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Zusammenfassung Stetige wachsende gesetzliche Regularien aber auch zunehmende interne
Qualitätsanforderungen machen Compliance für heutige Unternehmen zu einer echten Über-
lebensfrage. Compliance betrifft immer mehr die heutzutage stark arbeitsteilig ausgerichteten
Geschäftsprozesse. Beziehen sich Regularien auf Geschäftsprozesse, wird von Business Process
Compliance gesprochen. Ein Schlüssel zur effektiver Unterstützung von Business Process Comp-
liance ist die Automatisierung mittels IT. Da Prozess-Management-Systeme verschiedene Sichten
eines Geschäftsprozesses vereinigen, stellen sie eine ideale Umgebung für die Integration au-
tomatisierter Compliance-Kontrollen dar. In der vorliegenden Arbeit wird ein Rahmenwerk zur
durchgängigen Unterstützung von Business Process Compliance vorgestellt. Ziel ist es, Prozess-
Management-Systeme um die Fähigkeit zu erweitern, automatisierte Compliance-Prüfungen von
Prozessmodellen und laufenden Prozessinstanzen vorzunehmen. Entscheidend für die praktische
Anwendbarkeit eines solchen Frameworks wird nicht zuletzt dessen Fähigkeit sein, umfassende
und verständliche Prüf-Diagnosen zu erzeugen.

Basierend auf einer sorgfältigen Anforderungs- und Literaturanalyse wurde im Rahmen des teil-
weise von der DFG geförderten Projekts SeaFlows (Förderungsnummer RI 1882/1-1) ein Frame-
work zur automatisierten Compliance-Prüfung erarbeitet. Im Detail wird in der vorliegenden Ar-
beit eine graphische Sprache zur deklarativen Formulierung von Compliance-Regeln vorgestellt.
Basierend auf Modellierungsprimitiven, die sich der Notation von Knoten und Kanten bedie-
nen, können komplexe Compliance-Regeln, sogenannte Compliance Rule Graphs (CRGs), for-
muliert werden. Um automatisierte Compliance-Prüfungen zu ermöglichen, werden CRGs ope-
rationalisiert. Hierzu wird die Graphstruktur von CRGs ausgenutzt, um mögliche Zustände
von CRGs derart zu repräsentieren, dass sie leicht interpretiert werden können. Dazu werden
Ausführungszustände eingeführt, um CRGs adäquat zu markieren. Mittels spezieller Regeln,
die die Zustandsmarkierungen in geeigneter Weise ändern, kann der Compliance-Zustand für
beobachtete Prozessereignisse inkrementell aktualisiert werden. Dies ermöglicht die Anwendung
zur Exploration von Prozessmodellen und zur Laufzeitüberwachung von Prozessinstanzen.

Der vorliegende Ansatz unterstützt Prüfungen zur Modellier- und zur Laufzeit mit denselben
Mechanismen. Transformationen modellierter Regeln in unterschiedliche Repräsentationen für
Modellprüfungen oder für Laufzeitüberwachung werden überflüssig. Auf Prozessmodellebene
deckt die Compliance-Prüfung mittels des vorgestellten Frameworks die vom Prozessmodell er-
möglichten Compliance-Zustände auf. Zur Laufzeit können Ausführunsgereignisse von Prozessin-
stanzen beobachtet werden, um den effektiven Compliance-Zustand zu überwachen. Dabei
kann auch das im zugrundeliegenden Prozessmodell definierte zukünftige Verhalten berück-
sichtigt werden. Aufgrund der Kodierung der Zustände direkt auf Grundlage der CRGs lassen
sich diese jederzeit leicht interpretieren. Dies ermöglicht insbesondere die Generierung ver-
ständlicher Erklärungen im Falle von Compliance-Verletzungen, die bei der Lokalisierung der
Quellen von Compliance-Verletzungen und deren Behebung entscheidend beitragen können.
Wenn Compliance-Verletzung noch nicht manifest sind, können aus den Zustandsmarkierun-
gen leicht Aktivitäten abgeleitet werden, die zur Regelerfüllung erforderlich sind. Dies kann für
präventive Maßnahmen ausgenutzt werden. Darüber hinaus können nicht nur Aussagen zur all-
gemeinen Einhaltung von Regeln, sondern auch Diagnosen für individuelle Regelaktivierungen
im Prozess getroffen werden. Insgesamt adressiert das vorgestellte Rahmenwerk von der Mo-
dellierung prozessbezogener Compliance-Anforderungen bis hin zu automatisierten Compliance-
Prüfungen von modellierten, laufenden und vergangenen Prozessen den gesamten Prozesslebens-
zyklus.





Abstract Compliance-awareness is undoubtedly of utmost importance for companies nowa-
days. Even though an automated approach to compliance checking and enforcement has been
advocated in recent literature as a means to tame the high costs for compliance-awareness,
the potential of automated mechanisms for supporting business process compliance is not yet
depleted. Business process compliance deals with the question whether business processes are
designed and executed in harmony with imposed regulations. In this thesis, we propose a compli-
ance checking framework for automating business process compliance verification within process
management systems (PrMSs). Such process-aware information systems constitute an ideal envi-
ronment for the systematic integration of automated business process compliance checking since
they bring together different perspectives on a business process and provide access to process
data. The objective of this thesis is to devise a framework that enhances PrMSs with compliance
checking functionality. As PrMSs enable both the design and the execution of business processes,
the designated compliance checking framework must accommodate mechanisms to support these
different phases of the process lifecycle.

A compliance checking framework essentially consists of two major building blocks: a compli-
ance rule language to capture compliance requirements in a checkable manner and compliance
checking mechanisms for verification of process models and process instances. Key to the practi-
cal application of a compliance checking framework will be its ability to provide comprehensive
and meaningful compliance diagnoses. Based on the requirements analysis and meta-analyses,
we developed the SeaFlows compliance checking framework proposed in this thesis. We intro-
duce the compliance rule graph (CRG) language for modeling declarative compliance rules. The
language provides modeling primitives with a notation based on nodes and edges. A compliance
rule is modeled by defining a pattern of activity executions activating a compliance rule and
consequences that have to apply once a rule becomes activated. In order to enable compliance
verification of process models and process instances, the CRG language is operationalized. Key
to this approach is the exploitation of the graph structure of CRGs for representing compliance
states of the respective CRGs in a transparent and interpretable manner. For that purpose, we
introduce execution states to mark CRG nodes in order to indicate which parts of the CRG
patterns can be observed in a process execution. By providing rules to alter the markings when
a new event is processed, we enable to update the compliance state for each observed event.

The beauty of our approach is that both design and runtime can be supported using the same
mechanisms. Thus, no transformation of compliance rules in different representations for process
model verification or for compliance monitoring becomes necessary. At design time, the proposed
approach can be applied to explore a process model and to detect which compliance states
with respect to imposed CRGs a process model is able to yield. At runtime, the effective
compliance state of process instances can be monitored taking also the future predefined in the
underlying process model into account. As compliance states are encoded based on the CRG
structure, fine-grained and intelligible compliance diagnoses can be derived in each detected
compliance state. Specifically, it becomes possible to provide feedback not only on the general
enforcement of a compliance rule but also at the level of particular activations of the rule
contained in a process. In case of compliance violations, this can explain and pinpoint the
source of violations in a process. In addition, measures to satisfy a compliance rule can be
easily derived that can be seized for providing proactive support to comply. Altogether, the
SeaFlows compliance checking framework proposed in this thesis can be embedded into an
overall integrated compliance management framework.
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1
Introduction

Business process compliance refers to the design and execution of business processes in harmony
with laws and regulations [RMLD08, SGN07, MRM11]. Even though business process compli-
ance has just become a focus in the business process management (BPM) research community
in the last years, the variety of compliance regulations indicates that compliance is not a com-
pletely new topic. Compliance requirements can be found in various domains. The financial
sector, for example, is considered the most heavily regulated industry [ASI10]. Consider, for
example, regulatory packages such as the Sarbanes-Oxley Act (SOX) or BASEL III that have
been introduced to strengthen customers’ confidence in bank processes. In healthcare, medical
guidelines and clinical pathways describe desired treatment procedures that should be followed
when treating patients [LR07, RMLD08]. Finally, collections of quality controls and standards,
e.g., Six Sigma or ITIL, are of particular importance to many business processes. Further com-
pliance requirements with particular relevance to Germany and the European Union such as the
Telemediengesetz are summarized in [ALS11].

Compliance-awareness has become a major issue for organizations nowadays. Even though
compliance-awareness still comes at high costs and is predominantly viewed as a burden, non-
compliance is often no option [SGN07]. Not complying can not only cause damage to an orga-
nization’s reputation and, thus, harm the business success but can also lead to severe penalties
and even legal actions [ASI10, KSMP08a]. Clearly, legal requirements are a major driver of
compliance efforts taken by organizations. However, compliance efforts may be motivated by
not only external laws and regulations but also by internal reasons. For example, organizations
may install guidelines and business rules as a means of quality assurance for their processes
[GOR11].

Except for domain-specific guidelines or best practices that often specify constraints at the
operational level, the bulk of existing compliance requirements is rather of informal and abstract
nature [SKGL08, KSMP08a, SGN07]. Thus, their implementation requires the interpretation of
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the requirements and their application to the particular business process and business IT through
adequate compliance controls. Traditional audits for after-the-fact detection are often conducted
through manual checks by expensive consultants [LSG07]. Hence, the potential of automated
compliance controls that can help to enforce and maintain compliance should be seized. However,
hard-coded solutions that necessitate costly adaptations in case of changed requirements lack
sustainability and, thus, can become a source of high costs [SGN07, KSMP08a]. A recent study
[ASI10] indicates a clear need for “affordable IT and IS (information system) tools that facilitate
compliance management self-audits and compliance monitoring activities in general”.

Process management systems (PrMSs) provide the means to design, implement, deploy, and
execute business processes and to monitor and control their execution. As PrMSs integrate
different perspectives of a business process, such as the data perspective, the organizational
perspective, and the actual workflow, they constitute a suitable environment to hook in and
integrate compliance controls. An application-neutral framework for developing and integrating
automated compliance controls with PrMSs would be a useful complement that occupies the niche
for tools facilitating compliance monitoring activities as identified by Abdullah et al. [ASI10] in
the context of PrMSs. Against this background, this chapter sets out the goals and solutions of
this thesis. It specifically describes the objectives, the assumptions made with respect to the
considered kind of compliance rules, and the structure of this thesis. The chapter is structured
as follows. Section 1.1 discusses how compliance controls can be implemented in PrMSs and
highlights the kinds of compliance rules that we address in this thesis. The major objectives of
our work are described in Chapter 1.2. Chapter 1.3 describes how this thesis is organized.

1.1. Compliance controls in process management systems

Fig. 1.1 illustrates the general approach to the derivation of compliance controls and measures
from compliance requirements. It employs the terminology utilized in literature [SKGL08, NS08].
Due to their rather abstract and implementation-independent nature, compliance requirements
(for example, stemming from laws or regulatory packages) first have to be interpreted in order
to derive concrete control objectives tailored to the specific business process [SKGL08, NS08,
KSMP08a]. This is typically a manual task as it requires expertise in the particular domain
and sound knowledge of the respective business process as well as of the regulations. The con-
trol objectives derived are still informal and may be used for documentation and communication
purposes. In addition, control objectives are the basis for the implementation of compliance con-
trols and measures. The usage of business rules, access control policies, or particular procedures
for process automation can be considered examples of concrete control measures [GLM+05].
Though not suitable for automation, manual audits also constitute compliance controls that
can be utilized to assess or enforce the achievement of compliance objectives. The particular
choice of suitable compliance controls and measures obviously depends largely on the particular
business process and its implementation (e.g., level of automation as well as availability and
suitability of data for automated controls).

In literature, several frameworks were proposed that aim at providing support for the compliance
management lifecycle [The11, KSMP08a, GLM+05]. These frameworks aim at supporting the
systematic integration and management of compliance concerns within an organization. Due to
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Compliance requirements
(laws, standards, regulatory
packages, guidelines, …)

Control objectives

Compliance controls and
measures

Intepretation

Implementation

Figure 1.1.: General approach to the derivation of compliance controls and measures from ab-
stract compliance requirements

their emphasis on systematic compliance management, we refer to such systems as compliance
management frameworks. Beyond the management and documentation of compliance concerns
as also enabled in commercial governance, risks and compliance tools, such as ARIS Risk &
Compliance Manager, these frameworks also envisage support for the process of deriving concrete
controls from compliance requirements for target systems, such as access rules [GMP06] or
monitoring rules [HMZD11]. Thus, a compliance management framework can accommodate
multiple concrete options to create or generate compliance controls to support a variety of target
systems. In this context, the compliance management framework ensures the preservation of
traceability to the relevant compliance requirements.

Data model
Organizational

model
Process artifacts

Process description

Runtime data

Figure 1.2.: Common perspectives of a business process captured by a PrMS

A process management system (PrMS) is a general environment for the design, implementation,
and execution of business processes and, thus, constitutes a suitable target system for com-
pliance controls. It accommodates and integrates different perspectives of a business process.
The most common perspectives are illustrated in Fig. 1.2. The data perspective describes the
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data processed by a business process. The organization perspective captures the organizational
structure such as organizational positions or roles. The process artifacts perspective comprises
process artifacts such as process activities and services. In the process flow perspective, the
process description (often captured by a process graph) defines the actual workflow, i.e., which
activities are executed by whom, and can be considered the linkage of different perspectives. The
process description is referred to as process model in the following. Example 1.1 describes the
derivation of concrete compliance controls in the context of a PrMS from a control objective.

Example 1.1 (From regulations to compliance controls):
This example is adopted from the COMPAS project [The10a, The10c]. According to Section
404 of the Sarbanes-Oxley Act, organizations are supposed to establish an effective system
of internal controls to manage risks [AJKL06]. Applied to loan application processes in the
banking industries, a common risk is that loans are granted to customers without sufficient credit
worthiness. This may not only result in financial deficits but may also damage an organization’s
reputation. To devise controls for managing that risk, an adequate compliance objective could
be “High loan requests have to be processed by supervisors”. The objective is still informal and
does not yet imply a particular implementation.

For its specific loan application process, a banking organization will have to decide on suitable
measures or controls to achieve or monitor the objective. Interpretation of the objective with
regard to the loan application process may result in the following informal constraint on the
process space: “If the loan request exceeds e1 million, the supervisor will check the credit wor-
thiness of the customer, otherwise the post processing clerk will do the check.”. This constraint
involves the process data, the process flows as well as organizational aspects. A suitable mea-
sure to enforce compliance with the constraint is, for example, to design the implemented loan
application process accordingly. This can be achieved by, for example, verifying that the model
of the loan application process enforces the constraint. Moreover, running instances of the loan
application process can be checked against the constraint to detect violations. Specifically, if it
becomes evident that the supervisor does not check the credit worthiness in a process instance
associated with a loan request exceeding e1 million, the constraint is obviously violated in this
process instance. Finally, we can analyze terminated instances of the loan application process
for after-the-fact detection constraint violations.

While multiple further refinement steps may become necessary in order to derive concrete com-
pliance controls from the above-mentioned compliance objective, this example nevertheless il-
lustrates very well the process depicted in Fig. 1.1.

As illustrated in Example 1.1, compliance requirements and corresponding control objectives
typically impose constraints on the process space that concern the different perspectives captured
by a PrMS [MRM11, RMM11]. In the context of PrMS, the development of automated compliance
controls comes down to devising measures and controls to check and / or enforce compliance
constraints as exemplified in Example 1.1. Checking constraints as a means to verify compliance
is also commonly referred to as compliance checking or compliance verification in literature.
Clearly, automated compliance controls within PrMS can only build upon the aspects captured in
the process space. Concrete constraints from a purchase-to-delivery scenario involving different
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perspectives of a business process are provided in Example 1.2. Constraints that exclusively
refer to process data can be checked in a straightforward manner by adopting techniques known
from information systems research. For example, by applying database technology [AJKL06]
such as triggers, certain data conditions (e.g., “Every invoice must have at least one item.”) can
be enforced at the database level. Moreover, a multitude of commercial tools such as ARIS
Process Performance Manager (ARIS PPM) are available that allow for defining conditions and
indicators (e.g., key performance indicators) on process data and for monitoring and reporting
on them. Constraints on solely organizational aspects (cf. Example 1.2) can, for example, be
enforced or monitored by applying suitable authorization rules [RMR09, MRM11, RMM11].
Constraints involving the process flows perspective, i.e., that directly constrain the process
execution, are more interesting and challenging as their checking and enforcement can seize
the process-awareness of PrMSs. Their importance to business process compliance is attested
by a multitude of related work (e.g., [ADW08, ASW09, LMX07, YMHJ06, GK07, MMC+11,
MMWA11, The09b, The10c]).

[pn > 50,000]   

x

[pn > 100,000]
10% 

discount

[pn ≤ 50,000] x

enable 
tracking

x

x
x

[pn ≤ 100,000]

check 
solvency[cs ≠ premium]

x
[cs = premium]

x
[approval status = approved 

OR 
pn ≤ 50.000]

[approval status = declined 
AND pn > 50,000]

x

[amount > € 5,000]   

receive 30% prepayment

x
[amount  ≤ € 5,000]

x

contract 
shipping 

insurance

x

[amount > € 10,000]

receive order

process
order

customer status
(cs)

[new, normal, 
premium]

[cs = premium OR pn ≤ 150,000 ]

[cs ≠ premium AND 
pn > 150,000]

[amount ≤ €10,000]

offer premium 
status 

x+ +

x

confirmation of receipt

x

approval 
status

[approved, 
declined]

decline order

comfirm order

confirm shipping

payment method
[on account, prepaid, 
prepaid and invoice]

send invoice

ship goods

production

approval
piece number

(pn)

amount

credit 
worthiness 
[good, poor]

A
C

M
E

decline order

order received confirm
receiption

30% prepayment 
received

confirm order

confirm shipping

Figure 1.3.: Process model describing a simple order-to-delivery process in BPMN [OMG11]

Example 1.2 (Compliance constraints):
Consider the process model depicted in Fig. 1.3 describing a simple order-to-delivery process in
BPMN. Below, constraints on the different aspects of an order-to-delivery process like the one
depicted in Fig. 1.3 are given:
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On process data

c1 The payment method for purchase orders of non-premium customers with total amount
exceeding e5,000 must not be payment on account.

On organizational aspects

c2 For each department of the organizational model, the role head of department must be
assigned to a staff member of the department.

On process flows

c4 Each order shall either be confirmed or declined.

c5 Goods should be shipped within two weeks after confirming the order or after receiving
the prepayment.

c6 Premium customer status shall only be offered after a prior solvency check.

On a combination of aspects

c7 Orders with a piece number beyond 50,000 shall be approved by the head of sales before
they are confirmed.

c8 For orders of a non-premium customer with a piece number beyond 80,000, a solvency
check is necessary before assessing the order.

c9 Orders with total amount beyond e10,000 require contracting shipping insurance before
shipping.

Note that these constraints can be imposed on other aspects in different process implementation
settings. However, against the background of a typical process implementation within PrMSs,
this classification of the constraints is comprehensible. Other constraints may refer to process
execution properties that are reflected in the process’ runtime performance data such as quality
of services (QoS) requirements [THO+10]. Furthermore, separation-of-duty (SoD) and binding-
of-duty (BoD) constraints can be considered further constraint examples whose implementation
may affect different aspects of a business process.

In this thesis, we focus on constraints that impose conditions on the process flows, particularly
on the occurrence and temporal ordering of activity executions, and thus define conditions
that compliant process executions must satisfy. For example, constraints such as c4 - c6 in
Example 1.2 constitute normative statements on how a process execution is supposed to be like
(i.e., what must or must not be done in a process execution and in which order). Note that these
constraints may also involve data and organizational aspects as context of activity executions
in the process flows (e.g., c7 - c9 in Example 1.2). Adopting the terminology from literature, we
refer to such constraints as compliance rules in the remainder of this thesis. Compliance rules
imposed on process executions (referred to as process instances in the following), in turn, also
impose certain conditions on the process model (typically in the form of a process graph), which
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defines possible concrete process instances (cf. Fig. 1.4). Thus, a process model bears a violation
of an imposed compliance rule if it enables the execution of at least one process instance that
violates the compliance rule.

Process model Process instance
enables1 1..*

Compliance rule

imposes 
constraints on* *

Figure 1.4.: Relations between process models, process instances, and compliance rules

1.2. Objectives

In order to foster compliance automation, it is desirable for PrMSs to provide mechanisms to
enforce or at least check the implemented business processes for compliance with imposed com-
pliance rules. Adequate mechanisms to answer the question whether a business process is de-
signed and executed in harmony with imposed compliance rules would constitute an appealing
complement to the current functionality of PrMSs. Instead of hard-coded solutions that can
become a source of high costs for compliance-aware organizations [KSMP08a], we envisage an
application-neutral framework that hooks into existing PrMSs and enables the requisite checks.
The objective of this thesis is to devise such a framework that equips PrMSs with compliance
checking functionality. As PrMSs enable both the design and the execution of business processes,
the designated compliance checking framework must accommodate mechanisms to support these
different phases of the process lifecycle. In order to compass a compliance checking framework
for PrMSs as described, two major working packages have to be tackled:

Working package 1: How to model compliance rules in an adequate manner?

Working package 2: How to automatically verify compliance at process design and process
runtime?

In the SeaFlows1 project, partially funded by the German Research Foundation (DFG)2, we
addressed these working packages. In this thesis, we introduce concepts for modeling compliance
rules such that they can be utilized to constrain and verify compliance of business process
models and process instances. The concepts proposed in this thesis serve as building blocks
for a compliance checking framework that interoperates with PrMSs and extends the latter with
compliance checking functionalities at both process design and process runtime.

1.3. Structure of the thesis

This thesis is structured as follows. Chapter 2 discusses requirements on and our vision of a
compliance checking framework and describes the research methodology employed in our work.
The state-of-the-art is discussed with respect to the requirements in Chapter 3. Chapter 4 gives

1Webpage: http://www.seaflows.de
2Funding reference: RI 1882/1-1
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a short introduction to the different components of the SeaFlows compliance checking framework
proposed in this thesis before they are described in detail in the subsequent chapters. Chap-
ter 5 describes the necessary fundamentals of the proposed compliance checking framework. It
specifically introduces notions and formal backgrounds that serve as footing for the framework.
Chapter 6 introduces the compliance rule graph (CRG) language, our approach for modeling
compliance requirements. Using the CRG language, compliance requirements can be expressed
such that they can be verified automatically at both process design and process runtime. The
concepts for conducting these compliance checks are provided in Chapter 7 where we operational-
ize the CRG language. This enables the execution of modeled CRGs, which provides the basis
for compliance checks. Chapter 8 describes how a compliance checking framework as envisioned
in Chapter 2 can be realized based on the introduced concepts. Chapter 9 complements the
proposed compliance checking framework by addressing issues evolving around the application
of the proposed framework in practice. Amongst other issues, Chapter 9 specifically addresses
the reduction of the complexity of compliance verification. Our prototypical implementation,
referred to as SeaFlows Toolset, is presented in Chapter 10. Our efforts to evaluate the concepts
proposed in this thesis are described in Chapter 11. Chapter 12 summarizes the thesis and
provides an outlook on future research challenges.

8



2
Requirements analysis, vision, and research

methodology

A viable way to tame the expenses for compliance-awareness is to increase the degree of automa-
tion in business process compliance activities [SGN07] and the utilization of tools that facilitate
compliance monitoring activities [ASI10]. Adequate mechanisms are necessary in order to seize
the potential of automatic compliance verification. As stated in Section 1.2, the objective of our
work is to compass a domain-independent compliance checking framework that equips process
management systems (PrMSs) with automated compliance checking functionality. In particular,
it should become possible to capture process-related compliance rules such that process models
and process instances can be automatically verified against them. This chapter discusses re-
quirements on such a compliance checking framework and is based on meta-analyses of related
literature and on our previous work [RMLD08, LGRMD08, LRMD10, LRMKD11, LRMGD12].
It specifically compiles requirements on a compliance checking framework for PrMSs and describes
our vision of such a framework and the research methodology employed.

This chapter is structured as follows. Requirements on the compliance checking framework
are discussed in Section 2.1. Section 2.2 summarizes the requirements, describes the research
methodology, and sketches our vision of a compliance checking framework.

2.1. Requirements on a compliance checking framework

Clearly, a framework enabling PrMSs to support compliance checks against imposed compliance
rules must provide the means to first integrate such compliance rules with the business processes
implemented in the PrMSs. Apparently, for each compliance rule, specific hard-coded checks can
be implemented. However, such hard-coded checks are unfavorable as they lack sustainability
[SGN07]. In particular, they will have to be revised for each emerging or revised compliance
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rule, for example, as a result of new regulations. This can lead to high costs for compliance-
awareness. Hence, a more generic solution to the integration of compliance rules and their
verification is desirable. We envisage that a compliance-aware PrMS enables the modeling of
compliance rules in an easy manner and allows for assigning them to business processes. Based
on the modeled compliance rules, the PrMS “generates” the requisite checks without further
implementation becoming necessary. In order to enable its smooth integration into an existing
PrMS such as ADEPT [Rei00, DRR+08], the designated compliance checking framework has
to support the process lifecycle (cf. Section 1.2). A framework as described would be a valu-
able tool for dealing with compliance requirements that can be covered by compliance rules
as described in Section 1.1. It can further serve as a building block of an overall compliance
management framework where it addresses PrMS as target systems. In the following, we discuss
the requirements on a compliance checking framework with respect to compliance rule specifi-
cation in Section 2.1.1. The requirements with respect to support along the process lifecycle are
detailed in Section 2.1.2.

2.1.1. Compliance rules

Several aspects have to be considered in order to devise a suitable approach for modeling and
integrating automatically checkable compliance rules. Expressiveness and formalization require-
ments are described in Section 2.1.1.1 and 2.1.1.2, respectively. Ease of use requirements are
detailed in Section 2.1.1.3. Section 2.1.1.4 addresses issues concerning the management of com-
pliance rules.

2.1.1.1. Expressiveness

As previously stated in Section 1.1, we focus on compliance rules imposing constraints on the
occurrence, absence, and temporal ordering of activity executions within a process execution.
In retrospect, each process execution (referred to as process instance) can be reflected by a
sequence of events associated with the activities carried out in the process. Therefore, more
abstractly, we address occurrence and ordering constraints on sequences of events. Conceivably,
the designated framework has to provide a compliance rule modeling language exhibiting the
adequate expressiveness in order to capture the relevant compliance rules.

Meta-analyses revealed that many related approaches (e.g., [AW09, NS08, LMX07, YMHJ06,
The09b, The10c]) use the property specification patterns collected by Dwyer and Corbett in a
case study [DAC99, DAC98] as the fundament for compliance rule specification. Dwyer and Cor-
bett analyzed over 500 property specifications from different domains (in particular, hardware
protocols, communication protocols, GUIs, control systems, abstract data types, avionics, op-
erating systems, distibuted object systems, and databases). The patterns express requirements
related to states/events during well-defined regions of system execution. Similar to process
instance, the system execution can be interpreted as a sequence of events. Regions in which
requirements become effective are specified by means of the scopes depicted in Fig. 2.1. Most
of the scopes are self-explanatory. The after Q until R scope identifies the region after the first
occurrence of Q that ends with the first occurrence of R.
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Global

Before R

After Q

Between Q and R

After Q until R

R R

Q Q

Q Q R Q R Q

Q Q R Q

Figure 2.1.: Scopes for property specification patterns [DAC99, DAC98]

As depicted in Fig. 2.2, the patterns collected by Dwyer and Corbett are classified into two major
groups. There are four occurrence patterns, namely absence, universality, existence, and bounded
existence, and four order patterns where precedence chain and response chain are variations of
precedence and response.

Property patterns

Occurrence Order

Absence Universality Existence Bounded

existence

Precedence Response Chain

precedence

Chain

response

Figure 2.2.: Property specification patterns [DAC99, DAC98]

Below, we give an interpretation of the patterns based on viewing a process execution as a
sequence of events attesting the execution of process activities1. The patterns refer to a region
defined by means of scopes.

Absence Requires that the region does not contain a certain activity.

Existence Requires that the region contains a certain activity.

Bounded existence Requires that the region contains at most a specified number of a certain
activity.

Precedence Requires the occurrence of a certain activity prior to the occurrence of another
activity (i.e., the first activity is premise to the later activity).

Response Requires the occurrence of a certain activity in response to the occurrence of a prior
activity (i.e., stimulus-response)

Chain precedence Variation of precedence where the occurrence of a certain activity sequence
must be preceded by a particular activity within the scope of the pattern.

1Note that the universality pattern is applicable to a rather state-oriented than event-oriented environment and,
thus, is not considered in the following.
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Chain response Variation of response where a sequence of activities occurs as response to the
occurrence of a certain activity within the scope of the pattern.

Note that the properties may also be interpreted not only for process activities but also for
events attesting certain operations on process activities (e.g., execution).

Even though the property specification patterns stem from rather other sources than compli-
ance requirements, the patterns are still relevant to business process compliance due to their
application-independent nature as indicated by literature (e.g., [AW09, NS08, LMX07, YMHJ06,
The09b, The10c]). As shown in our work [LRMD10] and related literature (e.g., [The09b,
The10c, AW09, LMX07]), many compliance rules can be associated with these patterns. Though
the question for the requisite expressiveness to cover real world compliance rules cannot be an-
swered entirely, supporting expressiveness of these patterns is certainly a major requirement on a
compliance rule specification approach. However, as shown in [LRMD10], we also collected com-
pliance rules that cannot be captured adequately using these patterns. Consider, for example,
the requirement from a software development project that the feature freeze must be followed by
an unit test for the individual components. Then, an integration test for the components must
be conducted. However, if changes are made to the implementation after the unit tests (e.g.,
due to incoming change requests), a new unit test becomes necessary before conducting the final
integration test. Altogether, it should be ensured that by the end of a development cycle, the
feature freeze is followed by an unit test and a subsequent integration test without changes to
the implementations between the two tests. It is notable that the described requirement cannot
be captured by a conjunction of a chain response and a between scope absence pattern. The
reason is that the requirement does not prohibit changes between the tests in general but rather
imposes conditions on the presence of a pair of an unit and an integration test. The support of
such compliance rules requires the definition of constraints that refer to specific occurrences of
activities. In the example, it should be possible to define absence constraints for a designated
pair of unit and integration test (i.e., absence of changes in between these two activities). Our
objective is to provide a compositional language that enables this.

Besides the expressiveness with respect to the fundamental structure of compliance rules, clearly
the compliance rule specification approach must allow for the integration of context information
in order to meet the demands of practical applications (cf. Section 1.1). By context information,
the context of process activities is meant, for example, the data context, the temporal context,
and the organizational context of the activity (e.g., which role is associated with an activity).

In this thesis, we abstain from dealing with quantitative time constraints (for example, deadlines
of activities) as this requires fundamental research on the integration of time constraints with
PrMSs, which is subject of other research efforts [Lan08, LWR09, LWR10]. However, we will dis-
cuss how quantitative time constraints can be integrated with our approach where appropriate.
Nevertheless, the compliance rule language should be extendable such that quantitative time
constraints can be smoothly integrated.

2.1.1.2. Formal semantics

In order to enable the verification of compliance rules, it must be possible to unambiguously
interpret modeled compliance rules. For that purpose, the compliance rule language should
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exhibit clear declarative semantics. The compliance rule language should further provide formal
means to reason about compliance rules. This becomes necessary, for example, for detecting
conflicts among a set of compliance rules imposed on the same business process (i.e., a compliance
rule or a conjunction of imposed compliance rules is not satisfiable) [LGRMD08].

2.1.1.3. Ease of use

The modeling of compliance rules for automated compliance checks typically requires the collab-
oration of different roles of an organization: Compliance experts (in case of external compliance
regulations), who are not necessarily familiar with the process implementation details [NS08],
practitioners or process users (in case of internal guidelines), who often possess low technical
skills, and process experts (e.g., process designers), who are familiar with the process implemen-
tation [NS08]. In order to facilitate their collaboration, it is desirable to employ an intuitive
compliance rule language. In any case, it is desirable that modeled compliance rules can be
easily understood even by practitioners. This not only facilitates the communication between
the different stakeholders (for example, to validate the adequacy of modeled compliance rules)
but also enables the further involvement of practitioners when compliance rules are applied.

2.1.1.4. Management of compliance rules

Besides the actual compliance rule modeling capabilities, a compliance checking framework must
also provide support with respect to the management of these rules. As discussed in Section 1.1,
compliance rules integrated with a PrMS for automatic verification can be considered instances of
automated controls. They are typically the result of a top-down process starting with abstract
and informal compliance requirements as described in Section 1.1 (cf. Fig. 1.1). To also provide
support for the top-down control development process depicted in Fig. 1.1, the compliance
checking framework has to provide tools to document the relations between these artifacts. For
example, it must be possible to identify the set of compliance rules resulting from a particular
compliance objective or compliance requirement.

In addition, compliance rules may be associated with different enforcement levels. An enforce-
ment level refers to how rigorously a compliance rule should be adhered to. The business rules
community proposed enforcement levels for business rules (e.g., in [OMG08]), which can be
adopted for compliance rules. The enforcement levels are summarized in the appendix in Sec-
tion A.4 and range from strictly enforce for rules whose enforcement is mandatory to guideline
for rules whose violation is tolerable. For a modeled compiance rule, it must be possible to
also assign an associated enforcement level and additional information on the rule, such as an
informal description.

In fact, different compliance management frameworks that address these issues were proposed
in literature (cf. Section 1.1). For example, Kharbili et al. provide an ontology [KSP08] to
capture the relations between process and regulatory artifacts. Even commercial tools providing
certain management functions (for example capturing compliance requirements and assigning
them to controls) are in place [AJKL06]. Hence, there is no urgent need for further research
in this area, which is why we rely on existing work on compliance management. However, a
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compliance checking framework clearly must enable the integration of the requisite functionality
or the integration within an overall compliance management framework.

The modeling and maintenance of compliance rules can further be facilitated by making use of
domain models that provide a semantic view at process artifacts and help to align the termi-
nology employed. For example, in the purchase-to-delivery scenario from Example 1.2, different
payment methods can be offered to a customer (e.g., payment on account, PayPal or credit
card). If, for example, a compliance rule would require actions to be taken after a payment
(e.g., confirming the payment), a semantic concept payment can be helpful to capture compli-
ance rules at a higher semantic level instead of modeling compliance rules for each particular
type of payment. The use of domain models not only can improve the efficiency of compli-
ance rule modeling but can also be helpful in maintaining compliance rules (e.g., when a new
payment method becomes available). It further helps to separate concerns with regard to pro-
cess artifacts (e.g., new or changed process artifacts and their integration) from concerns with
regard to compliance rules (e.g., new compliance rules or changed compliance rules). There-
fore, a comprehensive compliance checking framework must allow for the integration of domain
models.

2.1.2. Compliance support along the process lifecycle

Capturing compliance requirements as checkable compliance rules is premise to automatic com-
pliance verification. In addition to this, verification mechanisms have to be provided. Fig. 2.3
illustrates the requisite compliance checks along the process lifecycle. Generally, compliance
can be verified by checking whether the implemented process model enforces the imposed
compliance rules (i.e., whether it enables only the execution of compliant process instances).
This is also referred to as a priori, forward, and model-driven compliance checking in litera-
ture [LGRMD08, KSMP08a, KMSA08, LRMGD12]. By conducting compliance checks at the
process model level, not only can violations be detected but also compliance can be enforced by
devising the process model accordingly (compliance by design) [LSG07, LGRMD08, LRMGD12].
Moreover, compliance rules can also be monitored at runtime (runtime checking), for example by

A posteriori compliance
analysis

Compliance monitoring

Process model 
verification

Process
execution

Process
analysis

Process
design

Figure 2.3.: Compliance checks along the process lifecycle
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querying the process space [KSMP08a]. Obviously, at runtime, the focus is rather on detection
and prediction than on enforcement when a compliance checking framework is not integrated
into the process execution but just observes the latter. Finally, compliance can also be checked
after process execution has terminated by analyzing the process logs (referred to as a posteriori
or backward compliance checking [LGRMD08, KSMP08a, KMSA08, LRMGD12]). As this is
after the fact, the analysis aims at the mere detection of happened violations. We will discuss
use cases and corresponding requirements in more detail in the following.

2.1.2.1. Process design time

The use case diagram in Fig. 2.4 depicts typical use cases at process design time. In the
process design phase, compliance rules must be assigned to process models. This can happen
when a process model is initially created or even during the modeling process. To enable
process designers to assess the process model with regard to compliance with the imposed rules,
mechanisms are required to verify the process model. In particular, it must be possible to detect
whether the process model enables the execution of process instances that do not comply with
imposed rules. Based on the compliance report provided by the system, the process designer
should be able to pinpoint and analyze the sources of noncompliance in the process model and
to apply adequate measures to either enforce compliance or override the compliance rule. In
order to assist the process designer in the described use cases, a compliance checking framework
clearly must be able to provide support beyond pure violation detection. Obviously, a compliance
checking framework that is only capable of answering with compliant or not compliant is not
sufficient to effectively support process designers.

Process management system

Process designer

Assign compliance

rules to process model

Process model

verification

Modify the process

model
Localize

compliance violations

<<includes>>

<<includes>>

Change imposed

compliance rules

<<includes>>

Figure 2.4.: Use cases at process design time with regard to compliance

Compliance rules typically capture normative statements that apply to particular process situ-
ations. As activities can occur multiple times in a process model, such process situations can
also occur multiple times in a process model [LRMD10]. We refer to this as multiple activations
of the compliance rule. It is notable that when compliance rules are modeled using concepts of
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a domain model (cf. Section 2.1.1.4), the respective compliance rules are even more likely to
have multiple activations within a process as multiple activities can be assigned to an abstract
concept (e.g., different payment activities such as payment on account can be assigned the ab-
stract concept payment). Conceivably, different rule activations can be in different compliance
states. While some activations can be a source of noncompliance, other may be compliant.
Against this background, the compliance checking framework should not only be able to provide
feedback on the overall enforcement of the compliance rule, but also should be able to identify
the activations of the compliance rule and assess their compliance states. We refer to this as per
activation compliance diagnosis. Being provided with compliance reports at this level of gran-
ularity, the process designer will be able to localize the sources of noncompliance more easily.
This also enables dealing with compliance violations in a flexible manner as the compliance rule
can, for example, be overridden for only selected activations. Ideally, the detected violations
can be visualized in the process model (violation tracing). In addition, explanations indicating
the root-cause of detected violations are desirable. This would further facilitate the application
of adequate measures to resolve noncompliance (e.g., by applying suitable process changes).

As compliance verification of large and complex process models involving data can be a costly
operation due to state explosion [KLRM+10], a compliance checking framework must further
accommodate strategies for dealing with that.

In sum, we identified the following requirements for a compliance checking framework with
respect to design time support:

D1 detection of compliance violations within process models,

D2 provision of per activation feedback,

D3 support for advanced compliance diagnoses (explanation and visualization compliance vi-
olations), and

D4 accommodation of strategies for dealing with state explosion.

2.1.2.2. Process runtime

In order to ensure that process instances are compliant with imposed rules, compliance can
be enforced already at the process model level. However, compiling particularly data-aware
compliance rules that refer to runtime data into the process model often leads to overly complex
process models. This is due to the fact that such rules often apply only in specific cases (process
situations) that have to be accounted for by, for example, introducing suitable splits and branches
in the process model. Hence, for compliance rules with lower enforcement levels such as guideline
(cf. Section 2.1.1.4), it is doubtful whether introducing additional complexity to the process
model is justifiable. In other cases, compliance rules may refer to process data that is not
encoded in the process model but is only available at runtime making verification at the process
model level infeasible. In consequence, a compliance-aware PrMS has to allow for creating and
deploying process instances from a process model for which not all imposed compliance rules are
enforced. In order to maintain control over imposed compliance rules, it is desirable to monitor
compliance with rules not enforced in the process model.

16



2.1. REQUIREMENTS ON A COMPLIANCE CHECKING FRAMEWORK

While process instances are usually created based on a predefined process model in the context of
PrMS, there are also scenarios in which processes are executed in a rather ad-hoc manner. To be
broadly applicable (e.g., to processes scattered over different information systems), a compliance
checking framework should also address such scenarios in which processes are not executed based
on a known process model or are created and executed in an ad-hoc manner [LRMKD11].

Process management system

Process supervisor

Deploy process model

(possibly still containing

compliance violations)

Monitor compliance

<<includes>>

<<includes>>

<<includes>>

Create new process

instance

Choose compliance

rules to be monitored

Treat happened

violations

Treat potential

violations

Apply measures to

avert violations

Escalation and

documentation

<<includes>> <<includes>>

Figure 2.5.: Use cases at process runtime with regard to compliance

As illustrated in the use case diagram in Fig. 2.5, the process supervisor may decide which com-
pliance rules shall be monitored when starting a process instance (e.g., only selected compliance
rules or all imposed compliance rules that are not yet enforced at the process model level).
The monitoring tier of the compliance checking framework then monitors the events occurring
during process execution (e.g., completion of a process activity) and analyzes them with respect
to effects on compliance.

A major objective of compliance monitoring is to timely detect happened compliance violations.
This enables immediate actions, such as application of remedies, controlled overriding of vio-
lated compliance rules, or documentation of compliance violations. Timely documentation of
happened violations (e.g., by adding an explanation for the violation by the actor in charge)
ensures meaningful input for a posteriori analysis of the executed business process and can also
avoid the costs that come with an extensive a posteriori root-cause analysis. In the clinical
practice, for example, documentation of deviations from predefined pathways can constitute a
significant requirement [BSB+07].
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Generally, each activation of a compliance rule can be in one of three compliance states in a
stage of process execution: satisfied, violated, or violable [LRMKD11, MMWA11]. Satisfied and
violated are permanent states. A violable rule activation, however, can become both violated
or satisfied depending on the events observed in the future. The state violable can have very
different semantics depending on the particular rule activations. For example, a violable rule
activation may become violated when a particular event is observed (e.g., a particular activity is
executed). In contrast, another violable rule activation may become violated when a particular
event will not be observed. Obviously, to prevent the actual violation of these rule activations,
different measures are necessary (i.e., preventing an event in the first and scheduling an event
in the second case). In order to provide assistance in proactively preventing violations, the
monitoring tier has to make the state violable transparent to process supervisors. In particular,
support with regard to how to satisfy a rule activation is desirable. Being aware of what
is necessary to satisfy a rule activation, the process supervisor may be able to arrange the
suitable measures (e.g., ensure that a particular activity is carried out by placing it in an
actor’s worklist). This fosters compliant behavior and prevents compliance violations. In case
of violations, the compliance checking framework should be able to provide explanations for the
reached compliance state in oder to assist process supervisors in identifying the root-cause of
violations.

If a process instance is executed based on a predefined process model, the possible behavior of
the instance is already encoded in the process model. Thus, this information should be utilized
to anticipate potential violations in the future (cf. Fig. 2.5).

In sum, we identified the following requirements for a compliance checking framework with
respect to runtime support:

R1 timely detection of happened violation,

R2 provision of per activation feedback,

R3 support for advanced compliance diagnoses (explanations for and prevention of compliance
violations), and

R4 anticipation of potential future violations based on behavior predefined in the process
model.

2.2. Vision, contributions, and research methodology

As described in Section 1.1, compliance requirements impose constraints on the process space.
Against the background of PrMSs, to implement compliance controls, therefore, means to device
measures to control the enforcement of these constraints. In this thesis, we address constraints fo-
cusing on the process flows, so-called compliance rules. The compliance rules impose constraints
on the occurrence, absence, and temporal ordering of activities or process-related events. We
further argued that hard-coded solutions to check the enforcement of the compliance rules are
not a viable option due to lack of sustainability. Our objective is, therefore, to provide a generic
framework that supports the modeling of compliance rules, their integration with process models,
and automated compliance checks against imposed rules at process design and runtime. In the
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following, we sketch the “big picture” of such a framework in Section 2.2.1. In Section 2.2.2, we
detail the contributions of this thesis. Our research methodology is described in Section 2.2.3.

2.2.1. Vision

Fig. 2.6 summarizes essential features of a comprehensive compliance checking framework to
support the process lifecycle. In the following, we describe a walkthrough of the different phases
of the process lifecycle.
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Figure 2.6.: Essential features of a compliance checking framework

Rule modeling and integration Compliance requirements are modeled using a formal yet easy
to use compliance rule language. The integration of compliance rules with process models and
process instances is achieved by using process artifacts for compliance rule modeling. Thus,
compliance rules are imposed on the artifacts of the process space. A domain model can further
be used as interface between compliance rules and process artifacts. A designated compliance
rule management system (RMS) is used for managing compliance requirements, compliance
objectives, and compliance rules. The RMS is an important component in the big picture but
it is not in the focus of this thesis. Here, we rely on existing work.

Process design At process design time, the process designer can select compliance rules (or
complete rule sets belonging to a compliance objective) from the RMS and assign them to the
process model. In order to facilitate the verification of process models against imposed rules, the
verification functionality is integrated into the process modeling environment. Thus, there are
no gaps between the tools. In order to enable efficient compliance checks, mechanisms for dealing
with the complexity arising from intricate process models are provided by the framework.
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Based on the compliance checks, comprehensible compliance reports are provided. For each
compliance rule, not only its general enforcement is assessed but also details on its activations
can be provided to the process designer. Ideally, the process situations in which a compliance rule
becomes activated can be visualized to the process designer to pinpoint compliance violations.
Explanations can be generated for detected compliance violations. Based on the compliance
with imposed rules, compliance reports for compliance objectives and compliance regulations
can be generated. This facilitates auditing the process with regard to implemented compliance
controls.

Depending on the enforcement level of the compliance rules, the process designer can decide
whether their enforcement at the process model level makes sense. He may also take back
imposed rules or override only selected activations of a compliance rule. The latter is particularly
relevant when multiple activations occur due to defining rules on abstract concepts of the domain
model and tailoring becomes necessary.

Process execution After completing a process model, it is then deployed and process instances
are created based on the model. For each process instance, the process supervisor may select the
compliance rules to be monitored. Alternatively, the system may automatically decide on the
rules to be monitored at runtime. Additionally, the process supervisor may select additional rules
to be imposed on a process instance (for example, rules that apply only to selected customers
in an order-to-delivery process).

For the rules to be monitored, the events occurring during process execution are analyzed with
regard to their effect on the rule enforcement. In a compliance cockpit equipped with, for
example, dashboards, a process supervisor can control the compliance state of rules imposed
on process instances. The compliance cockpit is supposed to visualize all rule activations and
their compliance state. For rule activations that are neither satisfied nor violated, the compliance
checking framework can provide details on the activations’ particular states and, thus, can assist
the process supervisor in preventing violations. Moreover, the framework is able to provide
explanations for compliance violations making it easier to evaluate the extent of violations and
to decide on adequate remedies.

In case a scheduled event leads to the violation of a rule activation, the actor in charge will be
notified. Depending on the compliance rule’s enforcement level and the actor’s authorization,
the rule activation may, for example, be overridden with the actor providing an explanation for
doing so. In cases where strict enforcement in required, the PrMS could, for example, decline the
scheduled event and notify the process supervisor. All such incidents are logged by the system,
thus, ensuring that later audits can be provided with meaningful input.

Process analysis Even though our compliance checking framework does not specifically address
process analysis, the data collected during process execution can be helpful to assess the executed
processes. Particularly the documentation on rule activations and deviations taken by authorized
users are valuable to the process analysis.

A framework as envisioned would not only be a valuable complement to existing PrMSs. It would
also address the need for “affordable IT and IS tools that facilitate compliance management self-
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audits and compliance monitoring activities in general” identified by the case study conducted
by Abdullah et al. [ASI10].

2.2.2. Contributions

In this thesis, we provide the fundamental building blocks for a compliance checking framework
as envisioned in Section 2.2.1:

Compliance rule modeling: We introduce a formal language for compliance rule specifica-
tion. The language uses a graphical notation consisting of different primitives (e.g., nodes and
edges) resembling the ones known from process modeling. The modeling primitives represent the
occurrence, absence, or ordering of activity executions. Using our approach, compliance rules
expressing constraints on the occurrence, absence, and temporal ordering of activity executions
can be modeled by means of graphs, so-called compliance rule graphs (CRG). The CRG language
does not only cover the property specification patterns [DAC99] but also gives the flexibility of
composing more sophisticated compliance rules. Moreover, the language is extensible, thus,
enabling the easy incorporation of future research results.

Compliance verification: In order to enable automated compliance checks in the different
phases of the process lifecycle, we equipped the CRG language with operational semantics. The
latter enables the operational execution of CRGs such that process models as well as running
process instances can be verified against them. Following the requirements with respect to the
granularity and the comprehensiveness of compliance diagnoses, our approach enables valuable
insights into detected compliance states. Thus, it becomes possible to derive meaningful and
intelligible compliance reports at the granularity of individual compliance rule activations con-
tained in a process model or a process instance. This is not only beneficial for identifying the
root-cause of compliance violations or for generating explanations for violations but also for
deriving suitable measures to avert potential but not yet manifest violations. The proposed ver-
ification mechanisms are fully-automated, thus, leveraging the potential of automatic compliance
verification.

Altogether, the concepts proposed in this thesis can be used to equip PrMSs and other kinds of
process-aware information systems with compliance checking functionality. The proposed com-
pliance checking framework can be integrated into an overall compliance management frame-
work (as, for example, proposed in [GLM+05, The11]) where its role is to address PrMSs as
target systems. For leveraging the practical application, the core building blocks of the compli-
ance checking framework are complemented by concepts and considerations on questions arising
around the actual compliance verification. In particular, we describe considerations on reducing
the complexity of compliance verification in general and on the interaction with end-users. This
thesis further describes the evaluation of our concepts. Specifically, it introduces our proof-of-
concept implementation and case studies conducted in our work. A more detailed overview of
the contributions of this thesis will be provided in Chapter 4.
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2.2.3. Research methodology

Design research is concerned with the development of technology-based solutions to important
and relevant business problems and must produce a viable artifact in the form of a construct
(vocabulary and symbols), a method (algorithms and practices), a model (abstractions and
representations), or an instantiation (implemented and prototype systems) [HMPR04, CPRS05].
Aiming at developing a concrete solution in the form of a viable compliance checking framework,
our research adopts central ideas from design research. According to Andriessen [And07], design
research aims at providing answers to design problems formulated as explorative questions (e.g.,
“How can we improve situation X?”) or questions aimed at testing a hypothesis. In design
research, the production of an viable artifact as solution to relevant problems constitutes a
search process using available means to reach desired ends [CPRS05].

The specific iterative research process applied in the context of our work is illustrated in Fig. 2.7.
Initially, we started with requirements analysis based on case studies and meta-analyses. For
that, we focused on data from the clinical domain and from meta-analyses. Based on that, we
formulated an initial vision of a compliance checking framework [LRD06, LRD08]. Based on
the vision, we developed concepts that were also implemented in prototypes. The concepts do
not necessarily address all aspects of the vision at once but may also focus on certain aspects.
Using the developed prototypes, we were able to analyze and evaluate developed concepts using
data from practical applications or from meta-analyses. This may lead to further development
and implementation iterations (e.g., in case the developed concepts do not yet cover all relevant
aspects or do not yet yield adequate solutions). The evaluation of developed concepts may also
result in a completely new iteration leading to modifications or refinements of the vision when
studies reveal additional requirements (e.g., [LGRMD08, LRMGD12]).

Analysis Vision
Design and

implementation
Evaluation

Figure 2.7.: Research process

This iterative process is reflected in our publications and in the prototypes that constitute the
SeaFlows Toolset [LKRM+10], our proof-of-concept implementation. For example, in an earlier
iteration, we developed an approach for fundamental but not yet very expressive compliance
rules [LRD06, LRD08]. For this, we developed a prototype, which is described in [LKRM+10].
As evaluation revealed limitations (e.g., w.r.t. expressiveness), we then explored more expres-
sive compliance rules and the application of linear temporal logic and model checking tech-
niques [Knu08, KLRM+10]. The results of this research is also incorporated into a prototype
implementation [LKRM+10]. Evaluation of this revealed that the employed formalism can con-
stitute a major obstacle to the practical application. Our research on an alternative graph-based
formalism was more promising and fruitful [LRMD10] and also resulted in a prototype imple-
mentation [LKRM+10]. The process of exploring different strategies for compliance verification
based on this approach is reflected by several publications [LRMD10, LKRM+10, LRMKD11,
Mer10, LRMGD12].
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3
State-of-the-art

In Chapter 2, we compiled requirements on a compliance checking framework that addresses
both process design and process runtime. In this chapter, we provide an overview of the state-
of-the-art and analyze existing approaches with respect to the requirements and our vision of
a comprehensive compliance checking framework. Hence, this chapter discusses existing related
work from the functional perspective. Subject-specific related work will be discussed in each of
the following chapters describing our technical solutions whenever this is appropriate.

As described in Section 2.2.1, a compliance checking framework must enable the specification
of compliance rules and accommodate mechanisms for verifying process models and process
instances against them. However, the bulk of existing related approaches does not address
all scenarios identified in Section 2.2.1 but focuses on specific use cases in a rather isolated
manner. Section 3.1 describes approaches focusing on design time compliance verification while
approaches focusing on runtime compliance monitoring are described in Section 3.2. Integrated
approaches that address both process design and runtime are discussed in Section 3.3. Finally,
Section 3.4 concludes this chapter.

3.1. Approaches with emphasis on design time

Enforcing compliance by verifying process models against compliance requirements is a strategy
advocated by a multitude of related approaches (e.g., [SGN07]). In the following, we distinguish
between these approaches based on the techniques employed for compliance verification.
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Model checking approaches Model checking provides techniques for the verification of a sys-
tem specification (i.e., a model) against certain properties (e.g., deadlocks or fairness) [BBF+01,
CGP99]. As illustrated in Fig. 3.1, the model and the property are given as input to a model
checker. The latter explores the model w.r.t. the property to be checked. In case the property
does not apply, the model checker typically provides a counterexample.

Model checker Result + 

counterexample

Model

specification

Property

Figure 3.1.: Compliance checking by means of model checkers

As model checking is well-researched and hence provides a variety of languages, techniques, and
tools, it is not surprising that model checking is adopted by a variety of related approaches for
business process model verification. In this context, model checkers are employed as verification
tool in order to find out whether or not a process model complies with a rule. In order to utilize
existing model checkers for verifying process models against compliance rules, the latter have to
be specified such that they can be evaluated by model checkers. Different languages are avail-
able for the specification of properties, for example, temporal logic (e.g., linear temporal logic
or computation tree logic) or automatons may be used. As the linear time semantics of linear
temporal logic (LTL) is closer to the mental model of a business process, LTL is preferred over
computation tree logic (CTL), which has branching time semantics [The08, The09b, ETHP10a].
Both languages are well-researched and can be seen as decidable notational variants of “modal”
fragments of first-order logic [HSG04]. The property specification patterns described in Sec-
tion 2.1.1.1 can be mapped to both LTL and CTL. The downside of temporal logics is, however,
that they are less suitable for practitioners due to their complexity [DAC99]. Specifically, LTL
and CTL employ a navigational mental model (i.e., one navigates through time) that can make
compliance rule specification using these languages intricate for non-experts.

The compliance verification approaches proposed in literature (e.g., [FS10, ADW08, FPR06,
FUMK06]) employ model checkers such as SAL or NuSMV for verification. Some approaches
further seek to overcome shortcomings of LTL or CTL with respect to understandability and
user-friendliness by providing graphical notations (e.g., [FS10, LMX07]) or predefined rule pat-
terns (e.g., [YMHJ06, ADW08, ASW09, AWW09, FESS07, KGE11]). This aims at facilitating
compliance rule specification. Specifically, Feja et al. introduce a graphical notation for CTL
(referred to as G-CTL) for modeling compliance requirements [FS10, FWS11]. The model
checker NuSMV is utilized for verifying EPC process models against such G-CTL compliance
rules. In [LMX07], Liu et al. propose a framework for verifying process models against com-
pliance requirements based on LTL model checking. In particular, they propose the business
property specification language (BPSL) that is directly related to LTL properties. Förster et
al. [FESS07, FESS06, FES05] present an approach for validating process models against quality
constraints. Quality constraints are specified in terms of process patterns in process pattern
specification language (PPSL). PPSL patterns, in turn, can be transformed into specifications in
LTL. An extension of the approach is presented in [KGE11] where PPSL patterns can be mapped
to CTL specifications. In the context of web service composition and coordination, the question
arises whether or not a choreography complies with certain constraints [FPR06]. In [YMHJ06],
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Yu et al. introduce an approach for the specification of properties and for the property-based
validation of BPEL processes. The properties are based on property patterns [DAC99]. For pro-
cess validation, a model checking approach is employed. Foster et al. [FUMK06] introduce an
approach for validating the interactions of web service compositions against obligation policies
specified using message sequence charts. In Section 6.4.1, we discuss related compliance rule
specification approaches, such as LTL, BPSL, or PPSL, in more detail when introducing our
approach.

In order to enable compliance diagnoses beyond binary feedback (i.e., compliant or noncom-
pliant), the output of the model checker, in many cases a single counterexample, has to be
transformed back in order to derive a diagnosis [KLRM+10, AW09]. This can be a challenging
task depending on the internal representation of the model. Hence, some compliance verifi-
cation approaches based on model checking provide advanced feedback by either interpreting
the feedback provided by the model checker or by introducing additional mechanisms for diag-
nosis [AW09, AWW09, ETHP10b]. Awad et al. [AW09] introduce an approach for visualizing
and explaining compliance violations that is applied when model checking reveals at least one
compliance violation. The approach focuses on the explanation of violations of a specific set of
compliance rule patterns. For each such rule pattern, so-called anti-patterns capturing process
structure indicating a violation are defined. These anti-patterns are formulated by means of
BPMN-Q queries [Awa07] that can be applied to process models specified in BPMN [OMG11].
Subgraphs of the process model matching the BPMN-Q queries are returned by the query pro-
cessing engine and can be used for visualizing the compliance violation directly in the process
model. In [AWW09], this approach is extended for data-aware compliance rule patterns. In order
to extract the data conditions under which a violation occurs, temporal logic querying [Cha00]
is applied while BPMN-Q queries are used for visualizing detected violations in the process
model. Elgammal et al. seek to compensate the limitations of model checkers w.r.t. compli-
ance diagnosis by introducing an approach based on current reality trees [Det97]. Specifically,
in [ETHP10b], Elgammal et al. provide current reality trees for property specification patterns
introduced by Dwyer et al. [DAC99] and some additional patterns (such as exclusive choice).
For that purpose, Elgammal et al. identified all potential causes of a violation for each pat-
tern. These potential causes are then compiled into current reality trees of the corresponding
patterns. By traversing the tree answering questions associated with a detected violation, the
user is guided to the root-cause of the violation and is further provided with guidelines and
suggestions that help to resolve the compliance violation.

Approaches based on detecting logical inconsistencies A further type of approaches seeks to
detect compliance violations in process models by identifying inconsistencies in specifications.
Specifically, this is achieved by representing the process model using some logic formalism such
that compliance violations can be related to logical inconsistencies between the process model
specification and the rule formulas.

In [DKRR98], an approach for compliance validation based on concurrent transaction logic
(CTR) is introduced. For validating a process model against constraints specified in CTR,
the process graph is transformed into a CTR formula. This allows for reasoning about conflicts
between the formulas. In [GMS06], compliance validation is addressed from the business contract
perspective using formal contract language (FCL) for specifying contracts. The compliance of
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a process model with a given contract is validated by transforming the process model into
a representation similar to the contract notation. This allows for reasoning about contract
violations.

Graph analysis approaches One way to verify compliance of process models with imposed
compliance rules is to search the process model, specifically the graph representation of the
model, for presence or absence of certain structures.

In [BBB+11], Becker et al. propose an approach that relates compliance checking of process mod-
els to subgraph isomorphism and adopts existing subgraph isomorphism algorithms. Premise to
this is that compliance rules are represented as graphs (e.g., a sequence). The approach then
basically searches for occurrences of the subgraph in the process graph. Thus, this approach is
designed to seek confirmation of a certain pattern in the process model.

