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Abstract

Selling customizable products, tailored to customers demands becomes an increasingly im-
portant business opportunity in highly competitive, saturated markets. Enterprises pursu-
ing product customization, employ product configurators to support the configuration of cus-
tomized product variants. Thereby, product configuration systems efficiently facilitate the
integration of the customer into the enterprise's value chain and reduce the complexity in-
duced by the manufacturing of customizable products.

Since configurators encapsulate the complete product knowledge, including manifold con-
straints, implementing them technically in a sustainable way, is challenging and complex.
The adequate modeling of configurable products is decisive for the system's maintainability.
Therefore, the modeling capabilities must support the precise, correct and compact, yet hu-
man readable and verifiable definition of configuration knowledge.

The researched methodology presented in this work, called OpenConfigurator, implements a
framework for realizing custom product configurators. OpenConfigurator defines a concep-
tual modeling language to describe configurable products as Java classes, annotated with
configuration meta-data. The generic API offered by the framework, allows to instantiate the
custom, domain-specific product model, while maintaining the configuration's consistency
during the specification process. The framework's capabilities are demonstrated by the im-
plementation of a generic mobile configurator application.

The methodology shows how modern Java EE technologies including JPA, Bean Validation
and CDI are used, to simplify the development of configurators. Leveraging standardized
technologies, the introduced approach is easy to learn. Moreover, the resulting configurator
incorporates a highly flexible, extensible architecture, that strongly fosters maintainability.
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Introduction

A Bit of History

Handcrafted work characterized the production in pre-industrial times. Custom-made
products were developed and manufactured for customer-specific demands. These hand-
craft activities required specialized skills and detailed know-how that was only implicitly
available to the craftsman. This knowledge was trained and passed down to generations
[Lindemann2006a, p. 2].

While in some business areas craft manufactures still exist, the replacement of human work
by machinery marked the beginnings of the industrialization in the mid 19th century. An
increasingly automated production, the devision of labor and continuous production with
the help of assembly lines as well as other principles of mass production helped enterprises
in the early 20th century like Ford to great success. Singular product and process innovations
lead to quite productive manufacturing processes and lowered costs, which not only raised
the companies' profits, but generally increased the mass purchasing power through height-
ened incomes. An increased production performance was the ultimate goal and the main
driver for production processes for a long period of time. The market conditions of those
times fit perfectly with what mass production is made for (cp. [Holthofer2001, p. 9]):

1. Producing and selling large amounts of items,
2. for homogeneous markets,

3. with stable demand,

4. over a long period of time.

The Market Shift

However, an important shift in this market situation happened in the previous decades: "[...]
The main condition that have ensured a successful mass production, namely stability and
demand homogeneity are no longer available and do not coin the actual picture of the busi-
ness environment [today]" [Blecker2005, p. 10]. In a wide variety of markets, the potentials
of mass production have been exhausted, in some of them almost completely (cp. [Reich-
wald2009, pp. 23], [Lindemann2006a], [Holth6fer2001, pp. 9], [Piller2006]):
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Increasingly saturated markets lead to buyer markets. In previously existing seller mar-
kets, the suppliers dictated what was sold at what prices. However, nowadays it's more and
more the consumer that has the power to influence prices and functionality (often referred
to as customer empowerment). The consequence of this is that large amounts of items aren't
marketable anymore and in general a higher fluctuation of demand can be observed.

Globalization leads to tougher competitive conditions. More suppliers for the same or
similar products result in higher price and innovation pressure for each supplier, but espe-
cially for those not producing in low-wage countries.

Influence of information- and communication technology lead to higher information
transparency. The evolution of information technology allow much simpler and faster
comparison of products and prices. Ratings for products and suppliers together with cus-
tomer recommendations are often thoroughly considered by customers today. The emer-
gence of large communities of users offer additional sources for information to the customer.
Consequences of the increased market transparency are lowered risks and decreased prices
from a consumer's perspective, and more keen competitive conditions from a supplier's point
of view.

Innovation and technological progress lead to shorter development times and product life
cycles. In general, faster innovation and technological progress can be observed, which
results in more fluctuating product ranges. Today, enterprises are required to quickly and
flexibly react to market changes [Reichert2012].

Increased customer demands lead to heterogeneous markets. Todays customers are both
more cost-conscious and demanding. They request products precisely fitting their require-
ments. In the area of capital goods, customized production factors and machinery, that are
highly adapted to meet the specialities of the customer's value creation activities, formed
valuable competitive advantages for years. In consumer markets

e changes in people's professional environment,

* socio-demographic developments resulting in more prosperity (increased income, more
spare time, higher education),

e an intensified relationship to adventure- and design-orientation, and
* a new awareness of quality and functionality

lead to an increased demand in customer tailored products. Consumers often want to differ-
entiate themselves through individually designed products.

Enterprises recognized those market developments and realized, that not a product or tech-
nology alone, but the ability to sell those products come to the fore. Especially customer ori-
entation and customer loyalty are two of the most important success factors.

As a consequence, companies begun diversifying their product range by producing variants
[Hallerbach2010]. The basic principle of variant series production is a compromise between
high productivity and sufficient satisfaction of individual customer needs. This compromise
is achieved by reducing the amount of work required to fulfill customer wishes to the greatest
possible extend, e.g., by combining pre-developed / pre-produced components.

However, addressing a wide variety of customer demands using this strategy has its limita-
tions [Lindemann2006a, p. 2]. As Pine and Gilmore formulated: "Fundamentally, customers
do not want choice; they just want exactly what they want." [Pine1999, p. 76]. In other words,
they want fully customized products.

Figure 1.1, “Market Trends: From Custom-Made to Customized Products” illustrates this
transition schematically (cp. [Lindemann2006a, pp. 2]).
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Figure 1.1. Market Trends: From Custom-Made to Customized Products

The production of customized goods requires a shift in numerous activities related to the
value chain all over the company [Knuplesch2010]. Suppliers are demanded to create flexi-
ble product structures, processes and production techniques as well as to establish agile or-
ganizational structures that allow optimal reaction on today's market demands in order to
achieve competitive advantages [Dadam2009][Reichert1998]. The acquisition of knowledge
about customers and their preferences increasingly gain importance [Mundbrod2012]. All
those activities need to be backed with well-integrated, efficient information and communi-
cation systems that support the entire value chain of a company: from product development,
production and distribution to sales and after-sales tasks. The manufacturing of products ac-
cording to individual customer needs is referred to as product customization [Blecker2005,

p- 2l
Business Today

Today's enterprises more and more face increasing demands on product quality and individ-
uality by their customers [Lohrmann2012]. In many business areas, consumers prefer cus-
tom-tailored products over mass produced, one-of-a-kind goods. Fulfilling these demands
efficiently and at affordable prices is a big challenge for manufacturing companies. However,
the capability to produce and offer customized products, that exactly meet the customer's
needs, become an important success factor and a promising business opportunity simulta-
neously. In fact, due to high market competition and price pressure, offering customer-tai-
lored products as a differentiation strategy is often a necessity rather than a sole manage-
ment decision.

Selling and producing customized products is challenging, because the customer needs
to directly interact with the supplier for the purpose of specifying his requirements on
the manufactured good. Not only does this involvement of the customer complicate the
manufacturer's business processes, but also bears the risk that individually specified require-
ments cannot be fulfilled and the customized product variant isn't producible after all.

In order to avoid these difficulties and to efficiently integrate the customer into the
company's value chain, modern enterprises employ product configurators, also called prod-
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uct configuration systems. With the help of product configurators, the customer's requirements
on the to be produced product can be captured, while ensuring validity of the so defined
product configuration in real-time. Configurators have several key characteristics, that make
them unique among other business applications within the enterprise. Product configura-
tors...

e are powerful, 24/7 hours available marketing and sales tools

e reduce required sales personnel with expert knowledge, particularly for complex products

e reduce time (and money) required to create sales quotations and thus increase sales
"throughput" [Lanz2010]

¢ avoid specification errors and make product variability more transparent

¢ can be used to generate specification documents, like sales quotations, product specifica-
tions, bill of materials, work plans, etc. fully automated

For these reasons, product configuration systems are valuable business tools for any com-
pany practicing product customization. They incorporate a huge amount of product knowl-
edge, including available product variants, constraints and other product related logic.

1.1. Motivation

Especially for complex application domains, defining and maintaining such configuration
knowledge as well as implementing the actual configuration system is a difficult task. Even
with only a few product attributes, the variability and amount of resulting product variants
can quickly explode. Therefore, suppliers restrict the available variants by formulating cer-
tain constraints, sometimes for technical, other times for marketing reasons. Defining, im-
plementing and maintaining a product's variability and constraints as well as the overall
system in an effective, simple, well-understandable and verifiable manner, is thus, eminent-
ly important.

Nevertheless, many of today's configuration solutions are still implemented "from scratch",
as one-off applications build for a singular purpose or use case only. Products and product
variability is often modelled without following a standardized, well defined procedure. This
results in configuration process knowledge being intermixed with product information, ef-
fectively leading to maintainability problems. Moreover, many configuration vendors em-
ploy proprietary technologies and concepts, making learning and development of config-
uration knowledge bases a time consuming, difficult and cost intensive task. Even worse,
these problems hinder the resulting configurator from being updated, extended, integrated
or being otherwise enhanced. Consequently, configurators often do not yield the potential
they could be used for.

Granted that sophisticated configurators are a complex application domain, developing a
configuration system that fulfills the mentioned attributes and scales well with the to be
configured product's complexity, is - as we believe - an unreasonably complicated issue yet.
We argue, that applying modern programming paradigms and approaches could strongly
simplify the development of advanced configurators, which are well testable, integrable and
extensible. Thereby, in general, the employed approach can be a lot easier to learn and much
more productive after all.

1.2. Mission Statement

In this work, we aim to develop a state-of-the-art framework for creating custom configura-
tors, which are utilized for the specification of simple as well as complex customizable prod-
ucts. By establishing a unified, standard modelling approach for configurator applications,
that utilizes modern technologies and patterns, not only the benefit-cost ratio for configura-
tor development projects is strongly increased but also value-added features can be imple-
mented once for any kind of configuration problem.
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We feel that the emergence of new standards and technologies in the Java space (and es-
pecially in the area of Java EE) strongly simplify application development in general, but
specifically in the area of configurator applications. These technologies create new, unique
opportunities for building flexible configurator applications. In fact, we see our attempt as
a novel approach, that combines advantages on various stages.

Our ultimate goal is to provide the average Java developer a tool, that allows him to quick-
ly implement high quality configurators fostering scalability, extensibility, integrability and
maintainability. While focussing developers to work with the framework, we primarily tar-
get the creation of configurators for medium to highly complex configuration domains,
where verifiable correctness of configuration results is inevitable. This is why the introduced
conceptualization itself and the development approach promoted by it is strongly designed
with testability in mind.

Concrete Objectives

The methodology for developing configurators as defined in this work can be characterized
by the following attributes:

Model-driven. The configurator developer solely models the configuration problem and
attaches meta-data to it, the rest of the application is dynamically generated at runtime.

Generic. The methodology and the framework can be applied to arbitrary product do-
mains: the system's completely implementation is independent of the modeled domain.

Standards based. The methodology is designed to be compliant with or build on existing,
widely accepted standards where possible. This not only applies to technologies (e.g., Java
EE), but also on practically applied development procedures (e.g., source version control
support).

Considering non-functional aspects. The non-functional aspects are central aspects of the
methodology and are thus focussed in particular, including:

* Ease-of-learning and ease-of-development. The practical applicability of the frame-
work for average, non-expert Java developers is a major driver for decisions taken in this
work.

e Scalability. The framework should be able to cover small, medium-sized and large
projects equally, from simple to complex application domains. Thereby, the development
and maintenance effort may not disproportionately grow with the project's complexity.

* Extensibility and flexibility. Being extensible and flexible for changes to be incorporat-
ed in the future is seen as a fundamental aspect, since requirements for todays applications
get more and more demanding.

* Integration and interoperability. Similarly to the previous point, integration and inter-
operability aspects play an essential role in today's business software landscape. Especial-
ly, this counts for configurators, which link different other IT systems.

e Testability and maintainability. The ability to verify the correct behavior of the devel-
oped configurators is inevitably important for complex configurators, as configuration er-
rors quickly become very costly. Moreover, the long-term maintainability of the developed
applications is crucial for the ongoing success of such a system.

Concretely, in this work, we'll do the following:

1. Develop a modeling approach for configuration problems. During this work, we con-
ceptualize a modeling approach that can be used to describe configuration problems in an
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object-oriented fashion, so called configuration domain models. We show how the approach
is realized within the context of modern Java programming frameworks. Specifically, the
modeling approach features the following characteristics, which will be described in de-
tail later in this work:

¢ domain specific
* object-oriented / component-based
¢ declarative meta-data (constraints, domains)

e plain Java, well integrated with Java EE', particularly: JPA” (used for accessing config-
uration data/domain values) and Bean Validation (used for constraint definition and
validation)

2. Develop a generic configurator framework. Based on the designed modeling ap-
proach, we conceptually design and implement a framework that allows to create valid
instances (configurations) from the configuration domain models. The presented generic
configurator can be characterized by the following facts:

e the framework "interprets" the domain model and associated meta-data
e it features a generic, domain-independent APP®

e it provides a low-level configuration API and a high-level task-based API for perform-
ing product configuration

e it's highly extensible through the provided SPI*
e is technically fully Java EE 6 web profile based (CDI°, JPA, Bean Validation)

3. Implement a mobile configurator for bikes. For evaluation purposes, we will visual-
ly design and realize an example configurator for bikes. Effectively, we'll, thereby, imple-
ment a generic configurator client (based on the developed configuration framework) for
mobile devices, that can be backed with arbitrary configuration domain models. The con-
crete characteristics of the realized solution are:

* it's web-based and primarily targets mobile devices such as Apple's iPad, but can be
accessed by desktop web browsers as well

¢ example domain model: bikes. The model can be easily shared with other applications
as it's implemented as a simple JavaBean class model

e concrete technologies involved: HTML5/CSS/JavaScript, Vaadin, CDI and our config-
uration API

The framework introduced in this work is named OpenConfigurator. The name shall empha-
size the openness of the framework and its flexibility. Consequently, throughout the work, we
will mostly refer to the developed methodology and/or its implementation as "OpenCon-
figurator methodology" or "OpenConfigurator approach".

1.3. Context and Scope

The development of a generic configuration framework requires a deep understanding of the
fundamentals of configuration, namely product customization, the business discipline prac-
ticed by companies offering product configurators. By analyzing product customization
from various perspectives, we'll be able to identify important requirements to be fulfilled by
the conceptualization and implementation. Learning about the business context, in which
configurators are applied, also helps to understand the overall role of these tools within an
enterprise. Figure 1.2, “Context of this Work” illustrates the context of this work:

! Abbrev. Java Enterprise Edition

2Abbrev. Java Persistence API

SAbbrev. Application Programming Interface
*Abbrev. Service Provider Interface

®Abbrev. Contexts and Dependency Injection
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Figure 1.2. Context of this Work

So, product configurators are understood as a specific topic within the broader scope of product
customization, which builds the global context of our work. We will look at both from three
different perspectives: the business perspective, the engineering perspective, and the technical
perspective. The latter one, however, will be focused primarily.

The targeted audience of this work is three-fold:

Managers. On the one hand, in this work, business managers will find a comprehensive
overview about the topics of product customization as a business strategy and product con-
figurators as enablers for that strategy. For them, the business topics of Chapter 2, Product
Customization and Chapter 3, Configurators will be of primary interest.

Solution architects/engineers. Configurator solution architects or engineers with specific
knowledge in the targeted domain, on the other hand, will gain from this work by learning
a practical approach to modelling configuration knowledge bases and realizing a custom
product configurator. They will particularly be interested in the engineering related topics
of Chapter 2, Product Customization, Chapter 3, Configurators and Chapter 4, Methodology and
Conceptualization.

Developers. Configurator developers and integrators will find a detailed introduction to
the architecture and implementation of product configuration systems. Developers should
read at least Chapter 4, Methodology and Conceptualization, Chapter 5, Technical Architecture
and Implementation and Chapter 6, Evaluation and Validation.

By serving these three quite different groups of readers together, we argue that our work
provides a unique overview of the entire topic of configurator realization. In fact, we argue
that the work at hands, bridges a huge gap between plain theory and strategic concepts on
the one hand, and the practical implementation detailed down to code lines, on the other
hand.

Filling that gap within an acceptable amount of pages, we had to narrow the overall scope
of the work. The thesis' scope can be defined as follows:

e provide a comprehensive overview to the topic of product customization and product con-
figuration in particular, for all stakeholders involved in configurator realization projects
(addressed by Chapter 2, Product Customization and Chapter 3, Configurators).
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e define a meaningful (yet not necessarily complete) conceptualization for modeling re-
al-world configurable products. It is sufficient, if the conceptual foundation is detailed
enough to be evaluated with regard to its practical applicability (addressed by Chapter 4,
Methodology and Conceptualization).

e provide a prototypically implementation of the framework that allows to assess, whether
the approach is feasible or not. The implementation doesn't aim to be feature complete but
endeavours to show that the methodology can be implemented technically (addressed by
Chapter 5, Technical Architecture and Implementation).

e proof the applicability, appropriateness and the technical feasibility of the approach by
demonstrating a real-world use case. While the implemented example should be reason-
able and is meant to serve the purposes of showing particular functionalities, a feature
complete implementation is not in the scope of this work (addressed by Chapter 6, Eval-
uation and Validation).

e discuss and assess the realized approach and show future usage as well as extension pos-
sibilities (addressed by Chapter 7, Summary and Outlook).

1.4. Challenges

We claim that OpenConfigurator introduces a unique approach to deal with configuration
problems. During our research we didn't find any solution that allows implementing custom
configurators the way OpenConfigurator aims to do. In fact, during researching, conceptu-
alizing and implementing on the framework, we identified manifold challenges:

New technologies, "from scratch" implementation. The technologies combined in Open-
Configurator are simply too new that existing configurator solutions could have been using
them already. Unfortunately, the consequence of this is that we need to implement OpenCon-
figurator "from scratch", that is, from the core component model to the user interface. Con-
sequently, the work presented in this thesis doesn't aim to be complete. Instead, OpenCon-
figurator is a "proof of concept”, a prototypical implementation of a configurator framework.
Nevertheless, we spend much effort into implementing things aiming at a high quality.

The gap between the complex domain of product configuration and ease-of-develop-
ment. The main challenge for OpenConfigurator is to bridge the gap between the complex
domain of configuration software and the ease-of-development requirement demanded by
application programmers. We want to create a framework that allows an average Java EE
application programmer to easily implement real-world configurators of various complexi-
ty, without forcing him to learn new technologies, new programming languages or new im-
plementation paradigms he isn't used to. Instead, we try to combine existing, well-known
technologies and implementation concepts to create configurator applications providing a
steep learning-curve and a unique developer experience.

Of course, we realize that this mix of technologies to solve configuration problems changes
the way of covering configuration problems. In fact, the framework doesn't aim to be the "all
catching", single and best solution for all configuration problems. However, existing config-
uration solutions often induce a high complexity even for simple configuration problems
and make product configurators difficult to maintain. We think, a developer friendlier, more
extensible and much easier to maintain solution would be appropriate.

1.5. Thesis Structure

Having motivated our work (why we do it) and described the main goals (what we’ll do) to be
accomplished by this work, including the major challenges influencing it, we will describe
our solution strategy (how we do it), next:
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Chapter 2, Product Customization. In the second chapter, we will analyze the business area
of "product customization” in detail. We will introduce product and process related basics and
discuss the implementation of product customization strategies from both an engineering
and business perspective. Specific questions relevant to the overall theme answered by this
chapter include:

e What are customizable products and how are they described?

* What's special about the production and selling of customizable products and how are
these specifics addressed?

e What role do configurators play within a product customization scenario?

The main tenor of this chapter is to understand companies pursuing product customization
and the way they are working. The knowledge of the enterprises that employ product con-
figurators, is essential for the conceptualization and implementation of a configurator frame-
work.

Chapter 3, Configurators. This chapter basically analyzes the requirements on configuration
systems and explains their functionality in detail. We transfer the knowledge about customiz-
able products, acquired in the previous chapter, into the technical world by discussing prod-
uct configuration models. Then, we will describe product configuration processes from vari-
ous perspectives, before investigating product configurators as software tools in great detail.
A presentation of benefits rounds up the last section. Potential questions, answered by this
chapter include:

* How are customizable products represented within configuration systems?

* What happens during configuration in detail?

* What are product configurators precisely and what functionality do they offer?
e What are the benefits of configurators?

Having studied this chapter, the reader should be familiar with configuration tools. More-
over, he should realize the complexity of these systems and should basically understand the
scope of configurators in terms of their functionalities.

Chapter 4, Methodology and Conceptualization. Chapter 4 introduces our own method-
ology to the implementation of custom configurators, called the OpenConfigurator approach.
We are going to explain our methodology as follows: first, we will characterize our methodology
in general and present the main ideas behind its conceptualization. Then we'll disclose fun-
damental aspects of our modeling approach and describe the most relevant concepts from
a high-level perspective. Next, we'll describe the available modeling capabilities in full de-
tail, which includes the modeling of structural aspects, product information, configuration
semantics, data access and model constraints. Finally, we will discuss the configuration pro-
cedure, as intended by our framework, by walking through a concrete configuration exam-
ple. By reading this chapter, you'll receive answers to the following questions:

e What are the fundamental ideas behind the OpenConfigurator approach and what makes
this approach special?

* What are the main tasks of the OpenConfigurator framework and how does it accomplish
these conceptually?

* How can customizable products be modeled with OpenConfigurator's concepts?

* How does the framework transform custom domain models into a concrete configuration
process?

Chapter 5, Technical Architecture and Implementation. In Chapter 5, we are going to ex-
plain the architecture and implementation of the runtime component of the OpenConfigurator
framework. We will discuss the main technologies the framework bases on, along with their
relationship to our implementation. Then, we'll describe OpenConfigurator's architecture in
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detail before showing practically, how the framework provided API and SPI is used. In this
chapter, you'll find answers to the following questions:

e What are the most important technologies with regard to OpenConfigurator and how do
these technologies relate to the framework?

* How do configurators build on top of the framework look like, technically? And how is
the framework's internal architecture organized?

* How can configuration activities be performed with the framework, concretely?

* How can the framework be extended?

Effectively, this chapter answers one of the most important questions: how does it all work,
technically?

Chapter 6, Evaluation and Validation. The second to last chapter presents a case study,
that demonstrates the practical application of our methodology. We'll develop an exemplary do-
main model for customizable bikes and implement a custom configurator for Apple's iPad.
Thereby, we'll realize a generic, HTML5 based mobile configurator based on the OpenCon-
figurator framework and the Vaadin technology. Chapter 6 will answer the following ques-
tions:

® More specifically: how can a real-world customizable product be modeled using
OpenConfigurator's modeling concepts?

* How can an HTML5 based, generic mobile configurator be implemented on top of the
framework?

e How does a custom configurator, realized with OpenConfigurator look like visually?
¢ Does OpenConfigurator address practice relevant, project related issues adequately?

Again, ultimately, this chapter provides an answer to the question: how is the OpenConfigura-
tor methodology applied practically?

Chapter 7, Summary and Outlook. In the last chapter, we are going to conclude this work
by recapitulating, how OpenConfigurator aims to satisfy the earlier stated requirements and
motivations for building custom configuration systems. Moreover, we will characterize the
implemented framework from a high level perspective and discuss various strengths and
shortcomings. Then, an outlook to future development ideas follows. Finally, we'll conclude
the work by providing a short resumé. These are the questions you can expect to be answered
by the last chapter:

* Does OpenConfigurator's modeling approach address the modeling requirements for con-
figurable products adequately?

e How can the framework implementation be characterized?
* What are the strengths and weaknesses of the system?
e How can the framework be improved in the future?

Figure 1.3, “Thesis Structure” provides an overview of the chapters, that make up this work.

10
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Each chapter will end up with a short summary, highlighting the most important facts. If
you're in a hurry, you may want to skip an individual chapter and just read its summary to
get a basic idea of what's going on. This helps to understand subsequent chapters.

Now, let's begin with the theory.
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Product Customization

In order to successfully establish a configuration system within an enterprise, the company's
business strategy (including management concepts and production strategies) must be
adapted to deal with configurable products. In general, we refer to a business strategy that
involves user interaction as part of the value creation chain as product customization strategy.
According to Blecker et al. "product customization can be defined as producing a physical
good or a service that is tailored to a particular customer's requirement" [Blecker2005, p. 11] .

In this chapter, we will take a closer look at product customization from a business/manu-
facturing point of view while subsequent chapters will focus on technical aspects. We'll first
introduce some basic terms related to customizable products. Then, we'll cover production
processes widely used in manufacturing companies today. These production processes in-
clude:

* one-of-a-kind production,

* series production,

¢ mass production, and

* mass customization or product customization in general.

Next, we'll focus on product customization in particular and discuss manufacturing related
aspects such as modularization and economical aspects including benefits of customer-tai-
lored production. Finally, we'll cover the interaction process between supplier and customer
during sales. Examples of application areas that frequently employ customization strategies
end up this chapter.

The aim of this chapter is to provide well-grounded background knowledge about the topic
of product customization. The terms and concepts presented in this chapter are not only
meant to establish a common understanding and vocabulary across different stakeholders
involved in configurator projects. Instead, the topics discussed throughout this chapter can
be considered fundamental for evaluating the applicability and benefits offered by product
customization strategies.

13
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2.1. From Products to Product Configurations

In this section, we'll introduce several terms and definitions related to product customization
and manufacturing in general.

2.1.1. Products and Components

Products

The term "product” is used in many different contexts including mathematical, chemical,
commercial and others, which is why several definitions exist. In the sense of its commer-
cial meaning, which is beyond the technical definition, the only relevant definition for our
purposes, a product refers to "the result of a manufacturing process or an offered service"!.
However, to provide a more precise definition it's useful to examine the term from different

perspectives.

From an engineering perspective, a product can be seen as a ready-made respectively sell-
able, physical or non-physical commodity, that has been manufactured using the elementary
factors work, equipment and raw materials [Bieniek2001]. According to Krug [Krug2010],
the commodity (manufactured item) mentioned in this definition refers to "a self-contained,
functioning object as a manufacturing result that consists of a number of groups and/or
parts" according to DIN 6789. On the one hand, this explanation already shows that a prod-
uct is a result of a production process (which is covered in more detail in Section 2.2, “From
Classical Production to Product Customization”). On the other hand, the description of a
manufactured item provided by the DIN norm is quite close to the technical perspective de-
finition that is primarily referred to throughout this work (cp. [Krug2010, p. 6]):

Product A product is characterized through a number of attributes and consists of multiple
parts (components).

Furthermore, Krug establishes the following rules for the use of the term "product” in his
work, which we also consider to be valid in ours: a product

is used as a synonym for good, ware or service,

is the result of a production process,

has a serviceable or a dissipating character,

can be of substantial (physical) or insubstantial (non-physical) nature,
can be categorized along different dimensions and

services as integral instrument to fulfill customer needs.

From a production point of view, products are sometimes referred to as assemblies. A product
family describes "a group of different products which are created from a common set of
components (modules) and which have a number of common characteristics" [Hvam?2008,

p-31].
Components

Products are composed of elements and sub-assemblies 2 These parts, that make up a product,
are often referred to as components or modules. Precisely, a component can be defined as fol-
lows:

Component/Module (physical) A component/module refers to a part of a product (or sub-
part of another part), which is characterized by attributes
and which may consist of any number of sub-parts (sub-
components/sub-modules).

TFrom http:/ /de.wiktionary.org/wiki/Produkt, last accessed July 29th, 2012.
2See http:/ /www.fml.mw.tum.de/fml/index.php?Set_ID=320&letter=P&b_id=4246437B-4641-3737-422D-303536
332D34, last accessed July 29th, 2012.
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Based one the previous definition, the terms "element" and "sub-assembly" can be explained
as follows: a composite component (sub-assembly) refers to a component that is assembled of
other components, that is, a component containing at least one sub-component. In contrast, a
component without any further divisible sub-component is considered an atomic component
(elements). In contrast to sub-assemblies, elementary components cannot be deconstructed
without physically breaking them.

The fundamental principle behind the decomposition of a product into individual compo-
nents is modularization, which is described in more detail in Section 2.3.3.3, “Modularity”.

2.1.2. Variants and Variant Management

Variants

According to DIN 199-1, a variant basically describes an object of similar form or function-
ality usually with a high degree of identical elements or sub-assemblies [Schénsleben2000].
These objects at least share similarities regarding geometry, material or technology, and re-
sult from the combination of different values for characteristic attributes. The group of vari-
ants derived from a particular core product make up a so called product line®.

Product variants result from product architectures supporting variety. We will discover dif-
ferent product architectures in more detail in Section 2.3.3.3, “Modularity”. For now, it's
useful to distinguish two types of variety (cp. [Piller2003a, p. 223], [Anderson1996, p. 45],
[Child1991, p. 55], [Hildebrand1997, p. 75]):

External variety. Refers to the number of variants perceived by the customer. Variant pro-
ducers and customizers usually try to maximize the degree of external variety.

Internal variety. Refers to the number of variants that the manufacturing process and all
internal operations are faced with. The degree of internal variety dictates the number of
different tasks performed by the company and, thus, ultimately determines the complexity
that the manufacturer needs to handle. Consequently, variant producers and customizers try
to minimize the degree of internal variety.

Variant Management

The discipline of development, de51gn and modeling of a product range, along with its vari-
ants, is called variant management®. Companies introduce product variants to better meet cus-
tomer requirements, that is, to increase the benefit that a customer gains from a product. In
terms of classical variant management strategies (so called variant series production), the users'
needs are usually determined through market research and the results are incorporated into
the manufacturer's product structure by clustering the product range so that as much cus-
tomers' needs as possible can be matched. The variability of the product range is thus pre-
determined and entirely designed during product development without further customer
involvement. This allows stable production, sales and "one-way" communication processes:
once the product structure has been settled, the procedures and processes can be rolled out
throughout the company steadily.

Companies implementing variant management are required to deal with an increased (in-
ner) complexity: adding variety to the product range introduces challenges on every stage of
the product's lifecycle. During construction, product parts must be designed to be variable
and compatibility across several modules in different layouts. Furthermore, the production
processes need to be adapted to allow creating several variants, which not only requires mul-
tiple versions of design and production specifications (work lists, bill-of-materials), but also

3See http:/ /www.fml.mw.tum.de/fml/index.php?Set_ID=320&letter=V&b_id=3742337B-4131-4535-322D-353443
452D34, last accessed July 29th, 2012.
*See http:/ /www.fml.mw.tum.de/fml/index.php?Set_ID=320&letter=V&b_id=3742337B-4131-4535-322D-353443
452D34, last accessed July 29th, 2012.
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demands a deeper understanding of the company's product range from those employees that
assemble the variants. Not only (pre-/)production activities need to deal with an increased
complexity through variant management: in post-production, sales and after-sales activities
variability needs to be addressed, too. This includes handling multiple product versions in
quality assurance processes, communication of variants in marketing (including retailers),
creation of variant-aware product documentation and training materials as well as coping
with a larger diversity of spare parts in service activities. Of course, all these additional tasks
generated from variant management raise development, production and transaction costs.

From a customer perspective, a diversified product range has both advantages and disad-
vantages. On the one hand, a customer can choose the product that best matches his needs
from multiple alternatives. On the other hand, he has to match his needs to the product range
himself, which often requires more knowledge about the product structure in order to find
the best choice. If the supplier offers too many variants, the selection process consumes much
time and effort, often leading to frustration and customer refusal. Conversely, if the supplier
offers too few variants, the customer needs to make concessions, in case the product doesn't
match his necessities optimally, which can result in negative buying experiences and product
rejection after all (cp. [Piller2001]). Another disadvantage in this case may be the extended
price charged by the supplier that result from product variability and its associated complex-
ity. It's the task of variant management to balance between external and internal variance in
order to realize an optimal, cost-benefit oriented product range.

As mentioned earlier, companies employ several modularization and standardization tech-
niques in order to reduce complexity generated by product variety. However, Lindemann
et al. [Lindemann2006a, p. 8] argue that two fundamental problems of variant diversity are
still neglected:

High efforts for development of complete variant spectrums. Often enterprises spend
huge amounts of time and resources to develop and produce complete variant spectrums
although only 5% to 15% of variants gets frequently sold after all. About 80% of the variants
are rarely shipped with a rate less than 1%. Consequently, a high amount of complexity in-
duced by product variants is created for nothing.

Non-optimal customer needs satisfaction. ~Customer needs are often not met adequately
by simply introducing numerous amounts of product variants. Thus, the induced complexity
by product variety not necessarily results in increased customer benefit.

2.1.3. Customized Products and Product Configurations

As described in the previous section, there are several reasons for the emergence of vari-
ants. Variants defined exclusively by the manufacturer are called manufacturer specific vari-
ants, while customer specific variants result from requirements defined by a particular cus-
tomer [Holthofer2001, p. 5]. Scheer [Scheer2006] differentiates three types of products in re-
lation to the degree of customer involvement (cp. [Krug2010, p. 9]):

Supplier-oriented products. The customer has no direct influence on the design of the
product and cannot customize it in any way.

Customer-centric products. While the customer can adapt the product to his specific
needs, the scope of customization options is restricted.

Customer-oriented products. These kinds of products can be freely customized to fulfill
customer requirements.

In general customization refers to the ability of adapting a product to individual customers'
needs’. Customized products describe bundles of physical products and services that include

®From http:/ / de.wikipedia.org / wiki/Customizing, last accessed July 29th, 2012.
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both standard and individualized (customized) components [Lindemann2003]. Adaption in
the context of product customization means the modification of parameters, structures and
behaviors of a product so that the products' characteristics comply with the individual pref-
erences of a customer that manifest themselves in specific customer as well as usage attrib-
utes [Piller2001] [Pulm?2004].

2.1.3.1. Customizable Areas

Especially for consumer products, a common classification of those product attributes that
are considerably influenced by customer preferences (also known as general customization
options, cp. [Piller2003b]) are:

e functionality
e fit (form, layout, dimensions)
e design (style)

While these categories adequately support the characterization of rather simple consumer
products (e.g., t-shirts), for complex products or capital goods (e.g., cars, machineries etc.)
a more detailed categorization is reasonable. Lindemann et al. introduce the following cus-
tomizable areas of a product that can be identified during product structure development (cp.
[Lindemann2006a]):

Figure 2.1. Customizable Areas
The identified section in Figure 2.1, “Customizable Areas” are:

Fixed areas. Unmodifiable core of a product structure that implements the basic function-
ality and structure provided by the product. Modifications of these areas would result in
extensive structural and functional changes of the overall product, which cannot be imple-
mented efficiently within a customer-specific manufacturing process.
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Beyond the fixed area, Lindemann et al. describe the following variable areas.

Obligatory and optional alternatives. With the help of obligatory ("must-have") and op-
tional ("can-have") alternatives, product customization can be achieved through selection of
components similar to the selection process in variant series production. While obligatory el-
ements describe essential, indispensable items of the product structure that must be selected
by the customer in one or the other specificity (e.g., the engine of a vehicle), optional alterna-
tives describe structural elements that may be added depending on the customer demand
(e.g., additional equipment such as a seat heating).

Scalable areas. With scalable areas customizable elements can be modeled that can be
freely modified by the customer within predefined constraints and rules such as performance
parameters or dimensions. The value space of scalable areas is continuous.

Principle solutions. Principle solutions designate areas whose customization capabilities
base on a predefined mechanism of action, that is, the customer can choose between different
concrete alternatives that all implement the same solution principle (e.g., different types of
switches, cover plates or functional elements such as digital vs. analog displays). Opposed to
scalable areas, for principle solutions no mathematical rule that constraints the alternatives
exists. Predefined solution principles significantly reduce the time and effort required during
product adaption.

Services. Another, well established approach, to complement physical goods is the addi-
tion of services (e.g., insurance, extra warranty, etc.). These services can be often customized
alike.

Defined and general expansion spaces. Finally, defined and general expansion spaces
describe highly customizable areas of the product structure. Defined expansion spaces have
been explicitly designed to support free composition using predefined design possibilities
(e.g., the tools to perform the design process). While variabilities in this area are foreseen
during construction, the exact specific customer requirements are not or not entirely known.

General areas of expansion are those areas that would in general allow customization. However,
their adaption possibilities have not been considered during construction yet. If necessary,
changes in general areas can be implemented in a customer specific manner, but require
further planning and validation.

With the help of these areas of customization, various structural variants of products of any
complexity can be designed, which is why these areas form fundamental requirements for
our modeling approach introduced in Chapter 4, Methodology and Conceptualization. The set
of all structural variants forms the complete solution space implemented by a product range.

2.1.3.2. Comparison: Custom-Made Products, Variant Series Prod-
ucts, and Customized Products

Depending on the production type and the degree of customer involvement (see Figure 2.4,
“Customer Involvement Strategies” in Section 2.2.5, “Product Customization Strategies”),
we can differentiate custom-made products, variant series products and customized products.
Figure 2.2, “Comparison of Custom-Made Products, Variant Series Products, and Cus-
tomized Products” lists the general characteristics of these types of products according to
[Lindemann2006a, p. 10]:
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Figure 2.2. Comparison of Custom-Made Products,
Variant Series Products, and Customized Products

The main difference between the variant series production discussed above and production
of customized products is the handling of complexity: while variant management strategies
try to reduce the diversity of elements and combinations, in the case of individualized prod-
ucts, diversity shall not be lowered but instead be addressed with flexible product, process
and management techniques. In contrast to entirely custom-made products, however, adap-
tions in customized products are restricted to certain areas of the product that are specifically
optimized for modification [Lindemann2006a, p. 11].

2.1.3.3. Product Configurations

For the rest of this work we will particularly focus on customized products. The adaption of
components to an individual customer's requirements is performed within a customer-spe-
cific development process that involves the collection and transformation of customer re-
quirements into concrete customized components [Lindemann2006a, p. 9]. We refer to the
act of collection and transformation of customer requirements into manufacturable, concrete
product specifications as product configuration process.

The result of the product configuration process is a concrete product configuration. A prod-
uct configuration can be defined as a product specification, that consists of a set of intercon-
nected components with specific attributes, which is valid in regard to certain constraints.
These constraints ensure that the configured product remains manufacturable in both a phys-
ically and an economically profitable way. In terms of manufacturing, a product configura-
tion corresponds to a concrete variant of the product, however, we use the term product con-
figuration to signify such a variant that has been specified within a customization process.

Product configurations are created by software tools that are called product configura-
tors (configuration systems) which are the main subject of this work. Throughout the cus-
tomer-integrated development process and in particular, the interactive selling process,
product configurators form an essential tool used for the communication and specification of
customer requirements (see Section 2.3.5.3, “The Interaction Process of Product Customiza-
tion”). Piller [Piller1998, p. 9] describes product configurators as design tools that align cus-
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tomer needs with the capabilities of the supplier. Without these tools, users wouldn't find
suitable solutions for their specific problems due to the enormous complexity that originates
in the diversity of the product range and the large number of feasible combinations (see
the advantages and disadvantages of variants mentioned in Section 2.1.2, “Variant Manage-
ment”). Product configurators help customers to quickly find exactly that combination of
components that provides the highest possible benefit for their particular needs. In Chap-
ter 3, Configurators we will take a detailed look on these specification tools.

Having now introduced the notion of products and customizable products in particular, we will
take a look at production processes employed to build the same.

2.2. From Classical Production to Product Cus-
tomization

The term production describes the process of combining and transforming production factors
in order to manufacture goods. The results of this process is called product (see Section 2.1,
“From Products to Product Configurations”) [Domschke2005].

"Classical" production processes apply to the creation of regular, non-customizable goods.
As mentioned in Chapter 1, Introduction, these production processes have a long history and
have been evolved steadily. Until now, they're quite wide-spread and applied in all kinds
of business areas. Knowing them helps to understand how companies (particularly in the
manufacturing industry) perform their daily business. This, in turn, is a necessary require-
ment for understanding their difficulties, demands and potential motivations as well as lim-
itations for moving into product customization.

In the following, we will examine the "classical" production processes (see [Krug2010, pp.
13]) with respect to their applicability in product customization scenarios, which will be de-
scribed in more detail afterwards. We will also take a look on mass customization, a dedicat-
ed form of product customization and finally compare these strategies with each other.

Figure 2.3, “Overview of Common Production Processes” provides an overview of the dif-
ferent production processes and highlights important relationships.
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Figure 2.3. Overview of Common Production Processes

2.2.1. Per-Order/One-of-a-Kind Production

In one-of-a-kind production processes (also called per-order or job production) a single, unique
item is manufactured. The produced item is not manufactured for the anonymous market,
but instead for an individual customer on a per-order basis®. This allows the supplier to
precisely react on the customer's desires and to fulfill non-standard requirements, which
requires flexible production systems.

According to Krug [Krug2010], the one-of-a-kind production type cannot be supported by
product configurators adequately due to the high degree of individualization. Although
product configurators are equally applicable to complex products (see [Kratochvil2005]),
they're not intended to specify unique products. Furthermore, disadvantages of one-of-a-
kind production techniques such as high production costs per item and low degree of au-
tomation make this kind of production less suitable for configuration. Per-order production
is used, for instance, in the shipbuilding industry.

8See http:/ / de.wikipedia.org/ wiki/Einzelfertigung, last accessed July 29th, 2012.
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2.2.2. Series Production

Series production (also referred to as batch production or charge production) target the manufac-
turing of multiple items of different lot sizes. It is characterized by the parallel or sequential,
uninterrupted production of multiple, more or less uniform items (a series, batch) on one and
the same production line. It's a production type with an either small or large, nevertheless,
limited number of repetitions. Once the production of a single series has been finished, the
production of the subsequent series starts’.

In series production only minor changes of materials without changes in the composition
of components themselves are feasible. The per-item costs are significantly lower compared
to one-of-a-kind productions as a result of the increased capacity in combination with opti-
mized production plants (fixed cost degression). Though, they are still higher than those in
mass production environments, due to the costs required to switch between series (process
changeover costs).

Although the degree of automation is on a mean level, the flexibility of series production is
very limited [Abels2004], which is why Krug argues that series production is not appropriate
for product customization purposes [Krug2010, pp. 13]. Examples for this kind of production
type can be found in supplier companies for the automobile industry, such as tire producers.

2.2.3. Variant Production

While in series production solely uniform items are produced in a single batch, in variant
production items with slightly altered functionality, geometry, processing or design can be
manufactured in the same batch®. Hence, variant production targets the production of a larg-
er diversity of items.

In classical variant production scenarios, the customer is not involved during the manufac-
turing process. Instead he chooses and purchases the product from either the supplier direct-
ly or one of its retailers. Examples of variant production include, for instance, the production
of t-shirts in different variants.

As mentioned by Krug [Krug2010, pp. 13], the applicability of variant production for product
customization purposes depends on the point in time when the final composition of the vari-
ant happens (see Section 2.3.3.4, “Order Fulfillment Strategies”). In case the composition is
performed by the customer prior manufacturing, the production process is considered product
customization compatible. Here, true (variant) configuration is applied. The customer is in-
volved in the manufacturing process before the product is assembled. Otherwise, if the cus-
tomer can merely choose a specific variant from a set of already assembled items after man-
ufacturing, Krug does not consider the manufacturing process product customization com-
patible. Here, the customer is not involved in the manufacturing process before the product
is assembled. The latter describes (variant) selection rather than true product configuration.

Strictly speaking, variant selection cannot be considered a discipline of product customization,
which requires the customer being involved in the manufacturing process prior to product
assembly. Nevertheless, we argue that beneath configuration tasks for the specification of to-
be-produced items, even complex selection tasks for choosing an already produced item de-
livered from stock are valid use cases for product configurators as well.

"See http:/ /de.wikipedia.org/ wiki/Serienfertigung, last accessed July 29th, 2012.
8See http:/ / de.wikipedia.org / wiki/Sortenfertigung, last accessed July 29th, 2012.
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2.2.4. Mass Production

The highest specificity of production concepts is provided by mass production, where uniform
items are manufactured in very large lot sizes. Thereby, a fixed production process is contin-
uously repeated on preset production lines. Mass production is characterized by9:

Devision of labor. Increased efficiency and productivity through job specialization, par-
ticularly by the devision of executive and planning activities. However, monotonously and
repetitively performed activities lead to decreased satisfaction and motivation of employees.

Standardization. The standardization of products allows unification of processes. This
leads to stabilized, highly optimized work procedures.

Focus on production techniques. Detailed analysis and planning of applied production
techniques in order to produce goods with optimal resource utilization, while maintaining
constant quality.

Assembly line production. The utilization of an assembly line during production ensures
a constant working speed, which results in highly decreased production durations per item
and thus to enormous efficiency enhancements. Assembly lines were first introduced large-
scale by Henry Ford in the early 20th century and enabled productivity increases around
500%. The extremely successful model "T" was this way produced in only 2 hours 35 minutes
in total opposed to previously 12 hours 8 minutes.

Hierarchical organization. The demand on control and monitoring of production requires
hierarchical structures with professional managers in order to guarantee optimal business
performance. Issuing of detailed instructions along strict hierarchical structures goes back
to Frederick Winslow Taylor's elaborations on "Scientific Management" (often referred to as
"Taylorism") which was also introduced in the early 20th century.

Vertical integration. In order to ensure continuous operation of the assembly line, bot-
tle-necks on both sides procurement and distribution are avoided by strong integration of
vertical activities.

