Applications, 2010, pp. 58-
67

[22] Grambow, G., Oberhauser, R., and Reichert, M., ‘Contextual Quality
Measure Integration into Software Engineering Processes,’
International Journal on Advances in Software, 4(1&2), 2011, pp. 76-
99

[23] Ralyté, J., Brinkkemper, S., and Henderson-Sellers, B.: ‘Situational
method engineering: Fundamentals and experiences’ (Springer, 2007)

[24] Reichert, M., Weber, B.: Enabling Flexibility in Process-aware
Information Systems – Challenges, Methods, Technologies, Springer
(to appear)

[25] Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., and
Reijers, H.A.: ‘Imperative versus Declarative Process Modeling
Languages: An Empirical Investigation’. Accepted for publication in
Proc. 2nd Int'l Workshop on Empirical Research in Business Process
Management, 2011

[26] Grambow, G., Oberhauser, R., and Reichert, M.: ‘Semantically-
Driven Workflow Generation using Declarative Modeling for
Processes in Software Engineering’. Accepted for publication in Proc.
4th Int'l Workshop on Evolutionary Business Processes, 2011

[27] Gelernter, D.: ‘Generative communication in Linda’, ACM
Transactions on Programming Languages and Systems (TOPLAS),
7(1), 1985, pp. 80-112

[28] Oberhauser, R.: ‘Towards Automated Test Practice Detection and
Governance’. Proc. Int'l Conf. on Advances in System Testing and
Validation Lifecycle, 2009, pp. 19-24

[29] Van der Aalst, W.M.P.: ‘The application of Petri nets to workflow
management’, Journal of Circuits Systems and Computers, 8(1),
1998, pp. 21-66

[30] Rinderle, S., Reichert, M., and Dadam, P.: ‘Evaluation of correctness
criteria for dynamic workflow changes’. Proc. 1st Int'l Conf on
Business Process Management, LNCS, 2678, 2003, pp. 1021-1021

[31] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., and
Barros, A.P.: ‘Workflow patterns’, Distributed and parallel databases,
14(1), 2003, pp. 5-51

[32] Russell, N., ter Hofstede, A.H.M., Edmond, D., and van der Aalst,
W.M.P.: ‘Workflow data patterns’. Proc. 24th Int'l Conf. on
Conceptual Modeling, LNCS, 3716, 2004, pp. 353–368

[33] Lanz, A., Weber, B., and Reichert, M.: ‘Workflow time patterns for
process-aware information systems’. Proc. 11th International
Workshop on Enterprise, Business-Process, and Information Systems
Modeling, LNBIP, 50, 2010, pp. 94–107

[34] microTOOL in-Step: http://www.microtool.de/instep/en/index.asp
[January, 2012]

[35] Grambow, G., Oberhauser, R., and Reichert, M.: ‘Towards Automatic
Process-aware Coordination in Collaborative Software Engineering’.
Accepted for publication in Proc. 6th International Conference on
Software and Data Technologies, 2011

[36] Zugal, S., Pinggera, J., and Weber, B.: ‘Creating Declarative Process
Models Using Test Driven Modeling Suite’. Proc. CAiSE Forum,
2011, pp. 1-8

[37] Zugal, S., Pinggera, J., and Weber, B.: ‘The impact of testcases on the
maintainability of declarative process models’. Proc. Int'l Working
Conf. on Enterprise, Business-Process and Information Systems
Modeling, LNBIP, 81, 2011, pp. 163-177

[38] Reichert, M.: ‘Dynamische Ablaufänderungen in Workflow-
Management-Systemen’. PhD Thesis, University of Ulm, 2000

[39] Reichert, M., Rinderle, S., Kreher, U., and Dadam, P.: ‘Adaptive
process management with ADEPT2’. Proc. 21st International
Conference on Data Engineering, 2005, pp. 1113-1114

[40] Vanhatalo, J., Völzer, H., and Koehler, J.: ‘The refined process
structure tree’. Proc. 6th Int'l Conf. on Business Process Management,
LNCS, 5240, 2008, pp. 100-115

[41] Kiepuszewski, B., ter Hofstede, A., and Bussler, C.: ‘On structured
workflow modelling’. Proc. 12th Conference on Advanced
Information Systems Engineering, LNCS, 1789, 2000, pp. 431-445

[42] Reichert, M., and Dadam, P.: ‘ADEPT flex—supporting dynamic
changes of workflows without losing control’, Journal of Intelligent
Information Systems, 10(2), 1998, pp. 93-129