In our early work, we investigated graph analysis as a method to verify compliance [LRD06,
LRD08, LKRM+10]. The basic idea of this approach is to automatically derive structural con-
ditions from imposed compliance rules. Then, process models can be verified against compliance
rules by checking whether associated structural conditions apply. Depending on the process de-
scription language employed, structural compliance checking can be conducted in a more efficient
manner than exploring the behavior encoded by the process model (e.g., for a block-structured
language such as ADEPT [Rei00]). However, the approach is restricted to a simple compliance
rule language and does not support data-awareness.

Further approaches The Comcert approach introduced by Accorsi et al. [ALS11] relates com-
pliance verification of process models to checking the conformance between a petri net represent-
ing the process model and a Petri net representing the compliance rule. Thus, noncompliance
can be detected by simulating both nets. Since rule specification based on petri nets is rather
cumbersome, Comcert provides a textual notation for specifying rules. Such rules are then
mapped to the corresponding Comcert petri net rule pattern.

In [GHSW08], an approach based on annotating activities with their effects represented by
logical propositions is introduced. Induced state changes of artifacts involved in process can
be considered effects of an activity. FCL is utilized to formulate constraints based on the
activity annotations (i.e., FCL rules specifying under which state conditions certain obligations
arise). By propagating the effects of activities throughout the process model, obligations arising
during process execution can be detected and evaluated. A similar propagation approach is used
for compliance checking in [WGH08]. This approach aims at detecting states of the process
execution in which certain constraint clauses are violated.

In [WKH08a], Wörzberger et al. introduce three types of compliance rules, namely inclusion,
existence, and precedence. For their implementation, Wörzberger et al. model rules as OCL
constraints. These OCL constraints can be integrated into and evaluated by the process modeling
environment described in [WKH08b].
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Discussion As described in Section 2.1.2, compliance verification at design time constitutes
one phase of the process lifecycle. In fact, most of the techniques applied by the approaches
discussed in this section are not directly suitable for compliance monitoring (particularly when
the process model is unknown) when incremental compliance checks become necessary. This
necessitates the accommodation of separate approaches for design and runtime support, which
may require separate compliance rule specifications and result in different kinds of diagnoses. It
seems to be more promising to provide an integrated approach that supports both design and
runtime for the same rule language, which is a major objective of this thesis.

We investigated the application of graph analysis to process verification in our previous
work [LRD06, LRD08, LKRM+10]. Specifically, we were able to provide per activation com-
pliance diagnoses that explain the root-cause of the compliance violation (requirements D2 and
D3). However, this approach provides only limited support for data-awareness as only the
process structure is taken into account.

Relating compliance verification of process models to the detection of logical inconsistencies
among specifications is only proposed by a few approaches (e.g., [DKRR98]). The requirements
with respect to granularity and comprehensiveness of compliance diagnoses are not sufficiently
addressed (requirements D2 and D3) by these approaches as feedback is typically provided in
the form of a single counterexample. In [DKRR98], for example, the proof procedure returns a
Horn goal that can be interpreted as the smallest subpart of the process consistent with imposed
constraints.

Conceivably, model checking was adopted by many approaches due to the powerful yet decidable
property specification languages and the availability of existing model checkers such as SAL.
However, the complexity of temporal logics can become an obstacle to the practical utilization
of model checkers for compliance verification. To overcome this, several graphical notations or
pattern-based approaches were proposed. They will be described in more detail when discussing
compliance rule specification approaches in Section 6.4.1. The requirements with respect to
granularity and comprehensiveness of compliance diagnoses (i.e., requirements D2 and D3 in
Section 2.1.2.1) have not yet been sufficiently addressed. While approaches such as [AWW09,
ETHP10b] exist that seek to provide advanced compliance diagnoses by introducing additional
mechanisms, these approaches are still restricted to specific predefined compliance rules and
cannot be generalized. Feedback at the level of particular rule activations (requirement D2)
as envisioned in Section 2.1.2.1 is not directly supported and, hence, necessitates additional
mechanisms. As model checking is typically applied to verify complex reactive systems, the
state explosion problem is well-known and well-researched by the model checking community.
Thus, strategies for dealing with state explosion exist that can be adopted for process verification
(requirement D4). In this thesis, we adopt the idea of model checkers to explore the process
model and provide an approach that aims at more advanced support with respect to granularity
and comprehensiveness of compliance diagnoses.

3.2. Approaches with emphasis on runtime

Compliance monitoring at process runtime basically means to observe events stemming from
process execution and to evaluate the process behavior exhibited with respect to compliance.

27



CHAPTER 3. STATE-OF-THE-ART

Depending on the availability of process model information, potential future compliance vio-
lations can be predicted. In the following, we describe the different compliance monitoring
approaches proposed in related work based on the techniques they employ.

Approaches using monitoring automatons As illustrated in Fig. 3.2, one approach to monitor
compliance with imposed rules is to employ an observer automaton that will reach an accepting
state if the rule to be checked is satisfied. If the automaton is not in accepting state at the
termination of a process instance, the compliance rule is violated. Using automatons, it is
further possible to determine whether a compliance rule can still become satisfied during process
execution. This can be done by checking whether an accepting state is still reachable from the
current state of the automaton. If no accepting states are reachable, the compliance rule is
violated and cannot be rendered satisfied in the further course of process execution. This can
happen, for example, if a compliance rule imposes the absence of a certain activity and the
very activity is observed during the process execution. Such information can be used to prevent
compliance violations. However, the derivation of measures to satisfy an imposed compliance
rule (cf. requirement R3 in Section 2.1.2.2) requires an analysis of the automaton. As compliance
rules are typically not modeled as automatons, they first have to be modeled using a formalism
from which an automaton can be generated, such as linear temporal logic (LTL), as illustrated
in Fig. 3.2. A major weakness of the observer automaton approach lies in the lack of support
for providing compliance diagnoses for individual compliance rule activations (cf. requirement
R2 in Section 2.1.2.2). For that, additional mechanisms become necessary.

Automaton

generation Automaton
Formalized
compliance

rule

Compliance 

monitoring using

observer

automaton

Figure 3.2.: Automaton-based compliance monitoring

In [MMWA11, MWMA11], Maggi et al. suggest an approach that expresses compliance rules
as LTL constraints. In this approach, each LTL constraint is translated to a local automaton
and the entire set of rules is monitored through a colored automaton. A colored automaton is
obtained as the synchronous product of local automatons. As such, this global automaton is able
to identify violations caused by the interplay of two or more constraints. In addition, the colored
automaton includes information about the accepting states of the original local automatons.
Therefore, when a violation occurs it is possible to identify which constraints from the original
set have been violated. To hide the complexity of LTL from the modeler, graph notations for
frequently used constraint patterns based on the work of Dwyer and Corbett [DAC99], such
as DECLARE [PA06], were suggested. Santos et al. [SFV+12] propose a set of rules to check
control flow and resource distribution in a business process. These rules are represented through
a set of automatons. These automatons are used to build a controller that can be exploited for
guiding the execution of the process by enabling and disabling tasks. This adopts ideas from
declarative process modeling and execution as proposed by Pesic et al. [Pes08, PA06].
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Approaches based on querying for violation patterns As illustrated in Fig. 3.3, the basic idea
of violation-based approaches is to query the evolving execution trace (i.e., the execution history)
of a running process instance for patterns of compliance violations. If at least one violation
pattern of a compliance rule is present in the execution trace, the compliance rule is violated.
Obviously, in order to query the execution trace, the possible ways to violate a compliance rule
have to be identified. This can be done automatically or manually. For evaluating queries,
existing frameworks and technologies such as complex event processing (CEP) [JML09] can be
applied.

Identification of

violation patterns

Violation 
pattern
queries

Formalized / 
informal  

compliance
rule
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Figure 3.3.: Violation-based compliance monitoring

A major weakness of violation pattern based approaches lies in the derivation of violation pat-
terns from a given compliance rule. This is particularly an issue for rules that are formulated
positively (i.e., what must be done instead of what must not be done). For example, if an
execution of activity A requires a subsequent execution of activity B, the corresponding viola-
tion pattern would be "A is executed without subsequent B“. For simple compliance rules or
basic relations (as, for example, introduced in [WZM+11, WPDM10]), all violation patterns can
be anticipated. However, for more complex compliance rules that can be violated in multiple
ways, automatic computation of violation patterns to identify all possible violations becomes
a challenge. Being focused on the detection of violation patterns, this kind of monitoring ap-
proach aims at after-the-fact detection. As such, no support is provided with respect to violation
prevention.

Beheshti et al. [BBMNS11] present a framework for analyzing event logs based on the concepts
of folders and paths. The proposed framework uses folders to group related events in the logs
and allows users to identify relevant paths based on a given correlation condition. Event pro-
cessing technologies are further used by numerous compliance monitoring frameworks to detect
violations, e.g., in the COMPAS project [HMZD11, BDL+10]. COMPAS aims at providing in-
tegrated compliance support for process design and runtime and will be discussed in more detail
in Section 3.3.3. In [AJKL06], Agrawal et al. propose a framework for taming compliance with
the Sarbanes-Oxley Act, particularly with the section on installing an effective system of inter-
nal controls, by using database technology. The authors suggest checking the conformance of
transactions with prescribed workflows during execution and after-the-fact. In case of anomalies,
enforcement can be achieved by declining the transaction. Additionally, noncompliant transac-
tions can be admitted while documenting the anomalies at the same time in order to enable
later audits.

Further approaches In [MMC+11], Montali et al. introduce an event calculus formalization
for ConDec [PA06] constraints that supports the identification of constraint activations. This
approach is able to deal with temporal scopes. The formalization is, however, restricted to
specific property specification patterns, namely existence, absence, and response constraints (cf.
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Section 2.1.1.1). Alberti et al. [ACG+08] report on monitoring contracts expressed as rules using
the notion of happened and expected events. At runtime, events are aggregated in a knowledge
base and that serves as basis to reason about violations.

Discussion Approaches focusing solely on runtime monitoring neglect the process design time,
an important scenario in the business process lifecycle. Thus, the exploitation of information
encoded in the process model for predicting future compliance violations (requirement R4 de-
scribed in Section 2.1.2.2) is not addressed.

Clearly, all approaches discussed in this section are able to detect violations of modeled compli-
ance rules (requirement R1 in Section 2.1.2.2). However, as previously described, a comprehen-
sive compliance checking framework should be able to provide support beyond pure violation
detection. Automaton-based approaches exhibit appealing features, such as the possibility to
analyze whether a compliance rule can still become satisfied and how to satisfy a compliance
rule. However, the exploitation of these features typically necessitates further analysis of the
automaton such as analyzing whether the end state is still reachable. Furthermore, the existing
approaches do not pay attention to the transparency of reached compliance states of a compli-
ance rule during monitoring. Compliance diagnosis is only addressed in terms of reproducing the
event trace that has led to a compliance violation. Explanations beyond that and diagnosis for
specific rule activations are not addressed (requirement R3 and R2 described in Section 2.1.2.2).
Querying-based approaches are able to detect violations at the level of particular rule activa-
tions (requirement R2 in Section 2.1.2.2). However, they focus solely on after-the-fact detection.
Advanced issues such as the prevention of violations have been neglected. Thus, it seems that a
combination of the strengths of both kinds of approaches would be desirable.

3.3. Integrated approaches

Besides approaches focusing on solely process design or process runtime, several integrated frame-
works were proposed in literature. In the following, the most important ones are described.

3.3.1. SCIFF

The work conducted by Alberti and Chesani et al. based on the so-called SCIFF framework
addresses both buildtime and runtime issues [ACG+06, ACG+08, ACG+07, CMMS07b]. SCIFF
consists of a declarative language based on abductive logic programming and an operational
framework. It was originally developed to specify and reason about multi-agent protocols.

Events are the first class entities in SCIFF. The SCIFF language is composed of entities for
expressing events and expectations about events as well as relationships between events and
expectations [ACG+08]. An event occurring during process execution is referred to as happened
event. The desired behavior is represented as expectations. Expectations are modeled as ab-
ductive predicates as they represent events that may or may not occur. A positive expectation
models an event that must occur while a negative expectation models an event that is expected
not to occur. Using the negation operator, the deontic modalities (i.e., permission, obligation,
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and prohibition) can be expressed based on positive and negative expectations. The literals
of the SCIFF language can be used to define so-called integrity constraints (IC) that express
behavior constraint and, thus, correspond to compliance rules. ICs are basically defined as
forward rules where the rule antecedent can contain a conjunction of all the elements of the
language and the rule consequence contains a disjunction of conjunctions of all literals of the
language except for happened events [ACG+08]. Further, restrictions can be defined over finite
domain variables by integrating logic constraint programming. The SCIFF language does not
accommodate a notion for ordering relation between events (such as after or before). Thus,
the ordering of events is determined by a designated parameter indicating the time at which
an event is expected or not expected. By defining constraints on the time parameter, ordering
relations can be established within ICs. Using the SCIFF language, the patterns collected by
Dwyer and Corbett (cf. Section 2.1.1.1) can be captured. However, SCIFF is not restricted to
these patterns. The SCIFF language is powerful and enables expressing complex compliance
rules constraining the process behavior. Due to its formal notation, however, it may not be
suitable for practitioners. A sound and complete proof procedure, defined as a set of transition
rules, constitutes the operational specification of SCIFF. The SCIFF proof procedure builds a
proof tree by transforming one node to others in a rewriting system manner [ACG+08]. In order
to perform runtime checking, the SCIFF framework adopts abduction to dynamically generate
the expectations. Being defined as abducibles, the expectations are hypothesized by the ab-
ductive proof procedure, i.e., the proof procedure makes hypotheses about the behavior. These
hypotheses must be confirmed by the happened events in a confirmation step. If no set of hy-
potheses can be confirmed, a violation is detected. The proof procedure has been implemented
and integrated into a reasoning and verification tool.

Using the SCIFF proof procedure, monitoring of compliance with imposed ICs can be realized.
In their initial work [ACG+06], Alberti et al. apply the SCIFF framework to the runtime
verification of integrity constraints imposed on web service interactions. In [ACG+06], two
kinds of violations are addressed by the approach: events that occur without being explicitly
expected and expected events that do not happen. In [CMMS07a], the approach is applied to
testing the conformance of careflow processes from the healthcare domain. For that purpose, the
process model is translated into SCIFF constraints and a knowledge base. Then, executions of
careflow processes can be tested for conformance with the model. The SCIFF proof procedure
can be modified and adopted for checking whether a model specification enforces a certain
property (g-SCIFF) [ACG+08, ACG+07]. This corresponds to process model verification at
design time. The property to be checked is formulated as a conjunction of SCIFF literals. The
proof procedure is basically utilized to find a history of events that proves that the property
does not hold (i.e., a counterexample). For that purpose, a SCIFF goal is formulated based on
the negated property to be verified. Then, the proof procedure tries to yield a history of events
complying with both the goal and the model specification. For that purpose, it is necessary that
the model is specified using SCIFF. Otherwise, the proof procedure cannot be applied. This
may be an obstacle for the practical application.

In their work, Alberti and Chesani et al. do not put emphasis on intelligible feedback (require-
ments D3 and R3 in Section 2.1.2.1 and 2.1.2.2, respectively). At design time, for example,
only a single counterexample is generated by the proof procedure. While the runtime support
of the approach is quite advanced and interesting information can be derived from the nodes of
the proof tree (e.g., still pending expectations), Alberti and Chesani did not further seize this
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in their work, for example, for deriving compliance diagnosis. The detection of multiple rule
activations and provision of per activation diagnoses was not addressed (requirement D2).

3.3.2. ICCOMP

As a result of the SAP project ICCOMP, Namiri proposes a framework for model-driven man-
agement of internal controls for business process compliance in his thesis [Nam08]. The work of
Namiri addresses both design time and runtime compliance issues.

For design time compliance verification, Namiri proposes to formally define the process model
to be verified by means of a formal ontology (formalized in OWL-DL). Then, compliance re-
quirements are expressed according to the terms and concepts defined in the formal ontology
using the semantic web rule language (SWRL)1. In this approach, compliance requirements
are basically defined as production rules [Nam08]. For the verification of the process model,
Namiri suggests the application of an inference engine. As the approach for design time is not
detailed in [Nam08], the applicability cannot be assessed. However, it seems that the require-
ments concerning intelligible compliance diagnoses and per activation diagnoses (R3 and R2 in
Section 2.1.2.2, respectively) are not addressed.

For runtime compliance monitoring, Namiri introduces a control model [NS07a, NS07b, Nam08,
NS08]. Each control basically consists of an event, after whose occurrence during the course of
the execution of a business process a set of conditions has to hold (or not hold). Scopes (i.e.,
global, before, after, and between described in Section 2.1.1.1) can be utilized to define events. The
control conditions can be composed from basic queries on the process state, process properties,
or the state of previous controls. In addition to that, each control further defines recovery actions
to be undertaken if the conditions of a control fail. When executing the process, the predefined
recovery actions will be scheduled for the process instance when the control conditions fail. This
can be considered a process instance change. In order to facilitate control design, Namiri et al.
propose a set of control patterns addressing frequent controls such as for accommodating the
four-eyes-principle [NS07c].

While the approach proposed by Namiri et al. addresses both design and runtime issues, the two
parts of the solution are not truly integrated but constitute rather isolated solutions. Specifi-
cally, different approaches are utilized to capture rules to be checked at design and at runtime.
Requirements w.r.t. granularity and comprehensiveness of compliance diagnoses as described
in Section 2.1.2 were not addressed. However, Namiri et al. present an interesting framework
for managing compliance requirements and respective controls that can be adopted by our ap-
proach.

3.3.3. COMPAS

The COMPAS project2 aims at devising a compliance technology framework that can be uti-
lized to ensure compliance of the composition of business processes and services. It pro-
poses an overall compliance management framework that enables to define and manage com-

1http://www.w3.org/Submission/SWRL/
2http://www.compas-ict.eu
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pliance requirements from different sources and at different abstraction levels and to asso-
ciate them to specific controls. The controls are defined as compliance rules (declarative)
or process fragments (procedural). COMPAS introduces a view-based modeling framework
that accommodates a distinct view for integrating compliance concerns and compliance meta-
data [THO+10, HTZD10]. Verification and monitoring features are accommodated in the overall
COMPAS architecture, which is described in [The11]. Thus, COMPAS addressed both process
design and process runtime. The results of the COMPAS project were summarized in the
project’s deliverables [The08, The09b, The09a, The10a, The10c, The10b, The11].

The compliance specification language (referred to as CRL for Compliance Request Language)
is described in [The09b, The09a, The10a, The10b]. COMPAS provides a compliance rule spec-
ification approach that integrates property specification patterns [DAC99] (cf. Section 2.1.1.1)
and higher-level patterns. From compliance rules composed from such patterns, linear temporal
logic (LTL) formulas can be generated. With the CRL tool, COMPAS delivered a prototype
for defining compliance requirements and manage them together with compliance risks, sources,
targets, and controls [The10b]. In addition to compliance rules, process fragments that are de-
signed to enforce certain compliance requirements constitute compliance controls that can be
integrated into process model design [SAL+10, SLM+10].

As the compliance rules are ultimately formalized in LTL, existing model checkers such as Spin
may be applied to verify compliance of process models [TEHP12]. According to the architecture
proposed in [The11], different verification tools may be utilized. The importance of intelligible
compliance diagnoses was emphasized in [The10b] (requirement D3 in Section 2.1.2.1). The
approach for generating compliance diagnoses described in [ETHP10b] is based on the definition
of current reality trees for compliance rule patterns that can be traversed in order to derive
compliance diagnosis and remedy strategies (cf. also Section 3.1). This approach is, however,
restricted to specific compliance rule patterns. More general solutions and particularly per
activation compliance diagnosis (requirement D2 in Section 2.1.2.1) were not addressed.

COMPAS relies on complex event processing (CEP) and business protocol monitoring for the
detection of compliance violations during process execution [The11, THO+10, HMZD11] (re-
quirement R1 in Section 2.1.2.2). In [HMZD11], the compliance monitoring part of COMPAS
is described detail. In the framework, low-level events from the process execution engine are
aggregated to meaningful business events by a CEP engine. The business events are then passed
to a business intelligence (BI) component that checks compliance and decides on actions to
take. How compliance checks are conducted, is not described in detail. In [THO+10], CEP
queries are employed to detect violations of quality of service (QoS) policies. How the queries
are derived from compliance requirements is not detailed in the paper. Compliance prediction is
addressed by Rodriguez et al. [RSDC10]. Specifically, this approach focuses on the definition of
key compliance indicators based on process data (in analogy to key performance indicators).

Process models constitute only one of the compliance targets that are addressed in the COMPAS
project. It seems that the major focus of COMPAS was on devising an overall comprehensive
and mature compliance management framework. Thus, no emphasis has been put on the spe-
cific techniques for compliance verification. In contrast, we focus on providing techniques for
compliance rule specification and verification at design and runtime in this thesis. The approach
proposed in this thesis can be integrated into the overall COMPAS architecture [The11] in or-
der to support compliance rule definition and both design and runtime compliance verification.
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As we abstain from addressing management and governance issues evolving around business
process compliance, our work can benefit from the management and integration functionalities
developed in the COMPAS project when being integrated into such an overall framework.

3.3.4. Further approaches

REALM In [GLM+05, GMP06], Giblin et al. propose REALM, a meta-model for model-
ing compliance requirements and for managing them in a systematic lifecycle in an enterprise.
REALM stands for regulations expressed as rule models. The vision of this approach is to pro-
vide a general meta-model that enables capturing compliance requirements. REALM models are
supposed to provide the basis for subsequent model transformations, for example, into concrete
process models, access or monitoring rules, or data retention policies. The latter are deployed
into the business and IT infrastructure of the enterprise while still preserving the association
with respective passages of compliance regulations. This systematic compliance management
is supposed to enable traceability from the regulations to concrete controls implemented in
the systems. This, in turn, enables enterprises to demonstrate to auditors how compliance is
achieved [GLM+05].

A REALM model consists of a concept model, describing the objects of the domain, a com-
pliance rule set for capturing the actual rules, and meta-data for capturing information about
the structure of the legal source as well as lifecycle data. In particular, the objects and rela-
tionships occurring in a regulation are formalized in a concept model (i.e., a domain ontology).
The compliance rules on these concepts are formalized using real-time temporal object logic, a
combination of timed propositional temporal logic and concept models in UML. The temporal
logic used for REALM compliance rules is equipped with the usual temporal operators (i.e.,
globally, eventually and once) as known from LTL with past operators. In order to enable time
constraints, a freeze quantifier is introduced, a time variable that enables to refer to the point
in time in which a formula holds. Thus, it becomes possible to define constraints on the time
variables.

While the transformation of REALM models into concrete artifacts for compliance enforcement
and control at both design and runtime is a major part of the vision underlying this approach,
the technical transformation part has been neglected. The transformation is only addressed
in [GMP06] where Giblin et al. describe an approach for generating event correlation rules from
REALM models. This approach automatically derives correlation rules for a set of REALM
rule templates. The correlation rules can be utilized for detecting compliance violations at
runtime. Even though REALM does not provide a compliance checking framework as targeted
by this thesis, the systematic approach of REALM for managing and translating compliance
requirements to concrete controls can be adopted to complement our approach.

SUPER The work conducted by Kharbili et al. in the SUPER project3 aims at developing a
compliance management framework. In [KSMP08b], Kharbili et al. propose modeling compli-
ance regulations by using policies as a formal tool for declarative implementation of compliance
management. This is supposed to enable the splitting of compliance management into policy

3http://www.ip-super.org
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management and policy implementation and enforcement. Kharbili et al. envision a policy
framework consisting of an upper level policy ontology, an intermediary level for domain-specific
policies, and a bottom level for rules as concrete implementations of policies. The bottom level
policy ontology is supposed to support a variety of rule languages in order to address different
target systems. A discussion of different policy frameworks can be found in [TBJ+03].

In [KSMP08a, KSP08, KS08], Kharbili et al. propose a high-level architecture for a compli-
ance checking framework that also accommodates the enforcement of rules in business process
models and rule monitoring. Concrete approaches for realizing the enforcement of rules or for
monitoring policies were not addressed. Similar to Giblin et al., Kharbili et al. do not provide
a compliance checking framework but rather introduce a compliance architecture. With respect
to the categories to check and enforce business process compliance discussed in [KSMP08a], the
approach proposed in this thesis can be integrated into the architecture proposed by Kharbili et
al. in order to realize policy-aware process monitoring and to enforce semantic operative rules
in business process models.

3.4. Summary

As became apparent in the state-of-the-art discussion, the bulk of compliance checking ap-
proaches proposed in literature focuses on either design time or runtime compliance verification.
In Section 3.1 and Section 3.2, we described approaches addressing compliance checks at process
design and process runtime, respectively. For verifying process models, the bulk of proposed
approaches utilizes existing model checkers. For runtime compliance monitoring, the bulk of
existing approaches proposes the use of observer automatons or the detection of compliance
violations by querying for violation patterns (e.g., using CEP). As pointed out in the discussion,
the proposed approaches still lack support for requirements identified in Section 2.1. Specifically,
design time compliance verification approaches either rely on complex formal languages or on
a set of predefined compliance rule patterns. While formal languages such as LTL or CTL can
become an obstacle for the practical application due to their complexity, predefined patterns
based on the property specification patterns may be too restrictive (cf. Section 2.1.1.1). In-
telligible compliance diagnoses at the granularity of particular compliance rule activations are
not sufficiently supported. Existing approaches addressing the explanation of compliance viola-
tions, such as [AW09, AWW09, ETHP10a], are restricted to specific rule patterns and rely on
additional mechanisms beyond the actual compliance checking approach. The proposed runtime
compliance verification approaches lack support for easily interpretable of compliance states.
While automaton-based approaches enable the derivation of actions to render a compliance rule
satisfied in general, this necessitates further analysis of the automaton. In addition, a compli-
ance rule is typically monitored as a whole while individual compliance rule activations that
may undergo different compliance states during process execution (cf. Section 2.1.2.2) are not
distinguished. Approaches that detect noncompliance by querying for presence of compliance vi-
olation patterns in the execution trace focus on after-the-fact detection. Thus, they lack support
for the prevention of compliance violations.

Only a few approaches address compliance in the context of the process lifecycle. The most
prominent ones among these approaches, however, aim at devising a comprehensive compliance
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management framework and do not put much emphasis on compliance verification techniques.
As previously discussed, the “default” techniques employed by these approaches, such as model
checking, do not essentially differ from the isolated approaches addressing solely process design
or process runtime. SCIFF is most related to the work proposed in this thesis as it constitutes
a compliance checking approach addressing both process design and process runtime. However,
SCIFF is not suitable for an integrated approach as it has major shortcomings w.r.t. compliance
diagnoses particularly concerning design time support (cf. Section 3.3.1).

In this thesis, we focus on providing the technology for modeling compliance rules and for verify-
ing process models and running process instances against imposed rules. Thus, our compliance
checking framework can be embedded into compliance management frameworks such as COM-
PAS where it can benefit from management functionalities while the compliance management
framework is enhanced with a compliance checking approach that supports both design and
runtime. Thus, the enforcement of the same compliance rules can be checked at the process
model as well as at the process instance level. We believe that this synergy can leverage existing
compliance management frameworks that now still rely on rather isolated compliance checking
mechanisms.
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4
The SeaFlows compliance checking framework

in a nutshell

In Chapter 2, we described requirements on a compliance checking framework. Specifically, a
compliance checking framework has to support the modeling of compliance requirements and has
to accommodate mechanisms to verify compliance at both process design and process runtime.
Key to the practical application of a compliance checking framework will further be its ability
to provide meaningful compliance diagnoses. As discussed in Chapter 3, existing compliance
checking approaches predominantly focus on specific scenarios rather than on the integrated
support of process design and process runtime. The requirements with respect to granularity
and comprehensiveness of compliance diagnoses are not yet addressed in an adequate manner.
Existing compliance frameworks that employ a holistic view on business process compliance
issues such as proposed in the COMPAS project, in turn, focus on compliance management in
the large rather than on the actual compliance checks. While these frameworks are valuable
for establishing an overall and systematic approach to compliance management in general, they
particularly rely on existing techniques, such as model checking, for compliance verification.
These techniques, again, are applicable only to specific scenarios (e.g., process design time)
and suffer from known limitations as discussed in Chapter 3. Thus, there is still need for a
compliance checking framework that supports process design and process runtime and that is
capable of providing comprehensive compliance diagnoses at the granularity of particular rule
activations. In this thesis, we describe such a compliance checking framework. As our work
was conducted in a research project called SeaFlows, we refer to the framework as the SeaFlows
compliance checking framework in the following. The proposed framework can become part
of an overall integrated compliance management framework as, for example, envisioned in the
COMPAS project (cf. Section 3.3.3). Before it is introduced in detail, we first provide an
overview on the components of the framework. In the following, Section 4.1 introduces the
components and Section 4.2 summarizes in which chapters these components will be described
in detail.
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Abstraction strategies

User interface for conveying compliance violations

Chapter 9

Figure 4.1.: Building blocks of the SeaFlows compliance checking framework

4.1. Building blocks of the compliance checking framework

The building blocks of the proposed compliance checking framework are illustrated in Fig. 4.1.
The framework’s core components are shown in Fig. 4.1 A: a language to specify checkable com-
pliance rules, its formal semantics, and the operational semantics of the language for conducting
compliance checks. These are footed on an event-based execution trace model that ensures
interoperability. In the following, we provide a brief introduction of each building block.

4.1.1. Event-based execution trace model

As a major goal of our work is to provide a general framework that is not tied to a specific process
description language, the footing of the proposed compliance checking framework is constituted
by an event-based execution trace model. The general and extensible event notion is applicable
to events in PrMSs and other business applications. It is specifically compatible to the event
notion often employed for process mining [VBDA10]. Execution traces consisting of such events
serve as language-independent representation of process executions in our framework.
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4.1.2. The compliance rule graph language

Our goal is to provide a simple yet powerful and extensible compliance rule language. Based
on our experience from experimenting with LTL, we aimed at hiding the complexity of a formal
language from the rule modeler. Following approaches in literature (e.g., [Awa07, ADW08,
AP06, PSSA07]), we adopt the assumption underlying graph-based process description languages
that a graph notation is suitable to represent constraints on the occurrence and ordering of
activities. Thus, we propose an approach for modeling compliance rules by means of graphs.
The rules modeled using this approach are referred to as compliance rule graphs (CRGs). In
contrast to many approaches in literature, the CRG language is not a collection of patterns
but a compositional language that consists of modeling primitives such as nodes and edges
expressing occurrence, absence, or ordering of activity executions. These primitives can be
assembled to compose complex compliance rules. The property specification patterns described
in Section 2.1.1.1 can be modeled using the CRG language. However, being compositional, the
CRG language also enables more complex compliance rules that cannot be captured directly
using the property specification patterns (cf. Section 2.1.1.1). The CRG language can be parsed
in order to generate natural language descriptions. Due to its extensibility, further features can
be easily integrated.

Following the requirement for formalization (cf. Section 2.1.1.2), the CRG language is associated
with clear formal semantics. Specifically, each compliance rule modeled using the CRG language
can be mapped to a rule formula specified in first-order predicate logic (PL1) that can be
interpreted over execution traces. The rule formulas constitute a fragment of PL1. Hence,
existing algorithms can be exploited for analyzing rule formulas. Being based on the event-
based execution trace model, the formal semantics of CRGs is not restricted to a specific process
description language. Thus, CRGs can be utilized to constrain business processes specified using
a multitude of description languages.

4.1.3. Operational semantics of compliance rule graphs

The rationale behind equipping CRGs with operational semantics is to enable checking process
models and process instances against imposed CRGs using the same mechanisms. The basic idea
is to exploit the graph structure of CRGs for compliance checking. In order to encode compliance
states such that they can be interpreted for generating compliance diagnoses, we introduce state
markings for CRG nodes. This way, each compliance state with respect to an imposed CRG
that a process execution may yield can be represented using the very CRG and suitable state
markings. In contrast to states of automatons generated from temporal logic formulas as used
for explicit model checking, the compliance states thus encoded can be interpreted easily as they
refer directly to the CRG structure.

A major objective of our work is to enable meaningful compliance reports as this requirement
still constitutes a major limitation of most related approaches in literature. One benefit of the
proposed approach is specifically that explanations for compliance violations can be derived from
the compliance states encoded using CRGs and state markings (cf. requirements D3 and R3
described in Section 2.1.2). Even if no compliance violation has occurred (yet), the meaningful
compliance states can provide valuable insights into the compliance situation. In particular, it is
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easy to derive measures to avert potential violations from the information encoded in a reached
compliance state.

The operationalization of CRGs is inspired by pattern matching mechanisms and is conducted
by applying rules that alter compliance states according to observed events in a process to be
verified. Thus, the operational semantics can be applied to both design and runtime compliance
checks as it supports an incremental procedure (as required for runtime compliance monitoring).
It further enables to “instantiate” a CRG for each new activation of the compliance rule observed
in the process. Thus, the framework is able to provide compliance reports not only on the
general enforcement of the CRG but also on the particular rule activations in a process and
their individual compliance (cf. requirements D2 and R2 described in Section 2.1.2).

Similar to the formal semantics of CRGs, the operational semantics is defined over event-based
execution traces. Thus, the proposed compliance checking framework can be applied to business
processes specified using a multitude of description languages. This will leverage the practical
application of the framework.

4.1.4. Application of the compliance checking framework in the process lifecycle

The core components of the proposed compliance checking framework as depicted in Fig. 4.1 A
provide the fundament for realizing compliance checks along the process lifecycle within a PrMS
and other process-aware information systems. At process design time, a process model is verified
against an imposed CRG by exploring the process model with regard to compliance with the
CRG. In this process, the CRG operational semantics is applied in order to detect compliance
states that can be yielded by the possible executions of the process model. Apparently, a process
model complies with a rule if it only enables the execution of process instances that comply with
the rule. In this thesis, we describe different strategies for exploring a process model that
may be applied depending on the desired level of granularity with respect to the compliance
report. Based on the detected compliance states, meaningful compliance reports for process
designers can be generated that can help process designers to resolve compliance violations. At
process runtime, events observed during process execution are processed in order to provide
detailed feedback on the compliance state of a running process instance. In addition to that,
the information encoded by the corresponding process model can be exploited to account for
the predefined future behavior.

4.1.5. Pre- and post-processing activities in the compliance checking process

Beyond the mechanisms for modeling compliance requirements in a checkable manner and for
compliance verification, further aspects are vital for a comprehensive compliance checking frame-
work. Specifically, questions on necessary activities before and after conducting the actual com-
pliance checks arise. In this thesis, we outline how processes can be transformed into state space
representations for compliance checking for the example of the process description language
ADEPT [Rei00]. We further address the state explosion problem that may arise due to complex
processes to be verified (cf. Section 2.1.2.1) by pointing out a variety of abstraction strategies
adopted from literature and developed in the SeaFlows project. After conducting the actual
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compliance checks, detected compliance violations need to be conveyed to users in an intelligible
manner. Considerations on this challenge are also introduced in the thesis.

4.2. Structure of the thesis

The remainder of this thesis is structured as follows:

Chapter 5 first provides process fundamentals to clarify basic notions such as process model or
process instances used in the process world. Moreover, it introduces the logical model that
serves as footing of the proposed compliance checking framework. Specifically, the notion
of events and execution traces will be described in detail.

Chapter 6 introduces the CRG language and its formal semantics. In particular, the modeling
primitives of the CRG language and their composition are described. Furthermore, the
translation of CRGs into rule formulas specified in first-order predicate logic is detailed.
Then, the formal semantics of rule formulas is defined over execution traces by stipulating
how such formulas are formally interpreted over an execution trace.

Chapter 7 defines the operational semantics of CRGs. Specifically, the markings for CRGs to
represent compliance states are introduced. Rules that define the transitions of compliance
states are further provided. This is accomplished by providing so-called execution and
marking rules that alter markings in an adequate manner. Chapter 7 also describes how
the operational semantics can be applied at different levels of granularity affecting the
granularity of compliance checks.

Chapter 8 describes how the operational semantics of CRGs is applied to realize process design
and process runtime compliance checks. In particular, it describes the exploration of a
process model with respect to compliance with imposed CRGs. In addition, it describes
how execution trace based process instance monitoring is realized using the compliance
checking framework. Chapter 8 further introduces ideas on compliance predictions at the
process instance level by exploiting the future behavior predefined in the corresponding
process model.

Chapter 9 addresses issues evolving around the actual compliance checks. Specifically, it com-
plements the proposed compliance checking framework with concepts on the transforma-
tion of process models into state space representations for the example of WSM nets [Rei00].
In addition, Chapter 9 contains concepts collected from literature and own ideas on tam-
ing the state explosion problem that such verification tasks often suffer from. Finally,
considerations on how to convey compliance violations are presented in Chapter 9.

Chapter 10 presents our proof-of-concept implementation. The research procedure underlying
this thesis (cf. Section 2.2.3) resulted in a variety of different tools. These tools are
summarized in the SeaFlows Toolset. The SeaFlows Toolset comprises tools for modeling
compliance rules using the CRG language and for conducting compliance checks using the
operational semantics of CRGs. Moreover, the SeaFlows Toolset also features prototype
implementations that showcase the application of abstraction strategies for taming the
state explosion problem.
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Chapter 11 describes our efforts to evaluate the proposed compliance checking framework.
Specifically, it presents a pattern-based evaluation of the CRG approach by modeling
the property specification patterns described in Section 2.1.1.1 using the CRG language.
These patterns have been adopted by a multitude of related approaches for compliance
verification. Moreover, Chapter 11 summarizes the findings and lessons learned from two
cases studies where we applied the proposed compliance checking framework to real world
data / processes. It not only showcases the feasibility of our framework but also points
out highly interesting future extensions.

Chapter 12 summarizes the contributions of the thesis and outlines future research challenges.
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Fundamentals

A broadly applicable compliance checking framework requires a sound and generic footing. The
challenge is to provide a general process representation that does not tie us to a particular
process description language. In the following, we introduce a logical model that will serve as
fundament for defining the formal and operational semantics of our compliance rule language.
As compliance rules impose constraints on the process behavior, we opted for execution traces to
represent process executions. The independence from particular process description languages is
achieved by using a generic event model, on the one hand, and by making only few assumptions
on process models and process instances in the logical model, on the other hand. To represent
the behavior encoded by process models and process instances from different process description
languages, we use finite state automatons that represent a set of execution traces (referred to
as process event graphs). In Section 5.1, fundamentals on process models and process instances
are provided. Section 5.2 then introduces the logical model.

5.1. Process fundamentals

Before going into detail on the logical model that serves as fundament to our compliance checking
framework, we first introduce some process fundamentals that will be used throughout this
thesis.

5.1.1. Process models

According to Weske [Wes07], “business processes consist of a set of related activities whose
coordinated execution contributes to the realization of a business function in a technical and
organizational environment”. Process models capture business processes. In particular, a process
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model describes the workflows of a particular business process. This is done by specifying the
flow of process artifacts such as activities or events within the process and the data flows between
them.

Process models can be defined using different formalisms. Though there exists approaches in
literature that suggest to model processes using other means (for example, using logic formulas
[MDK+03, FW99]), the bulk of approaches in literature and applied in commercial tools prefers
graph-based process models. Following this, we stick to graph-based process models basically
consisting of nodes and edges. Directed edges are used to describe the relationships between the
nodes of the process model. A process model node can be associated with an activity, an event,
or a gateway (a routing construct) [Wes07]. The control flow of the process model is established
via directed edges that specify the ordering relations between these process artifacts.

Activities An activity is a unit of work conducted in the business process. Activities, whose im-
plementation can be provided through a piece of software or by manual tasks not involving
the system, are the building blocks of operational business processes [Wes07]. An activity
may be associated with multiple process nodes as a task may be carried out multiple times
within a business process1.

Events Events represent specific states that are relevant to the process such as the reception of
a message.

Gateways Gateways are constructs that route the control flow. Each node with multiple in-
coming or outgoing edges constitutes a gateway node. For simplicity, we assume that, like
normal nodes, gateway nodes are assigned an activity (if no activity is assigned, then a
designated dummy activity can be used).

For the operational execution of a business process, it is further necessary to specify who is
responsible for performing which tasks. At the process model level, this can be done by means
of user assignment rules specifying which agents are eligible or obliged to perform a certain
task (e.g., executing an activity, sending an event) [LR00, Wes07]. Thus, it becomes possible to
express, for example, which activities shall be performed by which agents.

Beyond the pure control flows, a process model can further contain information on data flows.
In particular, process artifacts can be associated with data objects, which can be produced,
manipulated, and consumed by the former.

Standardization attempts have led to languages such as WSBPEL [WSB07] or BPMN [OMG11].
However, still a multitude of further process description languages to specify process models are
available, e.g., WSM nets [Rei00, Rin04] or Event Process Chains (EPC) [Aal99] as used by
ARIS. Example 5.1 illustrates a process model specified as a WSM net and in BPMN.

1To be more precise, we could further distinguish between activity types and activities (i.e., instances of a certain
type). Then, the activity type is defined only once in a particular domain while multiple instances of that
type can be utilized in a process model. This distinction is made for example by ADEPT [DRR+08, AAD+04,
Rei00]. However, as this distinction does not affect the considerations presented in this thesis, we will use only
the concept of activities.
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Figure 5.1.: A simple order process modeled as WSM net (P1) and as BPMN model (P2)

Example 5.1 (Process models):
In Fig. 5.1, a simple order process is modeled as WSM net [Rei00, Rin04] (P1) and by means of
the business process modeling and notation, BPMN in brief (P2). Basically, the order is checked
after its reception. The result of this task is recorded in a data object (approved in P1, order
in P2). For example, one can think of a boolean flag to indicate whether or not the order is
approved. The order is further processed and depending on the approval, the order is either
confirmed and fulfilled or declined. In P1, the data edges are annotated with the parameters
as which the data object approved is written / read by the respective activities. Note that for
P1, the activity Process order constitutes a data-based exclusive gateway that takes the data
object approved as input and chooses an outgoing path after its completion depending on the
conditions associated with the outgoing edges ([Rei00], p.60).

In this thesis, we assume that process models under investigation comply with structural sound-
ness criteria [Wes07] of the underlying description language.

5.1.2. Process instances

Process models describe how a business process is conducted. In order to enable the execution
of the modeled process within a process management system (PrMS), the process description
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language employed has to provide operational semantics that defines how the model is processed.
A running process started from a process model is referred to as process instance. During
the process execution, the nodes of the process model are processed according to the defined
order and associated activities and events are sent to the worklists of the corresponding agents
or automatically processed by the system [LR00]. When activities are carried out, the data
parameters and corresponding data objects are assigned concrete values. Depending on the
paths within the process model chosen during the execution of the process instance and the
instance-specific process data, only a subset of the possible future process behavior encoded by
the process model may still be reachable for the process instance (for example due to data-based
gateways). This is illustrated by Example 5.2.
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Figure 5.2.: A running process instance of P1 from Fig. 5.1

Example 5.2 (Process instances):
Fig. 5.2 depicts a running process instance of P1 from Fig. 5.1. Three activities have been
executed so far and activity Process order is activated. Informally, the execution history of I1
would comprise the following:

• execution of the start activity

• execution of Receive order

• execution of Check order with approval set to false

It is notable that the lower branch will be selected after completion of Process order due to the
data-based branching conditions.

Depending on the particular process description language, the current execution state of the
process instance can be represented in different ways. WSM nets, for example, introduce exe-
cution state markings for process nodes and edges indicating whether or not they have already
been processed (cf. Fig. 5.3 and Example 5.2).

Generally, a process instance can be associated with an execution history capturing all activities
executed so far. By “replaying” the execution history (also referred to as execution trace)
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over the associated process model, the current execution state of the process instance can be
reconstructed, provided that all data values and decisions with respect to gateways are also
recorded in the execution history.

5.1.3. Implications for the compliance checking framework

In literature, a few approaches were proposed that define compliance constraints directly on
the process structure (e.g., fork constraints [SOS05]). However, as illustrated in Fig. 5.4, our
observations from literature and the requirements analysis indicate that compliance rules are
rather defined from the linear execution perspective [DAC99, Nam08, AP06, YMHJ06, LMX07].
In particular, compliance rules typically do not directly constrain the process structure but rather
impose constraints on the process behavior (i.e., on the particular process executions). Then, a
process model or a process instance does not comply with an imposed rule if it enables a process
execution violating the compliance rule.

Process structure Behavior Compliance ruledefines
imposes 
constraints onProcess description 

language
is modeled in

Figure 5.4.: Relations between process description languages, process structures, behavior, and
compliance rules

As also illustrated in Fig. 5.4, the process structure may be modeled in different process de-
scription languages. Due to the multitude of existing process description languages, key to the
practical application of a compliance checking framework will be its ability to operate with a
broad variety of languages, such as BPEL or BPMN, that are used in practice. In order to
achieve language-wise independence, it becomes necessary to abstract from particular process
description languages and to introduce a more general layer as fundament of the compliance
checking framework. This layer has to be designed such that a multitude of process description
languages can be mapped to it while still capturing all information relevant to the verification
with respect to compliance with imposed rules. In the following, we introduce a logical model
that will enable the language-independent representation of process behavior and, thus, can
serve as interface between the compliance rule and the process perspective.
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5.2. Logical model

The rationale behind employing a logical model as interface between processes and compliance
rules is twofold. Firstly, the logical model shall enable compliance rule specification on the
process behavior without having to consider the specifics of the process structure. Secondly,
it enables us to abstract from particular process description languages and constitutes a sound
footing for the formal and operational semantics of compliance rules. For that purpose, the
logical model utilizes events, execution traces, and process event graphs. Fig. 5.5 illustrates the
concepts of the logical model and their relations.
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Figure 5.5.: Relations between process models, process nodes, activities, and events

Events represent the execution of process artifacts. An execution trace is a sequel of events and
corresponds to the execution history of a process instance. Therefore, an execution trace can
be used to represent a process execution (i.e., the execution of a particular process instance).
Execution traces are a known concept in the business process management area. They are used
for example to define the equivalence of business processes [MW06], to formalize criteria for
process schema evolution [Rin04], or as input for process mining [LRDR06, ABD05, AHW+11].
Typically, process models do not only enable a single process execution. For example, due to
exclusive gateways and process instance-specific process data allocation, a process model may
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enable a multitude of different executions. Hence, a process model is usually able to generate
a whole set of different execution traces. To capture the behavior encoded by a process model,
the logical model provides process event graphs, a data structure based on finite automatons.
The logical model is designed such that it reflects all properties relevant to the compliance rules
addressed in this thesis. However, the concepts can be extended to provide for further aspects
if required by the compliance rules.

In Section 5.2.1, we introduce the process domain and process activities before basic assumptions
with respect to process models are introduced in Section 5.2.2. Section 5.2.3 then introduces
events in more detail before formalizing the notion of execution traces in Section 5.2.4. Based
on that, we provide a general notion of process instances in Section 5.2.5. Finally, Section 5.2.6
introduces process event graphs, a data structure for representing the behavior encoded by
process models and process instances based on finite automatons.

5.2.1. Process domain and activities

In the remainder of this thesis, we assume a defined process domain with a given set of ac-
tivities from which process models are composed. We focus on activities as process artifacts.
However, our concepts can be applied to other process artifacts, such as events as known from
BPMN [OMG11], as well. In the following, we will use T to denote the set of activities of the
process domain.

An activity constitutes a business function of the process domain, such as confirming or checking
an order in an order-to-delivery scenario (cf. Section 5.1.1). To capture the data perspective of
processes, we assume that activities possess data parameters. In an order-to-delivery scenario,
for example, the result of the approval decision (e.g., approved) is a likely data parameter
of the activity Check order (cf. Fig. 5.1 in Section 5.1.1). Following a common paradigm
among process description languages, we distinguish between input and output parameters. Input
parameters typically provide an activity with data context necessary to carry out the business
function, while output data typically capture the data context set by the business function. In
the following, we denote as Inputat / Outputat the input / output parameters of an activity at,
respectively. We assume that these parameters capture all data that can be subject to compliance
rules concerning the corresponding activity. For example, the actor who executed an activity
can be reflected in an output parameter named agent. We further assume that the domains of
the input and output parameters are finite. In consequence, the set of possible executions of a
particular activity is finite. In case of infinite domains, abstraction strategies such as proposed
in [KLRM+10] can be applied to yield finite domains of interest (cf. Chapter 9).

5.2.2. Process models

For the sake of the generality of the logical model, we only make minimal assumptions with
regard to process models. Basically, process models consist of process nodes, which, in turn, are
assigned process activities from the process domain. Instead of operating directly on the process
models, we will later introduce process event graphs (PEGs) (cf. Section 5.2.6) that will serve as
notation-independent representation of the behavior encoded by process models. Therefore, we
abstain from formally defining process models.
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5.2.3. Events

An execution trace reflects the activities conducted within a process execution. The events in
an execution trace, therefore, capture the behavior of process nodes when being executed. As
we address compliance rules on the occurrence, absence, and ordering of activity executions, we
focus on events attesting activity executions. We distinguish between three event types. start
and end events represent the start and completion of an activity, respectively. Sometimes, it
will be more convenient to use one event to represent the execution of an activity instead of
using a pair of start and end events. For that reason, we introduce ex events, each of which
corresponds to the aggreation of a start and a corresponding end event.

In addition to the event types, events should have properties reflecting the source of the event in
the process model or the process instance and associated context information (e.g., data and user
assignment) [VBDA10]. For that reason, we assume that an event is associated with a process
node2. In order to also reflect the data context of a process execution, events may be assigned
data properties. In this thesis, we assume that the data properties refer to the parameters
of the activity associated with the event (via the event’s node). Conceivably, one can also
think of further properties of events. In this work, we assume that all relevant properties are
related to the activity associated with the event3. Equipped with these properties, events and,
thus, execution traces enable the definition of the compliance rules addressed in our work (cf.
Section 1.1). In fact, the event notion introduced in this thesis corresponds to XES [VBDA10],
an event format advocated by the process mining community.

As process nodes are associated with activities, the execution of a process node produces a start
and a corresponding end event. Due to the parameter signature of the associated activity, a
process node is capable of producing a multitude of concrete events as shown in Example 5.3.
Based on the above considerations, Def. 5.1 formalizes the notion of events.

Example 5.3 (Events):
Consider node 3 of process model P1 in Fig. 5.1. Node 3 is associated with the activity Check
order, which, in turn, outputs the parameter approval. Thus, in any execution of P1, the
activity Check order becomes executed. Assuming that approval is a boolean parameter, there
can be one start event and two different end events of node 3 (agent assignment neglected)
as illustrated in Fig. 5.6. In the event notation employed, the first argument denotes the event
type, the second argument the source of the event in the process (i.e., the node), and the
third argument the activity associated with the event. The fourth argument records the data
allocations. Note that the fourth argument of the event signature will be left out if the event
has no relevant data assignment (e.g., for e1).

2The rationale behind an event being associated with a particular process node in addition to an activity is to
enable compliance rules to refer to specific process nodes (i.e., local compliance rules). This can, for example,
be applied to “hook” a compliance rule into a process model (e.g., a compliance rule that becomes activated
between two predefined process nodes [RMM11]). As an activity can occur multiple times within a process
model / process instance, the granularity of activities may not be sufficient in such cases.

3However, our concepts are also applicable to events associated with further properties.
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Figure 5.6.: Events occurring during the execution of node 3 of process model P1 (cf. Fig. 5.1)

Definition 5.1 (Event)
Let P be a process model with NP being the nodes of P . Then, an event e over P is a 4-tuple
e = (typee, ne, ate, datae) with

• typee ∈ {start,end,ex} denoting the type of e,

• ne ∈ NP is a node of P associated with e,

• ate denotes the activity associated with ne, and

• datae is a function assigning a value of the corresponding domain to each input (Inputate)
/ output (Outputate) / input and output parameter of the activity ate for event e of type
start/ end/ ex, respectively.

We denote as EStartP , EEndP , and EExP the set of all start, end, and ex events, as E∗P the set of
all events over P , as EStart, EEnd, and EEx as the set of all start, end, and ex events, and as
E∗ the set of all events over the process domain, respectively.

Note that ex events “combine” a start and a corresponding end event. Therefore, they are
associated with data assignments for both input (Inputat) and output (Outputat) parameters
as described in Def. 5.1.

Assumptions In order to be able to replay execution traces in a process model, for end events
associated with a split gateway node, we assume that the data function from Def. 5.1 also records
which outgoing branch is selected after processing the node. This can, for example, be done
using a designated parameter for gateway decisions (e.g., dec) whose domain is the set of the
outgoing edges of the respective node.
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Notation Following the notation used in Fig. 5.6 and Example 5.3, we will omit the data
function in illustrations if no assignments are made for relevant data parameters. If the activity
associated with an event is not relevant (e.g., for illustration), we will omit the activity in the
event notation. For illustration purposes, we will simplify the notation of events when only the
activity type is relevant (e.g., event = A).

As mentioned, sometimes it will be more convenient to deal with ex events attesting the atomic
execution of an activity instead of separate start and end events. Therefore, we introduce an
auxiliary function to aggregate a pair of associated start and end events to an ex event in
Def. 5.2.

Definition 5.2 (Aggregation of start and end events to ex events)
Let P be a process model and es and ee be two events of P , where es = (start, n, at, datas),
ee = (end, n, at, datae) with at being the activity type of n and Inputat / Outputat being the
input / output parameters of at. Then:

• actExEvent(es, ee) := (ex, n, at, data) where ∀p ∈ Inputat ∪Outputat:

data(p) :=
{
datas(p), if p ∈ Inputat
datae(p), otherwise (i.e., p ∈ Outputat).

For an ex event e = (ex, n, at, data)

• startEvent(e) := (start, n, at, datas) returns the start event corresponding to e with
∀p ∈ Inputat : datas(p) := data(p) and

• endEvent(e) := (end, n, at, datae) returns the end event corresponding to e with
∀p ∈ Outputat : datae(p) := data(p).

Note that Def. 5.2 does not check whether a pair of start and end events really do belong to-
gether for the aggregation to an ex event. This has to be ensured when applying the aggregation.
Example 5.4 illustrates the application of the aggregation.

Example 5.4 (Aggregation of start and end events to ex events):
Consider again the events depicted in Fig. 5.6. Then, the aggregation of e1 and e2 is as follows:
actExEvent(e1, e2) = (ex, 3, Check order, {approval 7→ false}).
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5.2.4. Execution traces

Generally, an execution trace is a finite ordered sequence of events4. Our execution trace
notion corresponds to the ones from literature as, for example, used in process mining re-
search [VBDA10, AHW+11, Pes08]. As we use execution traces to capture the behavior of
process models and process instances, we are particularly interested in execution traces that
can be produced by process models. Therefore, we introduce the notion of execution trace with
respect to a process model in Def. 5.3. Considering how activities within processes are executed,
a resulting execution trace typically consists of start and end events.

Definition 5.3 (Execution trace)
Let P be a process model and σ be a finite ordered sequence of events of type start and end
with: σ = <e1, . . . , en> with ei ∈ EStartP ∪ EEndP , i = 1, . . . , n.

Then, σ is considered an execution trace of P iff σ can be produced by P by applying the
operational semantics of the corresponding process description language.

For σ, we define

• σ[i] := ei as the ith element of σ,

• σ\σ[i] as σ with the ith element being removed, and

• σ|σ′ as the concatenation of σ with another execution trace σ′.

Sometimes, it will be more convenient to use a more compact representation of an execution
trace, in which start and end events are aggregated to ex events. In Def. 5.4, we, therefore,
introduce execution traces containing ex events.

Definition 5.4 (Execution traces containing ex events)
Let P be a process model and σ be a finite ordered sequence of events of type start, end,
and ex with: σ = <e1, . . . , en> with ei ∈ E∗P , i = 1, . . . , n. Let further σ′ be the event
sequence obtained when replacing each event e = (ex, n, at, data) in σ with the sequence
<startEvent(e), endEvent(e)>, respectively.

Then, σ is considered an execution trace of P iff σ′ is an execution trace of P .

5.2.5. Process instances

At runtime, process instances are typically created and executed based on a process model.
The current execution state of a process instance can be yielded by “replaying” its execution

4In theory, as process models can contain loops, a process instance may be executed without ever terminating
(non-terminating loops). However, for practical scenarios, fairness assumptions can be made. That is why we
assume that finite traces are sufficient to describe the behavior of a process execution.
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history in the process model. This is sometimes referred to as the token game (in the context of
process models denoted as Petri nets) [RA08]. The execution history of a process instance can
be captured by an execution trace (cf. Section 5.2.4). Therefore, altogether, a process instance
can be represented by a combination of its process model and an execution trace to represent
its execution history [Rin04]. This intuition is adopted in Def. 5.5.

Definition 5.5 (Process instance)
Let P be a process model. Then, a process instance I of P can be represented through a tuple
(σ, P ) where σ = <e1, . . . , ek> with ei ∈ E∗P , i = 1, . . . , k, is an execution trace representing the
execution history of I.

Example 5.5 (Process instance):
Consider again process instance I1 from Fig. 5.2. Then, I1 can be represented through the tuple
(P1, σ) with P1 being the process model from Fig. 5.1 and the execution history σ being defined
as follows:
<(start, 1), (end, 1), (start, 2), (end, 2), (start, 3), (end, 3, {approval 7→ false})>.

5.2.6. Process event graphs

For compliance verification, process models and process instances have to be explored (i.e.,
unfolded) in order to check whether they enable behavior violating compliance rules to be
checked. A process model typically enables multiple different process executions and, thus,
can generate multiple different execution traces. Process instances whose execution is not yet
completed often also enable multiple different possible futures, depending on the options encoded
in the corresponding process model. To represent the behavior encoded by process models and
process instances independently from the process description languages employed, we utilize a
structure that is based on finite state automatons where each node is associated with an event5.
Thus, a path from a start to an end node constitutes an execution trace. We refer to these
structures as process event graphs (PEG for short). The structure of a PEG is introduced in
Def. 5.6. Note that Def. 5.6 does not imply how PEGs are derived from a process model but
rather defines a general data structure based on which we will illustrate our compliance checking
concepts. As illustrated in Fig. 5.5, a PEG basically describes a set of execution traces and can
represent an unfolded process model.

5Similar structures are used by a multitude of approaches to capture process behavior (e.g., [LMX07,
KLRM+10]). Specifically, the structure employed in this thesis resembles a Kripke structure [Kri63] that
is not necessarily associated with infinite paths. As we focus on the compliance checking mechanisms rather
than on the representation of behavior encoded in process models, we opted for a simple representation that
is sufficient for illustrating the concepts presented in this thesis.
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Definition 5.6 (Process event graph)
Let P be a process model. A process event graph (PEG) X over P is a 5-tuple X =
(S, s0, SE , T, el) where:

• S is a set of nodes,

• s0 ∈ S is a start node,

• SE ⊂ S is a set of end nodes,

• T ⊂ S × S is a set of precedence relations, and

• el : S → EStartP ∪ EEndP ∪ EExP is a function assigning an event of type start, end, or ex
to each node of X.

We assume that each node of S is reachable via the precedence relations.

Note that Def. 5.6 allows for only a single start node for PEGs. This is not an actual restriction
as a virtual start node can be inserted if a process has multiple start nodes.

In Chapter 8, PEGs will be used to illustrate the application of the compliance checking framework
based on the compliance rule graphs and their operational semantics proposed in this thesis.
However, it should be noted that the proposed compliance checking framework is not restricted
to the PEG data structure introduced here. In fact, our approach is applicable to data structures
reflecting the execution traces of a process to be verified. In addition, it is not necessary to
explicitly generate a PEG from a process model in order to verify compliance but compliance may
also be checked on-the-fly while exploring the model. This will be addressed in Chapter 8.

Clearly, Def. 5.6 only formalizes the basic structure to capture the behavior of process models
and process instances. In Def. 5.6, we did not make restrictions with respect to the equivalence of
a process model and a PEG. Some fundamental equivalence notions, however, become necessary
when PEGs are used as input to verify the compliance with imposed rules for process models
and process instances. Def. 5.7 provides a very fundamental notion of equivalence between
PEGs and process models / process instances based on trace-equivalence. Note that the set of
execution traces described by a process instance is a subset of execution traces described by the
corresponding process model. In particular, the subset is constituted by those traces starting
with exactly the execution history of the process instance.

