
Enhancing Modeling and Change Support for Process

Families through Change Patterns1

Clara Ayora
1
, Victoria Torres

1
, Barbara Weber

2
, Manfred Reichert

3
, and

Vicente Pelechano
1

1 Universitat Politècnica de València

cayora, vtorres, pele@pros.upv.es
2 University of Innsbruck, Austria

barbara.weber@uibk.ac.at
3 University of Ulm, Germany

manfred.reichert@uni-ulm.de

Abstract. The increasing adoption of process-aware information systems

(PAISs), together with the variability of business processes (BPs), has resulted

in large collections of related process model variants (i.e., process families). To

effectively deal with process families, several proposals (e.g., C-EPC, Provop)

exist that extend BP modeling languages with variability-specific constructs.

While fostering reuse and reducing modeling efforts, respective constructs im-

ply additional complexity and demand proper support for process designers

when creating and modifying process families. Recently, generic and language-

independent adaptation patterns were successfully introduced for creating and

evolving single BP models. However, they are not sufficient to cope with the

specific needs for modeling and evolving process families. This paper suggests

a complementary set of generic and language-independent change patterns spe-

cifically tailored to the needs of process families. When used in combination

with existing adaptation patterns, change patterns for process families will ena-

ble the modeling and evolution of process families at a high-level of abstrac-

tion. Further, they will serve as reference for implementing tools or comparing

proposals managing process families.

Keywords: Process Variability, Process Families, Patterns, Process Change

1 Introduction

The increasing adoption of process-aware information systems (PAISs) has resulted

in large process model repositories [25,6]. Since business process (BP) models usual-

ly may vary, existing repositories often comprise large collections of related process

model variants (process variants for short) [24]. Usually, such process variants have

common parts and pursue same or similar business objective, but at the same time

differ regarding the application context in which they are used [12,25], e.g., countries’

regulations, services delivered, or customer categories [23,6,24]. We denote such

1 This work has been developed with the support of MICINN under the Project

EVERYWARE TIN2010-18011

collections of related process variants as process families. In large companies, a pro-

cess family might comprise dozens or hundreds of process variants [23]. For example,

a process family for vehicle maintenance may comprise more than 900 variants with

country-, garage-, and vehicle-specific differences [13]. In turn, [21] reports on a

process family comprising more than 90 variants for planning and handling medical

examinations. Designing and implementing each process variant model from scratch

and maintaining it separately would be too inefficient and costly. Thus, there is a

great interest in capturing common process knowledge only once and re-using it in

terms of configurable process models representing the complete process family.

Motivated by the shortcomings of traditional BP modeling approaches [13], pro-

posals exist for dealing with process families, e.g., [26,13]. Common to them is the

extension of BP modeling languages with variability-specific constructs that enable

the creation of configurable process models. By treating variability as first class

citizen, these extensions help avoiding redundancies, fostering reusability, and reduc-

ing modeling efforts. However, introducing variability-specific constructs implies

additional complexity concerning the modeling language. To make these proposals

amenable for industrial strength use, the quality of created models becomes crucial

needing proper support for process designers when dealing with process families.

In [32], a language-independent and empirically grounded set of adaptation pat-

terns is proposed allowing for the creation and modification of single BP models [31].

Adaptation patterns not only allow creating and modifying BP models at a high level

of abstraction, fostering model quality by ensuring correctness-by-construction, but

also provide systematic means for realizing change operations optimized for a specific

modeling language as well as comparing existing approaches in respect to BP flexibil-

ity [7]. Further, adaptation patterns have served as basis for implementing changes in

different stages of the process lifecycle; e.g., model creation [30,10], process configu-

ration [13], process instance change [5,9,22], model evolution [5,17], model refactor-

ing [33], change reuse [2], model comparison [16], and change analysis [11].

While adaptation patterns are well suited for creating and modifying single BP

models, they are not sufficient to cope with the specific needs for dealing with process

families [3]. In the vein of adaptation patterns, this paper suggests a complementary

set of generic, language-independent change patterns specifically tailored for process

families. Used in combination with the existing adaptation patterns, change patterns

for process families will enable the modeling and evolution of process families at a

high level of abstraction. In particular, they will serve as reference for specific lan-

guage-dependent implementations, build the foundation for realizing changes along

the BP lifecycle, and foster the comparison of existing proposals for BP variability.

Change patterns have been obtained after performing a systematic literature review

looking specifically at variability-specific constructs used by existing proposals for

BP variability. Since the proposed patterns are meant to be generic and language-

independent, we abstract from approach-specific particularities. However, to ensure

that the proposed patterns—despite their generic nature—are specific enough to cover

existing proposals, we apply them to two well-known proposals dealing with process

families, i.e., C-EPC and Provop.