[43] Mendling, J., Reijers, H.A., and van der Aalst, W.M.P.: ‘Seven
process modeling guidelines (7pmg)’, Information and Software
Technology, 52(2), 2010, pp. 127-136

[44] Mendling, J.: ‘Metrics for Process Models: Empirical Foundations of
Verification, Error Prediction, and Guidelines for Correctness’
(Springer-Verlag New York Inc, 2008)

[45] Muehlen, M., and Recker, J.: ‘How much language is enough?
Theoretical and practical use of the business process modeling
notation’. Proc. 20th Int'l Conf. on Advanced Information Systems
Engineering, LNCS, 5074, 2008, pp. 465-479

[46] Li, C., Reichert, M., and Wombacher, A.: ‘Mining business process
variants: Challenges, scenarios, algorithms’, Data & Knowledge
Engineering, 70(5), 2011, pp. 409-434

[47] BPEL. http://docs.oasis-open.org/wsbpelkk/2.0/wsbpel-v2.0.pdf
[January .2012]

[48] Reichert, M., and Rinderle, S.: ‘On design principles for realizing
adaptive service flows with BPEL’. Proc. Workshop "Methoden,
Konzepte und Technologien für die Entwicklung von dienstbasierten
Informationssystemen" (EMISA'06), 2006, pp. 133–146

[49] Kindler, E.: ‘On the semantics of EPCs: Resolving the vicious circle’,
Data & Knowledge Engineering, 56(1), 2006, pp. 23-40

[50] Mendling, J., Neumann, G., and Van Der Aalst, W.: ‘Understanding
the occurrence of errors in process models based on metrics’, On the
Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS, LNCS, 4803, 2010, pp. 113-130

[51] Mendling, J., Dongen, B.F.v., and Aalst, W.M.P.v.d.: ‘Getting rid of
OR-joins and multiple start events in business process models’,
Enterprise Information Systems, 2(4), 2008, pp. 403-419

[52] Dadam, P., and Reichert, M.: ‘The ADEPT project: a decade of
research and development for robust and flexible process support’,
Computer Science-Research and Development, 23(2), 2009, pp. 81-
97

[53] Lanz, A., Reichert, M., and Dadam, P.: ‘Making Business Process
Implementations Flexible and Robust: Error Handling in the
AristaFlow BPM Suite’. Proc. CAiSE'10 Forum, LNBIP, 72, 2010,
pp. 174-189

[54] Han, Y.: ‘Software Infrastructure for Configurable Workflow
Systems: A Model-driven Approach Based on Higher Order Object
Nets and CORBA’. PHD Thesis, TU Berlin, 1997

[55] Meier, W.: ‘eXist: An open source native XML database’, Web,
Web-Services, and Database Systems, LNCS, 2593, 2009, pp. 169-
183

[56] Johnson, P.M.: ‘Requirement and design trade-offs in Hackystat: An
in-process software engineering measurement and analysis system’.
Proc. 1st Int. Symp. on Empirical Software Engineering and
Measurement, 2007, pp. 81-90

[57] Luckham, D.C.: ‘The power of events: an introduction to complex
event processing in distributed enterprise systems’ (Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2001)

[58] Esper: http://esper.codehaus.org/ [January 2012]
[59] Weber, B., Reichert, M., Wild, W., and Rinderle, S.: ‘Balancing

flexibility and security in adaptive process management systems’, On
the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, LNCS, 3760, 2005, pp. 59-76

[60] Rinderle-Ma, S., Reichert, M., and Weber, B.: ‘Relaxed compliance
notions in adaptive process management systems’. Proc. 27th Int'l
Conf. on Conceptual Modeling, LNCS, 5231, 2008, pp. 232-247

[61] World Wide Web Consortium, ‘OWL Web Ontology Language
Semantics and Abstract Syntax,’ (2004) [January 2012]

[62] McBride, B.: ‘Jena: A semantic web toolkit’, Internet Computing,
IEEE, 6(6), 2002, pp. 55-59

[63] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz, Y.: ‘Pellet:
A practical owl-dl reasoner’, Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2), 2007, pp. 51-53

[64] Li, C., Reichert, M., and Wombacher, A.: ‘The MinAdept Clustering
Approach for Discovering Reference Process Models out of Process
Variants’, International Journal of Cooperative Information Systems,
19(3 & 4), 2010, pp. 159-203

[65] Koschmider, A., and Oberweis, A.: ‘Ontology based business process
description’. Proc. CAiSE´05 workshops, 2005, pp. 321-333