Definition 5.7 (Equivalence between PEGs and process models / process instances)
Let P be a process model and X be a PEG over P . Then, X is considered equivalent to P iff P
and X describe the same set of execution traces.

Let further I = (σ, P ) be a process instance of P . Then, X is considered equivalent to I iff I
and X describe the same set of execution traces.

Note that it may become necessary to transform ex events associated with PEG nodes into pairs
of start and corresponding end events following Def. 5.2 in order to apply the equivalence
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notion provided in Def. 5.7. As the equivalence notion based on traces is quite intuitive, we
abstain from providing a more formal notion.

(Start,1) (End,1) (Start,2)

(End,3,{approval ඎtrue})

(Start,4,{approved ඎ false})

(Start,4,{approved ඎ true})
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X1

Figure 5.7.: A PEG that is considered equivalent to process model P1 from Fig. 5.1

Example 5.6 (Process event graph):
Fig. 5.7 depicts a PEG that is equivalent to process model P1 from Fig. 5.1 as it describes the
same set of execution traces as can be produced from P1.

We do not imply how PEGs are derived from a process model. A process model can, for example,
be transformed into a PEG (e.g., by applying its operational semantics), which, in turn, serves as
input for compliance verification. It is notable, however, that equivalence between the process
model (or process instance) and the PEG to be verified as specified by Def. 5.7 is not necessarily
required for compliance verification. In order to verify the compliance of processes with specific
compliance rules, PEGs can be used that do not fully capture the complete but only the relevant
process behavior. For the sake of verification efficiency, it clearly makes sense to use compact
PEGs that capture only the process behavior relevant to the compliance rules to be checked.
To support this, it is desirable to relax the equivalence notion specified in Def. 5.7. Such
considerations to optimize the compliance verification do not affect the compliance checking
framework introduced in this thesis as they have impact only on the size of the input. In
Chapter 9, we will discuss such abstraction strategies to yield more compact PEGs in more
detail. For now, we assume given PEGs that are equivalent to the processes to be verified.
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Compliance rule graph fundamentals

Premise to automatic compliance checking is the specification of the compliance rules to be
checked. Providing the means to transform compliance requirements into checkable properties,
the compliance rule language constitutes an important building block of a compliance check-
ing framework. As discussed in Section 2.1, a compliance rule language has to be formal and
sufficiently expressive to capture compliance requirements while still remain easy to use in or-
der to not become an obstacle to compliance automation. In this chapter, we introduce the
compliance rule graph language for modeling declarative compliance rules developed based on
the requirements discussed in Section 2.1. For the sake of ease-of-use, formal details are hidden
from the modeler. This is achieved by providing a visual notation that is based on graphs, a
metaphor well-known from process modeling. The compliance rule graph language is equipped
with declarative formal semantics, which enables the formal analysis of modeled compliance
rules. In Chapter 7, we will provide operational semantics for compliance rule graphs that will
enable to execute them over execution traces in order to verify compliance at process design and
runtime.

In the following, the goals of the compliance rule graph language are described in Section 6.1.
Then, the modeling primitives of compliance rule graphs, their syntax, and informal semantics
are introduced in Section 6.2. Section 6.3 addresses the formal semantics of compliance rule
graphs by mapping them to rule formulas that can be formally interpreted over execution traces.
Finally, Section 6.4 discusses alternatives to compliance rule graphs, describes ideas on extending
compliance rule graphs in different respects such as support of time constraints, and provides
ideas to round up our approach with respect to comprehensive compliance support.
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6.1. Introduction

With respect to the requirements and the vision of an overall compliance checking framework
introduced in Chapter 2, we compiled goals that guided the development of the compliance rule
graph language. These goals are described in the following in Section 6.1.1. Then, Section 6.1.2
briefly describes the basic ideas of compliance rule graphs.

6.1.1. Requirements and goals

In Section 2.1.1, we elaborated on requirements on the compliance rule language. As identified
in Section 2.1.1.2, the compliance rule language must have clearly defined formal semantics.
However, for ease-of-use, particularly for intelligibility of modeled rules, it is desirable to hide
formal details of the language from the user. That is why we envisioned a graphical modeling
language inspired by business process modeling.

As discussed in Section 2.1.1.1, the property specification patterns suggested by Dwyer and
Corbett and applied by a multitude of related approaches must be supported by the compliance
rule language as they have been proven to be of practical relevance. However, the limitations
of pattern-based approaches should be avoided. In [LRMD10], we showed that the property
specification patterns still lack expressiveness for certain types of compliance rules (cf. Sec-
tion 2.1.1.1). Therefore, a goal of our work is to provide a truly compositional language that
enables composing rules using fine-grained modeling primitives, thus, giving the flexibility to go
beyond predefined patterns. In this context, it is vital that the language is extensible in order
to incorporate further aspects not yet addressed in this thesis (such as time constraints).

In Section 2.1.1.4, we described important requirements with respect to the organization and
management of compliance rules. They are not directly tied to a specific compliance rule lan-
guage and are not within the scope of this thesis. However, it must be possible to integrate
existing solutions for these requirements with the compliance rule language.

The primary goal of compliance rule specification is to enable automated compliance checking.
Hence, the compliance rule language should lay the fundament for compliance checking mech-
anisms providing compliance diagnoses that meet the requirements with respect to granularity
and comprehensiveness (cf. Section 2.1.2).

6.1.2. The compliance rule graph approach

Based on the goals described in Section 6.1.1, we developed the compliance rule graph approach
proposed in this thesis. The components of the approach are depicted in Fig. 6.1.

Compliance rule 

graph

Compliance rule 

formula

Compliance rule 

graph composite1..*

consists of

1

corresponds to is interpreted over

* *11..*
Execution trace

Figure 6.1.: Relations between execution traces, compliance rule formulas, compliance rule graph
composites, and compliance rule graphs modeled in UML class diagram notation
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The compliance rule graph (CRG) language constitutes the fundamental building block of our
approach. CRGs are a graphical representation for compliance rules and can be composed
from modeling primitives with a notation based on nodes and edges. The graph structure of
CRGs constitutes the basis for operationalization, which enables compliance checks providing
diagnoses directly based on the rule structure. The operationalization of CRGs further enables to
verify compliance of process models and running process instances using the same mechanisms.
This ensures integrated support for the process lifecycle as envisioned in Section 2.2.1. CRG
composites are represented by a set of CRGs that form a compliance rule. Each CRG composite,
in turn, can be transformed into a compliance rule formula (RF), a formula specified in first-order
predicate logic. The formal semantics of RFs is defined over execution traces, which enables the
formal interpretation of CRGs and CRG composites. After this brief overview, Section 6.2 now
introduces the modeling primitives, syntax, and informal semantics of CRGs.

6.2. Structure of compliance rule graphs

As clarified in Section 1.1, we focus on compliance rules imposing constraints on the occurrence,
absence, and ordering of activities that are carried out during a process execution. Typically, a
compliance rule implies a certain behavior if certain conditions are met. In the context of business
process activities, a compliance rule implies some event patterns (with respect to the activities)
if some other event patterns occur [YMHJ06, SGN07, CMMS07a, FESS07, ADW08, AWW09].
This intuition is adopted for CRGs. A CRG captures a compliance rule and is specified by
explicitly modeling

• a pattern of activity executions whose occurrence in a process execution activates the
compliance rule (e.g., necessitates other activities) and

• a pattern of activity executions, which has to apply in the process execution when the rule
becomes activated (rule consequence).

While a CRG only captures a single consequence pattern, multiple disjunctive rule consequences
are enabled by CRG composites as we will later describe in Section 6.2.6. The patterns associated
with a CRG’s antecedent and consequence are composed from modeling primitives of the CRG
language, which are introduced in Section 6.2.1. The informal semantics of CRGs is described
in Section 6.2.2 before CRGs are formalized in Section 6.2.3.

6.2.1. Modeling primitives

Based on the assumption adopted from graph-based process description languages that a graph
is a suitable representation for expressing occurrence and ordering relations of activities, the
patterns associated with the rule antecedent and the rule consequence are modeled by means
of graphs. In order to distinguish between the antecedent and the consequence in the graph
representation, they are modeled using designated node types (condition and consequence node
types). Thus, despite the graphical notation, the underlying explicit rule structure is rigorously
enforced in the CRG approach. This can facilitate the understanding of modeled compliance
rules. Altogether, from their looks, CRGs are graphs with different node types with a graph
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fragment describing the rule antecedent pattern and a graph fragment describing the rule con-
sequence pattern.

The individual patterns of activity executions, in turn, are modeled using nodes representing
the occurrence or absence of activity executions of certain properties and edges that constrain
their ordering as well as whether two nodes can be associated with the same activity execution.
Based on their formal semantics, which will be introduced in Section 6.3, CRGs can be tested
over an execution trace in a pattern matching manner by testing whether CRG nodes can be
matched with activity executions contained in the execution trace.

In the following, we describe the modeling primitives and their semantics in more detail. Sec-
tion 6.2.1.1 describes the CRG node types and Section 6.2.1.2 describes the properties of CRG
nodes. The relations between CRG nodes are detailed in Section 6.2.1.3.

6.2.1.1. Compliance rule graph node types

As mentioned, we distinguish between occurrence and absence nodes. While the former repre-
sent the occurrence of a particular activity execution, absence nodes represent the absence of
particular activity executions. To distinguish between nodes that are used to model a compli-
ance rule’s antecedent pattern and nodes that are used to model a compliance rule’s consequence
pattern, we further differentiate between antecedent and consequence nodes. Altogether, this
results in four different CRG node types: AnteOcc, AnteAbs, ConsOcc, and ConsAbs nodes. The
graphical notation of CRG nodes is depicted in Fig. 6.2.

• An AnteOcc node represents the occurrence of an activity execution as part of the pattern
activating the compliance rule.

• An AnteAbs node represents the absence of activity executions that as part of the pattern
activating the compliance rule.

• A ConsOcc node represents the occurrence of an activity execution requested by a conse-
quence pattern of the compliance rule.

• A ConsAbs node represents the absence of activity executions requested by a consequence
pattern of the compliance rule.

AnteAbs node ConsOcc node ConsAbs nodeAnteOcc node

Figure 6.2.: Notation for CRG node types

Note that a CRG node corresponds to an activity execution (instead of a single start or a
single end event). Clearly, it would also be possible to define constraints directly on start and
end events of activity executions. However, we opted to provide semantically more high-level
support for defining compliance rules. This is the rationale behind defining constraints using
the granularity of activity executions. We would like to stress, however, that CRG nodes may
be also be associated with more fine-grained events.
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6.2.1.2. Compliance rule graph node properties

CRG nodes, regardless of their type, can be assigned conditions on properties of activity exe-
cutions. These are used to filter the activity executions that are relevant to the antecedent or
the consequence pattern of a CRG. A CRG node will match with an activity execution of an
execution trace if all conditions apply1. Thus, the patterns modeled in CRGs can be tested over
execution traces in a pattern matching manner by pairing CRG nodes and matching activity
executions. Against the background of the information exhibited by events in an execution trace
as defined in Section 5.2.3, a CRG node n can be assigned the following conditions:

• An activity from the process domain (denoted by at) to express that only activity exe-
cutions of that type can match with n.

• A process node identifier to refer to specific nodes of an existing process model. Thus,
it is possible to virtually “plug” a process-specific compliance rule into an existing process
model2. The node identifier will be denoted by nid.

• A set of data conditions referring to data parameters of the associated activity (e.g., of
the form (p� v) where p is a parameter, � is a comparison operator, and v is a value from
p’s domain). The assigned data conditions are considered a conjunction. Thus, in order
for an activity execution to match with a CRG node, all data conditions have to apply3.

We assume that each CRG node is assigned exactly one activity. The other properties are
optional. Beyond the above conditions, we can think of further conditions associated with CRG
nodes, for example, time conditions such as deadlines or conditions on the duration of activity
executions. Prerequisite to the assignment of further conditions is that the logical model (cf.
Section 5.2) provides the suitable fundament (e.g., a notion of time for execution traces). In
this work, we confine our considerations to the information provided by the events as defined
in Section 5.2.3. Considerations on extending the concepts are described in Section 6.4.2. The
notation for CRG node properties is shown in Fig. 6.3.

r1

A

conds(r1) = {x > 50, y = true} Data conditions associated with r1

Activity type condition associated with r1

Figure 6.3.: Notation for node properties

1The matching of CRG nodes and activity executions will be detailed in Chapter 7 (cf. Section 7.3.1.1).
2For example, it becomes possible to specify rules requesting that a certain activity is not allowed between two
particular process nodes (e.g., two milestones of the process). This enables to “hook” a compliance rule into
a process model [RMM11].

3For our concepts, the particular form of the data conditions is not important as long as the data conditions can
be evaluated based on the data assignment of the parameters of the associated activity. Therefore, we do not go
into details on the particular structure of data conditions. In compliance rules from practical applications, we
often find disjunctive data conditions (e.g., “if a patient has a confirmed allergy or is taking drugs that might
cause interactions, then ...”). Supporting such disjunctive data conditions is possible in our framework. Even
more complex data conditions (e.g., nested conditions) can be supported, a service for matching conditions
with events provided.
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Example 6.1 (CRG nodes):
Fig. 6.3 depicts AnteOcc node r1, which is associated with different conditions (i.e., at = A,
x > 50, y = true). Now consider, for example, the following execution trace:
<e1 = (start, 1, A, {x 7→ 70}), e2 = (end, 1, A, {y 7→ true}), e3 = (ex, 2, A, {x 7→ 80, y 7→ true})>.

Then, the activity execution described by e1 and e2 (i.e., the execution of process node 1)
corresponds to the profile defined by AnteOcc node r1. In addition, r1 also matches with the
activity execution represented by ex event e3 (i.e., the execution of process node 2).

6.2.1.3. Compliance rule graph relations

So far, we described how CRG nodes can be used to identify and match with activity executions
contained in an execution trace (represented through a pair of start and corresponding end
event or a single ex event). In order to model complex patterns of activity executions in
compliance rules, it must be possible to relate CRG nodes to each other. For that purpose, we
introduce relations. Their graphical notation as edges is depicted in Fig. 6.4.

ORDER edge DIFF edge

Figure 6.4.: Notation for CRG relations

Ordering relations Clearly, essential to the definition of a pattern of activity executions is
the ordering of the latter. Therefore, we introduce order relations to define the ordering of
activity executions. An order relation between two CRG nodes s and t expresses, that s
and t will only match with two activity executions X and Y (provided that the individual
conditions assigned to s and t apply) if the execution of X ends before the execution of Y starts.
Thus, an order relation corresponds to a precedence relation commonly known from process
modeling languages such as ADEPT [Rei00] or BPMN [OMG11]4. In the CRG notation, an
order relation is represented by a directed edge. Apparently, order relations among activity
executions are transitive (i.e., if (s, t) and (t, u) holds, (s, u) will also hold), irreflexive, and
asymmetric.

Example 6.2 (Ordering relations):
Consider the CRG fragment depicted in Fig. 6.5 a). We have a match for this fragment in an
execution trace, if i) two activity executions satisfying the conditions associated with the CRG
nodes r1 and r2 are contained in the trace and ii) these activity executions are also ordered such
that the activity matching with node r1 is completed before the activity matching with node r2
is started. Consider the following traces:
1) <(start, 1, A), (end, 1, A), (start, 2, B), (end, 2, B)>

4Note that further ordering relations, such as start-start relation, can be used in compliance rules modeled as
CRGs when interpreting CRG nodes not as activity executions but as single events.
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2) <(start, 2, B), (end, 2, B), (start, 1, A), (end, 1, A)>
Then, trace 1) contains a match for the CRG fragment shown in Fig. 6.5 a) while the trace 2)
does not.

r1

A

r2

B

r1

A

r2

A

ORDER edge

DIFF edge

a) b)

Figure 6.5.: Ordering and inequality relations

Inequality relations Sometimes, it can become necessary to ensure that two CRG nodes n1,
n2 are not paired with the same activity execution in the pattern matching process despite the
nodes having the same or overlapping node profiles (i.e., informally: activity execution paired
with n1 6= activity execution paired with n2). For example, if one wants to express that two
activity executions with the same attributes shall occur in a process execution (regardless of
their ordering), two ConsOcc nodes with the same attributes can be used to model this pattern.
However, consider the case that a single activity execution is contained in a trace. Then, the two
ConsOcc nodes may match and be paired with the same activity execution, which is not intended.
To prevent this, we introduce inequality relations, referred to as diff relations in the remainder
of the thesis. A diff relation between two CRG nodes s and t expresses that they must not
be paired with the same activity execution (i.e., activity execution of s 6= activity execution of
t). diff relations are non-transitive, irreflexive, and symmetric. Due to the symmetry, diff
relations are represented via undirected edges in a CRG.

Example 6.3 (Inequality relation):
Consider the CRG fragment depicted in Fig. 6.5 b) and the following execution trace:
<(start, 1, A), (end, 1, A)>
Despite containing an activity execution matching with both nodes of the fragment, the trace
does not exhibit a pattern that matches the CRG fragment. This is due to the diff relation
requesting that there must be two different executions of A matching with the nodes of the CRG.
This CRG fragment can, for example, be utilized to express the compliance rule requesting that
if two lab tests are done within the same process, an invoice has to be created when releasing
the patient as the patient will have to pay one of these lab test.

By combining CRG nodes with order and diff relations, complex patterns of activity execu-
tions can be modeled. In particular, we can capture the property specification patterns [DAC99]
and more complex compliance rules on the occurrence, absence, and ordering of activity exe-
cutions [LRMD10] using these primitives. However, we can think of further relevant relations,
for example, data relations (e.g., the 4-eyes-principle as in “the agent responsible for developing
a component must not be the agent to test this component”) or time relations (e.g., minimal
or maximal distance constraints). A discussion on extending CRGs with further relations is
provided in Section 6.4.2.
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6.2.2. Informal semantics

As described, a CRG node, regardless of the node type, will only match with an activity execution
of an execution trace, if all conditions associated with this node apply. For a pattern consisting
of nodes and relations to match with a set of activity executions, the conditions imposed by
relations associated with the node must also apply. The node type (i.e., whether a CRG node is
an occurrence or an absence node), in turn, determines whether a matching activity execution
is required or prohibited for the matching of the overall pattern. For occurrence nodes (i.e.,
AnteOcc and ConsOcc nodes), the respective CRG pattern only applies if matching activity
executions can be found for all nodes. By contrast, the respective CRG pattern will not apply,
if a matching activity execution can be found for at least one absence node (i.e., AnteAbs and
ConsAbs nodes).

Example 6.4 (Modeling and evaluation of CRGs):
Fig. 6.6 depicts three CRGs where CRG R1 is gradually refined to CRG R2 and then to CRG R3.
Initially, the CRG visualized by R1 is activated by the sequence <A,B>. In case of activation,
it is required that activity C is executed between A and B and activity D is executed after B.
In CRG R2, we refined the pattern activating the compliance rule. In particular, R2 is activated
by the sequence <A,B> only if activity E is not executed between A and B. The consequence
CRG of R1 is further refined in CRG R3. Here, we included ConsAbs node r6. As a result, R3
expresses that there must be an execution of activity D after activity B, such that there is no
execution of activity F between B and D.

As example, consider the following execution trace and R3:
<A1, C1, B1, E1, D1, A2, B2, F1, D2>

Then, Fig. 6.7 summarizes the matching of R3 with the activity executions contained in the
trace:

a) A1 and B1 activate R3 as there is no execution of E between them. Moreover, for this
activation of R3, we can also find a match of the consequence pattern as C1 occurs between
A1 and B1 and D1 occurs after B1.

b) In contrast, A1 and B2 do not yield a match of the antecedent pattern due to E1 occurring
between them.

c) Finally, A2 and B2 yield a match of the antecedent pattern of R3. However, no match for
the consequence pattern can be found for A2 and B2 despite D2 as F1 occurs between B2
and D2. In addition, no match for r3 can be found.

Altogether, R3 becomes activated twice in the above execution trace. While the activation is
satisfied in case a), the activation in case c) is not satisfied. Thus, R3 is not enforced in the
trace.

As Example 6.4 shows, a CRG’s antecedent pattern may occur multiple times within an execution
trace. Consequently, a CRG may become activated multiple times within a process model /
process instance. We refer to this as multiple rule activation (cf. Section 2.1.2.1). Based on the
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Figure 6.6.: Incremental modeling of a CRG

A1, C1, B1, E1, D1, A2, B2, F1, D2 A1, C1, B1, E1, D1, A2, B2, F1, D2

r1 r2

r3 r4 r6 r4

r1 r2
r1

A1, C1, B1, E1, D1, A2, B2, F1, D2

r5 r2

a) b) c)

Figure 6.7.: Matching CRGs with activity executions

manual pattern matching conducted in Example 6.4, we are already able to state whether or
not a CRG becomes activated in an execution trace and whether these activations are satisfied
(i.e., have a corresponding match of the consequence pattern).

The incremental composition of compliance rules as shown in Fig. 6.6 is a benefit of the CRG
language. Specifically, it is possible to enrich a CRG with absence and occurrence constraints as
shown in Fig. 6.6 without having to restructure the CRG. This is possible due to the pattern-
oriented mental model of the CRG language (as opposed to the navigational mental model of
LTL). Example 6.5 illustrates the semantics of absence nodes.

Example 6.5 (Absence nodes in CRGs):
Examples of CRGs containing ConsAbs nodes are provided in Fig. 6.8. While CRG R4 expresses
that there shall not be any execution of activity D that is both between A and B and between
A and C at the same time, CRG R5 expresses a slightly different constraint. In particular, R5
expresses that there shall neither be any execution of D between A and B nor between A and C.
Thus, the sequence <A,B,D,C>, for example, is compliant with CRG R4 since D is executed
between A and C but not between A and B. In contrast, this sequence is not compliant with
R5. This example shows that similar to occurrence nodes, an absence node will only match with
an activity execution, if all conditions (e.g., order relations) associated with that absence node
apply.
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Figure 6.8.: CRGs containing absence nodes

6.2.3. Formalization

After introducing the structure and the primitives of CRGs, Def. 6.1 now formalizes the structure
of CRGs. As illustrated by Example 6.4, a CRG consists of an antecedent and a consequence
pattern.

Definition 6.1 (Compliance rule graph)
A compliance rule graph R is defined as R := (A,C) where A denotes the subgraph representing
the antecedent and C denotes the subgraph representing the consequence pattern of R with:

• A := (NA, OrderEA, DiffEA, ntA, condsA) where

– NA denotes the set of nodes of A,

– OrderEA ⊂ NA×NA is a set of directed edges representing order relations between
the nodes of A,

– DiffEA ⊂ NA×NA is a set of undirected edges representing diff relations between
the nodes of A,

– ntA : NA → {AnteOcc, AnteAbs} is a function assigning a node type to each node of
A, and

– condsA is a function assigning a set of conditions to each node of A.

• C := (NC , OrderEC , DiffEC , ntC , condsC) where

– NC denotes the set of nodes of C,

– OrderEC ⊂ NC ×NC ∪NA ×NC ∪NC ×NA is a set of directed edges representing
order relations among nodes of NC as well as between nodes of NC and NA,

– DiffEC ⊂ NC ×NC ∪NA×NC ∪NC ×NA is a set of undirected edges representing
diff relations among nodes of NC as well as between nodes of NC and NA,
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– ntC : NC 7→ {ConsOcc, ConsAbs} is a function assigning a node type to each node of
C, and

– condsC is a function assigning a set of conditions to each node of C.

We assume that for each node n ∈ NA ∪ NC , condsA and condsC each returns at least a
condition on the expected activity type of n, respectively. As discussed in Section 6.2.1.2,
further conditions such as on the parameters of the activity are optional.

The antecedent pattern (captured by A) specifies the behavior that activates the compliance
rule. In practice, we often encounter compliance rules that are always activated in a process
(for example, to express that a security check is mandatory in each process without any specific
pre-conditions). To model such compliance rules, the antecedent pattern can be left empty (i.e.,
the CRG consists of only ConsOcc or/and ConsAbs nodes).

Example 6.6 (Compliance rule graphs):
Consider again CRG R3 depicted in Fig. 6.6. Then, R3 is defined as R3 = (A,C) with

• A = (NA, OrderEA, DiffEA, ntA, condsA) where

– NA = {r1, r2, r5},

– OrderEA = {(r1, r2), (r1, r5), (r5, r2)},

– DiffEA = ∅,

– ntA = {(r1, AnteOcc), (r2, AnteOcc), (r5, AnteAbs)}, and

– condsA(r1) = {at = A}, condsA(r2) = {at = B}, condsA(r5) = {at = E}.

• C = (NC , OrderEC , DiffEC , ntC , condsC) where

– NC = {r3, r4, r6},

– OrderEC = {(r6, r4), (r1, r3), (r3, r2), (r2, r4), (r2, r6)},

– DiffEC = ∅,

– ntC = {(r3, ConsOcc), (r4, ConsOcc), (r6, ConsAbs)}, and

– condsC(r3) = {at = C}, condsC(r4) = {at = D}, condsC(r6) = {at = F}.

Fig. 6.9 summarizes the modeling primitives of CRGs. While the formalization in Def. 6.1 lays
the fundament to model CRGs, not all structures following Def. 6.1 are considered correct CRGs.
In Section 6.2.4, we will introduce constraints on the syntax of CRGs, for example, on the usage
of order and diff relations.
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Figure 6.9.: Primitives of the CRG language

Auxiliaries To facilitate the handling of CRGs, we further introduce some auxiliary properties
and functions that will enable us to refer to properties of a CRG in a convenient manner.

Definition 6.2 (Auxiliaries for compliance rule graphs)
Let R = (A,C) be a CRG. Then, we define the following functions and properties over R:

• NR := NA ∪NC denotes the set of all nodes of R.

• OrderER := OrderEA ∪OrderEC denotes the set of all order edges of R.

• DiffER := DiffEA ∪DiffEC denotes the set of all diff edges of R.

• ntR : NR → {AnteOcc, AnteAbs, ConsOcc, ConsAbs} is a function assigning a node type to
each node of R with

ntR(n) :=
{
ntA(n) for n ∈ NA

ntC(n) for n ∈ NC .

• condsR is a function assigning a set of conditions (cf. Section 6.2.1.2) to each node of R
with

condsR(n) :=
{
condsA(n) for n ∈ NA

condsC(n) for n ∈ NC .

• startCondsR is a function returning the set of conditions associated with a node n that
can be evaluated over a start event. These are conditions on the activity type of an
execution, on input parameters of the respective activity, and on the process node.
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• endCondsR is a function returning the set of conditions associated with a node n that can
be evaluated over an end event. These are conditions on the activity type of an execution,
on output parameters of the respective activity, and on the process node.

We further define auxiliary functions for analyzing CRGs. These will enable us to easily refer
to predecessor and successor CRG nodes.

Definition 6.3 (Auxiliaries for compliance rule graph analysis)
Let R = (A,C) be a CRG. Then, we define auxiliary functions over R as follows:

• succConsAbs : NR → 2NR is a function assigning the set of directly succeeding ConsAbs
nodes to a given node with:
succConsAbs(n) := {t ∈ NR | ntR(t) = ConsAbs ∧ ∃e = (n, t) ∈ OrderER}.

• predAnteOcc : NR → 2NR is a function assigning the set of directly preceding AnteOcc
nodes to a given node with:
predAnteOcc(n) := {t ∈ NR | ntR(t) = AnteOcc ∧ ∃e = (t, n) ∈ OrderER}.

• predAnteAbs : NR → 2NR is a function assigning the set of directly preceding AnteAbs
nodes to a given node with:
predAnteAbs(n) := {t ∈ NR | ntR(t) = AnteAbs ∧ ∃e = (t, n) ∈ OrderER}.

• predConsOcc : NR → 2NR is a function assigning the set of directly preceding ConsOcc
nodes to a given node with:
predConsOcc(n) := {t ∈ NR | ntR(t) = ConsOcc ∧ ∃e = (t, n) ∈ OrderER}.

• predConsAbs : NR → 2NR is a function assigning the set of directly preceding ConsAbs
nodes to a given node with:
predConsAbs(n) := {t ∈ NR | ntR(t) = ConsAbs ∧ ∃e = (t, n) ∈ OrderER}.

• predConsAbs∗ : NR → 2NR is a function assigning the set of directly and indirectly
preceding ConsAbs nodes to a given node with:
predConsAbs∗(n) := {t ∈ NR | (t ∈ predConsAbs(n))∨(ntR(t) = ConsAbs∧∃t1, . . . ,∃tk ∈
NR with (t, t1), (t1, t2), . . . , (tk, n) ∈ OrderER)}.

• predConsOcc∗ : NR → 2NR is a function assigning the set of directly and indirectly
preceding ConsOcc nodes to a given node with:
predConsOcc∗(n) := {t ∈ NR | (t ∈ predConsOcc(n)) ∨ (∃t1, . . . ,∃tk ∈ NR, ntR(ti) =
ConsOcc, i = 1, . . . , k, with t1 ∈ predConsOcc(n), . . . , tk ∈ predConsOcc(tk−1) and t ∈
predConsOcc(tk))}.

Example 6.7 demonstrates the usage of the auxiliaries from Def. 6.3.

Example 6.7 (Auxiliaries for compliance rule graph analysis):
Consider again CRG R3 from Fig. 6.6. Then:
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• succConsAbs(r2) = {r6}, succConsAbs(r1) = ∅

• predAnteOcc(r2) = {r1}, predAnteOcc(r6) = predAnteOcc(r4) = {r2}

• predAnteAbs(r2) = {r5}

• predConsOcc(r2) = {r3}

• predConsAbs(r2) = ∅, predConsAbs(r4) = {r6}

• predConsOcc∗(r2) = {r3}, predConsOcc∗(r4) = ∅

6.2.4. Syntactic correctness and conventions

As aforementioned, Def. 6.1 only specifies the basic structure of CRGs and still permits the
specification of CRGs containing errors (i.e., structures such that a CRG cannot be interpreted
properly or such that parts of the modeled patterns become unsatisfiable). This can be compared
to errors in process models that should be prevented such as deadlocks. Such an error is described
in Example 6.8. In order to prevent such cases, we introduce syntactic correctness constraints
on CRGs.

AnteOcc node

AnteAbs node

ConsOcc node

ConsAbs node

ORDER edge DIFF edge
C

r3r1

A B

r2

R6

Figure 6.10.: A CRG containing errors

Example 6.8 (CRG containing errors):
Considering only the antecedent nodes, R6 becomes activated for each execution of A without a
subsequent execution of B. Once activated, the absence of C after B is requested by R6. This,
however, does not make sense as the absence of B after A is requested to activate R6 in the first
place. Generally, it does not make sense to relate AnteAbs nodes to consequence nodes at all as
the former require the absence of certain activity executions for the rule to become activated.
A CRG containing such structures cannot be interpreted properly. This can be prevented by
introducing certain syntactic correctness constraints for CRGs.

In addition to constraints to prevent errors, we will further introduce syntactic conventions for
CRGs to ensure certain properties (which will be useful for defining the operational semantics).
In the following, syntactic correctness constraints are discussed in Section 6.2.4.1 and 6.2.4.2.
Conventions for ensuring certain properties will be discussed in Section 6.2.4.3. These consid-
erations are then compiled into a set of syntactic correctness constraints and conventions in
Section 6.2.4.4.
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6.2.4.1. Cyclic ordering relations

Due to the transitivity of order relations (cf. Section 6.2), the cyclic definition of order
relations leads to patterns that cannot occur within an execution trace. As example, consider
R7 depicted in Fig. 6.11, which contains a cycle w.r.t. order edges. R7 expresses that for
the activity execution A matching with r1 after which an activity execution B matching with
r2 follows, an activity execution C matching with r3 has to occur after B. At the same time,
R7 requests that C occurs before A. Clearly, this cannot be fulfilled. Similarly, R8 contains a
cycle w.r.t. order relations among AnteOcc nodes. Again, this pattern cannot occur in any
execution trace as an activity execution cannot be both predecessor and successor of another
activity execution. Such errors can be compared to errors in process models such as deadlocks.
To avoid the definition of such patterns, cyclic definitions of order edges are prohibited5.
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AnteOcc node

AnteAbs node

ConsOcc node

ConsAbs node
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Figure 6.11.: CRGs containing cyclic ordering relations

6.2.4.2. Relations of absence nodes

As illustrated in Example 6.8, relations between absence nodes are not reasonable. Consider
CRG R9 depicted in Fig. 6.12, which contains an order edge between two AnteAbs nodes.
Similarly as with Example 6.8, the semantics of this relation is not clear as the associated
activity executions are not supposed to occur. The same is true for the edge connecting the two
ConsAbs nodes of R11 in Fig. 6.12. Therefore, we prohibit direct relations among absence nodes.

r1
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r3 r3
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r1
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R11
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r2
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AnteOcc node

AnteAbs node

ConsOcc node

ConsAbs node
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Figure 6.12.: CRGs containing ordering relations among AnteAbs, between AnteAbs and conse-
quence or among ConsAbs nodes

5Note that this does not prevent the definition of unsatisfiable CRGs in general as we will discuss in Section 6.3.3.
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R10 depicted in Fig. 6.12 contains a relation between an AnteAbs and a consequence node.
As discussed in Example 6.8, it does not make sense to relate AnteAbs nodes to consequence
nodes in general, as AnteAbs nodes request the absence of activity executions. If a rule becomes
activated, no matching activity execution was found for the AnteAbs node in the first place.
In fact, the role of AnteAbs nodes within CRGs is to enable to refine the pattern specified
by AnteOcc nodes. In order to ensure that CRGs can be interpreted properly, we, therefore,
further prohibit direct relations between AnteAbs and consequence nodes. Note that AnteAbs
nodes may still be indirectly connected to consequence nodes.

6.2.4.3. Implicit ordering

Besides the considerations on restricting the use of relations, we further want to imply the use
of explicit ordering relations when nodes are implicitly ordered in certain cases. The rationale
behind doing this is to enhance the understandability of CRGs and to facilitate CRG execu-
tion (cf. Chapter 7). By introducing these syntactic conventions, subgraphs of CRGs (when
removing nodes of certain types) can be analyzed separately. Here, we are considering only
order relations. Thus, when speaking of nodes being connected, a connection via order edges
is meant. Two nodes are considered ordered when they are ordered w.r.t. transitive order
edges.

Implicit ordering among AnteOcc nodes As order relations are transitive, activity executions
matching two AnteOcc nodes that are indirectly connected via order edges must also occur in
the implied order in order for the overall pattern to apply. For example, consider the nodes r1
and r3 of CRG R20 depicted in Fig. 6.13. Then, first A and then C has to be executed. If C and
A are ordered differently in an execution trace, there cannot be any execution of B occurring
after A and before C as requested by r2. For another example, consider CRG R12 shown in
Fig. 6.13. Then, B can only occur between A and C in the specified order for an A that occurs
before C.

To facilitate the analysis of CRGs and to enforce clarity in CRG modeling, we want compliance
rule modelers to make such implicit orderings as with r1 and r2 explicit in such cases. In
particular, two AnteOcc nodes s and t that are connected (through order edges) via an AnteAbs
node or a set of consequence nodes such that an ordering between s and t is implied must be
ordered in the subgraph of the CRG that contains only AnteOcc nodes and associated edges.

Example 6.9 (Implicit ordering among AnteOcc nodes):
Consider for example R12 from Fig. 6.13. Then, r1 and r3 are connected via r2 and, thus, are
implicitly ordered. However, when removing r2 from R12, r1 and r3 will no longer be ordered.
Hence, the ordering between them cannot be analyzed without considering nodes of other types
(i.e., r2). In R13, this is corrected.

In R16 and R20, the AnteOcc nodes r1 and r2 are connected via a node of another type. When
dropping the nodes of other types, r1 and r2 are not connected and, thus, not ordered at all.
This is not desirable. In R17 and R21, r1 and r2 would still be ordered when removing nodes of
other types.
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Figure 6.13.: CRGs containing ordering relations among AnteAbs, between AnteAbs and conse-
quence or among ConsAbs nodes

Implicit ordering among ConsOcc nodes Similar as with AnteOcc nodes, two ConsOcc nodes
that are connected via a ConsAbs node such that an ordering is implied shall also still be ordered
when removing all ConsAbs nodes from the CRG.

Example 6.10 (Implicit ordering among ConsOcc nodes):
In R14 from Fig. 6.13, ConsOcc nodes r1 and r3 are connected through ConsAbs node r2. How-
ever, they are not connected at all in the subgraph of R14 when dropping ConsAbs nodes. In
contrast, r1 and r3 would still be connected in the respective subgraph of R15.

Implicit ordering between AnteOcc and ConsOcc nodes AnteOcc and ConsOcc nodes may be
connected through a ConsAbs node (as for example in R18 in Fig. 6.13). For these nodes, the
same holds as among AnteOcc or among ConsOcc nodes. In particular, two occurrence nodes
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(i.e., AnteOcc or ConsOcc) s and t that are connected via a ConsAbs node6 such that an ordering
is implied, must also be ordered in the subgraph of the CRG when removing all ConsAbs nodes
and associated edges.

Example 6.11 (Implicit ordering between AnteOcc and ConsOcc nodes):
In CRG R18 depicted in Fig. 6.13, AnteOcc node r1 is connected with ConsOcc node r3 via
ConsAbs node r2. When removing r2 from R18, r1 and r3 are no longer connected, which is not
desirable. In contrast, r1 and r3 would still be connected after removing r2 from R19. Thus, in
R19 the relation between AnteOcc and ConsOcc nodes can be analyzed without taking ConsAbs
nodes into account.

Note that the introduced conventions lead to a small loss of expressiveness. However, we have
no indication that this constitutes a limitation. In addition, these conventions are introduced
primarily for convenience and for clarity. Our approach is hence able to deal with CRGs that
do not adhere to these conventions.

6.2.4.4. Syntactic correctness and conventions

Based on the considerations discussed in Section 6.2.4.1, 6.2.4.2, and 6.2.4.3, we compile a set
of constraints and conventions for CRGs. These constraints ensure absence of certain inconsis-
tencies / unreasonable patterns within a modeled CRG (cf. constraints i)- iii)). In addition,
they ensure that the antecedent pattern can be analyzed and executed independently from the
consequence pattern and that occurrence nodes can be analyzed independently from absence
nodes (cf. constraints iv) - vi)).

Definition 6.4 (Syntactic correctness and conventions for compliance rule graphs)
A CRG R = (A,C) is considered syntactically correct iff the following conditions hold:

i) R is an acyclic graph with regard to OrderER.

ii) ∀(s, t) ∈ OrderER ∪DiffER holds:
ntR(s) ∈ {AnteOcc, ConsOcc} ∨ ntR(t) ∈ {AnteOcc, ConsOcc}.

iii) ∀n ∈ NR with ntR(n) = AnteAbs holds:
¬(∃e = (s, t) ∈ OrderER ∪DiffER : (s = n ∧ t ∈ NC) ∨ (t = n ∧ s ∈ NC)).

iv) ∀s∀t ∈ NA, ntR(s) = ntR(t) = AnteOcc with

– ∃n ∈ NA with ntR(n) = AnteAbs such that (s, n), (n, t) ∈ OrderEA
one of the following holds:

– (s, t) ∈ OrderEA∨

6Note that AnteAbs nodes cannot be directly connected to any consequence nodes (cf. Section 6.2.4.2).
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– ∃n1, . . . ,∃nk ∈ NA, ntR(ni) = AnteOcc, i = 1, . . . , k such that
∃e1, . . . ,∃ek+1 ∈ OrderEA with e1 = (s, n1), . . . , ek+1 = (nk, t).

v) ∀s∀t ∈ NC , ntR(s), ntR(t) = ConsOcc with

– ∃n ∈ NC with ntR(n) = ConsAbs such that (s, n), (n, t) ∈ OrderEC
one of the following holds:

– (s, t) ∈ OrderEC ∨

– ∃n1, . . . ,∃nk ∈ NC , ntR(ni) = ConsOcc, i = 1, . . . , k such that
∃e1, . . . ,∃ek+1 ∈ OrderEC with e1 = (s, n1), . . . , ek+1 = (nk, t).

vi) ∀s∀t ∈ NR where
(ntR(s) = AnteOcc ∧ ntR(t) = ConsOcc) ∨ (ntR(s) = ConsOcc ∧ ntR(t) = AnteOcc) with

– ∃n ∈ NR with ntR(n) ∈ {ConsAbs} such that (s, n), (n, t) ∈ OrderER

one of the following holds:

– (s, t) ∈ OrderER ∨

– ∃n1, . . . ,∃nk ∈ NR with ntR(nj) ∈ {AnteOcc, ConsOcc}, j = 1, . . . , k such that
∃e1, . . . ,∃ek+1 ∈ OrderER with e1 = (s, n1), . . . , ek+1 = (nk, t).

vii) ∀s∀t ∈ NR, ntR(s), ntR(t) = AnteOcc with

– ∃n1, . . . ,∃nk ∈ NC such that
∃e1, . . . ,∃ek+1 ∈ OrderER with e1 = (s, n1), . . . , ek+1 = (nk, t)

one of the following holds:

– (s, t) ∈ OrderEA ∨

– ∃n′1, . . . ,∃n′l ∈ NA with ntR(n′i) = AnteOcc, i = 1, . . . , l such that
∃e′1, . . . ,∃e′l+1 ∈ OrderEA with e′1 = (s, n′1), . . . , e′l+1 = (n′l, t).

Example 6.12:
Def. 6.4 is applied in Fig. 6.14. Apparently, CRG R22 does not comply with Def. 6.4. For
example, the AnteOcc nodes r1 and r3 are connected via a ConsOcc Node r7. However, there
is no ordering between r1 and r3 when removing r7. This violates condition vii). The same
applies to the pair of r1 and r5. In addition, the AnteOcc nodes r3 and r4 induce a violation
of constraint iv), since they are connected to each other via AnteAbs node r6 but would not be
ordered when removing r6.

Two ways of making R22 compliant with the constraints from Def. 6.4 are provided by R23 and
R24. The latter differ in the ordering relations between r1, r2 and r3. It is notable that R23 and
R24 have different semantics. While R23 can only be activated by sequences like <A,B,C>,
R24 can also be activated by sequences of type <A,C,B>.
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As this example shows, the constraints introduced in Def. 6.4 force CRG designers to be more
accurate about a CRG’s semantics and, thus, can help to avoid semantic errors.
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Figure 6.14.: Application of the constraints from Def. 6.4 to a CRG

The constraints from Def. 6.4 are easy to implement. To implement syntactic constraint i) we
can apply existing cycle detection algorithms for graphs. The implementation of the constraints
ii) and iii) is also fairly straight-forward. In particular, we have to check the source and target
nodes of edges within a CRG. In order to implement the constraints iv) to vii), the particular
cases that can occur within the antecedent pattern, within the consequence pattern, and within
the combination of both antecedent and consequence pattern have to be identified. In the
remainder of this thesis, we assume that all CRGs are correct with respect to Def. 6.4.

6.2.5. Redundant edges

A CRG complying with Def. 6.4 may contain redundant edges. An edge is considered redun-
dant if removing it would not alter the semantics of the CRG. This means that the redundant
edge does not alter the sequences that activate or satisfy a CRG. Example 6.13 shows a CRG
containing a redundant order edge.

Example 6.13 (A CRG containing a redundant edge):
In CRG R25 depicted in Fig. 6.15, (r2, r4) is redundant. R1 becomes activated for each sequence
of <A,B,C> and will be satisfied if an execution of D follows the execution of C. Obviously,
if this applies, D is also executed after completion of B. Therefore, removing (r2, r4) would not
alter the semantics of R25.
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Figure 6.15.: A CRG containing a redundant order edge

While redundant edges are not an issue for the formal (cf. Section 6.3) and the operational
semantics (cf. Chapter 7) of CRGs, they add unnecessary complexity to a CRG, thus, making
modeled CRGs more difficult to understand. In addition, they can lead to superfluous computing
steps when analyzing and executing CRGs. Hence, redundant edges should be avoided. In
Appendix A.1, criteria to detect redundant edges are provided. In the following, we briefly
describe the underlying ideas.

6.2.5.1. Inequality relations

As previously discussed, diff edges correspond to inequality relations and are used to ensure
that two CRG nodes are not paired with the same activity execution. The latter case can only
occur if the intersection of activity executions matching with the profile of two CRG nodes is
not empty. Premise for this is that two CRG nodes are assigned the same activity type from
the process domain7. In any other case, diff relations are superfluous.

Since diff relations are not transitive, a set of diff relations is always free of redundancy.
However, a diff relation between two nodes clearly becomes redundant when there is already
an order relation between these nodes as shown in Example 6.14. Hence, no diff edges shall
be defined for such nodes.

R26
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AnteOcc node
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Figure 6.16.: A CRG containing a redundant diff edge

Example 6.14 (Redundant diff edges):
Consider R26 depicted in Fig. 6.16. Then, (r1, r3) is redundant as r1 and r3 cannot match and
be paired with the same activity execution due to the order relations in R26.

7Note that even if two nodes have the same activity type, other conditions such as data conditions may exclude
them from matching with the same activity execution. Thus, more sophisticated analyses may be conducted
to find out whether two nodes can match with the same activity. We abstain from doing that in this thesis.
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6.2.5.2. Ordering relations

Intuitively, an order edge (s, t) connecting two CRG nodes s and t may be redundant if there
also exists an indirect path from s to t (for example, (r2, r4) in Fig. 6.15). However, testing solely
this is not sufficient to identify redundant order edges due to the constraints in Def. 6.4, which
introduce edges in CRGs (for example, (r1, r5) in R23 from Fig. 6.14). However, redundant
order edges can be identified easily when analyzing different CRG node types separately. By
analyzing solely AnteOcc nodes and associated edges, we can easily identify redundant order
edges as edges (s, t) connecting two nodes s and t while there also exists an indirect path from s
to t. In the same manner, we can identify redundant order edges among ConsOcc nodes when
analyzing solely ConsOcc nodes. As a CRG may also contain redundant order edges between
AnteOcc and ConsOcc nodes. To detect these, we analyze the CRG while ignoring absence nodes
and associated edges.

Example 6.15 (Redundant order edges):
Consider R27 depicted in Fig. 6.17 where redundant edges are colored. Then, analysis of solely
AnteOcc nodes / ConsOcc nodes enables us to identify (r1, r3) / (r5, r7) as redundant, respec-
tively. Analysis of edges between AnteOcc and ConsOcc nodes reveals (r7, r2) and (r2, r8) as
redundant. Note that (r7, r1) is not a redundant edge as removing it would change the seman-
tics of R27. This edge is introduced by Def. 6.4.
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Figure 6.17.: A CRG containing multiple redundant order edges

So far, we focused on redundant edges among occurrence nodes. Redundant order edges asso-
ciated with absence nodes can still be contained in a CRG. Redundant order edges associated
with absence nodes can be detected by applying similar criteria as applied to detect redundant
order edges among an individual node type. In particular, an order edge (s, t) with s or
t being an absence node is considered redundant if there is a further path from s to t in the
CRG.

Example 6.16 (Redundant order edges associated with absence nodes):
Consider CRG R28 from Fig. 6.18. R28 will only be activated by a sequence <A,B,C> if there
is no execution of D that is both in between A and B as well as in between A and C. Apparently,
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any execution of D in the sequence <A,B,C> that is located in between A and B will also be
located in between A and C. Hence, the latter is the weaker constraint and, thus, redundant.
As a result, order edge (r4, r3) of R28 is redundant. The same applies to (r6, r5).
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Figure 6.18.: A CRG containing redundant order edges associated with absence nodes

6.2.6. Compliance rule graph composites

A CRG as formalized in Def. 6.1 consists of an antecedent pattern and one consequence pattern.
In real-world scenarios, however, we often observe alternative options to fulfill a compliance
rule [GMS06, SGN07]. For example, prior to a MRT examination, the patient should be ad-
ministered a contrast agent to enhance the results. However, this is not always possible or
wanted (e.g., due to intolerance against contrast agents). Hence, omitting the administration of
the contrast agent with the patient’s approval is also legitimate. In order to support multiple
consequence patterns, we introduce compliance rule graph composites, which are formalized in
Def. 6.5. A CRG composite is constituted by a set of CRGs with the same antecedent pattern
where each CRG’s consequence pattern represents one option to satisfy the CRG composite.

Definition 6.5 (Compliance rule graph composite)
A compliance rule graph composite is a tuple RC := (A, {C1, . . . , Cn}) where for each i =
1, . . . , n it holds that Ri := (A,Ci) is a CRG.

Note that a CRG can be considered a special case of a CRG composite, namely a composite with
only a single consequence. We will refer to CRG composites as CRGs for short if no distinction
is necessary.

Notation-wise, it is intricate to integrate all consequence patterns into a single graph represen-
tation as it is necessary to indicate the different consequence parts. For this reason, we opted
for capturing alternative consequence patterns in separate CRGs. As a result, a compliance
rule consisting of multiple alternative consequence patterns from which one has to apply, is
represented by a set of CRGs (having the same antecedent). This is exemplified in Fig. 6.19.
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Figure 6.19.: A CRG composite consisting of two CRGs

Example 6.17 (Compliance rule graph composite):
Fig. 6.19 depicts two CRGs R1 and R2 constituting the CRG composite RC1. RC1 expresses
that the execution of activity A has to be followed by an execution of B or there has to be a
prior execution of C.

In the SeaFlows Toolset (cf. Chapter 10), we provide a graphical user interface to model CRG
composites with multiple alternative consequence patterns by modeling the antecedent and the
consequence patterns separately and relating them to each other.

6.3. Formal semantics of compliance rule graphs

In Section 6.2.2, we informally described the semantics of CRGs. To avoid ambiguity, however,
the semantics of CRGs has to be formalized. While the operational semantics, which will be
introduced in Chapter 7, enables the operational execution of CRGs, the formal semantics lays
the foundation for the formal analysis of CRGs. Recall Fig. 6.1 from Section 6.1.2 that illustrates
that each CRG composite (and CRG) can be expressed as a compliance rule formula (RF). A
RF, in turn, can be interpreted over execution traces. This constitutes a naive process meta-
model independent way to verify the compliance of processes with imposed CRG composites.
We will later show, how the CRG operational semantics can be applied to verify compliance.

To specify RFs, we opted for first-order predicate logic (PL1). Due to its expressiveness8, PL1
is suitable to capture not only the semantics of CRG composites but also of many possible
future extensions thereof. In contrast to linear temporal logic, advocated by related approaches
such as [ASW09], PL1 enables us to define the formal semantics of CRGs in a straight-forward
manner as the explicit if-then rule structure of CRGs can be maintained in the RF.

In the following, we show how CRG composites are mapped to RFs in Section 6.3.1. First, the
syntax of RFs is introduced. Then, we show how RFs are interpreted over execution traces in
Section 6.3.2, which defines the semantics of RFs and, thus, the semantics of CRG composites.

8Note that LTL and CTL can be considered decidable notational variants of modal fragments of first-order
logic [HSG04].
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6.3.1. Compliance rule formulas

As explained in Section 6.2.2, CRG nodes, regardless of the type, serve as placeholders for
activity executions in the overall antecedent or consequence pattern. Therefore, the basic idea
to create a RF from a given CRG composite is to use variables that correspond to the CRG nodes
in the RF. Thus, the conditions associated with CRG nodes (such as the activity type condition)
and relations between nodes can be captured in the formula through adequate functions and
predicates over these variables. Altogether, the primitives of a CRG composite can be reflected
in a RF through respective variables, functions, and predicates.

CRG element RF counterpart
CRG node n Variable vn
Activity type condition at = t ∈
condsR(n), t denotes an activity
type

Predicate =(at(vn), t) (or at(vn) = t for short) where
t is a constant and at is a designated function.

Node identifier condition nid = i ∈
condsR(n), i denotes a process node

Predicate =(nid(vn), i) (or nid(vn) = i for short)
where i is a constant and nid is a designated func-
tion.

Data condition p � d ∈ condsR(n),
� is a comparison operator and d is
a value

Predicate �(p(vn), d) (or p(vn)� d for short) where d
is a constant, p is a designated function of the respec-
tive data parameter, and � is a comparison operator.
Note that we are double-using p as a parameter and a
function name.

order edge (n1, n2) Predicate Pred(vn1 , vn2)
diff edge (n1, n2) Predicate 6=(vn1 , vn2) (or vn1 6= vn2 for short)

Table 6.1.: Mapping of CRG elements to RF counterparts

As shown in Table 6.1, each node of a CRG has a corresponding variable in the RF and each
relation and condition of a CRG corresponds to a predicate in the RF. Hence, for a CRG
composite, the corresponding RF contains a set of AnteOcc, AnteAbs, ConsOcc, and ConsAbs
variables. As CRG nodes are placeholders for activity executions, RF variables also refer to
activity executions9. The functions at, nid, and p are supposed to return the activity, the process
node, and the data allocation of parameter p of the associated activity execution, respectively. As
� and = are common comparison operators, their semantics should be clear. Pred is supposed
to be evaluated to true if the variables vn1 , vn2 are allocated with two activity executions such
that the activity execution associated with vn1 is completed before the other activity execution
is started. Finally, predicate 6= is supposed to be evaluated to true if the associated variables
are not allocated with the same activity execution. The semantics of the predicates will be
formally defined in Section 6.3.2. Based on Table 6.1, we introduce some auxiliaries that will
facilitate the mapping of CRG composites to RFs:

9The domain for the formal interpretation of a RF is populated by activity executions contained in the execution
trace, over which the RF is evaluated. We will describe this in more detail in Section 6.3.2.
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Definition 6.6 (Auxiliaries for mapping CRG composites to RFs)
Let RC = (A, {C1, . . . , Cn}) be a CRG composite with Ri = (A,Ci), i = 1, . . . , n being CRGs.
For Ri, let VRi be a set containing a distinct variable for each node of NRi and let n(v), v ∈ VRi ,
return the CRG node n ∈ NRi that corresponds to variable v. Let further V, V1, V2 ⊆ VRi be
sets of RF variables. Then, based on Table 6.1, we define the following for Ri:

• OCondsRi
V denotes the set of Pred predicates among the variables of V with:

OCondsRi
V := {Pred(v1, v2) | v1, v2 ∈ V where (n(v1), n(v2)) ∈ OrderERi}.

• OCondsRi

V1|V2
denotes the set of Pred predicates between the variables of V1 and V2 with:

OCondsRi

V1|V2
:= {Pred(v1, v2) | v1 ∈ V1, v2 ∈ V2 where (n(v1), n(v2)) ∈ OrderERi} ∪

{Pred(v2, v1) | v1 ∈ V1, v2 ∈ V2 where (n(v2), n(v1)) ∈ OrderERi}.

• DCondsRi
V denotes the set of 6= predicates among the variables of V with:

DCondsRi
V := {v1 6= v2 | v1, v2 ∈ V where ((n(v1), n(v2)) ∈ DiffERi ∨ (n(v2), n(v1)) ∈

DiffERi)}.

• DCondsRi

V1|V2
denotes the set of 6= predicates between the variables of V1 and V2 with:

DCondsRi

V1|V2
:= {v1 6= v2 | v1 ∈ V1, v2 ∈ V2 where ((n(v1), n(v2)) ∈ DiffERi ∨

(n(v2), n(v1)) ∈ DiffERi)}.

• NCondsRi
V denotes the set of �, at, and nid predicates over the variables of V with:

NCondsRi
V := {at(v) = t | v ∈ V where (at = t) ∈ condsRi(n(v))} ∪

{nid(v) = i | v ∈ V where (nid = i) ∈ condsRi(n(v))} ∪
{p(v)� d | v ∈ V where (p� d) ∈ condsRi(n(v))}.

• CondsRi
V denotes the set of all predicates among the variables of V with:

CondsRi
V := OCondsRi

V ∪DConds
Ri
V ∪NConds

Ri
V .

• CondsRi
V1,V2

denotes the set of all predicates between the variables of V1 and V2 with:
CondsRi

V1|V2
:= OCondsRi

V1|V2
∪DCondsRi

V1|V2
.

The auxiliaries are applied in Example 6.18.

Example 6.18 (Elements of a CRG expressed as variables and predicates):
Consider CRG composite RC2 in Fig. 6.20, which consists of CRG R1. Then, for the nodes
r1, . . . , r6 of RC2, we define a variable for each node to be used in the RF where V denotes the
set of variables with V := {v1, v2, v3, v4, v5, v6}. Then holds:

• OCondsR1
{v1,v2} := {Pred(v1, v2)},

• OCondsR1
{v1,v2}|{v4,v5} := {Pred(v1, v4), P red(v4, v2), P red(v2, v5)},

• DCondsR1
V := ∅ (as no diff edges are used in RC2), and

• NCondsR1
{v1,v2} := {at(v1) = A, at(v2) = B, x(v2) > 500}.
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Figure 6.20.: A CRG composite consisting of one CRG

In order to derive a RF for a CRG composite, the rule counterparts have to be placed in a rule
structure that reflects the intended semantics as explained in Section 6.2.2. Generally, unless
there is no occurrence of the antecedent pattern within an execution trace, a CRG composite
is satisfied over a trace, if for each occurrence of the antecedent pattern we can identify an
occurrence of one of the consequence patterns. This if-then semantics must be reflected in RFs.
Hence, the general structure of RFs is as follows (where x1, . . . , xj are AnteOcc variables and
Consequencei represents the formula for the consequence pattern Ci of a CRG composite):

∀x1 . . . ∀xj (Condition ⇒ Consequence1∨ . . .∨Consequencep )

Condition contains predicates reflecting all conditions imposed on AnteOcc nodes including
relations among them. Condition further contains predicates reflecting the conditions imposed
through AnteAbs nodes.

As ConsOcc nodes represent activity executions that shall occur when a compliance rule becomes
activated, each Consequencei is a subformula over the existence of ConsOcc variables (assuming
that z1, . . . , zl constitute the ConsOcc variables):

Consequencei := ∃z1 . . . ∃zl (Conditioni)

Conditioni comprises all conditions on respective ConsOcc nodes, relations among them, and
relations between ConsOcc nodes and the antecedent CRG. As ConsAbs nodes impose absence
constraints on the consequence pattern, they must also be reflected in Conditioni. Example 6.19
illustrates the mapping of a CRG composite to a RF.

Example 6.19:
Consider again RC2 from Fig. 6.20. Then, the RF of RC2 is as follows (the variables v1, . . . , vn
correspond to the nodes r1, . . . , rn):

∀v1∀v2
((at(v1) = A ∧ at(v2) = B ∧ x(v2) > 500 ∧ Pred(v1, v2))∧ [line 1]
¬(∃v3 (Pred(v1, v3) ∧ Pred(v3, v2))) [line 2]
⇒
∃v4∃v5
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((at(v4) = C ∧ at(v5) = D ∧ Pred(v1, v4) ∧ Pred(v4, v2) ∧ Pred(v2, v5))∧ [line 3]
¬(∃v6 (at(v6) = F ∧ Pred(v2, v6) ∧ Pred(v6, v5))))) [line 4]

Although looking quite complex at a first glance, the underlying structure is fairly simple and
follows ∀v1∀v2 (Condition⇒ Consequence). In line 1 of Condition, the conditions imposed by
AnteOcc nodes are expressed. In line 2 of Condition, the conditions in the rule’s antecedent
imposed by AnteAbs node r3 are expressed. As the rule antecedent will only apply if no activity
execution matching AnteAbs nodes is present, ¬(∃vQv) is used for the corresponding part in the
RF. In line 3 of Consequence, all conditions imposed by ConsOcc nodes are expressed. This
includes relations between ConsOcc and AnteOcc nodes. Finally, in line 4 of Consequence, the
consequence pattern of the RF is completed by conditions imposed by ConsAbs node r6.

Based on the above considerations, the mapping of CRG composites into RFs is generalized in
Def. 6.7 using the auxiliaries in Def. 6.6. Basically, the RF counterparts of a CRG composite
(i.e., the predicates) are placed in the RF structure.