The remainder of the paper is structured as follows. Sect. 2 discusses related work

and Sect. 3 presents the performed systematic literature review. In Sect. 4, we present

the variability-specific language constructs obtained from the latter. Sect. 5 presents

nine change patterns for process families. Sect. 6 provides a discussion and Sect. 7

concludes the paper.

2 Related Work

Closely related to our work is research on adaptation patterns, workflow patterns, and

process variability.

Adaptation patterns (AP) [31] allow structurally changing process models using

high-level change operations instead of low level change primitives (e.g., add or de-

lete node). They can be applied along to the entire process lifecycle and do not have

to be pre-planned, i.e., the region to which adaptation patterns may be applied can be

chosen dynamically. Hence, adaptation patterns are well suited for realizing process

changes at both build- and run-time. AP1 and AP2 allow inserting and deleting pro-

cess fragments. Moving and replacing fragments is supported by AP3 (MOVE Pro-

cess Fragment), AP4 (REPLACE Process Fragment), AP5 (SWAP Process Frag-

ment), and AP14 (COPY Process Fragment). AP6 and AP7 allow adding or removing

levels of hierarchy, AP8-AP12 support adaptations of control dependencies: embed-

ding process fragments in loops (AP8), parallelizing (AP9) or embedding them in a

conditional branch (AP10), and adding/removing control dependencies (AP11,

AP12). Finally, AP13 allows changing transition conditions. This paper complements

adaptation patterns, which cover the basic use cases for creating and modifying pro-

cess models, with a set of patterns covering variability needs in process families.

Workflow patterns were introduced for analyzing the expressiveness of process

modeling languages. Patterns cover different perspectives like control flow [1], data

[27], resources [28], time [18], and exceptions [29,20]. Further, [10] describes a set of

pattern compounds, similar to adaptation patterns, allowing for the context-sensitive

selection and pattern composition during process modeling. However, these patterns

are not sufficient for effectively modeling and modifying process families. They do

not consider variability-specific constructs introduced by process families and hence

are complementary to our change patterns.

Proposals dealing with BP variability exist for modeling, configuring [26, 13],

and maintaining process families; e.g., [15] provides a set of language-specific opera-

tors to adapt process variants at runtime based on software product line concepts. In

[7], a combination of workflow-, rule-, and event-modeling is presented to customize

process variants for a given execution context. Unlike these proposals, change pat-

terns provide language-independent means to model and evolve process families at a

high level of abstraction. Finally, there are refactoring techniques [33] to remove

redundancies among process variants in large process model repositories.

3 Research Methodology

The goal of this paper is to provide a set of generic and language-independent pat-

terns for modeling and evolving process families. We first present the research meth-

odology we employed for identifying these patterns. To ensure that the latter are ex-

pressive enough to deal with the specific needs of process families, as basis, we iden-

tified the set of variability-specific language constructs frequently used by existing

proposals to capture the variability within a process family. More precisely, we con-

ducted a systematic literature review (SLR) [14] using the following procedure: (1)

formulation of the research question, (2) description of a search strategy for finding

relevant papers, (3) identification of inclusion and exclusion criteria, and (4) analysis

of the data obtained. The main research question to be answered by the SLR is “What

variability-specific language constructs are provided by existing proposals for model-

ing BP variability and process families respectively?”. For this, we selected the fol-

lowing search string (considering different synonyms):

(’process family’ OR ’configurable process model’ OR ’process model collection’

OR ’reference process model’ OR ’configurable workflow’) OR ’process variant’ OR

’business process variability’ OR (’process configuration’ OR ’process model

configuration’)

This search string was applied to relevant data sources: ACM Digital Library,

IEEE Xplore Digital Library, Science Direct - Elsevier, SpringerLink, Wiley Inter

Science, World Scientific, and Google Scholar. Overall, these libraries include the

proceedings of the most relevant conferences and journals in the area of BP manage-

ment; e.g., Data & Knowledge Engineering Journal, Information Systems Jour-

nal, Conference on Business Process Management (BPM), Conference on Advanced

Information Systems Engineering (CAiSE), and Working Conference of Business

Process Modeling, Development, and Support (BPMDS). As an additional data

source, we considered the references of the identified papers.

A paper was included in the SLR (i.e., inclusion criterion) if and only if its title,

abstract, and content is related to process families, either from a theoretical or practi-

cal perspective. On the contrary, papers were excluded (i.e., exclusion criterion) if

their focus was not related to process families (e.g., software product lines). Papers

describing the same proposal were removed and only the most complete version was

included. We did not use any restriction concerning the publication date and only

papers written in English were included. Finally, we only included proposals for

which an implementation or evaluation exists.