[66] Lin, Y., and Strasunskas, D.: ‘Ontology-based semantic annotation of
process templates for reuse’. Proc. 10th International Workshop on
Exploring Modeling Methods for Systems Analysis and Design,
2005, pp. 593-604

[67] Ma, Z., Wetzstein, B., Anicic, D., Heymans, S., and Leymann, F.:
‘Semantic business process repository’. Proc. Workshop on Semantic
Business Process and Product Lifecycle Management, 2007, pp. 92–
100

[68] Pedrinaci, C., Domingue, J., and Alves de Medeiros, A.: ‘A core
ontology for business process analysis’, The Semantic Web: Research
and Applications, LNCS, 5021, 2008, pp. 49-64

[69] Thomas, M., Redmond, R., Yoon, V., and Singh, R.: ‘A semantic
approach to monitor business process’, Communications of the ACM,
48(12), 2005, pp. 55-59

[70] Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Goeser, K., Reichert, M.,
and Dadam, P.: ‘SeaFlows Toolset-Compliance Verification Made
Easy’. Proc. CAiSE'10 Forum, LNBIP, 2010, pp. 76-91

[71] Jiang, T., Ying, J., and Wu, M.: ‘CASDE: An Environment for
Collaborative Software Development’, Computer Supported
Cooperative Work in Design III, LNCS, 4402, 2007, pp. 367-376

[72] Cook, C., Churcher, N., and Irwin, W.: ‘Towards synchronous
collaborative software engineering’. Proc. 11th Asia-Pacific Software
Engineering Conference, 2004, pp. 230-239

[73] Dustdar, S.: ‘Caramba—a process-aware collaboration system
supporting ad hoc and collaborative processes in virtual teams’,
Distributed and parallel databases, 15(1), 2004, pp. 45-66

[74] Conradi, R., Liu, C., and Hagaseth, M.: ‘Planning support for
cooperating transactions in EPOS’, Information Systems, 20(4), 1995,
pp. 317-336

[75] Weske, M.: ‘Flexible modeling and execution of workflow activities’.
Proc. 31st Hawaii Int'l Conf. on System Sciences, 1998, pp. 713-722

[76] Adams, M., ter Hofstede, A.H.M., Edmond, D., and van der Aalst,
W.M.P.: ‘Worklets: A service-oriented implementation of dynamic
flexibility in workflows’, On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE, LNCS, 4275,
2006, pp. 291-308

[77] Pesic, M., Schonenberg, H., and van der Aalst, W.M.P.: ‘Declare:
Full support for loosely-structured processes’. Proc. 11th IEEE
International Enterprise Distributed Object Computing Conference
2007, pp. 287-298

[78] Müller, R., Greiner, U., and Rahm, E.: ‘AGENT WORK: a workflow
system supporting rule-based workflow adaptation’, Data Knowlage
Engineering, 51(2), 2004, pp. 223-256

[79] Weber, B., Pinggera, J., Zugal, S., and Wild, W.: ‘Alaska Simulator
Toolset for Conducting Controlled Experiments on Process
Flexibility’. Proc. CAiSE'10 Forum, LNBIP, 72, 2011, pp. 205-221

[80] Sadiq, S., Sadiq, W., and Orlowska, M.: ‘A framework for constraint
specification and validation in flexible workflows’, Information
Systems, 30(5), 2005, pp. 349-378

[81] Weber, B., Reichert, M., Wild, W., and Rinderle-Ma, S.: ‘Providing
integrated life cycle support in process-aware information systems’,
Int'l Journal of Cooperative Information Systems (IJCIS), 18(1),
2009, pp. 115-165

[82] Rinderle, S., Weber, B., Reichert, M., and Wild, W.: ‘Integrating
process learning and process evolution–a semantics based approach’.
Proc. 3rd International Conference on Business Process Management,
LNCS, 3649, 2005, pp. 252-267

[83] Minor, M., Tartakovski, A., and Schmalen, D.: ‘Agile workflow
technology and case-based change reuse for long-term processes’,
International Journal of Intelligent Information Technologies (IJIIT),
4(1), 2008, pp. 80-98

[84] Hallerbach, A., Bauer, T., and Reichert, M.: ‘Context-based
configuration of process variants’. Proc. 3rd Int’l Workshop on
Technologies for Context-Aware Business Process Management,
2008, pp. 31-40