Definition 6.7 (Mapping of CRG composites into RFs)
Let RC = (A, {C1, . . . , Cp}) be a CRG composite with Ri = (A,Ci) being CRGs. Let further
X = {x1, . . . , xj} be the variables corresponding to the AnteOcc and Y = {y1, . . . , ym} be the
variables corresponding to the AnteAbs nodes of RC. Then, for NA 6= ∅ the rule formula (RF)
F of RC is structured as follows:

∀x1 . . . ∀xj (Condition ⇒ Consequence1∨ . . .∨Consequencep)

where Condition is defined as:
Condition :=
(
∧
con∈CondsR1

X

con) ∧
¬(∃y1 (

∧
con∈(NCondsR1

{y1}
∪CondsR1

X|{y1}
) con)) ∧ . . .∧

¬(∃ym (
∧
con∈(NCondsR1

{ym}
∪CondsR1

X|{ym}
) con))

and where for each Ci with Z = {z1, . . . , zl} being the variables corresponding to the ConsOcc and
W = {w1, . . . , wk} being the variables corresponding to the ConsAbs nodes of Ci, Consequencei
is structured as follows:

Consequencei := ∃z1 . . . ∃zl (Conditioni)

where Conditioni is defined as:
Conditioni :=
(
∧
con∈(CondsRi

Z ∪Conds
Ri
X|Z) con)∧

¬(∃w1 (
∧
con∈(NCondsRi

{w1}
∪CondsRi

Z|{w1}
∪CondsRi

X|{w1}
) con)) ∧ . . .∧

¬(∃wk (
∧
con∈(NCondsRi

{wk}
∪CondsRi

Z|{wk}
∪CondsRi

X|{wk}
) con)).

If NA = ∅, the RF is structured as follows:

Consequence1∨ . . .∨Consequencep.
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Note that CondsR1
X is used in Condition as all these conditions refer only to antecedent nodes

and all Ri of a CRG composite share the same antecedent. If no AnteOcc or ConsOcc nodes
are contained in a CRG, the parts ∀x1 . . . ∀xj / ∃z1, . . . ,∃zl will be left empty in the RF,
respectively, which simplifies the structure of RFs. Note that Def. 6.7, does not include conditions
among AnteAbs or ConsAbs nodes and conditions between AnteAbs nodes and consequence
nodes. This is because these relations would violate the correctness constraints introduced in
Section 6.2.4.4.

The mapping is applied in Example 6.20 to derive a RF for a CRG composite. Clearly, this
procedure can be automated. Thus, modeled CRG composites can be automatically mapped to
a RF. For a given RF, in turn, the corresponding CRG notation can be derived automatically.

r1

A

r2

B

r3

C

CRG composite RC3:

R1 R2

r4

D E

r6r1

A

r2

B

E

r5

AnteOcc node

AnteAbs node

ConsOcc node

ConsAbs node

ORDER edge

DIFF edge

Figure 6.21.: A CRG composite

Example 6.20 (Mapping between CRG composites and rule formulas):
Consider CRG composite RC3 that consists of two CRGs depicted in Fig. 6.21. Let further
{v1, . . . , v6} be the variables for r1, . . . , r6. Then, the RF of RC3 is given through:

∀v1∀v2
((at(v1) = A ∧ at(v2) = B ∧ Pred(v1, v2))
⇒
∃v3∃v4 ((at(v3) = C ∧ at(v4) = D) ∧ ¬(∃v5 (at(v5) = E ∧ Pred(v3, v5) ∧ Pred(v5, v4))))
∨
¬(∃v6 (at(v6) = E ∧ Pred(v2, v6))))

RC3 expresses that each pattern of A,B has to be followed by an occurrence of C and D without
E being executed in between C and D or no E at all is allowed after B.

6.3.2. Interpretation of compliance rule formulas

So far, we showed how to derive a PL1 formula from a CRG composite. However, the derived
RFs still do not have defined semantics. To achieve that, we have to stipulate how the variables,
predicates, and functions of the RFs are interpreted with respect to an execution trace. An
interpretation generally consists of a domain for variables and constants and a function assigning
semantics to functions and predicates of a formula. As elaborated, CRG composites and RFs
constrain the occurrence of activity executions and their relations within a process execution
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(i.e., an execution trace). Hence, variables of RFs refer to activity executions, which, in turn,
are constituted by a pair of start and end events10. Given an execution trace, the domain of
the interpretation is, therefore, populated by the activity executions contained in the trace. In
addition, the domain also includes constants for activity types, node identifiers, and other values
(of data allocations) occurring in the trace. The predicates and functions that are used by RFs
as listed in Table 6.1 can be interpreted according to their designated semantics. In Def. 6.8,
this is done by assigning to individuals of the domain those properties that are observable in
the execution trace. Constants in RFs (e.g., activity types) are mapped to themselves and,
hence, are omitted in Def. 6.8. Due to the structure of CRGs, derived RFs are closed formulas.
Therefore, the interpretation does not consider free variables.

Definition 6.8 (Interpretation of rule formulas)
Let RC be CRG composite and let F be the RF of RC derived according to Def. 6.7. Let further
σ=<e1, . . . , em> be an execution trace of process model P consisting of start and end events.
Then, the interpretation of F over σ is a tuple Iσ=<Dσ, dσ> with:

• Dσ is the domain of the interpretation Iσ and consists of all activity executions of σ
(denoted as Aσ), which constitute the domain for variables, and all activities, process
nodes, and data values of σ (denoted as Cσ) as constants.

Aσ := {ai,j | ∃ei = (start, n, at, datai), ∃ej = (end, n, at, dataj) in σ :
i < j ∧ ¬(∃ek = (end, n, at, datak) in σ : i < k < j)}.

• For each activity execution ai,j ∈ Aσ with ei = (start, n, at, datai) being ai,j ’s start
and ej = (end, n, at, dataj) being ai,j ’s end event, let exi,j = (ex, n, at, datai,j) be the
ex event aggregated from ai,j ’s start and end events (i.e., ex = actExEvent(ei, ej), cf.
Def 5.2).

Then, dσ is a function interpreting functions and predicates of RFs over σ as follows:

– Function nid is mapped to tuples of activity executions and their process nodes:

dσ(nid) 7→ {(ai,j , n) | exi,j = (ex, n, at, datai,j), ai,j ∈ Aσ}.

– Function at is mapped to tuples of activity executions their activity types:

dσ(at) 7→ {(ai,j , at) | exi,j = (ex, n, at, datai,j), ai,j ∈ Aσ}.

– The functions p are mapped to tuples of activity executions and data values of the
corresponding parameters p:

dσ(p) 7→ {(ai,j , v) | v = datai,j(p), ai,j ∈ Aσ and p is a parameter of at}.

– Predicate Pred is mapped to pairs of activity executions ai,j , ak,l of Dσ for which
holds that ai,j has ended before ak,l has started:

dσ(Pred) 7→ {(ai,j , ak,l) |j < k, ai,j , ak,l ∈ Aσ}.

– The predicates =, 6=, and � are interpreted as usual.

10For execution traces also containing ex events (cf. Section 5.2.4), an activity execution may also be represented
by an ex event.
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Note that Def. 6.8 considers execution traces consisting of only start and end events. Execution
traces containing ex events are not covered. However, this is not a restriction since we can derive
a pair of start and end events from an ex event (cf. Section 5.2.3). Def. 6.8 enables us to
formally interpret RFs over execution traces. This is shown in Example 6.21.

Example 6.21 (Interpretation of CRG composites and RFs over execution traces):
Consider again CRG composite RC2 from Fig. 6.20, its RF in Example 6.19, and the following
execution trace:
σ = <e1, e2, e3, e4, e5, e6, e7, e8> where

• e1 = (start, 1, A), e2 = (end, 1, A),

• e3 = (start, 2, C), e4 = (end, 2, C),

• e5 = (start, 3, B), e6 = (end, 3, B, {x 7→ 780}), and

• e7 = (start, 4, D), e8 = (end, 4, D).

Following Def. 6.8, Iσ=<Dσ, dσ> where

Dσ := Aσ ∪ Cσ with

• Aσ := {a1,2, a3,4, a5,6, a7,8} where for each ai,j , i / j indicates the start/ end event of a,
respectively, and

• Cσ := {A,B,C,D, 1, 2, 3, 4, 780}.

dσ interprets the functions and predicates of the RF as follows:

• dσ(at) := {(a1,2, A), (a3,4, C), (a5,6, B), (a7,8, D)},

• dσ(nid) := {(a1,2, 1), (a3,4, 2), (a5,6, 3), (a7,8, 4)},

• dσ(x) := {(a5,6, 780)}, and

• dσ(Pred) := {(a1,2, a3,4), (a1,2, a5,6), (a1,2, a7,8), (a3,4, a5,6), (a3,4, a7,8), (a5,6, a7,8)}.

Then, the RF in Example 6.19 is satisfied over Iσ.

Based on the interpretation specification provided in Def. 6.8, we can formally analyze execution
traces with respect to satisfaction of RFs and, thus, of imposed CRG composites. Thus, we can
provide a formal notion of satisfaction of RFs as shown in Def. 6.9.

Definition 6.9 (Satisfaction of rule formulas)
Let RC be a CRG composite and F be the RF derived from RC. Let further σ=<e1, . . . , em>
be an execution trace with Iσ=<Dσ, dσ> being the interpretation of F over σ.

Then, we say F / RC is satisfied over σ (notation: σ |= F/RC) iff holds: Iσ |= F .
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The formal analysis of execution traces with respect to satisfaction of imposed RFs constitutes
an approach to formally verify compliance. This corresponds to the general satisfaction problem
of first-order predicate logic [Daw07], also referred to as model checking problem of first-order
logic [Gro01, Gro08, CGK11] (i.e., checking whether a structure is a model for a formula). In
Chapter 7, we will introduce operational semantics for CRGs, which enables the operational
execution of CRGs over execution traces. The compliance state yielded when processing the
execution trace is reflected through adequate markings of the CRG. Thus, instead of checking
trace by trace for satisfaction of RFs, operational semantics can be applied to verify process
models and process instances. This offers considerable advantages such as different levels of
checking granularity or advanced feedback through analyzing the structure of CRGs.

6.3.3. Logical correctness

The syntactic constraints introduced in Section 6.2.4 do not ensure that a CRG composite is free
of inconsistencies. A CRG composite is considered inconsistent (i.e., logically incorrect) if there
is no execution trace whose interpretation according to Def. 6.8 satisfies its RF. Example 6.22
shows such a CRG composite.

Example 6.22 (Inconsistencies within CRG composites):
Consider RC4 depicted in Fig. 6.22 a) with the RF as follows:
∀a ((at(a) = A)⇒ ∃b ((at(b) = B ∧ p(b) = true∧Pred(a, b))∧¬(∃c (at(c) = B ∧Pred(a, c)))))

RC4 is not satisfiable, since, on the one hand, an execution of B with data condition p = true
is requested after A while, on the other hand, RC4 also asks for the absence of B after A.
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r2

B B

r2r1
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r1
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CRG composite RC4: CRG composite RC5: CRG composite RC6:
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Figure 6.22.: Two conflicting CRGs whose conjunction is not satisfiable

Besides inconsistencies within a single CRG composite/ RF, a set of multiple RFs (i.e., a con-
junction of the RFs) may contain inconsistencies due to conflicting requirements as shown in
Example 6.23. Here, there is no execution trace whose interpretation according to Def. 6.8
satisfies all RFs of the rule set.
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Example 6.23 (Inconsistencies within a set of CRG composites):
Consider RC5 and RC6 depicted in Fig. 6.22 b). Then, these two CRG composites are conflicting
since RC5 requests an execution of B after each execution of A while RC6 prohibits B after A.
It is obvious, that no execution trace will comply with both RC5 and RC6.

Clearly, it is desirable to be able to identify such inconsistencies as shown in the examples when
creating new rules or imposing rules on a process. In order to detect inconsistencies, individual
and sets of RFs have to be checked for satisfiability. It is well-known that the satisfiability prob-
lem is not decidable for first-order predicate logic [Chu36, Tur37]. In particular, an algorithm
can be provided that halts when the formula to be checked is not satisfiable. Otherwise, the
algorithm will not halt. However, many fragments of PL1 are known to be decidable. This par-
ticularly comprises the prefix classes, such as Bernays-Schönfinkel-Ramsey class (∃∗∀∗) [Ram30],
and guarded fragments of PL1.

RFs are formalized as first-order logic formulas. It is known that the essentially finite class of
first-order logic formulas containing a finite number of predicates and quantors and no func-
tions is trivially decidable [BGG97]. When abstracting from conditions associated with CRG
nodes (for example, by interpreting conditions only through quasi-propositional predicates), RFs
derived from CRG composites would constitute an essentially finite class. For RFs containing
functions, further investigations become necessary. This is beyond the scope of this work and
is, therefore, left to future research.

While it is interesting to think about infinite models in theory, finite models are often interesting
in practice. While the question whether a first-order logic formula has a finite model is still semi-
decidable, the question whether a first-order logic formula has a model of size m where m is
a finite number is known to be decidable. This specifically enables checking the satisfiability
of formulas for a given boundary with respect to the size of the model and can be seized for
practical detection of conflicting rules. As this is not the focus of this work, we abstain from
providing an algorithm for this and refer to existing research, techniques, and tools for first-order
logic satisfiability checking.

Besides the formal analysis of RFs, also analysis of the underlying CRGs can be conducted to
identify potential sources of inconsistencies. Due to prohibiting cyclic definitions of ordering
relations within CRGs, a potential source of inconsistency is already resolved. Further analyses,
for example, checking that no ConsOcc node with an overlapping node profile is defined within
the scope of a ConsAbs node, can be done to detect frequently occurring inconsistencies within
CRGs.

6.4. Discussion

Visual modeling is common practice to document business processes and to transform them into
executable specifications. Inspired by the well-established practice of specifying business process
models by means of directed annotated graphs, we developed the compliance rule graph (CRG)
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language introduced in this chapter. CRGs were designed based on the goals described in Sec-
tion 6.1.1 that were identified in our studies [LGRMD08, LRMD10, LRMKD11, LRMGD12].
With the design of CRGs, we aimed at providing a simple language consisting of modeling primi-
tives that can be composed to capture sophisticated compliance rules. In particular, we aimed at
capturing the frequent compliance rule patterns identified in literature [DAC99, ASW09, Pes08]
while still enabling the definition of new compliance rules using a compositional language. Due
to the pattern-oriented mental model of CRGs, it is easy to extend and refine existing CRGs
by inserting or deleting modeling primitives such as absence or occurrence constraints. The
explicit rule structure of CRGs facilitates the understanding of modeled rules and is exploited
in the SeaFlows Toolset, our proof-of-concept prototype, to enable the separate modeling of rule
antecedent and consequences. As shown in Section 6.2.2, a CRG can become activated multiple
times within an execution trace. We will later show how fine-grained compliance reports for the
individual rule activations and general reports for the overall compliance rule can be provided
in Chapter 7.

CRGs are not only a notation but are also associated with defined formal semantics. In this
chapter, we showed that each CRG composite corresponds to a rule formula (RF) specified in
first-order predicate logic. This provides the basis for the formal analysis of CRGs, for example,
for the detection of logical inconsistencies among a set of rules. The semantics of RFs is defined
over execution traces by stipulating how they are interpreted over a trace. Extensions of the
CRG language, such as time constraints, can be easily integrated into RFs as will be discussed
in Section 6.4.2. In Chapter 7, we will describe how CRGs are operationalized in order to
enable compliance verification of process model and process instances. In this context, the
graph structure of CRGs is exploited for the operationalization and for representing compliance
states in a transparent and interpretable manner.

In the following, alternatives to CRGs are discussed in Section 6.4.1. Section 6.4.2 compares
CRGs to existing approaches and describes possible extensions of CRGs. Finally, this chapter
closes with a description of further issues around CRGs in Section 6.4.3.

6.4.1. Related work

Formal languages and logics To avoid ambiguity, the semantics of compliance rules has to
be precisely defined (cf. Section 2.1.1). Thus, their declarative formal semantics make formal
languages and logics appealing for compliance rule specification. Due to their inherent notion
of temporal ordering, temporal logics are often used in related work to capture compliance
rules. In particular, linear temporal logic (LTL) [GLM+05, Knu08, The09b, The09a, KLRM+10,
DGG+10] or computation tree logic (CTL) [GK07] are employed by a multitude of approaches.
The linear time semantics of LTL considers a single linear trace while in branching time semantics
of CTL, each state may branch into various possible futures. As a result of the branching time
semantics, LTL is considered to be more intuitive than CTL according to [Var01]. As linear time
semantics seems more suitable in the business process context [ETHP10a, The09b, LMX07], LTL
has been preferred over CTL for capturing compliance requirements. Besides the logic operators,
the temporal operators G for globally, F for future (or eventually), X for next future, U for
until and W for weak until are used in LTL. In addition to these, CTL further uses A for all
and E for exists to quantify over branches. For example, AFφ means that for all branches φ has
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to hold in some future state. While LTL and CTL are expressively incomparable as there are
things that can be expressed in LTL but not in CTL and vice versa, both languages can capture
sophisticated compliance rules and can be enriched with first-order extensions as for example
done in [GLM+05, GMP06, Knu08, KLRM+10] to enable data relations.

A major drawback of LTL and CTL is their complexity. To model compliance rules in LTL,
for example, one has to “navigate” along the states using the temporal operators. As it is
not possible to refer to a particular (earlier) state, it can be cumbersome to model compliance
rules using LTL. Thus, it can be very difficult for compliance experts to model and read such
formulas [YMHJ06]. This also makes it difficult to evaluate whether a modeled rule reflects
the intended semantics. In consequence, a variety of approaches suggests graphical notations to
hide formal details from the modeler. Aiming at facilitating the specification of LTL properties,
Brambilla et al. introduce a visual notation for LTL in [Bra05, BDSV05]. In particular, their
approach provides symbols for LTL operators that can be considered syntactic sugar. A similar
approach for CTL is proposed by Feja et al. [FFS08, FS10], where graphical symbols are used
to represent CTL and logical operators. In [LMX07, XLW08], Liu et al. propose a graphical
business property specification language (BPSL) that can be translated into LTL and CTL. In
BPSL, so-called simple temporal sequences (STS) can be used to relate events to each other.
BPSL supports 14 stereotypes of STS that are available in the BPSL modeler tool. Some of these
stereotypes directly correspond to LTL or CTL operators (e.g., PossiblyLeadsto BeforeInfinity
for EF in CTL) while others constitute high-level stereotypes that correspond to templates of
LTL/CTL formulas (e.g., MultiWithin OnEvt to specify that some event must occur multiple
times within a certain scope). Then, so-called compound temporal sequences (CTS) can be used
to connect STS to each other. These are basically notations for logic operators (e.g., AND or OR)
and for predefined temporal relations (e.g., Before for W , After for F , and Until for U). While
the syntactic sugaring and high level stereotypes can help to make a LTL or CTL formula appear
less formal and to facilitate dealing with formulas, the underlying mental model of navigating
through time and, thus, the structure of formulas remain unaffected.

Besides temporal logics, deontic logic has also been advocated by related work. The deontic oper-
ators obligation and permission are for example used in the OMG standard semantic for business
vocabulary and rules (SBVR) [OMG08] that aims at providing the basis for formalizing business
entities and rules. Originally designed to specify business contracts [GM05, GMS06, GM06],
the formal contract language (FCL) can also be applied to capture compliance requirements
as shown in [GHSW08, LSG07]. Besides the logical operators, deontic modalities obligation,
prohibition, permission, and contrary to duty can be used in FCL formulas. A FCL formula
resembles a production rule consisting of a rule antecedent and a rule consequence. According
to [GM05, GMS06], a FCL compliance rule is of the form Γ, E ` A1 ⊗A2 ⊗ · · · ⊗An where Γ is
a set of state literals and E is the conjunction of event literals of the antecedent. A1 is the rule
consequence and ⊗A2 ⊗ · · · ⊗ An is the reparation chain using the contrary to duty operator.
Then, an execution trace will constitute an ideal situation w.r.t. the rule if the event sequence
E;A1 occurs in that order in the trace. Unlike temporal logics, FCL was designed for produc-
tion rule like policies and, thus, does not have an inherent notion of time or ordering of events.
In [SGN07], a designated time parameter is introduced to qualify each event w.r.t. time and to
relate events to each other. However, formal or operational semantics for this extension is not
provided in [SGN07]. A comparison of FCL and LTL w.r.t. modeling compliance requirements
can be found in [The09b].

91



CHAPTER 6. COMPLIANCE RULE GRAPH FUNDAMENTALS

SCIFF [ACG+06, ACG+08, CMMS07a] is a declarative language based on abductive logic pro-
gramming. It enables the specification of forward-rules about obligations and prohibitions (re-
ferred to as positive and negative expectations) regarding events that hold at a certain time. A
SCIFF constraint expressing that after event A happens, event B is expected and after event
B, event C is not expected to occur: H(A, t1) → E(B, t2), t2 > t1 ∧ NE(C, t3), t3 > t2. The
operational specification of SCIFF is constituted by a proof procedure.

Formalisms to specify intertask dependencies as used to schedule workflow transactions proposed
by Klein [Kle91], Attie et al. [ASSR93], and Singh et al. [Sin96] are not sufficiently expressive to
address compliance rules. Concurrent transaction logic (CTR) described in [DKRR98, DKR04,
MDK+03] has not established as a formalism for specifying compliance rules due to the avail-
ability of more suitable deontic and temporal logics.

Pattern-based approaches To avoid the drawbacks that often come with formal languages,
such as high complexity, many researchers opted for pattern-based compliance rule specification.
Key to such approaches is the formulation of a set of selected patterns that can be instantiated
for concrete cases. The patterns are often provided in the form of visual notations (e.g., [AP06,
PSSA07]), textual descriptions [AW09, The09a] or organized within a pattern classification
(e.g., [YMHJ06, NS07c, SOS05]). To enable formal compliance checks, each pattern can be
mapped to a logic formula. Here, existing approaches differ in the particular language to which
patterns are mapped. Most often, patterns have corresponding LTL formulas.

The bulk of pattern-based approaches is based on the property specification patterns collected
by Dwyer and Corbett [DAC99, DAC98]. In their work, they collected patterns from over
500 examples of property specifications from different domains. The patterns, namely absence,
universality, existence, bounded existence, precedence, response, precedence chain, and response
chain, can be variated by using scopes in which a property becomes relevant such as after or
before scope (cf. description of the property specification patterns in Section 2.1.1.1). For these
patterns, mappings into different formalisms, such as LTL or CTL, are provided. In [YMHJ06],
Yu et al. introduce PROPOLS, a property pattern based specification language. Basically,
PROPOLS extends the property specification patterns of Dwyer and Corbett by introducing the
logical combination of patterns (so-called composite patterns) to accommodate the specification
of more complex constraints. Other extensions of the property specification patterns are provided
by the ConDec / DecServFlow approach [AP06, Pes08, PA06] that was originally developed to
enable declarative process specification (cf. DECLARE approach [Pes08]). ConDec provides a
visual notation and a mapping to LTL and SCIFF constraints [CMMS07b] for each pattern.
Besides for declarative process models, ConDec constraints are also used to capture compliance
requirements [MMC+11, MMWA11]. Except for choice constraints (e.g., one out of a set of
activities has to be executed), ConDec constraints are unary or binary (i.e., involve at most
two activities). Extensions are discussed in [Pes08], however only w.r.t. disjunction of source or
target activities of constraints. While ConDec constraints can be composed using logic operators
(particularly conjunction) to yield a declarative model as shown in [Pes08], a composition beyond
this is not considered. Thus, the semantics encoded by the CRG depicted in Fig. 6.23 for
example cannot be synthesized with ConDec constraints11. In particular, the conjunction of a
chain response and an absence with between scope pattern is not sufficient to yield the semantics
11However, this CRG can be expressed using LTL (G(A → F (B ∧ ¬D U C))).
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of RC7 as RC7 does not generally prohibit D of occurring between B and C but rather requires
one execution of B and C without D in between.
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Figure 6.23.: A CRG composite that cannot be expressed as a ConDec model

The patterns described by Türetken et al. in [TEHP12] constitute extensions to ConDec /
DecServFlow constraints. In addition to the order and occurrence patterns also known from
ConDec, Türetken et al. further introduce time and resource (e.g., PBondedWithQ meaning
that P and Q must be conducted by the same user) constraints.

A set of simple order, exclusion, and choice constraints that can be instantiated for concrete
activities is also provided in [MS03, SOS05]. Becker et al. specifically address compliance issues
in the financial sector [BBD+11, BAC+11]. Specifically, Becker et al. provide a set of com-
pliance rule patterns for different semantic perspectives of a business process, i.e., flow rules
(similar to rules proposed by Awad et al. [AW09]), organizational rules (e.g., 4-eyes-principle),
and business object rules (e.g., to check whether all mandatory attributes of a data objects
are provided) [BAC+11]. More sophisticated properties can be specified using the process pat-
tern specification language (PPSL) proposed by Förster et al. [FES05, FESS06, FESS07]. This
approach comprises a set of patterns for which a graphical notation and mappings into LTL
are provided. Besides patterns that resemble those of Dwyer and Corbett, PPSL also enables
patterns with so-called control nodes. Basically, these control nodes enable to refer to a set of
activities within a pattern, for example, to express that a set of activities (rather than a single
activity) has to be executed after the occurrence of some event. The DecisionNode pattern
shown in Fig. 6.24, for example, expresses that a has to be followed by a bi and each bi has to
be preceded by a. Thus, it represents the conjunction of two LTL formulas that correspond to
the response and the precedence pattern [DAC99], respectively. PPSL is extended in [KGE11].
The major extensions are non-deterministic relations that correspond to CTL operators (e.g.,
possiblyAll corresponding to EG). Generally, in contrast to approaches that use two different
languages for rule modeling and internal rule representation for compliance verification, our ap-
proach does not necessitate specific back-translations of the feedback obtained from compliance
verification. This is because compliance verification is conducted directly based on the modeled
CRGs.

a

b1

bn

Figure 6.24.: The DecisionNode pattern of PPSL [FESS06]
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Other approaches In addition to the rather general approaches discussed, there are also com-
pliance specification approaches that are tailored towards specific issues. ExPDT (extended
privacy definition tool) [SKGL08] proposed by Sackmann et al. and the approach proposed
in [FWB+10] by Feja et al., for example, are tailored towards privacy policies. In [Bit06], Bitsch
describes a pattern-based approach for safety constraints based on temporal logic.

The approaches discussed so far enable the declarative specification of compliance rules. How-
ever, we also encounter approaches in literature, that propose procedural compliance rule rep-
resentation. The bulk of them models compliance rules by means of some kind of automaton
(e.g., [KRG07, RKG06, FUMK06]). While this may facilitate compliance checking as automa-
tons, for example, can directly be used for model checking, we believe that declarative compliance
rules correspond more to the mental model of compliance rules in practice.

Instead of capturing compliance requirements as explicit rules, an alternative approach is to
specify so-called violation patterns representing cases violating a compliance requirement that
can be used to query process executions. Querying formalism and languages such as regular path
queries [LRY+04] or complex event processing [JML09, WZM+11] can be applied. However, as
compliance rules can often be violated in multiple ways, determining all violation patterns given
an informal compliance rule can be quite a challenge.

Conclusion Formal languages such as temporal logics are expressive. However, on the down-
side, they are often complex and can become a serious obstacle to compliance rule specification
in practice. In our research, we, for example, experimented with LTL [Knu08, KLRM+10] and
implemented an approach to verify process models against LTL specifications [LKRM+10]. Due
to the complexity of LTL, we, however, dropped LTL and opted for CRGs in our later research.
While SCIFF is an interesting and expressive language, it falls short when it comes to providing
support for conducting compliance checks at the operational level. Since rule violations are led
back to the notion of logical inconsistency, the approach has difficulties in continuing after a vio-
lation is detected (specifically during compliance monitoring). This lacks support for continuous
runtime monitoring as envisioned in Section 2.1.

Establishing set of compliance rule patterns for a business domain is an effective approach
to facilitate compliance rule modeling. Although the rule patterns can be combined using
logical operators, a fixed set of patterns can still be too restrictive for particular application
scenarios (as, for example, shown in Section 2.1.1.1). In these cases, a compositional approach
is advantageous. With the design of CRGs, we aim at combining the ease-of-use of a pattern-
based approach and the flexibility of a compositional approach. The idea of establishing a
pattern repository can be adopted for CRGs.

6.4.2. Expressiveness and extensions of compliance rule graphs

CRGs and CRG composites are a means to capture compliance requirements. In our approach,
a compliance requirement is represented by a set of CRG composites implying that all these
CRG composites have to be complied with. CRG composites, in turn, enable to define multiple
consequences for a compliance rule, each representing an option to satisfy the rule.
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The modeling primitives of CRGs can be used to compose complex compliance requirements.
The patterns and scopes identified by Dwyer and Corbett [DAC99] can be modeled by means
of CRGs as we will show in Section 11.1. However, we would like to stress that CRGs are
not restricted to the property specification patterns. For example, CRGs enable the usage of
ConsAbs nodes to qualify the activity executions that are required to occur (i.e., constraints of
the form “There must exist an activity execution X after which no Y will occur”). As shown
in Section 6.4.1 (cf. Fig. 6.23), such constraints cannot be composed just by connecting two
patterns (e.g., ConDec patterns). The deontic operators obligation and prohibition can be related
to the ConsOcc and ConsAbs nodes, respectively. In the prototype implementation, a mapping
from a subset of CRGs into LTL has been implemented [LKRM+10]. A detailed analysis of
the expressiveness of CRGs (e.g., in comparison to LTL) is beyond the scope of this work and,
therefore, left to future research.

So far, we only consider the conjunction of CRG composites. However, one can also think
of other combinations of CRG composites (particularly disjunction) to enhance expressiveness.
The contrary to duty operator discussed in [GMS06] enables the definition of reparation chains
in case of violations. In [The09b], it is shown how this operator can be simulated in LTL.
Similar considerations may be applied to CRGs. Moreover, CRGs can be extended with fur-
ther primitives in order to add expressiveness in different respects as will be described in the
following.

Data relations Data conditions can be assigned to CRG nodes in order to precisely specify
activity executions that are relevant to the compliance rule. So far, we have not discussed how
data parameters of different CRG nodes can be related. Such relations involving different CRG
nodes are referred to as data relations. In particular, data relations are of the form p1�p2 where
p1 and p2 are parameters and � is comparison operator (e.g., =). Data relations, for example,
become necessary for expressing that the activity executions referenced by CRG nodes refer to
the same data object (e.g., activities associated with the same item) or that two activities are
not conducted by the same agent (four-eyes-principle).

As CRGs are formalized as PL1 formulas, such data relations can be easily integrated into RFs.
While data relations are not part of CRGs as introduced in this Chapter, we already incorpo-
rated data relations into the prototype implementation. In particular, a CRG can be defined for
a particular data object parameter where the latter sets the context for the CRG. Then, only
activity executions that refer to the same data object are considered. The prototype implemen-
tation is described in more detail in Chapter 10. In our research, we further experimented with
LTL where we use a first-order extension of LTL in order to introduce data relations. Details on
this can be found in [Knu08, KLRM+10]. Visualization-wise, data relations may, for example,
be represented through designated nodes and edges.

Time constraints Compliance rules often involve not only qualitative (i.e., ordering) but also
quantitative time constraints. Lanz et al. identified time patterns in process-aware information
systems [LWR10], which we also often encounter in compliance requirements. Generally, to
formally integrate time conditions, the event model introduced in Section 5.2 has to be extended
with a notion of time. Time conditions that affect only single CRG nodes such as deadlines (e.g.,
an activity should take place no later than at a given due date) can be expressed by a designated
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data condition associated with that node. In practical applications, it is often necessary to
impose constraints on the time distance of events. For example, the aftercare for an invasive
treatment is required to take place within one day after the treatment. Such time relations can
be supported using explicit time events that can be referred to by CRG nodes. We show how
this can be realized in [LRMD10]. Alternatively, time relations may also be considered special
data relations over predefined time parameters (e.g., start time) of activity executions. Both
options should be investigated in future research.

Subrules In CRGs, absence nodes refer to single activity executions. However, sometimes it
can be useful to describe the absence of a certain pattern. For example, if a patient is admitted
and an invasive treatment is conducted without him being informed about the treatment and
signing the confirmation of having been informed, some other post-treatment steps may become
necessary. Then, in analogy to subprocesses in business process modeling, we envision that
absence nodes can be assigned to patterns that are required to not occur. This can be realized
with CRGs and requires adequate tool support for the modeling of such absence patterns. We
leave further investigations on this to future research.

6.4.3. Further issues

Our approach can be leveraged by complementing it with further concepts from practice and
research that can help to build a comprehensive compliance management framework, specifically
with respect to the requirements concerning the management of compliance requirements (cf.
Section 2.1.1.4). To provide support for managing compliance requirements, control objectives,
and concrete checkable compliance rules, adequate tools and frameworks have to be provided
that also enable to manage the lifecycle of and meta-data on these artifacts (e.g., informal
description and enforcement levels (cf. Appendix A.4)). Some approaches already described the
functionality to be supported [GLM+05, NS07a, Nam08, GMP06, KSMP08a, The09a, The10a].
We would like to particularly refer to the work done in the COMPAS project [The09a, The10a]
where also user interfaces for managing compliance requirements and checkable rules and policies
were developed. Moreover, existing commercial risk and compliance tools, such as ARIS Risk
& Compliance Manager, can also be used to provide support in this respect.

The integration of formal compliance modeling with business artifacts is a particular challenge.
For that purpose, a domain model can be used to align terminology [SGN07] and to semantically
organize the artifacts of the domain [LGRMD08, LRMGD12]. This would also contribute to
facilitate compliance rule modeling as it enables to model compliance rules not based on specific
activity types but for concepts of the domain model.

With respect to ease-of-use, we envision tool support for modeling CRG composites in natu-
ral language. Due to their clear structure, it should be possible to create templates for the
verbalization of CRGs. One can further think of building a semantically high-level modeling
approach based on CRG primitives exploiting, for example, the scopes of [DAC99] as semantic
building blocks. Following the pattern idea as advocated in [DAC99, Pes08, ASW09, Nam08],
we can further think of templates for frequently used CRG composites that can be instantiated
for concrete cases.
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7
Operational semantics of compliance rule

graphs

Using the CRG language introduced in Chapter 6, compliance rules can be modeled as CRGs
and CRG composites. This constitutes the first step towards automated compliance verification.
In order to realize the vision of a compliance checking framework that supports the verification of
process models and process instances against CRGs, adequate compliance checking mechanisms
for CRGs become necessary. The direct implementation of the formal semantics of CRGs is not a
viable solution as it neither exploits the ordering of events in execution traces nor the ordering of
CRG nodes. In addition, it is not designed for dealing with evolving execution traces as required
for compliance monitoring. This is why we opted for equipping CRGs with operational semantics
that enables their execution over traces. Specifically, CRG operationalization constitutes an
approach to incrementally verify compliance of execution traces with imposed CRGs. Thus, it
provides the means for exploring process models with respect to compliance and for monitoring
the compliance of running process instances. Key to this approach is the exploitation of the
graph structure of CRGs for representing compliance states in a transparent and interpretable
manner. This enables the derivation of fine-grained and comprehensive compliance diagnoses
from each compliance state. Altogether, the operational semantics of CRGs introduced in this
chapter provides the fundament for compliance checks in different process lifecycle scenarios as
we will later discuss in Chapter 8.

In Section 7.1, we first discuss requirements and goals for CRG operationalization and introduce
the basic ideas of our approach. In Section 7.2, we show how the graph structure of CRGs is
exploited for representing compliance states and how the thus encoded compliance states are
evaluated. Execution and marking rules for altering compliance states when start and end
events are processed are introduced in Section 7.3. In Section 7.4, we show how the approach
is applied to check compliance and elaborate on regulating the granularity of compliance check-
ing. Section 7.5 discusses strategies to optimize CRG execution with regard to efficiency. The
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correctness of CRG operational semantics with respect to CRG formal semantics is discussed
in Section 7.6. Finally, Section 7.7 summarizes the contributions of this chapter and discusses
alternative approaches as well as further extension and optimization possibilities.

7.1. Introduction

In order to provide compliance support along the complete process lifecycle, an approach for ver-
ifying compliance with imposed CRGs is required that does not solely address isolated scenarios
but is applicable to both process design and process runtime. However, it is not sufficient to
merely detect noncompliance. As discussed in Section 2.1.2, the compliance checking approach
must meet requirements w.r.t. compliance diagnoses raised by different application scenarios
and agents interacting with the system. In the following, Section 7.1.1 describes requirements
and goals for the compliance verification approach. Then, Section 7.1.2 describes the basic ideas
of CRG operationalization before the approach is detailed in the remainder of this chapter.

7.1.1. Requirements and goals

Granularity As process models in practice can become very huge containing up two hundreds
of artifacts [BRB07], a compliance rule may become activated multiple times within the model.
While some activations of a rule may be satisfied, others may be violated. Therefore, fine-grained
feedback becomes necessary in order to enable process designers to better evaluate the process
model w.r.t. compliance. Specifically, it should be possible to reveal and pinpoint all sources of
noncompliance in a process model. Similarly, a compliance rule may become activated multiple
times within a process execution. In order to apply specific remedies in case of noncompliance
(for example, to notify users involved in a particular case), it must be possible to provide a
diagnosis for each observed rule activation when monitoring process instances.

Compliance diagnosis In Section 2.1.2, we described requirements with respect to comprehen-
siveness of the compliance diagnosis provided by a compliance checking framework. Clearly,
in order to enable such comprehensive compliance diagnoses, the underlying compliance verifi-
cation approach must be able to provide adequate feedback. Premise to this is the ability to
interpret and explain detected compliance states such that meaningful compliance diagnoses,
e.g., the possible cause of a violation, can be derived. Therefore, a major objective of our work
is to enable the easy interpretation of effective compliance states detected through process model
verification and process instance monitoring. Specifically, this should be enabled not only when
compliance states bear violations but also before violations occur in order to allow for preventive
measures at runtime (cf. Section 2.1.2.2).

Incremental approach In order to enable efficient compliance checks particularly at runtime,
the compliance verification approach has to be able to deal with evolving traces. Verifying an
evolving trace by rechecking the complete trace each time a new event is observed is not a viable
solution. Instead, incremental processing must be supported.
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7.1.2. Operationalization of compliance rule graphs

One way of verifying compliance with an imposed CRG is to derive an automaton that contains
different compliance states of the CRG. For explicit LTL model checking, an automaton is gen-
erated from the (negated) LTL property, which is used for verification. In literature, automatons
are also applied to realize compliance monitoring for LTL compliance rules [MMWA11]. In such
approaches, the generated automaton observes the process execution and reaches an accepting
state if the rule to be checked is satisfied. A draw-back of the automaton generation is that
the states are not easily interpretable and are rather black boxes. For example, if the accepting
state of an automaton used for compliance monitoring is not yet reached, one cannot use the
current state to explain the compliance state of a compliance rule (for example, to derive the
information that some events are still outstanding and some other events are prohibited in order
to satisfy the compliance rule).

In Section 6.2.2 (cf. Example 6.4), we showed how a CRG can be manually verified over an
execution trace in a pattern matching manner. This was done by checking whether events of
the trace match with CRG nodes and form the patterns specified in the CRG. The basic idea
of CRG operationalization is to automate this by exploiting the graph structure of CRGs. In
particular, we utilize the graph structure of CRGs to represent reachable compliance states for
the respective CRGs. For that purpose, we introduce execution states to mark CRG nodes in
order to indicate which parts of the CRG patterns can be observed in an execution trace. Thus,
instead of representing compliance states as black boxes, each compliance state of a CRG is
represented by thus marked patterns. By providing rules to alter the markings when a new
event is processed, we enable to update the compliance state for each observed event. This is
illustrated in Fig. 7.1. Based on the markings one can easily conclude whether a CRG is activated
and satisfied. Being encoded directly over CRGs, compliance states are easily interpretable and
can be analyzed for providing intelligible compliance diagnoses.

events

compliance

states

initial

compliance

state

compliance states

represented through

marked CRGs

rules to

alter 

markings

Figure 7.1.: Compliance states and transitions through events and rules

At design time, the proposed approach can be applied to explore a process model and to detect
which compliance states with respect to imposed CRGs a process model is able to yield1. For
monitoring process instances, the compliance state is incrementally updated for each new event
observed during process execution.

To illustrate the CRG operational semantics, we will show how it is applied to verify compliance
of an execution trace. Chapter 8 will later discuss the application of CRG operational semantics
to enable compliance checks covering the process design and process runtime.

1We will later show how this is done based on a PEG.
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For intelligibility, we will focus on CRGs instead of CRG composites (i.e., compliance rules with
multiple consequences). This is not a true limitation, since the introduced concepts also apply
to rules with multiple consequence parts. Since the latter do not yield additional conceptual
challenges over rules with one consequence, we abstain from providing special execution and
marking rules for them. In Section 7.6.2, we will describe how they are dealt with.

In order to enable CRG operationalization as shown in Fig. 7.1, suitable markings for CRGs to
capture compliance states, rules to alter these when new events are processed, and notions to
interpret them are required. These “ingredients” will be provided in the following.

7.2. Markings and compliance notions

In Section 7.2.1, we introduce marking structures (MarkStructures), a data structure to capture
compliance states based on CRGs. In Section 7.2.2, we further introduce compliance notions
based on the semantics of CRG nodes that enable the evaluation of MarkStructures and, thus,
of compliance states.

7.2.1. Execution markings and marking structures

As described the basic idea of our approach is to mark CRG nodes to indicate whether parts
of the CRG patterns are observable in the execution trace. To indicate directly in a CRG
which events (and activity executions) have been observed in the execution trace, we intro-
duce execution states for CRG nodes. Exploiting similarities between processes and CRGs,
we adopted execution states that are employed by many process description languages such as
ADEPT [Rei00] and Object Life Cycles [Mül09]. These states correspond exactly to start, end
and ex events. The notation for these execution states is depicted in Fig. 7.2.

Null Executed NotExecutedStarted

Figure 7.2.: Execution states of CRG nodes

Null In a marked CRG, Null indicates that for the corresponding nodes, no matching activity
execution has been observed yet.

Started In a marked CRG, Started indicates that for these nodes, corresponding start events
have been observed.

Completed In a marked CRG, Completed indicates that activity executions matching the thus
marked nodes have been observed.

NotExecuted In a marked CRG, NotExecuted indicates that activity executions for respective
nodes have not been and will not be observed2.

2When applying pruning strategies for optimizing CRG execution, NotExecuted is also used to indicate that a
node is no longer relevant (cf. Section 7.5.1).
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A CRG with nodes marked using these execution states is referred to as an execution marking
(ExMark). Example 7.1 illustrates how ExMarks are used to represent compliance states of a
CRG that are yielded when verifying an execution trace.
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Figure 7.3.: Representing compliance states using ExMarks

Example 7.1 (CRG execution markings for capturing observed event patterns):
Consider CRG R1 and the events depicted in Fig. 7.3. Then, in Fig. 7.3 a), ExMarks are used to
capture the compliance state of R1 in different states when processing the events. Each ExMark
represents an interpretation of the observed events w.r.t. the event patterns specified in R1. For
example, after the first execution of A (e1 and e2), ExMark m1 can be used to reflect that an
execution of A without subsequent B was observed. After execution of B, m1 is replaced by m2
reflecting the situation that A and subsequent B was observed. After event e6, the compliance
state can be represented by m1 and m2 reflecting that both an A with subsequent B as well as
an A with outstanding B was observed.

In Fig. 7.3 b), ExMarks are used, in which nodes are not only assigned an execution state but
are also associated with events. These ExMarks are event-specific. Thus, each activation of R1 is
represented by a separate ExMark. For example, m3 andm4 represent two different activations of
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R1 that are in the same state while in Fig. 7.3 a), these two activations of R1 are both associated
with the event-independent ExMark m1.

The effective compliance state can be easily assessed by interpreting the ExMarks at any stage.
In Fig. 7.3 a), for example, the compliance state after observing e9 is reflected by m1, m2, and
m3. From the latter, we can conclude that there are satisfied activations of R1 in the trace (m2).
However, there are also activations of R1 that still necessitate further events to become satisfied
(m1 and m3).

As shown in Example 7.1, event-independent and event-specific ExMarks provide valuable insights
into compliance states. Particularly event-specific ExMarks enable to identify the events that
lead to activation of a CRG and also reveal events involved in a compliance violation. Def. 7.1
formalizes ExMarks and other notions for marking CRGs. In addition to an execution state
assigned through function ns, a CRG node can further be assigned a set of events (through
function nl). This enables to capture event-specific patterns. The execution state and the event
assignment together constitute the state of a CRG node.

Definition 7.1 (ExMarks, StateMarks, AnteExMarks, and ConsExMarks)
Let R = (A,C) be a CRG and NodeStates := {Null, Started, Completed, NotExecuted}. We
define the following:

• nsA : NA → NodeStates is a function assigning an execution state to each node of A. We
refer to nsA as antecedent state marking (AnteStateMark) of R.

• nsC : NC → NodeStates is a function assigning an execution state to each node of C. We
refer to nsC as consequence state marking (ConsStateMark) of R.

• nlA : NA → 2E∗ is a function assigning a (possibly empty) set of events to each node of
A. We refer to nlA as antecedent event marking (AnteEventMark) of R.

• nlC : NC → 2E∗ is a function assigning a (possibly empty) set of events to each node of
C. We refer to nlC as consequence event marking(ConsEventMark) of R.

We further denote as

• NS∗A := NodeStatesNA the set of all AnteStateMarks,

• NS∗C := NodeStatesNC the set of all ConsStateMarks,

• NL∗A := P(E∗)NA the set of all AnteEventMarks, and as

• NL∗C := P(E∗)NC the set of all ConsEventMarks over R.

Then, we denote

• the tuple (nsA, nsC), nsA ∈ NS∗A, nsC ∈ NS∗C as state marking (StateMark) and as NS∗R
the set of all state markings,
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• the tuple (nsA, nlA), nsA ∈ NS∗A, nlA ∈ NL∗A as antecedent marking (AnteExMark) and
as NSL∗A := (NS∗A ×NL∗A) the set of all antecedent markings,

• the tuple (nsC , nlC), nsC ∈ NS∗C , nlC ∈ NL∗C as consequence marking (ConsExMark) and
as NSL∗C := (NS∗C ×NL∗C) the set of all consequence markings, and

• the tuple ((nsA, nlA), (nsC , nlC)) as execution marking (ExMark), and as M∗R the set of all
execution markings of R.

As ExMarks are based on the CRG structure, they are easy to interpret. However, sometimes,
a more complex structure is necessary for adequately capturing compliance states as illustrated
in Example 7.2.
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Figure 7.4.: Representing compliance states using groups of ExMarks
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Example 7.2 (Groups of ExMarks):
Consider R2 and the event depicted in Fig. 7.4. The compliance state of R2 after the first six
events can be reflected by ExMark m3. However, after the second execution of B (i.e., after
event e8), two ExMarks with the same AnteExMark and differing ConsExMarks are necessary to
adequately capture the compliance state: One ConsExMark indicating that the pattern B and
a subsequent C and a further ConsExMark indicating that the pattern B without subsequent
C have been observed. Note that it is also possible to use solely ExMark m2 to represent the
compliance state as the first execution of B does not lead to a satisfaction of the rule activation.
However, then, the information encoded in ExMark m3 would be dropped. The third execution
of B does not lead to new ExMarks.

After the second execution of A, a further ExMark is required reflecting that A without subse-
quent B has been observed. Hence, the compliance state is represented by the ExMarks m1, m2,
and m3. However, these three ExMarks are not independent. Instead, as indicated in Fig. 7.4
they constitute two different groups of ExMarks, the first group consisting of m2 and m3 rep-
resenting first and the second group consisting of m1 representing the second activation of R2.
These two groups of ExMarks capture precisely the behavior with regard to R2 displayed by the
execution trace.

As Example 7.2 shows, groups of ExMarks can become necessary for capturing compli-
ance states. For compact representation of groups of ExMarks, we introduce marking struc-
tures (MarkStructures). A MarkStructure is constituted by an AnteExMark and a set
of ConsExMarks. Thus, the compliance state of a CRG can be represented through a set
of MarkStructures as illustrated by Example 7.2. Definition 7.2 formalizes the notion of
MarkStructures.

Definition 7.2 (MarkStructure)
Let R = (A,C) be a CRG. Then, a marking structure (MarkStructure) of R is defined as a
tuple

ms := ((nsA, nlA), {(ns1
C , nl

1
C), . . . , (nskC , nlkC)}) where

• (nsA, nlA) ∈ NSL∗A is an AnteExMark,

• (nsiC , nliC) ∈ NSL∗C , i = 1, . . . , k, is a ConsExMark, and

• ((nsA, nlA), (nsiC , nliC)), i = 1, . . . , k, is an ExMark of R.

Additionally, we denote

• as MS∗R := NSL∗A × (2NSL∗C ) the set of all MarkStructures of R.

A MarkStructure ms of R is further referred to as event-independent if Completed nodes are
not assigned any events and as event-specific if the opposite applies. An event-independent
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MarkStructure can be considered an equivalence class for event sequences. For example, for
R2 from Fig. 7.4, the event sequences <A,B>, <A,B,A,B>, and <A,B,A,B,A,B> can be
represented by the same MarkStructure consisting of ExMark m2 from Fig. 7.4. Thus, an event-
independent MarkStructure may be associated with multiple activations of a CRG. We will
focus on event-independent MarkStructures in the following. However, we will later show in
Section 7.4.3 how event-specific MarkStructures can be used to provide fine-grained compliance
diagnoses. In the remainder of this thesis, we will illustrate a MarkStructure by depicting the
ExMarks it consists of as, for example, shown in ms1 in Fig. 7.4.

As a MarkStructure corresponds to a set of ExMarks with the same AnteExMark and varying
ConsExMarks, we provide an auxiliary function to aggregate such ExMarks to a MarkStructure
in Def. 7.3. This function will be used in the CRG execution procedure.

Definition 7.3 (Aggregation of ExMarks to MarkStructures)
Let R = (A,C) be a CRG. Then,

aggregateR : 2M∗R → 2MS∗R

is a function aggregating a given set of ExMarks M = {m1, . . . ,mn},mi ∈ M∗R to a set of
MarkStructures MS = {ms1, . . . ,msl},msj ∈MS∗R with

aggregateR(M) :=
{ms = ((nsA, nlA), {(ns1

C , nl
1
C), . . . , (nskC , nlkC)}) ∈MS∗R |

(∃m = ((nsA, nlA), (nsC , nlC)) ∈M)∧
(∀(nsiC , nliC), i ∈ {1, . . . , k}, ∃m = ((nsA, nlA), (nsC , nlC)) ∈M : (nsiC , nliC) = (nsC , nlC))∧
(∀m = ((nsA, nlA), (nsC , nlC)) ∈M ∃(nsiC , nliC), i ∈ {1, . . . , k} : (nsiC , nliC) = (nsC , nlC))}.

Recall Fig. 7.1. A compliance state in our approach is represented by a set of MarkStructures.
Being based on CRGs marked with execution states, MarkStructures are suitable for cap-
turing compliance states in a transparent and interpretable manner. To represent the initial
compliance state (cf. Fig. 7.1), which is comparable to the start state of an automaton, we
utilize a MarkStructure where all CRG nodes are assigned state (Null, ∅)). IR1 derives such a
MarkStructure for a given CRG.

Initialization Rule IR1 (Intialization of a MarkStructure):
For all CRGs R = (A,C), we define init as a function returning an initialized MarkStructure
ms of the given CRG R with:

init(R) := ms = ((nsA, nlA), {(nsC , nlC)}) ∈MS∗R with

• (nsA, nlA) ∈ NSL∗A is an AnteExMark of R and

• (nsC , nlC) ∈ NSL∗C is a ConsExMark of R

• where holds:

– (∀n ∈ NA : (nsA(n), nlA(n)) := (Null, ∅))∧
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– (∀n ∈ NC : (nsC(n), nlC(n)) := (Null, ∅)).

Example 7.3 (Initialization of a MarkStructure for a CRG):
Consider again R2 from Fig. 7.4. Then, init(R2) = ms = ((nsA, nlA), {(nsC , nlC)}) where:

• nsA(r1) = Null, nlA(r1) = ∅, nsC(r2) = nsC(r3) = Null, and nlC(r2) = nlC(r3) = ∅.

7.2.2. Evaluation of marking structures

In order to assess the compliance states of a CRG detected through process model or process
instance verification, criteria to evaluate the MarkStructures become necessary. According to
the semantics of CRG nodes (cf. Section 6.2.2) and the marking semantics of MarkStructures,
occurrence nodes have to be marked with Completed while absence nodes must not be marked
with Completed in order to reflect that the overall event pattern was observed. Based on
this consideration, Def. 7.4 formalizes notions to evaluate whether a ConsExMark represents an
occurrence of a CRG’s consequence pattern.

satisfied means that the ConsExMark represents an occurrence of the CRG’s consequence
pattern.

violated means that the ConsExMark does not represent an occurrence of the CRG’s conse-
quence pattern. Hence, a violated ConsExMark cannot contribute to the satisfaction of
a CRG.

violable means that the ConsExMark does not yet represent an occurrence of the CRG’s
consequence pattern.

pending means that a violable ConsExMark contains ConsOcc nodes for which no matching
activity execution has been observed yet.

Definition 7.4 (Notions for ConsExMarks)
Let R = (A,C) be a CRG and cm = (nsC , nlC) ∈ NSL∗C be a ConsExMark over R. Then, we
distinguish between the following states of cm:

• cm is satisfied if holds:
(∀n ∈ NR : ntR(n) = ConsOcc⇒ nsC(n) = Completed)∧
(∀n ∈ NR : ntR(n) = ConsAbs⇒ nsC(n) = NotExecuted).

• cm is violated if holds:
(∃n ∈ NR : ntR(n) = ConsOcc⇒ nsC(n) = NotExecuted)∨
(∃n ∈ NR : ntR(n) = ConsAbs⇒ nsC(n) = Completed).

• cm is violable if holds:
cm is neither satisfied nor violated.
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• cm is pending if holds:
cm is violable ∧ (∃n ∈ NR : ntR(n) = ConsOcc ∧ nsC(n) ∈ {Null, Started}).

Further,

• cm is referred to as final if holds:
∀n ∈ NC : nsC(n) /∈ {Null, Started}.

• Otherwise, cm is referred to as non-final.

Note that if a violable ConsExMark is not pending, no further events are required in order to
render the ConsExMark satisfied. However, the observation of certain events that match with
ConsAbs nodes of the CRG may render the ConsExMark violated.

Example 7.4 (Evaluation of ConsExMarks):
Consider again the MarkStructures ms1 and ms2 from Fig. 7.4. Then, in ms1 the ConsExMark
of m3 is violated as ConsAbs node r3 is marked as Completed while the ConsExMark of m2 is
violable but not pending. MarkStructure ms2, however, contains a pending ConsExMark.

Based on Def. 7.4, we can now provide notions for assessing MarkStructures:

Activation The activation property indicates whether a MarkStructure represents an activation
of the corresponding CRG. An activated MarkStructure indicates that the antecedent
pattern activating the CRG was observed. In contrast, a deactivated MarkStructure is
not associated with an occurrence of the CRG’s antecedent pattern. Thus, a deactivated
MarkStructure constitutes no activation of the CRG and, therefore, is irrelevant to the
compliance with the corresponding CRG. Finally, an activatable MarkStructure is not
yet but can still become an activation of the CRG. An activatable MarkStructure,
however, may also become deactivated when certain events are or are not observed in
the further execution

Satisfaction The satisfaction property refers to whether an activated MarkStructure is also
associated with a satisfied consequence pattern. A MarkStructure is only considered
violated if it becomes apparent that the observed behavior precludes the satisfaction of
the CRG’s consequence pattern in the future therewith rendering the MarkStructure no
longer satisfiable.

Finality A final MarkStructure contains only ExMarks whose nodes can no longer change
their states. This is the case when nodes are Completed or NotExecuted. Thus, a final
MarkStructure does not require any further processing when verifying compliance.

Definition 7.5 (Notions for MarkStructures)
Let R = (A,C) be a CRG. Let further ms = ((nsA, nlA), {(ns1

C , nl
1
C), . . . , (nskC , nlkC)}) ∈ MS∗R

be a MarkStructure of R. Then,
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• we will say ms is activated if holds:

– (∀n ∈ NR : ntR(n) = AnteOcc⇒ nsA(n) = Completed) ∧
(∀n ∈ NR : ntR(n) = AnteAbs⇒ nsA(n) = NotExecuted).

• We will say ms is deactivated if holds:

– (∃n ∈ NR : ntR(n) = AnteOcc ∧ nsA(n) = NotExecuted) ∨
(∃n ∈ NR : ntR(n) = AnteAbs ∧ nsA(n) = Completed).

• Otherwise, we say ms is activatable.

For the activated MarkStructure ms, we further distinguish between the following states:

• ms is satisfied if holds:
∃(nsiC , nliC), i ∈ {1, . . . , k} : (nsiC , nliC) is satisfied.

• ms is violated if holds:
∀(nsiC , nliC), i ∈ {1, . . . , k} : (nsiC , nliC) is violated.

• ms is violable if holds:
ms is neither satisfied nor violated.

• ms is pending if holds:
ms is violable ∧ ∀(nsiC , nliC), i ∈ {1, . . . , k}: ((nsiC , nliC) is violable ⇒ (nsiC , nliC) is
pending).

Finally, a MarkStructure ms

• is referred to as final if holds:
∀n ∈ NA : nsA(n) /∈ {Null, Started} ∧ ∀(nsiC , nliC), i ∈ {1, . . . , k}: (nsiC , nliC) is final.

• Otherwise, ms is referred to as non-final.

The notions from Def. 7.5 enable the assessment whether a MarkStructure constitutes an ac-
tivation of a CRG and whether a MarkStructure is satisfied. A reached compliance state, as
depicted in Fig. 7.1, is constituted by the individual states of its MarkStructures. This is shown
in Example 7.5.

Example 7.5 (Evaluation of MarkStructures):
Consider again the MarkStructures ms1 and ms2 from Fig. 7.4. Then, applying Def. 7.5 reveals
that both are activated and violable. Therefore, R is not enforced. However, while ms1 is
not pending as it contains a ConsExMark that is not pending, ms2 is still pending. As a result,
ms2 still requires a further activity execution (namely of B) in order to become satisfied
while ms1 would become satisfied if not further events are observed. This information can be
helpful, for example, to decide on activities to be scheduled when monitoring process instances.
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7.3. Execution and marking rules

So far, we showed how compliance states can be represented using event-independent and event-
specific MarkStructures and provided criteria to assess MarkStructures and compliance states.
To complete the operationalization of CRGs, the transitions between compliance states have to
be defined. For this purpose, we define execution and marking rules that alter MarkStructures
in accordance to an event observed during the exploration of a process model or when moni-
toring a process instance. For clarity, we will focus on event-independent MarkStructures. In
Section 7.4.3, we will show how event-specific MarkStructures can be addressed.

Section 7.3.1 discusses important considerations for devising execution and marking rules. Then,
rules for processing start and end events are introduced in Section 7.3.2 and 7.3.3, respectively.
A marking rule for finalizing MarkStructures when ending CRG execution is introduced in
Section 7.3.4. Section 7.4 then illustrates the application of the rules.

7.3.1. Fundamentals

When exploring a process model or verifying a process instance execution, each new event ob-
served may affect the compliance state. Thus, the MarkStructures that constitute the effective
compliance state have to be updated for each new event. The processing of one event is referred
to as an execution iteration or iteration in brief. In each iteration, it is checked based on the
current MarkStructures whether the new event matches with any CRG node. If so, it is at-
tempted to use the new event to form patterns specified in the CRG by integrating it into the
existing MarkStructures (using the node execution states described in Section 7.2.1) yielding
new MarkStructures. This way, the updated MarkStructures are not built from scratch for
each new event but are derived from the existing ones. This enables dealing with incrementally
evolving execution traces as required for compliance monitoring.

In order to derive new MarkStructures from existing ones such that the compliance state is
reflected correctly, the following questions arise:

Matching How to determine whether an observed event is relevant to a CRG node? As described
in Section 6.2.2, premise is that the event matches the node’s profile. However, whether a
node’s state has to be altered may also depend on the markings of its predecessors. For
end events, attention has to be paid to the correspondence of start and end events.