Our SLR resulted in a total of 4948 papers, which were manually reviewed. In to-

tal, 25 papers passed this filtering and were further analyzed. To identify the language

constructs commonly used in BP proposals (and serving as basis for our change pat-

terns), we first create a list of candidate constructs relying on our experience with

process families [4,31,33]. Then, we analyzed the 25 identified papers to find empiri-

cal evidence for our candidate variability-specific language constructs and iteratively

refined the initial list. Finally, only those constructs for which enough empirical evi-

dence exists were included in the final list of variability-specific constructs.

Although proposals use different terminology and realize constructs in different

ways, the SLR revealed that they essentially support the same language constructs for

dealing with BP variability. We identified four variability-specific language con-

structs commonly shared by the 25 proposals: configurable region, configuration

alternative, context condition, and configuration constraint (see Sect. 4.1 for de-

tails). Configurable regions are supported by 20 of the 25 proposals and configuration

alternatives by 22 proposals. Context conditions are covered by 16 proposals while 15

proposals support the definition of configuration constraints. Additional language

constructs we identified (e.g., configurable region resolution time) are only consid-

ered by few proposals (<3) and are therefore not included in our final list of variabil-

ity-specific language constructs (for further details on the SLR see2).

The final list of four variability-specific language constructs was then used as a ba-

sis for the change patterns, which constitute hence a solution for changing process

families developed with existing proposals. Since the proposed patterns are meant to

be generic and language-independent, we abstracted from approach-specific particu-

larities (cf. Sect. 4). Thereby, we focused on the control flow perspective since the

SLR showed that this is the perspective mostly addressed by existing proposals. To

ensure that the proposed patterns—despite their generic nature—are specific enough

to cover existing proposals, we applied the respective patterns to two well-known

proposal dealing with process families (cf. Sect. 5).

4 Coping with Variability in Business Process Families

This section describes the variability-specific language constructs obtained from the

SLR and introduces two representative proposals to show how the change patterns

can be realized. For illustration purpose, we make use of the process carried out when

checking-in at an airport. We chose this process since it shows a high degree of varia-

bility; e.g., variability occurs due to the type of check-in (e.g., online, or at a counter),

which also determines the type of boarding card (e.g., electronic vs. paper-based).

Other sources of variability include the type of passenger (e.g., unaccompanied mi-

nors requiring extra assistance) and the type of luggage (e.g., overweight luggage).

4.1 Coping with Variability in Business Process Families

The SLR described in Sect. 3 has revealed that the following language constructs are

commonly used by existing proposals to capture variability (although their concrete

realization might differ) in addition to standard process modeling constructs (e.g.,

2 https://pros.webs.upv.es/bpvar/SLR/BPVariability.rar

activities and gateways). These language constructs form the basis of the change pat-

terns for process families (see Sect. 5).

Language Construct LC1 (Configurable Region). A configurable region is a region

in a configurable process model for which different configuration choices may exist

depending on the application context, e.g., the airline offers different ways of obtain-

ing the boarding cards depending on the check-in type: printing a boarding card at the

airline desk, download an electronic boarding card, or obtaining it via mobile phone.

Language Construct LC2 (Configuration Alternatives). A configuration alterna-

tive is defined as a particular configuration choice that may be selected for a specific

configurable region, e.g., there exist different types of boarding card: paper-based,

electronic, or in the mobile phone.

Language Construct LC3 (Context Condition). A context condition defines the

environmental conditions under which a particular configuration alternative of a con-

figurable region shall be selected, e.g., passengers with overweight luggage pay a fee.

Language Construct LC4 (Configuration Constraint). A configuration con-

straint is defined as a (structural) restriction of the selection of configuration alterna-

tives of the same or different configurable regions. Respective constraints are based

on semantic restrictions to ensure the proper use of configuration alternatives, e.g.,

staff members need to be localized when unaccompanied minors are travelling.

4.2 Proposals Dealing with Process Families

The SLR described in Sect. 3 identified 25 proposals for dealing with process fami-

lies. In the following, we describe two of them in more detail and explain how the

obtained variability-specific language constructs have been realized by these pro-

posals. Sect. 5 will then apply the identified change patterns to these two proposals to

demonstrate that the proposed patterns are indeed generic. As representatives, we

select two proposals that are (1) well established and highly cited, and (2) take fun-

damentally different approaches to realize the variability-specific language constructs.