[85] La Rosa, M., Lux, J., Seidel, S., Dumas, M., and ter Hofstede, A.:
‘Questionnaire-driven configuration of reference process models’.
Proc. 19th Int'l Conf. on Advanced Information Systems Engineering,
LNCS, 4495, 2007, pp. 424-438

[86] Rinderle, S., Reichert, M., and Dadam, P.: ‘Disjoint and overlapping
process changes: Challenges, solutions, applications’, On The Move
to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE,
LNCS, 3290, 2004, pp. 101-120

[87] Rinderle, S., Reichert, M., and Dadam, P.: ‘Correctness criteria for
dynamic changes in workflow systems--a survey’, Data &
Knowledge Engineering, 50(1), 2004, pp. 9-34

[88] Reichert, M., Rinderle, S., and Dadam, P.: ‘ADEPT Workflow
Management System: Flexible Support for Enterprise-Wide Business
Processes’. Proc. 1st Int'l Conf. on Business Process Management,
LNCS, 2678, 2003, pp. 371-379

[89] Weber, B., Wild, W., and Breu, R.: ‘CBRFlow: Enabling adaptive
workflow management through conversational case-based reasoning’.
Proc. European Conference on Case-Based Reasoning, LNCS, 3155,
2004, pp. 89-101

[90] Weber, B., Rinderle, S., Wild, W., and Reichert, M.: ‘CCBR–driven
business process evolution’. Proc. Int'l Conf. on Cased based
Reasoning, LNCS, 3620, 2005, pp. 610-624

[91] Weber, B., Sadiq, S., and Reichert, M.: ‘Beyond rigidity–dynamic
process lifecycle support’, Computer Science-Research and
Development, 23(2), 2009, pp. 47-65

Peer
Review

Activit
y XOR-Gate

Code
Review

Code
Inspection

Walk
through

Implement
Solution

Document
in Change

log

Inform
User

Manual
Team

Analyze
Issue

Create CR
Branch

Reproduce
Error

Check
Dependencies

Design
Solution

Run
Regression

Test

Create
Regression

Tests
Run Unit

Test

Adapt
Unit
Test

GUI Test
Run

Static
Analysis

Inform
other
Team

Smoke
Test

Integration
Test

Feature
Test

Acceptance
Test

Validation to
Requirements

Integrate
and Build

Check for
other

Branches

Integrate
and Build

Create
Patches

Close
Issue

Unit test
needs

adaptation

Issue very
urgent?

Has high
complexity /
Criticality?

No test in
place

Has high
user impact?

Start Point End Point

Has high risk /
criticality?

Has high
complexity?

Has
dependencies?

Has high
complexity?

Has
dependencies?

Has high risk /
user impact?

Has high
user impact?

Has very high
user impact?

Has high
complexity?

Has high
complexity?

Not too
urgent?

Figure 12. Example of pre-modeled workflow for bug fixing.

Compare Files

Compare Files

Merge Files

Merge Files

Merge Files Compare Files

Parallel

Requires

Requires

Compare
Files

Merge
Files

ActivityAND-GateEnd PointStart Point

543

2

Sequence

Parallel
Loop

61

Activity BuildingBlocks Successor Constraint Parallel Constraint

3

XOR-Gate

5

2

1

Work Unit Container 1 (imperative)

Compare
Files

Merge
Files

Workflow 1

Compare
Files

Merge
Files

Work Unit Container 2 (declarative) Work Unit Container 3 (declarative)

Workflow 2 Workflow 3

Context

Urgency Criticality Risk

Situaltional Property Context Connection

Figure 13. Declarative workflow modeling.

Modeling

Bug
Fixing

Information gathering Activity selection Workflow execution

Bug
Fixing

Urgency Criticality

FED

A
Sequence

Parallel

B

Loop

C

FED

A
Sequence

Parallel

B

Loop

C

ActivityWorkflow Instance /
Work Unit Container

AND-
Gate

Semantic
Connection

OR-
GateCommunication

A

C

E

Case

Urgency Criticality

Bug
Fixing

Bug
Fixing

Workflow
generationValidation Value

Computation

Successor
ConstraintActivity User SensorParallel

Constraint
Context
Property

Urgency Criticality

Building Blocks

Figure 14. Concrete procedure.

External Tool Sensor

CoSEEEK
GUI

Tuple
Space

Workflow
Instance

Context
Module Ontology

Process
Module

1:Ad Hoc Workflow Event
6:Property Info Event

5:Communication Task Event

4:Communication
Task Event

9:Request Context Knowledge

10:Context Knowledge

8:Request Context Knowledge

2:Ad Hoc Workflow Event
7:Property Info Event

11:Context Knowledge

3:Workflow Instantiation
12:Workflow Adaptation

1:Ad Hoc Workflow Event

Figure 15. Concrete procedure realization.