Marking How to mark nodes in a MarkStructure such that the compliance notions from Sec-
tion 7.2.2 can be applied at each compliance state? Started and Completed are intuitive,
for these states correspond to observations of suitable start and end events. Intuitively,
a CRG node is marked as Started to reflect that a matching start event is observed. In
analogy, Completed indicates that a matching activity execution is observed (i.e., a start
and a corresponding end event). In contrast, NotExecuted requires further clarification.

Exploring Provided that the observed event is relevant to at least a CRG node, how to automati-
cally derive resulting MarkStructures? Due to the different node types of CRGs, execution
rules from process operationalization as, for example, known from ADEPT [Rei00] are not
applicable. In fact, the semantics of the CRG node types has to be considered in order to
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rigorously implement the formal semantics of CRGs. In order to automatically attempt
to form the patterns specified in the CRG using observed events, different options of inte-
grating a new observed event into an existing MarkStructure have to be explored. Each
of these results in a MarkStructure.

In the following, the above questions will be addressed in detail before the execution and marking
rules for dealing with start and end events are provided in Section 7.3.2 and 7.3.3, respectively.
Section 7.3.1.1 discusses the notion of match between CRG nodes and events. Section 7.3.1.2
discusses premises to starting a CRG node. The correspondence of start and end events is
discussed in Section 7.3.1.3. Section 7.3.1.4 describes how NotExecuted is used to indicate not
executed predecessor nodes. Section 7.3.1.5 discusses execution semantics to execute CRG nodes
over start and end events. Section 7.3.1.6 and Section 7.3.1.7 discuss firing conflicts that result
from concurrently executable CRG nodes and how they are dealt with.

7.3.1.1. Matching between compliance rule graph nodes and events

To update a MarkStructure, it first has to be checked whether the observed event is relevant to
any node of the respective CRG. As described in Section 6.2.2, premise to this is that conditions
associated with the node apply to the event. Otherwise, the event is irrelevant to the node. As
a CRG node describes a complete activity execution while start and end events mark the start
and end of activity executions, the notion of match between a CRG node and such events has
to be devised accordingly.

While start and end events always contain static information (i.e., node identifier and activity
assigned), they may also contain dynamic information in the form of data allocations (cf. Sec-
tion 5.2.3). A CRG node, in turn, can be assigned conditions on static as well as on dynamic
information. These conditions are, thus, partitioned into start and end conditions depending on
whether the conditions can be evaluated over start or end events (cf. Def. 6.2). Based on this,
Def. 7.6 formalizes functions to assess whether a start/ an end event matches the specifications
of a CRG node. These functions will be used to check the necessary conditions for executing
CRG nodes (cf. Sections 7.3.2.1 and 7.3.3.1).

Definition 7.6 (Matching of CRG nodes with start and end events)
Let R = (A,C) be a CRG and s = (start, ns, ats, datas) ∈ EStart be a start event and
e = (end, ne, ate, datae) ∈ EEnd be an end event. Then,

• matchStartR : NR × EStart → B is a function returning true if the given start event
satisfies the start conditions (i.e., conditions in startCondsR(n), cf. Def. 6.2) of the given
node. Otherwise false will be returned.

• matchEndR : NR×EEnd → B is a function returning true if the given end event satisfies
the end conditions (i.e., conditions in endCondsR(n), cf. Def. 6.2) of the given node.
Otherwise false will be returned.
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Note that even though a start event matches a node, there is still the possibility of the corre-
sponding end event not matching the CRG node due to the end conditions (cf. Example 7.6).
This has to be provided for by the CRG execution and marking rules.

r1

A

conds(r1) = {x > 50, y = true}

Figure 7.5.: A CRG node associated with data conditions

Example 7.6 (Matching of start and end events with CRG nodes):
Fig. 7.5 depicts a CRG node r1. Now, assume that x is an input and y is an output parameter.
Then, start event e1 = (start, A, 1, {x 7→ 60}) matches with r1 as e1 is not only associated
with the expected activity but the start condition (on x) also applies. While end event e2 =
(start, A, 1, {y 7→ true}) also matches with r1, end event e3 = (start, A, 1, {y 7→ false}) does
not due to the end condition (on y).

7.3.1.2. Completed predecessor nodes

A premise to start a process node is usually that all predecessors have been completed or, if a
node has one-of-all join semantics, have been marked as no longer executable [Rei00]. Exploiting
the ordering of CRG nodes for operationalization clearly helps to prevent unnecessary opera-
tions. Consider, for example, a CRG antecedent consisting of a sequence of AnteOcc nodes.
Then, starting the last AnteOcc node (when observing a matching start event) before activity
executions for its predecessors are observed (and these nodes are marked accordingly) does not
contribute to identifying the antecedent pattern in the trace and, therefore, is superfluous.

AnteOcc nodesAnteOcc nodes

AnteAbs nodes ConsOcc nodes

ConsAbs nodes

Figure 7.6.: Hierarchy of nodes within a CRG / RF

In contrast to process models, however, CRGs consist of four different node types with different
semantics. Each CRG node, therefore, may have predecessors of other node types. To determine
whether a CRG node can be started over a matching start event, we can exploit the hierarchy
of nodes within a CRG depicted in Fig. 7.6. This hierarchy can be derived from the semantics
of the nodes within a RF and shows the potential relations between nodes. Nodes from an inner
block may refer to nodes from the outer blocks (e.g., ConsAbs nodes may refer to ConsOcc and
AnteOcc nodes but not to AnteAbs nodes) or to nodes from the same type (does not apply to
absence nodes). Based on the node hierarchy, we can stipulate the following:
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AnteOcc nodes are started independently from the state of their predecessors of other node
types (i.e., AnteAbs, ConsOcc, and ConsAbs). This is necessary to detect all occurrences
of a CRG’s antecedent pattern.

AnteAbs nodes request the absence of certain activity executions. The particular location where
the associated activities must not occur can be specified through AnteOcc predecessors
and successors. Due to this location dependency, AnteAbs nodes can only be started if all
AnteOcc predecessors have been completed.

ConsOcc nodes request the occurrence of certain activity executions. The particular requested
location of these is specified through relations of ConsOcc nodes to other ConsOcc nodes
as well as to AnteOcc nodes. Thus, ConsOcc nodes can only be started if all ConsOcc as
well as AnteOcc predecessors have been completed.

ConsAbs nodes The particular location where the activity executions associated with ConsAbs
nodes must not occur can be specified through AnteOcc as well as ConsOcc predecessors
and successors. Hence, ConsAbs nodes can only be started if all ConsOcc and AnteOcc
predecessors have been completed.

Table 7.1 summarizes the start preconditions w.r.t. completion of predecessor nodes. Completed
means that predecessors of that type have to be completed first. Combinations that cannot occur
due to syntactic constraints are marked as “not applicable” (i.e., no direct predecessors of this
node type can be contained in a CRG). Example 7.7 illustrates these preconditions.

AnteOcc AnteAbs ConsOcc ConsAbs
AnteOcc predecessors Completed Completed Completed Completed
AnteAbs predecessors not applicable not applicable not applicable
ConsOcc predecessors not applicable Completed Completed
ConsAbs predecessors not applicable not applicable

Table 7.1.: Preconditions for transforming a CRG node from Null into Started
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Figure 7.7.: CRG fragments
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Example 7.7 (Execution preconditions of CRG nodes):
Consider the CRG fragments R3 and R4 from Fig. 7.7. Then, it is apparent to not start r2 until
r1 has been completed. However, the situation is different for R5 and R6 stating that before B
is executed, A must / must not be executed. To implement the semantics of AnteOcc nodes,
r2 must be started independently of r1 in these cases in order to account for the case that B
occurs but not A. For the same reason, r2 has to be started independently of r2 for R7 as well.

In R8, ConsOcc node r2 is supposed to appear as response to r1. Therefore, r2 must not be
started before completion of r1. In contrast, ConsOcc node r2 must be started independently
from ConsAbs predecessor r1 in R9 in order to account for the execution of B without prior
execution of A.

In R10 and R11, ConsAbs node r2 must not be started until its predecessors are completed since
the location where the activity execution associated with r2 must not occur is defined by the
predecessors, respectively.

7.3.1.3. Correspondence of start and end events

Assuming a correct execution trace (cf. Section 5.2.4), a start event is always followed by a
corresponding end event. In particular, for an observed start event, the corresponding end
event is the next end event that is associated with the same process node as shown in Fig. 7.8.
Clearly, a Started CRG node must not be completed over an end event that does not belong to
the same activity execution (cf Example 7.8). To ensure this, we have to be able to determine
whether an observed end event is expected by a start event. For this purpose, it is necessary
to record start events associated with a Started CRG node3 in order to be able to identify
relevant end events occurring subsequently in the execution trace. To record the start events
associated with a CRG in a MarkStructure, we use the function nl of ExMarks (cf. Def. 7.1).
As a result, a Started process node is always associated with a set of start events.

<…, (Start,A,1), (Start,A,2), (End,A,2), (End,A,1), (Start, A,1), (End,A,1), …>

e1 e2 e3 e4 e1 e4

Figure 7.8.: Correspondence of start and end events

Example 7.8 (Correspondence of start and end events):
Consider, for example, the execution trace depicted in Fig. 7.8. Then, it is apparent that a
CRG node started on e1 must not be completed on e3 or the second occurrence of e4 as these
events do not belong to the same activity execution. In particular, e3 belongs to a different
process node and the second occurrence of e4 belongs to a later activity execution. In fact, the

3We will later show that a Started CRG node can be associated with multiple start events and, thus, can be
completed by multiple end events.
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end event corresponding to e1 is the first occurrence of e4. Even though e4 occurs twice in the
trace, these occurrences must not be confused as they belong to different executions of the same
process node.

7.3.1.4. Not completed predecessors

As learned in Section 7.3.1.2, AnteOcc nodes can be started independently from the execution
state of predecessors of other node types while ConsOcc nodes can be started independently
from the execution state of ConsAbs predecessors. Therefore, it is possible that predecessors
are still in state Null or Started when starting an occurrence node n. Then, its predecessor
nodes represent expectations on the past and, hence, cannot be completed according to the
semantics of CRGs. To reflect this in the MarkStructure, such predecessors are marked as no
longer executable using NotExecuted. This enables the evaluation of MarkStructures using the
notions provided in Section 7.2.2.

Example 7.9 (Not yet completed predecessors):
Consider MarkStructure ms1 depicted in Fig. 7.9. Then, when marking r3 as Started, the
ConsOcc and ConsAbs predecessors r1 and r2 will be marked as NotExecuted as they impose
constraints on the past. This results in ms2.

AnteOcc node

AnteAbs node

ConsOcc node

ConsAbs node

ORDER edge DIFF edge

NotExecutedExecutedStarted

r3

C

r1

A

ms2

B

r2

r3

C

r1

A

ms1

B

r2

Figure 7.9.: Marking not yet completed predecessors for a started node

Def. 7.7 provides functions to identify not yet completed predecessors. These functions will be
applied by the marking rules (MR1 and MR3).

Definition 7.7 (deadConsOcc, deadConsAbs, deadAnteAbs)
Let R = (A,C) be a CRG. Then,

• deadConsOccR : NS∗C × P(NR)→ P(NR) with
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deadConsOccR(nsC , Q) :=
{n ∈ NR | nsC(n) ∈ {Null, Started} ∧ ∃l ∈ Q : n ∈ predConsOcc∗(l)}

is a function assigning a set of ConsOcc predecessor nodes that have not been completed
yet in ConsStateMark nsC to a set of nodes Q. These ConsOcc nodes are regarded as dead
predecessors when the nodes in Q are started.

• deadConsAbsR : NS∗C × P(NR)→ P(NR) with

deadConsAbsR(nsC , Q) :=
{n ∈ NR | nsC(n) ∈ {Null, Started} ∧ ∃l ∈ Q : n ∈ predConsAbs∗(l)}

is a function assigning a set of ConsAbs predecessor nodes that have not been completed
yet in ConsStateMark nsC to a set of nodes Q. These ConsAbs nodes are regarded as dead
predecessors when the nodes in Q are started.

• deadAnteAbsR : NS∗A × P(NR)→ P(NR) with

deadAnteAbsR(nsA, Q) :=
{n ∈ NR | nsA(n) ∈ {Null, Started} ∧ ∃l ∈ Q : n ∈ predAnteAbs(l)}

is a function assigning a set of AnteAbs predecessor nodes that have not been completed
yet in AnteStateMark nsA to a set of nodes Q. These AnteAbs nodes are regarded as dead
predecessors when the nodes in Q are started.

7.3.1.5. Node execution semantics for start and end events

Assuming that all preconditions for executing a node over a start or an end event apply, the
question is how the node’s state has to be adapted. The execution semantics of processes cannot
be adopted as we aim at the automatic detection of event patterns that match with the patterns
defined in the CRG. Therefore, the different node types of CRGs have to be considered in order
to correctly implement the designated semantics. The active and passive state transitions4 of
CRG nodes are illustrated in Fig. 7.10. In the following, we elaborate on the execution semantics
of CRG nodes for start and end events based on the example provided in Fig. 7.11. The latter
shows the MarkStructures of different compliance states when processing events of an execution
trace.

Dealing with start events How a CRG node’s state (i.e., execution state represented by ns
and associated events represented by nl) in a MarkStructure is altered over a matching start
event depends on the particular node type.

AnteOcc nodes For a CRG node n in state Null and a matching start event e, two situations
have to be accounted for: Event e may contribute to an event pattern that matches with the
antecedent pattern of the CRG. To account for that case, n should become Started over e. There

4A passive state change results from marking not completed predecessor nodes as NotExecuted and is indicated
by the dashed line in Fig. 7.10.
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Figure 7.10.: Execution states of CRG nodes and corresponding transitions

is, however, also the possibility of e not contributing to the CRG’s antecedent pattern but some
future matching start may will. To account for that case, n should remain in state Null in
order to be started over future matching start events. As both these cases should be accounted
for, we explore both options for each AnteOcc node n that can be started over a start event.
This results in a set of MarkStructures, one for each option. This nondeterministic execution
semantics (as reflected in the diagram in Fig. 7.10) implements the ∀ semantics of AnteOcc
nodes.

Example 7.10 (Execution semantics of AnteOcc nodes for start events):
Consider MarkStructure ms1 in Fig. 7.11. Then, when start event e1 is observed, AnteOcc
node r1 becomes executable. This results in two MarkStructures, namely ms1 and ms2. While
ms2 represents the attempt to form the CRG’s antecedent pattern using the just observed e1
(i.e., r1 becomes Started over e1), ms1 provides for the detection of later occurrences of A in
the trace (i.e., r1 does not become Started over e1). After processing e1, the compliance state
is represented by ms1 and ms2, which are activatable (cf. Section 7.2.2). Thus, no activation
of the CRG is detected yet.

ConsOcc nodes A matching start event can only affect ConsOcc nodes that are still in state
Null. Despite their ∃-semantics (cf. Section 6.3), starting ConsOcc nodes over a matching
start event can be insufficient to detect the consequence pattern of a CRG in an execution
trace. One reason for this is that we cannot tell whether the expected end event is going to
match a Started ConsOcc node due to end conditions. Another reason is that the first start
event matching a ConsOcc node n may not belong to an activity execution that leads to an
occurrence of the CRG’s consequence pattern (cf. Example 7.11). That is why ConsOcc nodes
are started nondeterministically like AnteOcc nodes. As a result of executing a set of ConsOcc
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Figure 7.11.: Application of the execution semantics
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nodes in a ConsExMark of a MarkStructure, we receive a set of resulting ConsExMarks each of
which represents one attempt to identify the consequence pattern in the execution trace.

Example 7.11 (Execution semantics of ConsOcc nodes for start events):
Consider ms3 in Fig. 7.11. When e3, the start of B, is observed, ConsOcc node r2 of ms3’s
ConsExMark becomes executable. As a result, we obtain two ConsExMarks in the resulting
MarkStructure ms4. When observing another start of B as in e4, r2 is still executable in the
ConsExMark of m2 of ms4. Processing e4, therefore, yields ms5 containing three ConsExMarks:
one in which r2 is not started yet and two in which r2 is started for e3 and e4, respectively5.

AnteAbs nodes are utilized to model the absence of activity executions within a CRG’s an-
tecedent pattern (i.e., ¬∃-semantics, cf. Section 6.3). When being in state Null, the AnteAbs
node will be put into state Started when the first matching start event is observed. To
implement the semantics of AnteAbs nodes, we collect all subsequent matching start events
(recorded by the nl function of AnteExMarks) as long as the AnteAbs node is not yet Completed.
This is because each of these start events may result in a matching activity execution. The
semantically corresponds to starting multiple instances of the AnteAbs node, each of which is as-
sociated with a single start event and each of which may result in a matching activity execution
depending on the expected end events. If one of these node instances yields a matching activity
execution, obviously the associated absence constraint does not hold. This is why we also refer
to this as starting an AnteAbs node (even though technically the node is already Started).

Example 7.12 (Execution semantics of AnteAbs nodes over start events):
Fig. 7.12 depicts the state changes of AnteAbs node r1 when being executed over an execution
trace containing two interleaved executions of activity A. We assume that the start events
e1 and e2 both match r1. Through processing the first start event e1, r1 is put into state
Started. Since subsequent e2 also matches r1, e2 is also recorded as the start event of a
possibly matching activity execution. As a result, r1 can be completed by two expected end
events.

ConsAbs nodes are utilized to model the absence of activity executions within a CRG’s conse-
quence pattern (i.e., ¬∃-semantics, cf. Section 6.3). Hence, the firing behavior of AnteAbs nodes
over start events can be adopted for ConsAbs nodes.

Example 7.13 (Execution semantics of ConsAbs nodes for start events):
Consider ms6 in Fig. 7.11. Then, ConsAbs node r3 of m1 becomes executable over e6. This
results in ms7. If now a further start event matching r3 would be recorded, r3 would be
associated with both start events in analogy to AnteAbs nodes.

5As discussed in Section 7.3.1.3, it is necessary to record associated start events in order to be able to identify
corresponding expected end events. In this case, each Started occurrence node is only associated with a single
start event. For implementation of the concepts introduced, one may also think of alternative approaches.
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Figure 7.12.: Firing of AnteAbs nodes

Dealing with end events An observed end event is only relevant to Started CRG nodes of
a MarkStructures (cf. Fig. 7.10). However, an end event will only be relevant to a Started
node, if it corresponds to one of the start events associated with the Started node (cf. Sec-
tion 7.3.1.3). When observing such an expected end event for a Started CRG node n, there
are different scenarios to be taken into account depending on n’s node type.

Occurrence nodes A Started occurrence node n is only associated with a single start event.
Thus, only a single end event is expected and only a single end event can lead to completion
of n. If the expected end event matches n, n will become Completed. Otherwise n will be put
into state NotExecuted as no further end event is expected6.

Example 7.14 (Execution semantics of occurrence nodes over end events):
Consider for example ms5 in Fig. 7.11. Then, end event e5 is the expected end event of start
event e3, which is associated with r2 of ExMark m1 of ms5. Since e5 matches r2, r2 becomes
Completed, which results in ms6. If, however, e5 would not match r2, r2 would be assigned
execution state NotExecuted.
While r2 is also Started in m3 of ms5, e5 does not lead to completion of r2 in m3 as it is not
the expected end event of e4.

Absence nodes As a Started absence node n can be associated with multiple start events,
it may be expecting multiple end events. If an expected end event e matches n, n will become
Completed. If an expected end event, however, does not match n, there are two scenarios. If e
is the last expected end event, clearly no further end event will be able to correctly complete
the execution of n. This semantically corresponds to the situation of n not being started at
all. Apparently, n’s current execution state Started becomes obsolete as all started start-end-
transactions associated with n are already dismissed. That is why the execution state of n is
changed back to Null in this case.

6Note that it is also possible to set the node’s execution state back to Null. However, as upon starting an occur-
rence node, not yet executed predecessors may become discarded (cf. Section 7.3.1.4), other node markings
may have to be undone in this case. Therefore, assigning execution state NotExecuted is the more elegant
solution. To prevent that this results in “dead” structures causing unnecessary costs, pruning rules can be
applied to discard such MarkStructures (cf. Section 7.5.1)
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If e is not the only expected end event as n is still associated with multiple start events, future
end events can still lead to completion of n. Hence, n will remain Started. In order to prevent
completing n over a second occurrence of e that does not belong to the same activity execution,
we have to undo the association of n and the corresponding start event. In the marking rules,
this is done by removing the start event from the set of start events associated with n.

Example 7.15 (Execution semantics of absence nodes over end events):
Consider, for example, Started AnteAbs node r1 associated with e1 and e2 in Fig. 7.12. Then,
end event e3, the expected end event of e2 is observed next. As e3 turns out to not lead to
a matching activity execution (due to the end condition x = true), e2 is removed from the
set of associated start events to indicate that now only the end event of e1 is still expected.
If subsequent e4, the expected end event of e1, matches r1, a matching activity execution is
recorded and r1 will, thus, become Completed. If, however, e4 turns out to not match r1, r1 will
be put back into state Null since no further end events are expected.

7.3.1.6. Firing conflicts between ordered nodes

As AnteOcc nodes and ConsOcc nodes can be started without all predecessors having to be
completed, it is possible to run into firing conflicts between ordered CRG nodes as illustrated
in Example 7.16. Firing conflicts between ordered nodes occur when two ordered nodes become
executable over the same start event at the same time. Due to their ordering relation, executing
such nodes over the same start event would lead to corrupt MarkStructures with respect to
CRG and MarkStructure semantics.

Example 7.16 (Firing conflict between ordered nodes):
Consider MarkStructure ms1 and observed start event e1 to be processed depicted in Fig. 7.13
a). Assuming that e1 matches both r2 and r3, both nodes can be started over e1

7. This situation
is referred to as firing conflict between ordered nodes as apparently, starting both r2 and r3 over
the same start event is inconsistent to CRG semantics as ordered nodes must not be associated
with the same activity execution.

As Example 7.16 shows, situations in which ordered nodes can be started concurrently ask for
precise arrangements. In order to prevent starting two ordered nodes over the same event, we
prioritize the execution of certain node types instead of processing all nodes at once. In order
to implement the formal semantics, the prioritization follows the hierarchy of CRG nodes (cf.
Fig. 7.6 in Section 7.3.1.2). Thus, AnteOcc nodes are processed first in each execution iteration.
This results in a set of MarkStructures as AnteOcc nodes are started nondeterministically.
As described in Section 7.3.1.4, not yet completed predecessors of Started AnteOcc nodes are
marked as NotExecuted. Thus, nodes that have been identified as startable at the beginning
of the execution iteration might get marked as no longer executable. Such nodes consequently

7Note that r2 can be started independently from r3’s execution state.
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Figure 7.13.: A firing conflict between CRG nodes and its resolution

cannot be started any longer in order to stick to CRG formal semantics. After processing
AnteOcc nodes, for each obtained MarkStructure still executable AnteAbs nodes are processed.
Then, still executable consequence nodes are processed. As starting ConsOcc nodes can discard
not yet completed ConsAbs predecessors, ConsOcc nodes have to be processed prior to ConsAbs
nodes. As ConsOcc nodes are started nondeterministically, each ConsExMark of an obtained
MarkStructure may result in a set of ConsExMarks. Finally, for each thus obtained ConsExMark
executable ConsAbs nodes that have not been marked with NotExecuted in the meantime can
be processed. By applying the described procedure, marking not yet completed predecessors as
NotExecuted (cf. Section 7.3.1.4) prevents starting ordered nodes over a start event in the
same iteration and, thus, ensures that ordered nodes are not associated with the same activity
execution.

Example 7.17 (Step-wise processing CRG nodes in an execution iteration):
The CRG from Fig. 7.13 expresses that for every pair of A and the next subsequent B, an
execution of C is required after B. Fig. 7.13 b) shows how prioritization of node types resolves
firing conflicts. As r2 is an AnteOcc node, it is processed first in the iteration, which results in
two MarkStructures ms2 and ms3. As described in Section 7.3.1.5, AnteOcc nodes are started
nondeterministically. For the case that r2 is started over e1, AnteAbs node r3 will be marked as
NotExecuted as shown in MarkStructure ms2. Hence, r3 can no longer be started over e1 in
the same iteration. Indicating that an execution of A followed by a start of B (without another
execution of B in between) was witnessed, ms2 correctly reflects the observed process behavior
so far. For the case that r2 is not started over e1, r3 remains startable and, hence, will be
started resulting in ms3. When observing end event of e1, r3 in ms3 will become Completed.
Thus, ms3 will become deactivated (cf. Def. 7.5), which follows the CRG semantics as the
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first execution of B after A would already have been observed.

7.3.1.7. Firing conflicts between unordered nodes

So far, we have not yet discussed the effect of diff edges on the execution of CRG nodes.
According to the CRG semantics, two nodes connected through a diff edge must not be executed
over the same activity execution. This has to be be provided for by the CRG operational
semantics (cf. Example 7.18). As nodes connected through a diff edge must not be in any
ordering relation (cf. Section 6.2.4), they can become executable over the same start events.

Example 7.18 (The effect of diff edges on CRG execution):
Fig. 7.14 depicts an antecedent pattern that will become activated if only one execution of A
is present in an execution trace. When observing start event e1, both r1 and r2 are startable.
Due to prioritization, AnteOcc node r1 is processed first and is started nondeterministically.
MarkStructure ms2 is what we receive after starting r1. Clearly, r2 must not be started over
e1 in ms2 due to the imposed diff relation. This will be ensured by the execution rules. When
r1 is not started over e1, r2 can be started, which results in ms3.
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Figure 7.14.: Effect of diff edges on CRG execution

Since execution of MarkStructures over end events is deterministic, it suffices to ensure that
nodes connected through diff edges are not started over the same start event within an
execution iteration. The execution rules will ensure that.

7.3.1.8. Summary

In Section 7.3.1, we discussed the various aspects to be considered for operationalizing CRGs.
Recall Fig. 7.1. Then, we can now provide an algorithm for executing a CRG over a trace.
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The algorithm in Listing 1 executes a CRG R over an execution trace σ with executeStartR /
executeEndR being the function applying execution and marking rules to MarkStructure ms
when processing a start/ an end event, respectively. We will describe these functions in detail
in Section 7.3.2 and 7.3.3. The execution starts with the initialization of a MarkStructure of R
reflecting the initial compliance state. For each observed event, the current MarkStructures are
updated using execution and marking rules. When end of trace is reached, a further marking rule
is applied to put all obtained MarkStructures into final state (cf. Def. 7.5). At each stage, the
compliance notions introduced in Section 7.2.2 can be applied to evaluate the MarkStructures
that constitute the compliance state.

Algorithm 1 Executing CRG R over execution trace σ (verify(R, σ))
1: R is a CRG
2: σ = <e1, . . . , en> is an execution trace

{INITIALIZATION}
3: ms0 = init(R);
4: MS = {ms0};

{ITERATION}
5: while σ.length > 0 do
6: e = σ[0];
7: MSnew = ∅;
8: if e is a start event then
9: for all ms ∈MS do

10: MSnew = MSnew∪ executeStartR(ms,e);
11: end for
12: else if e is an end event then
13: for all ms ∈MS do
14: MSnew = MSnew∪ executeEndR(ms,e);
15: end for
16: end if
17: σ = σ \σ[0];
18: MS = MSnew;
19: end while

{FINALIZATION}
20: MSnew = ∅;
21: for all ms ∈MS do
22: MSnew = MSnew∪ markEndR(ms);
23: end for
24: return MSnew;

As described in Section 7.3.1.6, each execution iteration consists of four consecutive steps: execu-
tion of AnteOcc, of AnteAbs, of ConsOcc, and of ConsAbs nodes. To formalize CRG operational
semantics, we introduce execution and marking rules for each node type. Execution rules iden-
tify executable nodes in an iteration and choose options to be explored while marking rules
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adapt node markings accordingly. To keep the execution and marking rules easily intelligible,
we opted for defining them over ExMarks instead of over MarkStructures. This is possible as a
MarkStructure is constituted by a set of ExMarks. As a result, the obtained ExMarks have to be
aggregated to resulting MarkStructures at the end of the iteration. Table 7.2 summarizes the
execution and marking rules that will be discussed in detail in Sections 7.3.2, 7.3.3, and 7.3.4.
We will also introduce rules for executing CRGs over ex events as optimization in Section 7.5.2.

AnteOcc AnteAbs ConsOcc ConsAbs
start events MR1, ER1 MR2, ER2 MR3, ER3 MR4, ER4
end events MR5, ER5 MR6, ER6 MR7, ER7 MR8, ER8
EOT MR9

Table 7.2.: Execution and marking rules for processing start and end events and the end of a
trace (EOT)

7.3.2. Execution and marking rules for start events

Based on the considerations described in Section 7.3.1, Fig. 7.15 illustrates how a MarkStructure
is altered when processing a start event. As AnteOcc nodes are executed nondeterministically
over start events, which results in a set of child MarkStructures. As predecessors may no longer
be executable, not only the AnteExMark of a MarkStructure is affected by the start of AnteOcc
nodes but the ConsExMarks may also be altered. AnteAbs nodes are executed deterministically
and alter the MarkStructure’s AnteExMark. Similar to AnteOcc nodes, ConsOcc nodes are
started nondeterministically. In consequence, the set of ConsExMarks of a MarkStructure will
be altered when starting ConsOcc nodes. Ultimately, ConsAbs nodes are executed altering the
ConsExMarks of a MarkStructure.

Algorithm 2 defines executeStart, which processes a MarkStructure over a start event (cf.
Algorithm 1). As the execution rules are defined over ExMarks instead of over MarkStructures
for brevity reasons, the obtained ExMarks have to be aggregated to MarkStructures at the end
of the iteration. Execution rules are applied consecutively in lines 7 to 17. As pointed out
in Section 7.3.1.6, the processing of CRG nodes follows a particular order in order to prevent
firing conflicts between ordered nodes. The functions to execute the particular node types are
introduced in Sections 7.3.2.2 to 7.3.2.5, respectively. The nondeterministic start of AnteOcc
and ConsOcc nodes as discussed in Section 7.3.1.5 shows in lines 8 and 11, respectively, as the
functions executeAnteOccStart and executeConsOccStart each returns a set of ExMarks. The
obtained ExMarks are finally aggregated to MarkStructures in line 18.

As discussed in Section 7.3.1.3, the start events associated to a node must be memorized in
order to be able to determine whether an observed end event belongs to an activity execution a
node was started on. To capture the associated events, we use the function nl of ExMarks, which
assigns a (possibly empty) set of events8 to each CRG node. The marking rules for dealing with
start events will, therefore, set / alter the nl-property for executed nodes.

8Note that absence nodes can be associated with multiple start events
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Figure 7.15.: Alternation of a MarkStructure when processing a start event

In the following, Section 7.3.2.1 discusses the necessary conditions for executing a CRG node over
a start event before execution and marking rules for the particular node types are introduced.

7.3.2.1. Necessary conditions

Based on the considerations in Section 7.3.1, the necessary conditions for executing a CRG node
over a start event incorporate conditions in different respects:

1. matching between the node and the start event

2. the node’s current execution state

3. the execution state of the node’s predecessors

Def. 7.8 formalizes the necessary conditions. The matching between the CRG node and the
start event is covered by condition (i) of the functions in Def. 7.8. While occurrence nodes are
only executable over start events when being in state Null, absence nodes are executable over
a start event even if they are already Started (cf. Section 7.3.1.5). In this case, observation
of a further matching start event will not lead to a different execution state but will lead to
a changed set of start events associated with the node. This is reflected in condition (ii) of
the functions in Definition 7.8. The conditions (iii) and (iv) reflect the conditions regarding
a node’s predecessors as summarized by Table 7.1 in Section 7.3.1.2. Common to all four
node types is that they can only be started if AnteOcc predecessors have been completed.
Additionally, ConsOcc and ConsAbs nodes cannot be started until their ConsOcc predecessors
have been completed.
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Algorithm 2 Executing a MarkStructure over a start event (executeStartR(ms, e))
1: R = (A,C) is a CRG;
2: e ∈ EStart is a start event;
3: ms = ((nsA, nlA), {(ns1

C , nl
1
C), . . . , (nskC , nlkC)}) ∈MS∗R is a MarkStructure of R;

4: Mms = {m1 = ((nsA, nlA), (ns1
C , nl

1
C)), . . . ,mk = ((nsA, nlA), (nskC , nlkC))} is the set of

ExMarks of ms

{INITIALIZATION}
5: MAnteOcc,MConsOcc,MRes = ∅;
6: MSRes = ∅

{ITERATION}
7: for all m ∈Mms do
8: MAnteOcc = executeAnteOccStartR(m, e);
9: for all m ∈MAnteOcc do

10: mAnteAbs = executeAnteAbsStartR(m, e);
11: MConsOcc = executeConsOccStartR(mAnteAbs, e);
12: for all m ∈MConsOcc do
13: mConsAbs = executeConsAbsStartR(m, e);
14: MRes = MRes ∪ {mConsAbs};
15: end for
16: end for
17: end for

{Aggregation of obtained ExMarks to MarkStructures }
18: MSres = aggregateR(MRes);

{The obtained set of resulting MarkStructures is returned}
19: return MSres;

Definition 7.8 (Necessary conditions for executing CRG nodes over start events)
Let R = (A,C) be a CRG and e ∈ EStart be a start event. Then,

• executableAnteStartR : NS∗A ×NA × EStart → B
is a function determining whether an antecedent node n is executable under an
AnteStateMark nsA of R over a start event e with:

∀n ∈ NA with ntR(n) = AnteOcc:

executableAnteStartR(nsA, n, e) :=



true, if
(i) matchStartR(n, e) = true ∧
(ii) nsA(n) = Null ∧
(iii) ∀l ∈ predAnteOcc(n) : nsA(l) = Completed
false, otherwise.
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∀n ∈ NA with ntR(n) = AnteAbs:

executableAnteStartR(nsA, n, e) :=



true, if
(i) matchStartR(n, e) = true ∧
(ii) nsA(n) ∈ {Null, Started} ∧
(iii) ∀l ∈ predAnteOcc(n) : nsA(l) = Completed
false, otherwise.

• executableConsStartR : NS∗R ×NC × EStart → B

is a function determining whether a consequence node n is executable under a StateMark
(nsA, nsC) of R over a start event e with:

∀n ∈ NC with ntR(n) = ConsOcc:

executableConsStartR((nsA, nsC), n, e) :=



true, if
(i) matchStartR(n, e) = true ∧
(ii) nsC(n) = Null ∧
(iii) ∀l ∈ predAnteOcc(n) :
nsA(l) = Completed ∧

(iv) ∀l ∈ predConsOcc(n) :
nsC(l) = Completed

false, otherwise.

∀n ∈ NC with ntR(n) = ConsAbs:

executableConsStartR((nsA, nsC), n, e) :=



true, if
(i) matchStartR(n, e) = true ∧
(ii) nsC(n) ∈ {Null, Started} ∧
(iii) ∀l ∈ predAnteOcc(n) :
nsA(l) = Completed ∧

(iv) ∀l ∈ predConsOcc(n) :
nsC(l) = Completed

false, otherwise.

• exAnteNodesStartR : NS∗A × EStart × {AnteOcc, AnteAbs} → P(NR)

is a function determining the set of antecedent nodes of type t that are executable under
an AnteStateMark nsA over start event e with:
exAnteNodesStartR(nsA, e, t) :=
{n ∈ NR | ntR(n) = t ∧ executableAnteStartR(nsA, n, e) = true}.

• exConsNodesStartR : NS∗R × EStart × {ConsOcc, ConsAbs} → P(NR)

is a function determining the set of consequence nodes of type t that are executable under
an StateMark (nsA, nsC) over start event e with:
exConsNodesStartR((nsA, nsC), e, t) :=
{n ∈ NR | ntR(n) = t ∧ executableConsStartR((nsA, nsC), n, e) = true}.
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Example 7.19 (CRG nodes executable over a start event):
In Fig. 7.16, r1 in m1 is executable when observing a start of A since AnteOcc nodes can be
started independently from predecessors of other node types. For the same reason, both r2 and
r3 are executable in ExMark m2 when the start of B is observed9. In contrast, no node becomes
executable when observing the start of D. This is because r5 must not be started until all
AnteOcc predecessors have been completed. In m3, r2 and r3 are executable when the start of
B is observed. This is because AnteAbs nodes can be executed over start events when already
in state Started. In m4, r2 can be started when observing the start of B. In contrast, no node
becomes startable when observing the start of C.
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Figure 7.16.: Necessary conditions for executing nodes over start events

7.3.2.2. Execution of AnteOcc nodes

Based on the set of AnteOcc nodes of an ExMark that are executable over a start event,
execution rule ER1 identifies sets of AnteOcc nodes that are started in the iteration. Each set
represents an attempt to match the antecedent pattern and the events in the trace and results
in a child ExMark. The determination of such sets follows some constraints:

9Note that this is a firing conflict between ordered nodes (cf. Section 7.3.1.6). We will later show in Fig. 7.17
how this is dealt with.
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1. Following the execution semantics illustrated in Fig. 7.10 (cf. Section 7.3.1.5), two options
have to be explored for each startable AnteOcc node.

2. No pair of AnteOcc nodes must be started at the same time if they are directly connected
through a diff edge (cf. Section 7.3.1.7).

This results in the sets of AnteOcc nodes contained in Q∗ in ER1. It contains exactly the subsets
of executable AnteOcc nodes that are free of nodes directly related through diff edges. For each
node set in Q∗, marking rule MR1 is applied to yield a child ExMark.

Execution Rule ER1 (Execution of AnteOcc nodes over start events):
Let R = (A,C) be a CRG,m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R, and e ∈ EStart
be a start event with

• QAO := exAnteNodesStartR(nsA, e, AnteOcc) denoting the set of AnteOcc nodes of m
satisfying the necessary execution conditions and

• Q∗ := {Q ⊆ QAO | ∀n1∀n2 ∈ Q : (n1, n2) /∈ DiffER ∧ (n2, n1) /∈ DiffER} denoting the
set of subsets of QAO, where each Q ∈ Q∗ is free of nodes that are directly linked through
a diff edge.

Then,

• executeAnteOccStartR : M∗R × EStart → 2M∗R
is a function assigning child ExMarks to an ExMark m and a start event e with:

executeAnteOccStartR(m, e) :=
⋃
Q∈Q∗markAnteOccStartR(m,Q, e).

MR1 puts AnteOcc nodes into state Started and alters the nl-property to associate the started
nodes with the processed start event. Moreover, not yet completed predecessors of the started
AnteOcc nodes are marked as NotExecuted using the functions deadAnteAbs, deadConsOcc,
and deadConsAbs introduced in Section 7.3.1.4.

Marking Rule MR1 (Marking of AnteOcc nodes over start events):
Let R = (A,C) be a CRG. Then,

markAnteOccStartR : M∗R × P(NR)× EStart →M∗R

is a function assigning an ExMark m′ to an original ExMark m = ((nsA, nlA), (nsC , nlC)), a set
Q of AnteOcc nodes to be executed, and a start event e with

markAnteOccStartR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) = AnteOcc:

(ns′A(n), nl′A(n)) :=
{

(Started, {e}) if n ∈ Q
(nsA(n), nlA(n)), otherwise.
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• ∀n ∈ NR with ntR(n) = AnteAbs:

(ns′A(n), nl′A(n)) :=
{

(NotExecuted, ∅) if n ∈ deadAnteAbsR(nsA, Q)
(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NR with ntR(n) = ConsOcc:

(ns′C(n), nl′C(n)) :=
{

(NotExecuted, ∅) if n ∈ deadConsOccR(nsC , Q)
(nsC(n), nlC(n)), otherwise.

• ∀n ∈ NR with ntR(n) = ConsAbs:

(ns′C(n), nl′C(n)) :=
{

(NotExecuted, ∅) if n ∈ deadConsAbsR(nsC , Q)
(nsC(n), nlC(n)), otherwise.
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Figure 7.17.: Application of ER1 and MR1 and ER2 and MR2

Example 7.20 (Execution of AnteOcc nodes over a start event):
In Fig. 7.17, AnteOcc node r2 satisfies the necessary conditions when observing the start of B
(i.e., QAO = {r2} in ER1). This results in Q∗ = {∅, {r2}} when applying ER1. Application
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of MR1 for each set Q ∈ Q∗ results in two ExMarks, m1 for Q = ∅ and m2 for Q = {r2}. In m2,
AnteAbs node r3 is marked as NotExecuted as it is a not yet completed predecessor node of r2.
In contrast, in m1, r3 is still executable over e1 and will be executed in the same iteration when
AnteAbs nodes are processed in the next step.

Fig. 7.18 illustrates how AnteOcc nodes directly linked through a diff edge are dealt with.
While both AnteOcc nodes r1 and r2 are executable over e1, {n1, n2} is not contained in Q∗ when
applying ER1. This prevents r1 and r2 from being executed over the same activity execution.
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Figure 7.18.: Application of ER1 and MR1 when a diff edge is involved

7.3.2.3. Execution of AnteAbs nodes

In an execution iteration, AnteAbs nodes are processed after processing AnteOcc nodes. As a
result, when processing AnteAbs nodes for an ExMark, the latter may contain AnteOcc nodes
that have been started in the very iteration. To correctly implement the semantics of diff edges,
startable AnteAbs nodes directly linked through diff edges to AnteOcc nodes that have been
started in the very same execution iteration must not be executed (cf. Section 7.3.1.7). This is
enforced in execution rule ER2. As AnteAbs nodes are executed deterministically (cf. Fig. 7.10),
executeAnteAbsStart returns a single child ExMark.

Execution Rule ER2 (Execution of AnteAbs nodes over start events):
Let R = (A,C) be a CRG, m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R and e ∈ EStart
be a start event with

• QAA := exAnteNodesStartR(nsA, e, AnteAbs) denoting the set of AnteAbs nodes of m
satisfying the necessary execution conditions,

• ExAnteOccm being the set of AnteOcc nodes that have been marked as Started in m
over e in the same iteration,
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• D := {n ∈ QAA | ∃l ∈ ExAnteOccm : (n, l) ∈ DiffR ∨ (l, n) ∈ DiffR} being the set of
AnteAbs nodes in QAA that are directly linked to nodes in ExAnteOccm through diff
edges, and

• Q := QAA\D being the subset of QAA that is free of nodes that are directly linked
through a diff edge to AnteOcc nodes executed in same iteration.

Then,

• executeAnteAbsStartR : M∗R × EStart →M∗R
is a function assigning a child ExMark m′ to an ExMark m and a start event e with:

executeAnteAbsStartR(m, e) := markAnteAbsStartR(m,Q, e).

Marking rule MR2 is used in ER2 to yield a child ExMark. It implements the considerations
discussed in Section 7.3.1.5: An AnteAbs node to be executed will become Started if it is in
execution state Null. If the node is already Started, it will remain so. The nl-property of the
AnteAbs nodes is further altered to associate them with the processed event by adding the latter
to the associated event set.

Marking Rule MR2 (Marking of AnteAbs nodes over start events):
Let R = (A,C) be a CRG. Then,

markAnteAbsStartR : M∗R × P(NR)× EStart →M∗R

is a function assigning an ExMark m′ to an original ExMark m = ((nsA, nlA), (nsC , nlC)), a set
Q of AnteAbs nodes to be executed, and a start event e with

markAnteAbsStartR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) = AnteAbs:

(ns′A(n), nl′A(n)) :=


(Started, {e}) if n ∈ Q ∧ nsA(n) = Null
(nsA(n), nlA(n) ∪ {e}) if n ∈ Q ∧ nsA(n) = Started
(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NR with ntR(n) = AnteOcc:
(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) ∈ {ConsOcc, ConsAbs}:
(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).

Example 7.21 (Execution of AnteAbs nodes over a start event):
Fig. 7.17 shows an iteration where both AnteOcc and AnteAbs nodes become executable over a
start event. Then, after processing AnteOcc nodes, AnteAbs node r3 is still executable in m1.
Therefore, application of ER2 and MR2 yields m3.
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In ExMark m1 from Fig. 7.19, AnteAbs node r2 becomes executable when e2 is observed. Appli-
cation of ER2 and MR2 yields m2, in which r2 is associated with two started activity executions
represented by the start events e1 and e2 as indicated by the updated nl-property of r2.
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Figure 7.19.: Application of ER2 and MR2 and ER6 and MR6

7.3.2.4. Execution of ConsOcc nodes

As described in Section 7.3.1.5, ConsOcc nodes are started nondeterministically like AnteOcc
nodes. The rationale behind this is to account for the case that the first start event matching
the ConsOcc node does not lead to a matching activity execution (e.g., due to end conditions or
to the corresponding end event appearing later than activity executions matching with successor
nodes)10.

Based on the set of ConsOcc nodes of an ExMark that satisfy the necessary execution conditions,
execution rule ER3 identifies sets of ConsOcc nodes that are started in the iteration. For each
10For optimization, a ConsOcc node n may be started deterministically if it has neither end conditions nor

successor nodes.

133



CHAPTER 7. OPERATIONAL SEMANTICS OF COMPLIANCE RULE GRAPHS

set, marking rule MR3 is invoked to yield a child ExMark. The determination of such sets follows
some constraints:

1. Following the execution semantics illustrated in Fig. 7.10 (cf. Section 7.3.1.5), two options
have to be explored for each startable ConsOcc node.

2. No pair of ConsOcc nodes must be started at the same time if they are directly linked to
each other through a diff edge (cf. Section 7.3.1.7).

3. It has to be ensured that no ConsOcc node will be started in the iteration if it is directly
linked through a diff edge to an AnteOcc node that was started in the same iteration.
This is necessary in order to implement the semantics of diff edges.

These constraints are enforced by ER3 as Q∗ contains exactly those subsets of executable
ConsOcc nodes that are free of nodes that are directly linked to each other or to started AnteOcc
nodes through diff edges.

Execution Rule ER3 (Execution of ConsOcc nodes over start events):
Let R = (A,C) be a CRG, m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R and e ∈ EStart
be a start event with

• QCO := exConsNodesStartR((nsA, nsC), e, ConsOcc) being the set of ConsOcc nodes of
m satisfying the necessary execution conditions,

• ExAnteOccm being the set of AnteOcc nodes that have been marked as Started in m
over e in the same iteration,

• D := {n ∈ QCO | ∃l ∈ ExAnteOccm : (n, l) ∈ DiffER ∨ (l, n) ∈ DiffER} being the
set of ConsOcc nodes in QCO that are directly linked to AnteOcc nodes executed in this
iteration through diff edges, and

• Q∗ := {Q ⊆ (QCO\D) | ∀n1∀n2 ∈ Q : (n1, n2) /∈ DiffER ∧ (n2, n1) /∈ DiffER} denoting
the set of subsets of QCO, where each Q ∈ Q∗ is free of nodes that are directly linked to
each other or to AnteOcc nodes executed in the same iteration through diff edges.

Then,

• executeConsOccStartR : M∗R × EStart → 2M∗R
is a function assigning child ExMarks to an ExMark m and a start event e with:

executeConsOccStartR(m, e) :=
⋃
Q∈Q∗markConsOccStartR(m,Q, e).

Marking rule MR3 takes care of marking ConsOcc nodes. In this process, not yet completed
ConsAbs predecessors of started ConsOcc nodes will be marked as NotExecuted.

Marking Rule MR3 (Marking of ConsOcc nodes over start events):
Let R = (A,C) be a CRG. Then,
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markConsOccStartR : M∗R × P(NR)× EStart →M∗R

is a function assigning an ExMark m′ to an original ExMark m = ((nsA, nlA), (nsC , nlC)), a set
Q of ConsOcc nodes to be executed, and a start event e with

markConsOccStartR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) ∈ {AnteOcc, AnteAbs}:

(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) = ConsOcc:

(ns′C(n), nl′C(n)) :=
{

(Started, {e}) if n ∈ Q
(nsC(n), nlC(n)), otherwise.

• ∀n ∈ NR with ntR(n) = ConsAbs:

(ns′C(n), nl′C(n)) :=
{

(NotExecuted, ∅) if n ∈ deadConsAbsR(nsC , Q)
(nsC(n), nlC(n)), otherwise.
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Figure 7.20.: Application of ER3 and MR3 and ER7 and MR7
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Example 7.22 (Execution of ConsOcc nodes over a start event):
In Fig. 7.20, ConsOcc node r2 of ExMark m1 becomes executable when e1 is observed. Due to non-
deterministic execution of ConsOcc nodes over start events, application of ER3 and MR3 results
in two child ExMarksm1 andm2. As these ExMarks both have the same AnteExMark, aggregation
of them at the end of the iteration would yield a single MarkStructure with two ConsExMarks
capturing the ConsExMarks of both ExMarks. According to Def. 7.5, this MarkStructure is
Activated (i.e., represents an activation of the CRG) and both violable and pending (i.e.,
still awaiting events).

Fig. 7.21 illustrates how the semantics of diff edges is enforced through ER3. When e1 is
observed, both r2 and r3 become executable. As, however, they are linked through a diff
edge, not both of them can be started in the same iteration. As a result, we obtain three child
ExMarks from m1. At the end of the iteration for e1, these three ExMarks will be aggregated to
a MarkStructure as they are associated with the same AnteExMark.
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Figure 7.21.: Application of ER3 and MR3 when a diff edge is involved

7.3.2.5. Execution of ConsAbs nodes

The execution rule for ConsAbs nodes is very similar to the one for AnteAbs nodes. In order to
implement the formal semantics of diff edges, it has to be ensured that ConsAbs nodes that are
directly linked through diff edges to ConsOcc or AnteOcc nodes started in the same iteration are
not executed. Execution rule ER4 enforces this as such nodes (represented by D) are excluded
from execution.
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Execution Rule ER4 (Execution of ConsAbs nodes over start events):
Let R = (A,C) be a CRG, m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R and e ∈ EStart
be a start event with

• QCA := exConsNodesStartR((nsA, nsC), e, ConsAbs) being the set of ConsAbs nodes of
m satisfying the necessary execution conditions,

• ExAnteOccm being the set of AnteOcc nodes that have been marked as Started in m
over e in the same iteration,

• ExConsOccm being the set of ConsOcc nodes that have been marked as Started in m
over e in the same iteration,

• D := {n ∈ QCA | ∃l ∈ ExAnteOccm ∪ ExConsOccm : (n, l) ∈ DiffR ∨ (l, n) ∈ DiffR}
being the set of ConsAbs nodes in QCA directly linked through diff edges to ConsOcc
and AnteOcc nodes that have been executed in this iteration, and

• Q := QCA\D being the subset of of QCA that is free of nodes that are directly linked to
AnteOcc nodes or ConsOcc nodes executed in same iteration through diff edges.

Then,

• executeConsAbsStartR : M∗R × EStart →M∗R
is a function assigning a child ExMark to an ExMark m and a start event e with:

executeConsAbsStartR(m, e) := markConsAbsStartR(m,Q, e).

Marking rule MR4 takes care of marking ConsAbs nodes to be executed. A ConsAbs node to be
executed will be assigned execution state Started if it is in execution state Null. If the node is
already Started, it will remain so. The nl-property of the ConsAbs node is further altered to
associate the node with the processed event by adding the latter to the node’s event set.

Marking Rule MR4 (Marking of ConsAbs nodes over start events):
Let R = (A,C) be a CRG. Then,

markConsAbsStartR : M∗R × P(NR)× EStart →M∗R

is a function assigning an ExMark m′ to an original ExMark m = ((nsA, nlA), (nsC , nlC)), a set
Q of ConsOcc nodes to be executed, and a start event e with

markConsAbsStartR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) ∈ {AnteOcc, AnteAbs}:

(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) = ConsOcc:

(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).
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• ∀n ∈ NR with ntR(n) = ConsAbs:

(ns′C(n), nl′C(n)) :=


(Started, {e}) if n ∈ Q ∧ nsC(n) = Null
(nsC(n), nlC ∪ {e}) if n ∈ Q ∧ nsC(n) = Started
(nsC(n), nlC(n)), otherwise.
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Figure 7.22.: Application of ER4 and MR4 and ER8 and MR8

Example 7.23 (Execution of ConsAbs nodes over a start event):
In Fig. 7.22, ConsAbs node r3 becomes executable over start event e1. Application of ER4 and
MR4 results in ExMark m2. Note that if another start event matching r3 would be observed
next, r3 would still be executable.

7.3.3. Execution and marking rules for end events

Based on the considerations described in Section 7.3.1, Fig. 7.23 illustrates how a MarkStructure
is altered when processing an end event. Due to deterministic execution of all CRG node
types over end events, an execution iteration for an end event results in a single child
MarkStructure11.
11Note that the amount of ConsExMarks associated with a MarkStructure may also diminish as originally different

ConsExMarks may result in the same ConsExMark when being altered.
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Figure 7.23.: Alternation of a MarkStructure when processing an end event

Algorithm 3 defines function executeEnd processing a MarkStructure over an end event. For in-
telligibility, the execution and marking rules are defined over ExMarks instead of MarkStructures.
Therefore, obtained ExMarks are aggregated to a MarkStructure in line 13 in Algorithm 3. In
lines 6 to 12, execution rules are applied. As firing conflicts between ordered nodes are already
prevented by starting nodes in a particular order, a particular order is not necessary when
processing end events. However, we still stick to the processing order for uniformity reasons.
The functions to execute the particular node types are introduced in Sections 7.3.3.2 to 7.3.3.5,
respectively.

Generally, the execution rules for processing end events are simpler than the ones for processing
start events. The reason for this is that diff edges are already taken care of when processing
start events. Therefore, this can be neglected when end events are processed. As the discard
of not yet completed predecessor nodes (cf. Section 7.3.1.4) is taken care of when processing
start events, marking rules for end events only affect the nodes to be executed. In the following,
Section 7.3.3.1 discusses the necessary conditions for executing a CRG node over an end event
before execution and marking rules for the particular node types are introduced.

7.3.3.1. Necessary conditions

As emphasized in Section 7.3.1.3, a CRG node must only be completed over an end event if it
was also started over the start event from the same activity execution. To ensure this, Def. 7.9
provides a function to determine whether an end event is the expected by a started CRG node.
Note that Def. 7.9 does not account for multiple occurrences of the same events, which can occur
when an activity is carried out multiple times. This, therefore, has to be taken care of by the
execution and marking rules.
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Algorithm 3 Executing MarkStructure over an end event (executeEndR(ms, e))
1: R = (A,C) is a CRG;
2: e ∈ EEnd is a end event;
3: ms = ((nsA, nlA), {(ns1

C , nl
1
C), . . . , (nskC , nlkC)}) ∈MS∗R is a MarkStructure of R;

4: Mms = {m1 = ((nsA, nlA), (ns1
C , nl

1
C)), . . . ,mk = ((nsA, nlA), (nskC , nlkC))} is the set of

ExMarks of ms

{INITIALIZATION}
5: MRes = ∅;

{ITERATION}
6: for all m ∈Mms do
7: mAnteOcc = executeAnteOccEndR(m, e);
8: mAnteAbs = executeAnteAbsEndR(mAnteOcc,e);
9: mConsOcc = executeConsOccEndR(mAnteAbs,e);

10: mConsAbs = executeConsAbsEndR(mConsOcc,e);
11: MRes = MRes ∪ {mConsAbs};
12: end for

{Aggregation of obtained ExMarks to a MarkStructure }
13: msres = aggregateR(MRes);

{The obtained MarkStructure is returned}
14: return msres;

Definition 7.9 (expectedEnd)
Let R = (A,C) be a CRG and e = (end, ne, ate, datae) ∈ EEnd be an end event. Then,
expectedEndR : NL∗A ∪NL∗C ×NR × EEnd → B
is a function returning true if n is associated with a start event that belongs to the end event
e, with:

expectedEndR(nl, n, e) :=
{

true if ∃s ∈ nl(n) with s = (start, ne, ate, datas)
false, otherwise.

Based on the considerations described in Section 7.3.1, the necessary conditions for executing a
CRG node over an end event are constituted by conditions on:

1. the node’s current execution state,

2. the matching between the node’s specification and the event (end conditions), and

3. the correspondence of the end event with a start event the node is associated with.

These necessary conditions are formalized in Definition 7.10. Condition (i) ensures that the node
is Started. Condition (ii) ensures that the observed end event matches the node’s specifications
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and condition (iii) ensures that a node will only become executable over an end event if the
latter is expected.

Definition 7.10 (Necessary conditions for executing CRG nodes over end events)
Let R = (A,C) be a CRG and let e ∈ EEnd be an end event. Then,

• executableAnteEndR : NSL∗A × NA × EEnd → B is a function determining whether an
antecedent node n is executable under an AnteExMark (nsA, nlA) over an end event e
with:

executableAnteEndR((nsA, nlA), n, e) :=



true, if
(i) nsA(n) = Started ∧
(ii) matchEndR(n, e) = true ∧
(iii) expectedEndR(nlA, n, e) = true
false, otherwise.

• executableConsEndR : NSL∗C ×NC × EEnd → B

is a function determining whether a consequence node n is executable under a ConsExMark
(nsC , nlC) over an end event e with:

executableConsEndR((nsC , nlC), n, e) :=



true, if
(i) nsC(n) = Started ∧
(ii) matchEndR(n, e) = true ∧
(iii) expectedEndR(nlC , n, e) = true
false, otherwise.

• exAnteNodesEndR : NSL∗A × EEnd × {AnteOcc, AnteAbs} → P(NR) is a function de-
termining the set of antecedent nodes of type t that are executable under AnteExMark
(nsA, nlA) over end event e with:
exAnteNodesEndR((nsA, nlA), e, t) :=
{n ∈ NR | ntR(n) = t ∧ executableAnteEndR((nsA, nlA), n, e) = true}.

• exConsNodesEndR : NSL∗C × EEnd × {ConsOcc, ConsAbs} → P(NR)

is a function determining the set of consequence nodes of type t that are executable under
ConsExMark (nsC , nlC) over end event e with:
exConsNodesEndR((nsC , nlC), e, t) :=
{n ∈ NR | ntR(n) = t ∧ executableConsEndR((nsC , nlC), n, e) = true}.

Example 7.24 (Necessary conditions):
Consider for example Fig. 7.24. In case a), end event e3 is not the expected end event of r1 as
it refers to a different node than the start events associated with r1. Therefore, the necessary
execution conditions do not apply. In case b), e3 is the expected end event of e2. However,
the end condition is not satisfied by e3. Therefore, the necessary execution conditions do not
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apply in this case either. In case c), e3 is the expected end event of e2 and also satisfies the end
condition. The necessary execution conditions therefore apply and r1 is executable over e3.

r1

A

{e1, e2}  

e1 = (Start,A,1)

e2 = (Start,A,2)

a) e3= (End,A,3, {x }) b) e3= (End,A,2, {x }) c) e3= (End,A,2, {x })

not expected end event expected but not 

matching end event

expected and matching 

end event

conds(r1) = {x = true} 

Figure 7.24.: Necessary conditions for executing a node over an end event

7.3.3.2. Execution of AnteOcc nodes

The execution of occurrence nodes over end event is fairly straight-forward. Execution rule ER5
invokes marking rule MR5 for the set of AnteOcc nodes satisfying the necessary execution
conditions.

Execution Rule ER5 (Execution of AnteOcc nodes over end events):
Let R = (A,C) be a CRG, m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R, and e ∈ EEnd
be an end event with
Q := exAnteNodesEndR((nsA, nlA), e, AnteOcc) being the set of AnteOcc nodes of m satisfying
the necessary execution conditions.

Then,

• executeAnteOccEndR : M∗R × EEnd →M∗R
is a function assigning a child ExMark to ExMark m and end event e with:

executeAnteOccEndR(m, e) := markAnteOccEndR(m,Q, e).

Marking rule MR5 follows the considerations described in Section 7.3.1.5 (cf. Fig. 7.10). If a
matching activity execution is found, the corresponding node will be assigned execution state
Completed. In this case, the nl-property will be set to ∅12. If however, a Started AnteOcc node
does not satisfy the necessary conditions (i.e., is not contained in Q) despite the observed end
event being expected by the node, the node will be assigned execution state NotExecuted, as
the corresponding activity execution does not match with the CRG node.