Low costs and prices. Economies of scale (benefits, resulting from the procurement and
production of large amounts of items) and economies of scope (benefits, resulting from spe-
cialized production of uniform items) allow production at minimum costs, which in turns
lower the prices of the resulting products.

The main goal of mass production "is to develop, manufacture, market and deliver goods
and services at prices which are low enough to where nearly everyone is able to afford
them." [Blecker2005, pp. 9]. Due to the high degree of automation, mass production does not
only provide the highest possible efficiency, but also reduces the per-item costs to a mini-
mum. On the other hand, mass production systems lack flexibility regarding individual cus-
tomer needs, which is why this production type is not suitable for product customization.
Examples for mass produced goods include sugar and fuel.

2.2.5. Product Customization Strategies

Blecker et al. define product customization as "producing a physical good or a service that is
tailored to a particular customer's requirements" [Blecker2005, p. 11]. The goal of customiza-
tion is to increase the value of a product perceived by the customer. Compared to a mass
produced product, a customized product increasingly fulfills the need of the customer (cp.
[Svensson2001, p. 1]).

%See http:/ / de.wikipedia.org / wiki/Massenfertigung, last accessed July 29th, 2012.
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From a business point of view, product customization can be considered a strategy that fea-
tures differentiation on products rather than solely on prices. A differentiation strategy tries
to distinguish the products of a company from those of competitors, in order to achieve com-
petitive advantages (i.e. higher customer retention and lowered price consciousness) and
to increase profits (i.e. higher attainable prices) through product uniqueness [Scheer2006, p.
7]. Companies pursuing product customization offer individualized products to their cus-
tomers, often but not necessarily at premium prices (up to 10-15% more compared to mass
produced goods).

In practice, customized products are manufactured in a continuum between standardization
and customization. While standardization targets the cost efficient production (i.e. achieving
a cost position through cost reductions, see Section 2.3.4.4, “Cost Reduction Through Mass
Customization”), customization aims at fulfilling customer's desires in order to increase the
customer perceived value (product differentiation). Through product differentiation, com-
panies usually expect profit gains (see Section 2.3.4.3, “Profit Gain Through Product Cus-
tomization”) [Scheer2006, p. 12].

Prominently, customization strategies are characterized by the integration of the customer
into the manufacturer's value chain. Depending on the point in time the customer is involved,
one can dissect business strategies as follows:

Figure 2.4. Customer Involvement Strategies

Customer Orientation. Fundamentally, the customer is put at the center of the company's
strategic focus. The sales activities by the company are mainly driven by customer demands
and dedicated customer relationship management (CRM) processes have been established.
Though, the customer itself is not involved in the value-adding activities of the value chain
(see also [Scheer2006, p. 8]).

Customer Integration. The customer is involved in the production and/or assembly
processes of the value chain for the purpose of the creation of customer-tailored products. He
is integrated into the process during the sales process in terms of the precise specification of
his requirements on the individually built product. While the product architecture is flexible
enough to support customized products, the overall solution space offered by the company
is pre-defined and fixed.

Customer Innovation. The company involves the customer within its value chain to the
greatest possible extend: by including him into product development activities, it is the cus-
tomer who defines the products offered and sold by the company large scale. In this case,
the solution space offered by the supplier is variable and determined in accordance with its
consumers instead of being dictated by the management. This business strategy is referred
to as "Open Innovation" [Reichwald2009].
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In customer involved strategies and especially product customization scenarios, the relation-
ship to the customer plays a central role in the company's business activities: according to
Blecker et al. "an optimal understanding of customer needs is a necessary requirement for
the success of the strategy." [Blecker2005, p. 3] The customers must be seen as partners in
the value creation process that provide valuable input for development and production. Tof-
fler coined the term "prosumers" for this kind of consumers [Toffler1984, p. 275]. The infor-
mation gathered during sales and especially during the specification processes are continu-
ously aggregated in order to establish a durable, personalized relationship to the customer
(cp. [Piller2003a, pp. 208]). In the literature, this aspect is referred to as learning relationships
[Piller2003a, p. 154]. In general, a strong customer-relationship is considered a key factor
for establishing long-term competitive advantages, which is why detailed information about
consumer behavior is more valuable than ever before.

2.2.6. Mass Customization

The concept of mass customization emerged in the late 1980s and the term was coined for
the first time by Davis in his book "Future Perfect" in 1987 [Davis1987]. By end of 1992, the
publication of Pine's book "Mass Customization: The New Frontier in Business Competi-
tion" [Pine1992] dramatically increased the popularity of the concept among managers and
academics [Blecker2005, p. 40].

Mass customization signifies a business strategy, that aims at fulfilling individual customer
needs with near mass production efficiency and prices [Pine1992]. While "plain” product
customization as described in the previous section does not necessarily imply a focus on the
costs perspective, mass customization does.

So, on the one hand the concept of mass customization describes a hybrid business strategy,
that aims to fulfill both competitive strategies of product and price differentiation at the same
time (against the position of Porter who argues that both goals cannot be reached simulta-
neously [Porter1980]) [Piller2003a]: "The challenge that manufacturing companies have to
face is to provide individualized products and services by maintaining a high costs' efficien-
cy." [Blecker2005, p. 2].

On the other hand mass customization can be seen as a production concept that tries to com-
bine the benefits of mass production with a high degree on individuality regarding specific
customer requirements [Reichwald2009]. It can be placed as independent production type
between one-of-a-kind, variant and mass production: mass customization unifies their ad-
vantages by supplementing standardized processes in large parts of the value chain by cus-
tomer-specific activities (see Section 2.3.2, “Product Customization Value Chain”). From a
customer perspective, this lead to an individualized product portfolio [Piller2003a, p. 207].

A generally accepted definition of the term has been formulated by Piller: Mass customiza-
tion is defined as

e the production of products and services for a relatively large market,
* where each item exactly meets the different needs of every single customer,

* at prices, that correspond to those of comparable standard goods, produced with mass
production systems.

The information gained during the customization process serve the purpose of establishing
durable, individual relationships to each customer. [Piller1998, p. 65]
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Figure 2.5. Main Principles of Mass Customization

The main principles of mass customization (see Figure 2.5, “Main Principles of Mass Cus-
tomization”) according to Reichwald and Piller are (cp. [Reichwald2009, pp. 225]):

Customer Integration. Central element of mass customization is the integration of the cus-
tomer into the supplier's value chain in terms of co-design activities. The strong interaction
between supplier and customer during this co-design process, that aims to specify the indi-
vidual product within the stable solution space, is significant to mass customization.

Differentiation Advantage. By offering customized products, an enterprise pursuing
mass customization can gain competitive advantages due to a product based differentiation.
Customization possibilities related to an individual fit, functionality or design increase the
customer recognized benefit of a product.

Cost Position. In general, the participation of the customer during the production process
raises complexity and thus leads to increased transaction/production costs. However, the
involvement of the customer and the information elicited during the specification process
can be turned into new cost reduction potentials, so called "economies of integration" (see
Section 2.3.4.2, “Mass Customization Cost-Efficiency Overview”). Also, consumers are of-
ten willing to purchase customized products at premium prices which corresponds to the
increased benefit offered by those products. All in all, mass customization strategies can be
implemented with near mass production efficiency but perform much better than one-of-a-
kind productions.

Stable Solution Space. The key to accomplish the aforementioned potentials is a modu-
lar, flexible product architecture, that allows the customization of product parts within the
boundaries of a stable solution space. In contrast to customer innovation approaches, the sta-
ble solution space is developed by the company without customer involvement. This allows
to establish stable processes, which help to efficiently manufacture customized goods large-
scale.

According to Blecker et al. "providing customers with individualized products at affordable
prices is the main goal of mass customization." [Blecker2005, p.2] In summary, the efficiency
of mass customization can be explained by the fact that mass customization restricts the cus-
tomization abilities to the significant parts of the product, that make up the customer per-
ceived value. These restrictions allow stable manufacturing processes that support the real-
ization of economies of scale (as in mass production) and economies of scope (as in variant
production) and simultaneously enable other economical advantages by utilizing in-depth
knowledge about the companies' customers (cp. [Piller2003a, pp. 191], [Holthéfer2001, p.

26



Strategy Comparison

10]). Furthermore, the combination of a modular product architecture, stable processes in
production and last but not least the utilization of efficient, modern information and com-
munication systems throughout the enterprise's value chain, allow "satisfying the customer's
individual needs with near mass production efficiency" [Blecker2005, p. xxi].

In Section 2.3, “Product Customization Implementation” we will describe in detail, what it
means for a company to move into product or mass customization practically. There, we will
cover manufacturing, economical and marketing related aspects.

2.2.7. Strategy Comparison

Piller elaborates on the differences of mass customization and other production strategies,
namely one-of-a-kind, variant production and mass production in [Piller2003a, pp. 207]. In
our opinion, the arguments provided by Piller not only count for mass customization, but in
general for product customization strategies, which is why we present a summary of Piller's
findings in the following.

Compared to one-of-a-kind production, a product customization strategy is just not charac-
terized by attributes typical for job shop productions, like:

e per-order, from scratch calculation of offerings

* high requirements on flexibility on all levels of production

¢ individual planning of all production processes

e specific creation of production documents (bill of materials, work plans, etc.)

Instead, a customization strategy builds on a pre-defined, stable yet flexible modular prod-
uct architecture that allows the customer to freely configure the few, nevertheless essential
components that make up the individual product value from a customer perspective. Piller
speaks about "standardization of individualization" and as we will see in Section 2.3.4, “Eco-
nomical Aspects”, it is exactly this standardization, that enables the cost efficient perfor-
mance of customization strategies. Customers can define their custom products within the
limitations of the product architecture, which is designed to be efficiently manufacturable:
not only the different modules can be produced at low costs, but also bill of materials, work
and assembly plans as well as other specification documents are automatically created. Fur-
thermore, product customization strategies target larger markets than those of one-of-a-kind
productions.

Anonymous variant production aims to offer the largest possible diversity of variants in
order to address customer demands. In contrast, product customization targets the exact
fulfillment of customer expectations through the precise collection of customer requirements
and the subsequent manufacturing of customized product variants (cp. [Holthofer2001, p.
11]). In case of variant production the customer has to find the product variant, that best
matches his needs on his own, while in case of product customization it is the company
that provides the customer a product that exactly meets the customer's expectations. This
way, possibly difficult, unsatisfactory decisions for one or against another variant is avoided.
Additionally, in product customization scenarios, the final product variants are not produced
prior to the reception of a customer order. Though, parts of it may well be pre-produced (we
will discuss this in more detail in Section 2.3.3, “Manufacturing Aspects”). Moreover, the
actual manufacturing or assembly of the product is postponed unless detailed knowledge
about the customer's demand has been communicated. In terms of variant series production,
the variants are pre-produced large scale, based on prospects determined through market
research. The manufactured goods are then either distributed to retailers or put into stock.
Although this allows quick order processing, putting items to stock holds additional risks of
not selling all of them due to demand deviations.

Mass production strategies concentrate on highest production efficiency and the efficient
handling of enterprise resources in terms of lean production. Fixed and stable processes
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across the entire value chain are the main enablers for the cost-efficiency of mass produc-
tion systems. Mass customization strategies, in turn, focus on the fast and all-embracing re-
action on specific customer needs regarding production activities. In fact, the nature of mass
customization is characterized by the efficient management of frequent changes, varying re-
quirements and turbulent market conditions. According to Piller, mass customizers should
turn their attention to the reduction of the complexity, that results from customer-individual
production (cp. [Piller2003a, p. 208-210]).

We've now learned a lot about production processes in theory. In order to successfully estab-
lish a product customization strategy within an organization practically, different prerequi-
sites need to be addressed by the company: ranging from a modular product architecture,
over flexible production processes to the implementation efficient communication systems,
aka product configurators, to elicit customer requirements. We will take a look at the most
important aspects in the remainder of this chapter starting with a macro perspective of the
value chain employed by mass customizers.

2.3. Product Customization Implementation

Customization strategies target the development of flexible product structures and order
fulfillment processes optimized for customer adaption. These product structures and processes
allow the fast and cost-efficient reaction on individual customer needs.

The implementation, respectively the shift into a product customization strategy, is a chal-
lenge for companies of any size. Important aspects for the successful implementation of prod-
uct customization strategies are (cp. [Lindemann2006a, p. 11]):

* a step-wise development of the product and process range

e development of a product structure, that is optimized regarding customization possibili-
ties

* a divided development process that comprises an upstream design phase followed by a
customer-specific product adaption phase

e anindividualized interaction with the customer during the buying process along with the
integration of the customer into the order fulfillment process

¢ utilization of flexible product and process structures for manufacturing of customized
components

2.3.1. Mass Customization Achievement

In the literature, various categorizations of strategies to implement product or mass cus-
tomization practically, can be found 10, Piller explains a 2-dimensional categorization of
strategies in [Piller2003a]"":

Soft Customization. In terms of soft customization, adaption doesn't affect the manufac-
turing processes themselves. Consequently, these precesses can be fully standardized. In-
stead, products contain built-in customization options and adaption is performed independent
from the manufacturer, either by retailers or the consumers themselves. Due to the fact that
customers (except in the case of service customization) are not required to interact directly
with the producer, complexity within the manufacturer's value chain can be kept low.

In particular, there Piller mentions the following, concrete soft customization strategies:

1%For an overview and discussion see [Blecker2005], pp. 12.
Mranslations partly taken from [Blecker2005], p. 17.
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e Self customization. Development and production of products with built-in customiza-
tion options, that can be adapted by the customers themselves.

* Point-of-delivery customization. Delivery of standardized products that are cus-
tomized by retailers.

* Service customization. Offering of customized services complementing standardized
products.

Hard Customization. In case of hard customization, variety results from customized ac-
tivities executed during production. Customers are directly involved in the production
process and influence the built up product deeply. Consequently, this approach requires a
tighter customer-supplier interaction in order to avoid costly specification errors and mis-
understandings, which may lead to unsatisfactory results. These could quickly damage the
manufacturer's reputation sustainably.

Piller distinguishes the following hard customization strategies:

* Customization-Standardization-Mix. Either the first step (material processing) or the
last step (assembly, finishing) of the value creation process are customized within the fac-
tory. All other steps are standardized.

* Modular product architectures. Customized goods are built from standardized, inter-
connected and among each other compatible modules.

* Flexible customization. Using flexible manufacturing systems for production of fully
customized products at batch sizes of one without higher costs.

In practice, often more than one strategy, respectively a mixture of these, is compiled and
implemented. In fact, a modular product architecture forms the basis of most product cus-
tomization strategies pursued in the industry. It's frequently accompanied by service cus-
tomizations.

Due to the fact that moving to product customization strategies may likely result in signifi-
cantly more complex processes, manufactures often start by implementing a soft customiza-
tion strategy and step-wise integrate hard customization.

Moreover, a company should carefully consider, whether necessary product, production and
market conditions are met before even start to shift to product customization. Blecker et
al. introduce a comprehensive framework covering the main conditions for achieving mass
customization [Blecker2005, pp. 30]. Figure 2.6, “Overview of the Necessary Conditions for
Achieving Mass Customization” provides an overview of the necessary prerequisites and
conditions to be met by an enterprise in order to successfully pursue mass customization.
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Mass Customization Achievement

Before moving into mass customization After moving into mass customization

Market Conditions

» Demand and structural factors
(macro-perspective)

« Customer demand for customization
(micro-perspective)

« First mover?

Internal Abilities of the Mass
Customizing System

+ Optimal customers' needs elicitation
« Customer-oriented design
+ Manufacturing flexibility

+ Variety and complexity management
« Supply chain agility
+ Knowledge sharing

Customizing Ability

« Value chain readiness

« Process flexibility

« Customizability of products

- Capabilities of optimal elicitation

adapted from Blecker2005, p. 31

Figure 2.6. Overview of the Necessary Conditions for Achieving Mass Customization

Before moving into mass customization several market conditions have to be evaluated. We
will discuss these in Section 2.3.4, “Economical Aspects”.

Related to the customizing ability the readiness of the value chain is concerned with the ques-
tion whether the network including the company, its suppliers, distributors and retailers is
able to deal with customization in general. We will discuss the value chain in detail in Sec-
tion 2.3.2, “Product Customization Value Chain” and describe concrete strategies for inte-
grating the customer in Section 2.3.3.4, “Order Fulfillment Strategies”. In order to offer a large
diversity of product variants, the production processes need to be laid out flexibly, which will
be discussed in more detail in Section 2.3.3.5, “Production Process Split” and Section 2.3.3.6,
“Other Manufacturing Process Related Aspects”. Beyond the processes, also the product range
itself needs to be ready for customization. Customizable products have already been dis-
cussed in Section 2.1.3, “Customized Products and Product Configurations” and we will
further investigate that topic in Section 2.3.3.2, “Product Architecture” and Section 2.3.3.3,
“Modularity”. Capabilities of optimal needs elicitation relate to the ability of a company to gath-
er the requirements on a customized product from the consumer. This is the point, where
product configurators are involved. Effectively, product configurators are the tools that ac-
tually drive the customer's requirements specification. We will discuss them in great detail
in Chapter 3, Configurators.

Regarding the internal abilities of a mass customizing system, the topic of variety and com-
plexity management has already been discussed in Section 2.1.2, “Variant Management”. Sup-
ply chain agility deals with the management of the "uncertainty that is triggered by unforeseen
requirements” [Blecker2005, p. 40]. Customer-oriented design determines, whether a product
is actually designed to suite customers' needs. We will cover that topic in Section 2.3.3.2,
“Product Architecture”. Manufacturing flexibility will be mentioned in Section 2.3.3.6, “Other
Manufacturing Process Related Aspects”. Finally, knowledge sharing describes the ability of
an enterprise to quickly and efficiently transfer the knowledge about the customers' desires
and preferences, gathered during the interaction phase, across the value chain.
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In the next section, we will provide a global overview of the product customization value
chain. We'll then go into manufacturing related details, economical aspects and finally dis-
cuss consequences for the marketing activities of a company establishing product customiza-
tion. We'll, thereby, focus on hard customization strategies only.

2.3.2. Product Customization Value Chain

Product customization strategies are mainly characterized by a two-split value chain: the
value-adding activities are divided into standardized (customer order neutral) and individual
(customer order related) parts as depicted in Figure 2.7, “Value Chain of Product Customiza-
tion Pursuing Enterprises”.

Figure 2.7. Value Chain of Product Customization Pursuing Enterprises

The presented figure taken from Piller is based on a diagram of the value chain introduced
by Michael E. Porter in 1980 [Porter1980]. Supporting activities are those activities that indi-
rectly affect the goods produced by the company. In contrast, main activities are the parts of
the value chain that are directly concerned with good fabrication. Margin describes the profit
gained through value creation, that is, the difference between outcome (revenue) and the in-
put (resources) of the process. Each enterprise executes its own value chain. The interrelated
value chains of different enterprises within the same branch is called supply chain 2.

As stated earlier, product customization strategies affect nearly all activities within an enter-
prise, including the supporting activities. From a management perspective (business infra-
structure), a shift to product customization often implies a change of the entire product port-
folio, with customizability being an outstanding feature of the product range. Not only mar-
keting activities must communicate customization options as unique selling points (USPs).
Also the companies' executives need to adjust business processes and management tasks in a
much more agile manner, opposed to classical hierarchical organizational structures (relates
to human resources).

Furthermore, significant changes in research and development (R&D) activities are required,
in order to successfully pursue product customization: these activities do not only tackle

12See http: / / de.wikipedia.org / wiki/ Wertsch%C3%B6pfungskette, last accessed July 29th, 2012.
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standardized, monolithic products that can be designed and planned in their entirety. In-
stead R&D activities need to deal with modularized, flexible product architectures, that of-
fer manifold customization options in order to support diversified, yet cost-efficient manu-
facturable product variants. The design of the so called generic product architecture (see Sec-
tion 2.3.3.2, “Product Architecture”) involves the definition of modules with compatible in-
terface, which enable customers to easily configure custom variants fulfilling their needs.
Limited customization options, the careful consideration of using standardized components
opposed to customizable ones and the use of standardized modules with built-in customiza-
tion options can be seen as techniques to balance between the additional value offered by
customizability and cost-efficient production. In terms of product customization, the goal of
R&D departments is to design a product range, that exhibits low internal variety on the one
hand, and which supports widely stable production processes on the other hand. Likewise,
it is the goal of a product architecture to meet customers "ideal points" regarding most sales
relevant product attributes (cp. [Piller2003a], pp. 270).

Related to information and communication technology, product customization is even more de-
manding. The design of the generic product architecture requires sophisticated computer
aided design (CAD) tools. Flexible production systems are controlled with computer inte-
grated manufacturing (CIM) systems. The integration of the customer into the value chain as
well as the establishment of long-term customer relationships requires mature customer rela-
tionship management (CRM) tools. Finally, the customized sales process needs to be backed
with intelligent computer added selling (CAS) systems, such as product configurators. Ad-
ditionally, all these systems need to be well integrated with existing enterprise software, like
enterprise resource planning (ERP) and product data management (PDM) platforms for effi-
cient data exchange. We will take a closer look at the role of configurators as sales supporting
tools and their role within the system landscape in Section 2.3.5, “Marketing Aspects” and
Chapter 3, Configurators.

The main activities of the value chain in a product customization scenario can be divided
into activities that require direct customer interaction (individual activities) and those that do
not (standard activities). Depending on the exact stage of customer involvement (the so called
customer order decoupling point, see Section 2.3.3.4, “Order Fulfillment Strategies”) the activi-
ties highlighted in the figure above are performed in higher or lower intensity. In almost all
cases, in order to efficiently fabricate customized products and to shorten delivery times, the
product architecture features standard parts, that are pre-produced to stock independently
from customer orders. In this case classical marketing and sales forecast techniques are em-
ployed to prognosticate the demand on modules which are frequently used in customized
products. Production specifications including construction drawings, bill of materials and
work plans have already been finalized in previous R&D efforts. The sales predictions and
production specifications form the basis in subsequent procurement and production process-
es related to the manufacturing of these "ready-made" modules. Any other activity of the
value chain is triggered by specific customer orders and each activity is based on information
supplied by the customer.

The elicitation of customer requirements is subject to the configuration step, which is an
integral part of the entire sales process (we will take a closer look at the sales process in Sec-
tion 2.3.5, “Marketing Aspects”). During this very first step, the product configuration sys-
tem is utilized to precisely collect the customer's desires and to design the customized prod-
uct exactly matching the customer's needs. While any subsequent activity involves customer
specific information, the interaction with and communication to the customer is limited to
the configuration phase (except after-sales activities).

The result of the configuration phase is a fixed and stable product configuration, which does
not require any further negotiation with the customer but instead can be considered a com-
plete order specification. The fact that the product configuration remains stable for the rest
of the production process is a key factor for executing the customized value chain with high
performance and for optimizations in production activities. Additionally, it's one of the main
differences to the significantly less efficient one-of-a-kind production processes, where spec-
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ification changes are often allowed during execution of the value chain (so called change re-
quests).

While product configurations can (most of the time) be automatically transformed into pro-
duction specifications, in rare cases, customized components require a customer-tailored con-
struction step, which usually drastically delays delivery times. After the production specifi-
cation phase has been completed, a customer order triggers the procurement process, but just
in case the final product cannot be assembled with modules from stock or modules produced
in-house.

The production of the latter ones and the final assembly of all modules according to the
product specification is subject to the production and assembly step. The resulting product is
shipped to the customer through the customer selected distribution channel. The last step of
the value chain, the service and after-sales activities can be considered long-term product sup-
port activities. After delivery of the customized product, the customer information collected
during the configuration phase is used to establish a long-term relationship to the customer
including subsequent personalized product support offerings and individualized services,
such as frequent maintenance and repair offerings.

2.3.3. Manufacturing Aspects

2.3.3.1. Product and Production Related Prerequisites

In order to successfully pursue product customization the enterprise must address some
product and production related challenges. On the one hand, the company's product range
must be designed for customization, that s, the product architecture has to provide customiza-
tion options that support building custom product variants. Due to the fact that a flexible
product architecture, which allows diverse variations to be configured, leads to increasingly
complex production and management processes, techniques to lower complexity induced by
product customization have to be established. The most important technique in this regard,
from a manufacturing perspective, is product modularity.

On the other hand, the company must adjust its production processes to cope with customer
involvement: the company must decide the point of the value chain when the customer is
to be involved in the creation of the customized product. In other words, the company must
choose from one of the existing order fulfillment strategies. Finally, another important mile-
stone towards mass customization is to find the optimal degree of pre-produced versus on demand
created goods.

We will cover these issues one by one in the following.

2.3.3.2. Product Architecture

The (generic) product architecture is an abstract description of the company's product range.
According to Blecker et al. "the main purpose of a product architecture is to define the
product building blocks by specifying what they do and how they interface with each oth-
er" [Blecker2005, p. 164]. This definition can even be extended when product architectures
are described in terms of product models. Schwarze defines a product model as an abstract
representation or description of a product or family of products, describing the structure and
all facts, objects, concepts and properties that are relevant in any lifecycle phase of the same
[Schwarze1996, p. 33]. Thereby, a product model may encompass multiple perspectives [An-
dreasen1997], [Hvam2008, p. 36]:

Product structure. The product structure considers what the product consists of, that is,
it describes how products are built up and which parts they consist of (decomposition struc-
ture). Furthermore, the structural perspective comprises relationships and possibly constraints
between specific parts of the product.
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Product functions and properties. The functional perspective describes what products can
do (their function) and characterize them according to properties such as weight, dimensions,
surface, strength, price and so on. Solution principles can be modeled in order to fulfill certain
product functions (see also Section 2.1.3.1, “Customizable Areas”).

Productlife cycle properties. From the moment a product originates as a need recognized
by the consumer, a product goes through a number of phases such as design, production, as-
sembly, transportation, installation, use, service, disposition and recycling. For each of these
phases, specific information may evolve that must be accessible at the point the product en-
ters the particular phase, which is why these life cycle related properties can be considered as
part of the product model.

Variation and family structures. In order to offer variety and to allow configuring dif-
ferent variants of a product, the product model must contain customization options. In Sec-
tion 2.1.3.1, “Customizable Areas” we already discussed different adaption possibilities. In
general, we base customizability on the fact that the product architecture is modular and vari-
able components can be selected as is (selection), altered in terms of parameter changes (cus-
tomization/configuration) or constructed from scratch (construction).

As stated earlier, during research and development activities, the product architecture is de-
veloped with respect to two influencing factors: customer requirements and efficient manu-
facturability. Companies strive for offering a suitable variety (high degree of external variety)
while maintaining a suitable commonality (low degree of internal variety, see Section 2.1.2,
“Variants”) in order to keep the complexity of internal processes minimal (cp. [Hvam?2008,
p- 143]). Again, limited customization options, though strongly aligned with the customers'
demands, are a key factor of mass customization's efficiency.

Hvam et al. elaborate on the analysis of a company's product range and the development
of the product architecture (see [Hvam2008, p. 139]). They base their procedure on three
important areas of theory (cp. [Hvam2008, p. 147]):

System theory. As the basis for modeling the components of the product architecture,
system theory can be used. System theory is based on the distinction between function (what
the product can) and structure (what the product is). Furthermore, system theory considers
the interaction of a system with its environment, that is, it considers the input consumed and
the output produced by the system.

Object-oriented modeling.  The object-oriented modeling methodology offers lots of valu-
able mechanisms for precisely describing product architectures. With the help of classes and
objects, attributes and methods, generalization-specialization relations and associations be-
tween objects and classes entire product families can be designed in an extremely compact
manner. Object-oriented analysis not only considers the part-of structure and the kind-of struc-
ture of product components, but also considers behavior in terms of method definitions.

Multi-structuring.  Techniques of multi-structuring can be utilized the model relevant
product aspects from different perspectives. Hvam et al. consider at least the three view-
points practical (cp. [Hvam2008, p. 150]):

* Customer view. Focusses on the products' functions, properties and structures from a
customer point of view.

* Engineeringview. Focusses on the relationship between a products' functions and struc-
tures in terms of solution principles from an engineering perspective.

¢ Production view. Focusses on a product's detailed structure and its life-cycle properties
related to production and assembly.

The product range analysis and the development of a generic product architecture helps to
identify a product program's readiness for customization. During analysis activities within
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the company, often cleanup and standardization efforts take place, in case the product model
cannot be described easily or when the resulting model is too complex for the company
or the customer to understand. Also, modularization possibilities in previously monolithic
products can be identified during attempts to describe products and their components.

2.3.3.3. Modularity

"Product modularity enables the manufacturing of a large number of product configurations
by simultaneously taking the advantage of the economies of scale and scope. [...] [Modular-
ity] enables not only the ability to put the 'mass' in mass customization, but also to configure
the products according to the customer's requirements. [...] Product modularity is considered
to be a necessary requirement [for mass customization]." [Blecker2005, pp. 163]

In general, modularization refers to the decomposition of a complex object into separate parts,
so called modules, with lower complexity. Nilles further characterizes product modules as
follows™ (cp. [Nilles2002, p. 127]):

* A product module is a subsystem with lower complexity than the overall system of which
the module is a part.

¢ A product module is a closed functional unit.
* A product module is a spatially closed unit.
* A product module has a well-defined and obvious interface.

While in the literature various types of modularization are described'*, Hvam et al. provide

a comprehensive set of main modularity types. They are summarized in Figure 2.8, “General
Types of Modularity” [Hvam2008, p. 30-31]:

Modularity Types by Pine / Ulrich

Component Sharing Component Swapping Sectional Modularity
Modularity Modularity

[1O)

lag <5

Cut-to-Fit Modularity Bus Modularity (Platform)

cp. Pine1992, Ulrich1991

Figure 2.8. General Types of Modularity

Component sharing modularity. In case of component sharing modularity, a standardized
module is shared across different product families. For instance, a car manufacturer may use
one and the same car radio in various car families.

Component swapping modularity. Within a single product family, component swapping
modularity is applied, if a component can be replaced by other component variants with the

13Cited from [Blecker2005, p. 164]
!45ee [Blecker2005, pp. 164] and [Kratochvil2005, pp. 84] for overviews of various types of modularization.
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same interface. For example, the cover of a mobile phone can often be replaced by another
"themed" cover.

Sectional modularity. The sectional modularity type can be seen as the "Lego" brick mod-
ularity. Any components with matching interfaces can be attached to each other. A modu-
lar pipe system can be taken as an example for sectional modularity, where tubes and pipe
switches can be freely combined as long as their endings are compatible.

Cut-to-fit modularity.  Cut-to-fit modularity is applied, when the dimensions of parametric
components can be adapted to suit the customer's requirements. Examples include the cus-
tom-fit clothings or customized windows with individual dimensions.

Bus modularity (also: platform modularity). Another popular modularity type is bus mod-
ularity, where different product variants can be induced by mounting various components
with compatible interfaces to one and the same platform. Thereby, the number of attached
components may vary. As an example, the mother board of a computer can be mentioned,
which allows to connect different devices such as DVD or hard drives to it.

With these types of modularity, that are usually intermixed within a single architecture, a
largely diverse, flexible and modular product range can be modeled.

Depending on the degree of similarity and the type of modularity, one can differentiate be-
tween the following architectures:

Modelrange. Products of a model range (type series) solely vary in size but otherwise share
the same functionality, same production technique and the same materials.

Model kit.  Model kits (building blocks) allow the creation of variants by combining mod-
ules with different forms or layouts but otherwise compatible interfaces [Kolb2012].

Platforms. Platform designs have a basic module in common and variability results from
extension of the basic module with additional ones [Lindemann2006a, p. 44].

Individual Products. Individual products are entirely independent objects that do not share
a common construction concept [Schonsleben2000]

The concepts of model ranges, model kits, platforms and in general modularization and stan-
dardization techniques are considered established strategies to cope with the increased com-
plexity faced in variant management activities [Schuh2001].

Platform designs, can be further differentiated by their type of modularization (cp.
[Piller2003a, p. 259-260])":

Generic modularization. Composition of products with a fixed number of standardized com-
ponents, that itself may vary in their characteristics. The core of these products builds the
common platform.

Quantitative modularization. Also based on a common platform, product variants are
composed by attaching a varying number of standardized components to it.

Custom modularization. Composition of products based on a platform with a fixed or
varying number of either standardized or customized components, that is, build according to spe-
cific customer requirements (custom components).

Free modularization. Describes the composition of a fixed or varying number of standardized
or customized components, which are not based on a common platform as the product's foundation.

5Note that Piller uses the terms model kit and platform designs equivalently.
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Figure 2.9, “Types of Modularization for Platform Designs” illustrates these different plat-
form architectures.

Modularization Types by Piller
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cp. Piller20083, p. 259

Figure 2.9. Types of Modularization for Platform Designs
The Role of Modularization

Modularization can be considered a fundamental concept for the efficient implementation
of product customization. According to Blecker, "[...] [modularity] is a very relevant concept
that enables the reduction of product complexity and the achievement of economies of scale,
the economies of scope and the economies of substitution by simultaneously ensuring a high
level of product variety." [Blecker2005, p. 5]

In this context, the main benefits of modularization related to mass customization are, that
modules support building a large variety of products while, at the same time, the complex-
ity of both the individual components and the production processes to fabricate customized
products can be reduced. Modularization is beneficial across the entire product customiza-
tion value chain: related to marketing and sales, the company can offer a wide variety of
customizable products. In terms of research and development activities, product innovations
can be accelerated by re-using large parts of the product and only advancing performance
or sales relevant modules. In production, work can be distributed and decentralized. Mod-
ularization not only enables stabilized production processes but also shortens production
lead times, since large parts of the production process can be parallelized. Also, modulariza-
tion can lead to an increased product quality, due to the fact that components can be inde-
pendently tested in isolation, early in the production process. If most modules of the prod-
uct have been pre-produced (see Section 2.3.3.5, “Production Process Split”) and solely cus-
tomized parts are manufactured upon customer order reception, the delivery times for the
resulting product are strongly reduced. Products built up from closed modules not only sim-
plify product assembly, but also support maintenance and repair activities during product
use. Additionally, they allow customization even during the product's lifetime, e.g., compo-
nents can be updated / replaced by newer ones in order to increase the product's performance
(cp. [Blecker2005, p. 168-169], [Piller1998, pp. 194]).

Even though the advantages of modularization outweigh its disadvantages, some limita-
tions can be relevant from certain points of view. First and foremost, the development of a
modular product range can be cost-intensive compared to the development of integral sys-
tems. Additional costs incur for designing the carry-over of parts (initial design costs), for
testing those modules in different variant scenarios (testing costs) and for searching compo-
nents to be re-used (search costs, which can be considered negligible if appropriate software
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systems are in use). Also management costs and required coordination efforts increase when
the number of modules grows drastically. However, the simpler a modular product archi-
tecture is, the easier can competitors imitate the company's product design (cp. [Piller1998,
p- 197]).

As stated by Blecker et al. modularity is just one of several system attributes that must be
considered when designing product architectures and trade-offs between e.g., integrity, up-
datability and modularity must be balanced [Blecker2005, p. 169].

2.3.3.4. Order Fulfillment Strategies

An essential decision when implementing product customization is the definition of the ex-
act point in time when the customer is being integrated into the value chain. This point is
referred to as customer order decoupling point. Basic customer involvement strategies have
already been shown in Section 2.2.5, “Product Customization Strategies”. Precisely, the fol-
lowing strategies of order fulfillment/customer integration can be differentiated [Reich-
wald2002]’:

Match-to-Order (MtO). Product customization performed by the sales department. Map-
ping of standard products to the requirements profile of a customer.

Bundle-to-Order (BtO). Product customization performed by the sales department. Com-
position of standard products to a "profit bundle" that corresponds to the customer's profile.

Assemble-to-Order (AtO). Product customization is performed during the final assembly
of the product, which is carried out with standard components taken from stock.

Make-to-Order (also Fabricate-to-Order, FtO). Product customization applies to the pro-
duction stage of the value chain. Components fabrication takes place on a per-order basis.

Develop-to-Order (also Engineer-to-Order, EtO). Product customization applies to the
product development. Most extensive form of customization, merely used in capital good
productions.

Figulr7e 2.10, “Order Fulfillment Strategies” illustrates the different order fulfillment strate-
gies™.

1Translated from [Piller2003a, p. 248].
7In the style of [Hvam2008, p. 26].
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Figure 2.10. Order Fulfillment Strategies

In case of Match-to-Order and Bundle-to-Order, end products are put to stock within the
retailer's facilities, before they're delivered to the customer. In an Assemble-to-Order scenario,
components or intermediate products are stored within the producer's facilities. Finally, in
case of Make-to-Order and Develop-to-Order no storage is involved at all, since components
are continuously manufactured and assembled to the final product, which is subsequently
shipped to the customer without interruption (cp. [Krug2010, p. 12]).

2.3.3.5. Production Process Split

In essence, customized products result from customer specific assembly of standard modules
and customized modules and it is the customer order decoupling point that splits the value
chain into a customer order neutral part and a customer specific part.

Within the customer order neutral part standard modules, that are used in the majority of prod-
uct variants, are developed and pre-produced. In this part, processes can be highly automat-
ed and stabilized, which allows cost-efficient manufacturing of large parts of the product.
The production of custom modules and the customer specific assembly of the final product
are subject to the customer specific part of the value chain (see Section 2.3.2, “Product Cus-
tomization Value Chain”). As fabrication of customized modules ultimately depends on the
customer requirements elicited during the configuration phase, the customer specific part is
not triggered before customer order reception. [Piller2003a, pp. 230]

According to Piller, the bisection of the value chain is an essential prerequisite for the suc-
cessful reduction of the overall planning and control complexity induced by customer spe-
cific production. The goal of the distinction between customer order neutral and customer
specific part is to identify all production steps, that can be executed independently from cus-
tomer orders and to plan them as such. These steps can be scheduled with much higher flex-
ibility and thus greatly reduce the production planning complexity as a whole [Piller2003a,
p- 230-231]. The planning task itself can be split into independent sub systems, that can be
represented by two control cycles [Piller2003a, p. 231]:
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Customer order neutral regulator circuit.  This circuit controls the production orders for
parts, modules and variants independently of customer orders. Thus, within this circuit, a
produced item cannot yet be related to a specific customer order.

Customer order dependent regulator circuit. Triggers production orders immediately up-
on reception of a customer order. All subsequent steps are thus directly related to one spe-
cific customer order.

Again, the customer order decoupling point delimits both regulator circuits. The decision
when the one circuit ends and when the other one starts therefore corresponds to the deci-
sion on the optimal degree of pre-production, which should be carefully considered. Essential-
ly, it's the decision about the optimal ratio between standardized and customized activity
performed by a mass customizer. Piller describes two alternative scenarios for manufactur-
ing, depicted in Figure 2.11, “Make-to-Stock and Make-to-Order Manufacturing Scenarios”
[Piller2003a, p. 231-233]:

Figure 2.11. Make-to-Stock and Make-to-Order Manufacturing Scenarios

Scenario 1: Make-to-Stock (MTS). In the first scenario, the product components are pre-
produced in a customer neutral manner and placed into stock @. Upon customer order re-
ception @, the pre-produced components are retrieved from stock again and further manip-
ulated and/or directly assembled to the final product according to the customer's specifica-
tion before being handed over to the customer ©.

Depending on the degree of pre-produced components, efficient, mass production like
processes and machinery can be used for the manufacturing of standardized modules. While
stocking increases both inventory costs and the risk that the stored modules never get sold,
the delivery time of the final product can be reduced significantly.

Scenario 2: Make-to-Order (MTO). In the second scenario, the pre-production of compo-
nents does not start before, but is triggered immediately after a customer order has been
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received @. The manufactured components are directly assembled to the final customized
products ® without putting them into storage in between. They're directly delivered to the
customer ®.

With the help of this so called customer pull strategy, inventory costs and stocking risks as well
as wastage is avoided. Standardized, repetitive and stable production steps, that are defined
in a customer neutral way, strongly reduce the planning complexity and allow the efficient
manufacturing of the product's parts. Nevertheless, sufficient capacities in pre-production
and a quick response time of the overall system are important prerequisites in this scenario.

Practically, the determination of the optimal degree of pre-production depends on (cp. [Hom-
burg1996, pp. 661], [Piller2003a, p. 233]):

e technical criteria,

on the costs for the intermediate storage of semi-finished products,
the delivery time accepted by consumers,

the accuracy of the prospects about component demand, and

on the costs for process changeover.

2.3.3.6. Other Manufacturing Process Related Aspects

Modularity and the bisection of the value chain can be seen as essential complexity reduction
techniques in the areas of engineering, management and (high level) production planning.
However, to support mass customization other techniques related to the production itself,
assembly, procurement and delivery have to be considered (see [Lindemann2006a, p. 63-87)].

In production, for instance, manufacturing systems such as CNC universal machines, which
perform all required processing tasks (e.g., drilling, rotating, milling and bending) within a
single step, on one and the same machine, offer huge potentials for flexibility. These systems
not only avoid unproductive process changeover and transition times, but also improve the
overall product quality by an increased positional accuracy. Similar techniques such as Soft
Tooling (uninterrupted execution of various processing tasks with a single tool) and Automatic
Fabrication (fully automated casting, forming, rotating, etc. of CAD planned models with
special materials; mainly used for tool production) strongly involve laser technologies to
enable highly flexible and efficient manufacturing (cp. [Piller2003a, pp. 305])*.

Moreover, flexible systems in procurement, transportation, production planning and control
backed with computer aided manufacturing (CAM) tools may be involved in order to in-
crease production efficiency in product customization scenarios (see [Lindemann2006a, pp.
151]).

In summary, the increased proliferation of technology and extensive automation, enabled by
modern computer integrated manufacturing (CIM) systems, nowadays allow the efficient
manufacturing of highly customizable goods at affordable prices.

2.3.4. Economical Aspects

Having looked at aspects related to the manufacturing of customized goods in the previous
section, we want to discuss the economical prerequisites for and implications of product
customization in this section.

2.3.4.1. Market and Marketing Related Prerequisites

"Competitive advantage fundamentally grows out of the value a firm is able to create for its
buyers that exceeds the firm's cost of creating it. Value is what buyers are willing to pay, and

1BFor examples of additional technologies refer to [Lindemann2006a, p. 89].
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superior value stems from offering lower prices than competitors for equivalent benefits or
providing unique benefits that more than offset a higher price" [Porter1998, p. 3]'?As stated in
Section 2.2.5, “Product Customization Strategies”, mass customization characterizes a hybrid
business strategy, which aims to provide additional value due to customer-tailored products
(differentiation position), at prices comparable to those of mass products (cost position).

From an economical perspective, however, certain prerequisites have to be examined in order
to profitably implement mass customization (see Market conditions in Figure 2.6, “Overview
of the Necessary Conditions for Achieving Mass Customization”, cp. [Blecker2005, p. 31-33]).
On the one hand, demand and structural factors have to be examined:“":

Productrelated. Productlifecycle lengths, technological environment, necessity vs. luxury,
vulnerability to substitutes.

Customer related. Requirements stability and certainty, price, quality and style conscious-
ness.

Market related. Demand stability, market homogeneity vs. heterogeneity, saturation level,
buyer vs. seller market, economic cycle dependence.

Competition related. Competitive environment, price competition vs. product differenti-
ation.

Basically, the less the market's demand can be responded to with mass production instru-
ments, e.g., high market heterogeneity, instable demand on a largely saturated buyer market,
the higher is the probability of success when moving from mass production towards mass
customization.

On the other hand, customer demand for customization seems a natural necessity for product
customization. The willingness of the customer to (possibly) pay premium prices and to ac-
cept longer delivery times are important factors in this context. As stated by Porter, in the
end, it is the customer perceived, additional value of a good induced by product customiza-
tion, that decides about the customer's acceptance.

Finally, another important market related factor may be the first mover advantage: as Kotha
pointed out, it will be beneficial for the supplier's image, if it is the first company offering
customized products within a segment where previously only standard products were sold
[Kothal996, p. 447]. "Even when competitors enter the mass custom segment afterwards,
they will find it difficult to prevail, especially when customers consider the first mover as
the leader and best supplier of individualized products" [Blecker2005, p. 33].

2.3.4.2. Mass Customization Cost-Efficiency Overview

Even when the market related conditions for mass customization seem promising (refer to
Section 1, “The Market Shift”), a company considering to move into mass customization has
to carefully balance the monetary benefits and risks of this challenging business strategy
upfront. Throughout this chapter, we have shown, that mass customization may likely imply
numerous integral modifications to the company's business model, including the product
structure, processes, machinery and infrastructure. These modifications come at their price,
but also offer huge potentials for additional profits.

While in the literature, various schemas for discussing the costs and benefits of mass cus-
tomization can be found21, in this section, we will present the version from Lindemann et
al. [Lindemann2006a, pp. 166].

Cited from [Blecker2005, p. 11].
20The factors presented are derived from Pine's market turbulence map introduced in [Pine1992, p. 66].
2lFor example in [Reichwald2009, pp. 241] or [Piller2003a, pp. 169].
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Figure 2.12. Influencing Factors for Mass Customization's Efficiency

Figure 2.12, “Influencing Factors for Mass Customization's Efficiency” gives an overview
of the factors, that influence the profitability of mass customization. We will discuss these
factors in more detail shortly.

In general, profit gains are accompanied by costs to exploit these potentials. Likewise, cost
reduction potentials can only be freed up, when certain investments, that induce additional
costs, are made. In the long-run, a product customization strategy is only profitable, if the
costs to exploit additional profits and cost reductions do not exceed the actual value gener-
ated by these potentials.

