Updatable Process Views
for Adapting Large Process Models:
The proView Demonstrator

Jens Kolb, Klaus Kammerer and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany
{jens.kolb, klaus.kammerer ,manfred.reichert}@uni-ulm.de
http://www.uni-ulm.de/dbis

Abstract. The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in large process model collections. To support
users having different perspectives on these processes and related data,
a PAIS should provide personalized views on process models. Especially,
changing process models is a frequent use case in PAISs due to evolv-
ing business processes or unplanned situations. While process views have
been suggested as abstractions for visualizing large process models, no
work exists on how to change these models based on respective views.
This software demonstration presents the proView framework for chang-
ing large process models through updates of corresponding process views,
while ensuring up-to-dateness and consistency of all other process views
related to the changed process model. Respective update operations can
be applied to a process view and are correctly propagated to the un-
derlying process model. Furthermore, all views related to this process
model are then correctly migrated to its new version as well. Overall,
the proView framework enables domain experts to evolve large process
models over time based on appropriate model abstractions.

Keywords: process model abstraction, process view, process change,
view update, process visualization, user-centered process management

1 Introduction

Process-aware information systems (PAISs) provide support for business pro-
cesses at the operational level [I]. A PAIS strictly separates process logic from
application code, relying on explicit process models. This enables a separation
of concerns, which is a well-established principle in computer science to increase
maintainability and to reduce costs of change [2]. The increasing adoption of
PAISs has resulted in large process model collections. In turn, each process
model may involve different domains, organizational units, and user roles as
well as dozens or even hundreds of activities [3]. Usually, the different user roles
need customized views on their process models, enabling personalized process

http://www.uni-ulm.de/dbis

abstraction and visualization [4J5]. For example, managers rather prefer an ab-
stract overview, whereas process participants need a detailed view of the process
parts they are involved in [6]. Hence, providing personalized process views is a
much needed PAIS feature. A variety of approaches for creating process model
abstractions based on process views have been proposed [TI8J9IT0]. However,
these proposals focus on creating and visualizing views, but do not consider an-
other fundamental aspect of PAISs: change and evolution [II]. More precisely,
they do not allow changing a large process model through editing or updating
any of its view-based abstractions. As a consequence, process changes still must
be directly applied to the core process model, which constitutes a complex as
well as error-prone task for domain experts, particularly when confronted with
large process models [12]. To overcome this limitation, in addition to view-based
process abstractions, users should be allowed to change large process models
through updating respective process views. However, this must not be accom-
plished in an uncontrolled manner to avoid inconsistencies or errors.

The pro Vieuﬂ framework addresses these challenges by providing powerful view-
creation operations [I3]. The operations allow abstracting process models through
the reduction and aggregation of process elements as well as through changes of
the process model notation [I4]. In addition, view-update operations allow adapt-
ing process views and propagating the respective changes to the underlying pro-
cess model as well as to other related process views [I5]. Our tool presentation
will demonstrate these aspects of the proView framework in an integrated and
comprehensible way.

Section [2] introduces the application scenario we use for our demonstration. Sec-
tion |3| presents the proView framework and the view operations it supports.
Section [4] then describes how the application scenario can be supported by using
the proView framework. Section [5| concludes the paper.

2 Application Scenario

Figure[l|shows a credit request process modeled in terms of BPMN. The process
involves human activities referring to three user roles (i.e., customer, clerk and
manager) as well as automatic activities executed by the PAIS without user
interaction. Assume that the process is started by the customer filling out a
credit request form (Step D). Afterwards, the PAIS checks whether an entry for
the customer needs to be created in the CRM system or the customer has been
already registered (Step). In the latter case, customer information is retrieved
from the CRM. Then, the clerk reviews the credit request (Step @), calculates
the risk, and checks the creditworthiness of the customer with the credit pro-
tection agency (Step @). After completing these tasks, he decides whether to
reject the request (Step ®) or forward it to his manager who finally decides
about granting the credit request or not (Step @®). If the manager rejects the
request, a respective email is sent to the customer (Step @)). Otherwise, a con-
firmation email is sent and the CRM database is updated. Finally, the clerk calls

! http://www.dbis.info/proView

CredeAppicaton x| [l vew

Fig. 1. Credit Application Process

the customer in the context of after sales (Step @), before the process completes.
Assume that an evolution of this process model becomes necessary: Before filling
out the credit form, the customer shall select the desired credit type. For this
purpose, an activity is added by the clerk to the process model. Obviously, this
change is relevant for all participants.