12Note that this yields event-independent ExMarks. In Section 7.4.3, we will show how the marking rules can be
adapted to yield event-specific ExMarks that reveal the particular activations of a CRG.
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Marking Rule MR5 (Marking of AnteOcc nodes over end events):
Let R = (A,C) be a CRG. Then,

markAnteOccEndR : M∗R × P(NR)× EEnd →M∗R

is a function assigning an ExMark m′ to an original ExMark m = ((nsA, nlA), (nsC , nlC)), a set
Q of AnteOcc nodes to be executed, and an end event e with

markAnteOccEndR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) = AnteOcc:

(ns′A(n), nl′A(n)) :=


(Completed, ∅) if n ∈ Q
(NotExecuted, ∅) if n /∈ Q ∧ expectedEndR(nlA, n, e) = true
(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NR with ntR(n) = AnteAbs:

(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) ∈ {ConsOcc, ConsAbs}:

(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).

r1

A

m1

B

r3

r2

B

b) e2= (End,A,1, {x })

{r1} executable

AnteOcc node

AnteAbs node

ConsOcc node

ConsAbs node

ORDER edge DIFF edge

NotExecutedExecutedStarted

r1

A

m2

B

r3

r2

B

C

r4

D

r5

C

r4

D

r5

{e1}  

e1 = (Start,A,1)

a) e2= (End,A,1,{x })

none executable

ER5 + MR5: Q = ∅ ER5 + MR5: Q = {r1} 

r1

A

m2

B

r3

r2

BC

r4

D

r5

conds(r1) = {x = true}

Figure 7.25.: Application of ER5 and MR5
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Example 7.25 (Execution of AnteOcc nodes over an end event):
Consider, for example, ExMark m1 depicted in Fig. 7.25. In case a), the processed end event is
the expected end event of r1 but does not match r1 due to r1’s end condition. Application of
MR5 therefore results in r1 being marked as NotExecuted. In case b), the end event matches
r1. Application of ER5 and MR5, hence, results in r1 being marked as Completed.

7.3.3.3. Execution of AnteAbs nodes

Execution rule ER6 determines the set of AnteAbs nodes satisfying the necessary execution
conditions and invokes marking rule MR6 for these nodes to obtain a child ExMark.

Execution Rule ER6 (Execution of AnteAbs nodes over end events):
Let R = (A,C) be a CRG, m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R, and e ∈ EEnd
be an end event with

• Q := exAnteNodesEndR((nsA, nlA), e, AnteAbs) being the set of AnteAbs nodes of m
satisfying the necessary execution conditions.

Then,

• executeAnteAbsEndR : M∗R × EEnd →M∗R
is a function assigning a child ExMark to ExMark m and end event e with:
executeAnteAbsEndR(m, e) := markAnteOccEndR(m,Q, e).

In contrast to occurrence nodes, Started absence nodes may be associated with multiple start
events. Based on the considerations discussed in Section 7.3.1.5, MR6 accounts for three cases.
If an AnteAbs node satisfies the necessary conditions (i.e., it is contained in Q), it will be
assigned execution state Completed as a matching activity execution is found. If the end event
is expected by a Started AnteAbs node that, however, is not contained in Q (i.e., the expected
end event does not lead to a matching activity execution), two cases will be left: If the node is
still expecting other end events that could lead to a matching activity execution, the node will
remain Started and the nl-property will be updated13. If, however, the node is not expecting
other end events than the one being processed, it will be assigned execution state Null as it is
no longer associated with a started activity execution.

Marking Rule MR6 (Marking of AnteAbs nodes over end events):
Let R = (A,C) be a CRG and m = ((nsA, nlA), (nsC , nlC)) ∈ M∗R be an ExMark of R. Let
further Q be a set of AnteAbs nodes in R and let e ∈ EEnd be an end event. Then,

markAnteAbsEndR : M∗R × P(NR)× EEnd →M∗R

13This is done to reflect the fact that the end event just processed is no longer expected.
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is a function assigning an ExMark m′ to an original ExMark m, a set Q of AnteAbs nodes to be
executed, and an end event e with

markAnteAbsEndR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) = AnteAbs:

(ns′A(n), nl′A(n)) :=



(Completed, ∅) if n ∈ Q
(Null, ∅) if n /∈ Q ∧ expectedEndR(nlA, n, e) = true∧
nlA(n)\{e} = ∅

(nsA(n), nlA(n)\{e}) if n /∈ Q∧
expectedEndR(nlA, n, e) = true ∧ nlA(n)\{e} 6= ∅

(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NR with ntR(n) = AnteOcc:

(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) ∈ {ConsOcc, ConsAbs}:

(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).

Example 7.26 (Execution of AnteAbs nodes over an end event):
Consider, for example, Fig. 7.19. In ExMark m2, no AnteAbs nodes become executable when end
event e3 is processed. As e3 does not match r2 but is the expected end event of e1, application
of MR6 yields m3.

In the next iteration, e4 is processed. In case a), e4 does not match r2. Hence, MR6 puts r2
back into execution state Null. In case b), e4 matches r2 (i.e., a matching activity execution is
found). In consequence, r2 becomes Completed.

7.3.3.4. Execution of ConsOcc nodes

Execution rule ER7 identifies ConsOcc nodes of an ExMark that satisfy the necessary execution
conditions and invokes marking rule MR7 for these nodes to obtain a child ExMark.

Execution Rule ER7 (Execution of ConsOcc nodes over end events):
Let R = (A,C) be a CRG, m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R, and e ∈ EEnd
be an end event with

• Q := exConsNodesEndR((nsC , nlC), e, ConsOcc) being the set of ConsOcc nodes of m
satisfying the necessary execution conditions.

Then,
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• executeConsOccEndR : M∗R × EEnd →M∗R
is a function assigning a child ExMark to an ExMark m and an end event e with:

executeConsOccEndR(m, e) := markConsOccEndR(m,Q, e).

Marking rule MR7 takes care of marking ConsOcc nodes to be executed. Similar to MR5, a
ConsOcc node to be executed will become Completed. If however, a Started ConsOcc node
does not satisfy the necessary conditions (i.e., is not contained in Q) despite the observed end
event being expected by the node, the node will be assigned execution state NotExecuted.

Marking Rule MR7 (Marking of ConsOcc nodes over end events):
Let R = (A,C) be a CRG and m = ((nsA, nlA), (nsC , nlC)) ∈ M∗R be an ExMark of R. Let
further Q be a set of ConsOcc nodes in R and let e ∈ EEnd be an end event. Then,

markConsOccEndR : M∗R × P(NR)× EEnd →M∗R

is a function assigning an ExMark m′ to an original ExMark m, a set Q of ConsOcc nodes to be
executed, and an end event e with

markConsOccEndR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) ∈ {AnteOcc, AnteAbs}:

(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) = ConsOcc:

(ns′C(n), nl′C(n)) :=


(Completed, ∅) if n ∈ Q
(NotExecuted, ∅) if n /∈ Q ∧ expectedEndR(nlC , n, e) = true
(nsC(n), nlC(n)), otherwise.

• ∀n ∈ NR with ntR(n) = ConsAbs:

(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).

Example 7.27 (Execution of ConsOcc nodes over an end event):
In Fig. 7.20, ConsOcc node r2 of ExMark m2 becomes executable when e2 is observed (case b) ).
Application of ER7 and MR7, therefore, yields an ExMark, in which r2 is marked as Completed.

Case a) illustrates the situation that e2, the expected event of e1, does not match r2. In this
case, application of MR7 results in r2 being marked as NotExecuted.
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7.3.3.5. Execution of ConsAbs nodes

Execution rule ER8 identifies ConsAbs nodes of an ExMark that satisfy the necessary execution
conditions and invokes marking rule MR8 to obtain a child ExMark.

Execution Rule ER8 (Execution of ConsAbs nodes over end events):
Let R = (A,C) be a CRG, m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R, and e ∈ EEnd
be an end event with

• Q := exConsNodesEndR((nsC , nlC), e, ConsAbs) being the set of ConsAbs nodes of m
satisfying the necessary execution conditions.

Then,

• executeConsAbsEndR : M∗R × EEnd →M∗R
is a function assigning a child ExMark to an ExMark m and an end event e with:

executeConsAbsEndR(m, e) := markConsAbsEndR(m,Q, e).

Similar to MR6, MR8 accounts for three cases: If a Started ConsAbs node was identified as
executable, it will be assigned execution state Completed as a matching activity execution is
found. If the processed end event is expected by a Started ConsAbs node but does not belong
to a matching activity execution, the node will remain in execution state Started if it is still
expecting other end events. If the node is not expecting any other end events, it will be put
back into execution state Null as it is no longer associated with a started activity execution.

Marking Rule MR8 (Marking of ConsAbs nodes over end events):
Let R = (A,C) be a CRG and m = ((nsA, nlA), (nsC , nlC)) ∈ M∗R be an ExMark of R. Let
further Q be a set of ConsAbs nodes in R and let e ∈ EEnd be an end event. Then,

markConsAbsEndR : M∗R × P(NR)× EEnd →M∗R

is a function assigning an ExMark m′ to an original ExMark m, a set Q of ConsAbs nodes to be
executed, and an end event e with

markConsAbsEndR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) ∈ {AnteOcc, AnteAbs}:

(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) = ConsOcc:

(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).
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• ∀n ∈ NR with ntR(n) = ConsAbs:

(ns′C(n), nl′C(n)) :=



(Completed, ∅) if n ∈ Q
(Null, ∅) if n /∈ Q ∧ expectedEndR(nlC , n, e) = true∧
nlC(n)\{e} = ∅

(nsC(n), nlC(n)\{e}) if n /∈ Q∧
expectedEndR(nlC , n, e) = true ∧ nlC(n)\{e} 6= ∅

(nsC(n), nlC(n)), otherwise.

Example 7.28 (Execution of ConsAbs nodes over an end event):
In Fig. 7.22, end event e2, the expected end event of e1, is processed in the second iteration.
In m2, Started ConsAbs node r3 is executable over e2. Therefore, application of ER8 and MR8
results in m3 where r3 is marked as Completed. However, if e2 would not match r3 (due to
imposed end conditions), r3 would be marked as Null when applying MR8.

7.3.4. End marking

In order to enable the evaluation of MarkStructures using Def. 7.5 (cf. Section 7.2.2), it is
necessary to indicate that no further events will be observed when reaching the end of an
execution trace (or the end node of a PEG). For this purpose, we introduce marking rule MR9
that finalizes MarkStructures upon reaching end of execution (cf. Algorithm 1). MR9 assigns
(NotExecuted,∅) to each not yet completed node.

Marking Rule MR9 (Marking MarkStructures when terminating execution):
Let R = (A,C) be a CRG and let ms = ((nsA, nlA), {(ns1

C , nl
1
C), . . . , (nskC , nlkC)}) ∈ MS∗R be a

MarkStructure of R. Then,

markEndR : MS∗R → MS∗R is a function assigning a MarkStructure ms′ of R to an original
MarkStructure ms when end of trace is reached, with

markEndR(ms) := ms′ = ((ns′A, nl′A), {(ns′1C , nl′1C), . . . , (ns′kC , nl′kC )}) with

• ∀n ∈ NA :

(ns′A(n), nl′A(n)) :=
{

(NotExecuted, ∅) if nsA(n) ∈ {Null, Started}
(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NC :

(ns′iC(n), nl′iC(n)) :=
{

(NotExecuted, ∅) if nsiC(n) ∈ {Null, Started}
(nsiC(n), nliC(n)), otherwise.

148



7.4. APPLICATION OF COMPLIANCE RULE GRAPH OPERATIONALIZATION

The application of MR9 renders all MarkStructures final when reaching the end of an exe-
cution trace. Thus, a MarkStructure obtained by applying MR9 will be either activated or
deactivated according to Def. 7.5. If activated, it will be either satisfied or violated.

7.4. Application of compliance rule graph operationalization

In the following, the application of the execution and marking rules will be illustrated using ex-
amples. Recall that MarkStructures are utilized to capture a compliance state. In Algorithm 1
(cf. Section 7.3.1.8), execution rules (executeStart from Algorithm 2 and executeEnd from
Algorithm 3) are applied depending on the observed event type in order to update the current
MarkStructures. In Section 7.3.2 and 7.3.3, we formalized the execution and marking rules
based on ExMarks instead of MarkStructures (for clarity reasons). Therefore, a MarkStructure
is updated by applying the execution and marking rules to its ExMarks and aggregating the
resulting ExMarks by the end of each iteration. For practical implementation, the rules can be
applied directly to a MarkStructure.

As MarkStructures obtained from executing a CRG over an execution trace represent the
behavior in the trace with regard to the CRG, analyzing these MarkStructures reveals whether
the CRG is enforced in the trace. Clearly, if violated MarkStructures become manifest, the
CRG is not enforced in the execution trace. If, on the contrary, no violated MarkStructures
become manifest, the CRG is enforced in the execution trace.

7.4.1. Examples

Example 7.29:
The CRG shown in Fig. 7.26 necessitates the execution of C between each execution of A and
the next execution of B. After processing e2, the compliance state is reflected by ms1 and ms3.
When e3 is observed, both r2 and r3 become executable in ms3 (i.e., a firing conflict between
ordered nodes as described in Section 7.3.1.6). AnteOcc nodes are processed first in an iteration.
This results in two MarkStructures, one in which r2 is started (ms4) and one in which r2 is not
started. In case r2 is not started over e3, r3 remains executable in the same iteration. Thus,
ER2 and MR2 can be applied which results in MarkStructure ms5. After processing e4, we can
see that the CRG is activated in the trace as ms6 is activated and violated. Note also that
ms7 is deactivated as an AnteAbs node is marked with Completed (cf. Def. 7.5). Hence, ms7
cannot become activated through further events. This reflects the situation in the trace as no
further B will lead to a new activation of the CRG unless a further A will be observed. Hence,
deactivated MarkStructures do not have to be considered when processing new events. In
Section 7.5, we discuss pruning strategies to increase the efficiency of CRG execution.
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Figure 7.26.: Application of CRG operational semantics

Example 7.30:
The CRG shown in Fig. 7.27 requests that an execution of B is required after each execution
of A. The trace in the figure contains two satisfied activations of the CRG. After processing
e8, these two activations are both represented by satisfied ms4. According to Def. 7.4, ms4
has a violable (and pending) ConsExMarks and a satisfied ConsExMark. As a satisfied
ConsExMark already suffices to satisfy a MarkStructure, the violable ConsExMark is dominated
by the satisfied ConsExMark. In Section 7.5, we will discuss domination among ConsExMarks
as a means to increase the efficiency of CRG execution.
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Figure 7.27.: Application of CRG operational semantics
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Figure 7.28.: Application of CRG operational semantics
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Example 7.31:
Fig. 7.28 illustrates the execution of the CRG already taken as example in Fig. 7.11 (cf. Sec-
tion 7.3.1.5). The CRG requests that each execution of A is followed by an execution of B
without subsequent execution of C. The execution and marking rules applied in each iteration
are given in Fig. 7.28. For example, for MarkStructure ms1, ER1 and MR1 are applied to
ExMark m1 when e1 is observed. After aggregation of the resulting ExMarks, we receive two
MarkStructures ms1 and ms2 each consisting of a single ExMark.

After processing e2, the compliance state is represented by ms1 and ms3. While ms1 is still
activatable and, thus, is not associated with an activation of the CRG, ms3 is Activated but
not yet satisfied as it does not have a satisfied ConsExMark (cf. Def. 7.5). If the process
execution would stop after e2, the end marking rule MR9 would be applied to ms3, which would
result in a violated MarkStructure.

In ms8, the ConsExMark of m1 is violated. This reflects that a B with subsequent C was
observed. However, ms8 is still violable (i.e., can still become satisfied) as it is associated
with at least one violable ConsExMark (e.g., m3).

After processing e9, the compliance state is reflected by activatable ms1, Activated and
violable ms9, and activatable ms10. Thus, the CRG is activated over the processed execution
trace. Immediate termination of the trace would result in ms9 being rendered satisfied (as
the ConsExMark of m3 would become satisfied).

As these examples show, CRG execution can be applied to check compliance of an execution
trace with imposed CRGs. The compliance state is reflected in the MarkStructures obtained
from processing observed events at each stage. Using the compliance notions introduced in Sec-
tion 7.2.2, it becomes possible to evaluate the compliance state of the individual MarkStructures
and to aggregate these to an overall compliance state. This constitutes the fundament for compli-
ance reports. By analyzing the violated and violable MarkStructures, the process supervisor
can gain further insights into the compliance situation without having to analyze the execution
trace, for example, during process execution. In Chapter 8, we will show how CRG execution
can be applied to realize a compliance checking framework that addresses the complete process
lifecycle.

7.4.2. Interpretation of MarkStructures

Based on the semantics of CRG nodes and their execution states, a MarkStructure can be
interpreted to derive an intelligible and meaningful compliance diagnoses.

Violated MarkStructures As described by Def. 7.5, a violated MarkStructure contains solely
violated ConsExMarks. This attests that all attempts to find a match for the consequence
pattern of the respective CRG have failed. In that case, the violated ConsExMarks can pro-
vide valuable information for compliance diagnoses enabling to find the cause of the violation.
For each violated ConsExMark, ConsOcc nodes marked with NotExecuted and ConsAbs nodes
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marked with Completed constitute a cause for not satisfying the CRG’s consequence as shown
in Example 7.32.

Example 7.32 (Interpretation of violated MarkStructures):
Consider the violated MarkStructure ms1 consisting of two ExMarks depicted in Fig. 7.29.
The ConsExMark of m2, indicates that no execution of A without a subsequent execution of
B could be detected before execution of C14. The ConsExMark of m1, in turn, reveals that at
least one execution of A followed by an execution of B before the execution of C was detected.
From this, we can conclude that this violation can be resolved by either adding an A without
subsequent B before C (to satisfy the ConsExMark of m2) or removing B to ensure that no B is
executed between A and C (to satisfy the ConsExMark of m1).

ms1

m1

B

r2

r3

CA

r1 m2

B

r2

r3

CA

r1

AnteOcc node

AnteAbs node

ConsOcc node

ConsAbs node

ORDER edge DIFF edge

NotExecutedExecutedStarted

Figure 7.29.: Interpretation of violated MarkStructures

Violable MarkStructures As shown in our paper [LRMKD11], MarkStructures can be used
for compliance diagnosis even before a violation becomes manifest. In particular, violable
MarkStructures can be exploited to derive measures required to render them satisfied. This
is particularly interesting for compliance monitoring. Each violable ConsExMark can become
satisfied depending on the future events. Thus, for a violable ConsExMark, each ConsOcc
node not yet marked with Completed represents still pending events. In turn, each ConsAbs
node that is not marked with NotExecuted and does not have not yet Completed ConsOcc
predecessors represents an active absence constraint of the corresponding ConsExMark. The
absence of the corresponding events is necessary in order for this ConsExMark to constitute
an occurrence of the CRG’s consequence pattern. Based on these considerations, we are able
to derive event sequences for each violable ConsExMark of a violable MarkStructure that
lead to satisfaction of the ConsExMark and, thus, of the complete MarkStructure15. This is
illustrated in Example 7.33.

14Note that a MarkStructure can be associated with multiple rule activations that belong to the same equivalence
class. We will show in Section 7.4.3, how to enable per activation diagnoses.

15This can be done by parsing the ConsExMark. Then, the required event sequence can be derived based on the
ordering of CRG nodes.

154



7.4. APPLICATION OF COMPLIANCE RULE GRAPH OPERATIONALIZATION

Example 7.33 (Interpretation of violable MarkStructures):
Consider the violable MarkStructure ms1 from Fig. 7.30. As ms1 is not pending according to
Def. 7.5, no further events are necessary in order for it to become satisfied. This is reflected
in ExMark m1 of ms1. If no D is observed until the end of the trace, the ConsExMark of m3
will become satisfied making ms1 satisfied as a whole. However, we can also derive event
sequences to render ms1 satisfied from m2 and m3.

MarkStructure ms2 from Fig. 7.30 is also violable. However, as it is pending, certain events
are still required for its satisfaction. Which events in particular can be derived from its violable
ConsExMarks. For example, in order to render the ConsExMark of m2 satisfied, we need an
execution of C without a subsequent execution of D while an execution B followed by C and
not followed by D is required to satisfy the ConsExMark of m1.
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Figure 7.30.: Interpretation of violable MarkStructures

Even more detailed diagnoses at the granularity of rule activations can be provided when using
event-specific MarkStructures as shown in Section 7.4.3.

7.4.3. Regulating compliance checking granularity

The marking rules introduced so far yield event-independent MarkStructures as Completed
nodes are not assigned any events (cf. Section 7.2.1). Thus, the event pattern captured by a
MarkStructure can actually occur multiple times in an execution trace as matching events can
be caused by multiple activities. From such MarkStructures obtained from executing a CRG
over an execution trace, we can deduce whether the trace contains noncompliance. However,
since the MarkStructures do not refer to particular activities, they do not reveal the process
nodes that are involved in, for example, a compliance violation (cf. Example 7.34). As discussed
in Section 7.1.1, fine-grained reports become necessary in order to assist process designers and
supervisors to localize and deal with compliance violations.
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Example 7.34 (Event-independent MarkStructures):
Recall Example 7.30. Then, the CRG depicted in Fig. 7.27 is activated twice the execution
trace. The two activations are both represented by MarkStructure ms4 in Fig. 7.27. While it is
possible to tell that the CRG is satisfied over the trace, we cannot tell from ms4 which process
nodes contribute to the activations. This is because the two activations can both be assigned
the equivalence class captured by ms4 (cf. Section 7.2.1).

Approach MarkStructures can not only be allocated in an event-independent manner but they
can also be associated with specific observed events as illustrated by Example 7.35. In event-
specific MarkStructures, Completed nodes are assigned events that are associated with the
node’s execution. As a result, MarkStructures represent patterns formed by specific observed
events instead of general observed event patterns. In this case, equivalence classes of event
sequences w.r.t. the CRG are unfolded into their particular members.
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Figure 7.31.: MarkStructures with event assignments

Example 7.35 (Event-specific MarkStructures):
Fig. 7.31 shows the MarkStructures from Example 7.34 obtained when CRG nodes are assigned
not only execution states but also events when being marked with Completed. From ms4 and
ms′4, we can tell the process nodes involved in the rule activations. In case of violations, the
source of the violation can be pinpointed, for example, directly in the process model.

In order to obtain event-specific MarkStructures from CRG execution, the marking rules have
to adapted to assign not only node states but also events to CRG nodes. This only becomes
necessary when a node becomes Completed. Since this is a rather minor modification, we abstain
from providing all modified marking rules. Instead, marking rule MR10, the modification of
MR5, serves as example. Marking rule MR10 is applied when executing AnteOcc nodes over
end events. The modified part is shown in boldface. In particular, an AnteOcc node n will be
assigned an ex event (that is obtained through composing the start event associated with n
and the end event being processed) if n is marked with Completed.

Marking Rule MR10 (Event-specific marking of AnteOcc nodes over end events):
Let R = (A,C) be a CRG. Then,

markAnteOccEndR : M∗R × P(NR)× EEnd →M∗R
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is a function assigning an ExMark m′ of R to an original ExMark m = ((nsA, nlA), (nsC , nlC)) of
R , a set Q of AnteOcc nodes to be executed, and an end event e with

markAnteOccEndR(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) = AnteOcc:

(ns′A(n), nl′A(n)) :=


(Completed, {actExEvent(nlA(n), e)}) if n ∈ Q
(NotExecuted, ∅) if n /∈ Q ∧ expectedEndR(nlA, n, e) = true
(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NR with ntR(n) = AnteAbs:

(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) ∈ {ConsOcc, ConsAbs}:

(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).

The application of marking rules modified like MR10 results in event-specific MarkStructures.
The latter enable insights into particular activations of a CRG and their individual compliance
state as illustrated by Example 7.35. This, in turn, enables pinpointing the source of compliance
violations, for example, for showing them in process models, and facilitates identifying activation-
specific remedies.

7.5. Optimization strategies

As shown in the examples in Section 7.4, each execution iteration processing a start event
may result in a growth of MarkStructures and ConsExMarks of MarkStructures due to non-
deterministic start of AnteOcc and ConsOcc nodes. For each obtained MarkStructure, the
execution and marking rules will be applied in the next execution iteration. The growth in
an execution iteration is driven by the amount of AnteOcc and ConsOcc nodes executable over
a start event. One strategy to more efficient CRG execution is to reduce the amount of re-
sulting MarkStructures and ConsExMarks of MarkStructures. For this purpose, we introduce
strategies to identify MarkStructures and ConsExMarks in Section 7.5.1 that are irrelevant to
the further CRG execution and, hence, can be purged without falsifying the compliance state
(w.r.t. the notions introduced in Def. 7.5). Purging these structures spares the effort of further
processing them in later execution iterations. This can be considered an a posteriori optimiza-
tion strategy as already created structures are discarded. In contrast to this, another strategy
aims at avoiding unnecessary MarkStructures and ConsExMarks during CRG execution in the
first place (a priori strategy). As unnecessary unfolding can be caused by starting AnteOcc and
ConsOcc nodes over activity executions that do not lead to a match, this can be prevented by
processing atomic execution events representing a complete activity execution instead of sepa-
rate start and end events. Execution and marking rules for executing CRGs over ex events are
discussed in Section 7.5.2. Finally, we discuss how the creation of unnecessary MarkStructures
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and ConsExMarks can be avoided by making use of a priori information on the process in Sec-
tion 7.5.3.

7.5.1. Purging MarkStructures

In the following, we discuss strategies to purge MarkStructures and ConsExMarks that are not
necessary for assessing the compliance with the imposed CRG. Section 7.5.1.1 introduces purging
strategies based on the execution state of MarkStructures and ConsExMarks. Section 7.5.1.2
introduces strategies for reducing the ConsExMarks of a MarkStructure based on the notion of
domination.

7.5.1.1. Execution state based purging

CRG execution automatically explores different alternatives to form the patterns specified in the
CRG using observed events. In particular, each MarkStructure represents a matching attempt
for the CRG’s antecedent pattern and multiple matching attempts for the CRG’s consequence
pattern. At some point in the CRG execution, some of these attempts may have proved to
not lead to an activated MarkStructure or to a satisfied ConsExMark. Even though these
MarkStructures/ ConsExMarks might still be executable over future events, further execution of
them will not affect the compliance state. Thus, a strategy to reduce execution cost is to spare
the execution of such structures. In this section, we discuss how this can be done by exploiting
the compliance notions.

Considerations for ConsExMarks Based on the compliance notion for MarkStructures (cf.
Def. 7.5), it is obvious that a violated ConsExMark16 will not contribute to rendering the asso-
ciated MarkStructure satisfied. For that reason, violated ConsExMarks that are non-final
can be spared from further execution. This can be done by rendering such ConsExMarks final
by applying a designated marking rule that assigns NotExecuted to all consequence nodes that
are not yet Completed17 as shown in Example 7.36. This corresponds to pruning the search tree
for the corresponding ConsExMarks.

Example 7.36 (Purging violated ConsExMarks):
Fig. 7.32 depicts MarkStructure ms1 consisting of a violated and a violable ConsExMark.
The violated ConsExMark ofm2 contains a ConsOcc node marked as NotExecuted (cf. Def. 7.4)
and can be a result of an expected but not matching end event as illustrated in Fig. 7.20. As the
ConsExMark ofm2 cannot become violable or satisfied in the further course of the execution,
it cannot contribute to satisfying the CRG. Therefore, it can be discarded, for example, by

16Recall that a ConsExMark is violated if it contains at least a NotExecuted ConsOcc node or a Completed
ConsAbs node (cf. Def. 7.4). A violated ConsExMark cannot be rendered satisfied or violable through
observed events.

17In this context, it is notable that we can further refine execution state NotExecuted in order to distinguish
between nodes not executed in the course of CRG execution and nodes that have been discarded due to
other reasons. However, as this is not relevant to the compliance criteria, we abstain from further refining
NotExecuted.
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removing it from the MarkStructure or rendering it final (as illustrated in Fig. 7.32) to spare
unnecessary execution operations in future iterations.
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Figure 7.32.: Purging a violated ConsExMark within a MarkStructure

Considerations for MarkStructures As deactivated MarkStructures do not represent any
rule activations, they do not affect the compliance state. Once a MarkStructure becomes
deactivated (i.e., contains an AnteOcc node marked as NotExecuted or an AnteAbs node
marked as Completed), it can no longer become activated. For this reason, deactivated
MarkStructures that are non-final can be excluded from further execution. This can be done
by marking all not yet completed nodes of the MarkStructure as NotExecuted as shown in
Example 7.37.

Example 7.37 (Purging MarkStructures):
Fig. 7.33 depicts deactivated MarkStructure ms1. AnteOcc node r1 marked as NotExecuted
can result from an expected but not matching end event as shown in Fig. 7.25. Then, ms1
can be purged by assigning execution state NotExecuted to all not yet completed nodes to
render it final. Note that the not yet completed nodes of ms1 cannot become executable due
to the necessary conditions (e.g., all AnteOcc predecessors must be Completed). However, a
deactivated MarkStructure may still contain executable nodes (e.g., image that the CRG of
ms1 contains a further AnteOcc node that has no predecessors).

As shown in Example 7.37, a way to exclude a deactivated MarkStructure from further
execution is just to render it final. This can be done by applying a designated pruning rule.

7.5.1.2. Domination among ConsExMarks

As shown in Section 7.5.1.1, violated ConsExMarks and deactivated MarkStructures can be
excluded from further CRG execution to reduce computational cost. In addition to that, we can
provide purging strategies for activated and activatable MarkStructures.
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Figure 7.33.: Purging a deactivated MarkStructure

A MarkStructure can be associated with multiple ConsExMarks each of which corresponds to an
attempt to spot the CRG’s consequence pattern in the execution trace. Due to nondeterministic
start of ConsOcc nodes, a MarkStructure may contain both parent and child ConsExMarks (or
ExMarks) at the same time. As a result, a MarkStructure may contain ConsExMarks, whose
further execution can provide additional details on the compliance situation but is not necessary
for assessing the compliance state of the MarkStructure. Such a case is described in Exam-
ple 7.38. The basic idea is to purge ConsExMarks that are dominated by other ConsExMarks and,
hence, can be discarded without falsifying the compliance state of the overall MarkStructure
w.r.t. the compliance notions from Def. 7.5.

Example 7.38 (Domination among violable ConsExMarks):
Fig. 7.34 depicts the execution of MarkStructurems1 over a few events. Due to nondeterministic
start of ConsOcc node r2, the resulting MarkStructure ms2 contains ConsExMarks with r2 being
in different execution states.

In ms3, m1 is dominated by m2 as the latter is closer to becoming satisfied. In particular, if
further execution of m1 leads to a satisfied ConsExMark, m2 will also become satisfied as
for satisfying m2 only the execution of C is required. Hence, being dominated by m2, m1 can
be purged from ms3 as it is not necessary to correctly assess the compliance state. In contrast
to ms3, the purged MarkStructure ms′3 is not executable over e3.

Clearly, a satisfied ConsExMark dominates not satisfied ConsExMarks. Consequently, once
a MarkStructure is associated with at least one satisfied ConsExMarks, its not yet satisfied
ConsExMarks can be discarded. In addition, it is obvious that violated ConsExMarks are dom-
inated by non-violated ConsExMarks. These two cases are trivial and can be easily integrated
into CRG execution and, therefore, will not be discussed in the following. Instead, we focus on
domination among violable ConsExMarks as illustrated by Example 7.38.
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Figure 7.34.: Domination among violable ConsExMarks

How to identify dominating ConsExMarks among violable ConsExMarks? Intuitively, a
violable ConsExMark cm′ is dominated by another violable ConsExMark cm if cm consti-
tutes a descendant ConsExMark of cm′ that is “closer” to becoming satisfied. With respect
to execution traces, this means that every trace (suffix) transforming cm′ into a satisfied
ConsExMark also transforms cm into a satisfied ConsExMark. This intuition formalized in
Def. 7.11. It is based on three conditions ensuring the domination of cm over cm′:

i) The ConsOcc nodes of cm that are not yet marked as Completed constitute a subset of
ConsOcc nodes not yet marked as Completed of cm′. In other words, cm requires less
activity executions to occur in order for all ConsOcc nodes to be marked as Completed
than cm′.

ii) This condition demands that cm does not contain any Started node that is not also

161



CHAPTER 7. OPERATIONAL SEMANTICS OF COMPLIANCE RULE GRAPHS

Started over the same start events in cm′. This ensures that cm cannot be invalidated
(i.e., become violated) by an end event that would not also invalidate cm′. In addition,
together with condition i), condition ii) ensures that cm is a descendant ConsExMark of
cm′.

iii) A ConsExMark can be invalidated (i.e., become violated) not only through not matching
end events but also through activity executions matching with ConsAbs nodes (i.e., a
ConsAbs node marked as Completed). Condition iii), therefore, demands that cm cannot
be invalidated by the occurrence of any activity execution that would not also invalidate
cm′.

While condition i) demands that cm requires the execution of less activity executions than cm′,
the conditions ii) and iii) together ensure that cm cannot be invalidated by events that would
not also invalidate cm′. Altogether, this ensures that cm will be satisfied over any trace suffix
that also satisfies cm′.

Definition 7.11 (Domination among ConsExMarks)
Let R be a CRG and let ms = ((nsA, nlA), {(ns1

C , nl
1
C), . . . , (nskC , nlkC)}) ∈ MS∗R be a

MarkStructure of R obtained from execution of R over a (partial) trace. For two violable
ConsExMarks cm = (nscm, nlcm) and cm′ = (nscm′ , nlcm′) of ms, we say

cm dominates cm′ ⇔ conditions i) - iii) are satisfied with:

i) {n ∈ NC | ntR(n) = ConsOcc ∧ nscm(n) 6= Completed} ⊂ {n ∈ NC | ntR(n) = ConsOcc ∧
nscm′(n) 6= Completed},

ii) ∀n ∈ NR with nscm(n) = Started holds: (nscm(n), nlcm(n)) = (nscm′(n), nlcm′(n)), and

iii) ¬(∃n ∈ NR :
(ntR(n) = ConsOcc ∧ nscm(n) = Completed ∧ nscm′(n) 6= Completed ∧
(∃n′ ∈ NR : ntR(n′) = ConsAbs ∧ nscm(n′) 6= NotExecuted ∧ n′ ∈ succConsAbsR(n)))).

Example 7.39 (Domination among violable ConsExMarks):
Consider MarkStructure ms2 from Fig. 7.34. Then, the ConsExMark of m1 is not dominated by
the ConsExMark ofm2 althoughm2 is a child ConsExMark ofm1. This is because the ConsExMark
of m2 can still become violated through r2. In fact, it is easy to construct an execution trace
satisfying the ConsExMark of m1 but not the ConsExMark of m2.

Further examples are depicted in Fig. 7.35. The ConsExMark of m2 does not dominate the
ConsExMark of m1 due to condition iii). In particular, the ConsExMark of m2 can become
invalided by the next execution of D while this would not invalidate the ConsExMark of m1.
As the same applies to the ConsExMark of m3, m1 is also not dominated by m3. However,
m2 is dominated by m3 and both can be invalidated by D. The ConsExMark of m4 cannot
be invalidated by occurring events. It therefore dominates the ConsExMarks of m1 and m2 as
m4 only requires an execution of E to become satisfied, which is a subset of the activity
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executions required to render the other ConsExMarks satisfied. However, the ConsExMark of
m4 does not dominate the ConsExMark of m3 as condition i) does not apply. The ConsExMark of
m5 neither dominatesm1 norm2 norm3 as it can be invalidated by an end event that would not
invalidate the other ConsExMarks. Thus, condition ii) does not apply. Finally, the ConsExMark
of m6 dominates all other ConsExMarks shown in Fig. 7.35.
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Figure 7.35.: MarkStructures of a CRG associated with different ConsExMarks

Based on the notion of domination among violable ConsExMarks, it becomes possible to
purge violable ConsExMarks for MarkStructures obtained from CRG execution. In partic-
ular, only those ConsExMarks are retained that are not dominated by another ConsExMark of
the MarkStructure.

Definition 7.12 (Purging ConsExMarks based on domination)
Let R be a CRG and let further ms = ((nsA, nlA), CMms) ∈ MS∗R with CMms =
{(ns1

C , nl
1
C), . . . , (nskC , nlkC)} be a MarkStructure of R obtained from execution of R over a

trace.

Then, purge(ms) = ms′ := ((nsA, nlA), CMms′) where
CMms′ := {cm ∈ CMms | ¬(∃ cm′ ∈ CMms : cm′ dominates cm)}.

For applying Def. 7.12, pair-wise checking for domination among the ConsExMarks becomes
necessary. Continuously purging ConsExMarks in the course of CRG execution confines the
unfolding of paths caused by nondeterministic start of ConsOcc nodes.
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Figure 7.36.: Node state transitions when processing ex events

7.5.2. Execution of compliance rule graphs over ex events

So far, we introduced execution and marking rules for dealing with start and end events. The
granularity of start and end events particularly becomes necessary when CRGs are executed
over traces containing overlapping activity executions. The latter can occur, for example, due to
parallel branches in the process model or when processes are executed concurrently, for example,
in distributed scenarios.

In purely sequential scenarios (e.g., execution of a process model that is free of parallel branches),
the granularity of start and end events is not necessary in order to reflect the ordering of
activity executions. For such scenarios, the pair of start and corresponding end event can be
subsumed by an atomic ex event (cf. Section 5.2.3). Processing start and end as an atomic
unit has the advantage of preventing unnecessary start of AnteOcc and ConsOcc nodes over
activity executions that finally turn out as not matching due to not matching end conditions.
In addition, ConsOcc nodes without direct ConsAbs successors can be executed deterministically
over a matching ex event based on the considerations on domination among ConsExMarks. As
a result, processing ex events instead of separate start and end events can reduce the amount
of MarkStructures and ConsExMarks produced in execution iterations.

The execution and marking rules to process ex events can be defined in similar manner as for
start and end events and are given in Appendix A.2. Fig. 7.36 depicts the execution state
transitions of CRG nodes enriched with the transitions caused by ex events based on the above
considerations.
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7.5.3. Exploiting a priori information

By exploiting a priori information about the process/the execution trace, unnecessary nonde-
terministic execution and, thus, unnecessary exploration can be avoided a priori.

Absence information Information on the absence of certain activity executions that are as-
sociated with nodes of an imposed CRG can be exploited to prevent unnecessary execution
operations. If we are aware that no activity executions of an execution trace will match a par-
ticular AnteOcc node of a CRG R, we can spare executing R as R cannot become activated
over the execution trace. Similarly, if we know that a ConsOcc node will not match any activity
execution contained in the execution trace, executing the corresponding consequence CRG will
not lead to a satisfied ConsExMark. Thus, the corresponding consequence CRG can be ex-
cluded from execution. For absence nodes, we can exploit a priori information on the absence of
activity executions to “refine“ an imposed CRG. If we, for example, know that no activity exe-
cution matching an AnteAbs or a ConsAbs node is present in the execution trace, the respective
node can be virtually removed from the CRG.

Occurrence information In a similar manner, a priori information on the frequency of an
activity execution of a certain type can also be exploited to achieve more efficient CRG execution.
Being aware that, for example, four activity executions of a particular type are contained in
an execution trace, it becomes possible to tell during CRG execution that no such activity
executions will occur after all four activity executions have already been observed. In addition,
when executing an AnteOcc or a ConsOcc node over the fourth activity execution of that type,
the corresponding nodes can be executed deterministically as we know that no further such
activity execution will be observed in the remaining execution trace.

7.6. Correctness of compliance rule graph operationalization

In this chapter, we introduced MarkStructures to capture compliance states w.r.t. an imposed
CRG. Moreover, we defined CRG operational semantics in the form of execution and marking
rules. They allow for altering the MarkStructures in accordance to observed events such that
the compliance state can be incrementally updated. Altogether, the compliance state of a CRG
in an execution trace is reflected by a set of MarkStructures for which we provided notions for
their evaluation. In Section 7.6.1, we argue why CRG operationalization as introduced in this
chapter correctly implements the formal semantics of CRGs. Recall that we focused on CRGs
instead of CRG composites so far. That is why we describe how the execution and marking
rules can be adopted for operationalization of CRG composites in Section 7.6.2.

7.6.1. Operationalization of compliance rule graphs

Recall RFs and their interpretation over execution traces that capture the formal semantics of
CRGs (and CRG composites) described in Section 6.3. For correctness, it has to be ensured
that this semantics is reflected in the CRG operationalization. In particular, the execution of
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the CRG over the trace must reveal that the CRG is satisfied over the trace if and only if the
formal interpretation of the RF of the CRG over an execution trace will reveal the same.

According to the formal semantics of CRGs, an execution trace violates a CRG iff there is
at least one activation of the CRG that is not satisfied (i.e., if there is an occurrence of the
antecedent pattern without the associated consequence pattern in the trace). In that case, the
interpretation of the RF based on that trace would not yield a model for the RF. If there is
no activation of a CRG in a trace at all, the RF will be satisfied over the trace due to its
∀(φ→ ψ) rule structure (cf. Def. 6.7). To implement this, it is, on the one hand, necessary that
CRG execution is able to reveal if a compliance violation is contained in the trace. This means
that the set of MarkStructures obtained from executing the CRG over the trace must contain
a violated MarkStructure in that case. On the other hand, if no violation is contained, no
violated MarkStructures must be yielded through CRG execution. Altogether, the structure
of a RF can be summarized as shown below where the variables are yielded through CRG nodes
of associated types and the conditions on these variables are yielded through relations between
nodes and the node profiles:

∀AOvars((CondsAOvars ∧ ¬(∃AAvars(CondsAAvars)))
→∃COvars(CondsCOvars ∧ ¬(∃CAvars(CondsCAvars))))

The domain of variables for the interpretation of a RF is constituted by the activity executions
contained in an execution trace. For these, the formal interpretation derives actual relations
and properties that are necessary to evaluate the truth of a RF. It is obvious that based on
the activity executions contained in the trace, a search procedure can be implemented following
the formal interpretation that checks the truth of a RF by finding all combinations of activity
executions matching the antecedent pattern and checking the rule consequence for each such
combination.

Instead of trying each combination of activity executions (as would be the case for a naive
implementation of the formal interpretation), the CRG operationalization exploits the order-
ing relation of nodes to perform a search for activity executions matching the antecedent and
consequence patterns in one pass of the execution trace. This is integrated into the procedure
through start preconditions on predecessor nodes of certain types (e.g., a node can only be
started if all AnteOcc predecessors are completed). Thus, less combinations have to be checked.
diff relations are enforced by ensuring that no pair of nodes is started over the same activity
execution in a trace.

Due to nondeterministic start of AnteOcc nodes, each occurrence of the antecedent pattern
can be detected. To detect activity executions matching AnteAbs nodes that may prevent a
rule activation, each potentially matching activity execution is checked. Thus, each occurrence
of the antecedent pattern (corresponding to AnteOcc nodes and AnteOcc variables of the RF)
will ultimately be reflected by an activated MarkStructure of the compliance state. For each
occurrence of the antecedent pattern, it is also searched for a corresponding consequence pattern
during CRG execution over the trace. Nondeterministic start of ConsOcc nodes ensures that
activity executions matching the pattern specified by ConsOcc nodes will be found if they are
contained in the trace. As each activity execution potentially matching a ConsAbs node is
checked, it is ensured that the occurrence of a matching activity execution will detected. In
order to identify occurrences of the antecedent and the consequence pattern in one pass over the
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execution trace, the execution of ConsOcc and ConsAbs nodes follows the order relations. Thus,
if an occurrence of the consequence pattern for a particular rule activation is contained in the
trace, the corresponding MarkStructure will be associated with a satisfied ConsExMark (i.e.,
the MarkStructure will be satisfied). Otherwise, the MarkStructure will become violated
by the end of CRG execution.

Altogether, CRG operationalization constitutes an implementation of the CRG formal semantics
in one pass over the execution trace by exploiting both the ordering of events contained in the
trace and the ordering of CRG nodes. To realize that, MarkStructures are used to store the
information found in each step. Thus, the MarkStructures obtained from CRG execution can
be used to derive meaningful information on the compliance situation, for example, in case of
compliance violations.

7.6.2. Operationalization of compliance rule graph composites

So far, we focused on the operationalization of CRGs rather than CRG composites (i.e.,
compliance rules with multiple consequence patterns) for intelligibility reasons. Nevertheless,
MarkStructures and the CRG operational semantics can be easily adapted for dealing with
CRG composites. For that purpose, MarkStructures can be extended such that they can be
associated with ConsExMarks of different consequence patterns as illustrated by Fig. 7.37.

am

cmm1

cmm2

cmmk

…

cm11

cm12

…

cm1n

…

Figure 7.37.: Structure of a MarkStructure associated with ConsExMarks of multiple rule
consequences

Due to the disjunctive semantics of the multiple consequence patterns of a CRG composite (i.e.,
one of them has to apply in order to satisfy the compliance rule), the different consequences can
be executed separately using the introduced execution and marking rules. Then, the criteria to
evaluate MarkStructures from Def. 7.5 can be adopted for dealing with ConsExMarks referring
to different consequence CRGs. An activated MarkStructure is considered satisfied, if it is
associated with a satisfied ConsExMark.
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7.7. Discussion

In this chapter, we described the operationalization of CRGs as a means for compliance verifica-
tion. It enables to check compliance of an execution trace with an imposed CRG in a single pass.
To capture reachable compliance states, we introduced so-called MarkStructures. The latter
utilize execution state markings for CRG nodes, such as Running or Completed, to indicate
behavior relevant to the respective CRG observed during verification. Thus, each compliance
state with respect to a CRG can be represented by a set of MarkStructures. The execution
and marking rules described in Section 7.3 enable to update the compliance state when a new
event is processed. They particularly ensure that each activation of the CRG contained in the
trace explored is represented by an activated MarkStructure. Based on the semantics of CRG
nodes and of node execution states, we provided notions to formally assess the MarkStructures
in Section 7.2.2. Being represented by MarkStructures, a reached compliance state is consti-
tuted by the individual states of its MarkStructures. Hence, if the detected compliance state
reveals a violated MarkStructure, the trace explored enables noncompliance.

As motivated in Section 7.1.1, key to the practical application of a compliance checking frame-
work is its ability to provide explanations for compliance violations. By directly exploiting the
structure of CRGs, MarkStructures allow for representing compliance states in an interpretable
manner. This, in turn, enables the derivation of not only explanations for compliance violations
but also valuable information that can be utilized to provide support to comply. As shown in
Section 7.4.2, we can, for example, easily derive sequences of activities that become necessary
in order to satisfy a compliance rule in an effective compliance state.

Using the approach proposed in this chapter, compliance checks can be conducted at different
levels of granularity as described in Section 7.4.3. When being used in an event-independent
manner, MarkStructures constitute an equivalence class with respect to the corresponding CRG
for different event sequences contained in a trace. Thus, multiple activations of a CRG contained
in a trace will be associated with the same MarkStructure when they are in the same state of
enforcement. This, for example, suffices to provide compliance reports on the overall enforcement
of compliance rules. Whenever awareness of the particular situations in which violations occur
is necessary in order to adequately deal with violations, event-specific MarkStructures can be
employed to encode compliance states. They enable the precise identification of all activations
of a CRG within an execution trace. This together with the individual compliance state of
these rule activations provide the basis for detailed compliance reports. The latter, in turn,
enable process designers and supervisors to locate violations, evaluate their extent, and decide
on adequate remedy strategies.

We further introduced different ideas to optimize the CRG execution with respect to efficiency
in Section 7.5. These aim at purging MarkStructures, thus, pruning the search tree unfolded
during CRG execution. At design time, the proposed approach can be applied to explore a
process model and to detect which compliance states with respect to imposed CRGs a pro-
cess model is able to yield. As the CRG operationalization is tailored towards incremental
application, process instances can be monitored by updating the effective compliance state for
each new event observed during process execution. In Chapter 8, we will describe design and
runtime verification based on the proposed approach in more detail. In the following, we first
discuss alternative approaches for verifying compliance in Section 7.7.1. Section 7.7.2 addresses
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the extension of CRG operationalization and further issues around CRG operationalization are
addressed in Section 7.7.3.

7.7.1. Related work

In the following, we describe different approaches in literature that can be adopted to verify
compliance with CRGs and elaborate on why the operationalization of CRGs as introduced in
this chapter is more suitable.

Automaton-based approaches In literature, we often come across approaches using automa-
tons for compliance checking. This goes back to research on enforcing transactional dependencies
in workflows [Kle91, ASSR93, Sin96, Sin97]. As rules to be checked are typically not modeled
by means of automatons, transformations become necessary. In case of compliance monitoring,
the automaton has to reach an accepting state, if the compliance rule to be checked is satis-
fied [MMWA11, PA06, Pes08, SFV+12]. Such an automaton can be used to monitor running
processes based on the observed events. By analyzing whether an accepting state is still reach-
able from the current state, it can be determined whether the imposed rule can still be complied
with. In case of process model verification, an automaton representing the negated property
can be used to detect noncompliant traces. For example, in explicit LTL model checking, an
automaton is generated from the negated LTL property that can be used to check whether
the model and the automaton enable a common trace [CGP99, BBF+01]. If so, a violation is
detected and a counterexample can be provided.

While CRGs are not directly transformed into an automaton for conducting compliance checks,
we can still draw parallels between automaton-based approaches and the operationalization
of CRGs. As a reached compliance state w.r.t. a CRG can be represented by a set of
MarkStructures, for a CRG R the state space is roughly given by P(MS∗R) 18. The transi-
tions between the states are defined by the execution and marking rules. In our approach, the
states are not black boxes but provide meaningful information as they refer to the structure
of the CRG. Thus, when monitoring compliance at process runtime, not only violations can
be detected but also measures to proactively satisfy rule activations can be derived as shown
in [LRMKD11]. In particular, it can be easily derived for each MarkStructure whether it can
still become satisfied without additional analysis. For compliance checks at design time, the
CRG operational semantics can be applied in different ways to detect all violations contained in
a process model as we will show in Chapter 8. Since no transformation into other representa-
tions become necessary with our approach, diagnoses can be derived and provided based on the
specific modeled compliance rule. In addition, the flexibility of checking compliance at different
granularity levels is a further benefit of our approach.

18This approximation holds for event-independent execution over ex events. It should be noted that the actual
state space is smaller than that as not all MarkStructures in MS∗R can be generated when executing a CRG
due to execution preconditions and pruning rules.
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Violation patterns In [AW09, AWW09], Awad et al. introduce an approach for querying the
process model for patterns of compliance violations (referred to as anti-patterns). Motivated by
the cumbersome transformation of the counterexample provided by a model checker back into
a representation that can be utilized to visualize the detected violation, Awad et al. decided
to base their visualization approach on anti-pattern queries. In [AW09], they focus on a set
of rule patterns such as before scope presence or response based on the work of Dwyer and
Corbett [DAC99]. For these rule patterns, they provide violation patterns in the form of BPMN-
Q queries, a language for querying the process structure [Awa07]. If such a structure that leads
to violation of the imposed rule is detected by BPMN-Q, it can be visualized within the process
model. In [AWW09], the rule patterns are extended with data-aware conditions and violation
patterns for them are provided.

At runtime, the (not yet complete) execution trace of a running process instance can be queried
for violation patterns in order to detect noncompliance. For that purpose, existing frameworks
and technologies such as complex event processing (CEP) [JML09] can be applied. In their
work, Giblin et al. [GMP06] developed the REALM rule model (cf. Section 3.3.4). For REALM
patterns, such as “y must occur within time t after x”, they provide transformations into ACT
correlation rules, which can be used for detecting relevant event patterns. Event processing tech-
nologies are further used by numerous compliance monitoring frameworks to detect violations,
e.g., in the COMPAS project [HMZD11, BDL+10] (cf. Section 3.3.3). In addition, commercial
security incident and event monitoring (SIEM) tools exploit event processing to detect patterns
that indicate critical incidents.

To adopt this approach for checking compliance with CRGs at design and runtime, violation
patterns have to be provided for CRGs. Following [ASW09, AWW09, WZM+11, WPDM10,
WPD+11], one option is to provide violation patterns for a particular set of CRGs. However,
this would not suffice to check compliance with arbitrary CRGs. As complex CRGs can be
violated in multiple ways, automatic derivation of all violation patterns of arbitrary CRGs
becomes necessary. This is not required when using CRG operational semantics as violation
patterns are indirectly encoded by violated MarkStructures.

Further approaches In [MMC+11], the event calculus is utilized to formalize ConDec / DE-
CLARE [PA06] compliance rules. In [ACG+08, MPA+10], SCIFF, an extension of logic pro-
gramming, is used to formalize and reason about compliance rules. The operational specifica-
tion of SCIFF is constituted by a proof procedure, which can be used to implement compliance
checks [CMMS07a] (cf. Section 3.3.1). Adopting these approaches for checking CRGs, however,
does not suggest itself as CRG operationalization is tailored towards the graph-based nature of
CRGs and can exploit the latter to enable compliance diagnosis.

Model checkers, such as SPIN, are used for compliance verification of process models by a mul-
titude of approaches in literature, for example [FPR06, FUMK06, FESS06, FESS07, LMX07,
GK07, ADW08, KLRM+10, FS10, KGE11]. In order to enable the verification of CRGs through
a model checker, CRGs first have to be transformed into a representation that can be processed
by the model checker, for example, a temporal logic specification in LTL. In addition, the out-
put of the model checker, in many cases a single counterexample, would have to be transformed
back in order to derive a diagnosis [KLRM+10, AW09]. In addition to that, model checkers
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are only suitable for verifying process models against imposed rules. In order to support com-
pliance monitoring (when the process model is unknown), additional mechanisms for enabling
incremental compliance checks are required.

7.7.2. Extensions of compliance rule graph operational semantics

As described in Section 6.4.2, the CRG language can be extended in order to enable the spec-
ification of more sophisticated compliance rules, for example, containing data or metric time
relations. To support these, the operational semantics will have to be extended accordingly.

Data relations In order to verify such CRGs enriched with data relations as described in
Section 6.4.2, the operational semantics has to be adapted. Generally, a data relation cannot
be evaluated until the nodes related are associated with an activity execution. Consider, for
example, the compliance rule requesting that the settlement of an account has to be approved
beforehand by an authorized personnel, who is not the beneficiary of the settlement. Then, this
compliance rule can be captured by a CRG consisting of an AnteOcc node r1 (for the settlement of
the account) with a predecessor ConsOcc node r2 (for the approval by the authorized personnel)
and a relation between these two nodes ensuring that the agent performing r2 is not associated
with r1. Thus, when observing an approval activity in the trace, it is not yet possible to tell
whether this activity execution will satisfy an activation of the above compliance rule as the
data relation cannot be assessed until the rule becomes activated. Such cases can be dealt with
by adopting nondeterministic node execution as already used in CRG. In that manner, CRG
operational semantics can be extended to deal with data relations. While this is not in the focus
of this thesis, we implemented support for certain data relations in the SeaFlows Toolset, our
proof-of-concept prototype, that will be described in Chapter 10.

Metric time conditions Compliance rules often involve time conditions [MPA+10]. Besides
conditions on the duration of activity executions, deadlines, or other metric time properties
that can be evaluated the same way as data conditions (cf. Section 6.2.1.2), we often encounter
temporal relations in compliance rules involving quantitative time. Consider, for example, a
guideline from the medical domain requesting that after an invasive treatment, it is not only
required that a aftercare for the patient takes place but the aftercare should also take place
within one day after the treatment to ensure proper care. While qualitative temporal relations
(such as predecessor and successor relations) are an integral part of CRGs, quantitative time is
not yet dealt with. Frequent time patterns in process-aware information systems are collected
in [LWR09, LWR10].

As mentioned in Section 6.2.1.2, dealing with time conditions necessitates an extension of the
logical model, particularly of the notion of execution traces, events, and activity executions.
These have to be extended by a notion of time (e.g., by introducing timestamps) in order to
enable formal interpretation of time conditions. Then, time relations can be supported by using
timer events. In particular, timer events (e.g., one day after X) can be assigned to CRG nodes
like activity executions, which enables complex time relations. In [LRMKD11], we showed how
this can look like. Time relations may also be introduced in analogy to data relations. To
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evaluate the time relations, we envision a designated time component as, for example, devel-
oped in the ATAPIS project [Lan08, LWR09, LWR10] interacting with the compliance checking
component. Such a time component may not only evaluate the truth of time relations but may
also handle forecasts (for example, for deadlines). As this is beyond the scope of our work, we
leave this to future research.

7.7.3. Further issues

The operational semantics of CRGs is tailored towards dealing with activity executions matching
with CRG nodes. However, as previously mentioned, CRGs may also be used to define rules
on events rather than on activity executions. This enables using CRG on a different level
of granularity. The execution and marking rules for ex events described in Section 7.5.2 (cf.
Appendix A.2) can be directly adopted for dealing with CRGs on events.

For implementation of the CRG operational semantics, it can be useful to store the event as-
signment and the execution state assignment of CRG nodes of MarkStructures in separate
data structures. This enables to merge different event-specific MarkStructures with the same
node execution states that only differ in the event assignments. Generally, we can imagine
sophisticated data structures for the practical implementation of CRG operationalization.
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8
A compliance checking framework based on

compliance rule graphs

In Chapter 6, we introduced the CRG language as a means to capture compliance requirements
imposed on business processes. Based on their formal semantics, we provided execution and
marking rules for operationalizing CRGs in Chapter 7. They enable the incremental verification
of execution traces against CRGs. This provides the means for exploring process models and
for monitoring running process instances with respect to compliance. Key to this approach is
the exploitation of the graph structure of CRGs for representing compliance states in a trans-
parent and interpretable manner. Thus, it becomes possible to derive not only explanations for
compliance violations from detected compliance states but also valuable information that can
be utilized to provide support to comply.

As described in Chapter 2, a comprehensive compliance checking framework is supposed to
support the complete process lifecycle by providing adequate mechanisms to verify and foster
compliance. In particular, the framework has to support compliance checks of the process model
at process design and compliance monitoring of running process instances at runtime. With the
CRG language and its operationalization introduced so far, we have provided the fundament for
such a compliance checking framework. In this chapter, we show how the latter can be realized
based on the CRG approach. In Section 8.1, we recall the requirements on comprehensive
compliance checking discussed in Chapter 2 and describe the basics of the SeaFlows compliance
checking framework. Section 8.2 elaborates on the application of the proposed concepts for
checking a general model specification against imposed CRGs. This, in turn, constitutes the
fundament for verifying process models as will be described in Section 8.3. Section 8.4 addresses
compliance monitoring of process instances. Finally, the chapter closes with a discussion of
related work and further issues and applications of the proposed compliance checking framework
in Section 8.5.
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8.1. Introduction

Recall the vision of a comprehensive compliance checking framework covering both process design
and process runtime that we described in Section 2.2.1. In the following, we describe briefly
how the concepts introduced in this thesis can be used to realize design and runtime compliance
checks before going into details.

8.1.1. Process design time

A process model typically enables multiple different process executions. Compliance verification
of process models aims at the detection of process executions violating imposed rules. For
that the process model has to be explored to analyze the behavior encoded by the model with
respect to compliance. The exploration of the process model and the compliance verification
can be conducted in one step as the CRG execution can be applied on-the-fly when simulating
the execution of a process model. To illustrate the application of CRG execution for compliance
verification in an intelligible manner, however, we opted for showing the verification in two
separate steps as shown in Fig. 8.1.

Process model
Process event

graph

Process event

graph annotated

with compliance

states

Compliance

checkingExploration

Figure 8.1.: Overall compliance checking procedure at process design time

The process model to be verified is first explored. We use process event graphs (PEGs) as a
simple and general representation for capturing the behavior enabled by the process model
independently from the process description language employed. A PEG is an automaton-like
structure in which nodes are assigned events of the process execution (cf. Section 5.2.6). In this
chapter, not the exploration of the process model is in focus but the verification of the process
given an equivalent state space representation (in this case an equivalent PEG)1. In the second
step, the equivalent PEG is checked for compliance. This is done by executing the imposed CRGs
over the paths of the PEG. This results in a PEG annotated with reachable compliance states.
How this is accomplished is described in Section 8.2.

Based the compliance states associated with the PEG, we are able to reveal compliance viola-
tions. By using event-specific MarkStructures for representing compliance states, the compli-
ance checking framework can provide diagnoses for the particular activations of a CRG contained
in a process and their individual compliance state. Seizing this information, the involved activ-
ities can be localized directly in the process model making it easier to pinpoint and assess the
extent of compliance violations.