2.3.4.3. Profit Gain Through Product Customization

In terms of profit gain potentials, the customization options of a product can be market-
ed as unique selling points (USPs) of a good, which offers increased acquisition potentials
for sales people. A flexible, modular product architecture accelerates the development of
new products by re-using existing components. With these new products, additional busi-
ness segments can be occupied faster and more easily. Also the additional value added by
customer-tailored product variants may not only result in positive image effects due to a
heightened customer satisfaction, but also increase the willingness to pay premium prices
for individualized goods.

To exploit these benefits however, the enterprise must anticipate productivity losings due to
decreased lot sizes and consequently missing mass degression effects (economies of scale).
Although, various techniques can be employed to reduce those losses (refer to Section 2.3.3,
“Manufacturing Aspects”), anonymous series production systems are still more efficient
than those directly involving the customer. In fact, the integration of the customer into the
value chain leads to significantly more comglex processes, which results in overall higher
production costs. Additionally, transaction costs 2 which are those non-value-adding costs, that
arise from selling the product on the market, considerably grow as well. The direct interac-
tion between the supplier and the customer, required to transfer of the customer's knowl-

ZThe distinction between production and transaction costs has been coined by Picot in [Picot1982].

43



Chapter 2. Product Customization

edge regarding his requirements (Reichwald and Piller call these sticky information, see [Re-
ichwald2009, p. 241]) is an important cost driver in this regard. As we will see in Section 3.3 .4,
“Benefits”, product configurators are an eminently important tool to reduce such costs by
automating the sales process from a supplier's perspective. Another issue, a product cus-
tomizing company has to deal with, is uncertainty: as customized goods cannot be tangibly
experienced during the sales process, customers often feel uncomfortable with what they're
spending money for. Thus, the company must spend additional effort in order to promote
trust and to lower the customer perceived risk regarding the quality and functionality of
the configured product, e.g., by providing an exceptional buying experience and a highly
professional overall appearance. Moreover, potentials of product customization can notably
be more exhausted, if the supplier fosters a long-term relationship to the customer: on the
one hand, re-using the sticky information elicited from the customer during previous order
processes can considerably ease and shorten subsequent sales activities. On the other hand,
the previous expenditures in trust and risk reduction pay out with each additional purchase.
In short, investments in long sustaining customer relationships increase customer loyalty.
[Lindemann2006a, pp. 166][Reichwald2009, pp. 240]

2.3.4.4. Cost Reduction Through Mass Customization

Beyond opportunities for profit gains, mass customization also offers cost reduction poten-
tials. In the literature, these cost reductions are frequently explained with different economies
[Lindemann2006a, p. 168-172]:

Economies of Modularity. Modularity of products and processes as fundamental princi-
ple of product customization (refer to Section 2.3.3.3, “Modularity”) is a considerable source
of cost saving potentials. By distinguishing standard modules from customized modules,
mass degression and specialization effects (Economies of Scale) as well as synergetic effects
(Economies of Scope) can be harnessed: standardized modules can be pre-produced in high
volume and with an increased variety on component level, often otherwise unused resource
pools and facilities can be employed.

Economies of Decoupling. Another substantial characteristic of product customization
processes is the bisection of the production cycle into a customer neutral and a customer
specific part (refer to Section 2.3.3.5, “Production Process Split”). Although customer inte-
gration is an important factor for additional costs induced by product customization, the
decoupling of both processes can also be a source of cost savings. Especially, when a true
customer pull strategy is pursued by leveraging a Make-to-Order fulfillment policy, resources
can be utilized in a strongly target-oriented way. Wastage as well as the risk to launch a
product that "flops" is avoided by shipping only those products, that have been specifical-
ly requested by customers. In short, economies of decoupling describe those cost savings, that
result, when an enterprise performs its value adding activities in an exceptionally accom-
plished manner, by utilizing up-to-date and precise information about the customer's de-
mands [Lindemann2006a, p. 169].

Economies of Integration. During the product configuration step (see Section 2.3.2, “Prod-
uct Customization Value Chain”), detailed information about the customer's requirements
are gathered. This information can be used to enhance the efficiency of the value adding
processes within the enterprise. This profitable utilization of information is subsumed with
the term economies of integration. Aggregated know-how about the customer can be used to
even better adapt the product portfolio to the market demands, especially, when the firm of-
fers standardized products beneath to the customized ones. The direct customer interaction
can supplement or even entirely supersede cost intensive market research activities, thereby,
concentrating research and development activities on desired product variants. As described
above, the improved knowledge about the customers can be used to develop new business
segments, but can also be beneficial to gain new customers by proposing better matchin,

product variants right from the beginning of the product evaluation phase (e.g., Amazon

23ee http:/ /www.amazon.com/, last accessed April 20th, 2012.

44


http://www.amazon.com/

Economical Aspects

provides the "Customers Who Bought This Item Also Bought..."-feature for exactly the same
purpose). Likewise, the overall quality of consultancy can be enhanced.

Economies of Relationship. In the case of product customization, a tight interaction be-
tween customer and supplier during the sales process is virtually inevitable. This not only
eases the elicitation of customer and market related information, but in addition offers new
opportunities to increase customer loyalty. The gained know-how can significantly ease in-
teraction between customer and supplier in further purchases, thereby, strongly reducing
transactional costs. Particularly, when the compiled information was complex or hard to de-
termine (e.g., a 3D model of the customers body, scanned with expensive equipment at a
retail store), customers tend to repeatedly purchase a good from the same supplier, provided
that they are satisfied with the previously bought product. An intensified customer retention
is the consequence, which, as another positive side effect, builds an even higher market entry
barrier for competitors. Also, an increased customer loyalty eases cross-selling opportunities
by simultaneously lowering marketing and acquisition costs.

Again, in order to exploit the cost reduction potentials explained above, additional production
and transaction costs have to be anticipated. On the one hand, a number of investments in
various areas of the company's value chain are required, which result in increased fix costs.
On the other hand, variable costs grow due to the overall increased complexity (e.g., plan-
ning, production and distribution complexity) induced by customer integration.

Additional production costs arise from required investments in modular product and process
architectures and flexible production plants, that efficiently support the manufacturing of
customized goods. The fix cost drivers span from expenses for research and development
activities in order to design a modular product range, over expenditures for coping with the
increased complexity in planning, control and distribution, up to flexible production plants.
Thus, investments in both hardware (e.g., CNC?* universal machines) and modern software
infrastructure (ERP25, CAD? and PDM/PLM27 software, production related systems like
cm®® including MRP%and production planning and control software) are required. Further
variable, production related costs result from efforts for planning and coordinating the man-
ufacturing process of customized components and their customer specific assembly.

Transaction costs grow due to the fact that the overall information and communication activ-
ities are intensified. Opposed to mass producers, which sell their products through various
channels with the help of retailers, companies pursuing product customization mostly inter-
act directly with the customer. Beyond common pre-sales, sales and after-sales tasks, the elic-
itation of customer requirements are time consuming and costly activities. Additional trans-
action costs are thus required for installing a product configuration system, that supports
the specification process and helps the customer to easily formulate his requirements (see
also Section 3.3.4, “Benefits” for a more detailed analysis of the efficiency of a configuration
system). Along with a product configurator, the company must spend efforts in reducing the
customer perceived risk related to the uncertainty about the customized product's quality
and functionality, which also increases transaction costs.

Finally, another cost driver are measures to complexity reduction. In order to cope with the
huge variability offered by product customization, complexity management techniques must
be employed. Those measures include, but are not limited to, the installation of appropriate
information systems, that support the management of product variants as well as the target-
ed planning of the variety of products.

As the previous elaborations have shown, product customization strategies not only provide
potentials for profit gains but even offer cost reduction opportunities. Consequently, if an

2 Abbrev. Computerized Numerical Control

2 Abbrev. Enterprise Resource Planning

%6 Abbrev. Computer Aided Design

% Abbrev. Product Data Management/ Product Lifecycle Management
B Abbrev. Computer Integrated Manufacturing

» Abbrev. Material Requirements Planning
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enterprise manages to exhaust these potentials, a hybrid business strategy, such as mass cus-
tomization, can be profitable by all means.

In this section, we described the potentials for additional profit gains and cost reductions
from a high level perspective. For the purpose of this work, the qualitative view is sufficient.
For a more quantitative evaluation attempt, refer to Reichwald and Piller's calculation ex-
ample provided in [Reichwald2009, pp. 263].

2.3.5. Marketing Aspects

To complete the picture on implementing product customization, we want to close up with
marketing related aspects. Particularly, we will take a look at the sales relevant processes
of product customization. In this context, we will see that product configurators play an
essential role, which is why we characterize those processes in more detail, here.

As already discussed in Section 2.3.2, “Product Customization Value Chain” (see Figure 3.1,
“Development Process for Custom Products”), the value creation process involves both the
customer and the supplier. In fact, the buying process of customized products is character-
ized by a strong and intensive interaction between both parties.

Interaction Process

Customer Process

Specifi-

Information cation

Purchase Consume

Communi- - A Configu-
cation lterzcton ration

Waiting Period / Delivery

Specification / Product Order After

[EHetaig Order Completion Creation Fulfillment Sales

Supplier Process

Figure 2.13. Interaction Process in the Context of Product Customization

In the following, we will take a look at the buying process (customer perspective) on the one
hand, and at the selling process (supplier perspective) on the other hand. This helps us, to
characterize the resulting interaction process in detail. Figure 2.13, “Interaction Process in the
Context of Product Customization” demonstrates the relationship between the customer's
and the supplier's process.

Let's begin with the buying process.
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2.3.5.1. The Buying Process (Customer Perspective)

The buying process comprises all steps that a consumer performs in order to satisfy his needs
[Scheer2006, p. 13]. Starting with the identification of a particular need, which may be trig-
gered by the consumer himself (e.g., due to experience) or activities performed by an entity,
e.g., marketing /advertisement), a customer initiates the buying process.

It begins with the information phase, during which the customer seeks information to satisfy
his needs. The customer usually evaluates multiple alternative products from various sup-
pliers depending on

e personal (e.g., cognitive skills),
* social (e.g., age),
task-related (e.g., number of available alternatives),

e financial (e.g., buying power),

situational (e.g., cognition), as well as

information (e.g., forms of information), and

problem related (e.g., product knowledge) factors.
Additionally, buyer independent factors such as

* economical conditions (e.g., political situation),
e social environment (e.g., norms), and
* specifics related to the particular consume situation (e.g., ambient temperature)

influence the customer.

After the information seeking phase, the consumer starts to further specify his need in terms
of a concrete demand. During the specification phase, the customer selects a particular product
type and defines the requirements on the product in question.

The buying phase starts, when the customer decides to buy the good: a decision, which may
lie between planned/rational, limited, experienced and impulsive / spontaneous boundaries
[Leckner2006, p. 28p].

After purchasing the product and the waiting period until the product is delivered, the con-
sume phase begins. In case of customized goods, this is the first time, the customer can com-
pare whether the purchased product really matches his initial needs (cp. [Scheer2006, p.
13-18]).

2.3.5.2. The Selling Process (Supplier Perspective)

On the opposite side, the selling process, begins with the bidding phase (also called pre-sales).
The main tasks of pre-sales is to generate interest in the company's offerings and to acquire
sales opportunities. The marketing activities at this stage are mainly driven by the company's
defined marketing mix (see Figure 2.14, “Marketing Mix for Product Customization”). Re-
ichwald et al. extend the well known "4 Ps", which comprise the policies of product, price, pro-
motion and place, with two important instruments related to product customization, namely
configuration and customer relationship management [Reichwald2006b, pp. 20]%:

%The following list has partly been translated from [Scheer2006, p. 19].
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Marketing Mix

Product Promotion
Price
Place
Product Oriented Customer Oriented

translated from Reichwald2006b, p. 21

Figure 2.14. Marketing Mix for Product Customization

Product. Defines the presentation of a product's or a product program'’s features in terms
of innovation, variation, differentiation and elimination of similar products on the market.
Product customizers particularly describe the customization options offered by the product
as unique selling points (USPs).

Price. Compromises the pricing and other related conditions. Especially, the ratio between
a product's benefit and its monetary as well as non-monetary reward is being marketed. In
case of customized products, customers are often willing to pay premium prices.

Place (also Distribution). Addresses the organization and the management of the transfer
of the product from the supplier to the customer through various distribution channels. In
terms of product customization, the fact that selling a product requires mostly a direct in-
teraction between the supplier and the customer (except in point-of-sales customization or self
customization, see Section 2.3.1, “Mass Customization Achievement”), requires special con-
siderations.

Promotion (also Communication). Describes additional measures for presenting and dis-
tributing information about the supplier and its product range among the consumers. Relat-
ed to product customization, the differentiation position may require extra marketing efforts,
especially for market newcomers. However, the differentiation can also lead to an increased
perception within the targeted clientele without additional activities. Regarding advertise-
ments, the additional complexity induced by the specification process as well as the special
role, that the customer owns during the value creation process, must be addressed.

Configuration. The product configuration system is the central tool that facilitates the
interaction between supplier and customer. In fact, the customer actually communicates
solely with the configurator itself, which is in charge of representing the enterprise in front
of the customer. Beyond its specification capacity, it's also the task of the configurator to
communicate the supplier's competencies. Optimally, it even advocates enthusiasm among
the customers. In summary, the configuration system is considered one of the most important
marketing instruments as part of the product customizer's marketing mix.

Customer relationship management. Another vital aspect of product customization is the
establishment of learning relationships (see Section 2.2.5, “Product Customization Strategies”),
which, in turn, requires a thorough management of customer relationships. Again, due to
the direct interaction with the products' recipients during the configuration process, the par-
ticular customer relationship can be maintained in a exceptionally good quality. Given that
the information systems employed offer corresponding capabilities, personalized commu-
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nication, tailored to each customer, the so called 1:1 marketing (see [Scheer2006, p. 21]), can
be facilitated.

Having acquired the customer's interest in the bidding phase, the customer is supported
during the specification of his requirements by the configurator. The complexity of the con-
figuration process and the customization intensity is determined by the point in time when
the customer is integrated into the value chain (see Section 2.3.3.4, “Order Fulfillment Strate-
gies”) and the degree of customizability (see Section 2.1.3, “Customized Products and Prod-
uct Configurations”).

Upon finishing the specification, the supplier complements the product configuration with
a corresponding quote including a final price and a preliminary delivery date.

Finally, the order submission initiated by the customer completes the order process. After
purchase, the customer specific production of the customized good, i.e. the fulfillment process
described in Section 2.3.3.4, “Order Fulfillment Strategies”, is triggered. Depending on the
negotiated conditions, additional services (e.g., installation) are carried out during the ful-
fillment process. Finally, the after sales activities are concerned with customer care, including
maintenance, repair, training and eventually product recycling (cp. [Scheer2006, p. 19-25]).

2.3.5.3. The Interaction Process of Product Customization

Now, that we have seen the buying as well as the selling process from both the customer's
and the supplier's perspectives, we want to discuss the interrelated interaction process in
between. Notably, we want to highlight product customization specifics here, instead of re-
peating the explanations from above.

Related to the communication in the customer-supplier interaction process, it is worth men-
tioning, that in case of customizable products, due to an increased complexity of the product
(opposed to equivalent standard products), a higher demand on information exists. With-
in the communication phase, the supplier has to explain the tasks, that the customer has
to perform in order to successfully specify a customized product and customization op-
tions should be precisely described. Furthermore, the added value offered by those options
must be a prominent subject of communication. Since the customized product cannot be
viewed or physically touched in advance, additional efforts have to be undertaken to reduce
the customer perceived uncertainty and to produce trust into the offered capabilities (cp.
[Reichwald2006a, p. 118]).

It is the task of the configurator to present the company itself, as well as the its product port-
folio, to the customer. During the exploration phase, the customer occupies himself intensive-
ly with the customizable product. He explores the different configuration options in order
to evaluate whether the configurator, i.e. the product architecture, is capable of optimally
satisfying his needs. In this context, the usability and the user experience promoted by the
configurator is of dominant interest.

The transition from the exploration to the interaction phase, which is the key phase of the
process, is fluent. At this stage, the customer must be actively supported to translate his
needs into specific product attributes, such as appearance, dimensioning and functionality.
Product configurators are the software tools to accommodate the specification support. The
configuration process is explained in detail in Section 3.2, “Product Configuration”. During
configuration, the tool continuously collects information about the customer and his prefer-
ences. The data is stored in the user's profile and forms the basis for future learning relation-
ships. Moreover, the configurator has several other functions, that will be discussed in detail
in Section 3.3, “Product Configurators”.

Although the configuration process may last only minutes, it can span several hours or even
days until the customer submits the configuration and places an order. The interaction phase
usually closes up with the payment of the product. The result of the configuration process is
a product configuration (see Section 2.1.3.3, “Product Configurations”), that is, a specification
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of the product including all characteristic values, that correspond to the custom product. The
product specification is used in any subsequent value creation steps, which are triggered
immediately.

Next, the supplier starts with the manufacturing of the customized good according to the
product specification. While production is in progress, the customer is waiting until the prod-
uct is delivered. In terms of customized products, the filling of the waiting period (e.g., by
regularly reporting the order fulfillment status to the customer, the so called order tracking),
is essential to reduce the customer perceived uncertainty, which also affects his overall sat-
isfaction heavily.

Once the custom product has been shipped to the client, he starts with actually using it.
During the consume phase, the supplier must still support the customer with after sales ac-
tivities and should try to retain contact to him. As an example, the supplier might want to
request feedback from the customer to verify, whether he's satisfied with the tailored prod-
uct. Moreover, due to the direct relationship, a personalized communication with the cus-
tomer should be established in order to foster customer loyalty. This includes the ability to
access the customer's profile and information about previous orders, including custom prod-
uct specifications, in response to customer inquiries (e.g., through a call center).

Finally, the elicited data during the interaction phase can be used (sometimes even periodi-
cally, e.g., in case of dissipating products) to trigger a re-buy phase. In repeating interaction
cycles, existing knowledge about the customer's preferences can and should be used to speed
up and ease the configuration process. In this sense, a long-term relationship to the customer
can be realized.

The in-depth discussion of the main processes involved during sales activities for product
customization closes up our detailed explanation on how to implement mass customization.
In the remainder of this work, we will solely focus on configurators as important tools for
realizing the interaction process. Especially, we'll discuss their technical implementation as-
pects. Before, however, we'll finally give a short overview of application areas of product
customization.

2.4. Application Areas and Examples

Product customization appears in a large diversity of application areas. While physically
tangible products have been stressed throughout this Chagter, product customization applies
to non-tangible services and software equally. From B2C ! to B2B* markets, customization
is used within a variety of industries™:

* Accessories. Jewelries, rings, bags and more with personalized forms, designs and sig-
34
natures.

. Appasléel. Individually designed clothings with customizable fit, material and appear-
ance.

* Automobile & Vehicles. The majority of car manufacturers allows customers to cus-
tomize their new car using a product configurator online.*® Also, many commercial vehi-

31 Abbrev. Business to Consumer
32 Abbrev. Business to Business
PThe following list has been extracted from http: / / www.configurator-database.com/, last accessed July 30th, 2012.
¥Eg, Stein Diamonds [http://www.steindiamonds.com/design-your-own/], Der Trauring Juwelier
[http:/ / www.dertrauringjuwelier.de/ trauringkonfigurator/], Berlin Bag [http://www.berlinbag.com/market-
Elace/ customize_product], last accessed July 30th, 2012.

°E.g., Spreadshirt [http:/ /www.spreadshirt.de/ t-shirt-gestalten-und-bedrucken-C59], Hemdschneider [http://
www.hemdschneider.de /meinhemd.php], last accessed July 30th, 2012.
36E.g., VW [http:/ /www.volkswagen.de/de/CC5.html], BMW  [http://www.bmw.de/de/de/gener-
al/configurations_center/configuratorhtml], =~ Mercedes-Benz  [http:/ /www.mercedes-benz.de/content/ger-
many /mpc/mpc_germany_website/de /home_mpc/ passengercars/home /new_cars/
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Application Areas and Examples

cle manufacturers support the customization of their offerings according to the customer's
needs by utilizing a modular product architecture.” Other vehicle industries including
motorcycles, bicycles, luxury yachts and others are build around a modular core which
offers customization opportunities.

* Beauty & Health. Personalized perfumes, make-up, cremes, soaps, shampoos, vitamins
and more.*

e Electronics & Media. Since computer's have been designed modular almost from
the beginning, many hardware manufacturers today offer the customization of their
systems.4OOther multimedia brands provide personalization offerings in terms of func-
tional adaptions, too.*!

¢ Food. From beer, cakes, chocolate or ice cream up to tea, wine - even meat - can be
. 42
customized.

* Footwear. Personalized shows with custom fit and design.43.

* House & Garden. Windows and doors are common customized products, furniture, en-
tire houses or gardens are more exotic examples for the capabilities of product customiza-
44
tion.

e Industry. From industrial machineries, machine parts to customized gases a huge vari-
ety of customizable products is available.*

® Services. Also service companies from the financial sector or assurances offer cus-
. R 4
tomer-tailored offerings. 6

Even fully individual products, build from custom 2D or 3D models can be configured and
ordered online*. The variety of customizable goods ranges from simple products up to high-
ly complex systems.

In principle, every product, that is compound of modules, owns customization potential.
Though, in the end, it is the customer who decides whether individualization is demanded
or not.

model_overview_configurator.flash.html], Toyota [http:/ /www.toyota.de/ cars/new_cars/ configura-
tor-index.tmex], Renault [http:/ /www.renault.de/renault-modellpalette / renault-pkw /index.jsp], Ford [http://
www.ford.de/Pkw-Modelle], last accessed July 30th, 2012.

37E.g., Scania [http:/ /www.scania.de/] (according to [Hvam2008, p. 144]), Setra [http://www.setra.de/de/be-
ratung-kontakt/ designcenter.html], last accessed July 30th, 2012.

38E.g., Harley-Davidson [http:/ /customizer.harley-davidson.com/], Bausatzrad [http://www.bausatzrad.de/],
Hanse Yachts [http:/ /www.hanseyachts.com], last accessed July 30th, 2012.

39E.g., My Parfuem [http://www.myparfuem.com/Parfuem.html], e.lf. [http://www.elf-kosmetik.de/de/
all/elements/make-up-box-konfigurator/], Haircare4Me [http:/ /www.haircare4me.de/], Purmeo [http://
www.purmeo.de/], last accessed July 30th, 2012.

4OE.g., Apple [http:/ /store.apple.com/de/configure/MD322D/A?], Dell [http://configure.euro.dell.com/dell-
store/ config.aspx?0c=d0023203&c=de&l=de&s=dhs&cs=dedhs1&model_id=inspiron-one-2320], last accessed July
30th, 2012.

41E.g., Loewe [http:/ /www.loewe.tv/int/products/individual / personalization.html], last accessed July 30th, 2012.
42E.g., Chocomize  [http:/ /www.chocomize.com/personalized-chocolate-bars],  DeineTorte.de  [http://
www.deinetorte.de/], WurstMixx [http:/ / www.wurstmixx.de/bestellung.php], last accessed July 30th, 2012.
43E.g., Mi Adidas [http://shop.miadidas.de/miadidas/], Nike iD [http://store.nike.com/de/de_de/?
I=shop,nikeid], last accessed July 30th, 2012.

44E.g., Audena [http://www.audena.de/], Fensternorm [http://www.fensternorm.com/], Regnauer [http://
www.regnauer.de / hausbau / vitalhaeuser / haus-konfigurator/], last accessed July 30th, 2012.

#E.g., Linde Gase [http:/ /www.linde-gase.de/produkte/spezialgase /konfigurator.html], ThyssenKrupp Eleva-
tors [http:/ /www.ceteco.biz/de/], last accessed July 30th, 2012.

46E.g., Huk24 [http:/ /www.huk24.de/], last accessed July 30th, 2012.

47E.g., Formulor [http:/ /www.formulor.de/], last accessed July 30th, 2012.

51


http://www.mercedes-benz.de/content/germany/mpc/mpc_germany_website/de/home_mpc/passengercars/home/new_cars/model_overview_configurator.flash.html
http://www.toyota.de/cars/new_cars/configurator-index.tmex
http://www.toyota.de/cars/new_cars/configurator-index.tmex
http://www.toyota.de/cars/new_cars/configurator-index.tmex
http://www.renault.de/renault-modellpalette/renault-pkw/index.jsp
http://www.renault.de/renault-modellpalette/renault-pkw/index.jsp
http://www.ford.de/Pkw-Modelle
http://www.ford.de/Pkw-Modelle
http://www.ford.de/Pkw-Modelle
http://www.scania.de/
http://www.scania.de/
http://www.setra.de/de/beratung-kontakt/designcenter.html
http://www.setra.de/de/beratung-kontakt/designcenter.html
http://www.setra.de/de/beratung-kontakt/designcenter.html
http://customizer.harley-davidson.com/
http://customizer.harley-davidson.com/
http://www.bausatzrad.de/
http://www.bausatzrad.de/
http://www.hanseyachts.com
http://www.hanseyachts.com
http://www.myparfuem.com/Parfuem.html
http://www.myparfuem.com/Parfuem.html
http://www.elf-kosmetik.de/de/all/elements/make-up-box-konfigurator/
http://www.elf-kosmetik.de/de/all/elements/make-up-box-konfigurator/
http://www.elf-kosmetik.de/de/all/elements/make-up-box-konfigurator/
http://www.haircare4me.de/
http://www.haircare4me.de/
http://www.purmeo.de/
http://www.purmeo.de/
http://www.purmeo.de/
http://store.apple.com/de/configure/MD322D/A?
http://store.apple.com/de/configure/MD322D/A?
http://configure.euro.dell.com/dellstore/config.aspx?oc=d0023203&c=de&l=de&s=dhs&cs=dedhs1&model_id=inspiron-one-2320
http://configure.euro.dell.com/dellstore/config.aspx?oc=d0023203&c=de&l=de&s=dhs&cs=dedhs1&model_id=inspiron-one-2320
http://configure.euro.dell.com/dellstore/config.aspx?oc=d0023203&c=de&l=de&s=dhs&cs=dedhs1&model_id=inspiron-one-2320
http://www.loewe.tv/int/products/individual/personalization.html
http://www.loewe.tv/int/products/individual/personalization.html
http://www.chocomize.com/personalized-chocolate-bars
http://www.chocomize.com/personalized-chocolate-bars
http://www.deinetorte.de/
http://www.deinetorte.de/
http://www.deinetorte.de/
http://www.wurstmixx.de/bestellung.php
http://www.wurstmixx.de/bestellung.php
http://shop.miadidas.de/miadidas/
http://shop.miadidas.de/miadidas/
http://store.nike.com/de/de_de/?l=shop,nikeid
http://store.nike.com/de/de_de/?l=shop,nikeid
http://store.nike.com/de/de_de/?l=shop,nikeid
http://www.audena.de/
http://www.audena.de/
http://www.fensternorm.com/
http://www.fensternorm.com/
http://www.regnauer.de/hausbau/vitalhaeuser/haus-konfigurator/
http://www.regnauer.de/hausbau/vitalhaeuser/haus-konfigurator/
http://www.regnauer.de/hausbau/vitalhaeuser/haus-konfigurator/
http://www.linde-gase.de/produkte/spezialgase/konfigurator.html
http://www.linde-gase.de/produkte/spezialgase/konfigurator.html
http://www.ceteco.biz/de/
http://www.ceteco.biz/de/
http://www.ceteco.biz/de/
http://www.huk24.de/
http://www.huk24.de/
http://www.formulor.de/
http://www.formulor.de/

Chapter 2. Product Customization

2.5. Summary

In this chapter, we've presented fundamental knowledge related to the global context of our
work: product customization.

We introduced important terms related to the subject, such as products, components and vari-
ants, to establish a common understanding of the vocabulary used throughout the work.
Next, we had a look at variant management and the complexity induced by this approach.
Finally, at the end of the first section, we explained the notions of customizable products and
product configurations and showed in general "what actually can be customized" by defining
a list of customizable areas. This list will be an important driver for the modeling concepts
worked out in Chapter 4, Methodology and Conceptualization.

While focussing the product perspective in the first section, the following section focusses the
process perspective. We explained classical production processes such as one-of-a-kind produc-
tion, series production, variant production and mass production in order to demonstrate the differ-
ences to the later introduced product customization strategy. We identified product customiza-
tion as a strategy, that is capable of fulfilling the increasing demand for customized products
and motivated in Chapter 1, Introduction. We stressed the involvement of the customer into
the value creation process as the most important implication of any product customization
strategy. Furthermore, we distinguished mass customization as a special case of product cus-
tomization that not only focusses on product differentiation, but also considers the cost position
in order to offer customized goods at prices comparable to those of standard products. At
the end of this section, compared product customization with other production strategies.
Having read this section, the reader should be able to answer the question "what product
customization actually is" and "what it is used for".

In Section 2.3, “Product Customization Implementation”, we elaborated on the topic of "how
to implement mass customization". We discussed in detail the product customization value
chain, which shows significant differences to the value chain of a mass producer, since the
main activities are divided into standard activities (executed customer neutral) and individ-
ual activities (executed specifically for a customer). As the split of the value chain - a con-
sequence of customer involvement - significantly increases the overall process' complexity,
we discussed methods and techniques for managing this complexity. In this context, we de-
scribed modularity and a modular product architecture, as well as the bisection of the production
process into a customer neutral part and a customer specific part as the most important factors.
The details about economic aspects showed, that there are huge potentials for profit gains on
the one hand, and cost reduction opportunities on the other hand. We argued that a compa-
ny exhausting those potentials will be able to pursue product customization in a profitable
way. Finally, the section on marketing aspects disclosed important insights of the interaction
process between customer and supplier. Within this interaction process, configurators play a
prominent role as they're used to elicit the customer's requirements on the tailored products
beyond communicating the supplier's product portfolio and capabilities.

We closed up with this chapter by presenting manifold areas of application for product cus-
tomization.

In the next chapter, Chapter 3, Configurators, we will concentrate on product configurators.
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In Chapter 2, Product Customization, the business strategy for offering customized products
has been described in detail. We identified the integration of the customer into the product cre-
ation process as crucial aspect of product customization. Specifically, the customer is involved
in the configuration phase of the value chain (see Section 2.3.2, “Product Customization Value
Chain”), which aims at eliciting the customer's requirements on the tailored product. Without
these information, the customized product cannot be build. Therefore, the configuration, re-
spectively the requirements specification phase, plays a prominent role in the entire process.
Its result is a detailed specification of the product, that optimally fulfills the customer's needs.

In order to efficiently perform the specification process, the configuration phase must be
supported by information technology: product configurators are software tools, that help
the customer (or a sales representative) to transform individual needs into specific attributes
of the customized product. Thus, configurators are a central element within the sales process.

This chapter concentrates on configurators and can be seen as the (information) technical
point of view on product customization. At first, we will describe the act of product config-
uration and place it in the context of product customization. Then, we will describe product
configurators in detail, covering both general features and requirements as well as technical
topics.

Configuration in the Context of Product Customization

In product customization, modularity and the resulting modular product architecture are the
foundations of customizable goods. Particularly, the limitation of customization options to
the most important properties of a product from a customer perspective, enable the efficient
manufacturing of such goods. Through the precise planning and definition of customizable
areas within the product architecture (see Section 2.1.3.1, “Customizable Areas”), and espe-
cially by disallowing arbitrary customizations, a stable solution space is established. The fast
and cost efficient manufacturability of the resulting products without expensive reconstruc-
tions can be guaranteed. During the configuration phase, the customers configure their cus-
tomized product within the stable solution space, by selecting components and specifying
the values of parametric attributes. Thus, as can be seen in Figure 3.1, “Development Process
for Custom Products”, the development of customized products can be seen as a two-split
process [Piller2003b]:
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Customer neutral development phase. Within the first phase, the enterprise develops
an optimized, stable solution space in terms of a modular product architecture (see Sec-
tion 2.3.3.2, “Product Architecture”), which is described as a product model. The customiza-
tion options build into the product architecture represent the capabilities of the manufactur-
er offered to its customers. Characteristic for this part of the development process is, that it's
customer neutral, that means, the customer is not involved in this phase yet. Moreover, at
this stage, no products have been manufactured at all.

Customer specific development phase. During the second phase, the customer (or a rep-
resentative) configures the product within the range of the solution space, thus performs the
actual product configuration (in terms of an action). Upon order submission, the resulting
product configuration (in terms of a subject) is transformed into the final specification of the
custom product, which forms the basis for subsequent fulfillment processes, including the
good manufacturing.

Development Process
Customer Neutral Development Phase

Development
Process

Achievement Potential /
Capabilities
(Stable Solution Space)

Internal Business
Factors

\

Order Fulfillment /
Configuration
Process

External Factors,
Customer Integration

Internal Business
Factors

Product Configuration
(customer specific)

Customer Specific Development Phase

cp. Piller2003b, p. 52

Figure 3.1. Development Process for Custom Products

In other words, during the development process (customer neutral development phase), the
supplier designs a product model that determines the configuration options presented to the
user. Within the customer specific development phase, the product configuration aims at pre-
cisely specifying the customized product. Particularly, this happens within the configuration
process driven and supported by a product configurator. In the following we will describe
these terms and the concepts behind them in detail.

3.1. Product Models

The product model is the digitalized, formal description of the product range (see Sec-
tion 2.3.3.2, “Product Architecture”) and forms the basis for the configuration process. Within
the product model, the compositional structure inferred by modularization efforts (discussed
in Section 2.3.3.3, “Modularity”) and the sales relevant, customer perceivable product charac-
teristics are recorded. Particularly, the customizable areas of the product (described in Sec-
tion 2.1.3.1, “Customizable Areas”) are represented within the product model. Additionally,
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constraints, that stem from physical, technical or marketing related factors, may be defined
to express restrictions of the solution space.

While numerous product characteristics, including detailed technical attributes, can be cap-
tured in the product model (see Section 2.3.3.2, “Product Architecture”), for configuration
purposes mostly only those attributes, that concern the functionality, form and appearance
are relevant to the customer. The granularity, that is, the level of detail encompassed in the
product model, must be carefully considered to balance between ease of configurability and
expressiveness of customer requirements [Renneberg2010, p. 81].

Basic Meta Model for Generic Product Modeling

There exist various approaches to product configuration, that foster different methods of
product modeling (we will discover several of them in Section 3.3.3.5, “Implementation As-
pects”, "Configuration approaches" ). Nevertheless, the description of products by means of

* structure (components),
e attributes, and
* constraints

is common to most of them. These concepts build up a basic meta model to describe product
models (see Figure 3.2, “Basic Generic Meta Model for Configurable Products”). The meta
model elements can be used to describe a highly diverse set of products, originating from
different product domains, which is why it's called generic product meta model.

Generic Meta Model

Components Attributes Constraints
Structural decomposition of the Characteristic values of the Express restrictions between
product architecture. Features product component. components and their
part-of and kind-of attributes.

relationships.

Figure 3.2. Basic Generic Meta Model for Configurable Products
Product Models in the Context of Configuration

Used in the context of product configuration, from these model elements, various configu-
ration decisions (also referred to as configuration options) can be derived. In the following
sections, we will discuss each element in more detail and describe the relevant configuration
decisions more precisely.

The meta model as well as the configuration decisions form the theoretical basis for the con-
ceptual framework described later in our methodology: exactly these concepts and options
will be supported by our framework. Thus, we'll come back to these in more detail in Chap-
ter 4, Methodology and Conceptualization.

In the end, the product model compromises all required information for a generic product
configurator to generate valid configurations of a customizable product.

3.1.1. Components: Structural Decomposition

With the help of components (also called modules), the structure of a product is described.
Components encapsulate closed physical or functional units. They can be related to each
other in order to express classification (kind-of) and containment (part-of) hierarchies.
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In short, components can be characterized as follows:

Identifier/Type. Components are identified by a unique (qualified) name. This name also
manifests the component's type.

Attributes.  To further characterize components and distinguish different variations of
these, a component defines attributes (see Section 3.1.2, “Attributes: Component Character-
istics”).

Relationships. A component can be associated to others by different means:

¢ Kind-Of. Identifies a component to be a specialization or a generalization of another
type of component; also known as "is a"-relationship.

e Part-Of. Designates a component to be a part of another component. This way, a com-
positional (containment) hierarchy can be modeled. Again, also known as "has a"-relation-
ship, aggregation or composition.

* Association. Is a type of relationship, that can be further attributed to indicate a special
kind of association: e.g., the uses relationship indicates that a component makes use of an-
other object, but the targeted component must not necessarily be a part of this object only.
Likewise, a dependency relationship signals, that a component depends on the existence of
another one.

Multiplicity. If a component is part of another component, a multiplicity can be provided
in order to specify the number of objects participating in the association.

Components in the Context of Configuration

When describing product structures in the context of product configuration, the composi-
tional structure is of primary interest. Most often, the part-of structure is depicted as tree-like
structure (see Figure 3.3, “Compositional Structure of a Bike”): while the root represents the
final product, the nodes correspond to components. An intermediate node designates an ag-
gregated component, that consists of multiple other (sub-) components. A leaf node describes
a primitive component, which is not further divisible.

Figure 3.3. Compositional Structure of a Bike

'In the following we use the notation [ N. . N, where N represents the included lower bound and Mthe included
upper bound. A fixed number of N items is notated as [ n] .

56



Components: Structural Decomposition

Configuration Decisions Related to the Compositional Structure

Related to the structural aspects of a product, during the configuration process feasible de-
cisions are enumerated in the following list of structural configuration options (for exem-
plary illustrations see Figure 3.4, “Structural Configuration Decisions” )%

ii.

Component type decision. Since a component may appear in a kind-of relationship, it
may be possible to use a sub-type of the stated component at the given decision point.
Thus, in this case, the user must specify the exact type to use.

Component quantity decision.

A. Optional component: If the multiplicity of a componentis [ 0. . 1], the component is op-
tional and may be specified at the user's choice ® ® @ (cp. Figure 3.4, “Structural Con-
figuration Decisions”).

B. Mandatory component: If the multiplicity of a component is [ 1], the component is
mandatory and must be specified ©-©® © ©.

C. Multiple components: If the multiplicity of a component is [n..nj, wheren >= 0, m
> n, the user must specify the exact quantity of components involved. The quantity
must be greater or equal than n and less or equal than m In this case, two approaches
can be differentiated ®-®:

a. asingle component is inserted multiple times &, or

b. multiple components are inserted single or multiple times ®.

iii. Component variety decision.

A. Fixed component: In certain situations, their may only exist a single component instance
available for a decision. We say the decision's option is fixed, since the user has no alter-
natives to choose from. This means for optional components, that the user may choose,
whether exactly that component instance may be part of the product or no such compo-
nent will be part of the product at all @.

B. Alternative components: Allows the user to choose from different alternative component
instances ©.

iv. Component customization decision.

A. Selected[parameterized component: The user can select a predefined component instance,
which may, however, define parameterized attributes ®-.

B. Constructed component: Allows the user to construct a new component instance @.

2See also [Renneberg2010, p. 83-84], [Lindemann2006b], [Lindemann2006c], who define a subset of these options.
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Figure 3.4. Structural Configuration Decisions

Within our conceptualization, structural aspects will be covered in Section 4.4.1, “Structure
Modeling”. There we will discuss various examples of different component structures and
decisions.

3.1.2. Attributes: Component Characteristics

Attributes (also referred to as properties, options or degrees of freedom3) are used to describe
components in more detail. For the purposes of configuration, only the value-adding char-
acteristics of a product are relevant and should be included in the product model. Variants
of a component primarily result from component instances, that differ in various attribute
values.

An attribute is characterized as follows:
Name. The name that identifies the attribute within the scope of a component.

Type. The value type of a component, e.g., number, string, symbol (enumerated value),
etc.; must be compatible with the attribute's domain (see below).

Multiplicity. Also attributes may specify a multiplicity. Although, in most cases the car-
dinality is [ 1], for attributes, the following multiplicity alternatives may be relevant®:

3 our opinion the name "degree of freedom" as used, for instance, in [Renneberg2010], is an inadequate substitution
term for "attribute", since not only attributes can be customized. Instead, a degree of freedom can also denote a decision
oint related to the component structure, e.g., the cardinality of a component.
See also [Jergensen2003], who introduces a subset of these multiplicities.
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e AtLeast(n). The selection of n and more values is allowed. n is the lower bound.

e AtLeastOne. The selection of 1 or more values is allowed (special case of AtLeast, where
the lower bound is fixed to 1).

* AtMost(m). The selection of zero to mvalues is allowed. mis the upper bound.

e AtMostOne. The selection of one value is permitted but not mandatory (special case of
AtMost, where the upper bound is fixed to 1).

* OneOf. Exactly one value is mandatory and must be selected (combination of AtLeast-
One and AtMostOne).

* Optional. Eithertrue orf al se (special case of OneOf for boolean domains).
* AnyOf. Any number of values from the domain may be selected.

e Exactly(n). The exact number of selected values must be selected (combination of AtLeast
and AtMost, where the lower and the upper bound are fixed to n).

Domain. Contains the values, which can be assigned to the attribute. Domains can be
characterized across different dimensions:

* Boolean domains. Contains exactly the boolean values t r ue and f al se.

* Symbolic/Literal domains. Domain values are discrete and represented by a symbol,
e.g., bl ue.

* Numeric domains. Domain values are linear or discrete numbers, e.g., floating points
2. 5 or natural numbers 3.

e String domains. Domain values are character strings, e.g., "King Louis I1.".

* Enumerated domains. Contain a bound, enumerable set of values, e.g., {bl ue, red,
green}.

* Discrete domains. Contain a limited, though not enumerable number of values, e.g.,a
natural number between 0 and 1500, in short [ 0- 1500] .

* Linear domains. Contain an unlimited number of values, e.g., a floating point number
between 0 and 1, in short [ 0. 0- 1. 0] .

e Interval domains. Allow the specification of intervals, e.g., { [ 10- 15] } .
Attributes in the Context of Configuration
Related to configurability, one can differentiate various types of attributes:

Regular attributes.  Are attributes that cannot be customized, but which may vary depend-
ing on the selected variant of a component (e.g., the price of a component). The domain of a
regular attribute may contain multiple, different values.

Constant attributes. Cannot be customized and is fixed to a specific value independently
of the selected variant (e.g., the material attribute of a component may be fixed to the value
"aluminium”, if all variants of a component are build from that material). The domain of a
constant attribute contains a single, fixed value.

Calculated attributes’ Contain values that are calculated from other attribute values (e.g.
the weight of a component is calculated from the dimensions and the material of a compo-
nent). The domain of a calculated attribute depends on the calculation.

5Also known as performance variables, see [Businger1993, p. 15].
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Customizable/Variable attributes 6 Allow the user to choose between different values.
However, the value space of the attribute is discrete and bound (e.g., the user may choose the

color of a component from "blue", "red" and "green"). The domain of a customizable attribute
contains multiple, but limited number of enumerable values.

Parameter attributes. Represent linear, possibly unbound variable attributes that the user
must specify (e.g., the length of a tube component). The domain of a parameter attribute
contains an unlimited or not enumerable number of values.

We sometimes refer to variable (component) attributes by the means of customizable attributes
and/or parameter attributes simultaneously.

Configuration Decisions Related to Component Characteristics
The following attribute configuration options are feasible:
v. Attribute quantity decision.

A. Optional attribute: When the multiplicity of an attribute is At Mbst One (or equivalent),
the attribute is optional and its value may be specified at the user's choice.

B. Mandatory attribute: When the multiplicity of an attribute has At Least One semantics,
the attribute is mandatory and a value must be specified.

C. Multi-value attribute: When the multiplicity of an attribute is greater than 1, the user
must specify the exact quantity of attribute values. In visual configuration scenarios,
however, the quantity of values is in most cases implicitly defined by simply specifying
multiple values.

vi. Attribute valuation decision.

A. Selected value: In case of customizable attributes, the user selects a value from the
attribute's domain.

B. Custom value: For parameterized attributes, the user enters a custom value in the given
format.

Within our conceptualization, component characteristics in terms of attributes will be cov-
ered in Section 4.4.1.2, “Attributes”. Again, we will discuss various examples of different
component characteristics and related decisions in that section.

3.1.3. Constraints: Domain Restrictions

Regardless of the configuration approach, in the product model, restrictions will be mod-
eled in order to exclude product variants, that cannot or shall not be build for technical or
marketing reasons. So, while the definition of components and attributes (particularly, the
domains of those) can be seen as widening the solution space, with the help of restrictions,
complex relationships can be expressed, that effectively narrow the solution space (see also
Section 4.4.4.1, “Domain Definition” in this context).

Renneberg identifies the following types of restrictions [Renneberg2010, p. 84-85]:

Boolean constraints.  Allow the definition of boolean expressions that must hold true for
a configuration to be consistent. In other words, when a configuration satisfies all constraints
defined within the product model, that is, all expressions evaluate tot r ue, the configuration
is said to be valid. Using constraints, restrictions can be formulated declaratively.

SSometimes referred to as decision variables, see [Businger1993, p. 15].
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In practice, usually first-order logic is used to describe constraints. In this context, attributes
represent the variables that occur in the logical terms. Again, constraints can be differentiated
across various dimensions:

* Logical constraints. Solely contain variables, constants and logical operators, such as
logical and, or, not, == (equals), ! = (unequal), <, =<, >, >=, etc.

Arithmetic constraints. May also contain arithmetic operators suchas+,-,/,*, %(mod-
ulo) and others.

* Unary constraints. Reference only one variable.
* Binary constraints. Reference two variables.
* N-ary constraints. Reference more than two variables.

Relational constraints. With relational constraints, valid value combinations (also referred
to as feasible tuples) for a set of variable attributes can be intensionally defined (see Sec-
tion 4.4.4.1, “Domain Definition”).