The proView framework addresses the user-centered visualization and adapta-
tion of large process models. Hence, in the given scenario, it enables personalized
views and visualizations of the credit request process for each user role, i.e., the
customer, clerk, and manager roles. In particular, the following requirements
must be met in order to properly support such a scenario:

R1: It should be possible to provide specific process views on a process model
for each user role and to flexibly define those views.

R2: The visual appearance of the process model and process view respectively
needs to be flexibly adaptable for each user (role) to meet needs best.

R3: Based on personalized process views and visualizations, elementary model
adaptations should be possible, e.g., to insert or delete activities in a user-
centered process model (i.e., process view).

R4: In case of changes introduced by a user, all other process views need to be
updated to ensure up-to-dateness of all process participants.

R5: Since domain experts hardly have technical process knowledge, high-level op-
erations for creating and adapting user-centered process views are required.

3 proView Framework

Figure [2] gives an overview of the implemented proView framework, which con-
sists of two major components: pro ViewServer and pro ViewClient. The pro View-
Client is instantiated for each user and takes care of interactions with the user
as well as the visualization of his process models and process views respectively.
The proViewClient is based on the vaadin web-framework and interacts with the
proViewServer using a RESTful communication protocol. The proViewServer

implements the logic of the proView framework and provides engines for visu-
alization, change, and execution € monitoring. It captures a business process
through a Central Process Model (CPM). In addition, for a particular CPM,
so-called creation sets (CS) are defined. Thereby, each CS specifies the schema
and appearance of a particular process view [15].

The visualization engine generates a process view based on a given CPM and the
information captured in a creation set CS, i.e., the CPM schema is transformed
to the view schema by applying the corresponding view-creation operations spec-
ified in CS (Step (®). Afterwards, the obtained view schema is simplified by ap-
plying well-defined refactoring operations (Step @®). Finally, Step (D customizes
the visual appearance of the view (e.g., creating an tree-, form-, or activity-based
visualization [8I14]) and delivers it to the proViewClient.

‘proViewCIient

proViewServer

Qo 1 View3
5 Visualization Engips ® v @ W/—VUE@:
w ‘ Create Schema " Refactor P‘Create Appearance‘ N
pA|33 . = r—— P \‘proVieWClient
o I
2| Z Business Process <> A View2
o o
g 2 CPMaaTSot0 cs2] [cs3 i
PAIS2 A "
Qfgr(gg S ‘proViewCIient
2
Q
x
|

T
4T 2
‘ Migrate Views \% Refactor @ Update CPM ﬂ‘i®\ View1

Change Engine

change a3

Fig. 2. The proView Framework

When a user updates a view schema, the change engine is triggered (Step
@). First, the view-based model change is propagated to the related CPM using
well-defined change propagation algorithms (Step). Next, the schema of the
CPM is simplified (Step @), i.e., behaviour-preserving refactorings are applied
to foster model comprehensibility (e.g., by removing surrounding gateways not
needed anymore). Afterwards, the creation sets of all other views associated
with the CPM are migrated to the new CPM schema version (Step @). This
becomes necessary since a creation set may be contradicting with the changed
CPM schema. Finally, all views are recreated (Steps ®-(@) and presented to
users by the proViewClients.

4 proView Demonstration

We revisit our scenario from Section [2|and show how the described requirements
can be addressed by pro View.

Requirement R1: The proViewServer allows creating an arbitrary number of
process views by applying aggregation and reduction operations specified in the
creation set. Thereby, a reduction removes an activity from the respective view,
while an aggregation combines a set of connected activities to one activity.
Requirement R2: The proViewClient enables users to change the visual appear-
ance of process views, e.g., by switching between the notations provided by

BPMN, ADEPT [16], and proViewForms. The latter allow visualizing process
models and views in terms of forms, which support users, not familiar with
activity-centered process notations, in understanding complex process logic. Fur-
ther visual appearances for process views are under construction (e.g., text-based
representation).

Requirement R8: The proViewServer provides view-update operations which
allow inserting and deleting activities as well as AND/XOR branchings [15].
These operations can be applied by an end-user to his process view using the
proViewClient and are then be propagated to the proViewServer. Furthermore,
parametrization of these operations allows for automatically resolving ambigui-
ties when propagating view changes; i.e., change propagation behaviour can be
customized. However, at this stage concurrent changes are not enabled in the
proViewServer, i.e., only one change at a time is allowed.