1We will discuss a variety of abstraction strategies that aim at reducing the size of the PEG by abstracting from
irrelevant behavior and structures in Chapter 9. For that we will relax the notion of equivalence between
process model and PEG.
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8.1.2. Process runtime

Compliance monitoring refers to the observation of the execution of process instances for timely
detection of compliance violations. By incrementally executing imposed CRGs over the events
observed during process execution, it becomes possible to be constantly aware of the effective
compliance state with respect to the CRGs. Thus, compliance violations becoming manifest in a
process instance’s execution trace can be spotted in a timely fashion. Technically, the monitoring
procedure is comparable to the execution of CRGs over an (evolving) execution trace. As this
only relies on observed execution events, the approach can be applied to process instances that
are not executed based on a predefined process model (e.g., ad-hoc process instances).

When monitoring process instances that are based on a predefined process model, not only its
past but also its future behavior can be anticipated. As the execution proceeds, only a subset of
the predefined future activities may still be executable in the running process instance. Due to
that, CRGs that are not enforced in the underlying process model may turn out to be enforced
or to be surely violated in the process instance in the meantime. Being aware of that in time
can be valuable as it allows for timely remedies. To support this, the behavior encoded in the
model can be exploited for updating compliance predictions made at the process model level.

Altogether, a crucial basis to the compliance checking framework is the verification of a PEG
against imposed CRGs. Therefore, we first provide fundamentals on checking a PEG for compli-
ance with a CRG in Section 8.2. Based on that, we further show how process model verification
and process instance monitoring can be supported.

8.2. Compliance checking of process event graphs

In this thesis, we use PEGs as a general representation of the possible behavior encoded by a
process model or a process instance. A PEG typically captures multiple execution traces as
paths from the PEG’s start to a PEG end node (cf. Section 5.2.6). Obviously, a CRG is not
enforced in a PEG if the latter contains at least one noncompliant trace. There mere detection of
compliance violations is, however, not sufficient. In order to support the requirements on design
time compliance checks described in Section 8.1.1, we have to provide mechanisms to answer
the following queries for a given PEG:

• Does the PEG (and, hence, the corresponding process model / process instance) enable
noncompliant traces and if so, which traces are affected?

• Will a CRG always be violated or do violations only occur in specific cases2?

• Which activities are involved in a violation and what are the possible causes?

As described in Section 7.1.2, for checking compliance of an execution trace with a CRG, we
execute the CRG over the events of the trace. Each observed event may lead to a change of the
effective compliance state w.r.t. the CRG. Recall that a compliance state is represented by a set
of MarkStructures. Then, the CRG is enforced in the execution trace if the compliance state

2This, for example, facilitates to assess the risk and the extent of a violation.
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reached after completing CRG execution is not associated with any violated MarkStructures.
Following this, we execute the CRG along the paths of the PEG for checking compliance of a PEG
with the CRG. If a compliance state associated with violated MarkStructures is reachable,
the PEG contains noncompliant traces.

Instead of checking the PEG trace by trace for compliance (naive approach), we employ a more
efficient strategy that annotates the nodes of the PEG with reachable compliance states. The
basic idea is illustrated in Fig. 8.2. The CRG to be checked is executed along the paths of the
PEG starting with the start node. In this procedure, each node of the PEG is annotated with
the compliance states (represented by a set of MarkStructures) that are yielded on the paths
to this node (including the node). Assuming the transitions of compliance states as given in
Fig. 8.2, PEG node s7 is, for example, annotated with the compliance states CS1 and CS3. CS1
results from the lower path of the PEG while CS3 is yielded on the upper path (note that CS2
is transformed into CS3 when observing e7).
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CS4
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CS4
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CS4

CS3

CS1 CS2 CS3 CS4
e3 e7 e8

Transitions of compliance states:

Figure 8.2.: A PEG annotated with reachable compliance states

By propagating reachable compliance states through the PEG3, the compliance states associated
with the end nodes of the PEG will reveal whether the CRG to be checked is enforced. Appar-
ently, if an end node is associated with a compliance state consisting of at least one violated
MarkStructure, the CRG is not enforced in the PEG. When being enriched with further infor-
mation (e.g., transitions of compliance states), a thus marked PEG can also serve as basis for
further analyses to localize the detected noncompliance. For example, assuming that CS4 is
associated with violated MarkStructures and attests noncompliance, tracing the noncompli-
ance reveals that < e1, e2, e3, e4, e7, e8, e9 > is the execution trace leading to CS4. The trace
can be replayed in a process model or the process instance for visualization4. In order to gen-
erate explanations for detected violations and to identify the activities involved, the violated
(event-specific) MarkStructures can be analyzed as described in Section 7.4.2.

3Note that is is also possible to build a product automaton of the model and the compliance states in a similar
manner to explicit LTL model checking [CGP99, BBF+01]. This basically corresponds to unfolding the PEG
along the set of reachable compliance states and can result in a large structure. However, this approach can
be advisable when a violation is detected and a detailed model unfolded w.r.t. the reachable compliance states
for further analysis is required.

4In Section 9.3, we will address the visualization of compliance violations.
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In the following, we first describe the general approach propagate reachable compliance states
through a PEG in Section 8.2.1. Based on that, Section 8.2.2 addresses the question how non-
compliance can be detected and further analyses, for example to localize detected compliance
violations, can be conducted.

8.2.1. Propagating compliance states through a PEG

In order to detect noncompliance, we annotate the nodes of a PEG with all compliance states
that can be reached when exploring the process from the start to the respective nodes. Def. 8.1
provides the fundament for that by introducing a function to execute a MarkStructure over
a given start, end, or ex event. It is based on Algorithm 2, Algorithm 3, Algorithm 5, and
MR9 (cf. Sections 7.3.2, 7.3.3, A.2.2, and 7.3.4, respectively). This function will be utilized for
incrementally updating compliance states.

Definition 8.1 (Executing a MarkStructure over an event (execute))
Let R = (A,C) be a CRG and ms ∈MS∗R be a MarkStructure of R. Then,

executeR : MS∗R × E∗ → 2MS∗R

is a function assigning child MarkStructures to a given MarkStructure ms and event e with:

executeR(ms, e) :=


executeStartR(ms, e) if e = (start, . . . , . . . , . . . )
executeEndR(ms, e) if e = (end, . . . , . . . , . . . )
executeAER(ms, e) if e = (ex, . . . , . . . , . . . )
markEndR(ms) if e = EOT.

In the following, we provide marking algorithms for acyclic and cyclic PEGs. It should be noted
that they can be applied using both event-specific (cf. Section 7.4.3) and event-independent
MarkStructures in order to provide diagnoses at the suitable granularity level (cf. Sec-
tion 7.4.3).

8.2.1.1. Dealing with acyclic PEGs

Generally, the behavior specified by an acyclic process model or process instance can be rep-
resented by an acyclic PEG. Listing 6 in Appendix A.3 describes an algorithm for marking an
acyclic PEG with reachable compliance states. Starting with the start node, the compliance
states are propagated through the PEG until the end nodes are reached. A PEG node that has
been processed propagates its reachable compliance states to all its outgoing edges. A not yet
processed PEG node, in turn, will be processed and marked if all its predecessors and, thus, its
incoming edges are marked with respective sets of compliance states. Each PEG node is processed
exactly one time, which makes Algorithm 6 linear in the size of the PEG. Algorithm 6 is applied
in Example 8.1.
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Example 8.1 (Marking an acyclic PEG with reachable compliance states):
Fig. 8.3 depicts CRG R1 and event-independent MarkStructures of it. The latter are employed
to represent compliance states when applying Algorithm 6 to the verification of the PEG shown in
Fig. 8.4. For compactness, we used ex events in the PEG and applied the execution and marking
rules for ex events (cf. Section 7.5.2).

After the application of Algorithm 6, s20, the end node of the PEG, is associated with two different
compliance states, CS1 and CS2 each represented by a set of MarkStructures obtained from
CRG execution. CS1 is associated with the violated MarkStructure ms3 and, therefore,
attests the presence of a compliance violation in the trace(s) that yield CS1. In contrast, CS2
is associated with a satisfied MarkStructure ms5 indicating that R1 becomes activated and
is satisfied in trace(s) that yield CS2. The other MarkStructures associated with CS1 and CS2
are deactivated and, hence, do not affect the compliance state.

When using event-specific MarkStructures, the compliance states will enable detailed insights
into the three activations of R1 in the process.
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Figure 8.3.: CRG R1 and corresponding MarkStructures
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Figure 8.4.: Application of Algorithm 6 using event-independent MarkStructures

8.2.1.2. Dealing with cyclic PEGs

Cyclic PEGs become necessary in order to capture the behavior specified by cyclic process models
and process instances. A new pass through a loop of a cyclic PEG may lead to new compliance
states. To deal with this, a loop of the PEG is passed and reachable compliance states are
propagated until no new compliance states become reachable. This means that a fixed point
with regard to the compliance states of the corresponding CRG is reached.

Fixed point approach Listing 7 in Appendix A.3 constitutes a label correcting algorithm for
marking PEGs. As such, starting with the annotations of the start node of the PEG and its outgoing
edges, the reached compliance states are propagated through the PEG and the annotations of
PEG nodes and edges are corrected until no further changes occur. If new compliance states are
propagated to a PEG node s through one of its incoming edges, the CRG operational semantics
is applied to these compliance states. If new compliance states are yielded by this operation,
they will be propagated to successor nodes. Thus, CRG operational semantics is applied only
to new compliance states. The maximum frequency a PEG node is processed by the algorithm,
therefore, corresponds to the number of compliance states associated with that node.

Note that a fixed point will be reached ultimately, i.e., Algorithm 7 will always terminate,
as the set of events associated with a PEG is finite5 and so is the amount of MarkStructures
of a CRG. Algorithm 7 can be applied using both event-specific as well as event-independent
MarkStructures (cf. Section 7.4.3).

Example 8.2 (Marking a cyclic PEG):
Fig. 8.6 shows the application of Algorithm 7 to verify CRG R2 from Fig. 8.5. The compliance
states associated with PEG nodes obtained from the first / the second pass of the loop edge are

5Note that we assume finite domains for activity parameters (cf. Section 5.2.1).
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shown in red / blue, respectively. We can see that the algorithm halts after the second pass of
the loop as no new compliance states can be propagated to successor nodes of s4 and s6.

Each compliance state associated with the end node of the PEG is associated with an activated
MarkStructure (i.e., ms4, ms6, and ms7). This indicates that R2 becomes activated in all
paths of the PEG. Moreover, we can tell that the process enables both executions satisfying and
executions violating R2 as CS1 reveals the satisfaction while CS2 and CS3 reveal the violation
of R2.
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Figure 8.5.: A CRG and associated MarkStructures

Bounded approach Process models and process instances containing cycles can also be verified
by unrolling the loops up to a certain upper bound. Consequently, the resulting PEG is free of
cycles. This enables verifying the process for a predefined number of loop iterations. This can
be helpful to process designers to test designed process models, particularly when the interesting
number of iterations is known.

8.2.2. Evaluation of marked process event graphs

Based on a PEG annotated with reachable compliance states and their transitions, we will be able
to derive answers to the questions for comprehensive compliance diagnoses mentioned earlier in
Section 8.2. In the following, Section 8.2.2.1 describes how to identify compliance violations
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Figure 8.6.: Application of Algorithm 7 using event-independent MarkStructures

based on annotated PEGs. Section 8.2.2.2 addresses the identification of traces that bear non-
compliance and the explanation of compliance violations.

8.2.2.1. Identification of compliance violations

As intuitively applied in the Examples 8.1 and 8.2, a CRG is not enforced in a PEG if a compliance
state associated with an end node of the PEG reveals at least one violated MarkStructure.
Such violated MarkStructures reflect predicted violations of the process. We will refer to the
compliance states associated with the end nodes of the PEG as final compliance states in the
following. As final compliance states together reflect the behavior of the traces of the PEG w.r.t.
the imposed CRG, we can draw further conclusions from them. If all traces of the PEG contain
noncompliance, all final compliance states will be bearing violated MarkStructures. If the PEG,
however, enables both compliant and noncompliant traces, there will be both final compliance
states with and without violated MarkStructures. Def. 8.2 formalizes this intuition6.

Definition 8.2 (Compliance of a PEG with a CRG)
Let R be a CRG and let further X = (S, s0, SE , T, el) be a PEG. Let further CS∗R be the set of
possible compliance states of R. As a compliance state is represented by a set of MarkStructures,
CS∗R := P(MS∗R). Let further prX,R : S → 2CS∗R be the function assigning a set of reachable
compliance states to each node of X. Then, we say

• R is enforced over X iff holds:
¬(∃se ∈ SE with ∃CS ∈ prX,R(se) with CS consists of at least one violated
MarkStructure),

6Note that we assume that the end marking rule MR9 is applied when a PEG end node is reached (cf. Sec-
tion 7.3.1.8). Thus, each assigned activated MarkStructure will be either satisfied or violated, which
enables the application of Def. 8.2.
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• R is ignored over X iff holds:
¬(∃se ∈ SE with ∃CS ∈ prX,R(se) with CS consists of no violated MarkStructures),
and

• R is enforceable over X iff holds:
R is neither enforced nor ignored over X.

Example 8.3 (Identification of compliance violations within a PEG):
Consider again the marked PEG depicted in Fig. 8.6 based on the MarkStructures shown in
Fig. 8.5. Then, we can tell from the three final compliance states associated with s13 that CRG
R2 is neither enforced nor ignored but is enforceable in the PEG.

It should be noted that Def. 8.2 is applicable regardless of whether event-independent or event-
specific MarkStructures are employed. Depending on the choice of MarkStructures, the marked
PEG can provide insights into the compliance situation at different levels of granularity. The
compliance states associated with PEG end nodes further reveal whether a CRG always becomes
activated in the process. This is the case when all final compliance states are associated with an
activation of the CRG. In a similar manner, it is possible to detect whether a CRG will become
violated each time it is activated. Altogether, a marked PEG not only enables the detection of
compliance violations but also provides the basis for more advanced compliance diagnosis.

8.2.2.2. Tracing compliance violations

As mentioned earlier in Section 8.2, it can become necessary not only to detect that a CRG is
not enforced but also to identify in which cases (i.e., in which traces) a violation occurs in order
to better assess risks and apply adequate remedies. This corresponds to querying a marked PEG
for paths that lead to final compliance states bearing violated MarkStructures.

By making use of information on the transitions of compliance states or by unfolding a PEG
along the reachable compliance states (cf. Section 8.2.1), it is possible to track execution traces
that resulted in a certain compliance state (e.g., compliance states revealing violations). These
execution traces, in turn, can be visualized in the PEG. Based on the events and particularly the
process node identifiers assigned to each PEG node, these traces can also be replayed a process
model or a process instance. The visualization of compliance violations in process models will
be addressed in Section 9.3.

Example 8.4 (Tracing MarkStructures):
Consider again the PEG depicted in Fig. 8.4. Then, by tracking CS1, which is associated with
a violated MarkStructure, we can identify the topmost and the lowermost path of the PEG as
the ones bearing noncompliance.
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8.2.2.3. Compliance diagnosis

In order to provide explanations for detected compliance violations, the MarkStructures asso-
ciated with final compliance states of a PEG can be interpreted as described in Section 7.4.2. In
particular, for a violated MarkStructure, we can derive potential causes of the violation based
on the CRG node semantics and their execution states as shown in Example 8.5.

Example 8.5 (Identification of violations using event-independent MarkStructures):
Consider again the PEG depicted in Fig. 8.6 annotated with compliance states of R2 based on
the MarkStructures shown in Fig. 8.5. The final compliance states CS2 and CS3 associated
with s13 both bear compliance violations as indicated by the violated MarkStructures ms6
and ms7, respectively. Based on the considerations on interpreting MarkStructures described
in Section 7.4.2, ms6 reflects the case of no execution while ms7 reflects the case of only one
execution of B after A. As two executions of B after the occurrence of A are requested by CRG
R2, both these MarkStructures represent violation patterns of R2. From that we can conclude
that the PEG enables noncompliance in two possible ways.

Clearly, event-specific MarkStructures enable even more detailed diagnoses revealing the events
associated with a MarkStructure (cf. Section 7.4.3). Using them, the events causing an acti-
vation of a CRG can be detected. This is helpful to pinpoint compliance violations, which is
the first step to apply suitable remedies. A rule activation can occur in multiple traces and can
be violated in one trace, but be satisfied in other traces at the same time. Such behavior can
be detected by grouping MarkStructures of final compliance states whose antecedent pattern is
associated with the same events. Altogether, the combination of showing the execution traces
bearing noncompliance and deriving explanations from the obtained MarkStructures provides
the fundament for comprehensive and meaningful compliance reports.

8.3. Compliance checking of process models

As described in Section 8.1.1, a process model can be verified against imposed CRGs by checking
an equivalent PEG against these CRGs (cf. Fig. 8.1). The fundamentals for doing this were
provided in Section 8.2. Based on these, Section 8.3.1 defines compliance notions for process
models. Section 8.3.2 discusses how detected violations can be dealt with at the process model
level. Finally, Section 8.3.3 discusses further issues and contrasts our approach against existing
work.

8.3.1. Detection of compliance violations

As depicted in Fig. 8.1, compliance violations within a process model can be detected by checking
an equivalent PEG capturing the behavior of the model for compliance7. Using PEGs consisting of

7Instead of transforming a process model into a PEG to conduct compliance checking, compliance can also be
checked on-the-fly while exploring the process model.
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execution traces to represent the behavior encoded by process models, our compliance checking
framework remains independent from the specific process description language employed8. Note
that in practice, a process model can be subject to multiple CRGs. We assume that these CRGs
are compatible (i.e., their conjunction is satisfiable, cf. Section 6.3.3). In case multiple CRGs
are imposed on a process model, each such CRG can still be verified individually.

Before conducting compliance checks, the original process model can be reduced to those parts
that are relevant to the CRG to be verified to increase compliance checking efficiency. For now,
we assume that to a process model, an equivalent PEG (cf. Def. 5.7) is provided. In Chapter 9,
we will show how to automatically derive PEGs from WSM net process models [Rin04, Rei00]
and will discuss abstraction strategies for more efficient compliance checking.

By verifying an equivalent PEG against a CRG, we are able to identify whether the corresponding
process model enables noncompliant process executions. Clearly, a CRG is enforced over a
process model if and only if it is also enforced over the equivalent PEG. This is formalized in
Def. 8.3. In case a CRG R is not enforced in a process model P , we will say that R is violated
in P or P bears a violation of R.

Definition 8.3 (Compliance of a process model with a CRG)
Let P be a process model, R be a CRG, and X be a PEG equivalent to P . Then,

• R is enforced over P ↔ R is enforced over X,

• R is enforceable over P ↔ R is enforceable over X, and

• R is ignored over P ↔ R is ignored over X.

Example 8.6 (Compliance checking of process models):
Recall Example 8.1. Then, Fig. 8.7 depicts process model P1, which is equivalent to the PEG
depicted in Fig. 8.4 with respect to execution traces consisting of ex events (i.e., P1 and the
PEG describe the same traces consisting of ex events). Hence, P1 can be verified against R1
from Fig. 8.4 by checking compliance of the PEG with R1. As shown in Example 8.1, R1 is
not enforced in the PEG. Therefore, R1 is also not enforced in P1. As the end node of the
PEG is not only associated with compliance states bearing violations, R1 is enforceable in P2
(i.e., CS2 is not associated with a compliance violation). Note that as P1 neither involves data
flows nor has correlations between split nodes, the graph structure of P1 can in fact serve as an
equivalent PEG. Thus, we can directly annotate P1 with reachable compliance states.

Fig. 8.7 further depicts process model P2. Example 8.2 showed how the PEG equivalent to P2
w.r.t. traces consisting of ex events (cf. Fig. 8.6) is checked for compliance with R2 depicted
in Fig. 8.5. As shown, R2 is not enforced in P2. However, as the end node of the PEG is also
associated with a compliance state not bearing violations, R2 is enforceable in P2.

8Interestingly, for certain process models, the underlying process graph already corresponds very much to a PEG
that would result from the transformation. This is true for process models without data flows and without
correlations between split nodes. Such process models can be directly marked with reachable compliance
states.
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Figure 8.7.: Process models

8.3.2. Dealing with compliance violations at process model level

Detected compliance violations within process models can be dealt with in different ways:

i) A process designer may modify the process model such that not yet enforced CRGs
become enforced.

ii) It is further possible to override the CRG for the particular process model.

iii) It is also possible to deploy a process model still containing violations and to monitor
compliance with the CRG at runtime for the created process instances.

Modifying the process model In order to enforce the compliance with an imposed CRG at
the process model level, the violations in the process model have to be resolved. For that
purpose, the violated MarkStructures obtained from compliance checking can be exploited
for root-cause analysis and to derive helpful information on how to resolve the violations. In
this context, event-specific MarkStructures are particularly interesting as they shed light on the
particular activations of a CRG. For a violated (event-specific) MarkStructure, its violated
ConsExMarks can provide explanations why the MarkStructure became violated in the first
place (cf. Section 7.4.2).
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Overriding the CRG Depending on the enforcement level of the CRG (cf. Appendix A.4),
the process designer may decide to override a not enforced CRG. Overriding may be effected
at different levels. Generally, the overall CRG may be overridden causing the CRG to be no
longer imposed on the particular process model. Alternatively, the process designer may also
override selected activations of the CRG that are not enforced in the process model. A use
case for overriding selected activations is given when CRGs are defined using abstract activity
types (e.g., from a domain model). Then, multiple activations of the CRG can be contained in
a process model whose enforcement level may even vary depending on the particular activity
types involved.

Monitoring compliance at runtime This option becomes particularly interesting for CRGs
that are rather of recommendation nature (i.e., low enforcement level). Then, it may not be
desirable to enforce the CRG already at the process model level. In this case, monitoring the
compliance with the CRG for process instances created from the process model enables more
flexibility as the CRG can be dealt with at a process instance basis. In addition, monitoring
compliance at runtime can also become advisable if the modifications necessary to enforce the
CRG would yield an overly complex process model.

8.3.3. Discussion

In Section 8.3, we showed how compliance checking of process models can be realized using CRGs
and the corresponding execution mechanisms. In the following, we discuss alternative approaches
to realize process model verification in Section 8.3.3.1. Finally, further issues beyond the scope
of this thesis are outlined in Section 8.3.3.2.

8.3.3.1. Related work

Our framework verifies a process model by applying CRG operational semantics to the process
model’s state space representation (i.e., to the execution traces encoded by the process model’s
PEG). By doing so, we identify which compliance states of an imposed CRG (expressed as sets
of MarkStructure) a state of the process model is associated with. Depending on the desired
granularity level, the compliance state may be represented through event-independent or through
event-specific MarkStructures. In addition, alternative approaches to assign compliance states
to PEG nodes are available, for example, with or without unfolding the PEG.

Some model checking approaches employ a similar strategy to verify a system specification
against a property. The basic idea of explicit LTL model checking is to produce the prod-
uct automaton of an automaton representing the system’s behavior (i.e., the PEG in our case)
and an automaton representing the negated property [BBF+01]. As discussed in Section 3.1,
a variety of approaches in literature suggests model checking to verify compliance, for exam-
ple [FPR06, YMHJ06, LMX07, FESS06, FESS07, FS10, KGE11]. In the SeaFlows project, we
also experimented with model checking. This resulted in the implementation of a compliance
checking component of the SeaFlows Toolset [LKRM+10, KLRM+10] (cf. Chapter 11). For this
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approach, we used the model checker SAL. One major reason we also investigated on alterna-
tives to model checking was that a LTL model checker typically provides a single counterexample
in the form of an execution trace in case a violation is detected. In addition, model checking
provides no inherent support for identifying and verifying single rule activations. Due to the
parallels, our approach to check compliance of a PEG with an imposed CRG can be considered
a model checking approach that aims at enabling comprehensive and fine-grained compliance
diagnoses.

In the SeaFlows project, we also investigated on analyzing the graph structure of the process
model to efficiently identify noncompliant structures [LKRM+10]. The developed approach
exploits the block structure of WSM net process models to analyze the process graphs. However,
the approach is limited to simple compliance rules without data conditions. In case of data-aware
compliance rules and process models containing data flows, analysis of the mere graph structure
of the process model is no longer sufficient in order to correctly identify noncompliance.

As described in Section 2.1.2.1, being able to provide explanations for compliance violations
is an important requirement for the practical application of a compliance checking framework.
A few approaches in literature address this issue in the context of design time compliance
verification [ETHP10b, AWW09]. In [ETHP10b], Elgammal et al. present an approach for the
property specification patterns introduced by Dwyer et al [DAC99] (cf. Section 2.1.1.1) that
is based on providing a so-called current reality tree for each pattern. The roots of the tree
are associated with undesirable effects, i.e., violations of a certain pattern. By traversing the
tree answering questions associated with the violation, the user is guided to the root-cause of
the violation and is further provided a remedy strategy. In [AWW09], Awad et al. propose
an approach for visualizing and explaining compliance violations that utilizes temporal logic
querying to identify paths in which a (data-aware) compliance rule is violated. Similar to the
work by Elgammal et al., Awad et al. also focus on specific compliance rule patterns that are
based on the property specification patterns. As shown in Section 8.2.2, our approach enables
not only the explanations for compliance violations of arbitrary CRGs but also the identification
of traces violating CRGs. In Section 9.3.1, we will show how this information is seized for
visualizing compliance violations.

8.3.3.2. Further issues

In this section, we assume that a PEG equivalent to a process model to be checked with regard to
compliance with the imposed CRG is provided in order to conduct compliance checking. Being
based on PEGs as general process representation, our framework is independent of particular
process description languages. In Chapter 9, an approach to transform WSM Net process models
into PEGs is provided. As already discussed in Section 8.3, the transformation of a process model
into a PEG before conducting compliance is not necessary. In fact, the CRG operational semantics
can also be applied on-the-fly while exploring the possible process executions encoded by the
process model. By doing so, a state space representation of the process model, for example, a
reachability graph for Petri net process models, marked with reachable MarkStructures can be
derived.

As compliance checking of process models requires the exploration of the process executions
enabled by the process model, state explosion can become a challenge. As CRGs are typically

187



CHAPTER 8. A COMPLIANCE CHECKING FRAMEWORK BASED ON COMPLIANCE RULE GRAPHS

small in practice, the complexity of the compliance checks is rather driven by the size of the
model. Thus, reduction of the latter constitutes a valid strategy to tackle the state explosion
problem [Awa07, KLRM+10, RWMR13]. To achieve this, abstraction strategies also applied for
model checking can be employed. Structural abstraction, for example, can be applied to reduce
the process model to those parts relevant to the imposed CRG. Here, existing approaches, such
as [Awa07], can be applied. As typically only a relatively small part of a process model is
affected by a compliance rule, such structural abstraction can help to substantially reduce the
complexity of compliance checks. Data domain abstraction can further be used to prevent the
state explosion problem caused by data exploration. In [KLRM+10], we propose an abstract
interpretation approach to tackle this. In Chapter 9, we will describe abstraction strategies in
more detail.

Our framework enables the identification of violations and even to pinpoint violations in a
PEG. This can serve as input to generate feedback for users, for example visualization of the
noncompliant traces in the process model. Though very interesting, concepts to generate suitable
compliance reports and to visualize compliance violations to process designers and process users
are beyond the scope of this thesis. Results obtained from a first study on this are described in
Section 9.3.

The application of suitable remedies to resolve noncompliance is considered a manual task so far.
Especially when multiple CRGs affecting the same activities are imposed on a process, manual
modification of the process such that all CRGs are satisfied can become challenging. Thus, the
(semi)automatic derivation of suitable remedies, for example, process adaptations, constitutes
an interesting research challenge. In this context, the few existing approaches such as [GK07]
should be investigated in future work.

8.4. Compliance monitoring during process execution

The objective of compliance monitoring is to detect noncompliance in a prompt manner. In
the best case, noncompliance can even be prevented when being detected in time. Otherwise,
detected compliance violations can be documented, which facilitates a posteriori analysis.

Recall the requirements on the compliance checking framework described in Section 2.1.2. The
two essential aspects of compliance monitoring are illustrated in Fig. 8.8. Essentially, it must
be possible to check whether a running process instance violates an imposed CRG. Obviously,
compliance violations can be detected by checking the execution trace of the process instance.
Monitoring this can detect emerging violations in a timely manner. We refer to this as compliance
state monitoring (cf. Fig. 8.8). Section 8.4.1 addresses this in more detail.

Even when process instances are executed based on a known process model that has already
been verified against imposed rules, compliance monitoring for running process instances can still
become necessary. As mentioned in Section 8.3.2, it is not always viable to enforce compliance
with all imposed CRGs at the process model level (for example, as this can lead to overly complex
process models or due to the low enforcement level of the imposed CRG). In scenarios in which
process instances are executed based on a known process model, the latter can be exploited in
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Figure 8.8.: Different aspects of compliance monitoring

order to update the compliance predictions made at the model level (cf. Fig. 8.8). How this can
be realized is discussed in Section 8.4.2.

8.4.1. Execution trace based compliance monitoring

By verifying the execution trace of the process instance against an imposed CRG, violations
occurred so far can be revealed. The compliance state yielded by the execution trace of the
process instance is referred to as effective compliance state (ECS) of the process instance as
formalized in Def. 8.4. For each new execution event observed during process execution, the
CRG operationalization can be applied to update the ECS. As the particular procedure of
verifying an execution trace against a CRG corresponds to the incremental application of CRG
operational semantics and has already been exemplified earlier in Section 7.4, we abstain from
detailing this in the following.

Definition 8.4 (Effective compliance state of a process instance)
Let R be a CRG, P be a process model, and I = (P, σ) be a process instance of P . Then,
the effective compliance state (ECS) of I with regard to R is represented through a set of
MarkStructures MSI with MSI := verify(R, σ) (cf. Algorithm 1).

If R is clear from the context, we will just say ECS of I.

If the ECS of a process instance reveals violations (represented by violated MarkStructures),
these violations are already manifest in the execution history and, thus, permanent. Then,
analysis of the respective MarkStructures can help to identify the root-cause of the violations.
Moreover, detected violations can be reported to supervisors and documented by respective
personnel (e.g., why noncompliance happened) in a timely manner. This can provide valuable
information for process optimization [LRMGD12].
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Before a violation becomes manifest in the trace, analysis of the violable MarkStructures of
the ECS enables the derivation of measures to render the respective CRG or selected activations
of it satisfied (proactive prevention of violations). We described this in Section 7.4.2. This
functionality can be exploited for providing support to comply. Further ideas on proactive
prevention of noncompliance are described in [LRMKD11].

8.4.2. Compliance prediction at process instance level

Generally, compliance monitoring will only become necessary for process instances executed
based on an already verified process model if the respective CRG is enforceable in the under-
lying model. The reason is that enforced/ ignored CRGs will become satisfied / violated in
any instance of the model, respectively. It is further possible to monitor not the original CRG
but only selected activations of it (for example, activations that are enforceable) by refining
the CRG accordingly. In addition, monitoring may also be conducted for only selected process
instances, for example, process instances with priority.

Based on Def. 8.3 for process models, Def. 8.5 formalizes the notions enforceable, enforced,
and ignored for process instances.

Definition 8.5 (Compliance of a process instance with a CRG)
Let I = (P, σ) be a process instance and R be a CRG. Let further X be a PEG equivalent to I
with regard to compliance with R. Then,

• R is enforced over I ↔ R is enforced over X,

• R is enforceable over I ↔ R is enforceable over X, and

• R is ignored over I ↔ R is ignored over X.

ENFORCEABLE

ENFORCED

IGNORED

Figure 8.9.: Relations between the compliance notions enforceable, enforced, and ignored

As the execution of a process instance proceeds, a CRG that is enforceable in a process
instance can become enforced or ignored depending on the activities executed in the instance
as illustrated in Fig. 8.9. Once an enforceable CRG becomes enforced in the process instance
according to Def. 8.5, it can no longer be violated (unless the process instance deviates from
the predefined model). If an enforceable CRG becomes ignored during the process instance
execution, however, the respective CRG will be violated (unless a violation is already manifest in
the process instance’ ECS). Keeping such compliance predictions for a process instance current
enables prompt reaction on changes as illustrated by Example 8.7.
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Example 8.7 (Updating the compliance prediction for a process instance):
Fig. 8.10 depicts process instance I1 running on process model P1 from Fig. 8.7 at two different
points in time. Recall the PEG equivalent to P1 annotated with reachable compliance states of
R1 shown in Fig. 8.4. At time t1, R1 is still enforceable in I1 as R1 can still become both
violated or satisfied depending on which path is chosen after completion of process node 8. This
is also reflected in the PEG from Fig 8.4. At time t2, R1 is ignored in I1 as at this point, R1 is
going to be violated when the execution of I1 proceeds. However, the predicted violation is not
yet manifest in the ECS of I1 and, therefore, can still be averted, for example, by modifying the
process instance accordingly.

21

3

A

4 5

B

6

7 8

A

9

C

10

B

11

16

15

A

12

B

13 14

I1 at t1

Start

0

End

17

21

3

A

4 5

B

6

7 8

A

9

C

10

B

11

16

15

A

12

B

13 14

Start

0

End

17

I1 at t2

d

Exclusive 

gateway

Data 

object

Normal 

node
Parallel 

gateway

Modeling primitives of WSM nets:

running completedactivated skipped

true-signaled false-signaled

Execution markings of WSM nets:
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How to update the compliance prediction for a process instance? Generally, the compliance
prediction for a process instance can be derived the same way a process model is verified against
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imposed rules (cf. Section 8.3). In particular, the process instance can be transformed into a PEG
for compliance checking or the exploration of the process instance and the CRG execution can
be combined in one step. When a PEG of the instance’ process model is already given, we can use
this PEG for compliance checks as the process model PEG captures the superset of traces that can
be produced from a running process instance I. Thus, by replaying I’s execution history in the
process model’s PEG, we can precisely identify the future execution trace suffixes that still can
be generated from I in the future. These are exactly the trace suffixes reachable from the PEG
node reached when replaying I’s execution history. Based on this, the propagation approaches
(cf. Section 8.2.1) can be applied to find out whether the process instance enables noncompliant
execution traces.

When to update the compliance prediction? The compliance prediction may be updated
upon reaching predefined check points in the process model or the update may be automated.
Obviously, not all events occurring during process execution necessitate updating the compliance
prediction as some events do not affect the possible future behavior. Independently of the
imposed CRG, an enforceable CRG can only become ignored or enforced when an observed
event leads to discard of execution trace suffixes in an equivalent PEG. The latter will only
apply if the observed event corresponds to the selection of an outgoing branch of a split node
in the PEG. Updating the compliance prediction only in such cases, therefore, helps to avoid
unnecessary operations.

It should be noted that there are also other ways to keep the compliance prediction of a process
instance current. In scenarios where emphasis is put on this, we may also unfold the PEG of the
process model with regard to the reachable compliance states as discussed in Section 8.2 when
verifying the process model. The unfolded PEG can then be used to keep track of still reachable
trace suffixes and still reachable compliance states at runtime.

8.4.3. Discussion

In Section 8.4, we showed how compliance monitoring can be realized based on the proposed CRG
approach. Our framework enables to monitor the effective compliance state of a process instance
based on events observed during process execution. The possible future behavior encoded in
a process instance’ process model can be taken into account to detect changes of compliance
predictions made at process model level. In Section 8.4.3.1, we discuss alternative approaches
to compliance monitoring. In Section 8.4.3.2, we discuss further issues that are not addressed
by our approach.

8.4.3.1. Related work

In literature, a variety of approaches for compliance monitoring were proposed. Most of these
focus on data consistency or process performance (e.g., KPI monitoring or business activity
monitoring). However, there are also approaches that address compliance monitoring based
on observed process execution events. As discussed earlier in Section 7.7.1, we can distinguish
between different types of such monitoring approaches. Some approaches use automatons to
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monitor process executions [MMWA11, PA06, Pes08, SFV+12]. Typically, these automatons
are generated from LTL properties. By producing an automaton representing the conjunc-
tion of the imposed rules, it becomes possible to detect whether conflicts between them arise
during execution making it impossible to satisfy all imposed rules [MMWA11]. This is not
yet addressed by our approach. In Section 8.5.3, we describe ideas how this can be realized.
In our approach, the automaton is yielded by the possible compliance states of a CRG to be
checked and the transitions between them. Instead of explicitly creating an automaton, the
reachable compliance states are unfolded incrementally during monitoring. Other approaches
monitor compliance by querying the execution trace for patterns of compliance violations or
of relevant incidents [GMP06, HMZD11, BDL+10]. This can be realized using event process-
ing technologies such as complex event processing (CEP) [JML09]. Further alternatives involve
formalizing compliance rules for example using the event calculus [MMC+11] or using logic pro-
gramming [ACG+08, MPA+10]. For details on the techniques applied, we refer to the discussion
in Section 7.7.1. The mentioned approaches all focus on execution trace based or event based
monitoring in general. To our best knowledge, the compliance monitoring approaches in liter-
ature do not exploit the process model in order to update compliance predictions for process
instances.

Being based on CRG execution, our compliance checking approach is applicable to both design
and runtime compliance checking. The beauty of our approach is that a transformation of the
CRGs into other representations such as automatons or alternative formalizations is not neces-
sary in order to conduct monitoring. Incremental CRG execution enables dealing with evolving
execution traces. Even after a violation has occurred, monitoring can still be continued. The
latter can be a problem for approaches relating compliance violations to a notion of logical
inconsistency. As the graph structure of the CRGs is exploited for compliance monitoring, feed-
back can be given based on the specific rule structure. Since compliance states are represented
by MarkStructures, compliance states are transparent and can be analyzed, for example, in
order to derive strategies to prevent compliance violations [LRMKD11]. In addition, similar to
compliance checking at design time, compliance can be monitored using both event-specific and
event-independent MarkStructures. This gives the process supervisor the flexibility to decide
on the suitable granularity for the respective application scenario.

Conformance checking investigates whether a process model and process logs are conform to each
other and is, hence, related to compliance monitoring. Generally, the conformance can be tested,
for example, by replaying the log over the process model. To tackle this, several approaches were
proposed [AM05, RA08, WZM+11, WPDM10, WPD+11] that introduce techniques and notions,
such as fitness and appropriateness, to also quantify conformance. Implementations of these
approaches (e.g., the Conformance Checker) are available in the process mining framework ProM
[VBDA10]. Conformance checking and compliance rule monitoring exhibit major differences
that require different techniques. For example, compliance rules are typically declarative while
process models are mostly procedural.

8.4.3.2. Further issues

In this work, we assume that execution events are observed after the fact. Thus, violations are
revealed in the execution trace after they happened. However, one can also think of scenarios in
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which the compliance monitoring tier is queried by the process execution tier to find out whether
the commit of an event leads to compliance violations. This enables declining respective events
a priori.

8.5. Summary and further issues

As pointed out previously in Chapter 3, the bulk of existing work focuses on isolated scenarios of
the business process lifecycle rather than on providing integrated support for process design and
process runtime. The combination of these isolated approaches still lacks support with respect
to comprehensiveness and granularity of compliance diagnoses. Thus, there is still need for a
compliance checking framework that not only supports the verification of process models and
process instances but is also able to provide intelligible compliance reports at the level of par-
ticular rule activations. In this chapter, we showed how a compliance checking framework can
be realized based on the CRG concepts introduced in Chapter 6 and 7. As envisioned (cf. Sec-
tion 2.2.1), the described compliance framework addresses both design and runtime compliance
verification using the same mechanisms. Thus, transformations of compliance rules modeled as
CRGs into other languages or representations that target design or runtime compliance checks
are not necessary.

Aiming at enabling detailed compliance diagnoses, we exploit the structure of CRGs to represent
reachable compliance states. As the latter can be represented through both event-specific as well
as event-independent MarkStructures, the granularity of compliance checks can be adjusted to
suit the needs of the respective stakeholders and application scenarios.

A process model is verified against imposed CRGs by determining the compliance states that its
executions are able to yield. While this can be conducted in one step, we showed the verification
of process models in two steps in this chapter for better illustration. First, the process model
is explored to derive a specification capturing the behavior encoded in the model. In this work,
we utilize PEGs, an automaton-like structure whose nodes are associated with execution events,
to represent the behavior of processes independently from the process description language
employed. The PEG is then verified by marking its nodes with reachable compliance states. The
detected compliance states not only reveal compliance violations enabled by a process model but
also enable the derivation of meaningful compliance diagnoses. For example, it can be detected
in which traces a violation occurs and whether a CRG becomes activated or is violated in all or
only some specific executions of the process. This information and the MarkStructures bearing
compliance violations can be utilized for explaining and visualizing detected noncompliance
within the process model to be checked. Some ideas on the visualization of compliance violations
will be described in Chapter 9.

The compliance state of a running process instance is monitored based on its evolving execution
trace. The incremental nature of CRG operational semantics enables to derive the effective
compliance state after observing a new event based on the last compliance state. When a
compliance violation becomes evident, explanations for its root-cause can be derived from the
MarkStructures that constitute the respective compliance state. Even before a compliance
violation becomes manifest, useful information can be derived from the compliance state that
can, for example, be utilized to schedule activities in order to satisfy an imposed compliance

194



8.5. SUMMARY AND FURTHER ISSUES

rule [LRMKD11] (i.e., support to comply). Moreover, the possible future behavior of a process
instance predefined in the underlying process model can be exploited for updating compliance
predictions. Together with monitoring based on the execution trace of a process instance, this
can help to identify potential compliance threats in a timely manner.

The compliance checking framework presented in this thesis is not restricted to a particular
process description language as it is based on a general notion of execution traces. It can be
complemented with further concepts such as abstraction to increase the efficiency of compliance
checks as we will show in Chapter 9. As stated earlier, we can think of embedding it into an
overall compliance management framework such as envisioned in the COMPAS project [The11].
The SeaFlows compliance checking framework would be complemented by existing functionalities
for managing and tracing compliance requirements while the compliance management framework
could benefit from the compliance checking functionality of our framework.

8.5.1. Process adaptations

During process execution, it can become necessary to deviate from the predefined process model,
for example, in order to deal with an exceptional situation [EKR95, RD98, RWRW05, WSR09,
KR11a]. To deal with such cases, flexible process management systems such as ADEPT [RD98,
DRR+08] enable to change the process, for example, to add additional activities or remove
existing ones. Changes can be applied to particular process instances or to the process model.
Obviously, process changes can introduce noncompliance that can be detected by rechecking the
process instances and process models against imposed CRGs. In order to avoid unnecessary
checking operations, it is desirable to only reverify the process against those CRGs that are
possibly affected by the process changes. In [LRD06, LRD08], we described a first approach
to identify such rules that is based on exploiting the semantics of the change operation. This
approach is limited to basic rule structures. This can be extended exploiting further information
such as identified rule activations and their individual compliance state.

8.5.2. Declarative process modeling and execution

The declarative approach to process modeling and execution aims at enabling more flexible
processes and, thus, at overcoming limitations that many traditional imperative workflow ap-
proaches suffer from [WLB03, PA06, Pes08, FLM+09]. The basic idea is to specify what should
be done in a process without specifying how this should be accomplished. A declarative process
model is, therefore, constituted by a set of constraints that each process execution has to comply
with. After a process instance is started from such a constraint-based process model, an agent
may execute activities without being guided by a predefined process. However, at the end of
the execution, the executed process instance must satisfy all constraints.

Existing declarative approaches propose different constraint specification approaches. The Tu-
cupi approach introduced by Wainer et al. [WLB03, WLBB04] uses constraints based on pre-
and postconditions for executing particular activities. Pesic et al. introduce a declarative ap-
proach based on linear temporal logic (LTL) called DECLARE in [Pes08, PA06]. In DECLARE,
the constraints are constituted by a set of LTL formulas. To hide the complexity of LTL from
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the user, Pesic et al. introduce a set of patterns each of which is assigned a graphical notation.
To execute a declarative process instance, an automaton is created from the LTL formulas of
the process model. By checking the activities initiated by users against the automaton, it can
be determined whether the process instance is in an accepting state or whether the satisfaction
of all constraints can still be achieved.

CRGs can be applied to design declarative process models. Then, a process model is constituted
by a set of CRGs. When a process instance is created from the model, its state is represented
by a set of MarkStructures. Similar to monitoring a process instance (cf. Section 8.4.1), the
effective compliance state of a declarative process instance can be monitored using the CRG
execution mechanisms. Thus, activities that render a MarkStructure violated can be declined
by the system as such a violation is permanent. The process instance can only be terminated,
if all activated MarkStructures are satisfied. From the violable MarkStructures, we can
further derive information that can help users to complete the process instance (i.e., support
to comply). For example, a pending MarkStructure indicates that activities are still required
in order to comply with the respective CRG. Further research on the application of CRGs to
support the declarative process paradigm seems to be interesting and promising.

8.5.3. Conflicts among rules

Clearly, multiple compliance rules imposed on a process can only be satisfied when they are
not conflicting meaning that their conjunction is not satisfiable due to logical inconsistency (cf.
Section 6.3.3). However, even with rules that are not conflicting in general, conflicts can still
arise. Consider, for example, two compliance rules, one requesting that C is executed after A
(rule R1) and the other requesting that C must not be executed after B (rule R2). Now imagine
a process model defining that B will be executed prior to A. Then, despite not being conflicting
in general, R1 and R2 are still conflicting in that particular case as it is not possible to satisfy
both rules unless A or B are removed or arranged differently. The detection of such conflicts
is not yet addressed by our work. However, several approaches in literature address this issue.
Awad et al. propose an approach for checking the consistency of compliance rules (specified
in LTL) based on Büchi automaton that can be enriched with information from the process
domain in [AWW10]. Maggi et al. [MMWA11] utilize a global automaton involving all imposed
rules (specified in LTL) to detect conflicts arising during process execution. Situations in which
there is no possible continuation satisfying all rules can be detected. Further research becomes
necessary in order to adapt these promising approaches for CRGs.

8.5.4. Rule refinement

As CRGs can be modeled using abstract activity types (e.g., from a domain model), there may
be multiple activations of such an abstract CRG in a process that are associated with differ-
ent concrete activities. Depending on the particular activities involved in the rule activation,
different enforcement levels may become relevant. For example, certain rule activations may
require more stringent enforcement than others or specific remedies. Against this background,
it is notable that we can exploit the identified rule activations to refine the original CRG such
that it applies only to a particular rule activation. This can be accomplished by allocating the
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node identifier property and data conditions of CRG nodes accordingly. Such event- or activity-
specific CRGs can be used, for example, to perform checks for a particular previously identified
rule activation or to monitor a particular rule activation at runtime.
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9
The compliance checking process: pre- and

post-processing

In order to verify a process model against imposed compliance rules, we have to explore the
behavior encoded by the model. In Section 8.1.1, we showed process model verification in
two steps. First, the process model is explored and a model specification capturing the possible
process behavior is obtained. In this thesis, we utilize process event graphs (PEGs, cf. Sect. 5.2.6),
an automaton-like structure whose nodes are associated with execution events, to describe the
behavior enabled by a process model. The PEG is verified against imposed rules in the second
step. In Chapter 8, we described how this is conducted using the operational semantics of CRGs.
Clearly, this constitutes the central part of the compliance checking process as illustrated in
Fig. 9.1. In this chapter, we address pre- and post-processing aspects of the overall compliance
checking process to complete the picture. Specifically, this chapter addresses two questions:

• Pre-processing: How to obtain a model specification capturing the process behavior (like
a PEG) for compliance checking of process models and process instances?

• Post-processing: How to visualize and explain the results of compliance checks to stake-
holders?

Compliance

Providing the
input for

compliance
checking

Application of the
compliance
framework

Visualizing and
explaining the

results

Pre-processing checking Post-processing

checking

Figure 9.1.: Simplified compliance checking process
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The first question is addressed in Section 9.1 for the example of WSM nets [Rei00, Rin04].
Section 9.2 then describes abstraction strategies that can be applied to yield more compact
PEGs and, thus, can help to reduce the computational costs of compliance checks. The second
question is addressed in Section 9.3 where we describe approaches on visualizing and explaining
compliance checking results from literature and developed in the SeaFlows project.

9.1. Transforming process models into process event graphs

Generally, a model specification capturing the behavior encoded by a process model like a PEG
can be obtained by simulating the process execution1. This can be accomplished by applying
the operational semantics of the respective process description language and corresponds to a
reachability analysis as known from Petri nets [May81]. The general procedure is to start with
an initial process execution state and check which activities can be started or completed in that
state. By expanding these enabled events, further execution states of the process can be explored
until no further events are enabled. By doing so, we are able to build a PEG containing all event
sequences that can be generated by the process. In the following, we outline a transformation
algorithm for the example of WSM net process models and process instances.

9.1.1. Basic transformation algorithm

WSM nets [Rei00, Rin04] have well-defined operational semantics. When executing a WSM
net process instance, execution markings are assigned to nodes and edges of the process and
values are assigned to data objects (referred to as process marking in the following) that
reflect the current execution state and also enable to retrace the execution path taken so far (cf.
Sect. 5.1.2). Listing 4 sketches a general algorithm for transforming a WSM net process model
into a PEG. Algorithm 4 can be applied to transform process instances into PEGs as well (only
minor modifications become necessary).

• Starting with an initial state z0 representing the process marking after starting the start
node of the process model2, it is first checked for events that can be fired under the present
process marking. This is encapsulated in the function getNextEvents, which returns a
set of events that can be fired under a particular process marking pmz. It should be noted
that multiple events may be enabled under a certain process marking (cf. Sect. 5.1.2).

• The firing is simulated for each such identified event. We assume that the WSM net
operational semantics is applied for simulating the firing (e.g., start an activity), which
results in a succeeding execution state for each fired event. This is encapsulated in the
function fireEvent, which returns a tuple of a process marking pmz′ and an event e.

1While the exploration of a process model and the compliance verification may also be combined in a single step,
we opted for showing these two steps separately in Section 8.1.1 for clarity reasons. Thus, a process model
is first transformed into a PEG based on which compliance checks are conducted. However, the considerations
and concepts presented in this chapter are also applicable when exploring and verifying a process in one single
step.

2Note that WSM nets have a single start and a single end node [Rei00, Rin04].
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• It is then checked whether the obtained state encoded through the process marking and
the event has already been reached previously. If this is not the case, the novel state will
be put into a queue of states to be further explored. In addition, the precedence relation
between the original and the novel state will be established. Elsewise, only the novel
precedence relation is established by adding a corresponding tuple to E∗.

• From the structure Z∗ and E∗ obtained from Algorithm 4, we can easily derive a PEG
X = (S, s0, SE , T, el) (cf. Def. 5.6): For each z ∈ Z∗, we create a PEG node s ∈ S. The
start node s0 corresponds to the initial state z0. The end nodes SE are those z ∈ Z∗

without any outgoing edges. The set of precedence relations T corresponds to E∗. Finally,
for each s ∈ S with z = (pmz, ez) being the structure corresponding to s, we assign the
event associated with z to s (i.e., el(s) := ez).

We assume that the functions getNextEvents and fireEvent as described above can be im-
plemented based on the operational semantics of WSM nets [Rei00, Rin04]. As the informal
description above suffices for explaining the basic ideas of transforming a process model into a
PEG, we abstain from defining these functions.
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Figure 9.2.: A process model and the PEG obtained when applying Algorithm 4

Example 9.1 (Transformation of a WSM net process model into a PEG):
Fig. 9.2 depicts process model P1 and PEG X1a capturing all execution traces of P1. X1a’s upper
path represents the execution of the upper while X1a’s lower path represents the execution of
the lower alternative branch. Each node of X1a is associated with a start or an end event and
a process marking of P1 (cf. Algorithm 4). Recall that we assume that the decision on the
outgoing branch of a split node is reflected in the designated parameter dec (cf. Section 5.2.3).
The process markings of P1 yielded during the exploration are depicted in Fig. 9.3.

201



CHAPTER 9. THE COMPLIANCE CHECKING PROCESS: PRE- AND POST-PROCESSING

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

End

1 2

3

4

5 6

pmstart

pm1

pm2

pm3

pm4

pm5

pm6

pm7

pm10

End

1 2

3

4

5 6

pm8

End

1 2

3

4

5 6

pm9

End

1 2

3

4

5 6

End

1 2

3

4

5 6

pm11

pm12

pm13

pm14

pm17

pm15

pm16

Start

Start

Start

Start

Start Start

Start Start

Start Start

Start Start

Start Start

Start Start

Start Start

activated

Execution markings of WSM nets:

running

completed

skipped

d

Exclusive 

gateway

Data 

object

Normal 

node
Parallel 

gateway

Modeling primitives of WSM nets:

Figure 9.3.: Exploration of P1 from Fig. 9.2
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Algorithm 4 Transforming a WSM net into a PEG
1: P is a WSM net;
2: Z∗ is set of z = (pmz, ez) where pmz is a process marking of P (cf. [Rei00, Rin04]) and ez

is an event;
3: E∗ ⊂ Z∗ × Z∗ is a set of precedence relations;
4: pm0 is the initial process marking of P ;

{INITIALIZATION}
5: Z∗ = ∅;
6: E∗ = ∅;
7: z0 = (pmstart, estart) where pmstart is obtained from pm0 after starting the start node of P

and estart is the start event of P ’s start node;
8: Q = {z0};

{ITERATION}
9: while Q 6= ∅ do
10: z = (pmz, ez) = Q[1];
11: Q = Q\Q[1];
12: TEz = getNextEvents(pmz);
13: for all e ∈ TEz do
14: pmz′ = fireEvent(pmz, e);
15: z′ = (pmz′ , e);
16: if z′ /∈ Z∗ then
17: Z∗ = Z∗ ∪ {z′};
18: Q = Q ∪ {z′};
19: end if
20: E∗ = E∗ ∪ {(z, z′)};
21: end for
22: end while

Algorithm 4 relies on the operational semantics of WSM nets to simulate the process execution.
For each process marking, it is checked which events can be fired based on the node and data
states. Thus, it is ensured that the resulting PEG and the original process model both exhibit
the same execution traces. Hence, the resulting PEG and the process are equivalent according to
Def. 5.7. While Algorithm 4 is tailored towards WSM nets, it can be adapted for other process
description languages as well.

9.1.2. Optimizations

Evidently, the size of the PEG significantly affects the computational costs of compliance checks.
Complex processes with extensive data flows typically result in very voluminous PEGs [KLRM+10,
RWMR13] as illustrated in Example 9.2.
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Example 9.2 (State explosion):
Consider the relatively small process model P2 in Fig. 9.4. Then, PEG X2 in Fig. 9.4 obtained
by straight-forwardly exploring the model as for example by applying Algorithm 4 contains a
considerable amount of nodes due to the exploration of the data dimension.
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Figure 9.4.: State explosion due to exploration of the data dimension

This state explosion problem is also known from other verification settings (e.g., software verifica-
tion or verification of reactive systems) [CGP99, Val96]. As mentioned in Sect. 5.2.6, equivalence
between the process and the PEG is not necessary in order to correctly verify compliance. In prac-
tice, it is often desirable to conduct compliance checks on more compact model specifications.
Against the background that compliance rules often only affect parts of a process, optimizations
are possible. As state explosion is a well-known issue, we can benefit from extensive research.
A general approach to tame the state explosion is abstraction. Abstraction aims at reducing
the complexity by focusing on only the relevant parts of the system to be verified [BBF+01].
Apparently, this can be adopted for the verification of business processes. In the following, we
describe different abstraction strategies.

9.2. Abstraction strategies

Abstraction aims at reducing the state space to be searched. The basic idea underlying all
abstraction strategies is to focus on relevant parts of a system and to abstract from aspects
that do not affect the properties to be checked [BBF+01, CGP99]. The objective is to obtain
a smaller system model M ′ such that M ′ |= φ⇔ M |= φ where M denotes the original system
model and φ denotes the property to be checked (i.e., the abstraction is conservative [Das03]).
Ideally, M ′ is constructed without having to generate M .
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In the context of business process compliance checking, this means that instead of generating
an equivalent PEG (cf. Def. 5.7 in Sect. 5.2.6) from a process, a smaller PEG (i.e., containing less
nodes / edges) is generated based on which compliance checking is conducted3. This improves
the efficiency of compliance checks. In order to obtain a smaller PEG, we abstract from aspects
that are indistinguishable to the compliance rules. In the following, we discuss two fundamentals
types of abstraction strategies: rule-independent and rule-specific strategies. The former can be
applied independently of the imposed CRGs and result in PEGs that can be utilized to verify
compliance with arbitrary imposed CRGs. Rule-specific strategies exploit specific knowledge on
the imposed CRG to be checked and abstract from aspects that are irrelevant to the specific
CRG. While the resulting PEGs can be used to verify compliance with the specific CRGs, they
will often be no longer suitable to verify the compliance with arbitrary CRGs. Though the
considerations on abstraction discussed here are based on CRGs, they can also be adapted for
other compliance rule languages.

In the following, we first provide relaxed equivalence notions for processes and PEGs to assess the
effect of abstraction in Section 9.2.1. Then, we describe node state abstraction, a modification
of the marking rules as defined by WSM nets, in Section 9.2.2. This modification enables us
to reconsolidate execution paths induced by alternative branches. Then, data state abstraction
is introduced in Section 9.2.3. This strategy aims at abstracting from data states once a data
object is no longer relevant to the further execution. Applying this strategy together with node
state abstraction enables us to avoid tree structures when generating PEGs. Moreover, we intro-
duce event type abstraction in Section 9.2.4. Following the observation that CRG operational
semantics can be applied to ex events in a more efficient manner, this abstraction strategy aims
at favoring ex events over start and end events when creating PEGs. Section 9.2.5 addresses
structural abstraction for reducing the process to the parts potentially affected by a compliance
rule. Data domain abstraction discussed in Section 9.2.6 aims at reducing the domains of data
objects, thus, reducing the overall state space. Finally, we discuss the adoption of partial or-
der reduction from model checking in Section 9.2.7. Section 9.2.8 summarizes the abstraction
strategies.

9.2.1. Relaxation of the equivalence notion for abstraction

In Sect. 5.2.6, we introduced the notion of equivalence between a process model and a PEG
(cf. Def. 5.7). Informally, a PEG and a process model are considered equivalent if they convey
exactly the same execution traces. As abstraction aims at producing smaller PEGs with less
nodes and edges, the resulting PEGs are typically no longer equivalent to the original process
models. However, the smaller PEGs are still supposed to preserve the compliance property to be
checked. With respect to CRGs, there are two cases to be distinguished:

compliance-equivalent A PEG X is considered compliance-equivalent to a process model P iff
X complies with all CRGs P complies with and vice versa.

rule-equivalent A PEG X is further considered rule-compliance-equivalent to a process model P
with regard to a specific CRG R if X complies with R iff P complies with R.

3Here, we assume that the PEG is explicitly constructed before compliance checks are applied. However, this may
also be conducted in a single step.
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These relaxed equivalence notions are formalized in Def. 9.1.

Definition 9.1 (Relaxed equivalence notions)
Let P be a process model and X be an equivalent PEG of P (cf. Def. 5.7). Let further X ′ be a
smaller PEG (i.e., containing less nodes / edges) that is not equivalent to X. Then, P and X ′
are called

• compliance-equivalent if for all CRGs R holds:

– R is enforced over X ′ ↔ R is enforced over X and

• rule-equivalent for a specific CRG R if holds:

– R is enforced over X ′ ↔ R is enforced over X.

Clearly, a PEG that is equivalent to a process model is also compliance- and rule-equivalent to
this model. It should be noted that Def. 8.3 in Sect. 8.3 provides three notions to characterize
compliance with an imposed CRG, namely enforced, enforceable, and ignored. The above-
defined relaxed equivalence notions do not distinguish between enforceable and ignored. This,
however, suffices for the purpose of describing the abstraction strategies in Section 9.2 as we do
not intend to formalize the abstraction.

9.2.2. Node state abstraction

Some process description languages assigning execution states to process nodes for process execu-
tion (such as WSM nets [Rei00, Rin04] or the process graphs used in the WASA project [Wes98])
perform dead path elimination after processing an alternative split gateway. As a result, nodes
of the branches not selected are marked as Skipped (for WSM nets). Thus, for each selected
branch a different set of nodes will be marked as Skipped in the resulting process markings.