Rules. A rule is a logical term in the form of I f <condi ti on> Then <acti on>. With the
help of these terms, a rule system can be realized, that combines both logical and procedural
knowledge. Upon matching and evaluating the condition to t r ue, which may happen each
time the user submits a decision, the given action is executed. The action may perform state
changes, which possibly triggers other rules to fire.

Constraints in the Context of Configuration

In terms of product configuration scenarios, constraints are used to ensure the validity of a
specified configuration/variant.

As stated by Renneberg, in the context of model based configuration, constraints should be
used in favor of rules for various reasons (cp. [Renneberg2010, p. 85], [Jorgensen2003], [Eiza-
guirre2008]):

» With constraints, the definition of dependencies is easier to understand and more clear,
due to the fact that procedural and logical knowledge is separated.

e Constraints can be checked in an arbitrary order. In contrast, the sequence of rule evalua-
tions is significant and affects the result. This is why, the interrelations between rules are
more difficult to analyse.

* Rule systems are reactive systems, which makes it technically harder to deduct knowledge
about valid attribute valuations in advance.

Configuration Decisions Related to Constraints

In an advanced configuration scenario, even constraint related configuration options can be fea-
sible:

vii. Constraint decision

A. Optimization variables and constraint weighting With the help of constraints, vari-
ables can be demarcated to be optimized within a configuration. As an example, a
constraint can be defined to minimize the price of a product. A recommendation al-
gorithm may use this information to optimize the configuration by proposing compo-
nent instances with minimal prices. Additionally, when multiple optimization goals
are defined, constraints can be weighted in order to compromise diverging targets.
The constraints used for these purposes are sometimes referred to as soft constraints.
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B. Constraint relaxation Another use case for constraint related decisions are expert con-
figuration scenarios, where the configuration systems allows the expert user to relax
certain constraints. As an example, an advanced configuration system that deals with
tube systems might constrain the tube length to a certain limit for easier manufactur-
ing. However, for special designs, an expert may be allowed to specify extra sized tube
components by relaxing the length constraint.

In our conceptualization, we'll consider both boolean and relational constraints, but for the
reasons mentioned above, dismiss rules. We will cover the exact semantics of constraints in
Section 4.4.5, “Constraint Modeling”, where we will point to various concrete examples, too.

We've now discovered the theoretical concepts behind product models. In the context of
model-based product configuration (see Section 3.3.3.5, “Implementation Aspects”), these
models are the most important sources of information available to the configuration sys-
tem. Effectively, they provide the concepts to represent real, physical or immaterial products
within a software application.

While we discussed product modeling on a theoretical basis here, in Chapter 4, Methodology
and Conceptualization we are going to conceptualize a concrete modeling approach, that must
encompass, respectively realize, the concepts worked out in this section. Hence, this section
can be seen as the requirements analysis for the subsequent conceptualization.

Similarly, we will describe the process of product configuration on a rather theoretical level
in the next section.

3.2. Product Configuration

In this section we will take a look at product configuration as a process (respectively as a
course of action). We described product configurations (as a subject) already in Section 2.1.3,
“Customized Products and Product Configurations” from a static, high level perspective.
Here we will concentrate on the dynamic, information technical point of view.

3.2.1. Characteristics of Product Configuration

The act of configuration can be seen as design task between selection and construction. In this
context, the distinction between supplier-centric, customer-oriented and customer-centric
products introduced in Section 2.1.3, “Customized Products and Product Configurations” is
relevant [Scheer2006, p. 32]:

Selection. In the case of supplier-centric products, the customer can solely search and select
a specific product variant. All product attributes are fixed and their values cannot be cus-
tomized. The solution space offered by the company is limited and relatively small.

Configuration. In terms of customer-oriented products, certain product attributes can be al-
tered, while others are fixed. The value spaces of these customizable attributes (so called pa-
rameters) are usually pre-defined and limited. Nevertheless, during configuration, the cus-
tomer chooses the exact value depending on his demands, which results in a tailored prod-
uct. Due to the limited options, the solution space remains stable. From a supplier perspec-
tive, product development has been finished.

Construction. While customer-oriented products provide limited customization options,
customer-centric products can be nearly arbitrarily adapted. In effect, the constructive task
performed by the customer during the specification process enlarges the solution space,
which therefore becomes virtually unlimited. The customer is actively involved in the prod-
uct development process and the actual fulfillment process corresponds to a Develop-to-Or-
der strategy (refer to Section 2.3.3.4, “Order Fulfillment Strategies”).
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In the context of product customization, the task of configuration is to specify the structure
and concrete attribute values of a product, while the correctness of the model must be main-
tained, in order to ensure the manufacturability of the customized product.

Product configuration can thus be defined as follows:

Product Configuration Product configuration describes the composition of a product
out of pre-defined components (so called selection and com-
bination) and the specification of values for variable compo-
nent attributes (so called parameterization). Thereby, the cor-
rectness of defined consistency rules (so called constraints)
must be maintained. Configuration options result from se-
lection, combination and parametrization of the product, re-
stricted by constraints (cp. [Scheer2006, p. 41]).

In more detail, Scheer characterizes configuration as follows [Scheer2006, p. 40]:

* During configuration, pre-defined components can be composed, that is, selected and
combined within the range of the configuration possibilities. Those configuration possi-
bilities are restricted with the help of constraints.

* A component is described in terms of interfaces, attributes (including possible domain
values) and constraints.

* During an active configuration, neither can concrete component instances be modified nor
can new component instances be created (in the physical sense). Also, previously unfore-
o 17
seen component combinations cannot be applied.

* The configuration result describes the entirety of selected components and their composi-
tional relationship.

Characterized this way, a configuration task differs from a (constructive) design task in a
way, that during construction, new component instances, combinations or attribute values
can be added. In case of configuration, however, these operations are disallowed to maintain
manufacturability without expensive re-designs.

In our conceptualization, introduced in Chapter 4, Methodology and Conceptualization, the dis-
tinction between selection, configuration and construction is a fundamental concept. Though,
we apply these concepts not only on product level, but rather on component level: for a partic-
ular component of the product model it can be defined, whether the component is specified
through:

Component Selection. The particular component variant is selected from the available set
of those items. In this case, the customer in fact cannot add a new component variant nor
provides the component any parameterization options.

Component Configuration. A base component is chosen but can further be specified
through parameterization.

Component Construction. The customer can construct entirely new component variants
within the range of the supplied configuration restrictions.

We will describe these (so called specification methods) in more detail in Section 4.4.3.1, “Spec-
ification Methods”.

While in this section, we characterized product configuration in general, in the next section,
we will discover configuration processes in detail.

7In essence, by formulating these restrictions, Scheer complies with the in Section 2.2.6, “Mass Customization”
identified requirement, that the solution space for customizable products should remain stable, in order to be able
to manufacture them efficiently.
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3.2.2. Product Configuration Processes

Product configuration processes can be described from numerous perspectives and on vari-
ous levels of detail. In the literature, we found the following approaches, which we consider
being useful to understand configuration from a process point of view (see [Maher1990, p.
49-50], [Businger1993, p. 18-19], [Scheer2006], [Reichwald2006a, pp. 123]):

Global Configuration Process. Describes the act of configuration from a high-level, macro
perspective.

Configuration as Transformation Process. Describes the transformation of a (variable)
product model into a concrete product configuration instance on a rather technical, lower

level.

Interactive Configuration Process. Describes configuration from an interaction point of
view, as perceived by the user of a configuration system.

In the following, we will cover these different perspectives one by one.

3.2.2.1. The Global Configuration Process

In case of self-configuration, the customer takes decisions regarding the given configuration
options autonomously, that is, without assistance by some sales personnel. In this sense, all
online product configurators (which we focus primarily in this work) can be considered to
realize self-configuration.

We termed the self-configuration process characterized by Scheer in detail [Scheer2006, p.
42] with the name global configuration process, as it provides a macro perspective on con-
figuration processes. Figure 3.5, “Global Configuration Process” illustrates the process.

Figure 3.5. Global Configuration Process
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Starting point.  Starting point for the configuration is the customer, who wants to configure
a custom product in order to satisfy a certain need. The customer owns an idea about the
solution, which is accompanied by the customizable product offered by the supplier.

Configuration model. The configurable product is represented by a generic product model
(also called generic product structure or configuration model), which defines the product compo-
nents along with their attributes and domains (commonly referred to product model elements),
their structure and related constraints. A specific instance of the generic product model cor-
responds to a customer specific product model (which is termed configuration model instance ac-
cordingly). The customer specific product model doesn't contain constraints itself, but rather
holds the specifications of selected product components that are consistent with the defined
constraints.

Configuration process. The (actual) configuration process comprises the selection and pa-
rametrization of components according to the given constraints. During the configuration
process, the customer's requirements are transformed into a customer specific product mod-
el, that is, a concrete product composed of customized components. The transformation
process includes the following phases®:

* Configuration formulation. Involves the identification and interpretation of customer
requirements as well as their translation into goals and restrictions for certain configura-
tion options. Concretely, during the configuration formulation phase, a generic product
model is selected and instantiated into an initial customer specific product model. Ad-
ditionally, global requirements are applied to the model in terms of domain restrictions.
Moreover, default attribute values are set.

* Configuration synthesis and evaluation. Iterative sub process that aims to incremen-
tally specify configuration options and subsequently validate the model against the con-
straints (plausibility check) and user requirements (customer feedback).

* Configuration interpretation. Deduction of final performance attributes, such as prices
and delivery times, as well as generation of detailed specifications, including sales quota-
tion, bill-of-materials and assembly descriptions, from the customer specific product mod-
el.

Result. The result of the configuration process is a customer specific product configuration
in terms of a detailed product specification, that fulfills the customer's requirements and is
consistent with the defined constraints.

The detailed definition of the process by Scheer, allows a precise dissociation of otherwise
often interchangeably used words: the global, complex configuration process including all
three phases is referred to as configuration. The technical software system that supports the
full process is called configuration system. The subsystem of the configuration system that
conducts the configuration synthesis is understood as (actual) configurator. The corresponding
process supported by the configurator is called (actual) configuration process [Businger1993,
p. 18-19].

Nevertheless, for simplicity reasons, those terms are often used interchangeably.

3.2.2.2. The Configuration Process as a Transformation Process

In essence, the product configuration process describes a transformation process: the generic
product model, representing all possible variations of a customizable product, is incremen-
tally transformed into a specific product configuration.

Figure 3.6, “Configuration as a Transformation Process” depicts the relationship between
generic product model and a specific product configuration graphically.

8cp. [Maher1990, p. 49-50], [Businger1993, p. 18-19], [Scheer2006]
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Figure 3.6. Configuration as a Transformation Process

The transformation process consists of multiple configuration steps. In particular, there is one
configuration step for each configurable option (respectively configuration decision) of the
generic product model. To recall the configurable options identified in Section 3.1, “Product
Models”, the different kinds of decisions possibly be taken by the customer are:

i. Component type decision

ii. Component quantity decisions

iii. Component variety decisions

iv. Component customization decisions
v. Attribute quantity decisions

vi. Attribute valuation decisions

vii. Constraint decisions

During each configuration step, the user specifies a value for the configuration option. There-
by, he further details the custom product's specification.9 Figure 3.7, “Configuration Steps”
shows the internals of a configuration step, which are described below:

Figure 3.7. Configuration Steps

°In visual, interactive configuration systems, many decisions are combined within a single interaction step, which is
why the configuration steps usually do not directly correspond to the application's screen flow. Also, some config-
uration decisions are even implicitly taken or multiple decisions are taken at once. This may happen, for instance,
with the help of graphical component editors.
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Option specification. As described above, the user specifies the value of a configurable
option. For example, he selects a specific value from the domain of an attribute, chooses a
pre-defined component or modifies the quantity of an already identified one.

Option recommendation. The configuration system might implement a recommendation
feature that proposes a specific value for a configuration option. To generate a recommenda-
tion, configuration systems may implement different filter methods that realize algorithms
known from recommender systems [Leckner2004]. The user must manually initiate the rec-
ommendation process and may choose to adopt or discard the proposed value. Also, the
application of a default value for a configurable component or attribute can be considered a
value proposal (see also Section 3.3.2.2, “Specification / Recommendation” and Section7.2.2,
“Recommendation Integration” for details).

Automatic completion. In advanced configuration systems, the user might choose to au-
tomatically complete an unfinished configuration or parts of it. For instance, the user spec-
ifies the most relevant configuration options of a component and leaves the rest of the con-
figuration decisions up to the recommendation system. Moreover, in case the domain of an
attribute is reduced to a single possible value due to the propagation of constraints, the at-
tribute can be automatically specified with the remaining value.

Change validation.  After the submission of a specific value modification, the verification
of the configuration's consistency is triggered. Assuming that constraint violations occurred,
the system may signal the error to the user or even intervene by rejecting the applied value
entirely.

The configuration process is finished, when all constraints are satisfied and the product con-
figuration sufficiently fulfills the customer's requirements.

All decisions taken by the user are recorded in the configuration result, a (valid) product con-
figuration. The product configuration tracks components, their relationships and chosen at-
tribute values. It can be stored and re-edited at a later stage and is transformed into a concrete
product specification or related specification documents upon customer order.

3.2.2.3. The Interactive Configuration Process

Having described the configuration process from a macro (global configuration process) and
a micro technical perspective (transformation process), we finally want to give an overview
of the very same process from an interaction point of view, as perceived by the user: the
interactive configuration process (see Figure 3.8, “Interactive Configuration Process”).

In essence, the process described below realizes the configuration step identified as part of
the customer-supplier interaction in Section 2.3.5, “Marketing Aspects” cp. [Reichwald2006a,

pp- 123].

Interactive Configuration Process

Navigation Specification of .

through the > Configuration > g?r:%gu:gzon >
Registration / Selection of a Product Model Options o

- Basic Product Order Submission

Authentication (Product Catalog) Personalization Requesting A d

of the Product Recommen- Su:a(z:rirf]i?:taeiion

Model dations p

Interactive Specification (:)

translated/adapted from Reichwald2006a, p. 123

Figure 3.8. Interactive Configuration Process
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The interactive process at some point in time involves the registration or authentication of the
user. The authentication is an important step to identify the user and to elicit and store cus-
tomer specific information. In fact, the registration of the user is the initial starting point for
the realization of a learning relationship. Nevertheless, the configuration process itself can be
performed anonymously and registration may be performed upon saving the configuration
or submitting an order, thus after the actual product specification.

The transition from the exploration phase to the interaction phase of the interaction process
is established by selecting a basic product from the product catalog for further customization.
At this point, the interactive specification process begins. From a high level perspective,
this cyclic process includes the following activities:

Navigation through the product model. The user may navigate through the product mod-
el in order to explore and specify the configuration options. While some configuration sys-
tems enforce a specific order (sequential access) of configuration items, others allow randomly
specifying the different configuration parameters (random access).

Personalization of the product model. In advanced configuration systems, the configura-
tion model can be personalized, e.g., by requesting customer preferences and mapping them
to model constraints. For instance, the configurator may ask the user to specify his favorite
color and pre-select the stated color in any subsequent color related decisions.

Specification of configuration options, Requesting recommendations, Automated speci-
fication. The essential activity of the interaction process, the specification of values for
configuration options, has been described in detail in Section 3.2.2.2, “The Configuration
Process as a Transformation Process”. There we also mentioned, that the specification action
can be supported by the configuration system by generating recommendations or automat-
ically filling values.

Storing the configuration. Another important step is the persistence of the configuration.
The specification of a complex product may last several hours. Hence, the process is often
temporarily interrupted by the customer and resumed at a later point in time. To accommo-
date this scenario, the configuration system should be able to capture and persist the exact
configuration state and restore it later on.

The interactive specification phase ends when the customer successfully specified a valid
product configuration and places an order. At this point, the specification of the custom prod-
uct is finished and the start of the supplier's internal fulfillment process is triggered.

It is the interactive configuration process that is technically supported by a configurator,
which helps the customer to perform the activities discussed above. In the next section, we
will take a look at these configuration systems in detail.

3.3. Product Configurators

In this section, we will concentrate on product configurators as software tools. We will again
recap their role within a product customization scenario and the describe tasks and require-
ments applying to them. Next, we will work out a set of features, realizing these tasks. A
comprehensive categorization of configuration systems will finally not only describe the fea-
tures in more detail, but will also stand as a sophisticated comparison matrix for different
configuration approaches.

The Role of Configurators within Product Customization

Product configuration systems are a key enabler for mass customization [Bourke2000]. They
play a fundamental role in the interaction process between supplier and customer by sup-
porting the "design process" of a customized product, especially in the context of electronic
commerce [Rogoll2004].
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Asiillustrated in Figure 3.9, “Product Configurator as Key Enabler for Mass Customization”,
the product configurator plays a central role in the product customization scenario. It can be
seen as the common interface between customer, supplier and the supplier's offered product
range.

Product Configurator as Key Enabler

femeeeeeeeeaas { Product } --------------- .

need satisfaction increase in sales
Product
demand Configurator offering
v v
( Customer Supplier )

Figure 3.9. Product Configurator as Key Enabler for Mass Customization

Into the direction of the customer, the configurator presents the supplier's product range and
overall capabilities. In fact, in the case of self-configuration, the configurator acts as a sales
utility in replacement of a human sales employee and thus represents the entire company on
behalf of the supplier. The configurator must not only communicate the product's features
adequately, but instead should motivate the user to explore, configure and after all buy a
product. Thus, the appearance, usability, interactivity, and use of multimedia-based content
are important factors to mediate a virtual buying experience to the user [Reichwald2006b].

On the other hand, the configurator enables the communication of product requirements
from the customer to the supplier. It thus allows the mass customizer to access the sticky
information (see Section 2.3.4.3, “Profit Gain Through Product Customization”, i.e. [Reich-
wald2009, p. 241]) owned by the consumer.

Origins of Product Configuration Tools

During the past 20 years, configuration systems evolved from various areas of IT. Originating
fields of application include [Reichwald2006b, p. 32]:

CAD systems. Engineering driven configurators were introduced as part of computer aided
design tools. The focus of these configurators, which are primarily used offline by engineers
and sales experts, is the detailed technical specification of physical products and their tech-
nical visualization.

ERP systems. Often configuration software is introduced as part of enterprise resource
planning suites. They're also used mostly by sales engineers. Production driven configurators
support the automated generation of bill of materials and work plans. Tightly integrated
with the ERP system, quotes can be generated containing detailed pricing information and
delivery times. Upon order submission, production orders are automatically scheduled.

E-Commerce. With the emergence of electronic commerce in the mid 1990s, purely sales
driven configurators, that targeted the consumer directly over the world wide web, evolved.
E-commerce configurators are embedded within the company's corporate website and inte-
grate seamlessly with other sales tools such as online shops or CRM software. In this regard,
the user experience and the usability in terms of "ease of configuration" are exceedingly rel-
evant aspects.
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In practice, today mixed forms of the above types of configurators are common. In the context
of our work, we primarily focus on sales configurators used by end users or field sales staff
over the world wide web. However, we pay attention to integration aspects related to CAD
and ERP use cases.

Definition of Product Configurators

"A product configurator is a tool which supports the product configuration process so that all
the design and configuration rules, which are expressed in a product configuration model,
are guaranteed to be satisfied. The configurator simplifies the manufacturing process by as-
suring that all orders received are possible to build. Interactive configurator tools can sup-
port quick and flexible customization by giving immediate and accurate information about
the available combinations of options" [Hedin1998, p. 107].

Similar to product catalogs, product configuration systems are software systems applied in
the area of computer aided selling (CAS). While product catalogs solely support search and se-
lection of pre-defined products, product configurators additionally allow the individual com-
bination and parametrization (configuration) of components in order to design a custom
product.

These definitions already provide a basic idea on what a configurator is. However, in order
to implement a framework for creating custom configurators, a more detailed definition of
possible and required features must be worked out. We'll summarize the tasks of configura-
tors and the requirements on such systems in the following.

3.3.1. Tasks and Requirements

Configurators are complex systems that must fulfill lots of tasks and requirements. Again, a
configurator is a design tool for specifying custom products that aims to ease and automate a
mass customizer's sales process. Thus, the core task of a product configurator is the presen-
tation of components, attributes and attribute values defined in the product model and the
capturing of composition and parametrization decisions. Thereby, the system must guard
the consistency of the configured product [Scheer2006, p. 27].

However, there are more responsibilities to be taken by product configuration systems. In
the literature, manifold lists of tasks and requirements are available'. Nevertheless, in our
opinion these descriptions often mix different aspects or terms and hence do not provide a
clear picture on the feature set commonly implemented by configuration systems.

We try to provide an aggregated, comprehensive description of the main tasks and high-level
features of a configuration system here. We use the following interpretations of the terms
task, feature and requirement as a basis:

Task. Describes an ability or a responsibility, that the configurator must fulfill, i.e. explains
why the configurator does something.

Requirement. Describes a condition, that further characterizes how the configurator per-
forms a task. When implementing a feature, the requirements related to that feature must
be considered.

Feature. Describes a functionality of the configurator, that realizes a task, i.e. explains what
the configurator does to fulfill a task. u

195ee [Piller2003b, pp. 261, [Rogoll2004, pp. 26], [Scheer2006, p. 33-34, p. 49-50], [Reichwald2009, pp. 282], [Krug2010,
p. 24]

ETO provide a short example: the configurator should inform the customer about the supplier's products (task). It

does so by providing a product browser (feature), that allows to explore the product range and display product

information. The information presented should be aided by multimedia features to provide an optimal, sales en-

couraging user experience (requirenent).
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3.3.1.1. Tasks of a Configurator

We identified four main task areas, for which Figure 3.10, “Tasks of a Configurator” sum-
marizes the most important responsibilities. We describe them in more detail, together with
additional requirements, below. The findings in this section have been aggregated from var-
ious literature sources, including [Rogoll2003, pp. 23/37], [Scheer2006, pp. 33-34/49-50],
[Krug2010, pp. 24].

Product Configurator Tasks

4 N\ 4
Information Specification / Recommendation
« inform about supplier and its abilities » guide specification of a product
« present product range and offerings * ensure consistency
« provide help & recommendations
« result description and visualization
« generation of specifications
Product
Configurator
4 N\ 4
Communication Integration
« elicit customer information - integrate with frontend systems:
« aggregation and analysis of usage website, online shop
statistics - integrate with backend systems:
« customer care CRM, ERP, PDM, CAD
. J .

Figure 3.10. Tasks of a Configurator
Information

The configurator is responsible for providing information about the supplier and its capa-
bilities, including detailed product and pricing information.

The information should be comprehensive, presented clearly, aesthetically appealing and is
optimally backed with multimedia content. Sophisticated product and supplier information
can build trust and significantly reduce the customer's perceived risk about the configured,
not yet physically tangible product.

Specification / Recommendation

The main task of the configurator is to support the customer during the specification of the
custom product, thereby, automating the supplier's selling and consulting process. Starting
with the selection of a base product, through the presentation of configuration options and
reception of customer decisions, the configurator should guide the customer through the
configuration process, while not necessarily imposing a fixed decision sequence. Addition-
ally, the system should support the customer by providing context sensitive help informa-
tion, option recommendations or automatic completion methods upon customer request. In
parallel, the configuration's consistency must be continuously checked. The result should be
explained at least textually, include up-to-date pricing information and, if possible, should
indicate delivery times. Optimally the configured product is also graphically visualized to
give the customer immediate feedback about his doings. The final configuration should be
detailed enough to let the configurator generate a sales quote, bill-of-materials and other
production relevant specifications.

While these are the basic tasks related to product configuration, there are additional require-
ments on how these tasks should be fulfilled: first of all, the produced configurations must
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be complete and correct. To reduce the overall complexity, the configurator must ease the
configuration process as much as possible and allow the customer to configure a product in
real-time. This optimally includes the a priori restriction of selectable options to those that
result in valid product configurations. Offering options that lead to inconsistent or implau-
sible specifications cause frustration on the customer's side and may even let the customer
abandon the configuration process entirely. In this context, also the user-friendly, customer
oriented design of the process, as well as low latency and quick response times are of signifi-
cant importance. At best, this leads to a "flow" experience, motivating and engaging the user
to participate in the co-design process with enthusiasm (cp. [Rogol12003]). Furthermore, the
user should be able to control the configuration process by skipping, postponing or chang-
ing configuration decisions. For the specification of complex products, which may require
several minutes or even hours, it's important to establish a mechanism to store, pause, load
and resume the configuration process at a later point in time.

Communication

The configurator has another, very important responsibility: it must realize the entire com-
munication activities during the selling process on behalf of the supplier (see Section 2.3.5.2,
“The Selling Process (Supplier Perspective)”). A configurator can be understood as a major
sales supporting tool, that realizes a complete, customer facing information system. In par-
ticular, the configurator must elicit or request information about the customer in order to
adequately respond to his requirements. Moreover, the configuration software should opti-
mally support the collection, aggregation and analysis of usage statistics in order to continu-
ously align the company's offerings to the market's demand. The gathered information about
the customer and his requirements are used to build a customer profile, which is the basis
of subsequent, personalized communication activities in the sense of a learning relationship
between supplier and customer.

Often, online users avoid revealing personal information, such as personal data, individual
preferences or billing information. Especially, in the context of product customization, whose
success strongly depends on these information, it is essential for the supplier to build trust
and communicate competency. The thorough handling of customer data, including an unre-
stricted admission to adhere to privacy policies is important. A personalized, customer-tai-
lored communication with the user as well as the ability of the customer to personalize the
configuration process and its interface, positively influences trust and the identification of
the customer with the company and the configured product.

Integration

To successfully deploy product customization, the conﬁguratlon system must be well inte-
grated into the companies business processes and other IT! systems Not only must the con-
figurator support the automated generation of sales quotes and optimally other production
relevant specification documents, such as bill-of-materials, work plans, assembly descrip-
tions and detailed product specifications. Instead, it's also the task of the configurator to in-
tegrate with other customer-facing systems, such as the corporate website and the online
store to enable immediate customer orders. After receiving a purchase order, the configu-
ration software must feed the configuration result and related data into other backend sys-
tems, such as ERP systems for order fulfillment, CRM for storing customer information and
PDM ! systems for archiving custom product variants. During the configuration process,
the graphical display of the product may require the integration of CAD systems to provide
detailed technical drawings or other elaborate visualizations (e.g., 3D models).

From a supplier perspective, it's desired that the configuration software seamlessly inte-
grates with the other systems of the IT landscape to establish a smooth, error-free and fully
automated specification and sales process.

12Abbrev Information Technology
B3 Abbrev. Product Data Management
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3.3.1.2. Additional Requirements

While primarily the task-related aspects of information, specification, communication and in-
tegration described above are relevant from a business perspective, there are other very im-
portant requirements from both the customer and supplier point of view.

From a customer perspective, the ease of configuration is of primary interest. The complexity
reduction of the configuration process even for complex products and the realization of an
attractive user experience demands a great deal of usability. The ability of the customer to
control the configuration process as well as the feeling of being able to actively design the
configured product, creates enthusiasm and motivates for purchasing the product.

On the supplier's side, there are additional requirements related to the administration of the
product configuration system. In general, the configuration software should be independent
of the modeled product. This implies a separation of product and application logic and con-
sequently improves the overall maintainability of the system, which is one of the most im-
portant requirements after all. Regarding the development of the product configurator, the
modeling language used to describe the configurable product must be flexible and power-
ful enough to adequately represent the company's problem domain. During operation, the
maintainability of the configurator's knowledge base is a crucial aspect. The configuration
system should allow to easily incorporate new product variations and other information.

Implementing the configurator as an online application accessible over the world wide web,
that centrally stores the configuration knowledge, enables distributed, collaborative work. In
this context, the implementation of durable, persistent sessions are a challenge when realiz-
ing the configurator as a web application. Other technical requirements are an overall high
system stability and fault tolerance in case of network problems. Integration and extension
capabilities may become important aspects in the long run.

3.3.2. Features

In the literature, the specification of functionalities in terms of concrete product features of
configurators is missing. Instead, the authors only provide a high level overview of the tasks
of a configuration system as described in the previous section.

In the following, we will try to provide a basic set of features commonly implemented by
configuration system and match them with the task and requirements stated above.

Figure 3.11, “Overview of the Main Features of a Configuration System” gives an overview
of the features explained below.
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Figure 3.11. Overview of the Main Features of a Configuration System

We group the task specific features according to the categories introduced in the last section,
although some of them might be relevant in other categories, too. Moreover, it's useful to
define the different global scopes of the features:

Runtime. Encompasses all features that are relevant, when the application is deployed in
production.

* Frontend. Contains features relevant to the customer during the product configuration
process.

* Backend. Describes those features related to the operation and administration of the
configurator.

Development. Comprises features and tools used during development of the configurator.

Usually, the frontend scope is meant when we talk about the features of a configurator, while
we mean both the runtime and the development scope, that is, the full system, when talking
about the features of a configuration system.

3.3.2.1. Information

The following features are the main ones addressing information related tasks and require-
ments, as described in Section 3.3.1.1, “Information”.

Product browser. The product browser allows to navigate through the company's offered
product space. In effect, this feature corresponds to a basic product catalog. From within the
product browser, the user selects a base product or product type to start configuration from.
Usually, the navigational structure is organized by product families, model range and indi-
vidual product types. Individual product modules may additionally be described in parallel
to the product family structure.
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Product details. The product browser features an area to display product details. In this
area, elaborate product descriptions, specifications, images and other related information
including pricing details are presented. An important aspect of the product details area is
the product visualization part. In the case of invariant products or components the visual-
ization usually is realized with images, 2D drawings or 3D models. Otherwise, when a con-
figured product is displayed, the visualization is generated according to the user's specifica-
tion. We will describe the visualization of configured products in Section 3.3.3.4, “Configu-
ration Characteristics”, "Visualization".

Product search (optional). An optional extension to the product browser is a search or fil-
tering functionality, that allows to query the product space using different criteria. Not only
during the selection of the base product, but also when selecting a specific component dur-
ing the configuration process, a search may ease the process of finding the right component
significantly. A search feature improves the configuration experience for advanced users and
drastically speeds up the process for experts.

3.3.2.2. Specification / Recommendation

In order to fulfill the specification and recommendation tasks and requirements discussed
in Section 3.3.1.1, “Specification / Recommendation”, a typical configurator provides the
following features.

Product specification (dialog). The essential feature of a configurator is the product speci-
fication (dialog) component. Having selected a base product in the browser, control is transi-
tioned to the specification dialog, which is in charge of executing the configuration process,
that is, requesting all required decisions from the user and storing them in the configuration
model. In general, one can differentiate two approaches for realizing the configuration dia-
log:

» Form/option list based specification. Basically, allows the specification of the custom
product by presenting textual decisions in terms of form fields (drop-down lists, radio
groups, check boxes, input fields, etc.) or option lists (stacked lists from which the cus-
tomer selects a single item per list). Also visual controls, such as sliders, graphical buttons
and others are possible. In contrast, the interactive specification of values within the visu-
alization is not covered. Form based specification is especially useful for the specification
of obligatory elements, optional elements, principle solutions and services (see Section 2.1.3.1,
“Customizable Areas”).

* Visually interactive specification. Supports the interactive, graphical product specifi-
cation within the product rendering or a graphical variant of the same (e.g., a 2D per-
spective of the 3D visualization). Especially, when the product comprises defined expansion
spaces or scalable areas (see Section 2.1.3.1, “Customizable Areas”), interactive specification
can be applied reasonably. The specification in this case is supported by custom design
tools, that usually realize point and click as well as drag and drop behavior. They're mostly
implemented for specific use cases only.

A configuration process may even combine both variants of specification depending on the
part of the product.

Furthermore, we can distinguish two basic forms of process control as realized by the con-
figuration dialog:

* Pre-defined, sequential control flow. The navigational path taken by the user to specify
the configurable options of a product is pre-defined by the system. In this case, the con-
figurator sequentially presents the options one by one, possibly even hiding subsequent
decisions entirely. However, although the control flow is pre-defined, the application must
not necessarily disallow random access completely: the user can point options earlier and
possibly also later in the process freely and then return to the regular control flow. A pre-
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defined, sequential flow offers great guidance possibilities and signifies a simplification
of the process for non-expert users.

e Random access control flow. Expert users, however, usually prefer a more compact,
randomly accessible form of specification. The specification dialog must ensure quick nav-
igability through the product model and must not constraint the order of option specifi-
cations.

We will describe these control flows in more detail in Section 3.3.3.4, “Configuration Char-
acteristics”, "Process scheme".

Validation and consistency assurance. The configuration system must implement a fea-
ture to validate and ensure consistency of the configuration. On the one hand, the configuration
dialog can solely present valid options according to the current configuration state (a priori
consistency). On the other hand, some decisions cannot be restricted to contain only valid
options a priori due to logical or technically reasons. E.g., a string text field may be restricted
to contain 60 characters, listing any possible combination of characters is of course neither
feasible nor technically possible with sufficient performance. In such cases, validation must
occur after the user specified the value and conflicts must be signaled accordingly (ex post
validation).

Note that in the case of advanced implementations of a priori consistency, which effectively
constrains the configuration decision's solution domain, it might still be possible to select a
disabled value. In that situation, the configuration system must repair the configuration, i.e.
recursively backtrack and recommend a change-set that satisfies all constraints including the
given value. Repair operations are considered an advanced use case.

Moreover, the employed consistency algorithm should optimally not only implement local
consistency. That means, a given value is valid to the locally defined constraints, disregard-
ing whether a valid solution for the entire configuration problem exists, that contains that
value. Instead, it should optimally ensure global consistency: if the user chooses a specif-
ic option, the configurator guarantees that with each particular decision the configuration is
completable without errors. Obviously, global consistency is harder to implement technically.

Recommendation and help (optional). During the configuration process, the configura-
tor may give advice to the user who's possibly overstrained to take a decision. In this case,
offering recommendation and help techniques should be considered. One can differentiate be-
tween active and passive forms of support.

Active support is triggered or performed intrinsically by the system. For instance, the system
may automatically recommend an option based on a user's previous choice or due to his
personal preferences. The application of default values and the application of change-sets
as a result of repair operations (see above) can also be considered a form of active support.
Though, the automated selection of options (except in case of default values) should be sig-
naled to and confirmed by the user to convey controllability — an important usability aspect.

In contrast, passive support means, that the user himself initiates the recommendation process,
requests help or looks up additional information on a specific option. The provisioning of
context sensitive help for configuration decisions, e.g., in terms of tool tips, is considered the
minimum requirement for the implementation of a basic help functionality.

Calculation of key characteristics. In parallel to the configuration process, the system
should calculate key attributes of the configured product, such as price, delivery time, weight,
total dimensions or application specific values, and appropriately present them to the user
as part of the configuration description.

Related to the display of pricing information for selected components, it's reasonable to dis-
tinguish two different strategies: total price display or premium price display. For each se-
lectable component, total price display shows the full price of the configured product as if
the component was part of the configuration. In terms of premium price display, only the ad-
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ditional charge compared to a default price is displayed beneath the selectable option (cp.
[Polak2008]).

The calculation of key characteristics, especially pricing and delivery time, are important
factors for the buying decision from a customer point of view. Nevertheless, often only an
approximate value can be compiled during the configuration process. For example, the de-
livery time cannot be provided definitely unless the configured item is scheduled for pro-
duction, that is, unless the configuration has been fed to the pps' system.

Configuration description. An essential part of the product configuration dialog is the de-
scription of the configuration, which is presented in tabular and / or textual form. It lists select-
ed components, important attributes and key characteristics. The configuration description
must be detailed enough to explain the configuration approach and must immediately be
synchronized with the configuration upon changes. It should precisely reflect the customer's
choices, because the user will review his decisions based on the configuration description
prior submitting an order of the configured product.

Configuration visualization. Due to the fact that in terms of custom products, the cus-
tomer cannot tangibly experience the configured item, the correct and realistic visualization of
the product configuration plays a decisive role. The graphical visualized product can be seen as
a surrogate for the real product, which considerably influences the configuration experience
and the overall buying decision [Rogol12003, p. 58-59]. For a more detailed discussion on vi-
sualization options, refer to Section 3.3.3.4, “Configuration Characteristics”, "Visualization".

Configuration management (optional). Another useful feature from the customer point
of view is the option to persistently save a configuration and load it again at a later point
in time. This is especially relevant for complex products, that require several minutes or
even hours to be configured. The configuration management feature allows the user to create
multiple configurations and is completed with the ability to delete unused ones.

3.3.2.3. Communication

The next features, are merely used to implement the communication related tasks and re-
quirement described in Section 3.3.1.1, “Communication”.

Registration and authentication. An important aspect of product customization is the
direct relationship between customer and supplier. In order to identify a particular customer,
a registration and authentication feature must be implemented.

During registration, which may be conducted either before or after the actual configuration
process, the customer initially provides personal data to the supplier. The system stores this
data in the user's profile. In subsequent configuration processes, it is sufficient for the user to
authenticate himself with his credentials in order to match his identity to the earlier created
profile. After being authenticated, all customer specific information elicited during configu-
ration are stored with the user's profile.

User profile management. As the customer provides personal data to the system dur-
ing registration and configuration, he must be able to manage his user profile data at a later
stage. This includes dropping his account entirely, which should result in all customer spe-
cific data being removed from the system. Optimally, all elicited information can be accessed
through the user profile management interface. This feature strongly mediates information
transparency. Consequently, it can be considered an essential one to build trust. This, in turn,
is a major prerequisite for a long term customer-supplier relationship. The stored user profile
is the basis for a personalized communication with the customer.

Shopping cart and checkout (optional). Optimally, the customer cannot only configure
custom products, but also directly order the configured items. To support this, order capa-
bilities by means of a shopping cart and checkout functionality are required. In practice, these

4 Abbrev. Production Planning and Scheduling

77



Chapter 3. Configurators

features may be provided by an external e-commerce application, the configuration system
is integrated with.

A shopping cart can be used to store one or multiple configured items until the user's ses-
sion expires or even persistently, which requires the user to be registered and logged in. To
finally allow the customer placing an order, the configurator must additionally provide a
checkout mechanism, which again integrates with another external provider that realizes on-
line payment.

This basically completes the category of frontend related features. The remaining function-
alities of a configuration system target the backend respectively the development environ-
ment for configurators.

3.3.2.4. Integration and Administration

The following are the main features that realize the tasks and requirements presented in
Section 3.3.1.1, “Integration”.

Specification generation. One of the most important features of the configuration system
with respect to the automation of the sales process is the generation of specification documents.
In fact, the main purpose of installing a configurator is to ease and automate the creation of
such documents. Thereby, specification errors are reduced significantly and quotation cre-
ation, which is otherwise considered a routine work on the supplier's side, is speed up im-
mensely.

Moreover, during the product's lifecycle a huge variety of specification documents needs to
be created at different stages, including (see [Hvam2008, p. 18]):

e Identification of need. Sales quotes, order/product specifications.

* Product design. Drawings, lists of parts, strength calculations.

Production preparation. Bill of materials (BOM), list of operations, process description,
setup instructions.

Planning. Production/work plan.

Production. Registered use of time and materials, quality data.

Delivery. Transport specification, assembly instructions.

Use. User manual, service manual.

Disposal.  Specification of destruction.

Especially sales quotes, product specifications, drawings, bill of materials and work plans are
of primary interest to be generated from product configurations. The resulting documents
are the basis for subsequent activities in the order fulfillment process and are thus of high
importance.

Data transfer (push). The information technical integration of follow-up activities is
achieved by feeding the data from the configuration system into other information systems
of the enterprise's system landscape. Hence, the configuration system must incorporate fea-
tures to transfer of customer and configuration data to customer facing systems as well as sup-
plier internal systems upon order submission, such as:

e Customer related systems. Corporate website/ portal, e-commerce platform, CRM sys-
tem, service portal, etc.
* Production related systems. ERP, PPS, PDM, logistics platform, etc.

As it is the configuration system, that initiates the data transfer, effectively a data push ap-
proach is realized. In state-of-the-art environments, communication with other systems is es-
tablished by webservice calls, leveraging XML as data format. Nevertheless, a wide variety
of other data formats for communication with business systems exist, for instance [Krug2010,
p. 35

15 Abbrev. eXtensible Markup Language
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EDIFACT (Electronic Data Interchange For Administration, Commerce and Transport),
openTRANS (open standard to support data exchange in business transactions),

cXML (Commerce eXtensible Markup Language), or

xCBL (XML Common Business Library).

Application integration (pull, optional). Modern information systems also provide an
interface to support the integration with other applications. By providing a webservice interface
or an application programming interface (API), other systems can access the configuration
system directly, which effectively realizes a data pull approach. The operations offered through
these interfaces may range from methods to access customer and configuration specific data
to operations, that allow full programmatic control over the configuration process.

Service provider integration (pull/push, optional). Beyond an interface for external ap-
plications to integrate with the configurator, modern systems also provide a service provider
interface (SPI) that allows to connect to other information systems. Through the SPI the con-
figurator accesses underlying data sources, while read and write operations, respectively
pull and push access, are possible. In the context of product configuration, integration with
the following systems are reasonable:

¢ Databases. To store configurator internal data.

e PDM, CMS'®, DMS", asset management systems. To access product specific data and
additional product-related documents or assets including supplier related information.

e CAD systems. To create technical drawings and other product visualizations.

* ERP, PPS systems. To retrieve pricing information and for the calculation of delivery
times.

* CRM systems. To access customer information.

e Other technical systems. Such as single sign-on (SSO) solutions or directory services to
avoid authentication with multiple systems and to access user specific information, e.g.,
permissions, preferences etc.

Administration interface (optional). In order to access and manage submitted configura-
tions, customer information, product data and usage statistics, the configuration system's
backend may provide an administration interface. The administration interface allows to ac-
cess these informations using a secured, graphical user interface.

In case the configuration system doesn't come with an administrative interface, the data must
be transferred to other backend systems directly, using data transfer mechanisms or through
SPIs.

3.3.2.5. Other Features

Beyond these task specific features, today's systems usually provide a number of other fea-
tures, relevant across multiple aspects of the application. These horizontal features include,
but are not limited to the following:

Logging and statistics (partly optional). Throughout the configuration process, the con-
figurator should log information about the customer’s decision for different purposes within a
configuration journal or log file. On the one hand, the configuration journal can be used to
track decisions, which is a necessary requirement for repair operations. On the other hand,
the journal can be used to explain the configuration and may offer valuable hints about the
customer's behavior from a business perspective. Also, the logging of usage statistics is re-
quired for subsequent analysis and data mining activities.

Internationalization and localization (optional). In times of globalization, products are
often sold in multiple countries around the world. By incorporating internationalization and

16 Abbrev. Content Management System
17 Abbrev. Document Management System

79



Chapter 3. Configurators

localization features, different languages as well as country specific circumstances can be tak-
en into account adequately. This concerns not only product related information in particular,
but also the user interface of the configuration system in general.

Security and role based access (partly optional). Related to the configurator's frontend,
advanced systems may allow different users to access a different level of detail according to
their role assigned by the system. For instance, an expert user might see more/ other options
to choose from. Or he might see additional sources of information, while a regular user is
only allowed to access standard information. This is usually implemented by a role based
access model, that integrates with the authentication mechanism. In general, registration,
authentication and in some cases even the configuration process itself must be secured, e.g.,
using data encryption mechanisms.

Concerning the application's backend, different roles may allow different permission levels.
For example, a certain permission level may permit access to already created configurations
for sales people but may forbid modifications to product information, such as prices, which
are subject to sales managers only.

3.3.2.6. Development

Finally, there are features not directly related to the functioning of configurators, but related
to their development. We want to present the two most important ones from our perspective
here:

Development environment (optional). Due to the fact that a configuration system mostly
is not realized like a "traditional” standard software, in practice, often a dedicated environ-
ment for the development and maintenance of the configurator and its knowledge base is required.
Such a tool helps configurator developers to model the product range, define constraints,
incorporate product data into the application, design the configuration process, style the
configurator's interface and much more.

Testing and debugging tools (partly optional). As part of the development environment
or integrated within the configuration software, the system may provide testing and debug-
ging facilities. Although not necessarily required, with automated tests the correctness of the
configurator and its knowledge base can be continuously verified. In case of defects or un-
expected application behaviors, debugging tools can help to identify the cause of the error.
Debugging capabilities are required in almost all configurator implementation projects, re-
gardless of the product domain's complexity.

This finishes our explanation of configuration systems from a task respectively feature per-
spective. As one can observe from the number of features discussed (23 in total), implement-
ing a sophisticated configuration system from scratch isn't a trivial, quickly achievable thing.
Reasonably, a configurator is implemented based on a well-designed, well-tested and well-
integrated platform that provides the majority of features out-of-the-box. On top of this plat-
form, manifold features can be realized for numerous use cases at once, provided that the
configuration platform is implemented in a generic manner. This saves time, effort and mon-
ey. Our framework, introduced in Chapter 4, Methodology and Conceptualization, aims to im-
plement such a generic configuration system platform for exactly those reasons.

3.3.3. Categorization

Before we plunge into the details of our approach, though, we will discuss various categories,
that configuration systems are usually compared against during product evaluations. While
the existence of a feature solely states that a certain functionality is available, the categoriza-
tion identifies how, respectively in which manner, the particular feature is implemented. Thus,
identifying and discussing these categories gives an idea of the solution space for configu-
rator implementations in general.
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Identifying these categories doesn't only allow to compare configuration systems with each
other, but also helps to describe the implementation status a single system. So, the catego-
rization allows to precisely characterize a configuration systems capabilities.

In the literature, many taxonomies, explaining various categorizations, can be found'®. In
most cases, the concept of a morphological box" is used to display the variety of characteristics.