DeclarativeContainer
Template

BuildingBlock Template BuildingBlockWithPredecessor

BuildingBlockWithSuccessor

BuildingBlockUnconnected

BuildingBlockWithParallel

BuildingBlock_Start

BuildingBlock_End

BuildingBlockInconsistent

Sequence

ActivityTemplate

Loop

Parallel
Inconsistent Parallel

Consistent Parallel

Inconsistent Sequence

Consistent Sequence

Inconsistent Loop

Consistent Loop

Consistent_DeclarativeContainer

Inconsistent_DeclarativeContainer

PropertyTemplateProperty

IssueTemplateIssue

BuildingBlock

ImperativeContainer
Template

WorkUnitContainer
Template

DeclarativeContainerImperativeContainer

WorkUnitContainer

WorkUnit WorkUnitTemplate

Conditional

SkillTemplateSkill

SkillLevel

ProblemTypeProblem

ProductCategory

Person

Artifact

Ontology Concept Generalisation Association

Inconsistent Conditional

Consistent Conditional

Activity

Figure 16. Classes in the ontology.

(C) Building Block List

(D) Activity Definition

(B) Building Block Definition

(A) Case Definition

(E) Building Block List
Figure 17. GUI screens for declarative workflow modeling.

Activity BuildingBlocks Successor Constraint Parallel Constraint

Context

Urgency

Criticality

Risk

Situaltional Property Context Connection

Development
Cycle

Sequence – Developer Test

Unit Test Regression Test

Sequence – Unit Test

Adapt
Unit test

Run Unit
Test

Conditional – Adapt Unit Test
Adapt

Unit test

GUI Test

Adapt Unit Test Run Unit Test

GUI Test

Sequence – Regression Test

Create
Regression

Test

Run
Unit
Test

Conditional – Create Regression Test
Create

Regression Test

Run Unit Test

Loop – Development Cycle Parallel - Testing

Smoke Test

Conditional – Review

Peer Review

Integration Test

Feature Test

Acceptance Test

Walkthrough

Code Inspection

Code Review

Sequence – Development Activities

Design
Solution

Implement
Solution

Inform other
Team

Create Regression Test

Validation to Requirements

Close Issue

Multiple
Branches

Create Patches

Integrate and Build

Integrate and Build

Loop – Branch Integration

Sequence – Branch Integration

Branch
Integration

Create
Patches

Conditional – Integration

Branch Integration

Building Block Library

Activity Library

Sequence – Documentation

Document
in Change

Log

Inform User
Manual
Team

ReviewDeveloper
Test

Development
Activities

Analyze
Issue

Analyze Issue

Prepare
Bug Fixing Documentation

Sequence – Prepare Bug Fixing

Create
CR

Branch

Reproduce
Error

Check
Dependencies

Validation to
Requirements Testing Integration Close Issue

Peer Review Walkthrough

Code Inspection Code Review Check for other Branches

Create Patches

Smoke Test Integration Test

Feature Test Acceptance Test

Document in Change Log

Inform User Manual Team Create CR Branch Reproduce Error

Check DependenciesDesign Solution Implement Solution

Inform other Team

Case

Dependencies

Complexity

User Impact

Sequence – Multiple Branches

Integrate
and Build

Check for
other

Branches

Requiremet Constraint Hierarchical Building Block Connection

Figure 18. Activities of example scenario.

	I. Introduction
	A. Problem Statement
	B. Contribution

	II. Requirements
	III. Solution Approach
	A. Solution Procedure
	B. Software Engineering Environment
	C. Context-aware Business Process Management
	D. Applying Situational Method Engineering
	E. Information Gathering
	F. Declarative Workflow Modeling
	G. Workflow treatment dimensions
	H. Concrete Procedure
	I. Modeling Effort

	IV. Realization
	A. Technical component realization
	B. Concrete Procedure
	C. Context Module
	D. Modeling Effort
	E. Case learning

	V. Evaluation
	A. Scenario Solved
	B. Further examples of use cases

	VI. Related Work
	A. Contextual Integration of Process Management
	B. Automated Process Support
	C. Flexible Process Models

	VII. Conclusion and future work
	Acknowledgments
	References

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.5

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize false

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages false

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages false

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages false

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