This way we want to ensure that the proposed patterns are general enough to cover

very distinct proposals, but still specific enough to cover their essence.

C-EPC. A possible way of specifying a configurable process model is by means of

configurable nodes. Modeling languages supporting this approach include, for exam-

ple, C-EPC and C-YAWL [8]. Basically, these proposals extend an existing BP mod-

eling language by adding configurable elements for explicitly representing variability

in process families. In the following, we take C-EPC [26] as representative of this

approach since it constitutes a well-known proposal. Fig. 1 illustrates the configurable

process model as C-EPC for the check-in process. Configurable nodes are depicted

with a thicker line. A configurable region (LC1) in C-EPC is specified by a process

fragment of the configurable process model with exactly one entry and one exit (i.e.,

SESE fragment), and may take two different forms. First, the SESE fragment may

consist of a splitting configurable connector, immediately followed by a set of

branches representing configuration alternatives, and a joining configurable connect-

or; i.e., the configurable connectors delimit the configurable region (e.g., Configura-

ble region 2 in Fig. 1). Alternatively, the SESE fragment may consist of a configura-

ble function (e.g., Configurable region 1 and 3 in Fig. 1), which may be configured as

ON (i.e., the function is kept in the model), OFF (i.e., the function is removed from

the model), or OPT (i.e., a conditional branching is included in the model deferring

the decision to run-time). In turn, a configuration alternative (LC2) is specified by a

SESE fragment which may be included as a branch between two configurable con-

nectors (e.g., Print electronic boarding card in Configurable region 2 in Fig. 1). Con-

text conditions (LC3) are represented in C-EPC separately in a questionnaire model

[19], which is not considered in this paper. Finally, a configuration constraint (LC4) is

specified by a configuration requirement linked to the configurable nodes that delimit

the configurable region to which the respective configuration alternatives belong (e.g.,

Configuration requirement 1 in Fig. 1 states that the inclusion of the function Fill in

UM form implies the inclusion of the function Localize staff).

Identify

passenger

Assign

seat

Fill in UM

form

Localize

staff

Configurable function Configurable XOR connectorX Configuration requirement

Configurable region 1 Configurable region 2 Configurable region 3

S
E

Q
2

b
S

E
Q

2
a

X X

Print electronic

boarding card

Print boarding

card

Conf. alternative 2a

Conf. alternative 2b
Drop off regular

luggage

Configuration requirement 1:

Fill in UM form = ‘ON’ à Localize staff = ‘ON’

Fig. 1. C-EPC configurable process model for the check-in process

Provop. Another way of handling process families is based on the observation that

process variants are often derived by adapting a pre-specified base process model

(base process, for short) to the given context through a sequence of structural adapta-

tions. The Provop proposal follows this approach [13]. We choose it since it provides

advanced tool support for adapting a base process and for ensuring syntactical and

semantical correctness of process variants derived. Fig. 2 illustrates how the process

family dealing with the check-in process can be represented using Provop. The top of

Fig. 2 shows the base process model from which the process variants may be derived.

In Provop, a configurable region (LC1) is specified by a SESE fragment of the base

process, delimited by two adjustment points; i.e., black diamonds (e.g., Configurable

region 1 comprises the process fragment delimited by adjustment points A and B in

Fig. 2). In turn, a configuration alternative (LC2) is specified by a change option that

includes (1) the list of change operations modifying the base process at a specific

configurable region and (2) a context rule that defines the context conditions under

which the change operations shall be applied (e.g., Opt. 1 in Fig. 2). Context condi-

tions (LC3) are specified by context rules which include a set of context variables and

their values specifying the conditions under which a configuration alternative (i.e., a

change option) shall be applied (e.g., Opt. 2 is applied if the check-in type is online).

All context variables and their allowed values are gathered all together in the context

model (cf. Fig. 2C). Finally, configuration constraints (LC4) are specified as con-

straints (e.g., mutual exclusion) between two change options in the option constraint

model; e.g., if Opt. 2 is applied then Opt. 3 has to be applied as well (cf. Fig. 2C).