We will provide a detailed categorization of configuration systems, that has been compiled
from all categories provided by the six literature sources stated above, in this section. We also
utilize a morphological box to compactly cover the enormous diversity of different capabili-
ties. The resulting taxonomy is shown in Figure 3.12, “Morphological Box of Configurators”.

For easier perception, we partition the categories into five sections:

Application context. Concentrates on the application area and the business context of con-
figuration systems. Moreover, the application context provides a high level overview of why
and where the particular configurator is respectively can be employed.

System environment. Contains categories to characterize the environment of the config-
uration system in which it is embedded to. This includes a characterization of the system's
overall architecture and main integration aspects.

Modeling capabilities. ~Gives a basic overview of modeling features provided by the con-
figuration system, to design the customizer's product range.

Configuration characteristics. Covers categories to precisely describe the specification re-
lated aspects of a configuration system. From a business perspective, the product specifica-
tion is the most important task of a configurator. Due to the large amount of items in this
section, it's further divided:

* Configuration approach. Characterizes the overall configuration approach and the
specification capabilities from a high level perspective.

e Interaction characteristics. ~Contains categories to describe the interaction approach em-
ployed in the configurator.

* Configuration procedure. Discusses the support for specification activities provided by
the configuration system in detail.

* Presentation Categorizes. Describes alternatives related to the presentation of the con-
figuration and other visualization features.

Implementation aspects. Provides details about the implementation and general config-
uration approach.

We will describe the characteristics in detail below, pointing to related features introduced
in the previous section where appropriate.

185ee [Blecker2004, p. 26-30], [Leckner2006, p. 49-52], [Scheer2006, p. 51-57], [Reichwald2006b, p. 30-33], [Ren-
neberg2010, p. 75-80], [Krug2010, p. 39-60].

9The idea of morphological boxes goes back to Zwicky, who introduced them for the first time for the structuring
and efficient presentation of ideas [Zwicky1966].
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Figure 3.12. Morphological Box of Configurators
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3.3.3.1. Application Context

Product nature. In general, it's quite relevant what types of products are subject to config-
uration and whether the configuration system supports these types: the product nature dis-
tinguishes non-tangible, immaterial products like services and material, physical products. Also
combinations of both are possible, in the sense that a customizable, physical product may
well be supplemented by configurable service accomplishments. The support for different
product types ultimately depends on the modeling capabilities provided by the configura-
tion system, see Section 3.3.3.3, “Modeling Capabilities”.

Business area.  Also the business area to be served by the company strongly influences the
configurator and the overall configuration process. In business-to-business (B2B) scenarios, it
can be assumed that configurator users own specific domain knowledge. The utilization of
technical vocabulary and a more technical presentation is appropriate in this case. In contrast,
in the context of business-to-consumer (B2C) transactions, a more sophisticated user experience
and an easy to overlook and follow configuration process, that doesn't require sophisticated
domain knowledge is important.

Site of operation.  Likewise, the site of operation has an impact on the configurator's design:
application's solely used enterprise internal are usually used more frequently by the same
users. Here, the efficiency of the interface compared to its appearance is more important.

A system used externally, faces customers directly or at least indirectly, which is why an
aesthetically appealing interface is more relevant. External systems can be further divided
into those that are used at the point-of-sales (POS), that is, at retailer's store, or those that
are virtually accessed through the world wide web. In the former case, sales staff can assist
the user during the configuration process (the user is then indirectly facing the application),
while in the latter case, the users are left by oneself (in direct contact with the system), which
may require the availability of additional support options. See the section on "Specification
support” in Section 3.3.3.4, “Configuration Characteristics” for details on how this support
can be achieved.

Target audience. The previous point already showed, that it's of interest who's the targeted
audience of the configurator application. Staff members, that frequently access a tool, have oth-
er demands and requirements on efficiency, design and usability than customers, using a tool
only sporadically. As an example, the usability principles20 interface controllability (e.g., quick
navigation, short cuts) and interface customizability (e.g., different views, such as compact list
view vs. elaborated detail view) are important from an expert's point of view. However, the
principles self-descriptiveness (e.g., texts formulated using user's vocabulary) and suitability
for learning (e.g., sophisticated help texts) have priority for non-experts?'.

Integration context. The organizational scope of use determines the integration context.
Whether the configurator is used to support sales, development, production activities or any
combination of these is a decisive factor for the design of the configurator and the incorpo-
rated product model.

A sales driven configurator (typically referred to as "sales configurator” or "quotation config-
urator") focusses on marketing and selling aspects. The product model usually only features
customer perceived product characteristics, that directly relate to the product's functionality.
Sales configurators are the common case for configuration systems in e-commerce scenarios.
They have a strong relationship to CRM systems.

Configurators used in development and engineering have their origins in the field of CAD sys-
tems. They're primarily used to ease and automate the design process of product variants,

PFor details on usability principles, refer to http:/ / de.wikipedia.org / wi-
ki/EN_ISO_9241#EN_ISO_9241-110_Grunds.C3.A4tze_der_Dialoggestaltung, last accessed May 18th, 2012.

ZFor more details on the relevance of usability principles in relation to user characteristics,
see http:/ /wiki.magnolia-cms.com/download /attachments /21954574 / Usability+Principles+in+relation+to+Us-
age+Context.pdf?version=1, last accessed May 18th, 2012.
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with a special focus on technical aspects. A typical task of an engineering configurator is the
generation of technical 2D drawings.

Configurators originating from ERP systems and related software, such as PPS systems, are
used to support production activities. They support to breakdown configured products into
detailed bills-of-material or work plans and thus help to automate the entire order fulfillment
process from sales over production to assembly.

In practice, the precise distinction of these systems is often difficult, due to the fact that hybrid
forms exist, that serve multiple purposes simultaneously.

Sales support. In terms of sales configurators, it's meaningful to further characterize the
extend of sales support. Particularly, the configuration system can have a supplementing or
a replacing role.

A configurator that purely supplements the sales process doesn't offer direct ordering and
purchase capabilities (see feature Shopping cart and checkout in Section 3.3.2.3, “Communica-
tion”). This model is frequently used in business areas where products are sold at compara-
bly high prices, such as the automobile industry, real estate and capital goods. While these
configurators allow the customer to independently self-configure products, upon submis-
sion the resulting configurations are solely transmitted to a retailer. They allow to generate
preliminary quotes and thus strongly support the sales process, but in the end, it's the retailer
that negotiates the final contract with the customer face-to-face.

On the other hand, configurators with ordering and payment functionalities can fully auto-
mate the sales process and thus act as complete replacement for other sales activities.

Underlying order-fulfillment process. In the context of process automation, also the un-
derlying order-fulfillment process (see Section 2.3.3.4, “Order Fulfillment Strategies”) employed
by the product customizer, plays an important role during the overall forming of the con-
figurator. The configurator helps to automate the order-fulfillment process from the point
the customer is integrated in the company's value chain up to delivery of the product and
sometimes even longer. The earlier the customer is involved, the more elaborate the config-
uration process and the more precise the configurator generated product specification must
be. Specification errors applying to an earlier stage of production are by far more expensive
then those applying to a later one. Consequently, companies aim for reducing specification
mistakes to a minimum.

In summary, a configurator in a Build-to-Order or Develop-to-Order scenario is usually more
elaborate than a system, that elicits requirements in an Assemble-to-Order scenario.

3.3.3.2. System Environment

While the previous section focussed on business related aspects, categories related to the
technical environment of a configuration system need to be examined, too.

System interaction. Architecturally, the style of system interaction is fundamental. Config-
urators specifically designed for (pure) offline use (e.g., distributed on CD/DVD) are static
and must encompass the full product data and configuration logic. Nowadays, they're rarely
used in B2C markets due to the relatively high distribution costs. However, they are still
widespread in application areas, where:

e the configurator integrates complex, locally installed 3rd party applications (e.g., CAD
software for rendering 2D graphics),

e if high hardware performance is demanded (e.g., utilization of special graphics card ca-
pabilities), or

¢ if a huge amount of data is involved (e.g., high resolution images, very large component
catalogs, etc.).
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Online systems are those that are distributed via the internet, intranet or extranet. These con-
figurators can be divided depending on the data synchronization and communication pat-
tern applied.

A thin client typically realizes a client-server scenario. Whereas the client solely serves for
presentation purposes, the data and logic remains on the server-side. Thus, an intensive in-
teraction between both peers is required. An example for a thin client is a traditional HTML*
web page.

In contrast, a fat client not only realizes the presentation layer, but also implements the con-
figuration logic (or at least parts of it). Sometimes, even the data is (eventually temporarily)
stored with the client allowing to (temporarily) being completely disconnected from the net-
work. Examples for these systems are modern HTML5% applications or "sandboxed" tech-
niques such as Adobe Flash applications, Java Applets/ WebStart programs or native mobile
apps [Pryss2010].

In either case, online or offline, configurators with order capabilities need to feed final con-
figurations back to the supplier. This may happen immediately or delayed and depending
on the network status requires storage capabilities.

System organization. Also strongly related to the application's deployment strategy and
its high level interaction pattern, is the system organization in terms of (product-) data dis-
tribution. The data, the configurator operates on, may be stored on a central server or may
be distributed to the clients. While the former approach requires highly frequent communi-
cation (typical for thin clients), in the latter approach, the distributed data storages must be
synchronized (fat clients). The synchronization may occur each time the application is start-
ed/requested from the server (typical for fat clients, e.g., Adobe Flash, Java Applets/WebS-
tart) or happens periodically by pulling the data from the server using an update mechanism
(typical for desktop applications or mobile apps).

Integration scenario. Another vital characteristic of a configuration system is its integration
scenario. If the configurator is not integrated into another system at all, it is considered a
standalone system. It comes with its own database, user interface and execution environment.

A configurator that is embedded into another system is quite similar to a standalone system,
with the exception, that the user interface is integrated within another system (the so called
host system) and sometimes, the data store is shared. Otherwise, the host application and the
configurator are not tightly coupled, technically. For example, when a standalone configu-
rator is made accessible from within an ERP suite or visually embedded into the same, we
consider it an embedded configurator.

The most extended integration scenario results, when the configurator is fully integrated into
another application. In this case, both systems are tightly coupled on code level and the inte-
grating application merely uses the configurator's API/SPI to facilitate configuration or vice
versa. For fully integrated configurators, the hosting application provides the presentation
logic entirely. Consequently, in this scenario, the configurator cannot be used standalone, but
is rather used as an application library, i.e. is a module of a larger application. Figure 3.13,
“Different Integration Scenarios for Configuration Systems” illustrates the different scenar-
ios.

2 Abbrev. HyperText Markup Language
BMore precisely: HTML and JavaScript based applications, that utilize local storage features introduced in HTML
specification version 5.
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Integration Scenarios
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Figure 3.13. Different Integration Scenarios for Configuration Systems

Integration level. The integrative relationship between the configurator and it's environ-
ment can be further characterized by the integration level supplied. As depicted in Figure 3.14,
“Integration Levels of Configuration Systems”, we distinguish:

* not integrative,
e data integrative, and
e application integrative.

Not integrative means, that the configurator is a closed system, not providing any kind of
interface to other systems. Though the system may itself very well access other applications
or consume external services, e.g., to transfer configuration results to other backend systems.
It merely doesn't provide such access points for external applications.

In turn, a data integrative configurator not only is capable of pushing data to other systems
but offers interfaces, that allow applications to pull information from the configuration sys-
tem. This can technically be achieved, for instance, by providing a (read-only) web service
endpoint.

Importantly, data integration doesn't involve the execution of application logic, which is sig-
nificant for an application integrative scenario. To facilitate application integration, the config-
urator may expose its functionality as web service, application programming interface (API)
or service provider interface (SPI). A web interface or an API are usually installed in order
to access the configurator from another application. In this case, the configurator acts as a
provider for the external application. An SPI in turn, is offered by the system in order to let
the configurator ifself connect to other systems. For example, a database vendor may provide
a driver, that is compatible with the configurators SPI. This allows the configuration system
to push/pull data to/from the database. In terms of an SPIs, the configurator mainly acts
as a consumer.
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Figure 3.14. Integration Levels of Configuration Systems

Target device. To end up the characterization of the configurator's system environment,
it's meaningful to determine the target device, on which the application is being deployed.
The target device not only has an impact on the layout of the configurator's user interface,
but also affects its overall architecture. In out opinion, it's useful to distinguish desktop com-
puters/laptops, touch device/tablets and mobile devices. They differ in their available screen size,
but also in their provided computing power, resources, software capabilities and network
availability, which are technically important factors: they determine the general conditions
of the configuration system and are thus highly relevant for the technical implementation.

3.3.3.3. Modeling Capabilities

Next we want to discuss some aspects, that relate to capabilities requested by configurator
developers.

Modeling capabilities. For the developer implementing the configurator, it's important,
whether the configurator provides sufficient modeling capabilities to represent the customer's
problem domain. In Section 2.1.3.1, “Customizable Areas” we discussed a framework for
describing customizable products. To recap, the different sections are fixed areas, obligatory/al-
ternative elements, optional elements, scalable areas, principle solutions, services, defined expansion
spaces and general expansion spaces. We argue that this list of sections is comprehensive enough
to cover most use cases and that it can be adequately used to characterize the capabilities
of a configuration system. Typically, a configuration system will support several of these ca-
pabilities.

Level of detail. Beyond the general modeling capabilities, it's relevant whether the con-
figuration system allows to model the required level of detail. When a configuration system
constrains the degree of recursion of the product structure, that is, restricts the depth of nest-
ed components to a certain number, we consider the level of detail as limited. Otherwise, the
detail level is unlimited.

Product model evolution support. Although not solely related to modeling capabilities,
the product model evolution support is an important issue for configurator maintenance in the
long run. This property describes, whether the configuration system supports changes of
the underlying product model, the configurator operates on by any means. Moreover, it de-
scribes how these modifications are handled, when old configurations are restored, e.g., in
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case an end user wants to order spare parts for a custom machinery configured in the past.
Either the system has

® no support,
e limited, or
e full support

for such use cases.

No support means the configurator is entirely closed and modifications to the knowledge
base require a new version of the configurator being deployed. Old configurations cannot
be restored at all or not correctly in the new configurator version. Also, they cannot "per se"
be transitioned to the new system but require a custom transformation.

Limited support exists, when at least the knowledge base can be adjusted without requiring a
complete new version of the configurator being deployed. This way, old configurations can
be reloaded as long as they're compatible with the changes. Nevertheless, when reloading
an old configuration, a sometimes desired, but in most cases undesired feature is, that the
configuration rules or the price calculations are not the same as in the original configuration.

This issue is not addressed in limited support scenarios, but it is when the configurator fa-
cilitates full support for product model evolution. Here, the configurator features versioning
for product models allowing full reconfiguration support. This means, old configurations and
newer ones can be loaded in parallel in the configurator correctly: while for old configura-
tions the old product model and along with the old constraints are used, for the new config-
uration the new product model applies. However, full product model evolution support is
considered an advanced feature for configuration systems.

3.3.3.4. Configuration Characteristics

The next categories directly relate to the configurator's interface and the overall configuration
process implemented.

Configuration Approach

First, the general configuration approach can be characterized. It defines how configuration is
performed from a high level perspective.

Specification approach. In general, the specification approach can be designed

¢ product-centric,
e customer-centric, or
e can be a mixture of both.

Figure 3.15, “General Specification Approaches” depicts these approaches schematically.
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Figure 3.15. General Specification Approaches

In a product-centric scenario, the configuration process is organized according to the product's
structure, which is why this approach is also coined structure-oriented. The user directly spec-
ifies the product's components and attributes one by one, that is, he selects values for op-
tions, adds components etc. In order to configure a custom product, the user needs to know
how his requirements map to the features of the product. Hence, this more technically driven
approach demands sufficient domain knowledge to be owned by the customer.

In contrast, in terms of a customer-centric approach, the configuration process is structured
based on the product's functions. Therefore, this approach is also called function-oriented or
need-oriented. During configuration, the user doesn't specify concrete product characteristics
but instead, he merely specifies its functional characteristics. This allows him to map his re-
quirements to functional preferences, which is much easier for the majority of users with-
out sophisticated domain knowledge: it is the configurator, that maps the functional require-
ments to specific product attributes.

A hybrid specification approach, signifies a mixture of function-orientation and structure-ori-
entation. In this case, configuration starts by eliciting specific customer requirements. These
requirements are mapped by the configurator to an initial product configuration, which can
then be further adjusted by the customer who modifies product parameters directly.

Configuration capabilities. The configuration capabilities influence the overall characteris-
tic of the configuration process. Depending on the type of modularization, see Figure 2.9,
“Types of Modularization for Platform Designs” in Section 2.3.3.3, “Modularity”, we distin-
guish the following configuration types:

* Module configuration. In case the underlying product architecture realizes generic mod-
ularization, during configuration a fixed number of pre-defined components must be se-
lected and possibly parameterized. For example, the configuration of a car can be consid-
ered a type of module configuration.

* Mixed configuration. If quantitative modularization is implemented in the configurable
product architecture, multiple atomic components (see Section 2.1.1, “Components”) can
more or less unrestrictedly be combined. An example for mixed configuration is imple-
mented in mymuesli.com's cereals configurator24.

* Adaptive configuration. Products build up of a custom modularization architecture have
a defined base structure, but can be adapted to customer needs at certain points. Beyond

#See hitp: / / www.mymuesli.com [http:/ /www.mymuesli.com/], last accessed May 20th, 2012.
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pre-defined components, customer-specific components can be selected. Nevertheless, the
general extend of customizability is limited.

* Design configuration. Offers the most extended form of configuration capabilities. Spe-
cial design tools allow to construct entirely custom products. The resulting product archi-
tecture corresponds to a free modularization approach.

Figure 3.16, “Relationship Between Configuration Type and Configuration Decisions” shows
the relevant configuration decisions in each scenario. Refer to the respective sections in Sec-
tion 3.1, “Basic Meta Model for Generic Product Modeling” for a detailed description of the
decisions stated.

Figure 3.16. Relationship Between Configuration Type and Configuration Decisions
Interaction characteristics

Having identified the general configuration approach, one can describe the interaction char-
acteristics of the configuration process more precisely.

Configuration procedure. The (general) configuration procedure, which describes the way
the configurator solves the configuration problem from a high level perspective, can be exe-
cuted in two ways: batch processing and interactive processing.

Batch processing means, the configurator autonomously solves the configuration task without
any further user interaction. At the beginning, the customer states requirements the final
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solution must fulfill. Then the configurator automatically calculates one or more, matching
results. The customer finally choose the best matching solution.

The second, alternative approach is interactive processing. Here, the solution is step-wise
worked out in a cooperative interaction process between customer and configurator: while
the system repeatedly requests decisions from the user, the customer chooses options that
incrementally specify the final product more precisely.

Process scheme. An interactive configuration procedure can be run in different variants.
according to the underlying process scheme (see [Scheer2006, p. 52]). The process scheme basi-
cally defines the sequence in which the configuration decisions are presented. It can either be:

* Pre-defined/fixed. The supplier defines a fixed path through the configuration process.
He may do so in order to simplify the configuration procedure for the customer or to
reduce the complexity of the technical realization of the configuration solution strategy.

e Structure-oriented. The process is derived from the product's respectively the product
model's structure. For instance, at first, the main product characteristics are determined,
then decisions on for the product's sub-components are recursively requested. The result-
ing procedure is thus driven by the composition structure of the product (see Section 3.1.1,
“Components: Structural Decomposition”).

* User-oriented. The configuration process' structure is designed according to customer
demands. For example, the most essential decisions may be requested first, while detailed
specification decisions can be performed at a later stage or be automatically completed by
the system. The procedure is driven by the functional characteristics of the product.

e Data-driven. If the configuration process depends on the current state of the configura-
tion, it can be considered a data-driven process. For instance, the process may terminate
immediately in case no other solution for the previously selected options is left.

e Case-driven. The configuration process is adapted to similar configuration problems,
that have been solved previously. For that purpose, elicited customer requirements are
matched with the case database and a specific process scheme is selected.

e Adaptive. An adaptive configuration process may be chosen just before or even mod-
ified during configuring by the customer himself. This allows customer specific configu-
ration sequences based on his personal preferences.

Dialog style. Independently from the underlying configuration process scheme, configu-
rators may strongly vary depending on the supported dialog style. The configuration dialog
is responsible for recording the customer's decisions. It can be designed text based or graph-
ically.

A text based specification interface uses either a sequence of prose questions (questionnaire
style) or a form that is split across one a single or multiple screens to elicit the customer in-
formation. A single screen means, that all configuration options are presented on one large
page. Multiple screens dissect the configuration options to multiple pages. Depending on
the process scheme, the form may also be hierarchically organized. Hierarchical or sequential
screen flows require an additional navigation to step through the different screens. Forms
can be technically realized with standard controls like input fields, checkboxes etc. but may
also be filled with option lists that have a more textual than technical character. Also, special
controls like sliders or image menus are common for improving the user experience.

A graphical specification interface means, that configuration is performed directly in the
configuration's visualization view using point-and-click methods. They are frequently used
for the configuration of design-centric, layout-aware products. However, their implementa-
tion is also the most challenging from a technical perspective. As an example, the layout of a
kitchen can be designed much easier with a visual interface opposed to textual input forms.
In contrast, an insurance contract cannot meaningfully be configured graphically.
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Configuration procedure

The applied configuration procedure (in terms of the configuration process) can be character-
ized more precisely.

Starting point.  The starting point of a configuration session may vary according to the con-
figuration scenario: on the one hand a new configuration can start with a blank, empty config-
uration which doesn't contain any pre-configured items. This does not affect the application
of default attribute values, though.

On the other hand, the supplier may pre-define standard or base configurations to start the con-
figuration process with. Effectively, starting with a partially finished configuration acceler-
ates the configuration process for the customer. It is a common scenario especially for plat-
form based architectures (see Section 2.3.3.3, “Modularity”), where configuration starts with
a previously chosen or default basic product and customers solely configure the modules at-
tached to it. For example, this is mostly the case in car configurators, where the user chooses
a basic car model and solely specifies motor power, exterior and interior related attributes.

Moreover, the configuration procedure can also be started with an existing configuration that
has either been previously saved by the customer himself or by another community mem-
ber®. Starting with an existing configuration requires reconfiguration features implemented
in the configurator (see Section 3.3.3.3, “Modeling Capabilities”, "Product model evolution
support").

Solution strategies. Depending on the starting point of the configuration process, the sup-
plier may also implement different solution strategies26. Most commonly, a bottom-up approach
is taken, where the supplier comes up with an empty configuration and the customer pri-
marily adds the items he wants in addition to the existing ones. In contrast, in a top-down
scenario, the configuration process starts with the full set of possible components and the
customer removes those components, that he doesn't need.

Option display/consistency enforcement.  Another essential point from both the
customer's and the technical perspective is the form of option display. While the sole display of
options doesn't sound like a challenging task, it is closely related to the consistency enforcement
mechanism realized in the configurator, which, in turn, is a challenging issue to implement.

Basically, it's all about whether the configurator restricts the shown options to those that
are valid in the current configuration situation or whether it doesn't do so. Assuming that
the configurator presents valid options only, it's logically impossible to result in an incon-
sistent configuration state. We say the consistency has been enforced by restricting the options
displayed. Technically, implementing consistency enforcement is a challenging task, because
numerous constraints may be checked in order to remove all inconsistent domain values.
However, in practice, multiple levels of option display / consistency enforcement can be dis-
tinguished:

* Unrestricted/no consistency enforcement. For a given configuration decision, the con-
figurator presents all options without restriction. An invalid selection by the user is not
detected unless the configuration is validated (see "Validation" below). Consistency is thus
enforced by no means. Technically spoken , for attributes, the configurator presents the
full domain to the user.

* Limited restriction/partial consistency enforcement. The configurator partly checks the
validity of a decision's options prior displaying them. We say consistency is partially en-
forced. Depending on the constraints, that restrict a variable attribute's domain, verifying

25Sharing configurations across a community of users, is part of an idea on cooperative configuration described by
Leckner in [Leckner2006].

2 [Krug2010], solution strategies are referred to as "Entscheidungsarten", which essentially describe the same
concept.
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the validity of a particular domain value may be a difficult, sometimes time-consuming or
even infeasible task. Especially, it's hard to enforce consistency across strongly interrelated
attributes. In this case, complex logical and mathematical calculations must be performed
in order to determine the validity of a given value or value combination.

An alleviated implementation may, for example, only ensure local consistency on a given
attribute's domain. That means, only unary or binary constraints (see Section 3.1.3, “Con-
straints: Domain Restrictions”) are evaluated for consistency enforcement purposes. Con-
sider the following example: for a numeric attribute Awith a domain of {0, 1, 2, 3, 4,
5, 6}, anunary constraint may be defined, that states A < 4. In this case the configurator
could evaluate the constraint and remove the values 4, 5 and 6 as they would anyway
be rejected upon the next validation step. Although local consistency could be enforced,
there might be another condition defined on any other variable, which may require that
the value of A being greater than 0 and consequently the value 0 would also have to be
removed. However, this condition not necessarily must be defined explicitly, but instead
may be the result of a complex calculation, which is not performed in advance. Consisten-
cy is thus enforced only partially.

e Full restriction/strong consistency enforcement. To continue with the example above:
if the value 0 would also have been removed and all remaining values in A's domain { 1,
2, 3} are guaranteed to result in consistent configurations, we consider the attribute as
fully restricted and consistency as being enforced strongly. In this case, regardless of the
selection of the user, the configuration would remain consistent regardless of any subse-
quent decision, which is why we say it's a priori consistent.

Validation.  Fundamentally important for a configurator, is the wvalidation of the
configuration's correctness. While the consistency enforcement mechanism described above
is concerned with a priori consistency, the validation mechanism checks consistency ex post,
that is, after the customer specified a value. In other words, it checks a specific set of attribute
valuations against the constraints defined over that set. An important factor in this regard is
when the configuration is validated. We differentiate the following validation strategies (cp.
[Krug2010]):

* None, primitive. The configuration is not validated at all. It's the primitive case and not
really reasonable for real world use cases.

* Singular, at configuration end (result based). The configuration is validated only once,
after the user specified all configuration options. Under certain circumstances this may
frustrate the user dramatically, since in case of validation errors, he might be forced to
track back to an early point in the configuration process. Thereby, he's possibly forced to
dismiss numerous decisions taken after the faulting one, in order to correct the problem.

* Repeatedly (interval based). To alleviate the problem described above, the configurator
might verify the configuration's consistency periodically at specifically defined points in
the process, e.g., upon the specification of a logical unit of the product.

¢ Continuously (runtime based). Optimally, configuration validity is verified continu-
ously, that is, anytime the customer submits a value. This way the user quickly receives
feedback and can immediately react on problems that resulted from his latest decision.

As validation is performed ex post, respectively after some kind of user interaction, it can
be considered a passive or re-active mechanism. In contrast, consistency enforcement is per-
formed upfront and can thus be seen as an active mechanism supporting the customer.

Specification support. A configurator can provide more specification support features, both
active and passive ones. Active specification support includes the provision of defaults and
automatic completion features. Passive support functionality includes help and recommen-
dation techniques.
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Defaults are relevant when instantiating an entirely new configuration or adding a new com-
ponent to it: they are supplier defined, initial valuations for configuration options. By pro-
viding defaults, the supplier can communicate what's considered the "standard" option for
a decision. In many cases, this may speed up the configuration process drastically, in other
cases it might help a customer without personal preferences regarding a specific configura-
tion option, to make a decision.

Automatic completion functionality may additionally speed up the configuration process and
thus can be considered a feature to improve customer convenience. It's relevant, for instance,
if the user selects a certain option that requires another option to be selected (expressed by
a constraint). The second option would be automatically chosen by the configurator on be-
half of the customer. Automatic completion may, however, also be triggered explicitly by the
customer: once the user has specified his most important requirements on the product, he
may ask the configurator to complete the configuration, in order to quickly finish the entire
process (for details, refer to the User-oriented process scheme in Section 3.3.3.4, “Configura-
tion Characteristics”, "Process scheme"). During defaults application or during an auto com-
pletion step the configurator can either take personal customer requirements into account,
when calculating the chosen option (personalized), or don't do so (not personalized).

A help feature providing additional information to the customer can be understood as pas-
sive form of support: the customer must perform an action in order to be assisted. One can
distinguish context-sensitive help, e.g., a tooltip displayed on a particular attribute that ex-
plains the available configuration options, from context-insensitive help, e.g., a user manual
delivered separately from the configurator.

In advanced configurators, a user can request recommendations for specific configuration de-
cisions. The system then proposes the best matching option in the context of the current con-
figuration. The user can either accept or reject the proposed value. There are several methods
to calculate reasonable recommendations, e.g., based on the choices, that other users with a
similar profile took. These methods are subject to the discipline of recommender systems,
which is why we refer to the literature at this point (see [Renneberg2010]).

Presentation

Configurators largely vary in the way information is presented. Thus, in the following, pre-
sentation related categories shall be discussed.

Configuration description.  As already mentioned in Section 3.3.2.2, “Specification / Rec-
ommendation”, the configuration description is an important part of the configuration dialog.
Configurations can be described in textual/tabular form, which lists all chosen components
along with the key attributes and pricing information (see "Price calculation and display"
below). Additionally, the configuration description can be supported by graphical visualiza-
tions (see "Visualization" below). Commonly, configurations are described using both, textual
and graphical elements.

Visualizations. Configuration visualizations can be designed quite differently. Primitive ap-
proaches do not consider configuration specific attributes. They're simply static product im-
ages. Thus, in practice, normally dynamic visualizations are used for configuration purposes.
Their scope of design can be classified by the degree of interactivity, the point in time of vi-
sualization, by the method employed to produce them and by their level of detail.

Starting with the degree of interactivity, we differentiate:

* No interaction (static presentation). The statically rendered view of the configuration
doesn't offer any interaction capabilities.

* Limited interaction (semi-static presentation). Semi-statically rendered views allow
limited interaction, e.g., clicking a part of the generated image to jump to the correspond-
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ing component specification dialog. Direct modification of the configured object is not
possible.

* Extended interaction (interactive presentation). Interactive renditions allow the graph-
ical editing of the configured object. This way, they enable the visually interactive specifica-
tion described above.

Related to the point in time of visualization one can differentiate between [Rogoll2003, p.
59-60]:

* Delayed visualization (at the end of the configuration process). The configured prod-
uct is only singularly rendered at the end of the configuration process and visualization
is thus delayed. This method doesn't really support the configuration process, but may be
comparably easier to implement.

* Realtime visualization ('Step by step"). The visual representation of the product is in-
stantly and continuously updated, as the customer specifies configuration options. While
this method provides a better user experience, the implementation is considerably more
complex than delayed, one-time rendering.

Methods for rendering visualizations include [Rogoll2003, p. 59-60]:

* Pre-produced images, sprites. The visualizations for all product variants have been pre-
produced, including all possible combinations. Depending on the selected variant, the cor-
rect image is loaded. Obviously, this approach is only practicable for a limited set of com-
binations. Visualization forms include high quality photo realistic pictures, scribbles or
technical drawings. They do not require special software on the client side.

* Compound pictures. Multiple pre-produced pictures of components are aggregated
within a single image. While the resulting images have more or less photo realistic quali-
ty, only the different component variations, but not their combinations, must be pre-pro-
duced. By utilization of transparency effects, the technical realization is comparably easy
and no additional software is required on the client computer.

* Rendered pictures. In terms of rendering, a model or vector graphic of a component or
the entire product is dynamically generated for near photo realistic appearance. During
the rendering process, the model is overlaid with a texture determined by the configura-
tion. On the one hand, this approach offers great flexibility and allows to efficiently gen-
erate a visualization for an arbitrary number of component and attribute variations. On
the other hand, the technical requirements on the configurator's image processing system
are relatively high.

* 3D models, virtual reality. The most flexible visualization approach and the one which
provides the best user experience is the use of interactive virtual reality scenes. The prod-
uct is described as a 3-dimensional model and rendered accordin§ to the configuration
state directly on the client appliance. Whereas in old web browsers™ special software plu-
gins for rendering 3D scenes is required, most modern browsers already implement native
support for industry standards such as X3D?. In contrast to rendered pictures, 3D mod-
els can be equipped with additional interactive features: the model can be freely rotated
or zoomed, parts can be moved realistically and even virtual camera flights showing a
product's interior, can be realized.

Finally, configuration visualizations vary in the level of detail they provide. A presentation
with a low level of detail solely shows the final product, hiding detailed visualizations of the
components it consists of. A visualization with a high level of detail may provide multiple

*We consider web browsers as the primary client application for configurators throughout this work.
23ee http:/ / de.wikipedia.org/ wiki/X3D, last accessed May 14th, 2012.
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perspectives of the configured product, different resolutions and additional graphics that
show component details.

Price calculation and display. Another important aspect of configuration, especially in
terms of configuration of consumer products, is the calculation and display of prices (cp. [Po-
1ak2008, pp. 11]). In our opinion, it's reasonable to differentiate between simple and com-
plex price calculation methods, because suppliers often have very different price calculation
models.

In terms of simple price calculation, the configurator either does not provide a special calcu-
lation mechanism, e.g., when a fixed price or a specific price function is defined for a prod-
uct, or alternatively just accumulates the prices of a product's components. Consequently,
for displaying purposes, solely the product's final price and the price of each component as
defined in the product model is used. This method is considered simple, because the price
can be determined from the configuration result without any additional context information.

In contrast, a complex price calculation mechanism requires contextual information. Here, we
distinguish two flavors: total price and premium price display. In case of a total price display,
for every option the total price of the product, calculated from the current product's price plus
the option's price, is displayed. In contrast, premium price display shows the price premium the
user would have to pay, if choosing that option, that is, the total price of the product including
the option minus the current configuration's price. In the latter approach, the displayed price
for a component depends on the previously selected, alternative component, which is why
we say that contextual information is required to calculate the price. In practice, often both
forms of price display are used in combination within the same configuration process.

3.3.3.5. Implementation Aspects

In the last section of configurator categorization, we want to discuss some implementation
related, technical aspects of configuration systems.

Implementation approaches. First of all, there are several implementation approaches to con-
figurators (cp. [Scheer2006, p. 54]):

* Custom development. The configurator is implemented from scratch for a single, par-
ticular use case. Product knowledge and configuration logic are mostly hard coded within
the application.

e Application module. The configurator is developed as a module itself or using a module
of alarger application, e.g., an ERP software suite. The product knowledge is derived from
the host application's data, which is augmented by configuration specific knowledge and
functions.

e Standard software. The configurator is created using a standard configuration software.
The system may be a truly generic configuration system that is capable of mapping any
kind of product, or may be a solution for a specific business field (e.g., insurance services,
see also "Universality" below). Furthermore, the standard software may deploy a static
configurator instance or may provide a "sandbox" that acts as an execution environment
for defined customizable product models.

* Refinement. An existing reference system, e.g., a research prototype, is refined in order
to build a custom product configurator.

e Platform/framework. Specific configurator instances are created based on a common
platform or around a common framework, which provides services for generically dealing
with different product models. A configuration system platform also provides additional
tools for managing knowledge bases, product data, configurations, testing and debugging
configurators, usage statistics analysis and more.
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Universality. Given a specific implementation approach, one can differentiate a configu-
ration system according to its universality. A specialized configurator is capable of configur-
ing a single product, products of a single company or those of a specific business area. In
contrast, a universal, general-purpose configurator can handle a variety of product models at
it is implemented entirely model based.

Configuration Approach. Finally, a far reaching difference between configuration systems
is their underlying configuration approach. Depending on the separation of product knowl-
edge and configuration logic, we can differentiate implicit, explicit and combined techniques
[Scheer2006, p. 54-57].

Within implicit techniques the configuration problem is described implicitly, that is, only
specific or partial solutions of the entire configuration problem are provided. Furthermore,
the same formalism is used to describe both product knowledge and configuration logic, i.e.
the product knowledge is defined implicitly by the configuration rules [Scheer2006, p. 54]
(see also [Sabin1998]):

* Decision-tree based configuration. The configuration options are structured as a deci-
sion-tree, where each node represents a decision and the node's descendants correspond
to the options the user may choose from. During the configuration process the tree is tra-
versed unless a leaf node is reached, which signifies a complete configuration [Rogol12003,
p- 80-81].

* Rule based configuration. Rules consisting of a condition and an action part (see "Rules"
in Section 3.1.3, “Constraints: Domain Restrictions”) are used to model the domain knowl-
edge and control strategies. This approach intermixes product knowledge and the logic
stated by experts to solve problems. A configuration solution is determined by letting a
rule engine repeatedly match the rules' conditions against the current configuration state
and performing the defined actions. Moreover the application of heuristics helps to find
matching solutions [Rogol12003, p. 77-78].

e Case based configuration. The basis for configuration are previously completed,
archived configurations. During the configuration process a similar solution is searched
within the set of archived ones using a similarity measure. A matching solution is used as
a template for the current configuration problem.

In terms of explicit configuration approaches, also known as model based approaches, the con-
figuration problem is explicitly described as a domain model, i.e. all possible configuration
options are represented within a generic product model (see Section 3.1, “Product Models”):

* Decision-table based configuration. Configuration is based on decision tables and com-
patibility matrices. Within decision tables, dependencies between product components are
modeled, while compatibility tables can be used to express feasible combinations and con-
sistency constraints. Solutions are determined by traversing the tables [Rogoll2003, p. 79].

* Resource based configuration. Configuration is understood as resource balancing prob-
lem. Hence, the model contains types, that produce resources and components that con-
sume them. During an iterative process, resource requirements are defined by adding re-
source consumers. The resource consumption is compensated by adding resource providers.
The configuration is not completed, unless consumption and production aren't balanced.

* Constraint based configuration. The configuration problem is modeled using domain
knowledge, that is, available components with corresponding attributes, and control
knowledge in terms of constraints. Constraints describe relationships and conditions be-
tween components, i.e. attributes of components, and are used to verify the validity of a
configuration. Thereby, propagation is used to incrementally restrict selectable options un-
til a single valuation of configuration variables remains. The remaining valuation is con-
sidered a valid solution to the configuration problem, if all constraints are satisfied [Ro-
gol12003, p. 78].
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The configuration problem can also be seen as a Constraint-Satisfaction-Problem (CSP):
if all constraints defined within a problem hold true for a given valuation, a solution to
the problem is found.

e Component based configuration. A component based configuration approach, also
known as structure-based approach, describes the configuration problem in terms of com-
ponents, attributes, ports and functions. During configuration, at first, the attributes of
key components are specified. Then, additional components are subsequently added to
the configuration according to function requirements and port specifications. Compatibil-
ity between components are described using constraints, which are attached to particular
components.

* Object-oriented configuration. Similar to a component based approach, the configura-
tion problem is described in terms of an object-oriented model. Within the object-orient-
ed model, relationships between classes can be established by the means of association,
aggregation and generalization/specialization. While classes correspond to components
(component types), objects, i.e. instances of classes, correspond to component variants.
During the configuration process, a concrete object instance is searched or instantiated.
Configuration restrictions are described as constraints.

Combined techniques can be seen as comprehensive, elaborate approaches that involve
multiple other techniques:

¢ Knowledge based configuration. In knowledge based configurators, also known as ex-
pert systems, product and configuration logic is stored within a dedicated knowledge base.
The configuration process itself is driven by an inference machine operating on the data
stored in the knowledge base. Such an expert system allows the user to specify his require-
ments, and let system guides him through the problem solving process. Multiple problem
resolution techniques are applied in a goal-oriented manner until a satisfactory solution
is found [Rogol12003, p. 80].

e Hybrid techniques. Approaches, that involve multiple techniques, can also be consid-
ered hybrid strategies. In modern, generic configuration systems, combined solution tech-
niques are a common case.

The overview of configuration approaches closes up our detailed categorization scheme. Lat-
er in Section 7.1.2, “Implementation Characterization” we will discuss our approach intro-
duced in Chapter 4, Methodology and Conceptualization according to this morphological box
in order to classify our approach precisely. However, before introducing our methodology to
configurator implementation, we'll take a final look at the overall benefits of a configuration
system.

3.3.4. Benefits

In Section 2.3.4, “Economical Aspects”, we already discussed several risks and potentials
related to product customization in general. Here, we want to shortly highlight benefits, that
are directly related to the employment of configurators in such a scenario.

Scheer compiled the following benefits of product configuration from various sources (cp.
[Scheer2006, p. 43-44]):

Supplier Perspective
Strategic competition advantages.

* Improved complexity handling of a large diversity of product variants in production and
customer near business areas.
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* Reduction of product variety through central modelling and optimization.

* Saving and protection of configuration knowledge by transforming the knowledge of em-
ployees into a generic product model.

e Improved customer orientation by the direct realization of customer requirements in prod-
uct specifications, fulfillment of a large variety of different customer desires as well as an
improved consulting quality and overall customer retention.

* Mediation of a buying experience.

Productivity potentials.

* Shortening of value adding processes through the integration of product knowledge, as-
sured bills-of-materials and product requirements as well as automated generation of pro-
duction near specification documents.

* Efficient sales quote creation by reducing the need of clarification and avoiding repeated
consultation, systematic elicitation of customer needs and automated deduction of a prod-
uct specifications.

e Increased amount of individual customer configurations with constant human resources.

* Downsizing of routine work and development of areas of freedom for employees.

* Reduction of special requests by displaying all possible configuration options during de-
cision taking as well as avoidance of invalid orders.

Cost reduction potentials.

* Reduction of costs in value adding areas of the enterprise (i.e. variant, changeover and
reworking costs) by ensuring manufacturing feasibility during configuration.

¢ Reduction of sales and marketing costs (i.e. costs related to quote creation, sales personnel,
travel expenses and training).

Customer Perspective
Customer-oriented product configuration.

* Autonomous, interactive specification of customizable products.

¢ In amount and duration unlimited form of specification.

Spatially ("from anywhere") and temporally ("at anytime") independent specification.
Reduced personal commitment and non-binding product specification.

Multimedia based, virtual product preview and generation of customer-oriented, compa-
rable product descriptions.

These benefits are strong arguments for the establishment of a configuration system with-
in the enterprise. Especially, when the implementation of a configuration system doesn't re-
quire sophisticated effort in terms of time and money, the return on investment (ROI) can
be increased strongly.

3.4. Summary

In this chapter, we established the theoretical foundation for our conceptualization: we pre-
sented and aggregated knowledge from various literature sources and compiled a detailed,
technical perspective on configuration systems.

Aligned with the procedure in the previous chapter, at first, we discussed product models,
which corresponds to the product perspective. Product models effectively represent the prod-
uct range (refer to Section 2.3.3.2, “Product Architecture”) within the configuration system.
They contain components, attributes and constraints to reflect structural aspects, characteristics
and manufacturing restrictions. Particularly in the context of configuration, the customizable
areas of a tailorable product are of primary interest (see Section 2.1.3.1, “Customizable Ar-
eas”). In essence, the product model encompasses the full variability of the product range.
Importantly, in this section, we not only extracted a generic meta model for representing prod-
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uct models, but also identified several configuration decisions related to the respective model
elements. Both will play a fundamental role for our conceptualization presented in the next
chapter (in particular, see Section 4.4, “Modeling Concepts”).

Next, we discussed the act of product configuration in detail, which corresponds to the process
perspective again. We characterized product configuration in general as design task between
selection, adaption (parameterization) and construction. This characterization will also form an
important aspect within our conceptualization, as it basically describes different specification
methods for customizable components (see Section 4.4.3.1, “Specification Methods”). Then,
we looked at configuration processes in detail by discussing both a macro (global configu-
ration process) and a micro perspective. The configuration process was described as a trans-
formation process, that converts the generic configuration model into a concrete product con-
figuration. The transformation is driven by the configuration decisions mentioned above.
For the last part of this section, we shifted to the customer's perspective and described the
interactive configuration process from a user's point of view.

The third section focussed on product configurators in terms of software tools. We explained
the important role of configurators within a product customization scenario, discussed their
responsibilities in terms of tasks and requirements and collected a large set of features real-
izing these. Moreover, we compiled an elaborate taxonomy for the comparison and detailed
description of configuration systems from various literature sources. Finally, the presenta-
tion of the main benefits of configurators closed up this section.

This chapter ends up the theoretical part of our work. It should have conveyed a deep un-
derstanding on configuration processes and configuration systems in general. Chapter 4,
Methodology and Conceptualization, introduces our approach to the implementation of such
systems.
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In this chapter, we will introduce a novel approach to the realization of product configura-
tors: the OpenConfigurator methodology. We argue that this new, developer-friendly way of re-
alizing high quality, sophisticated configurators, strongly supports the practical implemen-
tation of product customization.

As described in Section 1.2, “Mission Statement” at the beginning of this work, the establish-
ment of our methodology involves basically two things:

1. The conceptualization of a modeling language for the description of product configura-
tion models.

2. The conceptualization and implementation of a framework, that is capable of interpret-
ing the described configuration models and turning them into executable configuration
processes

While the second issue, the description of the framework implementation, is subject to Chap-
ter 5, Technical Architecture and Implementation, this chapter will introduce the OpenConfigu-
rator methodology in general and describe the modeling capabilities in detail. In Chapter 6,
Evaluation and Validation we will then realize a concrete use case, leveraging both the model-
ing language and the framework for the implementation of a mobile bike configurator.

Let's begin with the explanation of OpenConfigurator's fundamental ideas.

4.1. The OpenConfigurator Methodology

Again, OpenConfigurator aims to provide a novel approach for implementing configuration
systems. While there are numerous systems available on the market today, we argue that
most systems over-complicate the development of configurators. Additionally, many sys-
tems require to learn new, proprietary technologies for modeling and implementing config-
uration knowledge. The consequence of this is, that developers face a steep learning curve
and a high entry barrier to overcome, before being able to enter the product configuration
area.