Requirement R4: Updates triggered by users are applied to the CPM as well as
to associated process views. Their view creation sets are then migrated to the
new version of the CPM. Hence, all affected views will be re-created.
Requirement R5: The proViewServer supports high-level operations to create
process views. For example, a new view can be created based on the role of a
user displaying only those activities he is involved in.

All these aspects are illustrated in our screencast and can be watched at the
projects’ website: www.dbis.info/proView.

5 Conclusion

In our demonstration, we present the proView framework and its operations;
proView supports the creation of personalized process views as well as the view-
based change of business processes, i.e., process abstractions not only serve visu-
alization purpose, but also lift process changes up to a higher semantical level.
A set of update operations enables users to update their view and propagate the
respective change to the process model representing the overall business process.
Finally, we provide migration rules to update all other process views associated
with a changed CPM. Similar to this propagation, it can be decided per view,
how much information about the change shall be displayed to the user.

The proView framework is implemented as a client-server application to simulta-
neously edit a process model based on views. The implementation of the proView
framework has proven the applicability of our approach. Furthermore, user ex-
periments based on the proView demonstrator are planned to systematically an-
alyze whether view-based process changes improve the handling and evolution of
large process models. Moreover, the proView demonstrator shall be extended to
also execute process views in a PAIS [I7]. Overall, we believe that the proView
framework offers promising perspectives for process participants for evolving
their business processes.

References

10.

11.

12.

13.

14.

15.

16.

17.

Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

Weber, B., Sadiq, S., Reichert, M.: Beyond Rigidity - Dynamic Process Lifecycle
Support: A Survey on Dynamic Changes in Process-Aware Information Systems.
Computer Science - Research and Development 23(2) (2009) 47-65

Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring Large Process
Model Repositories. Computers in Industry 62(5) (2011) 467-486

Rinderle, S., Bobrik, R., Reichert, M., Bauer, T.: Businesss Process Visualiza-
tion - Use Cases, Challenges, Solutions. In: Proc. 8th Int’l Conf. on Enterprise
Information Systems (ICEIS’06). Volume 2006., Paphos, Cyprus (2006) 204-211
Streit, A., Pham, B., Brown, R.: Visualization Support for Managing Large Busi-
ness Process Specifications. In: Proc. BPM’05. (2005) 205-219

Bobrik, R., Reichert, M., Bauer, T.: Requirements for the Visualization of System-
Spanning Business Processes. Proc. DEXA’05 Workshops (2005) 948-954

Tran, H.: View-Based and Model-Driven Approach for Process-Driven, Service-
Oriented Architectures. TU Wien, Dissertation (2009)

Bobrik, R., Bauer, T., Reichert, M.: Proviado - Personalized and Configurable
Visualizations of Business Processes. In: Proc. EC-WEB’06. (2006) 61-71

Chiu, D.K., Cheung, S., Till, S., Karlapalem, K., Li, Q., Kafeza, E.: Workflow
View Driven Cross-Organizational Interoperability in a Web Service Environment.
Information Technology and Management 5(3/4) (July 2004) 221-250

Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Proc.
5th Int’] Conf. on Business Process Management, Brisbane, Australia (2007) 88-95
Weber, B., Reichert, M., Rinderle, S.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data
& Knowledge Engineering 66(3) (2008) 438-466

Reijers, H., Mendling, J.: A Study into the Factors that Influence the Under-
standability of Business Process Models. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on (99) (2011) 1-14

Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling Personalized Visualization
of Large Business Processes through Parameterizable Views. In: Proc. 26th Sym-
posium On Applied Computing (SAC’12), Riva del Garda (Trento), Italy (2012)
Kolb, J., Reichert, M.: Using Concurrent Task Trees for Stakeholder-centered
Modeling and Visualization of Business Processes. In: Proc. S-BPM ONE 2012,
CCIS 284. (2012) 237-251

Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for User-centered
Adaption of Large Process Models. In: Proc. Intl. Conf. on Service Oriented Com-
puting (ICSOC’12), Shanghai, China (2012) to appear

Dadam, P., Reichert, M.: The ADEPT Project: A Decade of Research and Devel-
opment for Robust and Flexible Process Support. Computer Science - Research
and Development 23(2) (April 2009) 81-97

Kolb, J., Hiibner, P., Reichert, M.: Automatically Generating and Updating User
Interface Components in Process-Aware Information Systems. In: Proc. 10th Int’l
Conf. on Cooperative Information Systems (CoopIS’12). (2012) to appear

	Updatable Process Views for Adapting Large Process Models:The proView Demonstrator
	Introduction
	Application Scenario
	proView Framework
	proView Demonstration
	Conclusion