Assign seat
Print boarding

card

A) Base model

B) Change options

CTXT RULE (static):

IF check-in_type = ONLINE

O
p

t.
 2

A

CTXT RULE (static):

IF passenger_type = UM

O
p

t.
 1

Fill in

UM form

A B

B

INSERT

DELETE Print boarding

card

B C

Print electronic

boarding card

B C

INSERT

Context Variable Range of Values

check-in_type

passenger_type

ONLINE, COUNTER

ADULT, UM, SPECIAL_NEEDS

C) Context model
D) Option constraint model

Opt. 2 Opt. 3includes

CTXT RULE (static):

IF passenger_type = UM or

passenger_type = SPECIAL_NEEDS
O

p
t.
 3

Localize

staff

D EINSERT

Conf. alternative 2b C

Drop off regular

luggage

D E

Configurable region 1

Configurable region 2

Configurable region 3

Identify

passenger

Conf. alternative 2aConf. alternative 1 Conf. alternative 3

Fig. 2. Provop model for the check-in process

5 Coping with Variability in Business Process Families

This section presents nine change patterns we consider as relevant for dealing with

changes in process families. These patterns refer to the four variability-specific lan-

guage constructs we obtained from our systematic literature review in existing pro-

posals dealing with BP variability. Thus, proposed patterns support changes in pro-

cess families developed with these proposals. Our change patterns are generic in the

sense that they abstract from proposal-specific details. Moreover, they intend to be

complete regarding the control flow perspective and cover all changes related to

commonly used variability-specific language constructs. Further, we suppose that the

change patterns will be combined with adaptation patterns to allow for the modeling

and evolution of process families at a high level of abstraction. As illustrated in Table

1, we divide the change patterns into three categories: insertion, deletion, and modifi-

cation of variability-specific parts of a configurable process model.

All change patterns, except CP7, allow adding (removing) variability-specific lan-

guage constructs to (from) a configurable process model, representing the process

family. In turn, pattern CP7 allows changing the conditions under which a configura-

tion alternative is selected. To keep the pattern set minimal, we do not consider pat-

terns for modifying configurable regions, configuration alternatives, and configuration

constraints. These modifications can be realized based on the combined use of change

patterns and adaptation patterns. For example, modifying a configuration alternative

may be implemented applying patterns CP3 and CP4, which, in turn, make use of

respective adaptation patterns. Further, adding or removing process fragments which

are shared by all process variants (i.e., commonalities), may be realized using adapta-

tion patterns AP1 and AP2 (INSERT/DELETE Process Fragment).

CP1: INSERT Configurable Region

CP2: DELETE Configurable Region

CP3: INSERT Configuration Alternative IN a Configurable Region

CP4: DELETE Configuration Alternative IN a Configurable Region

CP5: INSERT Context Condition OF a Configuration Alternative

CP6: DELETE Context Condition OF a Configuration Alternative

CP7: MODIFY Context Condition OF a Configuration Alternative

CP8: INSERT Configuration Constraint BETWEEN Configuration Alternatives

CP9: DELETE Configuration Constraint BETWEEN Configuration Alternatives

Table 1. Change patterns for process families

Due to lack of space, we only present three change patterns related to the insertion

of variability-specific constructs in more detail, i.e., CP1, CP3, and CP8 (cf. Figs. 3-

6). The other change patterns are made available in a technical report [4]. For each of

the change patterns, we provide a name, a brief description, an illustrative example, a

description of the problem addressed, and corresponding design choices (indicating

pattern variants). For example, CP1presents three design choices (cf. Figs. 3-4): insert

a configurable region as a new process region with a set of new configuration alterna-

tives, inserting it by transforming a commonality into a configuration alternative (i.e.,

a common process fragment now is only applied in a specific application context), or

by transforming a set of commonalities into a set of configuration alternatives. To

demonstrate that the patterns—despite their generic nature—still cover the essence of

different proposals for BP variability, we apply them to C-EPC and Provop, and show

how they can be realized in their context. For example, regarding CP1, for each de-

sign choice, we indicate for both C-EPC and Provop how CP1 can be implemented

using adaptation patterns. Further, note that for C-EPC we provide implementation

details distinguishing between (i) configurable functions and (ii) configurable con-

nectors since both allow representing configurable regions. In addition, we provide

information about the parameters needed for each pattern. For example, realizing CP1

requires (1) the precise position in the configurable process model where the configu-

rable region shall be inserted and (2) the configuration alternatives to be inserted in

the configurable region (if needed). This information is highlighted in gray in the

figures indicating how change patterns may be realized.

Fig. 3. CP1 (INSERT Configurable Region)

Pattern CP1: INSERT Configurable Region

Description: In a configurable process model, a configurable region shall be added.

Example: The way how boarding cards are handled depends on the type of check-in (e.g., paper-

based vs. electronic cards). Assume that the configurable process model has not considered these

alternatives yet. Hence, a new configurable region needs to be added.

Problem: At a certain position in the configurable process model, different configuration alterna-

tives exist not reflected in the configurable process model so far. Hence, a configurable region

covering these configuration alternatives shall be added.