OpenConfigurator, instead, can be considered as a state-of-the-art configurator implemen-
tation approach, leveraging a homogeneous set of modern technologies to accomplish high
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expressiveness and high flexibility. Thereby, it remains strongly developer-friendly, extensi-
ble and maintainable. In the following, we will characterize our approach more precisely
and compare it to existing approaches in the next section.

4.1.1. Main Characteristics

There are some key characteristics, that describe OpenConfigurator's nature from a high level
perspective. In summary, OpenConfigurator's configuration approach is:

model-based,

e object-oriented,

* universal and generic,
declarative, and

Java based.

We'll shortly explain these characteristics below.

Model-based. OpenConfigurator configuration approach is model-based. That means, the
configuration problem is described in terms of a domain specific model. The model repre-
sents an abstraction of the real world and describes the enterprise's product range along with
its restrictions using the application domain's vocabulary. Importantly, the model based ap-
proach clearly separates application logic from configuration knowledge, that is, the imple-
mentation of the configurator is fully independent of the application's domain logic. This
allows evolving both concerns separately, thereby, greatly simplifying development of the
configuration logic and strongly improving maintainability. Moreover, a model-based ap-
proach is very well suited of being accompanied by a graphical modeling environment, ef-
fectively allowing to realize a fully model-driven development (MDD) methodology.

Object-oriented. More specifically, OpenConfigurator's modeling approach is build on
top of the object-oriented paradigm. The mechanisms provided by this modern, widespread
programming paradigm can be adequately used to represent product and configuration
knowledge (see Section 2.3.3.2, “Product Architecture”). Well known concepts such as gener-
alization, composition and others allow the definition of product structures in an extremely
compact manner. Furthermore, encapsulation and information hiding are important aspects
in respect to re-use and maintainability. Finally, other important benefits of object-orienta-
tion are the availability of a fully integrated development methodology, from object-oriented
analysis (OOA) over object-oriented design (OOP) to object-oriented programming (OOP),
including a rich set of development tools. Last but not least, object-orientation has a strong
reputation in the community.

Universal and generic. Another important fact about OpenConfigurator's configuration
approach is that it's universal. The framework is not built for a particular application domain
only. Instead, it offers a huge variety of features allowing to model an even larger set of use
cases. On the other hand, OpenConfigurator internally maps a particular domain model to
a generic configuration model, to which the user interface and other services are implemented
against. This means, an application developer, that aims to implement a configurator on top of
the OpenConfigurator framework, can implement nearly arbitrary configuration problems
in a domain specific manner, while a system integrator, framework programmer or plugin de-
veloper aiming at integrating or extending the system, faces a generic interface. The huge ben-
efit of this genericness is, that any feature implemented against the generic configuration
model can be applied on a large number of configuration problems simultaneously, estab-
lishing an "implement it once and for all" way of thinking.

Declarative.  The main enabler for the realization of the framework's universality and
genericness is the fact, that the modeling approach is declarative. While the application spe-
cific domain model is designed using object-oriented concepts (i.e. Java language concepts
in particular, see below), the model is enriched with configuration specific knowledge using
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declarative meta-data annotations (i.e. Java source code annotations). This approach is well
known to Java developers having worked with any recent Java technology. Since the meta-
data annotations are pre-defined, the framework is capable of interpreting configuration
models, that itself utilize the vocabulary of the application domain. Hence, the framework
doesn't impose any specific structure of the domain model (e.g., no base classes provided by
the framework must be extended). This opens the door for re-using the one and the same
domain model in different application contexts.

Javabased. Although not necessarily required, the framework is designed and developed
entirely Java based. That means, it is implemented on top of the Java platform and its sup-
porting technologies. In fact, Java is the single, major technology used for all aspects of con-
figurator implementation: from the definition of the domain model and its constraints, over
the implementation of the framework itself, up to the implementation of the user interface,
everything is written in plain Java. The huge benefit of this is, that the developer is not forced
to learn a new, possibly proprietary programming language, but instead faces a single, ho-
mogeneous software technology stack without a "media break”. Even more, the strong align-
ment and integration of OpenConfigurator's development approach with existing, state-of-
the-art Java technologies (e.g., JavaBeans, JPA, Bean Validation, etc.) leads to a flat learning
curve and enables the average Java developer to get started with the framework quickly.

The Fundamental Idea of OpenConfigurator
The fundamental idea behind our configuration approach is, that:

 configurable products are represented as (Java) classes,

* concrete configurations correspond to instances of those classes (objects) and conse-
quently,

* the configuration process (in the sense of Section 3.2.2.2, “The Configuration Process as a
Transformation Process”) is understood as the instantiation of a (Java) class.

This idea is visualized graphically in Figure 4.1, “The Fundamental Idea behind the Open-
Configurator Approach”.

Figure 4.1. The Fundamental Idea behind the OpenConfigurator Approach

The main task of the OpenConfigurator framework, is to realize the configuration process.
Or, in other words, to drive the instantiation process of domain model classes. Hence, the
result of the configuration process is a regular (JavaBean) instance of a configurable class.

We'll cover all important aspects of this idea in great detail throughout this chapter.
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4.1.2. Configurator Development

In order to provide a "big picture" of the configurator development strategy, fostered by
our approach, we'll give an overview of our methodology in this section, see Figure 4.2,
“Overview of OpenConfigurator Methodology”. We will shortly explain the depicted pro-
cedure below. In this context, we'll narrow the scope of the conceptualization described in
the rest of this work.

Figure 4.2. Overview of OpenConfigurator Methodology

A configurator development process typically involves multiple roles, including company
representatives, designers and developers. It is the company representative that defines the
product range or parts of it to be covered by the configuration system.

The next step is the modeling of the application domain in a computer-readable format.
This task is optimally performed by the domain experts themselves, which hold a deep un-
derstanding of the domain knowledge. Since they usually do not have programming skills,
though, this task is at best supported by software tools, i.e. a modeling environment. While
graphical modeling support is out of the scope of this work, in general, the overall method-
ology is designed to be supported by such modeling tools. OpenConfigurator's object-ori-
ented, model-based nature allows to leverage existing, universal UML tools without com-
promise. Such tools enable the graphically design of the product range using class diagrams
and support the addition of the required meta-data through UML annotations or OCL con-
straints out-of-the-box (see [Felfernig2000]). The code generation facilities of modern UML
tools can than be utilized to generate the Java source code of the domain model, as required
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by the OpenConfigurator framework’. A similar approach can be applied for the customiza-
tion of the configuration process flow?.

In our methodology, the developer solely implements the product domain model using
Java classes and enriches the code with configuration specific Java annotations, defined by
the OpenConfigurator framework. The source code annotations give the product model its
semantics in terms of the configuration logic. So, as long as the graphical modelling support
is not available, it is the developer that designs the domain model dlrectly using Java class-
es Wlthm his preferred integrated development environment (IDE)®. Powerful tools such as
Eclipse®offer sophisticated support for rapidly implementing such domain models. The de-
velopment experlence can additionally be improved by leveraging Java 6's annotation pro-
cessing facility”. It can be used to ensure model validity during source code writing in re-
al-time”.

The deliverable provided by the developer (aka the development process), is a single
archive, solely containing the product model including constraints as compiled Java classes,
plus some optional descriptor files.

The architecture foresees, that this single Java archive (JAR) is deployed into the generic con-
figurator application, which acts as an execution environment for the configuration process.

The model contained within the deployed JAR file is introspected at runtime and a gener-
ic, in-memory representation of the configurable domain is constructed. This in-memory
representation is referred to as generic configuration model and can be seen as an abstraction
layer, that builds the foundation for both the generic user interface and the service provider
interface (SPI).

That means, the configurator's user interface is not implemented for a particular configura-
tion problem only. Instead, it is a generic user interface, automatically and dynamically
created on top of (i.e. with information provided by) the generic configuration model. A
consequence of this novel approach in the area of configurators is, that, for instance, a user
interface client implemented against the generic configuration model is capable of visualiz-
ing and driving arbitrary configuration processes. The Apple iPad’ application client intro-
duced in Chapter 6, Evaluation and Validation, is implemented against the generic configura-
tion model, allowing any custom product being configured on the iPad mobile platform. The
same strategy works for service providers integrating the framework with other enterprise
applications, such as ERP, CAD or PDM systems. All these interfaces interact with generic,
abstract representation of the configuration model.

Internally, the generic configuration model manages concrete instances of the domain mod-
el classes. Hence, at any time, a regular Java object (also referred to as Plain Old Java Objects,
POJOs) of the domain model can be retrieved from the configurator using the configuration
API. This way obtamed objects can be used with any other Java technology operating on PO-
JOs, such as JAXB®for XML processing, JAX-WS ’for webservice interoperability or JPA' for

"Note that custom transformation rules, that correctly transform UML meta-data into Java source code annotations,
would have to be developed in order to complete a fully integrated modeling procedure. However, in our opinion
thls is generally a feasible task and thus not discussed further in this work.

Note: the OpenConfigurator framework currently doesn't support the explicit design of the configuration process
flow.
3Note: we also consider the design of the product model and its realization as source code as modeling. Again, in a
future version of OpenConfigurator this "modeling on code level” may be replaced by graphical tools.
4See http:/ /www.eclipse.org/, last accessed June 21th, 2012.
5See http:/ /docs.oracle.com/javase/6/docs/ technotes / guides / apt/index.html, last accessed June 21th, 2012.
®Note that the development of such an annotation processor is also subject to some future work.
7See http:/ /www.apple.com/de/ipad/, last accessed June 21th, 2012.

8 Abbrev. Java Architecture for XML Binding, see http:/ / de.wikipedia.org / wi-
k1/ Java_Architecture_for XML_Binding, last accessed June 21th, 2012.

®Abbrev. Java API for XML Web Services, see http:/ /de.wikipedia.org/wiki/Java_API_for_XML_Web_Services,
last accessed June 21th, 2012.
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object-relational persistence (to name just a few). This offers great integration and interop-
erability potentials for configurators implemented on top of the OpenConfigurator frame-
work out-of-the-box.

Additionally, the methodology is designed to foster single source development. This means,
that the Java domain model is considered the single source of information (excepts the de-
scriptor files) required for the configurator to facilitate product configuration. Together with
the DRY! principle, in our opinion, this greatly improves the developer experience and eas-
es maintainability simultaneously.

Also, it's important to mention, that even though our methodology is model-based, it does
not require built-time code generation. Nevertheless, code generation, in the sense of mod-
el-driven development, may be a useful complement to the framework in the future. In the
context of this work, however, we will focus on the modeling capabilities required for con-
figuration problem design, as well as the runtime execution environment interpreting the
domain model.

4.1.3. Other Approaches to Configuration

Having characterized our approach, it's worth to take a look at competing approaches to
configurator implementation, in order to better understand the novelty and advantages of
our methodology. Figure 4.3, “Overview of Other Methodologies” provides an aggregated
overview of methodologies, that are subject to science or applied in current business projects.

Figure 4.3. Overview of Other Methodologies

OAbbrev. Java Persistence AP], see http:/ /en.wikipedia.org/wiki/Java_Persistence_API, last accessed June 21th,
2012.
" Abbrev. Don't Repeat Yourself, see http:/ /en.wikipedia.org/wiki/DRY, last accessed August 1st, 2012.
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Advantages of OpenConfigurator

Existing configurator platforms mostly offer a dedicated, graphical modeling environment
to be used by specialists to define the configuration logic. Commercial products (cp. [Ro-
goll12003]) we've seen so far, offer proprietary modeling suites, that support the definition of
product models using custom, vendor-specific formats as well as proprietary rule definition
languages. The consequence of this is a strong vendor lock-in, requiring tight relationships
to and imposing a strict dependency on the system provider. Particularly, custom develop-
ments and extensions to the system, sometimes desired to address specific configuration re-
quirements, may quickly lead to uncapped costs due to the lack of competition, once a par-
ticular software supplier has been chosen.

Approaches currently subject to science, on the other hand, are img)lemented solely in pro-
totype applications. But go one step further: they utilize UML/OCL'? and related tool chains
for designing configuration knowledge bases. These in fact, aim to establish a fully mod-
el-driven approach (see [Felfernig2000]).

However, in both cases, the configuration model is transformed into a dedicated config-
uration logic representation format at built-/development-time. These representation for-
mats include rules, decision-tables or custom formats. The employment of truly constrained
based approaches, that map the configuration problem to constraint satisfaction problems,
interpretable by constraint solvers, has been rarely seen in practice, but is still subject to the
science of artificial intelligence, yet. Nevertheless, the built-time transformation into another
intermediate knowledge representation, in our opinion, turns out to be a paradigm shift and
thus a "media break". The average programmer isn't capable of understanding or dealing
with such an intermediate format (e.g., Prolog rules, business rules, etc.) within a reasonable
amount of time. This is especially relevant, when it comes to errors and debugging or soft-
ware modifications, integrations and extensions.

In many approaches, the result of the development process is a monolithic, standalone con-
figurator application, generated specifically for a single project. This application often fea-
tures a generated, rather static user interface (e.g., in terms of Java Server Pages, JSPs), which
is manually customized upon changes of the knowledge base. The configuration interface
interacts with an inference component, which itself encapsulates the knowledge base on
which it operates.

4.1.4. Advantages of OpenConfigurator

From our elaborations in the previous section, we argue that the approaches available on the
market today, face the following problems:

e proprietary modeling concepts and rule definition languages,
e paradigm shifts between multiple configuration problem representations
* built-time generation of a more or less static, monolithic runtime application

These issues ultimately result in:

¢ a strong vendor lock-in and a dependence on proprietary formats

e a steep learning curve and a lack of developer friendliness

* an overcomplicated, complex configurator development process

e strong limitations regarding extensibility, integrability and interoperability

In contrast, our approach offers the following features:

* amodelling approach fully utilizing the generally accepted, wide-spread, object-oriented
programming pattern

* asingle paradigm and a homogeneous technology stack based on modern Java concepts,
standards and technologies

12 Abbrev. Unified Modeling Language/ Object Constraint Language.
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e amodeling approach strongly aligned with state-of-the-art technologies and development
methodologies accepted in the Java space

* a highly extensible, integrable and interoperable execution environment

* a flexible user interface that fully automatic, dynamically adapts to the underlying con-
figuration model

The result of these capabilities are huge potentials, beneficial in various regards:

¢ a flat learning curve, ease-of-development and an overall developer friendliness

* a quick turnaround due to the possibility to employ standardized, efficient development
cycles

* ahigh return on investment (ROI) due to reusability of the model and dynamic adaptabil-
ity upon model changes

Having characterized OpenConfigurator's general methodology in this section, including a
comparison with other approaches and a final look at its benefits, in the remainder of this
chapter we will show how configuration problems can be modeled using our conceptual-
ization.

4.2. Modeling Approach

The foundation of our approach for modeling configuration problems is object—orientationlB.
In the sense of the categorization discussed in Section 3.3.3.5, “Implementation Aspects”, it
can be further characterized as follows:

Model based, domain specific. The configuration problem is modeled separately from the
application logic, in a domain specific manner. The configuration model in our methodology
is simply a Java domain model comprising an arbitrary number of classes conforming to the
JavaBean convention'*. With the help of these classes, the customizable product is described
including any restrictions.

The object-oriented nature of our approach allows to map structured product architectures
(see Section 2.3.3.2, “Product Architecture”) one-to-one to the OpenConfigurator required
representation of the configurable product.

How configurable products are described on code level concretely, will be described in Sec-
tion 4.2.2, “Product Models in Java”.

Component based, generic. Internally, the Java domain model is transformed and inter-
preted as (technically we say "wrapped by") a generic component model. The applied gener-
ic component model, thereby, complies one-to-one with the architecture worked out in Sec-
tion 3.1, “Product Models”, respectively can be seen as an extension of it.

Hence, a customizable product is represented as a set of configurable components contain-
ing arbitrary nested components (so called parts) and customizable (variable) attributes. The
configuration decisions explained in the respective sections of Section 3.1, “Product Models”
equally apply to our model. In fact, they build the basic foundation for our configuration
process, too (see Section 3.2.2.2, “The Configuration Process as a Transformation Process”
for detailed theoretical basics).

In Section 4.3, “The Generic Configuration Model” we will explain the generic configuration
model in explicitly. Section 4.3.2, “Model Mapping” shows, how Java domain models are
"transformed" into their generic representation.

B30ur modeling approach has been strongly influenced by the works of Felfernig et al., who investigated UML as
modeling technique for configuration knowledge bases more than 10 years ago [Felfernig2000].
145ee http:/ /en.wikipedia.org/wiki/JavaBeans, last accessed August Tst, 2012.
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Constraint based. Our approach utilizes boolean constraints as well as relational constraints
(see Section 3.1.3, “Constraints: Domain Restrictions”) in order to express configuration re-
strictions declaratively.

While Section 4.2.3, “Providing Meta-Data with Java Annotations” basically shows, how
meta-data (including constraints) is expressed declaratively, in Section 4.4.5, “Constraint
Modeling” we will present the available constraints concretely.

As our methodology combines multiple explicit techniques (see Section 3.3.3.5, “Implemen-
tation Aspects”), we consider it as hybrid configuration approach. For a full characterization
refer to Section 7.1.2, “Implementation Characterization” in Chapter 7, Summary and Outlook.

Before presenting the concrete conceptual elements provided by the OpenConfigurator
framework, we are going to explain some important modeling basics.

4.2.1. Object-Oriented Product Modeling

As described in Section 2.3.3.2, “Product Architecture”, the basic principles of the object-ori-
ented programming paradigm fit very well for the description of product models. In this
sense, the following mapping between the object-oriented and the product modeling world
(see Section 3.1, “Basic Meta Model for Generic Product Modeling”) is considered to be
straightforward, although two required concepts for product configuration aren't available
directly:

Table 4.1. Mapping between Object-oriented
Concepts and Product Modeling Concepts

Object-Oriented Concept Product Modeling Concept

Class Product/component type
Generalization / specialization "Is-a"/"kind-of" relationship
Aggregation/composition "Contains-a"/ "part-of" relationship
Object Product/component instance, variant
Field (member variable) Attribute

Member type (incomplete correspondence) Attribute value domains

Method Calculated attribute

Type boundaries (incomplete correspondence) ~Constraints

Class. With the help of classes, product families can be modeled. A single class corresponds
to a certain product or component type.

Generalization/specialization.  Utilizing the concept of inheritance, generalization/special-
ization relationships can be expressed, which allows to model taxonomies of products and
components. E.g., a Mountain Bike and a City Bike are both specializations of the more gen-
eral product Bike or both a V-Brake and an Hydraulic Brake are specialized types of a Brake
component.

Aggregation/composition.  Aggregation respectively composition relationships can be used
to model the compositional structure of a class of products. For instance, a Bike product can
be decomposed into several parts, such as Frame, Handle bar, Wheels, Gearing, and so on.

Object. An object, an instance of a class, is equivalent to a product instance. It can also
be seen as a specific variant of a product. An object encapsulates an internal state exposes
methods to the outside world, that operate on or manipulate an instance's state.

Field (member variable). For that purpose, classes typically define fields, respectively
member variables, which correspond to attributes in the product world. They are used to de-
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scribe the characteristics of a class and represent the state of an object, respectively the value
of a specific product attribute. For instance, the frame of a bike may have an attribute Color,
which in the object-oriented world would correspond to a member variable col or .

Member type. Attributes have a value of a certain type, e.g., boolean, integer, string etc.
The member type effectively defines the values, that can be assigned to that variable. Thus,
the member type can be considered as the attribute's domain (see "Domain" in Section 3.1.2,
“Attributes: Component Characteristics”). However, in order to express product models pre-
cisely, using member types only to define attribute domains is not sufficient. The values must
be definable much more precisely.

Method. Methods are used to define functions or procedures related to an object. In the
same way, they can be seen as realization of calculated attributes of a product (see Sec-
tion 3.1.2, “Attributes in the Context of Configuration”). E.g., the weight attribute of a bike
may be calculated by a method.

Type boundaries. In general, when describing product attributes with object-oriented
types, the type's technically imposed boundaries can be considered as constraints: effectively,
they restrict the value an attribute can take. For instance, if a field has type byt e, a value
in the range of - / +255 can be assigned, but the value 4711 cannot. Thus, the attribute corre-
sponding to that field is (implicitly) constrained by the field's type.

Figure 4.4, “Example Object-Oriented Product Domain Model” shows an example model"
for the Bike domain. While an elaborated version of the domain model is presented in Sec-
tion 6.1.3, “The Bike Domain Model”, we'll use excerpts in various places of this work.

Figure 4.4. Example Object-Oriented Product Domain Model

In summary, with respect to the meta-model presented in Section 3.1, “Basic Meta Model
for Generic Product Modeling”, object-oriented programming languages like Java provide
good support for the majority of required product modeling concepts inherently. However,
they do not directly support sophisticated mechanism for modeling attribute domains and
constraints, which is why we need to come up with other techniques to express these. As
you'll see shortly, in Section 4.2.3, “Providing Meta-Data with Java Annotations”, OpenCon-
figurator utilizes annotations to fill that gap.

13We use an UML like notation for domain models throughout this work.

110



Product Models in Java

4.2.2. Product Models in Java

Having described product modeling using object-oriented features in general, in the follow-
ing we will focus on modeling products usin%the Java programming 1ar1guage16 in partic-
ular. In this context, the JavaBean convention can be used for component modeling. Most
importantly, the convention standardizes accessors for fields, so called getter and setter meth-
ods. This way it establishes a common way to model the notion of propertieslg. The follow-
ing code snippet, adhering to the JavaBean convention, shows the Java source code for the
example domain model introduced above'”:

Example 4.1. Example JavaBean Domain Model

public abstract class Bike {

/] Fields

private Frame frane;

private Fork fork;

private Weel s wheel s;

private Coll ecti on<Equi pnent> equi pnents;

/] Met hods
public int weight() {
11

return cal cul at edWi ght ;

}

/'l Accessors
public Frane getFranme() {
return frane;

}

public void setFrame(Frane frame) {
this.frame = frane;

}
}
public class MuntainBi ke extends Bike { ... }
public class CityBi ke extends Bike { ... }

public class Frane {

private int size;
private Col or color;

/'l Accessors

}

public class Fork { ... }
public class Weels { ... }
public class Equiprment { ... }

As you can see, the implementation is straightforward: products and components are
mapped to classes, while attributes and parts correspond to JavaBean style properties.

165ee http:/ / www.java.com/, last accessed May 24th, 2012.
75ee http:/ /en.wikipedia.org/wiki/Java_Beans, last accessed August 1st, 2012.
BNote: OpenConfigurator in fact only utilizes the properties mechanism defined by the convention, but does not
require the domain class implementing the j ava. i 0. Seri al i zabl e interface. Although, the implementation
of this (empty) marker interface is recommended.

Implementations of the Ser i al i zabl e interface have been omitted for brevity.
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Again, in terms of OpenConfigurator, configuration problems expressed as product models
are implemented entirely in Java. For modeling, all common Java language concepts can be
used, including;:

Types and inheritance. Java's type system provides classes and interfaces. Both can be
used to model products and components. While classes can be generalized using the extends
keyword, a class may implement multiple interfaces using the implements keyword (Java's
way to overcome multiple inheritance issues). A class, thereby, inherits all properties and
methods from its parent class. Likewise, a product inherits all attributes and parts of its su-
pertype. Additionally, abstract types can be used and are semantically fully supported by the
OpenConfigurator framework.

Primitives, standard types and enums. For the modeling of attributes, the usual Java
primitive types (bool ean, byt e, i nt, doubl e, etc.), standard types (like St ri ng, I nt eger,
and so on) and type-safe enumerations (using the enum keyword) are supported.

Arrays, collections and special types. Additionally, attributes can be array-valued (e.g.,
String[]) or can be of collection types (e.g., Col | ecti on<Stri ng>). This way, multi-value
attributes can be modeled. Used together with custom types (e.g., the Equi pment class), a col-
lection such as Col | ect i on<Equi pment > designates a multi-component part, also referred
to as plural part. Moreover, there are some special types, such as byte[] or | nput Stream
that allow the modelling of special properties like binary images.

Methods. For realizing calculated attributes, regular Java methods can be implemented.
Within these methods, arbitrary calculations can be performed without restriction. For ex-
ample, a component may define a method doubl e get Wi ght () to calculate the weight of
a product.

Regarding modeling flexibility, the OpenConfigurator framework tries to be minimal intru-
sive. That means, when designing a configuration domain model, the developer must not
extend or implement any pre-defined class or interface provided by the framework. Instead,
the domain model can be enriched with Java annotations in order to the control configura-
tion behavior. The annotations are interpreted by the framework at runtime and incorporat-
ed into the generic component model. We will discover annotation usage in more detail in
the next section.

4.2.3. Providing Meta-Data with Java Annotations

As stated earlier, in terms of OpenConfigurator, the configuration knowledge as well as the
control logic, that drives the configuration process, is described declaratively. In fact, a 31§n1f—
icant aspect of our methodology is how meta-data is provided: using Java annotations””. In-
deed, Java annotations are the key concept of our modeling approach, as they facilitate the
mapping between the Java domain model and the generic product meta model, respectively
specify the mapping more precisely.

Java annotations are directly embedded into the source code and can be placed on various
locations, including types, methods, fields, parameters and others. They allow the specifi-
cation of elements with optional default values. Furthermore, they can be mspected at com-
pile time and at runtime, provided their retention is specified accordmgly . The following
program listing, Example 4.2, “Exemplary Annotation Definition and Usage”, shows the de-
finition of a custom annotation named Descri pti on, that can be used on type, method or
field level and which can be inspected at runtime. Moreover, the example demonstrates the
application of the custom annotation on a class Fr ane:

256e http: / / docs.oracle.com /javase/ tutorial / java/javaOO/annotations.html, last accessed August 1st, 2012.
ZIThe retention is defined using the @Ret ent i on( Ret ent i onPol i cy) meta annotation. See the example
annotation definition below.
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Example 4.2. Exemplary Annotation Definition and Usage

@Ret ent i on( RUNTI MVE)
@arget ({ TYPE, METHOD, FIELD })
public static @nterface Description

{
String value() default "";
}
@escription(val ue = "The base el enent of a bike")
public class Frame
{
}

While annotations are frequently used for the specification of meta-data in a growing number
of Java standards, including the E]B22, ]PA23 and Bean Validation?* specifications, we argue,
that using them in the area of product modeling and product configuration in particular is
innovative.

Annotation Usage within the OpenConfigurator Methodology

Within the OpenConfigurator framework, annotations are heavily used. In fact, strictly
speaking, modeling in terms of OpenConfigurator, comes down to "tagging" the domain mod-
el with a variety of pre-defined annotations. Thus, when describing the modeling capabil-
ities in Section 4.4, “Modeling Concepts”, we'll basically present the available annotations
for product and configuration modeling along with their exact semantics and demonstrate
their practical application.

To give an idea on how annotations are leveraged concretely, we want to anticipate the main
areas of annotation usage in the following. Specifically, annotations are used for:

Meta-model mapping. Annotations are used to map the Java domain model to the generic
configuration meta model, which will be described in detail in Section 4.3.1, “Elements of
the Generic Configuration Model and Meta Model”. This way, e.g., a class is identified as
configurable item or specific properties of the class are designated as variable attributes, that
need to be specified during the configuration process. The framework falls back to sensible
default mappings, in case no annotations are present. Hence, annotation usage is made op-
tional where possible, thereby, providing a great deal of developer convenience. Figure 4.5,
“Using Annotations to Map Domains Models to the Generic Meta Model” outlines the usage
of annotations for meta-model mapping purposes.

2 Abbrev. Enterprise JavaBeans, see http:/ /jcp.org/about]ava/communityprocess/ final /jsr220/index.html, last
accessed May 24th, 2012.

2 Abbrev. Java Persistence API, see http:/ /jcp.org/about]ava/communityprocess/ final /jsr317 /index.html, last ac-
cessed May 24th, 2012.

#Gee http:/ /jep.org/about]ava/ communityprocess/ final /jsr303 / index.html, last accessed May 24th, 2012.
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Figure 4.5. Using Annotations to Map Domains Models to the Generic Meta Model

Data provisioning. We stated earlier, that the object-oriented concepts do not provide ad-
equate support for modeling attribute domains, as required for configuration purposes (see
Section 4.2.1, “Object-Oriented Product Modeling”). The way OpenConfigurator overcomes
this deficit is: using annotations. Beyond meta-model mapping, source code meta-data is
used to "attach" data to the domain model, that is, to define the exact domain values of at-
tributes and parts.

Figure 4.6, “Using Annotations for Domain Definition”, illustrates how the domain of an

attribute can be narrowed to an enumerated list of values and shows the impact on the
configurator's user interface:

Figure 4.6. Using Annotations for Domain Definition
Constraint definition. Likewise, annotations are used to define constraints within the do-

main model, thereby, filling the missing gap in the object-oriented programming paradigm.
Example 4.3, “Using Annotations to Define Constraints” demonstrates this concept.
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Example 4.3. Using Annotations to Define Constraints

public class Bike {

@i ze( max=10)
private Set<Equi prent> equi pnents;

In this case, the quantity of equipment items is constrained to a maximum of 10 items. The
definition of constraints in this way has been adapted from JSR*-303%, a specification, that
standardizes the definition of constraints on Java classes across various application areas. In
fact, OpenConfigurator strives to be compatible with the Bean Validation specification where
possible, but needs to extend it in various regards, though.

User interface mapping. With annotations, also the visual appearance of the configurator
could be manipulated declaratively (see also Section 4.3.3, “Facets” )27. For example, the de-
veloper may specify, that a list of enumerated values is rendered as group of radio boxes in-
stead of a single combo box, which is the default. This is demonstrated in Figure 4.7, “Using
Annotations for Declarative User Interface Mapping”.

While it can be argued, that this strategy intermixes user interface aspects with application
domain logic, in our opinion the following arguments advocate this feature:

¢ Single source development. In Section 4.1.2, “Configurator Development”, we ex-
plained, that OpenConfigurator fosters the concept of single source development. In accor-
dance with the DRY principle, this means, that the Java source code should remain the
"single source of truth" and contain all information to control the application. If the de-
veloper seeks to alter the configuration process' behaviour, he solely needs to inspect the
source code and no additional source files.

Hence, defining user interface mapping behavior using annotations, supports the princi-
ple of single source development.

* Declarative, portable user interface mapping. Using annotations for user interface (UI)
mapping, declaratively describes, how a particular element is visualized on any and not
only a single interface. Thus, the declarative description not only avoids code dependencies on
a particular Ul technology, but even more ensures portability across a variety of different
interfaces, such as mobile device, desktop application, web page etc.

Thus, UI mappings defined this way are user interface technology agnostic, which we see
as a strong benefit.

Blava Specification Request
%6Gee http:/ /jcp.org/about]ava/ communityprocess/ final /jsr303 / index.html, last accessed May 24th, 2012
#Note that this feature is currently not implemented.
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Figure 4.7. Using Annotations for Declarative User Interface Mapping

The aforementioned annotations are only a small extract from the full set of possibilities,
which are described in more detail in Section 4.4, “Modeling Concepts”. Basically, annota-
tions are used to control the entire configuration process. With their help, the domain model
becomes the single source of information for the generic configurator framework.

To realize this, the OpenConfigurator framework extracts the specified meta-data at appli-
cation runtime. During this process, the domain specific product model is transformed into a
domain independent representation, the so called generic configuration model. We will explain
this generic model as well as the mapping between both representations in more detail in
the next section.

4.3. The Generic Configuration Model

The generic configuration model, which can be seen as a domain independent representation
of the configurable product, is one of the most fundamental concepts of our approach. De-
scribed technically, it is a runtime data structure, that builds the "backbone" of the entire
configuration process, as it supplies and stores all relevant information related to the current
configuration. This relationship is schematically illustrated in Figure 4.8, “The Generic Con-
figuration Model as "Backbone" of the Configuration Process”.

Figure 4.8. The Generic Configuration Model
as "Backbone" of the Configuration Process
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The generic configuration model has its roots in the product model described Section 3.1,
“Product Models”. Essentially, it features the same concepts, such as components, attributes
and constraints, but extends the model with parts (nested components) and facets ("perspec-
tives" to a component). A detailed description of the internal representation of the configu-
ration model is important for a well understanding of the modeling concepts described later
on. Therefore, we will describe the model elements in detail in Section 4.3.1, “Elements of
the Generic Configuration Model and Meta Model”. Facets will be subject to Section 4.3.3,
“Facets”.

Representations of Configurable Products

In terms of OpenConfigurator, configurable products are described on different levels. More-
over, the framework knows multiple representations of one and the same configuration, where-
as the generic configuration model is one of such representations.

Levels. First of all, we have to distinguish the fype level from the instance level.

e Type level. As stated in Section 4.1.1, “The Fundamental Idea of OpenConfigurator”,
with our approach, configurable products are described using Java classes. As Java types
are compiled, they're considered static throughout the lifetime of the application. Hence,
the type level is concerned with the static view of the configuration domain model.

e Instancelevel. On the other hand, concrete configurations correspond to Java objects. At
runtime, Java types (configurable products) are instantiated in terms of Java objects (con-
crete configurations). Theses instances make up the dynamic part of the application, re-
spectively the instance level.

Again, it's the task of the OpenConfigurator framework to instantiate a particular Java class,
representing a customizable product, during the configuration process. In order to accom-
plish this, the framework maintains different representations for both the static product types
and the dynamic configuration items.

Representations/views. Specifically, the distinguishable representations are:

* Logical view. The logic view precisely realizes the main idea of the OpenConfigurator
approach: items configured by the container are true instances of the domain model class-
es. The model is domain specific, which was one of the fundamental requirements to be ful-
filled by our approach (refer to Section 4.2, “Modeling Approach”).

e Internal representation. Another fundamental requirement was genericness. For exam-
ple, genericness applies to the user interface: the configurator developer shall not imple-
ment the user interface from scratch, but rather concentrate on modeling the domain log-
ic. The framework provides a generic user interface for arbitrary domain models (see Sec-
tion 4.1.2, “Configurator Development”).

To realize this genericness, the configurator must maintain an internal representation of the
configured product. Opposed to the logical view, the internal representation has a generic
interface (which gives the model the name "generic configuration model") and is thus do-
main independent.

At runtime, the OpenConfigurator continuously synchronizes the logical view with the in-
ternal representationzs.

Relationships between the Different Levels and Representations

The relationships between these different concepts are depicted in Figure 4.9, “Role of the
Generic Configuration Model and its Relationships”.

BNote: currently only a "one-way synchronization" is implemented: changes to the generic configuration model are
"pushed" to the managed domain model instances, but not vice versa.
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Figure 4.9. Role of the Generic Configuration Model and its Relationships29

The generic configuration model represents the domain independent, internal representation
of the configuration, which is the view, the configurator itself (and all third party extensions)
deal with exclusively. On the other hand, there is the domain specific, logical view to the
configuration model.

The application specific domain model, supplied to the configurator in terms of a Java class
model (see Section 4.1.2, “Configurator Development”), is represented at runtime by the
generic configuration meta model ®. The meta model contains so called descriptors, that re-
flect all relevant, static aspects of the domain model and which describe its decomposition
structure @. It also incorporates any meta data supplemented through model annotations.
We refer to the process of transforming the annotated domain model into the generic product
meta model as meta model extraction.

During the configuration process, a generic configuration model is instantiated based on the
meta model. Thus, semantically, the generic configuration model is an instance of the meta

®Note that the graphic has been slightly simplified for brevity: Par t Descri pt or sand Par t s (see Section 4.3.1,
“Elements of the Generic Configuration Model and Meta Model” for details) have been omitted and the Pr oduct -
Descri pt or doesn't exists exactly as depicted; nevertheless, the figure provides a semantically correct overview.
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model ®. The meta model can be seen as a static description on the domain model (type level).
It exists only once in the application.

However, each product instance, is represented by exactly one dynamically modified, cor-
responding generic configuration model (instance level) @.This model in turn, manages the
underlying JavaBean instance, that is, the logic view @.

As you can see, in effect, the configurator just "assists" the user during the instantiation of
a particular domain model class ®. More precisely, he drives the instantiation process in a
way that all constraints, defined within the domain model, are satisfied.

Next, we'll examine the generic configuration model respectively the meta model in more
detail.

4.3.1. Elements of the Generic Configuration Model and
Meta Model

In the following, we will describe the elements of the generic configuration model and related
descriptors more precisely. Figure 4.10, “UML Class Diagram of the Generic Configuration
Model and Related Descriptors” provides a simplified UML model of the classes involved.

Figure 4.10. UML Class Diagram of the Generic
Configuration Model and Related Descriptors

Configuration. The Confi gurati on class is a wrapper, that represents a configuration at
runtime. It allows to access the configured instance (logical view) via the val ue attribute. A
configuration contains a single configurable component called r oot Conponent .

Component/ComponentDescriptor. The Conponent class is the central type of the com-
ponent hierarchy. It represents a configurable product or product component. A component
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stores (if already instantiated) an instance of the configured type X in its val ue attribute,
which is sometimes referred to as local value. It aggregates a varying number of Attri bute
and Part instances, depending on the configured type. The current type of the maintained
product instance is defined by the t ype attribute. Furthermore, a component may provide
multiple Facet s (see below).

A component references the descriptor that exactly matches the type X. As the type of an in-
stance may be altered dynamically during configuration, the referenced component descrip-
tor may also change. The attributes and parts are synchronized accordingly.

Attribute/AttributeDescriptor.  Represents a single, non-complex property of a config-
urable object. Opposed to parts, an attribute is not further divisible and thus simply holds a
value of the defined property type. The type is often referred to as value type.

An attribute references an At t ri but eDescr i pt or, which holds meta information about the
Java class' member, that defines this attribute. While decl ari ngType designates the Java
class that declares the property, while decl ari ngMenber identifies the exact member. That
is, decl ari ngMenber either points to a field or a (getter) method. If the property's val ue-
Type is a collection (in the sense of an instance of Java's collection framework) or an array
type, the attribute is considered a multi-value attribute, which is reflected by the descriptor's
col | ecti on member variable. If there's no setter method, but a corresponding getter for one
and the same property, the attribute is considered r eadOnl y.

Part/PartDescriptor. A Part represents a complex property of a configurable object. That
is, a part references a sub-component of the given product instance and thus allows to model
recursively nested component structures. Due to the fact that a Part, in turn, references a
Conponent instance, it can be configured as any top level component is, including dynamic
type changes. The current part's type is stored in the corresponding t ype member variable,
and (if present) the local value in the val ue variable.

Similar to components, parts reference Part Descri pt or instances that reflect their current
type. The descriptor holds information equivalent to the one of an Attri but eDescri pt or
(see above).

Facet/FacetDescriptor. To not overload the component model with manifold information
required for configuration, the concept of facets has been introduced. A Facet encapsulates
a certain aspect of a component. This way, the core component model can be kept clean and
simple, containing only the 3 main types, namely Conponent , At t ri but e and Par t . Any ad-
ditional features, such as attribute domains or constraints, are implemented within a partic-
ular facet. Examples for facets include:

* Product facet. Allows accessing the component in the sense of a product.

¢ Configuration facet. Provides configuration relevant information.

* Datafacet. Implements a generic data abstraction layer. Allows accessing a component's
or attribute's domain.

* Validation/constraint facet. Encapsulates constraints and validation relevant aspects.

¢ User interface facet. Stores user interface mapping related information.

Facets usually also require a static descriptor, the Facet Descri pt or, that describes how the

facet relates to the component precisely. We will describe facets in more detail in Section 4.3.3,
“Facets”.

4.3.2. Model Mapping

We described domain modeling using object oriented techniques and Java in particular in
Section 4.2.1, “Object-Oriented Product Modeling” and Section 4.2.2, “Product Models in
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Java”. In the last section, Section 4.3.1, “Elements of the Generic Configuration Model and
Meta Model”, we introduced the generic configuration model, which is used internally by
the configurator. What's missing yet, is the mapping between both the domain model and
its generic representation. In this section, we will describe how the object-oriented concepts
are translated into meta model elements.

In short, Table 4.2, “Mapping between the Java Concepts and the Generic Configuration
Model” summarizes the mapping;:

Table 4.2. Mapping between the Java Concepts and the Generic Configuration Model

JavaBean Types Annotation Generic Description
Domain Configuration
Model Model
Class (Java any @onponent Conponent By default, a custom
type) Java class maps to
a (configurable)
component.
Property  primitives @\ttribute  Attribute All non-complex typed
(field, +wrappers, JavaBean properties
getter/ String, Enuns, (attributes in a UML
setter) | nput St ream class diagram) are
plus their array mapped to attributes
and collection within the component
variants model.
Property =~ bj ect (and any @Part Par t All complex typed
(field, other subclasses) JavaBean properties
getter/ plus their array (aggregations in a
setter) and collection UML class diagram).
variants Le. all non attribute

relevant types, except
ignored properties,
are considered
(configurable) parts.

For the given types, the mapping is established by default without the need of annotating
a class' members. We say it is implicitly mapped. If the annotation is present, a property is
considered explicitly mapped.

The mapping is established within a process called meta model extraction, which usually hap-
pens once at configurator initialization time (also called bootstrap). During that process, the
Java domain model is introspected and a corresponding hierarchy of descriptors is recorded.
The process also involves the initialization of facet descriptors, which leads to other annota-
tions being processed. We will describe these annotations and their corresponding mappings
in extensively in Section 4.4, “Modeling Concepts”.

4.3.3. Facets

The concept of facets is an essential part of the OpenConfigurator modeling approach. As
we will see later in Section 5.2.5, “Plugins and Connectors”, facets are a key technique to
facilitate the extensibility and flexibility of the overall framework. While the core component
model precisely reflects the component structure derived from a JavaBean domain model,
facets enrich the model with additional semantics. Technically spoken, a facet implements
the facade™ design pattern. This pattern abstracts from the underlying model by focussing

35ee http:/ / en.wikipedia.org /wiki/Facade_pattern, last accessed May 30th, 2012.
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a single aspect. Figure 4.11, “Usaging Annotation to Control Facets” illustrates the usage of
annotations to control different facets of a component.

Figure 4.11. Usaging Annotation to Control Facets

From a high level perspective, with the help of facets, various perspectives onto one and the
same product/component can be modeled. In Section 2.3.3.2, “Product Architecture” we de-
scribed some of these perspectives and identified multi-structuring as an essential structuring
technique to encompass all relevant model information.

However, by now, OpenConfigurator uses facets for the realization of relatively low level
functionalities. Currently it knows the following component facets:

Product facet. Exposes all information of a component, that are part of the product view.
The product view is an information model, that combines all marketable attributes relevant
to the customer. It is used, for instance, to realize the product browser functionality (see
Section 3.3.2.1, “Information”).

Configuration facet. Provides a facade for the configuration related functionality of a com-
ponent and is accessed primarily during the configuration process. For example, the config-
uration facet contains methods to query all variable attributes of a component, all calculated
ones etc. Internally, the it operates on the data facet and the validation facet described below.

Data facet. Allows to control the data model of a component. It is used, for instance, to
manage the domain of a component or attribute. Moreover, the data facet abstracts from the
backend data storage and thus helps to decouple the configuration logic and the underlying
data provider, which may, for example, be a PDM system, JPA accessed relational database
or a JCR* based content repository.

Validation facet. Encapsulates model constraints and validation relevant methods. This
facet abstracts from the underlying constraint resolution and validation mechanism. For ex-
ample, constraints compatible with the Bean Validation specification [JSR3032009] can be
defined and accessed or a constraint solver, compatible with the Constraint Programming
API*? can be integrated (see Section 7.2.1, “CSP/ Constraint Solver Integration”).

31 Abbrev. Java Content Repository, a high level standard for accessing content data storages, currently specified in
version 2.0 by JSR-283, see http:/ /jcp.org/en/jsr/detail?id=283, last accessed May 30th, 2012.
325ee http:/ /jcp.org/en/jsr/ detail?id=331, last accessed May 30th, 2012.
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User interface facet”® Provides an abstraction layer for user interface customizations.
Through the UT** facet, hints on how to render the component within the configuration dia-
log can be declared as part of the model. For example, the selection style, e.g., "drop down
list" vs. "radio group", can be defined. The presentation customizations are defined indepen-
dently from the concrete view technology (e.g., local SWT® or JSF* based view layer) by
the OpenConfigurator framework, making configuration models portable across different
platforms and presentation frameworks.

Technically important, a facet must not adhere to a particular interface. Hence, 3rd party
model information can be integrated transparently. For instance, the JPA meta model (see
[JSR3172009, pp. 179]) of a particular element can be made available as a component facet
(refer to Section 5.4, “SPI Usage: Extending and Integrating OpenConfigurator” for details).

4.4. Modeling Concepts

Now that we have given an elaborated overview on the main principles and techniques
applied in our methodology, it's time to discuss the concrete modeling concepts available.

In general, the modeling concepts introduced here, target to fulfill the requirements dis-
cussed in Chapter 3, Configurators. Specifically, Section 3.1, “Product Models” provides use-
ful information related to the modeling of product structures, while Section 3.2, “Product
Configuration” can be seen as foundation for the realized configuration related functionality.

In this section, we will explain the modeling capabilities of our conceptualization in detail.
Particularly, we are going to describe the framework provided meta-data annotations with
their exact semantics. Moreover, we'll explain accurately how they influence the configura-
tion process and demonstrate various examples throughout the text.

The section is structured as follows:

Structure Modeling. Section 4.4.1, “Structure Modeling” recapitulates the use of the struc-
tural annotations, that allow to explicitly map JavaBean domain models to the generic con-
figuration model. Moreover, the concrete model elements, including components, attributes
and parts, and their most important concepts are explained.

Having read this section, you'll understand, how the structural aspects of Java domain mod-
els are interpreted by the OpenConfigurator framework precisely. Moreover, you can ob-
serve, how the generic configuration model, that serves as the basis for the configuration
process, is build up by the framework step by step.

Product Modeling. Next, in Section 4.4.2, “Product Modeling”, we will discuss annota-
tions used for modeling the product view (which corresponds to the customer view in Sec-
tion 2.3.3.2, “Product Architecture”). During the meta model extraction process, the compo-
nent product facet will be populated with the product related annotations (see Product facet
in Section 4.3.3, “Facets”).

Configuration Modeling. Configuration related annotations are subject of Section 4.4.3,
“Configuration Modeling”. These annotations define:

* which elements (attributes or parts) of product, respectively the Java class, can be cus-
tomized,
* how these elements are specified during configuration

In effect, the modeling concept introduced in this section allow to define the customizable
areas of a product (see Section 2.1.3.1, “Customizable Areas”). With the help of these anno-

®Note that this feature is currently not implemented.

3 Abbrev. User Interface

3 Abbrev. Standard Widget Toolkit, see http:/ / www.eclipse.org/swt/, last accessed May 30th, 2012.

36 Abbrev. Java Server Faces, see http:/ /www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html,
last accessed May 30th, 2012.
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tations, the configurator framework is able to identify the configuration decisions, that are
necessary to configure an instance of the annotated component class.

After the meta model extraction process, the configuration meta-data modeled with config-
uration annotations is accessible through the configuration facet (see Configuration facet in
Section 4.3.3, “Facets”).

Data Modeling. Having defined, which elements are customizable and how they are spec-
ified, the configuration decisions need to be backed with options, that are presented to the
user during the configuration process. The definition of the domains (options) for config-
uration decisions is subject to Section 4.4.4, “Data Modeling”. This section also covers, how
default values for decisions can be defined.

The data related information is captured by the data facet (see Data facet in Section 4.3.3,
“Facets”).

Constraint Modeling. Finally, Section 4.4.5, “Constraint Modeling” defines, how domain
model restrictions can be realized our conceptualization. While the full list of available con-
straints is presented in Appendix A, Constraints, this section gives insights about the general
constraint definition concepts and provides an overview of supported constraints.

Similar to data related information, the constraint knowledge defined using the constraint
annotations discussed here, is accessible through the constraint facet (see Configuration facet
in Section 4.3.3, “Facets”).

In fact, the sequence of modeling followed in this section, could stand as a general procedure
for the development of custom configuration domain models in practice.

Let's begin with the modeling of the structural aspects of a customizable product.

4.4.1. Structure Modeling

Basically, Section 4.3.2, “Model Mapping” has already shown, how product structures are
modelled within our methodology. To recap, in order to model product/ configuration struc-
tures explicitly, OpenConfigurator offers the following annotations:

Table 4.3. Structure Modeling Annotations

Annotation Description

@onponent Designates a type that is recognized by the framework and treated as a
component.

@\ttribute Designates a property as an attribute managed by the framework.

@art Designates a property as being a sub-component of a given component.

@ gnore Designates a property as being ignored by the framework.

With these concepts, a huge variety of products can be described (see Section 3.1, “Product
Models”). In the following, we will describe each concept in more detail.

4.4.1.1. Components

Components represent products, assemblies or atomic modules of a product. In the Java do-
main model they are represented as classes (see Section 4.3.2, “Model Mapping”).

By annotating a Java class with @onponent, the class is demarcated as a managed component
(type). A managed component can be instantiated by the framework's provided APL It is
capable of instantiating any Java class, that adheres to the JavaBean convention™’. Explicitly

¥Note that the OpenConfigurator framework currently doesn't require to implement the
java.io. Serializabl e interface as stated in the JavaBean convention, though.

124



Structure Modeling

mapping a class with @onponent allows the framework to detect the component type and
extract the given meta-data at application startup.

An example usage of the @onponent annotation is shown in listing Example 4.4, “Usage of
the @onponent Annotation”.

Example 4.4. Usage of the @onponent Annotation

@conponent
public class Product {
private Assenbly assenbly;

}
@conponent
public class Assembly { ... }

Runtime Representation

Internally, a managed component type is represented by an application scoped instance of a
Conponent Descr i pt or, which is instantiated during the meta-data extraction process. With-
in an active configuration, a managed component instance is represented by a Conponent
object. Figure 4.12, “Runtime Representation of Components” illustrates this relationship
using an UML object diagram.

Figure 4.12. Runtime Representation of Components

During configuration, the framework propagates any changes applied on the component to
the underlying managed value object (the JavaBean instance), which the component instance
represents.

Responsibilities

The component instance has the following responsibilities:

* manage a bean instance of the given value type,

* manage the bean instance's type including dynamic type changes (see below),
e track the managed instance's state, including the following properties:

Table 4.4. Component State Variables

State Variable Description

abstract Defines, whether the component's current
type is an abstract class.

instanti at ed Defines, whether the bean managed by the
component has been instantiated already.
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State Variable Description

speci fied Defines, whether the user explicitly
specified some component property.

* manage referenced attributes and parts; provide convenience methods for accessing them,

e support structural navigation: provide access to the parent component and realize the vis-
itor pattem38

e realize event handling: provide methods to allow the registration of event handlers for the
following events:

Table 4.5. Component Events

Event Description

Change Triggered upon any component changes
(e.g., value changes, type changes, ...).

Val uel nstanti ati on Fired upon the first instantiation of the
managed type.

Val ueChange Triggered when the managed bean changes
(e.g., attribute/part changes).

TypeChange Raised when the underlying bean's type
changes (which requires re-creation of the
object).

Reset Fired when the component is reset.

e provide meta-data and facet access: enable accessing the Conponent Descri pt or corre-
sponding to the component's current type and any registered facets of the component.

Due to the indirection layer introduced by the component model, OpenConfigurator not on-
ly allows to set properties on not yet instantiated beans (in case the managed type is abstract),
but even allows to change the managed type dynamically at runtime. Thereby, the frame-
work must re-instantiate the bean, loosing all of it's internal, invisible state. Nevertheless,
the framework captures and re-instantiates all managed attributes and parts (see below) au-
tomatlcally .In Section 4.5.2, “Example Configuration Procedure”, we will give an example
of a type change.

4.4.1.2. Attributes

The characteristics of a product or assembly are represented by attributes. In the Java do-
main model, an attribute corresponds to a JavaBean property, that is, a field and a pair of
getter / setter methods.

Annotating a field (so called field level access) or a getter method (method level access) with the
@\t t i but e annotation, explicitly marks the property as managed attribute’. By default, all
properties of a managed type, with one of the following types (including subtypes of these)
are considered attributes:

* byte,short,int,long,float,doubl e bool ean, char and their object wrappers, St ri ng,
Bi gDeci nal

38See http:/ /en.wikipedia.org/wiki/ Visitor_pattern, last accessed June 5th, 2012.
¥In a future release of OpenConfigurator, we might specify callback methods to better support state transitioning
dunng type changes.

“Note that both field level and method level access strategies are supported, for a particular property only one of
both strategies may currently be used. That means, for an individual property, all OpenConfigurator recognized
annotations must be placed either on the field, getter or setter method but may not be spread across those three
members.
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e the array and collection variants of all the above, e.g, int[], byte[] or
Col | ecti on<String>
® | nput Stream Enum

An attribute may have a singular value (singular attribute) or may have multiple values (plural
attribute).

The following code fragment, Example 4.5, “Usage of the @\t t ri but e Annotation”, shows
various attribute definitions.

Example 4.5. Usage of the @t tri but e Annotation

public class Assenbly {
[l inplicit, singular String attribute, field access
private String stringAttribute;

/1 explicit, singular Integer attribute, field access
@\ttribute
private Integer intAttribute;

/1 explicit, plural String attribute, method access
@\ttribute
public Collection<String> getMultiValueAttribute() { ... }

}
Runtime Representation

At runtime, the definition of a managed attribute is represented as an instance of At t ri but -
eDescri ptor,i.e.either Si ngul ar Attri but eDescri ptor orPl ural Attri but eDescri ptor,
depending on the member's multiplicity. The attribute itself is managed by an instance of
Attribute,ie.SingularAttributeorPlural Attribute.Figure 4.13, “Runtime Represen-
tation of Attributes” depicts this relationship.

Figure 4.13. Runtime Representation of Attributes
Responsibilities

The At t ri but e instance is mainly responsible for propagating any value changes to the un-
derlying bean property. The full responsibilities of the At t ri but e interface can be summa-
rized as follows:

* manage the value of a bean instance member with the given type
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e track the member's state, including the following properties:

Table 4.6. Attribute State Variables

State Variable Description

i nstanti at ed Defines, whether the managed member's
value has been instantiated already.

specified Defines, whether the user explicitly
specified the attribute value.

e support structural navigation: provide access to the parent component

e realize event handling: provide methods to register event handlers for the following
41
events™:

Table 4.7. Attribute Events

Event Description

Change Triggered upon any value changes.

* provide meta-data access*”: enable accessing to the At t ri but eDescri pt or corresponding
to the member's type.

4.4.1.3. Parts

Complex sub-assemblies of a product or assembly are modeled using parts. Like attributes,
a part corresponds to a JavaBean property, that is, a field and a corresponding getter/setter
method pair.

By default, all Obj ect valued bean properties (except those mapped as attributes, see Sec-
tion 4.4.1.2, “Attributes”) are considered parts. They can be explicitly mapped using the
@art annotation. Similar to attributes, parts can have a single value (singular part) or can
have multiple values (plural part). Example part definitions are shown in Example 4.6, “Us-
age of the @art Annotation”.

Example 4.6. Usage of the @art Annotation

public class Assenbly {
/1 inmplicit, singular part, field access
private SubAssenbly part;

/1 explicit, singular part, field access
@art
private SubAssenbly anotherPart;

/1 explicit, plural part, nethod access

@art

public Coll ection<SubAssenbl y> get Ml ti ConponentPart() { ... }
}
public class SubAssenbly { ... }

Runtime Representation

Again, the definition of a managed part is represented by an instance of a Par t Descr i pt or,
i.e. either Si ngul ar Part Descri pt or or Pl ural Part Descri ptor. The part itself, in turn, is

1 Additional events may be specified in the future.
“Note that by now facets only exist on component level. Expanding this concept on attribute level might be a
reasonable framework enhancement in the future.

128



Structure Modeling

an instance of Part, i.e. Si ngul ar Part or Pl ur al Part . In contrast to attributes, which direct-
ly manage the JavaBean member's value, a part references the JavaBean property's value in
terms of a component. On the one hand, this precisely reflects the natural relationship be-
tween two components, on the other hand this has the benefit, that nested components can
be treated like regular components.

Figure 4.14, “Runtime Representation of Parts” shows the UML object diagram of a part re-

lationship. Note that in UML diagrams, part relationships are usually modelled as aggrega-
tions, respectively compositions.

Figure 4.14. Runtime Representation of Parts
Responsibilities
The intermediate Par t instance is used to control the aggregation relationship between two
or more components. It can be seen as a placeholder for the aggregated component(s). The
responsibilities of the Part interface can be summarized as follows:

* manage access to the nested component instance

e delegate dynamic type changes (see Section 4.4.1.1, “Components”) to the nested compo-
nent instance

e track the nested component's state, including the following properties:

Table 4.8. Part State Variables

State Variable Description

i nstanti at ed Defines, whether the component, managed
by the part, has been instantiated already.
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State Variable

speci fied

Description

Defines, whether the user explicitly
specified some property of the part's
nested component.

e support structural navigation: allow accessing the parent component and nested

component(s)

e realize event handling: provide methods to register event handlers for the following

events:

Event

Change

Val ueChange

Table 4.9. Part Events

Description

Triggered upon any changes of the nested
component (e.g., value changes, type
changes, ...).

Triggered when the nested managed bean
changes (e.g., attribute/part changes).

e provide meta-data access™: enable access to the Part Descri pt or corresponding to the

part's current type

Having described the structural modeling concepts in this section, in the next section we
will discover, how particular attributes can be accompanied with additional, product related

semantics.

4.4.2. Product Modeling

Within our conceptualization, we specify additional annotations to support product model-
ing more precisely. The following annotations are available:

Table 4.10. Product Modeling Concepts

Annotation
@°r oduct

@°r oduct . Nanme
@r oduct . Descri ption
@roduct. Attri bute

Description

Designates a type to represent a (physical or non-physical)
product.

Identifies an attribute as the product's name.
Marks an attribute as product description.

Designates an attribute as product specification attribute.
Specification attributes are considered as the "visible",
most relevant attributes from a customer perspective. They
appear, for instance, in a product catalog.

The @ oduct . At tri but e annotation provides the
following elements:

* | abel (optional): St ri ng providing the speaking name of
an attribute

e | evel (optional):int array describing the level of detail
of the attribute. We distinguish:
* UNDEFI NED (ordinal 0)

®Note that the concept of facets is also not available on part level yet. This may change in a future release of Open-

Configurator.
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Annotation Description

| DENTI FI CATI ON (ordinal 1)

STANDARD (ordinal 2)

DETAI L (ordinal 4)

SPECI AL (ordinal 8)

The handling of these levels is client specific.

@r oduct . Asset ? Marks an attribute as provider of a product asset. The
attribute must be of type byte[] orjava.io. | nput Stream

The @r oduct . Asset annotation further provides the
following attributes:

* nane (optional): gives the asset a client-specific name.
OpenConfigurator specifies the following built-in
names :

* PRI MARY

* PRI MARY_THUMBNAI L

* SECONDARY

* SECONDARY_THUVBNAI L

The name is not required to be unique, that is, a class
can provide multiple, e.g., secondary images. The
consideration of the name is client-specific and non-
normative.

@r oduct . Price Identifies an attribute as provider for the product's price.
The attribute may have any numeric type, however,
Bi gDeci mal is recommended for precise price calculation
purposes.*

“Providing product visualizations using this annotation is considered a very basic form. We will enhance the visu-

alization capabilities of products in a future version. E.g., we'll allow to specify the encoding format for the returned
data stream etc.

PThe values' prefixes i nf 0. openconfi gurat or. product s. annot ati on. Product . Asset. have
been omitted for brevity. The API provides equally named static constants for these names.

‘Note that beyond the @ oduct . Pri ce annotation, OpenConfigurator doesn't specify any additional price
calculation strategy yet. Consequently, within the price attribute's getter method, the developer must implement
the full pricing logic manually. We will provide support for more sophisticated strategies in a future version.

Example 4.7, “Usage of the @r oduct Annotation” shows a JavaBean definition using @r od-
uct annotations:
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Example 4.7. Usage of the @r oduct Annotation

@r oduct
public abstract class Bike
{

@r oduct . Nanme
public String getNane() { ... }

@r oduct . Descri ption
public String getDescription() { ... }

@roduct . Price
public Bi gDeci mal getPrice()

{
return new Bi gDeci mal (0, new Mat hCont ext (2))
. add(basePri ce)
.add(frane.getPrice())
.add(fork.getPrice())
.add(wheel s. getPrice())
. add( get Equi pmrent sPrice());
}
@r oduct . Asset (name = PRI MARY)
public byte[] getlmage() { ... }
@roduct.Attribute(label = "Total weight", |evel = STANDARD)
public int getWeight() { ... }
@roduct. Attribute(label = "Robustness factor", |level = SPECIAL)

publ i c doubl e get Robustness() { ... }
}
Runtime Representation

The data designated by the annotations introduced above can be accessed at runtime using
the product facet. This facet provides a product-centric view on a component (see "Product
facet" in Section 4.3.3, “Facets”). For a detailed description of the Product facet interface,
refer to Appendix C, OpenConfigurator API/SPI.

The concepts presented in this sections merely describe static aspects of a product. With
them, customizable areas cannot be defined yet. This is subject to the configuration related
annotations presented in the next section.

4.4.3. Configuration Modeling

For interactive configuration of customizable products, the framework needs to know which
components of the structure are configurable and how specification for these shall proceed.
For that purpose, our conceptualization offers a number of annotations to be applied on a
product type:

Table 4.11. Configuration Modeling Concepts

Annotation Description

@el ectabl e Component level annotation, indicating that
the given component is to be selected from
an existing set of available components.

@onfigurable Component level annotation, indicating
that the given component is selected
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Annotation Description

but additionally contains parameterized
attributes.

@onstructible Component level annotation, indicating that
custom variants can be created freely.

@/ari abl e Designates an attribute to be configurable
during the configuration process.

@ar anet er Designates an attribute being a freely
customizable parameter of the underlying
component.

@cal cul at ed Signaling, that an attribute represents a
calculated value.

@conf i gur ed Designates a configurable part of the
component.

The first three annotations, @el ect abl e, @onf i gur abl e and @onst ruct i bl e, are used to
define the specification method. These methods exactly correspond to the three different strate-
gies applicable for the specification of configuration decisions identified in Section 3.2.1,
“Characteristics of Product Configuration”. We will discuss these specification methods in
more detail in a moment.

The annotations @/ar i abl e, @ar anet er and @al cul at ed apply to attributes and charac-
terize their role during the configuration process. Basically, they are used to model the dif-
ferent attribute types explained in Section 3.1.2, “Attributes: Component Characteristics”.

The last annotation, @onf i gur ed, is used to explicitly designate a part being configurable
in the context of its parent.

4.4.3.1. Specification Methods

Per component type, the domain model author must define, how an instance of the given
type is being specified during the configuration process. He may choose from one of the
three available methods @el ect abl e, @onf i gur abl e and @onst ructi bl e for a particular
component type. By default, if no annotation is present, a component is considered @on-
figurable.

In order to better understand the different specification methods, its useful to describe dif-
ferent concrete use cases. Hence, we will introduce each specification method with a concrete
example.

Selection

Take for example a car manufacturer offering configurable automobiles, a typical assem-
ble-to-order company (AtO, see Section 2.3.3.4, “Order Fulfillment Strategies”): when con-
figuring a car, the manufacturer won't offer motors with arbitrary performance parameters,
for both technical and marketing reasons. Instead, as an ATO company, he will offer specific,
pre-defined variants of motors only, of which he holds numerous exemplars in stock. During
configuration, the customer selects a single component variant and takes it "as is".

In terms of OpenConfigurator, this would be modeled as follows (see Example 4.8, “Model-
ing Selectable Components”):
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Example 4.8. Modeling Selectable Components

@r oduct
public class Car
{
@confi gured
private Mdtor notor;
}
@5el ect abl e
@Conponent
public class Mtor
{
private Fuel Type fuel Type;
private int power;
private BigDecinal price;
}

The @el ect abl e annotation is placed directly on the target component, Mt or in this case.
This makes sense, since the car manufacturer solely produces pre-manufactured motor vari-
ants and wants to enforce selection of a particular variant, whenever a motor is referenced
within a configurable product.

Technically spoken, the user selects a tuple of attributes instead of choosing arbitrary com-
binations of values for individual attributes. Figure 4.15, “Component Selection Schema” il-
lustrates this:

Figure 4.15. Component Selection Schema

As whole tuples and not particular attribute values are selected, the domain must be defined
on component level (component level domain) using the @onai n. Quer y annotation (see Sec-
tion 4.4.4.1, “Domains” for details).
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Provided that the underlying data store (e.g., a relational database) identifies the tuple by
a unique identifier (ID), for the configurator it is sufficient to store the exact type (Mot or in
this case) and the tuple ID with the configuration.

Note that although @Bel ect abl e is used, signaling tuple selection mode, the visual interface
for choosing that tuple may be displayed "incrementally", as Figure 4.16, “Incremental Com-
ponent Selection” indicates:

Figure 4.16. Incremental Component Selection

In this case, the Mot or component would additionally be constrained using the @Rel at i onal
annotation (see Section 4.4.5, “Constraint Modeling”) and the variables, that the user can
influence directly, are annotated @/ar i abl e (see Section 4.4.3.2, “Configuration Attributes”).
This ensures, that the attribute domains are reduced in relation to each other: e.g., when the
user specifies Di esel as Fuel Type, the Power attribute's domain is shrunk to the values 250
and 100 automatically, as only tuples with these values remain. This is done regardless of the
order of specification. That means, when the user specified the Power attribute to be 80 first,
the configurator would have automatically fixed the Fuel Type attribute to the value Gas, as
this way selected gas motor is the only one available with a Power of 80. The reduction of
domain values in this manner, is an example for constraint propagation (see "Constraint based
configuration” in Section 3.3.3.5, “Implementation Aspects”).

A selectable component must not contain parameterized attributes, i.e. attributes annotated
@ar anet er . If the selection of a base product and subsequent parameterization of the cho-
sen component is required, Configuration, as discussed in the next section, must be used as
specification method.

Configuration

OpenConfigurator offers the ability to mark parameterized components as being @onf i g-
ur abl e. As stated in Section 3.2.1, “Characteristics of Product Configuration”, Configuration
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can be seen as a specification method between Selection and Construction. In fact, the specifi-
cation of a component often involves an initial selection of a base component variant along
with a subsequent parameterization activity (which could be considered as a construction
task as well, see below).

An example use case for a configurable, parameterized component is a window: a window
manufacturer may offer several base window types that determine the general forming, used
materials etc. Concrete windows, however, are built customer specific, that is, the company
doesn't pre-define the dimensions of the product upfront. Instead, wi dt h and hei ght are
defined as parameters in the product model and the decision about the concrete dimensions
is left to the customer. In reality, though, the company would certainly restrict the maximum
dimensions to a certain size using @hx constraints (see Section 4.4.5, “Constraint Model-

ing”).

In terms of OpenConfigurator, a Java domain model describing such a window product
could look like the one shown in Example 4.9, “Modeling Configured, Parameterized Com-
ponents”:

Example 4.9. Modeling Configured, Parameterized Components

@Confi gurabl e
@°r oduct
public class W ndow

{
@/ari abl e

private Form form

@/ari abl e
private Material material;

@par anet er
private int w dth, height;

}

Since the W ndow type contains the @ar amet er annotated attributes wi dt h and hei ght, it
must be annotated @onfi gurabl e (or alternatively @onstructi bl e, see below). During
configuration, the user first selects a base product variant of type W ndow, as he does in the
case of Selection described above, too. Technically, this again corresponds to the selection of
an existing tuple of attributes (here a 2-tupel containing a specific f or mand mat eri al value).
Then, he specifies the additional attributes declared as parameters (here wi dt h and hei ght )
to complete the component specification task.

Figure 4.17, “Component Configuration Schema” illustrates this concept graphically:
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Figure 4.17. Component Configuration Schema

For parameterized components, often both types of domains, component level and attribute
level domains (see Section 4.4.4.1, “Domains”), are used: the component level domain defin-
ition demarcates the selectable tuple of the component, while attribute domain specifications
define the value space for the parameters.

The configurator must store the selected base product tuple's ID along with all specified pa-
rameters with the configuration. The @Rel ati onal annotation may be used in connection
with the @onf i gur abl e annotation, but the relation must not involve any @ar amet er an-
notated attribute, though (see Section 4.4.5, “Constraint Modeling” for details).

Construction

Another type of products are entirely customized goods. Particularly, companies pursuing
built-to-order strategies (BtO, see Section 2.3.3.4, “Order Fulfillment Strategies”), often offer
products, that include freely definable components. For these components, no base compo-
nent exists and virtually any combination of attribute values is manufacturable.

For example, this is the case for kitchens: while the individual units of a kitchen themselves
belong to a particular product line and are configurable components in itself, the overall

kitchen can be modeled as a constructable product, that doesn't exist as is.

Using OpenConfigurator, a kitchen domain model could be defined as follows, see Exam-
ple 4.10, “Modeling Constructed Components”.
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Example 4.10. Modeling Constructed Components

@onstructibl e

@°r oduct
public class Kitchen
{

@par anet er
private int length, wi dth, height;

@Conf i gured
private Countertop countertop;

@Conf i gured
private List<Unit> floorUnits, wallUnits;

}

As a Construction component, the kitchen class solely owns parameter attributes and config-
ured components, which itself may be selectable, configurable or constructible, in the same
way.

Basically, an @onst ructi bl e component may also cover @/ar i abl e attributes, but no reg-
ular ones. During specification, the user must specify all parameters and choose values for
all non-optional variable attributes. As there is no upstream selection activity, regular attrib-
utes wouldn't ever get assigned, which is why they're forbidden entirely.

In the Construction scenario, the user does not select any attribute tuples, but instead specifies
each attribute individually. Thus, domains may solely be defined on attribute level (attribute
level domains).

Figure 4.18, “Component Construction Schema” explains the constructive specification
graphically:

Figure 4.18. Component Construction Schema
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For constructed components, the configurator stores each particular attribute value instead
of a tuple ID.

Figure 4.19, “Comparison of Specification Methods” shows a comparison matrix of the three
specification methods Selection, Configuration and Construction, that summarizes their differ-
ences. The features mentioned in the table will be explained more detailed in subsequent
sections.

Figure 4.19. Comparison of Specification Methods

While all three specification methods have some intersections regarding their behavior, we
separated them conceptually for an improved semantical description of the product model.
Also, the specification methods differ in their default behavior related to the treatment of at-
tributes in case these are not annotated. By this means, it's often obsolete to annotate attribut-
es entirely, which greatly simplifies modeling and supports code readability simultaneously.

4.4.3.2. Configuration Attributes

Attributes are used to precisely characterize component variants.

In the previous section's examples, we already used attribute annotations and mentioned
their purposes roughly. In this section, we want to discuss the available configuration at-
tribute annotations, namely @/ar i abl e, @&ar anet er and @al cul at ed, in more detail.
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Figure 4.20, “Comparison of Attribute Types” summarizes the four different types of attrib-
utes graphically. We will come back to this comparison matrix as we discuss the different
concepts.

Figure 4.20. Comparison of Attribute Types
Defaults and Regular Attributes

When a particular attribute is not annotated with one of the given configuration annotations
at all, one of the following two options applies:

1. Default behavior application. In case also none of the other attributes declared within
the same class is annotated, the default behavior as defined in Figure 4.19, “Comparison
of Specification Methods” applies. That is, by default, attributes of @el ect abl e compo-
nents are treated as regular attributes, the ones of @onfi gur abl e components are con-
sidered @ari abl e attributes and those of @onstructi bl e components are treated as
@rar anet er s.

2. Regular attribute. If at least one of the other attributes is annotated with a configuration
attribute annotation, a non-annotated attribute is considered as regular attribute.

A regular attribute can be used to either model internal aspects of a product (e.g., an internal
value used for price calculations) or can be used to represent invariable component charac-
teristics. Anyway, regular attributes cannot be specified directly by the user. However, they
can only be changed indirectly, when the user selects a different tuple.

Consider, for instance, the pri ce field of the Mot or component used in Figure 4.16, “Incre-
mental Component Selection”, which is a regular attribute. Depending on the selected tuple,

140



Configuration Modeling

the price is automatically adjusted. In this case, the user cannot specify the tuple by choosing
a particular price.

Regular attributes can itself be constrained and referenced as targets in constraint expres-
sions (see Section 4.4.5, “Constraint Modeling”).

Variable Attributes

Attributes, that may be manipulated by the user during configuration, must be annotated
@vari abl e (the default behavior for configurable components). Importantly, variable attrib-
utes must have a bounded domain, that is, their domain values must be enumerable ( see Sec-
tion 4.4.4.1, “Domains” for details). Otherwise, the framework raises an exception.

During the configuration process, the configurator client presents some kind of editable com-
ponent for manipulating the variable attribute's value. For attributes with locally defined
domains, this editable component may be one of the standard user interface components,
such as an input field, a drop-down list, a checkbox, radioboxes etc. However, it may as well
be a tabular list for domains defined on component level.

Like regular attributes, variables can be constrained and referenced as targets in constraint
expressions. Furthermore, due to their bounded domain, the configurator can resolve config-
uration problems featuring variable attributes and can automatically complete their values.

An example for a variable attribute is the mat eri al attribute from Example 4.9, “Modeling
Configured, Parameterized Components”.

Parameter Attributes

Not all attributes have bounded domains. For example, a simple String, | ong, doubl e,
float orint typed attribute without any additional constraint is considered unbounded*.
To support unbounded domains, OpenConfigurator allows attributes to be annotated @a-
raneter.

Parameters are treated in a special way within the framework at various points: for exam-
ple, they cannot be considered during the solving process of constraint satisfaction problem
(CSP)*and they cannot be automatically assigned by the framework. Furthermore, their do-
main cannot be defined on component level, since providing domains in terms of concrete
tuples inherently result in enumerable, bounded domains. Otherwise, they share the same
characteristics than variable attributes.

Typical examples for parameters are the dimension properties | engt h, wi dt h and hei ght
shown in Example 4.10, “Modeling Constructed Components”.

Calculated Attributes

Product models often require attributes, that perform some kind of calculation. Meaning-
ful examples include price fields of configurable components, which, for instance, calculate
prices depending on the product's dimensions.

Example 4.11, “Usage of the @al cul at ed Annotation” shows an example of a calculated
price attribute:

#Note that, strictly speaking, these types are bounded: there's a maximum string length, a maximum | ong
(Long. MAX_VALUE) and i nt value (I nt eger . MAX_VALUE) and also a maximum doubl e precision. How-
ever, enumerating their values isn't feasible with sufficient performance, which is why they're semantically consid-
ered to be unbounded.

®The feature of automatically generating solutions by transforming the configuration into a constraint satisfaction
problem (CSP) and solving it is not further discussed but may be subject to future research work, see also Sec-
tion 7.2.1, “CSP/ Constraint Solver Integration”.
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Example 4.11. Usage of the @al cul at ed Annotation

@onfi gurabl e
@r oduct
public class W ndow

{

@rar anet er
private int width, height;
private BigDeci mal pricePerSquareMeter = new Bi gDeci mal (125.5);

@cal cul at ed
@rice
public Bi gDeci mal getPrice()

{
final int sgm= width / 100 * height / 100;

return new Bi gDecimal (1, new Mat hCont ext (2))
.mul tiply(new Bi gDeci nal (sqm)
.mul tiply(pricePerSquareMeter);

}

Technically, OpenConfigurator must not cache the computed values within the generic mod-
el instance, which is why domain model authors are encouraged to annotate such attributes
@al cul at ed. This signals the framework that the value may dynamically change at any
point in time, that is, whenever a property accessed during the computation changes.

Moreover, an important characteristic of calculated attributes is, that their results cannot be
accessed before the underlying managed bean instance has been instantiated. An exception
to this rule are calculated attributes defined using Java's st at i ¢ modifier. These can be ac-
cessed without an instance of the same class.

Naturally, for calculated attributes the domain is not specified explicitly, due to its unbound-
ed size. Furthermore, since OpenConfigurator doesn't know which properties influence the
computation, calculated attributes must not be constrained or used as targets in constraint
expressions. If a constraint referencing a calculated property would be violated, the frame-
work could not provide any hint on how to resolve the violation®.

4.4.3.3. Configurable Parts

Finally, OpenConfigurator provides the @onf i gur ed annotation to mark parts as being rel-
evant for configuration explicitly. For parts, the same default behavior applies as it does for
attributes: if at least a single property is annotated @onf i gur ed, only annotated properties
are considered. Otherwise, if none of the part properties is annotated, they're all considered
@onf i gur ed by default.

Example 4.12, “Use of the @onf i gur ed Annotation” shows one configured part not or and
one regular, invariable part gear box:

*®In a future version of OpenConfigurator we might employ another annotation that provides exactly this infor-
mation. For instance, a code fragment like @r oper t yDependency({ "w dth", "height", "pri-
cePer Squar eMeter” }) could be used to specify that the calculation depends on the properties W dt h,
hei ght and pri cePer Squar eMet er . This way, the framework could provide messages like "Change width
and/or height of X in order to resolve the constraint violation".
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Example 4.12. Use of the @onfi gur ed Annotation

@r oduct
public class Car

{

@onfi gured
@rar t
private Mtor notor;

@rar t
private Gearbox gearbox;

}

Any component type, that is referenced as @onf i gur ed part of another component, must
define one of the specification methods @el ect abl e, @onf i gur abl e or @onstructi bl e
as described in Section 4.4.3.1, “Specification Methods”.

We've now seen, how customizable components are modeled structurally and how customiz-
able areas (realized as attributes or parts) can be defined. From these definitions, OpenCon-
figurator is able to extract the list of configuration decisions, required to configure an in-
stance of the given type. We'll cover an example in detail in Section 4.5, “Configuration Pro-
cedure”.

In the next section, we will show, how the OpenConfigurator supports the definition of do-
mains. That is, how the options for the particular configuration decisions can be defined.

4.4.4. Data Modeling

By now, we solely defined the customizable product's structure along with its adaptable
areas. In principle, a model defined this way can already be used as the domain model for
a working configurator. The user could choose arbitrary values for the different attributes
and could configure any part at will (assuming the part uses the specification method other
than @®el ect abl e).

However, this behavior is rarely demanded in real-world use cases: in Section 2.2.6, “Mass
Customization”, we identified the limited, stable solution space as a key factor for the suc-
cessful implementation of mass customization. That means, companies in practice wouldn't
allow the customer to configure arbitrary product variants. Instead, they'd restrict the so-
lution space by specifying the values, a particular performance attribute can take. Or they
would want to define the concrete variants of a component, the user can choose from, when
selecting a part. Hence, the configurator developer must be able to define or restrict the do-
mains for a given configuration decision.

In the next section, we'll show how you can define domains for the decisions determined
from the configuration domain model. The then following Section 4.4.4.2, “Defaults” will
demonstrate, how you can designate a specific domain value as the default value for a par-
ticular element. Finally, Section 4.4.5, “Constraint Modeling” introduces constraints, used to
restrict the domains' value spaces.

4.4.4.1. Domains

Again, so far we showed, how Java language constructs enriched with a custom set of an-
notations can be used to model product structures and configuration behavior. However, an es-
sential aspect of product modeling was still missing: the modeling of product variation.

For instance, in Example 4.8, “Modeling Selectable Components” we described a Car product
containing a Mot or component characterized by the attributes f uel Type, power and pri ce.
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We did not specify valid values and value combinations for neither the Mt or component
itself, nor its three attributes. As explained in Section 2.1.2, “Variants” though, it are partic-
ularly the attribute values, that make up the different variants of one and the same product.

To recapitulate, here's the source code fragment from the Car component model again:

@°r oduct
public class Car
{
@Conf i gured
private Mdtor notor;
}
@>el ect abl e
@Conponent
public class Mtor
{
private Fuel Type fuel Type;
private int power;
private BigDecimal price;
}

Now, when configuring an instance of the Car class, how can the configurator know, what
Mot or s are available? What options/ values for the Mot or attributes should it offer to the user
to choose from?

The answer is short: the developer must back the model with data. In particular, he must
design the components' and attributes' domains.

Domains, however, have manifold characteristics and can be defined in numerous ways (see
also item Domains in Section 3.1.2, “Attributes: Component Characteristics”). Figure 4.21,
“Morphological Box for Domains” gives an overview of possibilities relevant to the Open-
Configurator framework.

Figure 4.21. Morphological Box for Domains
Domain Characteristics

First of all, we need to distinguish certain domain characteristics. For configuring object-ori-
ented models, we have to differentiate various domain targets. Basically, all decisions defined
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in Section 3.1, “Basic Meta Model for Generic Product Modeling”, must be backed with do-
mains. However, some of them cannot be modeled explicitly.

Component type domains. During configuration, the user sometimes must choose a par-
ticular component type, as defined in Section 3.1.1, “Components: Structural Decomposi-
tion”. To back this decision with data, component type domains, containing type identifiers,
are required.

For instance, in Section 4.5.2, “Example Configuration Procedure” we will see, that a Bi ke
can be configured with one or multiple Equi pment components. When adding an Equi p-
nent, the user must choose between a Lock or a Basket item. The specify type task thus
must be backed with a component type domain, containing the values Lock. cl ass and
Basket . cl ass.

Figure 4.22, “Runtime Representation of a Component Type Domain” illustrates this, includ-
ing the runtime representation of a corresponding domain object:

Figure 4.22. Runtime Representation of a Component Type Domain

Of course, a type decision is only needed, when multiple subtypes of a given component
exist. For a configured part with an abstract type (e.g., Equi pment ), the component type do-
main by default contains all non-abstract subtypes of the given type (e.g., Lock and Basket ).
Otherwise, OpenConfigurator offers an annotation to restrict the available types to an enu-
merated set, see Section 4.4.4.1, “Component Type Domain Definition” below.

Attribute value domains. The most common case for configuration decisions is the spec-
ification of attribute values. These decisions must be backed with attribute value domains. In
general, it's useful to differentiate two domain scopes:

e Attribute level (monadic values). Domain definitions may have attribute scope, that is,
the definition solely defines the values of a dedicated attribute. Hence, a list of singular
values is specified.

e Component level (n-adic tuples). Otherwise, domains may be defined on component
level, providing values for all its 1 attributes. Here, the definition specifies a table, or more
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precisely: multiple lists of values (one for each attribute), that are extracted from the pro-
vided tuples.

Figure 4.23, “Component Level and Attribute Level Domains” illustrates the difference be-
tween both domain scopes:

Figure 4.23. Component Level and Attribute Level Domains

In both cases, only distinct values are picked up into the attribute's domain.

Part values domains. Another common case for configuration decisions is the specification
of parts. Similar to attribute decisions, these decisions must be backed with part value domains.

The domains for part values can be defined in terms of tuples in two ways:

e Componentlevel (n-adic tuples). The domain defined on componentlevel, that is, with-
in the component definition, is used whenever the component is referenced as part of an-
other component. It can be seen as the default domain for the component.

e Part level override (n-adic tuples). The domain for part components can also be over-
ridden on part level, allowing only a particular subset of component instances to be used
for a certain part.

We will provide an example for both definition methods below.

However, the definition of part value domains is optional in certain situations. It depends
on the part's specification method:

e Selection. If the part component is annotated @el ect abl e, a part domain must be spec-
ified on component or part level explicitly.

* Configuration. If the part component is annotated @onf i gur abl e, a part domain may
be specified on component or part level. If the domain is not specified though, the com-
ponent may not contain regular attributes. Instead all attributes must be either declared
as variable (@/ar i abl e), parameter (@Par anet er ) or calculated attributes (@al cul at ed).

* Construction. If the part component is annotated @onst r ucti bl e, a part domain must
not be specified, neither on component nor on part level.

Domains for other decisions. The domains for the other decisions mentioned in Sec-
tion 3.1, “Basic Meta Model for Generic Product Modeling” cannot be modeled explicitly,
but are implicitly modeled by the developer. For instance, the component customization deci-
sion is implicitly defined by the specification method used (see Section 4.4.3.1, “Specification
Methods”).
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Also, the component variety decision depends on the cardinality of the domain (see "Domain
size" below): if there are multiple items contained in the domain, the user must choose a
particular one (alternative components). If there is only a single one, the user has no choice
(fixed component).

Nevertheless, candidates for explicit domains are possibly the quantity decisions, but current-
ly our conceptualization doesn't foresee explicit definitions for these. Instead, the cardinality
of multi-value attributes or multi-component parts is managed internally by the framework
and may be restricted by extensional constraints only (see Section 4.4.5, “Constraint Model-

ing”).

Domain size. Technically, an important aspect is the domain size, which strongly influences
the configurator's computing performance. The domain size may be described as:

e Empty. An empty domain may result from constraint propagation, that is, all values
have been removed from the domain due to the application of constraints (see "Constraint
based configuration" in Section 3.3.3.5, “Implementation Aspects”). If the attribute is non-
optional, the configuration problem cannot ever be solved and previous decisions must
be backtracked in order to find a valid solution.

* Fixed. When only a single value remains within a domain, we say it is fixed to that par-
ticular value. The configurator automatically selects fixed domain values and doesn't re-
quire the user to specify the attribute explicitly (as no alternative options remain anyway).

* Enumerated. The domain values are stored as individual values. A domain is consid-
ered enumerated (also called finite), if it contains less than a certain threshold amount of val-
ues. Assuming the configuration problem solely contains enumerated domains, the con-
figurator can (at least in theory) calculate all possible solutions in finite time. By continu-
ously retaining only those values in a domain, that are part of a solution, the configurator
can avoid decision backtracking entirely (see [Runte2006, pp. 57]).

* Bounded. The domain's values are limited to a lower and an upper bound value. While
mathematically, the amount of values are countable, the domain size is usually too large
to allow real-time propagation in interactive configuration processes.

e Unbounded. The domain doesn't specify an upper and/or lower bound value or the
values are mathematically not countable (e.g., real numbers). Unbound domains cannot
be propagated during interactive (:onfigura’cion.47

An unbounded domain of a variable x may become bounded, when a constraint like x <
10000 is posted. A bounded domain, in turn, may become enumerated, when a constraint
like x <= t is posted, where t is the threshold value, or when the domain's values are
intensionally enumerated (see "Domain definition" below).

Domain Definition

The OpenConfigurator framework offers several ways to express domain definitions. Be-
fore describing concrete annotations, we will give an overview of the available definition
methods first.

For every component type/attribute the domain is defined implicitly by it's Java data type.
For instance, the domain of an attribute extracted from a bool ean field implicitly contains
the values true and f al se.

“Note that although computation technically, the Java data types i nt eger (32 bit, 232 values), | ong (64 bit,

2% values) , f | 0at (32 bit single precision floating point) and doubl e (64 bit double precision floating-point)
have inherent bounds (e.g., | nt eger . MAX_VALUE), in absence of further restrictions they're considered as being
unbounded throughout this work.
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A domain can also be defined explicitly by the developer using meta-data annotations,
though. Using this declarative approach, domains are described either intensionally or exten-
sionally:

Intensional (enumerative). An intensional definition means, that the exact values available
are enumerated. Here, we can distinguish, whether the model developer lists the values inplace
or defines them externally.

Inplace means, the developer embeds the list of values directly into the Java model, using a
source code annotation (e.g., @omai n(" bl ack", "white", "silver", "red", "blue")).
Externally means, he points to an external representation (e.g., by stating a query using the
@omai n. Quer y annotation).

Enumeratively described domains are by definition enumerated (in the sense of the domain
size described above).

Extensional. Defining domains extensionally means, that constraints are used to limit the
implicitly specified value space of an attribute. For example, an unary constraint such as
@vax(1000) states, that the upper bound of a domain is (at maximum) 1000. Theoretical-
ly, also binary and n-ary constraints (see Section 3.1.3, “Constraints: Domain Restrictions”),
which reference more than one variable, restrict the domain of an attribute. However, in prac-
tice, propagating such constraints quickly becomes a complex operation, which is why these
constraints are mostly validated a posteriori, hence, after the customer submitted a value.®®

Effectively both definition methods, intensional and extensional annotations, restrict the at-
tribute domain's value space, which is why both can be considered domain constraints in the
narrower sense. Throughout this work, however, we refer to intensional annotations as do-
main annotations and to extensional annotations as constraint annotations. Both concepts
can be used in parallel to precisely define the allowed values for an attribute.

Figure 4.24, “Domain Definition Concepts” summarizes the domain definition concepts.

Figure 4.24. Domain Definition Concepts

As can be seen in the previous figure, the ultimate value space of a domain is determined
by the intersection of the implicit domain, extensional domain and intensional domain.

*Note that the OpenConfigurator framework currently doesn't even propagate unary constraints. Instead, only
intensional domain annotations are considered while building up the domains' value spaces. All extensional con-
straints are checked after user input.
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Also remember, that an attribute's domain may change at runtime, as the user may change
dependent variables, add components with additional constraints or explicitly remove do-
main values.

Now it's time to describe the domain annotations along with the implicit domain definition
behavior concretely. Constraint annotations are discussed in Section 4.4.5, “Constraint Mod-
eling”.

Component Type Domain Definition

For component type decisions related to the specification of configurable parts, OpenCon-
figurator applies the following behavior:

Implicit type domain. The implicit type domain of a part corresponds to the (concrete) type
closure of the part's base type. Hence, by default, all non-abstract subtypes of the given part
type are contained in the type domain.

Explicit type domain annotations. The implicit type domain can be narrowed by applying
the following annotations on the part:

Table 4.12. Type Domain Annotations®

Annotation Characteristic Description
@ypeDonai n intensional, ~ Enumerates the possible types of a part. The listed
internal types must extend the part's base type.

?Additional annotations to control the type domains are planned for a future version of OpenConfigurator.

Example 4.13, “Implicit and Explicit Definition of Type Domains” demonstrates the different
component type definition methods, including the use of the @ypeDomai n annotation.

Example 4.13. Implicit and Explicit Definition of Type Domains

public abstract class Bike

{

@cConfi gured
public Coll ection<Equi pment> get Equi pnents() { ... } ©

}
public class CityBi ke extends Bike { ... }

public class MuntainBi ke extends Bi ke

{
@confi gured

@ypebDomai n({ Lock.class }) ®

@verride
publ i c Col | ecti on<Equi prent > get Equi prrents() { ... }

}

public abstract class Equiprent { ... }
public class Lock extends Equiprent { ... }
public class Basket extends Equiprment { ... }

® The Bi ke class defines the equi pnent part without an explicit TypeDonai n annotation.
Thus, the domain falls back to the implicitly defined one.

Consequently, when configuring a Ci t yBi ke, the type domain for the equi pnent part
contains all non-abstract subtypes of Equi prent : Lock and Basket .

®  Within the Mount ai nBi ke class, the equipment part is redefined (by overriding the get E-
qui prent s() method), narrowing the type domain to the Lock class by using the
@'ypeDonai n annotation.