Design choices: Three different design choices (DCs) exist:

DC1) Insertion as a new configurable region with up to n conf. alternatives (n ≥ 0)

DC2) Insertion as a new configurable region by transforming a common process fragment into a

configuration alternative

DC3) Insertion as a new configurable region by transforming existing process fragments into a

set of configuration alternatives

Implementation in C-EPC:

- For DC1, CP1 is realized by

1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the configurable

region using either (i) a configurable function or (ii) two configurable connectors (i.e., split and

join) at the precise position where the configurable region should be located (i.e., after activity B),

2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable Region) to

insert a process fragment representing the configuration alternative (only relevant for configura-

ble connectors), i.e., the configuration alternative is added as a branch between the two configu-

rable connectors delimiting the conf. region (i.e., activity X).

A B

X

BA B X A B A
X

X

BAi) ii)
1 21

- For DC2, CP1 is realized by

1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the configurable

region using either (i) a configurable function or (ii) two configurable connectors (i.e., split and

join) at the precise position where the configurable region should be located (i.e., after activity B),

2. applying adaptation pattern AP2 (i.e., DELETE Process Fragment) to delete the common pro-

cess fragment from its current position (i.e., activity B), and

3. applying CP3 (INSERT Configuration Alternative IN a Configurable Region) to re-insert the

common process fragment as a configuration alternative of the configurable region (only relevant

for configurable connectors), i.e., the configuration alternative is added as a branch between the

two configurable connectors delimiting the configurable region (i.e., activity B).

B

A C A
B

B CA CB

A C A C

A C

i)

ii)
1 2 3

B

2

A CB

1
BB

B

- For DC3, CP1 is realized by

1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the configurable

region (only relevant for configurable connectors) at the precise position where the configurable

region should be located (i.e., after the join XOR gateway),

2. applying adaptation pattern AP2 (i.e., DELETE Process Fragment) to delete the existing pro-

cess fragment from its current position, and

Fig. 4. CP1 (INSERT Configurable Region) (cont.)

3. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable Region) once

per configuration alternative to re-insert the existing process fragments as configuration alterna-

tives of the configurable region, i.e., each branch of the process fragment is added as a branch

between the two configurable connectors delimiting the configurable region (i.e., activity B is

inserted as one alternative and activity C as another one).

A D

B

C
A D

B

C
A D

B

C
A D

B

C

1 2 3

Implementation in Provop:

- For DC1, CP1 is realized by

1. inserting two adjustment points (i.e., Y and Z) in the base process and

2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable Region) once

for each new configuration alternative to define respective change options (i.e., Opt. 1).

B

Y Z

A C B

Y

A C
CTXT RULE:

If context_variable = VALUE

O
p

t.
 1 Y ZINSERT

X
Z

1 2

X Opt. 1

- For DC2, CP1 is realized by

1. inserting two adjustment points (i.e., Y and Z) embedding an existing process fragment of the

base process (i.e., activity B) and

2. applying CP3 (INSERT Configuration Alternative IN a Configurable Region) to define a conf.

alternative in terms of a change option inserting the existing process fragment into/removing the

existing process fragment under certain conditions from the base process (i.e., Opt. 1).

B

Y Z

A C B

Y

A C

Z

1 2

O
p

t.
 1 Y Z

B
DELETE

CTXT RULE:

If context_variable = VALUE

Opt. 1

- For DC3, CP1 is realized by

1. inserting two adjustment points (i.e., Y and Z) embedding an existing process fragment of the

base process (i.e., the process fragment becomes optional) and

2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable Region) to

define the set of configuration alternatives in terms of change options inserting/removing existing

process fragments under certain conditions from the base process (i.e., one option for activity B

and another one for activity C).

B
Y Z

A D
C

B

A D
C

Y Z

O
p

t.
 1 Y Z

DELETE

Y ZINSERT

B

B

C

1 2

CTXT RULE:

If context_variable = VALUE

Opt. 1

Opt. 2

O
p

t.
 2 Y Z

DELETE

Y ZINSERT

C

B

C

CTXT RULE:

If context_variable2 = VALUE2
If adjustment points already exist at the entry or exit of the new configurable region (e.g., as part

of another configurable region) these may be reused instead.

B

Y Z

A CB

Y Z

A C

W
W

Parameters:

- the position in the configurable process model where the configurable region shall be inserted

- the configuration alternative(s) to be added to the configurable region

Fig. 5. CP3 (INSERT Configuration Alternative IN a Configurable Region)

Fig. 6. CP8 (INSERT Configuration Constraint BETWEEN Configuration Alternatives)

Pattern CP3: INSERT Configuration Alternative IN a Configurable Region

Description: In a configurable process model, a configuration alternative shall be added to a

specific configurable region.