149



Chapter 4. Methodology and Conceptualization

Thus, when configuring a Mount ai nBi ke, a user can only configure Lock equipments.
Attribute Value Domain Definition
OpenConfigurator applies the following behavior for attribute domains:

Implicit attribute value domain. The implicit domains for component attributes are cre-
ated depending on the attribute's Java type. The following mapping is assumed:

Table 4.13. Implicit Attribute Domains

Types® Domain Characterization

bool ean Boolean domain, enumerated, values: t r ue
and f al se

byt e, short Numeric domain, bounded

i nt eger, | ong, fl oat, doubl e Numeric domain, unbounded

char, String Character /String domain, unbounded

Enum(derivatives) Symbolic domain, enumerated, values:

Enum val ues()

byte[], | nput Stream Binary domain, unbounded

The primitive object wrappers Bool ean, | nt eger, etc. as well as their array equivalents (if not stated otherwise)
belong to the group of their primitive equivalents, bool ean, i nt, etc. and are not listed explicitly.

Explicit attribute value domain annotations. The implicit attribute value domain can be
narrowed by applying the following annotations on the corresponding Java member (at-
tribute level domains), respectively on the Java type declaring the member (component lev-
el domains):

Table 4.14. Attribute Domain Annotations®

Annotation Characteristic Description

@onai n (attribute intensional, Enumerates the possible values of an attribute. The

level) internal listed types are represented as St ri ngs and must be
coercible to the respective attribute type using the
target type's val ueCf (St ri ng) methods.

The @omai n annotation can be used on properties
only (field /setter method).

@omai n. Query intensional,  Allows to specify a query as the annotation's val ue.

(component level) external The query is interpreted by the underlying data
provider (see "Data provider" in Section 5.2.2,
“Services”).

If no value is specified, the framework automatically
queries all objects with the given type.

By specifying the annotation's nane element, the
provider is requested to execute the corresponding
named query (see [JSR3172009, p. 351]).

The @onai n. Quer y annotation can be used on
component classes and on part properties (field /
setter method).

dAdditional annotations to control the attribute value domains are planned for a future version of OpenConfigu-
rator.
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Effectively, the @onai n. Quer y annotation allows to externalize configuration options into
a database, thereby, significantly easing the configurator knowledge base maintenance.

When annotations on both component level and attribute level are specified, OpenConfigu-
rator intersects the resulting domains.

Example 4.13, “Implicit and Explicit Definition of Type Domains” demonstrates the use of
the attribute domain annotations for the Bi ke, Weel s, For k and Fr ane component.

Example 4.14. Implicit and Explicit Definition of Attribute Value Domains

@bel ect abl e
@onai n. Query @

public class Weels

{
private String manufacturer;
private doubl e treadDept h;
private BigDecimal price;

}

@>el ect abl e

@onai n. Query("select f fromFork f where f.special = false") ©
public class Fork

{
private bool ean suspension;
private doubl e suspensi onStrengt h;
private Bi gDeci mal price;
private bool ean speci al ;

}

@configurabl e

public class Frane

{
@ari abl e
mrrai n({ n 16" , n 20" , n 24" , n 26" , n 28" }) e
private int size;
@par anet er
private double height; @
@/ari abl e
private Color color; ®

}

©® For the Wieel s component, the attribute value domain is defined on component level
by applying the default @onai n. Quer y annotation. The underlying data provider thus
queries all components of type Weel s and collects the distinct values for the attribute
domains (manuf act urer, t r eadDept h and pri ce).

® For the For k component both component level and attribute level domain definitions
are applied. The @omai n. Query annotation is evaluated by the data provider, which
executes the specified query. Possibly, the returned tuples do not define the suspen-
si onStr engt h attribute, which is annotated separately (otherwise the results are inter-
sected).

® The attribute value domains for the configurable type Frane are defined on attribute
level. For the si ze attribute the possible values are specified explicitly, using the enu-
merative @onmai n annotation.

® The parameter attribute hei ght is implicitly mapped to a numeric, unbounded doubl e

domain.
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® Thecol or attribute's domain is implicitly mapped to an enumerated domain contain-
ing the values of the Java enum type Col or.

Part Value Domain Definition
For part values, OpenConfigurator applies the following domain control behavior:

Implicit part value domain. If the part value domain is not explicitly defined according
to the rules below, OpenConfigurator applies a default behavior depending on the nested
component's specification method:

e Selection. If the nested component is @el ect abl e, OpenConfigurator behaves as if the
part was annotated @omai n. Query (without attributes).

e Configuration. If the nested component is annotated @onf i gur abl e, the framework
checks, whether the component contains regular attributes or variable attributes with-
out attribute level domain definitions. If it does, it behaves as if the part was annotated
@onmai n. Query (without attributes). Else, the framework solely takes attribute level do-
main definition into account.

e Construction. The framework solely takes attribute level domain definition into ac-
count.

Explicit part value domain annotations. The implicit domain can be replaced by applying
the following annotations on either the component class or the part property™:

Table 4.15. Part Domain Annotations®

Annotation Characteristic Description

@onai n. Query intensional,  Allows to specify a query as the annotation's val ue.

(component level) external The query is interpreted by the underlying data
provider (see "Data provider" in Section 5.2.2,
“Services”).

If no value is specified, the framework automatically
queries all objects with the given type.

By specifying the annotation's nane element, the
provider is requested to execute the corresponding
named query (see [JSR3172009, p. 351]).

The @onai n. Quer y annotation can be used on
component classes and on part properties (field /
setter method).

dAdditional annotations to control the part value domains are planned for a future version of OpenConfigurator.
Effectively, this leads to the following algorithm:

1. If OpenConfigurator detects a @onai n. Quer y annotation on the part's property, it eval-
uates it and returns the resulting domain.

2. Otherwise, if the part property is not annotated, but instead, the component class iden-
tified by the part's base type is annotated with @omai n. Query, OpenConfigurator uses
this annotation to create the domain.

“Note: if multiple @ormai n. QuUer y annotations are specified, most specific one is used. For instance, imagine an
implicit annotation has been defined, one as component class annotation and one on the part property. In this case
the part property's annotation would be used. The other annotations are simply ignored instead of being intersected.
See the description of the applied algorithm further down this section.

152



Data Modeling

3. If neither the part property nor the component class is annotated, OpenConfigurator falls
back to the implicit behavior.

Note that OpenConfigurator supports component level domains only for @el ect abl e or
@onf i gur abl e parts (cp. Figure 4.19, “Comparison of Specification Methods”). For @on-
structi bl e part components steps 1 and 2 of the algorithm above are effectively omitted,
i.e. such annotations are simply ignored.

Example 4.15, “Implicit and Explicit Definition of Part Value Domains” shows the part spe-
cific usage of domain annotations:

Example 4.15. Implicit and Explicit Definition of Part Value Domains

@el ect abl e

@onai n. Query @
public class Weels

{
private String manufacturer;
private doubl e treadDept h;
private Bi gDecimal price;
}
public abstract class Bike
{
@confi gured
public Weels get\Weels() { ... } ®
}
public class CityBi ke extends Bike { ... }
public class MuntainBi ke extends Bi ke
{
@confi gured
@onei n. Query("sel ect w from Weels w where w.treadDepth > 0.5") ©
@verride
public Weels getWeels() { ... }
}

® As the @el ect abl e component Wieel s is annotated @onai n. Query, all Weel s in-
stances are queried from the underlying data store, whenever Weel s is referenced
as part. This is the default behavior for @sel ect abl e components. Consequently the
@omai n. Quer y annotation could have been omitted entirely.

® TheBike product references Wheel s as a part, but does not re-define the domain. When
a G tyBi ke instance is configured, OpenConfigurator uses the @omai n. Query anno-
tation of the Wieel s class.

® For Mbunt ai nBi ke instances, the wheel s' part is redefined (by overriding the get -
Weel s() method), narrowing the domain to all tyres with a t r eadDept h greater than
0. 5, as defined by the @onai n. Query.

In this section, we've seen in detail, how domain values for all relevant elements of the gener-
ic configuration model can be defined.

This way, practical use cases can be implemented conveniently: the developer can specify
the domain values for specific attributes, that is, the options for the corresponding decisions,
directly within the domain model using annotations. Alternatively, he externalizes the op-
tion values into a database and solely specifies the correct queries within the model. The
latter approach allows to easily change configuration behavior: an additional option can be
incorporated into the configurator by simply inserting another row into the database.
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In practice, it's often desired to specify a specific default value (default option) for a specific
decision. The next section discusses, how these defaults can be defined.

4.4.4.2. Defaults

As active specification support feature (see specification support in Section 3.3.3.4, “Config-
uration Characteristics”), OpenConfigurator allows the definition of defaults using Java an-
notations. The concept of defaults in this context, applies to all decision types identified in
Section 3.1, “Basic Meta Model for Generic Product Modeling” and can be understood as
the automated pre-selection of a particular value from the corresponding domain without
user intervention.

A default is applied, whenever a component, part or attribute is added to the configuration.
OpenConfigurator applies one of the following actions with regard to defaults:

Implicit default behavior. For the various decision types, OpenConfigurator implements
the default behavior as defined in Table 4.16, “Decision Default Behavior”:

Table 4.16. Decision Default Behavior

Decision Default Behavior Explicitly
Definable®
i. Component type decision None. The user must specify the exact No
value.
ii. Component quantity The cardinality of the initial property No
decision value, if any, is used to determine the
default quantity. Otherwise, the quantity is
set to 0.
iii. Component variety decision None. The user must specify the exact Yes
value.

iv. Component customization ~ None. Depends on specification method.  Yes,
decision indirectly.

v. Attribute quantity decision  The cardinality of the initial property No
value, if any, is used to determine the
default quantity. Otherwise, the quantity is
set to 0.

vi. Attribute valuation decision The initial property value, if any, is used ~ Yes
as default value. Otherwise, the user must
specify the exact value.

Explicit default modeling capabilities for those decisions, marked as not explicitly definable, may be introduced
in a future version of OpenConfigurator.

Explicit default value definition annotations. The categorization of definition approach
introduced for domain definition equally applies to the definition of defaults, which is why
a detailed discussion is not presented here again. In short, OpenConfigurator offers the fol-
lowing annotations for default value definition:

Table 4.17. Default Value Definition Annotations®

Annotation Characteristic Description
@ef aul t intensional, Allows to define a one or multiple default values,
(attribute level) internal depending on the attribute's cardinality. The listed

types are represented as Strings and must be
convertible to the respective attribute type using the
target type's val ueCf ( St ri ng) methods.

The val ue attribute accepts expression values.
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Annotation Characteristic Description

The @ef aul t annotation can be used on attribute
properties only (field /setter).

@efault.Query intensional,  Allows to specify a query as the annotation's val ue
(component level) external attribute, which is executed by the underlying data

provider.

If no query is specified, the framework automatically
queries all objects with the given type.

By specifying the annotation's nane attribute, the
provider is requested to execute a named query.

The executed query's result should contain a single
tuple only, otherwise the first returned tuple is used
as default.

The val ue attribute accepts expression values.

The @ef aul t. Query annotation can be used on
component classes and on part properties (field /
setter method).

4Additional annotations to control attribute value domains are planned to be included in a future version of Open-
Configurator.

The following rules also apply:

For mandatory attributes or parts only: whenever a particular domain gets fixed to a single
value, that value is pre-selected and cannot be modified. This special case of default ap-
plication is referred to as auto completion.

Initial property values can only be determined for non-abstract component types, for techni-
cal reasons. Hence, the annotations for explicit default value definition discussed below,
should be preferred (see the last definition in the example below).

A default value must be contained within the respective domain and must not violate any
defined constraints.

For parts with multiple default annotations only: in order to determine the correct annotation
to use, the algorithm described in Explicit part value domain annotations applies analo-
gously.

Example 4.16, “Implicit and Explicit Definition of Default Values” demonstrates the usage
of @ef aul t annotations:

Example 4.16. Implicit and Explicit Definition of Default Values

public class Muntai nBi ke extends Bi ke

{

}

@confi gured

@onmai n. Query("select f fromFrame f where f.type = 'MIB' ")

@efault. Query("select f fromFrame f where f.type = "'MIB'" +
and f.default = true") @

@verride

public Frane getFrame() { ... }

@configurabl e
public class Frane

{
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@/ari abl e

@omai n({ "16", "18", "20", "24", "26", "28" })
@efaul t("24") ®©

private int size;

@Par anet er
@efaul t ("#{_this.size * 2.5}") ®
private doubl e height;

@/ari abl e
private Col or color = Col or. BLACK; ©®

® For Mount ai nBi ke instances, the f r ame part's default value corresponds exactly to the
frame instance stored within the database, that has t ype set to MIB and def aul t set to
t r ue, as stated by the corresponding query.

® For non-Mount ai nBi ke instances, that don't otherwise specify a default query on the
part property, attribute level defaults apply. For the si ze attribute, for instance, the
value 24 is used as default.

® The @ef aul t annotation of the hei ght parameter shows the use of an expression to
dynamically calculate the default value depending on another value.

® Thecol or attribute defaults to the given initial property value, which is Col or . BLACK.
If Fr ane was an abstract type, using the equivalent notation @ef aul t (" BLACK") would
be recommended.

We've now discussed all data related aspects relevant for modeling of configurable products.
Most importantly, we have explained, how the solution space is described implicitly by the
Java data types and how it can be defined more precisely using domain annotations.

In the next section, we will show, how the solution space can be further restricted using
constraint annotations.

4.4.5. Constraint Modeling

Basically, assigning model restrictions using constraints is one of the most important as-
pects of configuration modeling and product modeling. OpenConfigurator allows to de-
fine model constraints using Java annotations, inspired by the Bean Validation specification
[JSR3032009].

In fact, OpenConfigurator is designed to be compatible with the Bean Validation specifica-
tion, allowing to reuse any defined JSR-303 compatible constraint for configuration purpos-
es. Importantly, this allows the configurator developer to easily define arbitrary new con-
straints. As long as they are defined in accordance with the Bean Validation specification
(see [JSR3032009, pp. 4]), OpenConfigurator automatically considers them during the con-
figuration process.

Consider Example 4.17, “Constraint Annotation Usage”, which demonstrates the usage of
the JSR-303 defined @ax constraint to limit the maximum value of a JavaBean property:

Example 4.17. Constraint Annotation Usage

@Confi gurabl e
public class W ndow

{

@par anet er

@mhx(200)

private int w dth, height;
}
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After the user specified some value for the wi dt h or hei ght attribute, OpenConfigurator
checks any defined constraint for these attributes by invoking their associated validator. For
instance, for the @bx constraint, the Bean Validation implementation provides a validator,
that applies to i nt values and which verifies, whether the given attribute value is consistent
with the specified value. In this case, wi dt h and hei ght must have values less than or equal
to 200.

In its current version, the Bean Validation specification solely specifies unary constraints (see
Section 3.1.3, “Constraints: Domain Restrictions”) applicable on property level. However,
the specification also standardizes, how custom bean level constraints can be defined.

4.45.1. General Constraint Characteristics

For configuration purposes, unary constraints, as provided by JSR-303, are not sufficient
to model real-world configuration restrictions adequately. Consequently, OpenConfigurator
introduces numerous binary and even n-ary constraints to fulfill the most common configu-
ration requirements. Before describing the available annotations in detail, we will discuss
some general characteristics first.

Most constraints provided by the framework have a structure equivalent to the one depicted
in Figure 4.25, “General Structure of OpenConfigurator Constraints”:

Figure 4.25. General Structure of OpenConfigurator Constraints

The annotation name identifies the constraint relation. OpenConfigurator implements the
common mathematical binary comparison relations. The target property identifies the at-
tribute, whose value is being evaluated. This annotation element is optional, if the annotation
is being used on property level (field / getter method). In the following, the target property is
referred to using the symbol a. The annotation's val ue element represents the expected value
of the evaluated property. While a static value can be specified as St r i ng (effectively leading
to the constraint being unary), in most cases a value expression is used, pointing to a second
property (binary constraint). We refer to the expected value using the symbol b.

Constraint Usage
Basically, the constraints declared in this way can be used in two flavors, namely as property

level and as bean level annotations, as Example 4.18, “Constraint Annotation Usage Methods”
shows:
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Example 4.18. Constraint Annotation Usage Methods

@onstructi bl e
@Mbx(target = "#{ _this.length}", value = "#{_this.roonLength}") ®
public class Kitchen

{
@par anet er
private int roonWdth, roonLength, roonHeight;

@par anet er
@bx("#{_this.roomNdth}") @
private int width;

@rar anet er
private int |ength;

@rar anet er

@Mbx("250") ©
private int height;

}

Constraint usage on property level. Mostly, a constraint is applied on property level, that
is, an attribute, which acts as target, is annotated with the constraint annotation directly (see
® and ). In this case, quite often the expected value expression points to another variable
effectively expressing a binary relationship (see ®)".

The above example could be interpreted as follows: "The kitchen wi dt h's maximum value
corresponds to the r oomW dt h". The other @/x constraint @ states a static upper bound of
250 for the kitchen's height.

Constraint usage on bean level. Another approach, semantically equivalent to the one
above, is the application of a constraint on bean level, plus specifying the target attribute
exphc1tlg ®. However, this approach is considered less readable and should optimally be
avoided™

Additionally, there's yet another potential approach of specifying the max1mum value rela-
tionship between | engt h and r ooniengt h: using the bean level @cr i pt Asser t °2 constraint
annotation:

@bcri pt Assert (l ang="j avascri pt",
script="_this.length =< _this.roonlLength")

However, the implicit constraint expression is much harder to process technically, since the
developer may specify arbitrary complex scripts in there. Without a complex compilation of
the script, this approach does not allow, for instance:

* to map a constraint violation to a particular attribute.
e to automatically provide useful help or error messages.
* to propagate the constraint, that is, to filter domain values a priori53

Note that due to a technical restriction of the Bean Validation specification and its reference implementation
(Hibernate Validator), which is used within the OpenConfigurator framework, using expressions on proper-
ty level doesn't currently work. For this reason, binary constraints cannot be expressed on property level at
the moment. See https:/ /hibernate.onjira.com /browse /BVAL-240 and specifically https:/ /hibernate.onjira.com/
browse /BVAL-237, last accessed June 14th, 2012.

Unfortunately, it's currently the only approach supported in a standardized manner, see the previous footnote.

2The @ScriptAssert annotation is part of Hibernate Validator as of version 4.1, see http:/ /docs.jboss.org/hiber-
nate/ validator/4.1/api/org/hibernate / validator / constraints / ScriptAssert.html, last accessed June 14th, 2012.

3 As stated in Section 4.4.4.1, “Domain Definition”, processing constraints during domain construction is not cur-
rently implemented. Solely domain annotations are evaluated during domain creation.
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Conditional Evaluation

The built-in constraint annotations also provide a condi t i on element, which takes a boolean
expression. If the expression evaluates to t r ue, the constraint is active and processed dur-
ing configuration validation. If it is f al se, it's considered inactive and consequently not
processed.

The usage of the condi t i on element allows modeling conditional constraint behavior flexi-
bly. Logically, conditional constraint evaluation corresponds to implication. Consider the fol-
lowing constraint as an example:

@mbx(target="x", value="y", condition="a == b")
Written as a predicate logical expression, this constraint correspond to: a=b=x<y.

Again, the concepts introduced so far apply to any built-in constraint provided by the Open-
Configurator framework but must be re-implemented for any custom constraint.

We will describe the concrete constraints, shipped with the OpenConfigurator framework,
in the next section.

4.4.5.2. Supported Constraints

Beyond the unary constraints provided by Bean Validation (@t Nul | , @l |, @ssert Tr ue,
@\ssert Fal se, @vax, @eci mal M n, @ n, @eci mal Max, @i gits, @i ze, @at t ern, @ast,
@uture, @al i d, for their exact semantics, see [JSR3032009, p. 101-112]), that merely take
static arguments, OpenConfigurator provides a number of different constraint annotations.

All these built-in annotations support dynamic values using expressions, which allows to
use them as unary or binary constraints in the same way. Also, all annotations support con-
ditional evaluation.

The following list gives an overview of the available constraint annotations. For the full list,
accompanied with usage examples, refer to Appendix A, Constraints:

Logical/arithmetical comparison constraints. In this category, OpenConfigurator offers
constraints such as @qual s, @t Equal s, @ n and @vax, which correspond the operations
a=> (i.e. the equal s method for Java objects), a=b, a=band a=b.

Cardinality constraints. Restrict the cardinality of collections, including exact cardinality
definitions using @ar di nal i t y, lower bounds using @ar di nal i t y. M n and upper bounds
using @ar di nal i ty. Max.

Mathematically, this corresponds to|Al=b,|Al> b and |Al=b.

Additionally, there are two additional cardinality annotations, which are frequently used,
namely @ptional (equivalent to @ardinality. M n(0)) and @Required (equivalent to
@ar di nal i ty. M n(1) ). These can be used for non-collection properties, too.

Compatibility constraints.  Express compatibility relationships by describing the
set of compatible items (positive formulation). We distinguish type compatibility
(@onpati bl e. Type) and compatibility based on a condition (@onpati bl e. Mat ches),
both on single element and collection level (@onpati bl e. El enent Type,
@oonpat i bl e. El enent Mat ches).

Mathematically, type constraints can be described as fol-
lows:  typeOf(a) E{ x k=bvx EsubtypeOf(b)}  for  singular  elements,  re-
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spectively Ve € elementOf (a) : typeOf(e) €{ x x=bv x € subtypeOf(b)} for collec-
tions. Matching constraints correspond to condition(a) =true, respectively
Y e € elementOf(a) : condition(e) = true.

Incompatibility constraints.  Express incompatibility relationships by describing the
set of incompatible items (negative formulation). They can be seen as the in-
verse versions of compatibility constraints. They're frequently used for cases, where
it's simpler or more appropriate to describe excluded items. In other respects,
they share the same semantics with their positive equivalents: type incompatibility
(@nconpati bl e. TypeNot, @ nconpat i bl e. El enent TypeNot ) and conditional compatibil-
ity (@ nconpat i bl e. Mat chesNot, @ nconpat i bl e. El ement Mat chesNot ).

Complex constraints. Additional, more complex constraints include @sati sfies and
@el ati onal . Both of them are component level constraints applied on Java types. The for-
mer one is equivalent to the aforementioned @cri pt Assert constraint. It can be used to
evaluate arbitrary scripts, that evaluate to t r ue or f al se. The latter one, @Rel ati onal , im-
poses a relational dependency across the attributes of a component. The individual tuples,
that form the relation, must be provided by a component level domain annotation (see Sec-
tion 4.4.4, “Data Modeling”).

Again, refer to Appendix A, Constraints for examples of using these constraints.

With the declaration of constraints, that are used restrict the solution space of a configuration
problem, our conceptualization of a modeling language for configurable products is com-
plete.

We are going to demonstrate these modeling capabilities in Chapter 6, Evaluation and Valida-
tion, where a complete case study for customizable bikes will be realized.

4.5. Configuration Procedure

Continuing the pattern from the previous chapters, discussing various topics from both a
product and a process perspective, we described the static, product related modeling capabili-
ties in the section before. Now, we will shift to the process view again: we'll demonstrate, how
the configuration domain model, as modeled in the previous section, is turned into a config-
uration process. In other words, we are going to describe, how the configuration decisions are
extracted from the domain model and in what way they are used to drive the configuration
process.

In short, the configuration procedure, as realized by the OpenConfigurator framework will

be discussed. While describing a general object-oriented configuration process in the first
section, the second part will walk through a concrete example.

4.5.1. The Object-Oriented Configuration Procedure

Figure 4.26, “The Object-Oriented Configuration Procedure” gives an overview of the con-
figuration process realized by the OpenConfigurator framework.

Basically, the configuration procedure must facilitate the configuration process as discussed

in Section 3.2.2.1, “The Global Configuration Process”. To recap that process, now with the
understanding of object-oriented product modeling, the steps can be interpreted as follows:
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Figure 4.26. The Object-Oriented Configuration Procedure

Configuration formulation™

Assuming the user starts a new configuration, the initial step in the configuration process is
the selection of the base product, which is to be configured @. In terms of our object-oriented
configuration approach, this means, that the user must select a configurable product type,
that is, a Java class of the domain model. We will refer to the selected type as configured type.

Technically, the framework looks up a descriptor from the meta-data repository and instan-
tiates a new generic configuration model instance based on that descriptor ®. Moreover, the
configurator initializes the configuration agenda ®, which contains the specification tasks,
the user has to perform. The specification tasks basically correspond to the configuration,
decisions that have been discussed in Section 3.1, “Basic Meta Model for Generic Product
Modeling”. Thus, the configuration agenda can be seen as an hierarchical data structure, that
reflects the decision model of a configuration. Additionally, it backs the configuration process
by tracking a list of already taken and remaining decisions.””With the generic configuration
model instance and the configuration agenda being initialized, the actual specification ac-
tivities can begin.

*Note that OpenConfigurator, at the current stage, solely supports product-centric/structure-oriented configura-
tion (see Section 3.3.3.4, “Configuration Characteristics” respectively Section 7.1.2, “Implementation Characteriza-
tion”), which makes elicitation and mapping of customer requirements as part of the configuration formulation
obsolete.

Currently, the actual decision sequence is also derived from the configuration agenda, which is why OpenConfig-
urator can be considered to implement a structure-oriented process scheme (see Section 3.3.3.4, “Configuration Char-
acteristics” respectively Section 7.1.2, “Implementation Characterization”).
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Configuration synthesis and evaluation

Next, the user iteratively specifies configuration decisions based on the configuration agen-
da @. The specification process is described graphically in Figure 4.27, “Abstract Specifica-
tion Process for Configurable Products”.

Figure 4.27. Abstract Specification Process for Configurable Products

Component specification. The process incorporates most of the decisions identified in
Section 3.1, “Basic Meta Model for Generic Product Modeling”. For the specification of a par-
ticular component, the configurator offers the user, to either:

® select an existing component instance @. The configurator will do so, for components using
the specification method @el ect abl e (see Section 4.4.3.1, “Selection”).

* or asks him to configure/construct a new instance ®. This is the case for components using
the specification methods @onf i gur abl e or @onst ructi bl e (see Section 4.4.3.1, “Con-
figuration” respectively Section 4.4.3.1, “Construction”).

In the first case, the user simply chooses an instance queried from the database and is done. In
the second case, the user configures a custom instance, which is not yet stored in the database.
That means, he specifies all variable attributes of a component (annotated @/ari abl e or
@ar anet er ) @ and specifies any configurable part (annotated @onf i gur abl e) ©:

Attribute specification. Depending on the attribute's cardinality and domain type, the
user possibly repeatedly:

e sclects a value, in case the domain is enumerated, or
o enters a value, if the attribute's domain is bounded or unbounded (see "domain size" in
Section 4.4.4.1, “Domain Characteristics”).

If the domain value is fixed, the single possible value is used. Moreover, in case the domain
is empty and the attribute has been marked @Requi r ed, a configuration error is indicated.
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Part specification. For any configurable part, the user first needs to specify the quantity, if
the part in question is a plural part (see Section 4.4.1.3, “Parts”). Then he specifies the type
of the part's nested component, but only if multiple alternatives are available, that is, the
type domain of the nested component contains multiple elements (see "Component type
domains" in Section 4.4.4.1, “Domain Characteristics”). Finally, he recursively specifies the
nested components. Depending on the part's quantity, the user may repeat this process un-
less any cardinality constraints are violated (see "Cardinality constraints" in Section 4.4.5.2,
“Supported Constraints”).

The actual configuration process is finished, when the user specified all components and
validation succeeds.

Configuration Interpretation

As stated in Section 4.3, “The Generic Configuration Model”, the generic configuration mod-
el instance exposes a valid configuration as an instance of the configured type, that is, the
result of the configuration is a regular Java object. While the configurator automatically stores
the configuration along with any protocol information in the configuration repository ©, the
host application can perform arbitrary operations with the resulting object. This includes,
for instance, transformations into the respective specification documents @©.

To illustrate the configuration procedure, at this point, we want to provide a more elaborated
example. We will explain and illustrate the configuration procedure for a bike step-by-step
in the next section.

4.5.2. Example Configuration Procedure

Consider the domain model depicted in Figure 4.28, “Configuration Domain Model for Cus-
tomizable Bikes (Excerpt)” as exemplary configuration model. Note that we stripped most
attributes and sub-components for brevity, as the example shall concentrate on the key con-
cepts. For the full example, including source code, refer to Chapter 6, Evaluation and Valida-
tion respectively Appendix B, Example Domain Model: Bike.

Figure 4.28. Configuration Domain Model for Customizable Bikes (Excerpt)

The model consists of a Bi ke class, that itself consists of a Fr ame component, Wheel s and
any number of Equi pnent s. While Bi ke is an abstract type, Mount ai nBi ke, Ci t yBi ke and
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El ect r oBi ke are concrete specializations. An El ect r oBi ke additionally aggregates a Mot or
component. Also Equi pnment is an abstract entity having Lock and Basket as concrete spe-
cializations.

The classes on the left hand side, Bi ke, Mount ai nBi ke, G t yBi ke and El ect r oBi ke are con-
sidered product types. They're annotated @r oduct . The ones on the right hand side, Fr ane,
Wheel s, Lock, Basket and Mot or are component types annotated @onponent . While all prod-
uct types are marked @onf i gur abl e, that is, the user may create custom instances of them,
all component types except Fr ane are @el ect abl e. That means, the user will only be able to
select an existing component instance for these, without being able to further parameterize
them. Solely the frame part of the bike can be parameterized in this example. For the abstract
class Equi pment no specification method is defined, because its subtypes themselves define,
whether they are selectable (Lock) or configurable (Basket ).

Now, the user chooses to configure a custom bike by selecting the Bi ke product type from
the catalog. Respectively, the configuration is started with the abstract Bi ke class being the
configurable type. The framework looks up the meta-data descriptor (an instance of Conpo-
nent Descri pt or, see Section 4.3.1, “Elements of the Generic Configuration Model and Meta
Model”) for the Bi ke class and initializes a generic configuration model instance plus an in-
stance of the configuration agenda accordingly.

The initial state of the agenda as well as the model is depicted in terms of an UML object
diagram in Figure 4.29, “Step 1: Initialized Model and Agenda .

Figure 4.29. Step 1: Initialized Model and Agenda

The component model contains Conponent, Part and Attri but e instances as defined by
the mapping in Section 4.3.2, “Model Mapping”. Since nothing has yet been explicitly spec-
ified by the user, all speci fi ed properties of these elements are set to f al se (see Table 4.4,
“Component State Variables” in Section 4.4.1.1, “Responsibilities”). Moreover, the abst r act
flag of the bi ke component is set to t r ue, indicating that no concrete type has been chosen
for that component yet. Consequently, bi ke cannot yet be instantiated as reflected by the
corresponding i nst anti at ed flag. Be aware of the fact, that for all parts with an exactly
specified cardinality (in this case all parts except the equipment), the nested components are
initialized upfront.

The configuration agenda contains decisions for each initialized component, part and at-
tribute instance. Again, these decisions correspond to the decision types identified in Sec-
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tion 3.1, “Product Models”. Notice that while the agenda pretends to impose a fixed decision
sequence (from top to bottom), the user can specify the decisions in an arbitrary order. For
example, he must not start by specifying the bike's type, but may instead start by entering
a value for the label attribute. In fact, the user can even specify an attribute of a not yet in-
stantiated bean: for instance, imagine bi ke had an attribute manuf act ur er . In this case the
user could specify the manufacturer right before selecting a concrete type for the bike. In
"regular Java" this wouldn't be possible: you had to instantiate a concrete class before setting
any property value.

Figure 4.30. Step 2: Bike Type Specified

Nevertheless, for the component type decision of bi ke, the user chooses El ect r oBi ke as the
bike's type. The resulting state is visualized in Figure 4.30, “Step 2: Bike Type Specified”.
The framework immediately updates the model and adds the not or part, including its
nested component instance, to the configuration. Internally, OpenConfigurator recognizes
that El ect r oBi ke is non-abstract and immediately instantiates the underlying JavaBean in-
stance, managed by the bi ke component. The component is marked as being specified.

Moreover, the configuration agenda is automatically synchronized with the configuration
model: the Specify type task is marked as done and a Select component task is added for the
nmot or component.

Next, we assume the user specified the f r ame component's attributes (attribute valuation de-
cisions): for the col or attribute he selected Si | ver from the attribute's domain. The domain
values, corresponds to the values of the Col or enumeration, a custom Java enum type. For
the | abel attribute he entered the value MyBi ke.

As depicted in Figure 4.31, “Step 3: Frame Attributes Specified ”, again the configuration
agenda is synchronized with the configuration model's state.

165



Chapter 4. Methodology and Conceptualization

Figure 4.31. Step 3: Frame Attributes Specified

In step 4, the user specified the wheel s part by selecting an existing component from the
wheels' domain (component variety decision). For example, this might have been pre-defined
slick tyres.

The resulting state is shown in Figure 4.32, “Step 4: Wheels Specified”.

Figure 4.32. Step 4: Wheels Specified

Next, the user wants to add some equipment: a bike lock. As described in Section 4.5.1, “The
Object-Oriented Configuration Procedure” "Configuration synthesis and evaluation", this is
a two-step process: in the first step, the user increases the quantity of the equi pnent part
(component quantity decision). The configurator automatically instantiates a new component,
equi p1, and adds it to the configuration model. The type of the newly added component
is left abstract.
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As can be seen in Figure 4.33, “Step 5: Unspecific Equipment Added”, the agenda is synchro-
nized accordingly.

Figure 4.33. Step 5: Unspecific Equipment Added

In the second step of the equipment part specification task, the user chooses Lock as the

concrete type of the equi p1 component (component type decision) and selects an instance from
the Lock classes' domain (component variety decision).

The updated state is shown in Figure 4.34, “Step 6: Equipment Specified ”.

Figure 4.34. Step 6: Equipment Specified

Finally, the user specifies the not or component (component variety decision), which completes
the configuration. Since all components, parts and attributes now have been specified and no
additionally defined constraints have been violated, the configuration is complete and valid.
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The final configuration state is depicted in Figure 4.35, “Step 7: Configuration Completed”.

Figure 4.35. Step 7: Configuration Completed

The configuration is persisted to the configuration repository. The result, a regular JavaBean
instance of type El ect r oBi ke is shown in Figure 4.36, “Configuration Model Result Object”.
The instance is fed to post-processing modules, that may, in turn, generate specification doc-
uments.

Figure 4.36. Configuration Model Result Object

This completes our example walk-through. We've seen how configuration proceeds within
an object-oriented model and how the OpenConfigurator framework handles the configu-
ration state internally. In the following section, we'll finally take a closer look at the configu-
ration agenda.

4.5.3. Configuration Agenda

Configuration Process versus Configuration Agenda

In general, a process can be defined as a course of action. Moreovet, a deterministic process de-
scribes a course of action, where each activity depends on its predecessors. A process has a
characteristic structure, but not necessarily implies a pre-defined order of activities.
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However, in the context of this work, when talking about the configuration process, we
usually do imply, that there is a more or less pre-defined sequence, in which configuration
activities are executed. In this sense, the configuration process is comparable to the screenflow
of the configurator, see Figure 4.37, “Configuration Process as Screenflow”.

Configuration Process as Screenflow
Configuration : i L.
Process D D B |:I |:I

Screenflow L - - - -

Figure 4.37. Configuration Process as Screenflow

While OpenConfigurator does not currently implement a way to customize the configuration
process (screenflow), an extension to the framework that allows to declaratively describe the
configuration process is planned for a future version.

The configuration agenda, in turn, solely defines the decision model of a configuration
process. While not implying any decision sequence, the agenda model captures, what deci-
sions need to be taken during the configuration process but not when these decision occur.

In essence, the aforementioned configuration process customization feature would be real-

ized as a mapping of agenda items to different process steps (screens). This concept is shown in
Figure 4.38, “Configuration Process Customization”.

Configuration Process Customization

Configuration >

Agenda Mapping
Configuration i | %] [ . -| & l N -‘ [% | o 7 7%

Process i |:I i
Screenflow @] L - ® - ﬁ -4 [Tl ---

Figure 4.38. Configuration Process Customization
Configuration Agenda Characteristics
Again, the configuration agenda realizes the decision model of a configuration. It is an hierar-

chical structure composed of configuration tasks. Hence, the configuration agenda can also
be seen as the task based view of a configuration.

169



Chapter 4. Methodology and Conceptualization

A configuration task, in turn, represents a particular configuration decision, that must be taken
in order to complete the configuration procedure. This relationship is depicted in Figure 4.39,
“Relationship between Configuration Decisions, Tasks, and the Generic Configuration Mod-
el”.

The Role of the Configuration Agenda

Configuration
Decisions

Configuration
Agenda

Generic Configuration
Model

i. Component type decision
ii. Component quantity decisions

| |
| |
| |
| |
| |
| |
iii. Component variety decisions | |
iv. Component customization decisions 0 I 9 ‘ 9
| |
| |
| |
| |
| |
| |

V. Attribute quantity decisions

vi. Attribute valuation decisions

vii. Constraint decisions bound to/

synchronized
with model

represented
as tasks

task based
view to control
instanciation

Figure 4.39. Relationship between Configuration
Decisions, Tasks, and the Generic Configuration Model

® The configuration agenda represents the configuration decisions identified in Sec-
tion 3.1, “Product Models” in terms of configuration tasks.

® The configuration tasks are extracted from the generic configuration model and subse-
quently synchronized to reflect the state of the configuration.

®  Effectively, the configuration agenda provides a task based view to control the generic
configuration model.

We've identified all relevant configuration decisions related to object-oriented product mod-
els in the respective sub-sections of Section 3.1, “Product Models”. We'll discuss the mapping
of configuration decisions to configuration tasks below.

Configuration tasks are characterized as follows. A task:

® is bound to a particular element of the generic configuration model,
* may be a composite task that contains nested tasks,

e provides a domain that is related to the corresponding decision (e.g., it maintains the do-
main for a component type decision),

* is marked as complete, if a particular value from the domain has been assigned (specified)
and that value is valid,

* may become obsolete, if the represented decision does not provide any alternatives to
choose from (in other words, the domain containing only a single value is fixed, see "Do-
main size" in Section 4.4.4.1, “Domain Characteristics”).

Notably, at runtime, the OpenConfigurator framework automatically extracts the configu-
ration agenda from the generic configuration model and synchronizes the tasks' states with
the models continuously. Technically, this is realized with the help of OpenConfigurator's so-
phisticated event infrastructure (see "Generic Configuration Model" in Section 5.2.2, “Client
Configuration Interface”).
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Agenda Task Types

The Task's type hierarchy is shown in Figure 4.40, “Agenda Tasks Type Hierarchy”:

Agenda Tasks

<<interface>> *
Task

getParent() : Task<?>
getLabel() : String; L 2
getDescription() : String <<interface>>
getDomain() : Domain<T> CompositeTask
getvalue() : T <+—
setValue(T value) : void isObsolete() : boolean getChildren() : lterable<Task<?>>
isOptional() : boolean getChildren(Filter filter) : lterable<Task<?>>
isSpecified() : boolean A

isValid() : boolean

isComplete() : boolean

getErrors() : Collection<ConstraintViolation<T>>
accept(Visitor visitor) : void

N

<<interface>> <<interface>> <<interface>> <<interface>>
SpecifyComponentTypeTask SpecifyAttributeTask ConfigureComponentTask ConstructComponentTask

<<interface>> <<interface>> <<interface>> <<interface>>
SpecifyPartQuantity Task SelectComponentTask SpecifyComponentTask SpecifyPartTask

Figure 4.40. Agenda Tasks Type Hierarchy

The parameterized Task interface can be seen as "convenience interface", that aggre-
gates methods from the Data and the Validation facet. The type parameter T cor-
responds to the model element's type, to which the particular task is bound. A
Speci f yConmponent TypeTask<T>, for instance, is bound to a Conponent <T>, whereas
Speci f yAttri but eTask<T> is bound to an Attri but e<?, T>. The binding is represented
by the same named interface Bi ndi ng<T>, which all stated subtypes of Task and Conpos-
i t eTask implement.

We will discuss the concrete mapping between configuration decisions, tasks and the generic
configuration model in the following.

Model to Task Mapping

The agenda tasks defined by OpenConfigurator are mapped as described in Table 4.18, “Con-
figuration Agenda Tasks”. The mapping is basically derived from the process described in
Section 4.5.1, “Configuration synthesis and evaluation”.

Table 4.18. Configuration Agenda Tasks

Task Decision Generic Domain Description
Configuration
Model Binding
Speci f yConponent Task No direct Conmponent <C>  Domai n<C> Composite
correspondence. task to
instantiate a
component.
Speci f yConponent Type- Component Conponent<C>  Domain Task to
Task type decision <d ass<? specify the
@i.) extends C typeofa
component.
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Task Decision Generic Domain Description
Configuration
Model Binding
Sel ect Conponent Task Component | Conponent<C> Donai n<C>  Task to select
customization a component
decision instance.
(iv.A.)
Conf i gur eConponent Task Component Conponent<C>  Domai n<C> Composite
customization task to
decision instantiate a
(iv.A.) configurable
component.
Const ruct Conponent Task Component Conponent<C> Domai n<C>  Composite
customization task to
decision instantiate a
(iv.B.) constructible
component.
Speci fyAttri but eTask Attribute Attribute<?, A> Domai n<A>  Task to
quantity specify the
decision (v.) value of an
and attribute attribute.
valuation
decision (vi.)
Speci f yPart Task No direct Part <?, P> Donai n<P> Composite
correspondence. task to
specify the
value of a
part.
Speci fyPart Quantity- Component Part<?, P> Domai n Task to
Task quantity <Integer>  specify the
decision quantity of a
(ii.C.) type.

The configuration decisions not mapped directly, are realized by additional constraints. For
instance, whether a part is mandatory or optional is defined by the corresponding @Requi r ed
respectively @pt i onal constraint annotation (see Section 4.4.5, “Constraint Modeling”).

Agenda Task Hierarchy

Conposi t eTasks reference arbitrary subtasks, effectively leading to tree-like task hierarchy.
OpenConfigurator builds up of the configuration agenda, by recursively traversing the
generic component model (using the visitor facility, see "Structural navigation support" in
Section 4.4.1.1, “Responsibilities”) and applying the following behavior depending on the
element's type:

Component processing. For each component found in the generic configuration model
OpenConfigurator creates a corresponding Speci f yConponent Task in the agenda, which
contains the following nested tasks:

¢ asingle Speci f yConponent TypeTask, and

e if the specification method defined on the specified type is @el ect abl e, a single Sel ect -
Conponent Task, or

e if the specification method defined on the specified type is @onf i gur abl e, a single Con-
fi gur eConponent Task, or

e if the specification method defined on the specified type is @onst r uct i bl e, a single Con-
st ruct Conponent Task
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Attribute processing. For each variable attribute (@/ari abl e or @ar aneter) of a tra-
versed @onfi gur abl e or @onstructi bl e component, OpenConfigurator creates a Spec-
i fyAttribut eTask as a nested task of the corresponding Conf i gur eConponent Task respec-
tively Const r uct Conponent Task.

Part processing. For each @onfigured part of a traversed @Confi gurabl e or @on-
structi bl e component, OpenConfigurator creates a Speci f yPart Task as a nested task of
the corresponding Conf i gur eConponent Task respectively Const r uct Conponent Task.

Depending on the processed part's cardinality, OpenConfigurator does:

e Singular part. For a singular part, a Speci f yConponent Task bound to the part's nested
component is added to the Speci f yPar t Task, that corresponds to the part.

* Plural part. Fora plural part, a Speci f yPart Quant i t yTask bound to the partis added to
the Speci f yPar t Task. Moreover, for each nested component of the part, a corresponding

Speci f yConponent Task is added to the Speci f yPart Task.

Figure 4.41, “Example Task Hierarchy” depicts an exemplary task hierarchy for the config-
uration domain model discussed in Section 4.5.2, “Example Configuration Procedure”.

Agenda Example

bike :
SpecifyComponentTask
bike :
SpecifyComponentTypeTask
bike :
ConfigureComponentTask
;
L bike.frame : \\ bike.wheels : \\ bike.equipments :
SpecifyPartTask SpecifyPartTask SpecifyPartTask
L bike.frame : bike.wheels : bike.equipments :
SpecifyComponentTask SpecifyComponentTask SpecifyPartQuantityTask
bike.frame : bike.wheels : bike.equipments.equip1 :
SpecifyComponentTypeTask SpecifyComponentTypeTask SpecifyComponentTask
bike.frame : bike.wheels : bike.equipments.equip1 :
ConfigureComponentTask SelectComponentTask SpecifyComponentTypeTask
bike.frame.color : bike.equipments.equip1 :
SpecifyAttributeTask SelectComponentTask

bike.frame.label :
SpecifyAttributeTask

D Obsolete |:| Composite l:l Concrete Tasks

Figure 4.41. Example Task Hierarchy56

The Agenda instance, containing the different Tasks can, for instance, be used by the config-
urator Ul to navigate and control the configuration process.

%Note that the object identifiers used in the example signify the model element to which the particular task is
bound, which is why those names are not unique.
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Task State Transitions

Importantly, the agenda reflects the state of the configuration: once all tasks have been com-
pleted, a valid instance of the configured product type has been specified (within the generic
configuration model).

In general, a task is marked as complete, if the corresponding element of the generic configu-
ration model is assigned with a value that doesn't violate any constraint.

A task may also become obsolete, that is, the user cannot take any further action related to
the task. This is the case, when the task's associated domain contains only a single value and
the task is non-optional. In this case, OpenConfigurator specifies the task automatically, by
assigning the remaining value to the target element.

M