Example: Assume that the airline now wants to offer the possibility of obtaining the boarding

card for smart phones as well. Thus, an alternative shall be added to this configurable region that

captures how boarding cards are obtained.

Problem: For a specific configurable region of the configurable process model, existing conf.

alternatives do not cover all possible choices and hence an additional one shall be inserted.

Implementation in C-EPC: CP3 is realized by applying adaptation pattern AP1 (i.e., INSERT

Process Fragment) to insert the process fragment representing the configuration alternative, i.e.,

the configuration alternative is added as a branch between the two configurable connectors delim-

iting the configurable region (i.e., activity X).

A C
B

X

A C
B

X

Implementation in Provop: CP3 is realized by defining a change option consisting of a sequence

of change operations and a context rule.

B

Y

A C

Z

O
p

t.
 1 Y ZINSERT

X

CTXT RULE:

If context_variable = VALUE

Opt. 1

Parameters:

- the configurable region to which the configuration alternative belongs

- the configuration alternative to be inserted

Pattern CP8: INSERT Configuration Constraint BETWEEN Configuration Alternatives

Description: In a configurable process model, a constraint regarding the use of configuration

alternatives from one or more configurable regions shall be added.

Example: When unaccompanied minors are travelling, extra staff is required to accompany them

to the boarding gate, i.e., an inclusion constraint exists.

Problem: The use of alternatives needs to be constrained in a configurable process model.

Implementation in C-EPC: CP8 is realized by inserting a configuration requirement, which is

then linked to the configurable nodes that delimit the configurable region to which the respective

configuration alternatives to be related belong.

Configuration

requirement 1

A D
C

B

F

E
A D

C

B E

F

Configuration

requirement 1
Implementation in Provop: CP8 is realized by adding a constraint regarding the use of change

options in the option constraint model.

Opt. 1 Opt. 2requires

Option constraint model
requires

B

Y

A C

Z

O
p

t.
 1

Y ZINSERT
X

CTXT RULE:

If context_variable = VALUE

O
p

t.
 2

INSERT

CTXT RULE:

If context_variable2 = VALUE2

Y Z
G

Parameters:

- the configuration region to which the alternatives whose use shall be constrained belong

- the configuration constraint to be inserted

6 Discussion

Even though—as shown by the systematic literature review—existing proposals use

different terminology and realize the constructs in different ways, they essentially

support the same variability-specific language constructs. Similar to adaptation pat-

terns [31], change patterns may have the potential to speed up the creation as well as

modification of configurable process models. In addition, like adaptation patterns, the

change patterns for process families may therefore serve as benchmark for evaluating

change support in existing languages and tools dealing with process families as well

as for facilitating their systematic comparison by providing a frame of reference. To

substantiate these claims, we plan to conduct empirical studies testing the impact of

the proposed patterns on both the creation and evolution of configurable process

models. Moreover, in a similar vein than adaptation patterns, the proposed change

patterns may serve as a reference for realizing changes in different stages of the pro-

cess family life cycle, e.g., modeling, maintenance, and evolution.

As with every research, our work is subject to limitations. A first one concerns the

completeness of the proposed patterns. We tried to accommodate this by grounding

patterns on a SLR covering 25 different proposals for process families and by using

variability-specific language requirements commonly occurring as basis for our pat-

terns. As a consequence, the proposed pattern set intends to be complete in the sense

that it allows modeling and modifying process families according to existing pro-

posals dealing with BP variability, covering all possible changes related to commonly

used variability-specific language constructs. However, we cannot state with certainty

that the identified patterns set is sufficiently large to address all potential use cases

regarding the modeling and change of process families in the most efficient way. For

this, further empirical studies on the practical use of the patterns are needed. Closely

related to this are considerations regarding the language-independent nature of the

proposed patterns. Using commonly occurring variability-specific constructs as a

basis, we can ensure that the proposed patterns are expressive enough to model and

modify process families. To ensure that the patterns are also specific enough to cover

the particularities of the different proposals, we applied them to two commonly used

and entirely different proposals for process families. To strengthen the validation of

the patterns, they will be applied to other proposals in future work. Moreover, the

focus of the proposed patterns is currently on variability-specific constructs regarding

the control flow perspective. Variability regarding additional perspectives like data or

resources has not been considered so far.

The proposed patterns have been described in an informal way. To obtain unam-

biguous pattern descriptions and ground pattern implementation as well as pattern-

based analysis on a sound basis, a formal semantics is needed. This formalization

should be independent from any process meta model and thus allow implementing the

patterns in a variety of process support tools.

7 Conclusions and Outlook

We proposed nine patterns for dealing with changes in process families. We

complement existing work on patterns for creating and modifying BP models by in-

troducing a set of generic and language-independent patterns that cover the specific

needs of process families. The patterns are based on variability-specific language

constructs obtained from a systematic literature review. To demonstrate that they still

cover the essence of existing proposals managing BP variability, we applied them to

two representative proposals. Used in combination with adaptation patterns, change

patterns for process families allow modeling and evolving process families at an ab-

stract level. In future work, we will develop a prototype based on which we will con-

duct experiments to measure the efforts of handling variability in process families.

We will study the impact of patterns on modeling process families as well as on

changing either at design or run-time.

References

1. van der Aalst, W.M.P., ter Hofstede, A., Barros, B.: Workflow Patterns. Distributed and

Parallel Databases 14(1), 5–51 (2003).

2. Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns: Opportunities for

extension and reuse. In Proc. SERA’09, 265-275 (2009).

3. Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time flexibility

for process families: open issues and research challenges. In Proc. BPM Workshops, 477–

488 (2012).

4. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: Change patterns for process

families. Technical Report, PROS-TR-2012-06.

http://www.pros.upv.es/technicalreports/PROS-TR-2012-06.pdf

5. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for

robust and flexible process support. Com Sci - R&D 23, 81–97 (2009).

6. Dijkman, R., La Rosa, M., Reijers H.A: Managing large collections of business process

models - Current techniques and challenges, Comp in Ind 63(2), 91–97 (2012).

7. Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime using

BPMN2 adaptation patterns. In Proc. BIS’11, 25–36 (2011).

8. Gottschalk, F.: Configurable process models. Ph.D. thesis, Eindhoven University of Tech-

nology, The Netherlands (2009).

9. Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into

software engineering processes. Intl J Adv in Software 4, 76-99 (2011).

10. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling.

In: Proc BPM’08, 4–19 (2008).

11. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining in adap-

tive process management systems. In Proc. CoopIS’06, 309–326 (2006).

12. Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process variants. In

Proc. TCoB’08, 31–40 (2008).

13. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models:

the Provop approach. J of Software Maintenance 22(6–7), 519–546 (2010).

14. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in

Software Engineering, Technical Report EBSE/EPIC–2007–01 (2007).

15. Kulkarni, V, Barat, S., Roychoudhury, S.: Towards business application product lines. In

Proc. MoDELS’12, 285–301 (2012).

16. Küster, J., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model

differences in the absence of a change log. In Proc. BPM’08, 244–260 (2008).

17. Küster, J., Gerth, C., Engels, G.: Dynamic computation of change operations in version

management of business process models. In: ECMFA’10, 201-216 (2010).

18. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems.

Requirements Engineering, 1–29 (2012).

19. La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-

based variability modeling for system configuration. Software and System Modeling

8(2), 251–274 (2009).

20. Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U., Wise, A.:

Exception Handling Patterns for Process Modeling. IEEE Transactions on Software Engi-

neering 36(2), 162-183 (2010).

21. Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges, scenar-

ios, algorithms. Data Knowledge & Engineering 70(5), 409–434 (2011).

22. Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through workflow

enactment and planning. In Proc. CollaborateCom’11, 372-381 (2011).

23. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release management

processes in the automotive industry. In Proc. BPM’06, 368–377 (2006).

24. Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems: chal-

lenges, methods, technologies. Springer (2012).

25. Reinhartz-Berger, I., Soffer, P., Sturm, A.: Organizational reference models: supporting an

adequate design of local business processes. IBPIM 4(2), 134–149 (2009).

26. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modeling language. In-

formation Systems 32(1), 1–23 (2007).

27. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data patterns.

Technical Report FIT-TR-2004-01, Queensland Univ. of Technology. (2004).

28. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow resource patterns.

Technical Report WP 127, Eindhoven Univ. of Technology (2004).

29. Russell, N., van der Aalst, W.M.P., Hofstede, A.: Workflow Exception Patterns. Advanced

Information Systems Engineering 4001, 288-302 (2006).

30. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action patterns in

process model repositories. In: Proc. BPM10 Workshops, 251-263 (2010).

31. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features -

Enhancing flexibility in process-aware information systems. Data Knowledge & Engineer-

ing 66, 438-466 (2008).

32. Weber, B. Sadiq, S. Reichert, M. Beyond rigidity - dynamic process lifecycle support.

Computer Science 23, 47–65 (2009).

33. Weber, B., Reichert, M., Reijers, H.A., Mendling, J.: Refactoring large process model re-

positories. Computers in Industry 62(5), 467–486 (2011).