Example 9.3 (Potential for abstracting from process node states):
A closer look at X1a from Fig. 9.2 reveals that after the completion of node 3/4, respectively,
both paths encoded through <s7, s8, s9, s10> and <s14, s15, s16, s17> are associated with the
same execution trace suffix (i.e., the same event sequence). However, the paths are associated
with different process markings as for the upper path, node 4 is marked as Skipped while for
the lower path, node 3 is marked as Skipped.

As illustrated by Example 9.3, when executing the alternative join gateway, the particular state
of predecessor nodes (i.e., whether they are Skipped or Completed) does not affect the process
nodes that can be executed in the future. Thus, at this point, the event trace suffixes (i.e., the
firing sequences leading from the current state to the final state [EKR95]) that can be produced
by the process are independent of whether previous nodes are marked as Skipped or Completed.
Hence, we can abstract from these node states when exploring the states of the process.
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Figure 9.5.: Application of node state abstraction to the transformation of P1 from Fig. 9.2
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Example 9.4 illustrates how abstracting from node states reduces the states to be explored as the
different paths yielded through an alternative split gateway can be consolidated when executing
the join gateway. More information on node state abstraction can be found in the master thesis
of Knuplesch [Knu08] conducted in the SeaFlows project.

Example 9.4 (Node state abstraction):
Fig. 9.5 shows the transformation procedure of P1 from Fig. 9.2 when applying node state
abstraction. In contrast to the original exploration illustrated in Fig. 9.3, the node state Skipped
is replaced by Completed. This, in turn, enables us to merge the two execution paths after
completing the nodes 3 and 4. The resulting PEG X1b depicted in Fig. 9.6 is smaller then PEG
X1a obtained by applying the original WSM net operational semantics.
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Figure 9.6.: The PEG resulting from the exploration as depicted in Fig. 9.5

As illustrated by Example 9.4, this approach leads to equivalent PEGs according to Def. 5.7 as
the event traces are not altered by the abstraction.

9.2.3. Data state abstraction

Data flows are a major cause for state explosion. For example, n data objects with binary do-
mains yield 2n different data allocations for each marking of process nodes and edges. This bears
the potential for optimization through abstraction as data assignments in process markings
often do not add any extra information as illustrated by Example 9.5.

Example 9.5 (Exploitation of process data flows for abstraction):
Consider process model P3 and the process markings yielded when exploring P3 depicted in
Fig. 9.7. Then, we can observe that after execution of process node 2, data object d is no longer
read from. This indicates that once 2 is executed, d will neither provide data context to events
to come nor will it have impact on any future gateway decisions and, thus, on the process control
flow. This is reflected in the PEG X3a obtained when exploring P3 using the original WSM net
operational semantics. The upper path after s4 and the lower path after s5 are both associated
with the same execution trace suffix. This observation enables us to abstract from the data
assignment in the process markings once the particular data object is no longer relevant to
the further process execution.
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Figure 9.7.: Exploration of process model P3 based on the original WSM net operational
semantics

As shown by Example 9.5, once the states of a data object become indistinguishable with
respect to the potential future states, the state space (in particular the process markings)
can be reduced by abstracting from the state of that data object. Assuming explicitly modeled
data flows, it is possible to identify when data objects will no longer be read from in a process.
In WSM nets, for example, this information can be derived from the data reading edges. By
exploiting this information, we can easily devise a modification of Algorithm 4 that performs
data state abstraction to reduce the state space to be searched. If a data object is accessed from
a node that is part of a loop, data state abstraction can be applied after being sure that the
node is not going to be reexecuted.
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Figure 9.8.: The PEG resulting from the exploration depicted in Fig. 9.7
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Figure 9.9.: Application of data state abstraction to the exploration of P3 from Fig. 9.7
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Example 9.6 (Data state abstraction):
Fig. 9.9 depicts the exploration process when transforming process model P3 from Fig. 9.7
applying data state abstraction. The PEG obtained is shown in Fig. 9.10. In contrast to the
original WSM net operational semantics, the state of d is abstracted from after completion of
node 2 by assigning a wildcard to d. Apparently, data state abstraction enables us to merge the
original execution paths to a single execution path.

s3

(End,1,{d ඎfalse})

s1

(Start,1)

s2

(End,1,{d ඎ true})

s5

(Start,2,{d ඎfalse})

s4

(Start,2,{d ඎ true})

s6

(End,2)

s7

(Start,3)

X3b

pm1

pm2 pm4

pm6 pm7

pm3 pm5

...

Figure 9.10.: The PEG obtained when applying data state abstraction to P3 from Fig. 9.7

As data state abstraction is only applied if a data object is no longer read from, it affects
the reachable process markings but not the resulting event traces. Therefore, data state
abstraction leads to equivalent PEGs (cf. Def. 5.7).

9.2.4. Event type abstraction

As formalized in Def. 5.6, a PEG node is assigned a start or an end event. Thus, execution
traces of PEGs consist of start and end events. While start and end events are particularly
necessary to capture overlapping activities within an execution trace, they are rather superfluous
when overlapped executions are not possible (as in strictly sequential processes). In such cases,
the aggregation of start and corresponding end events to more compact ex events representing
the atomic execution of an activity (cf. Def. 5.1 in Sect. 5.2.3) is advantageous as less states and
transitions will have to be explored. Moreover, as discussed in Section 7.5.2, the operational
semantics for executing CRGs over ex events is more efficient than over start and end events.
For practical application, we, therefore, abstract from start and end events and utilize ex
events when exploring a process without concurrently executable activities. For processes with
concurrently executable parts, start and end events only have to be used for these parts.

Due to the block-structuring of WSM nets, concurrently executable process blocks can be easily
identified a priori. By slightly modifying the operational semantics of WSM nets enabling the
direct transition from the node execution state Activated to the execution state Completed in
the exploration procedure, we can easily apply event type abstraction to WSM nets.
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Figure 9.11.: A process model and the PEG obtained when applying event type and node state
abstraction

Example 9.7 (Event type abstraction):
Fig. 9.11 depicts PEG X4 obtained from process model P4 when applying both event type and
node state abstraction. Event type abstraction is only applied to nodes not located on a parallel
branch. For the nodes 7 and 8, which can be executed in parallel, events of types start and
end are generated.

The use of ex events leads to PEGs that can still be considered equivalent to the original process
according to Def. 5.7. This is because no information that is relevant to CRGs (i.e., that can
be distinguished by CRGs) is left out through the aggregation of start and end events to ex
events and ex events can be disaggregated into pairs of start and end events. Note that event
type abstraction as proposed here can also be applied for other compliance rule languages. Even
compliance rules containing time conditions can be supported provided that the time information
is still preserved in the aggregated ex event (e.g., through attributes for start and end time of
the execution).

212



9.2. ABSTRACTION STRATEGIES

9.2.5. Structural abstraction

In realistic settings, process models can become quite huge containing up to hundreds or even
thousands of artifacts [BRB07, RKBB12]. The verification of such processes can become intricate
and intractable due to the state explosion. An exhaustive exploration of the state space results
in a PEG that can be used for checking the compliance with arbitrary CRGs as it captures
all potential behaviors. A specific CRG, however, typically only refers to particular activities
conducted in a process. Therefore, the compliance with a specific CRG is often determined by
only a relatively small part of the process model. This bears potential for optimization through
abstraction from the parts of the process that are not affected by the CRG to be checked. An
effective strategy to tame the state explosion is, therefore, to structurally reduce the original
process by exploiting knowledge on the CRG to be checked. In this process, individual activities
(i.e., process nodes) and data objects that are not relevant to the imposed CRG to complete
process blocks may be removed from the model (cf. Fig. 9.12). The reduction can be conducted
automatically. In particular, structural reduction without considering data conditions can be
accomplished in linear time (w.r.t. the size of the model). The thus abstracted process model is
then used to verify compliance as illustrated in Fig. 9.12. This strategy can lead to much smaller
process models and, thus, induce a considerable reduction of the state space to be searched.

Structural reduction of
P based on R

Original process
model P

Compliance rule R

Structurally reduced
process model P‘

Compliance rule R

Compliance checking

Figure 9.12.: Structural abstraction

In contrast to rule-independent abstraction approaches like data state abstraction, the structural
abstraction utilizes knowledge on the particular CRG to be verified. As a result, the abstracted
process model may not be suitable for checking compliance with other CRGs.

In the following, we discuss existing structural reduction approaches. Clearly, the particular
reduction approach is specific to the process description language employed. Awad et al. intro-
duce in [ADW08] an approach for reducing BPMN process models based on BPMN-Q [Awa07],
a language for querying BPMN processes by matching the process with a BPMN-Q query graph.
This reduction approach is conducted in two steps. For the compliance rule specified in BPMN-Q
notation, BPMN-Q queries are generated to be evaluated against the process model repository.
The BPMN-Q queries are supposed to identify those process models that are relevant to the
compliance rule. Only the selected process models will have to be verified against the compliance
rule in the second step. The first step is supposed to reduce the effort for manually identifying
process models affected by a compliance rule. It is, for example, checked whether all activities
of the compliance rule are contained in the process model. It should be noted that this does
not correspond to the semantics of CRGs. For CRGs, it is important to distinguish between
whether activities of the rule’s antecedent or of the rule’s consequence are not contained in the
process model. In particular, if activities matching AnteOcc nodes are not contained in a pro-
cess model, the corresponding CRG would be satisfied as the rule does not apply. If, however,
activities matching ConsOcc nodes are not contained in the process model, the CRG may be
violated. This distinction is considered by the approach proposed in [RMM11], which clusters
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process models according to the compliance rules that are potentially activated over the models.
For the actual structural abstraction, Awad et al. introduce nine reduction rules that can be
applied to dwindle the process model to the parts that are relevant to the compliance rule to
be checked. Some of the reduction rules are adapted from approaches that use graph reduction
to verify correctness [Men07, DAV05, SO00]. As far as we know, the reduction rules introduced
by Awad et al. [ADW08] do not yet consider data flows.

Rabbi et al. propose a model reduction approach (also referred to asmodel slicing) in [RWMR13],
which is inspired by program slicing [Tip95]. The approach is able to deal with data flows. It is
implemented in the NOVA workflow framework and is designed for process models in CWML
(compensable workflow modeling language). For a LTLX4 formula φ, the approach generates a
reduced process model M ′ from a model M such that the truth value of φ is preserved in M ′
(M and M ′ are stuttering equivalent with respect to φ). In order to reduce the process model,
the approach parses the model, generates a syntax tree for which the reduction is applied. It
should be noted that the compliance rules addressed by Rabbi et al. are imposed on the states
of the process execution while compliance rules addressed in our work impose constraints on
the events of a process. Thus, the stuttering equivalence criteria is not directly applicable for
the verification of CRGs. However, we believe that the approach can be adapted to consider
compliance rules on events as well.

Structural reduction can be conducted as a preprocessing step prior to exploring the process (as
suggested by [ADW08]). Generally, we believe that structural reduction will be essential for the
practical application of compliance checking as it can considerably reduce the cost of compliance
checks.

9.2.6. Data domain abstraction

Not only the amount of data objects but also the size of their domains can considerably amplify
the state explosion. For n data objects with domain D, the state space of the data objects is Dn

for each execution state of process nodes and edges. Data domain abstraction aims at reducing
the domain of data objects, thus, reducing the states to be explored for compliance verification.
Data domain abstraction is based on abstraction through representatives [Pel96]. The basic
idea is to exploit knowledge on the imposed CRG and the data conditions used as branching
conditions (for alternative gateways) to identify suitable equivalence classes whose members are
indistinguishable to the imposed CRG. Then, the data domain of the corresponding data object
can be reduced to a set of representatives of the equivalence classes. The reduction from concrete
to abstract states is also known as abstract interpretation in literature [CC77].

Data domain
reduction of

P based on R

Original process
model P

Compliance rule R

Process model P‘ with
reduced data domains

Compliance rule R
Compliance checking

Figure 9.13.: Data domain abstraction

4LTLX refers to LTL without the nexttime operator.
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The general procedure is illustrated in Fig. 9.135. Based on the imposed CRG and the process
model, an abstracted process model and an abstracted CRG can be automatically derived. Thus,
compliance checking can be conducted for the reduced process model. As the data domains are
reduced by exploiting the compliance rule to be checked, the resulting process may not be
suitable for checking compliance with arbitrary compliance rules. Example 9.8 illustrates the
idea of data domain abstraction. Further details are described in [KLRM+10, Knu08].

Example 9.8 (Data domain abstraction):
Consider, for example, process model P5 from Fig. 9.14. Let us further assume that the com-
pliance rule “B must occur after A” is imposed on P5. Then, for the correct verification of P5
against the compliance rule with respect to Def. 8.3, it suffices to consider two cases, namely a)
when A is executed with d exceeding 5000 and b) when A is executed with d not exceeding 5000.
For the first case, the compliance rule will be satisfied. For the latter case, the compliance rule
will be violated. Hence, the compliance rule is enforceable over P5 (cf. Def. 8.3 and Def. 8.2).
We can, therefore, reduce the domain of d to the abstract states {d > 5000, d ≤ 5000}. This
way, only two different states instead of {1, 2, . . . , 5001, . . . } for d ∈ N will have to be considered
for d when exploring P5.
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d d
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1 2 3 4
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8 9

d

Exclusive 
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Data 

object

Normal 

node
Parallel 

gateway

Modeling primitives of WSM nets:

Figure 9.14.: A process model containing data-based branching conditions

Similar to structural abstraction, data domain abstraction can be conducted as a preprocess-
ing step prior to the exploration [KLRM+10]. It is noteworthy that the combination of data
domain abstraction with structural abstraction (cf. Section 9.2.5) is most effective. In particu-
lar, structural abstraction reduces the process model to the parts that are truly relevant to the
compliance rule to be checked. In the structural abstraction process, irrelevant data objects and
irrelevant data-based gateways can be removed. For the remaining relevant data objects, data
domain abstraction can be applied to further reduce the state space.

5Note that for compliance rules containing data conditions, it can become necessary to adapt the compliance
rule to the reduced domain of the data objects. This is neglected here as it is a minor rewriting task.
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9.2.7. Partial order reduction

The representation of concurrently executable transitions as interleavings of events is a potential
cause of state explosion and a well-known issue in the verification of concurrent reactive sys-
tems [CGMP99, God94]. Partial order reduction aims at reducing the state space by abstracting
from interleavings of concurrently executable transitions when the orderings are indistinguish-
able to the property to be checked [God94, Pel96, CGP99, Sch03]. Thus, partial order reduction
implements abstraction through representatives [Pel96, Pel98]. The basic idea is to not build
the complete state graph but a reduced state graph. With respect to the exploration of the state
space, this means that only a subset of enabled transitions is expanded. Thus, given a property,
only a subset of the state space will be explored [God94]. There are different approaches for
selecting the transitions to be expanded (e.g., [Pel96, God94]). Partial order reduction can be
implemented such that specific properties, e.g., deadlock-freeness or LTL properties are pre-
served [God94, Pel98, CGP99].

In business process compliance verification, the exploration of all possible orderings of concur-
rently executable activities is a potential source of state explosion. If the variants of orderings
of events from overlapped activity executions are indistinguishable to the compliance rule to be
checked (as is the case for CRGs), reducing the variants is advisable.

Example 9.9 (Partial order reduction):
Consider PEG X4 depicted in Fig. 9.11. Then, we notice that X4 contains all interleavings of the
nodes 7 and 8, which can be executed concurrently. Hence, X4 contains four variants for the
overlapped execution of the nodes 7 and 8 (i.e., 7 is started before 8 is started and completed
before 8 is completed, 7 is started before 8 is started and completed after 8 is completed, and
so on) depicted in Fig. 9.15. However, these variants of overlapped executions are indistin-
guishable to CRGs and also to a bulk of other compliance rule languages proposed in literature
(e.g. [ASW09, AWW09]). Unless a compliance rule specifically constraints overlapped executions
(e.g., through constraints on start and end events), such overlapping variants are not distin-
guishable. Therefore, a PEG containing all these variants contains no additional information over
a PEG containing only one overlapped execution with respect to CRGs.

(Start, 7) (End, 7)

(Start, 8) (End, 8)

(Start, 7) (End, 7)

(Start, 8) (End, 8)

(Start, 7) (End, 7)

(Start, 8) (End, 8)

(Start, 7) (End, 7)

(Start, 8) (End, 8)

Figure 9.15.: Variants of the overlapped execution of the nodes 7 and 8

Variants of overlapped executions as illustrated by Example 9.9 are typically indistinguishable
to compliance rules that treat the execution of activities as an unit (e.g., CRGs and many
approaches in literature such as [ASW09, AWW09]). Note that this does not prohibit time
conditions (e.g., on the time distance or deadline of activities). It is noteworthy that for compli-
ance rules employing an interval-based model [All83] or constraining the overlapped execution
of activities (e.g., A must be started one day after the start of B and completed one day before
completing B) the overlapping variants can become distinguishable to the compliance rules.
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The partial order methods for the verification of reactive concurrent systems as described
in [God94, Pel98] are not directly applicable to business process compliance verification as these
approaches rely on the commutativity of concurrently enabled transitions (i.e., different order-
ings of commutative transitions that lead to the same states). In particular, different orderings
of transitions will still yield similar paths with respect to the propositions that hold in the
states along the paths. In [Pel98, CGMP99], for example, orderings of concurrently executable
transitions that lead to so-called stuttering equivalent paths are reduced as these paths are in-
distinguishable to LTLX6 properties. However, against the background that compliance rules
impose constraints on the occurrence, absence, and ordering of business process events (i.e., the
transitions in this case), it is clear that their ordering can be subject to the compliance property.
Specifically, the ordering of the events directly affects the propositions that hold in each state
as the state labels are constituted by the event through which the state is reached.

Nevertheless, as Example 9.9 showed, compliance checking obviously bears potential for partial
order reduction. As illustrated in the example, CRGs and also a plethora of other compliance
rule specification formalisms do not distinguish between variants of overlapped executions. This
can be exploited for partial order reduction. In addition to that, we can also think of strategies
that exploit the particular compliance rule to be checked to reduce the orderings to be explored.
For example, if a compliance rule does not impose direct or indirect constraints on the ordering
of two concurrently executable activities, any interleaving of these activities will suffice for
compliance verification. We believe that the existing partial order reduction approaches can be
adopted and extended to support these cases. This is left to future research.

9.2.8. Summary

The abstraction strategies described in this chapter aim at reducing the state space that must
be searched in order to verify business process compliance. They exploit properties of business
process models such as the explicit data flows or properties of the compliance rule to be verified.
Clearly, their applicability depends on the business process description language employed. For
example, node state abstraction only becomes effective for process description languages whose
operationalization foresees the explicit marking of discarded nodes such as WSM nets [Rei00].
Other strategies, such as structural abstraction, are rather generic and not restricted to specific
process description languages. While some abstraction strategies can be incorporated into the
exploration almost without additional costs (i.e., node state abstraction, data state abstraction,
and event type abstraction), other strategies are suitable for preprocessing (e.g., structural
abstraction). In conclusion, we believe that the proposed strategies from our research and
from literature can contribute to making compliance checks even of huge models tractable.
The strategies were discussed with respect to CRGs and related compliance rule languages
focusing on constraining occurrence and ordering of activities. For compliance rules with more
sophisticated conditions (e.g., on overlapping intervals), however, similar considerations with
respect to differentiability can be applied to identify suitable abstraction strategies.

Extensive research in the model checking community has resulted in abstraction strategies,
which can be adopted for business process compliance verification. Some of the abstraction
approaches described are based on existing abstraction strategies (e.g., abstraction through

6LTLX refers to LTL without the nexttime operator.
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representatives [CGP99, Pel96] or merging states [BBF+01]). In addition, the adoption of further
existing approaches, such as the exploitation of symmetries [ID96, CGP99], for compliance
verification can be investigated. We leave this to future research.

9.3. Conveying compliance violations

So far, we focused on techniques to detect compliance violations within a process model or occur-
ring during process execution. Clearly, each detected compliance violation has to be conveyed to
the respective stakeholders (such as process designers working on a process model or process su-
pervisors in charge of a running process instance). The challenge is to pinpoint the source of the
violation and to convey it to the stakeholders in an intelligible way. In the following, we describe
ideas on conveying compliance violations. Section 9.3.1 addresses the visualization of compliance
violations within process models. Runtime is addressed in Section 9.3.2. Section 9.3.3 briefly
describes further related issues and provides references to literature.

9.3.1. Visualizing and explaining compliance violations in process models

Conceivably, it will often be difficult for a process designer working on a complex process model
comprising up to hundreds of artifacts to pinpoint the source of compliance violations without
the system’s assistance. In order to be able to evaluate a compliance violation and to apply
adequate remedies, it is vital for a process designer to know which process instances will be
affected by the violation. To visualize the parts of the process that are affected by a compliance
violation, the detected counterexamples (cf. Sect. 8.2) can be “replayed” in the process model to
highlight respective parts of the model. However, even with highlighting the parts of the process
model affected by a compliance violation, identifying the root-cause of the violation can still be
a challenge. Therefore, it can be useful to also relate these parts to the particular compliance
rule.

In [AW09, AWW09], Awad et al. address the visualization of compliance violations in process
models. In order to verify compliance with a rule, the process model is checked for patterns
of rule violations (i.e., referred to as anti-patterns). If an anti-pattern of a compliance rule
can be found in a process model, a compliance violation is detected. The anti-patterns are
expressed as BPMN-Q queries [Awa07, ADW08]. The subgraph of the process model matching
the anti-pattern queries can be shown to the user. This approach is designed to work with
purely structural compliance rules that are composed from a fixed set of patterns. In [AWW09],
Awad et al. address the explanation of data-aware compliance rules in [AWW09]. Here, the set
of rules introduced in [ADW08] is extended with data conditions that accompany the activity
specification, for example the conditional precedes rule (“Before opening the bank account, the
respondent bank rating must be accepted.”). For these rules, visualization and explanation are
realized based on temporal logic querying to extract data conditions of a violation and processing
anti-pattern queries to show the subgraph of the process affected by the violation.

In the SeaFlows project, concepts on conveying compliance violations were developed in the
context of a master thesis [Mer10] aiming at providing assistance for root-cause analysis. In
contrast to the work done by Awad et al. ([AW09, AWW09]), this approach focuses on only
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Figure 9.16.: Highlighting parts of a process model affected by a compliance violation

the visualization. To provide an overview of the parts of the model affected by a violation, the
approach proposed in [Mer10] highlights the paths of the process model in which a compliance
rule is violated / satisfied7. Fig. 9.16 shows a screenshot of the proof-of-concept implementation.
The corresponding compliance rule requires H to be executed after C. The dotted red line indi-
cates that the compliance rule can become violated when executing that part of the process (in
this case, the violation depends on the execution order of the concurrently executable activities).
So far, the visualization concepts do not consider data conditions of compliance rules. However,
it can be extended to deal with more sophisticated compliance rules.

In addition to highlighting the paths of the process model, the approach exploits the graph
structure of CRGs to provide details on the compliance violation aiming at facilitating root-
cause analysis. As depicted in the screenshot in Fig. 9.17, the nodes involved in the violation
are highlighted. When clicking on the violation report, the user is provided with details on
the violated compliance rule by relating directly to the activity involved. In Fig. 9.17, it is
shown that activity C contained in the process model requires a subsequent H. In addition, the
system tries to assist the process designer in compensating the violation by highlighting nodes

7The input data for this can be obtained from our compliance checking framework as described in Section 8.2.2.2.
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Figure 9.17.: Assistance in identifying the root-cause of a compliance violation

associated with activity H contained in the process. This will be useful, for example, if the
process designer misplaced an activity in the process model. The work done in [Mer10] was
implemented within the SeaFlows Toolset, which will be described in Chapter 10

As described in Section 8.2.2.3, the structure and markings of MarkStructures can be exploited
to derive explanations for compliance violations. Based on that, advanced concepts for conveying
the root-cause of compliance violations can be developed. This together with the concepts for
visualizing affected parts of the process model and the advanced concepts developed in [Mer10]
can provide the basis for a sophisticated visualization framework.

9.3.2. Runtime support

At runtime, compliance information on running process instances can be gathered in a process
cockpit as implemented in existing tools. In fact, various visualization concepts exist. For ex-
ample, the traffic lights metaphor is often used. A major benefit of using CRGs for compliance
monitoring is that the effective compliance state is always reflected in the MarkStructures.
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Thus, useful information can be derived from the MarkStructures even before a violation be-
comes manifest [LRMKD11]. In Section 7.4.2 and 8.4.1, we described how the MarkStructures
can be exploited to explain the root-cause of a detected compliance violation. In addition, we
showed that information on how to render a currently violable MarkStructure satisfied
can be derived. This can be used for preventing violations. Further details are provided in our
paper [LRMKD11]. When monitoring process instances with a defined process model, concepts
for visualizing violations in process models as described in Section 9.3.1 can be applied to show
the parts of the process affected by the violation.

9.3.3. Further issues

Clearly, assistance beyond the pure visualization and explanation of detected compliance vio-
lations is desirable. This particularly includes the (semi-)automatic resolution of compliance
violations in process models. So far, this has been addressed by only a few approaches [ASW09,
GK07, GK07] and is beyond the scope of this thesis. Finally, we see the potential of applying
verbalization techniques to derive intelligible explanations for compliance violations from CRGs.
This should be addressed in future research.
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10
Prototype implementation

In this chapter, we present SeaFlows Toolset, the proof-of-concept implementation developed in
the context of this thesis. As a result of the research methodology employed (cf. Section 2.2.3),
different techniques and approaches explored in our research resulted in respective prototype
implementations. The rationale behind that was to test and explore the feasibility of ideas and
approaches. Thus, SeaFlows Toolset comprises different tools. A major part of SeaFlows Toolset
has been presented at demo sessions [LKRM+10] or in publications [KLRM+10, LRMKD11,
LIMRM12, KR11a].

Compliance rule graph editor

Structural compliance
checker

Compliance rule graph
execution engine

Visualization
component for

compliance violations

Data-aware
compliance checker

SeaFlows Toolset

Process modeling / execution environment
Process environment

Figure 10.1.: Components of SeaFlows Toolset

Fig. 10.1 illustrates the components of SeaFlows Toolset and their interactions with the process
modeling and execution environment as provided by PrMSs. The parts that implement the
concepts on CRGs presented in Chapter 6 and their operational semantics described in Chapter 7
are shown in red. The compliance rule graph editor is a visual modeling environment for CRGs
and CRG composites. We describe this tool in more detail in Section 10.1. The compliance rule
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graph execution engine implements the operational semantics of CRGs and can be applied for
verification of process models and running process instances. Details are provided in Section 10.2.
The visualization component for compliance violations focuses on the visualization of compliance
violations within process models. The underlying concepts are described in Section 9.3.1 and
further details are provided in Section 10.3. The structural compliance checker was developed
to test a compliance verification approach based on applying certain checks to the process
structure [LKRM+10]. The data-aware compliance checker implements abstraction strategies
for taming state explosion (cf. Section 9.2) and uses a model checker for conducting compliance
checks [KLRM+10, LKRM+10]. The structural and the data-aware compliance checker are
presented in more detail in Section 10.3.

10.1. Compliance rule graph editor

The compliance rule graph editor (CRG editor in brief) is the modeling environment for CRGs.
The main graphical user interface (GUI) is shown in Fig. 10.2. On the left hand side, one may
browse existing compliance rule projects. The actual CRG editor constitutes the main part
of the GUI. A CRG is modeled by defining its antecedent and its consequence patterns. This
is done in separate areas shown as boxes in the GUI. The rationale behind this is to create
awareness for the different semantics of the CRG antecedent and the CRG consequences. This
is supposed to help the compliance rule modeler to reflect on the designated rule structure.
Multiple consequence CRGs can be defined for a CRG composite. For that, multiple boxes for
defining consequences are provided in the GUI.

Figure 10.2.: The compliance rule graph editor
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Each CRG node is assigned a unique label, an activity type, and multiple data conditions as
indicated in Fig. 10.3. As mentioned in Section 7.7.2, a modeled CRG can be assigned a data
object that sets the context for the compliance rule activation. When executing the CRG over
an execution trace, the data object works as selection criteria for events that are related and,
hence, can contribute to the same rule activation. This constitutes a data relation between the
involved events as they all necessarily refer to the same data object context.

Figure 10.3.: Modeling CRGs in the compliance rule graph editor

Activity types can be defined within the editor for testing or can be imported from an event
model source (e.g., from an event log) or from a PrMS. The CRG editor is specifically integrated
with the commercial PrMS AristaFlow BPM Suite1, which, in turn, is based on the research
done in the ADEPT project [Rei00]. Thus, activity types defined in the activity repository of
AristaFlow BPM Suite managing process artifacts relevant within the business domain can be
assigned to CRG nodes. This ensures that processes to be verified and modeled compliance rules
both refer to the same set of artifacts.

The implementation was done using the Eclipse Modeling Framework (CMF) and the Eclipse
Graphical Modeling Framework (GMF). Further checks to enforce certain conditions on the
modeled CRGs can be defined. In the implementation, it is, for example, checked whether labels
assigned to CRG nodes are unique. A simple versioning tool based on CVS is also integrated in
the CRG editor, thus, enabling the establishment of a rule repository.

1http://www.aristaflow.com
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10.2. Compliance rule graph execution engine

The compliance rule graph execution engine (CRG engine in brief) implements the CRG oper-
ational semantics. Specifically, the execution and marking rules for processing ex events and
pruning rules (cf. Section 7.5.1) are implemented in the CRG engine. Similar to the CRG editor,
the CRG engine was implemented in Java based on the Eclipse framework. Together with the
CRG editor, the CRG engine was used in the case studies that will be described in Chapter 11.

10.2.1. Process design time

As described in Section 8.1.1, a process model can be verified against imposed CRGs by ex-
ploring the model. Compliance verification can be conducted on-the-fly when exploring the
process model. However, we opted for implementing the exploration of the process model and
the application of the verification algorithms separately in order to enable the direct application
of the algorithms described in Section 8.2. For that purpose, we implemented a component
for transforming a process model into a process event graph (PEG), an automaton-like structure
whose nodes are associated with execution events of the process (cf. Section 5.2.6). Specifi-
cally, we utilized Algorithm 4 for ADEPT [Rei00] process models (i.e., WSM nets) described
in Section 9.1. The implementation further incorporates node state, event type, and data state
abstraction2. These abstraction strategies are described in Section 9.2. The PEG obtained from
an ADEPT process model can be visualized in the tool as shown in Fig. 10.5.

Algorithm 6 and Algorithm 7 introduced in Section 8.2.1 can be applied for annotating a PEG cap-
turing the process’ behavior with reachable compliance states. As described in Section 8.2.1, the
compliance states are represented by MarkStructures that can be interpreted as shown in Sec-
tion 7.4.2 and Section 8.2.2. MarkStructures can be visualized in the tool as shown in Fig. 10.6.
Specifically, nodes that constitute the source of a violation in violated MarkStructures are
highlighted in order to facilitate root-cause analysis. While the tracking of compliance states
throughout a PEG as proposed in Section 8.2.2.2 has not been implemented yet in the proof-of-
concept tool, this can be done in future extensions. This would leverage the practical application
of the tool as it would enable advanced support for root-cause analysis. As this implementation
is integrated into the PrMS AristaFlow BPM Suite, the process designer is relieved of switching
between different tools for process modeling and compliance verification.

10.2.2. Process runtime

In order to test runtime monitoring, we implemented a component that applies the CRG engine
to an execution trace. The component enables the creation of an execution trace for testing.
Specifically, a graphical user interface is provided in order to create, edit, and browse the events
of the trace as shown in Fig. 10.7.

For an execution trace, one can simulate the execution of a process by stepping through the
trace event by event. The runtime monitoring component invokes the CRG engine for each event
processed. The resulting compliance state in each step is represented by a set of MarkStructures

2Note that data domain abstraction is implemented in another tool that is described in Section 10.3.3.
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Figure 10.4.: Configuration of abstraction strategies

as described in Section 8.4.1. These MarkStructures are illustrated in the GUI. In violated
MarkStructures, nodes that constitute the source of the violation are highlighted in order to
facilitate compliance diagnosis as shown in Fig. 10.6. For a commercial implementation, a more
sophisticated GUI exploiting the information provided by the CRG execution engine for root-
cause analysis can be designed. As this component is integrated directly in the CRG editor, it
may also be used to test CRGs in order to ensure that they exhibit the semantics intended by
the rule designer.

Altogether, the CRG editor and the CRG engine with its additional components for exploring
process models and for investigating process executions demonstrate the technical feasibility of
the compliance checking framework proposed in this thesis. The integration of these tools with
a commercial PrMS shows that our framework is suitable for enhancing PrMSs with compliance
checking functionality.
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Figure 10.5.: A PEG obtained from exploring a process model

10.3. Further tools

In the course of our research, we experimented with different approaches, which resulted in tools
besides the ones implementing the main concepts described in the thesis. In the following, we
would like to give a brief overview on these tools and underlying ideas.

10.3.1. Visualization component for compliance violations

The visualization component for compliance violations has already been introduced in Sec-
tion 9.3.1 when describing ideas on the visualization of violations within process models. This
component was developed in the context of a master thesis [Mer10] conducted in the SeaFlows
project. To provide an overview on the parts of the model affected by a violation, paths of the
process model in which a compliance rule is violated / satisfied are highlighted as indicated in
Fig. 10.8. In addition to highlighting the paths of the process model, the approach further tries
to support process designer in resolving noncompliance by integrating the imposed CRG into
the process model visualization. In Fig. 10.8, the consequence part of the CRG is visualized
when clicking on the activity that belongs to the antecedent CRG in the process. This facilitates
the deduction of what is necessary to satisfy a compliance rule. In order to assist in resolving
the violation, the system highlights the relevant activities contained in the process model when
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Figure 10.6.: Visualization of a violated MarkStructure

pointing to the nodes of the consequence part. The visualization component further integrates
interesting features specifically for dealing with complex process models. For example, it im-
plements concepts for automatically reducing the process model in order to show all relevant
activities at the same time on screen or for folding and unfolding branches of the process model
to obtain more compact representations. It is integrated with the commercial PrMS AristaFlow
BPM Suite, from which it obtains the process model. For further screenshots and details on the
concept, the reader is referred to Section 9.3.1.

10.3.2. Structural compliance checker

The structural compliance checker implements an approach that aims at verifying process mod-
els against imposed rules by checking the process structure (instead of behavioral exploration).
We introduced structural compliance checking in [LRD06], however, so far we only addressed
basic exclusion and dependency constraints. We have further extended our approach in order
to provide support for a broader range of compliance rules. Based on the assumption of unique
labels (i.e., unique occurrences of activities within a process model), we have developed a struc-
tural compliance checking approach for a subset of CRGs. This approach is designed to support
loop-free process models and abstracts from data conditions.
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Figure 10.7.: The execution trace editor for testing compliance monitoring

The structural compliance checking approach is conducted in three steps. In step 1, for each
CRG, a set of structural criteria to be checked over the process model is automatically deter-
mined. These criteria can be considered queries on the relations of nodes within the process
model (i.e., node relations) that are relevant to the compliance rule. We define five structural
criteria consisting of containment, occurrence, and precedence relations. In step 2, the process
model is checked for compliance with the derived structural criteria. Thus, we can precisely
identify the structural criteria causing noncompliance. In case a compliance violation is de-
tected, these structural criteria will be collected in step 3 and will be used for error diagnosis
and for the generation of textual feedback as indicated in Fig. 10.9. By showing which structural
criteria are not satisfied by the process model, the system can help to resolve noncompliance. By
exploiting certain properties of the process description language such as block-structuring, the
structural criteria can be efficiently evaluated (cf. [RD98]). Adopting the paradigm of dynamic
programming, we cache node relations already queried to enable faster evaluation when the same
relations are queried a second time. The verification tool is integrated directly into the process
modeling environment of AristaFlow BPM Suite. This relieves the process designer of switching
between tools in order to apply compliance checks. For details on the tool implementation and
on the underlying concepts, the reader is referred to [LKRM+10].
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Figure 10.8.: Visualization of compliance violations in a process model

10.3.3. Data-aware compliance checker

The data-aware compliance checker was introduced in [LKRM+10]. It was implemented to show-
case the feasibility of the abstraction approach developed in a master thesis [Knu08] conducted in
the SeaFlows project. The abstraction approach, described in Section 9.2.6 and in [KLRM+10],
aims at reducing the state space to be explored for compliance checking. Given a process model
to be verified, the data-aware compliance checker first performs automatic data domain abstrac-
tion as described in Section 9.2.6. The basic idea is to reduce the domain of data objects, thus,
merging states that differ in data allocations but are nevertheless indistinguishable to the rule
to be checked. The abstracted data domain is computed by exploiting the data conditions con-
tained in the process model and in the compliance rules (in this implementation, we used LTL
rules). Then, the data-aware compliance checker transforms the abstract process model into a
state space representation for the actual compliance checking applying node state abstraction as
described in Section 9.2.2. The resulting model can be used as input for compliance checking,
for example using the approach proposed in this thesis. In the implementation of the data-
aware compliance checker, we employed the model checker SAL [BGL+00]. The counterexample
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Figure 10.9.: Textual feedback provided by the structural compliance checker

obtained from SAL is backtransformed in order to provide feedback on detected noncompli-
ance. Similar to the other tools, the data-aware compliance checker is integrated with the PrMS
AristaFlow BPM Suite.

10.4. Summary and outlook

In this chapter, we presented the components of SeaFlows Toolset, our proof-of-concept im-
plementation. Specifically, we introduced the CRG editor and the CRG engine that addresses
design and runtime compliance verification. In addition, we described further tools that resulted
from the iterative research procedure employed in our project. Most of our tools are integrated
with the commercial PrMS AristaFlow BPM Suite. However, the toolset can also be adapted for
integration with other PrMSs. Due to the general event format utilized by the implementation,
it can be integrated with other tools for process analysis such as the process mining framework
ProM [VBDA10].
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11
Practical evaluation

With the prototypical implementation of our concepts, we demonstrated its technical feasibility.
In order to assess the practicability of our approach, further evaluation is required. In this
chapter, we describe our efforts to evaluate the compliance checking framework proposed in
this thesis. In Section 11.1, we utilize CRGs to model compliance rule patterns that we often
encountered in meta-analyses. We further applied the SeaFlows Toolset to real world data. In
particular, we utilized the compliance checking framework developed in this thesis to analyze
processes from the higher education domain. The results from this study are described in
Section 11.2. One part of the results was also published in [LIMRM12]. Finally, we also analyzed
a process of an IT company targeting suppliers in the automotive domain. The results from that
case study are described in Section 11.3. Section 11.4 finally summarizes the lessons learned.

11.1. Pattern-based evaluation

In meta-analyses, we observed that many approaches in literature came up with a set of com-
pliance rule patterns. For example, patterns were proposed by Awad et al. [ADW08, AWW09],
Namiri et al. [NS08, Nam08], and Giblin [GMP06]. Specifically, these patterns are based on the
property specification patterns collected by Dwyer and Corbett [DAC99] (cf. Section 2.1.1.1).
In [LRMD10], we showed how some these patterns can be expressed using CRGs. In the fol-
lowing, we extend our considerations to the complete set of property specification patterns. In
addition, we further show how scopes, a useful concept of the property specification patterns,
can be expressed very naturally using CRGs.

As described in Section 2.1.1.1, the property specification patterns consist of occurrence and
order patterns, which can be configured with scopes defining in which region the constraints
apply.
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11.1.1. Occurrence patterns

Recall the interpretation of the patterns for process activities (as described in Section 2.1.1.1)1.
Absence can be expressed using ConsAbs nodes. Existence requires that a region contains a
certain activity. This can be expressed using ConsOcc nodes. Bounded existence defines that
a region contains at most a specified number of a certain activity. For example, the constraint
that there are at most two executions of activity A in a process execution can be captured by
modeling that if there are two executions of A, there shall be no further execution of A. This
can be modeled using two AnteOcc and a ConsAbs node. An interpretation of this pattern for
a sequence of A is illustrated in Fig. 11.1. A different interpretation that does not refer to
sequential occurrences of A can be expressed using the same nodes but with diff edges instead
of order edges (i.e., following “if there are already two executions of A in a process execution,
no further execution of A is allowed”). Alternatively, one may also define the pattern identifying
a violation of a bounded existence constraint using CRGs (i.e., the negated pattern). If this
pattern is detected in a process execution, the constraint is violated.

AnteOcc node

AnteAbs node

ConsOcc node

ConsAbs node

ORDER edge DIFF edge

NotExecutedExecutedStarted

r1

A

r2

A A

r3
Bounded existence

(at most a sequence of 

two executions of A)

Figure 11.1.: An interpretation of the bounded existence pattern modeled as CRG

11.1.2. Order patterns

Fig. 11.2 depicts CRGs expressing the precedence, response, chain precedence, and chain response
patterns. Precedence requires the occurrence of a certain activity prior to the occurrence of
another activity (i.e., the first activity is premise to the later activity). Response requires the
occurrence of a certain activity in response to the occurrence of a prior activity (i.e., stimulus-
response). Different variations of precedence chains (i.e., 1 cause-2 effect and 2 cause-1 effect)
and response chains (i.e., 1 stimulus-2 response and 2 stimulus-1 response) are depicted in
Fig. 11.2.

It is notable that these patterns, for example, the 1 stimulus-2 response chain, can be extended
easily. Imagine, for example, we would want to further modify the 1 stimulus-2 response chain
such that the more specific response chain S and T without R being executed between S and
T is required after P . This can be easily integrated by adding an absence constraint (i.e., a
ConsAbs node) between the respective nodes in the CRG.

1Note that the universality pattern is not applicable to our event-based view of process executions.

234



11.1. PATTERN-BASED EVALUATION

AnteOcc node

AnteAbs node

ConsOcc node
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S
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T

r3

r2
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r3
2 stimulus-1 response 

response chain
r1

S

Figure 11.2.: Order patterns modeled as CRGs

11.1.3. Scopes

Five scopes were introduced by Dwyer and Corbett as shown in Fig. 2.1 in Section 2.1.1.1: global,
after R, before R, between Q and R, and after Q until R. As these scopes define the region in
which a constraint applies, they are naturally associated with a compliance rule’s antecedent
part. Hence, it is apparent that AnteOcc nodes can be utilized to model scopes. Clearly, global
scope does not require any definition. After R and before R can be captured by using an AnteOcc
node for R and relating the compliance rule to this node. In a similar manner, between Q and
R can be modeled. Fig. 11.3 depicts three interpretations of the 1 stimulus-2 response response
chain in combination with between Q and R scope. While the first variant requires both the
stimulus and the response to occur between Q and R, the second variant does not require the
response to occur before R. The CRG defined in the first and the second variant applies to
each sequence with Q followed by R. However, one may want to be more precise about the
scope of the compliance rule. In the third variant, for example, the scope is refined such that
the response chain has to apply between Q and the first next occurrence of R. In that manner,
further refinements can be realized by incrementally adding or removing primitives of the CRG
language.

Expressing after Q until R scope is not as straightforward as CRGs do not know the weak until
operator, which is available in LTL. However, the semantics can be captured by defining two
CRGs, one for the case that R occurs after Q and one for the case that R does not occur after
Q.

11.1.4. Discussion

Predefining patterns of frequently occurring compliance rules is a feasible approach in general and
can facilitate compliance rule modeling. Such patterns can be defined using CRGs. We believe
that the definition of compliance rules in a pattern matching manner as with CRGs is more
convenient than by navigating through a trace as, for example, with LTL. Existing patterns,
such as precedence chain, can easily be extended, for example, by adding additional absence
constraints between the occurrences of the involved activity executions. This is not possible
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Figure 11.3.: Three interpretations of the 1 stimulus-2 response response chain in combination
with between Q and R scope

when just combining property specification patterns (and their mappings to, for example, LTL)
using the logical conjunction. To leverage the definition of scopes, a semantic level can be
introduced to the CRG language enabling the semantic distinction between the scope defining
nodes and normal antecedent nodes.

11.2. Higher education processes

In the HEP project2 conducted at the University of Vienna, higher education processes were
investigated. The HEP data set consists of different process types reflecting different courses. For
this case study, we selected one course, which took place in three consecutive years. Collecting
data for this course yielded log data of 330 instances (one instance per student) with 18511
events. A log of a process instance corresponds to an execution trace reflecting the events
occurring in the process instance.

In this case study, we employed the compliance checking framework proposed in this thesis to
analyze process logs with respect to compliance with imposed rules. This provided the basis for
semantic log purging, a preprocessing step for process mining. In the purging process, logs that
violate certain rules were removed from the log set. The remaining logs were given as input to
process mining to detect reference process models based on the course process instances that
comply with imposed rules. The process models obtained from process mining with and without
semantic log purging were compared to a reference process model that was created with the help
of the instructors. The research methodology is illustrated in Fig. 11.4. The objective of the
overall study was to find out whether semantic log purging can help to improve certain quality

2www.wst.univie.ac.at/communities/hep/
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aspects of mined process models. The methodology and the findings of that experiment are
described in our paper [LRMGD12].
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Figure 11.4.: Research methodology in the HEP project (taken from [LRMKD11])

The process of semantic log purging using SeaFlows Toolset is illustrated in Fig. 11.5. First, the
log data is imported to our tool, which, in turn, creates an event model of the events occurring in
the traces. Based on this event model, the constraints imposed on the course process are defined
as CRG composites. Then, the logs are verified against the CRG composites using SeaFlows
Toolset. Logs that violate at least one CRG composite are purged from the log set. Thus, a log
set remains that contains only logs complying with imposed constraints.

Semantic Log Purging

ifi id Event 
Model

Process
Constraints

Verification
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Purged Logs
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Logs

Log Data Import 
and 

Event Model 
Derivation

Modeling of 
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Log Purging
Based on 
Verification
Reports

Figure 11.5.: The semantic log purging process (taken from [LRMKD11])

11.2.1. Compliance rules

In the scope of this thesis, the log purging part exploiting the compliance checking frame-
work proposed is most interesting. Together with the instructors, we collected a set of process
constraints (i.e., compliance rules), that served as the basis for semantic log purging. These
constraints define expected behavior in the course process. In the course process, different mile-
stones and exercises have to be passed by students. Certain deadlines for each milestone and
exercises were defined by the course instructor. All actions with respect to the exercises and
milestones, i.e., the submission rounds of milestones or exercises by students and the evaluation
of them by supervisors, were logged by the online learning environment. Thus, this data could
be extracted and transformed into event logs. The events of the log data, therefore, do not
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Constraint Enforcement level
c1 For each milestone, no upload must take place

after the corresponding milestone deadline.
high

c2 For each exercise, no upload must take place after
the corresponding exercise deadline.

high

c3 For each uploaded milestone, the instructor gives
feedback.

low

Table 11.1.: Constraints imposed on the course process

correspond to activity executions but are rather instantaneous. While deadlines mark the due
date of milestone and exercise submissions, the blended learning environment does not forbid
belated submissions. Therefore, a major requirement was to detect deadline violations. Some
constraint examples are summarized in Table 11.1 [LRMGD12].

Clearly, these constraints can be expressed by means of CRGs. As each milestone and exer-
cise deadline constitute a unique event type, CRGs were defined for each such deadline event.
Fig. 11.6 shows a constraint defined in the SeaFlows CRG editor.

Figure 11.6.: A constraint of the course process modeled as CRG

11.2.2. Compliance analysis

The log set containing the 330 instances were checked for compliance with the imposed rules
using our compliance checking framework. To facilitate the a posteriori analysis, we equipped
the SeaFlows Toolset with batch processing features for processing multiple traces in one batch
activity. For each log (i.e., each process instance) violating at least one compliance rule, a
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report file is generated (cf. Fig. 11.7). The file contains information on violated compliance rule
activations and the events associated with them.

Figure 11.7.: Report files for each violated process instance

The MarkStructures of violated rule instances can be shown to the user and details of violated
MarkStructures can be browsed as shown in Fig. 11.7. Based on these MarkStructures, expla-
nations for violations can be generated as described in Section 7.4.2.

11.2.3. Lessons learned

This case study investigated the application of our compliance checking framework to a posteriori
analysis. However, the logs collected can also be used to simulate compliance monitoring using
our framework (cf. Section 10.2.2). While the constraints imposed on the course process have
a rather simple structure, they nevertheless led to interesting insights. Specifically, this study
showed that the particular CRG composites that capture the semantics of certain imposed
constraints largely depend on the event model.

Firstly, in this specific case, each exercise and milestone deadline constitute a unique event type.
Therefore, the constraint that no submissions are allowed after the corresponding deadline,
for example, was defined for each deadline event type. If, however, the deadlines for different
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milestones and exercises would be represented by the same event type, the process constraint
could be expressed through a single CRG using the milestone / exercise as context data object.
In this case, each CRG would refer to an artifact (e.g., a milestone or an exercise). Thus, to
support such artifact-oriented constraints [RKG06, Mül09, Loh11, KR11b] properly, it must
be possible to define constraints for (data) objects. While data relations are not supported in
CRGs, our prototype implementation already enables data relations that can be utilized for
supporting data-oriented constraints. In particular, a modeled CRG (or a CRG composite) can
be defined for a data object. When executing the CRG over an execution trace, rule activations
will be detected based on the data object information.

Secondly, in the log data obtained from the online learning environment, deadlines were repre-
sented by specific events. Thus, it was possible to use the deadline events for CRG definition. If,
however, deadlines would not be represented by specific events, a notion of time would have been
necessary in order to capture the process constraints. This is not supported in our approach so
far and should be investigated in future research.

11.3. Project process in an IT company

This study was conducted in cooperation with an IT company targeting sub-contractors in
the automotive domain. The process under examination is the company’s project process and
describes how a project is processed from a project request to the completion of the project. It
is a complex business process involving different departments of the company. It covers a sales
and approval subprocess, the actual project workflow and an administrative cost calculation
subprocess. The coarse model is depicted in Fig. 11.8. In the process, an incoming customer
request (e.g., for an IT project or a training) is processed. The incoming request initiates
different activities, such as the creation of an offer for the customer. If the customer places
an order, the actual project will be conducted. After project completion, some administrative
cost calculations are conducted. The business level process model contains around 100 artifacts
when being modeled using an EPC-like notation.

+

Sales and approval 

process

+

Project process

+

Cost calculation

Figure 11.8.: The coarse project process modeled in BPMN

For this case study, we first discussed the project process with a practitioner and collected
constraints that the process is supposed to obey. The compliance rules collected were described
informally. While the major objective was to apply the SeaFlows compliance checking framework
to analyze compliance with imposed rules, we nevertheless approached this study in a more
general way. Thus, we tried to utilize the compliance checking framework for realizing compliance
controls when applicable but also considered other kinds of compliance controls when suitable
(following Section 1.1). We basically used this study to get an idea of a compliance project in
practice.
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In order to enable automated compliance checking using our framework, the informal compliance
rules have to be translated into checkable rules on the concrete implementation of the project
process. For that purpose, a closer look at the process implementation was necessary. In the
following, the compliance rules we collected and their translation into checkable compliance rules
are described in Section 11.3.1. Then, the application and results of the compliance analysis are
described in Section 11.3.2. Section 11.3.3 summarizes the lessons learned in this case study.

11.3.1. Compliance rules

Together with the project manager, a practitioner best familiar with project processing in the
company, we discussed the different stages of the project process and collected compliance rules
imposed on it. The rules collected are summarized in Table 11.2. As apparent, the compliance
rules are described in natural language and neither imply a specific approach for checking com-
pliance nor indicate a specific process implementation. Most of the compliance rules collected
refer to the sales and approval part of the project process involving the handling and approval
of customer requests and the creation of offers for the customer.

Constraint
c1 If the incoming customer request comes from a new customer, a record for the new

customer has to be created in the Alfresco system for managing customer data.
c2 The cost of the project has to be roughly estimated for each incoming customer

request.
c3 For critical customers, extra effort should be calculated.
c4 All customer requests requiring more than five working days necessitate management

approval.
c5 If management approval is necessary but approval is not provided, the request has

to be declined.
c6 The management must be notified of customer requests for which management ap-

proval is not necessary.
c7 The request should be replied before the associated due date if a due date is provided
c8 An offer that is not ordered, should be archived.
c9 If an offer expires without an order being placed, the sales shall be notified.
c10 If an offer is not ordered before expiry date, it should be archived or adapted.
c11 The installation of the implementation should be started no later than two days

after completion of internal tests.

Table 11.2.: Constraints imposed on the project process

In the second step, the rules were modeled as CRGs assuming a suitable event model in the
process model reflecting the semantic concepts associated with the rules. The CRGs are depicted
in Fig. 11.9. Note that c10a and c10b together form a CRG composite. Apparently, the CRGs
from Fig. 11.9 imply the existence of corresponding events / concepts in the process domain
for each CRG node. The rationale behind this is to obtain a formal description of compliance
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rules that reflects the structure of the informal rules but is not yet tied to a particular process
implementation.
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Figure 11.9.: CRGs capturing the constraints from Tab. 11.2

While the CRGs depicted in Fig. 11.9 reflect the basic structure of the underlying constraints,
they cannot be utilized directly for compliance checks. As described in Section 1.1, informal
compliance rules have to be interpreted with respect to the specific process implementation in
order to derive suitable automated compliance controls. Against the background of the SeaFlows
compliance checking framework, this necessitates the formalization of compliance rules based
on implementation artifacts (e.g., process activities or events) in order to enable automated
compliance checking and compliance monitoring. This constituted a major challenge in this
case study. Yet this procedure is rewarding as it provides insights into the mechanisms of
deriving compliance controls from informal compliance rules.
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Based on the implementation of the project process, the informal rules were translated to CRGs
that convey the intended semantics with respect to the implemented project process. This
specifically means that the concepts associated with the nodes of the CRGs from Fig. 11.9 have
to be translated to process artifacts. Note that the structure of the preliminary CRGs may have
to be altered if concepts are reflected by a combination of process artifacts. In the translation
process, we made interesting observations. Similar as in the HEP project (cf. Section 11.2), we
observed that the particular structure of a CRG derived from an informal rule largely depends on
the process implementation. Many parts of the process were not fully automated. For example,
the internal and the integration tests. In the implementation of the process, the internal and
the integration tests are indicated by assigning costs to these tests via an input mask. Thus,
these activities / events attest that these tests were conducted.

Some of the compliance rules could not be automated due to the particular implementation
of the project process. Consider, for example, compliance rule c3. Provided that the process
implementation provides artifacts indicating that a customer is critical and that potential ex-
tra effort is calculated, clearly c3 could be modeled as a CRG as shown in Fig. 11.9. In the
implementation of the project process, however, no such artifacts exist. The evaluation of a
customer as critical and the calculation of extra effort happen within a graphical user interface
of a custom application within a single activity. Thus, it would become necessary to integrate
CRGs into this application in order to support c3. We abstained from doing that. The situation
is similar with c1. Both c1 and c3 could be modeled as CRGs, suitable events in the process
domain provided.

As CRGs do not support quantitative time constraints, c11 cannot be supported unless time
events are provided (as, for example, illustrated in Fig. 11.9). In contrast to the HEP project
(cf. Section 11.2), where such time events were provided, the implementation of the project
process does not provide time events. For the same reason, c7, c9, and c10 cannot be checked
using our compliance checking framework unless a timer is provided that triggers time events
such as the expiry of a deadline.

The remaining CRGs, namely c2, c4, c5, c6, and c8, were modeled based on the event model
of the implemented project process. For that, it has to be investigated how the concepts in
the process-independent CRGs are reflected in the process implementation. In this case, the
structure of the CRGs could be preserved and only the activities associated with CRG nodes
had to be adapted. Fig. 11.10 shows some of the CRGs modeled based on the process event
model.

11.3.2. Compliance analysis

Using the modeled CRGs, the implemented project process was analyzed with respect to compli-
ance. As the implementation level process contains many technical activities (such as database
retrieval tasks) that do not affect compliance, these parts of the process model can be abstracted
from when verifying the process. Thus, we manually reduced the process model leaving only
those activities relevant to the imposed rules. Using SeaFlows Toolset, the reduced process
model was explored and a PEG was created from this model (cf. Fig 11.11). We then applied
the CRG execution engine (cf. Section 10.2) to verify compliance of the process model.

243



CHAPTER 11. PRACTICAL EVALUATION

Figure 11.10.: Rules imposed on the project process modeled as CRGs

It turned out that most but not all of the compliance rules are enforced in the project process
model. Specifically, compliance verification using the compliance checking framework revealed
that c6 is not enforced in the project process. Among the constraints not checked using our
framework, c9 and c10 are not yet enforced in the process model. As mentioned previously, c1
and c3 require intra-activity constraints. This is, for example, addressed in the work of Künzle
et al. [KR11b]. Compliance rule c9 can be enforced by defining escalation strategies for activities
(i.e., define actions due when, for example, an activity expires). The same is true for c8. The
compliance rules c10 and c11 require time events or time-aware constraints as, for example,
addressed by Lanz et al. [LWR10].

We further simulated the execution of the project process and monitored compliance with im-
posed CRGs using the CRG engine (cf. Section 10.2). As the underlying process model bears
compliance violations, clearly compliance violations can occur at the process instance level. The
rationale behind simulating process instance execution was to apply compliance checks from the
runtime perspective. Fig. 11.12 shows the visualization of a violable MarkStructure yielded
during process instance execution. Specifically, it shows that the activity Decline request is
pending and needs to be executed in order to comply.

11.3.3. Lessons learned

Even though the process under investigation probably does not yet belong to the huge processes
that we may encounter in practice [BRB07], it was yet difficult to check compliance of the project
process manually. This is particular due to the multitude of branches and associated conditions.
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Figure 11.11.: Design time compliance verification of the abstracted project process

Hence, the possibility to check compliance in an automated manner seems to be useful already
for processes of that size.

The translation of informal constraints to checkable compliance rules at the level of the imple-
mented project process constituted a major challenge in this study. It confirmed our observation
in the HEP project (cf. Section 11.2) that the structure of the derived compliance rules heavily
depends on the event model employed. The approach to first model compliance rules at the
informal level as CRGs and then map the artifacts used in these CRGs to implementation ar-
tifacts seems viable. We can think of tool support for facilitating this approach. Buchwald et
al. introduce an approach for bridging the gap between business process models and service
composition specifications in [BBR11]. This approach may be adopted for mapping between
CRGs of different specification levels. We further observed that the structure of compliance
rules modeled as CRGs further depends on the “frame” that can be assumed. For example,
since we can assume that the process follows a certain workflow specification, we can assume
a certain ordering of the activities in the process. This affects the degree of details that need
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Figure 11.12.: Simulated compliance monitoring for the abstracted project process

to be compiled into a CRG specification. Finally, we identified that time-aware constraints as
already envisioned in Section 6.4.2 constitute a desirable extension of the CRG language.

11.4. Summary and outlook

In this chapter, we presented our efforts to evaluate the proposed compliance checking framework
in practice. We first showed how CRGs can be utilized to model the property specification
patterns described in Section 11.1. As mentioned earlier, we believe that the predefinition of
frequently occurring rule patterns can leverage the practical application of a compliance checking
framework. An interesting observation when modeling the property specification patterns was
that already modeled patterns, such as precedence chain, can be easily extended using the
primitives of the CRG language. We can further think of introducing a semantically higher layer
based on the CRG modeling primitives in order to provide a semantically high level interface
for compliance rule modeling. This can be utilized, for example, to semantically discriminate
between scopes and the actual rule antecedent.

In Section 11.2 and 11.3, we described the application of the SeaFlows compliance checking
framework to realistic data in two different settings. In both these case studies, we observed
that the checkable compliance rule derived from abstract / informal constraints largely depends
on the particular process implementation. Generally, the process of translating informal com-
pliance requirements to checkable compliance rules is highly interesting and constituted a major
challenge in the studies. As described in Section 11.3.3, an approach that facilitates mapping be-
tween compliance rules of different specification levels could be beneficial. We further identified
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interesting extensions of the CRG language and the compliance checking framework. Specifi-
cally, the study confirmed the intuition that data relations and quantitative time constraints
constitute important extensions of the CRG language (cf. Section 6.4.2). In future work, it
would be interesting to apply the proposed compliance checking framework in an extended case
study involving the complete process lifecycle to gain a round-trip experience. This, however,
requires an extensive project that can be accompanied from early on.
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12
Summary and outlook

Nowadays, compliance-awareness is undoubtedly of utmost importance for companies. Still the
costs for compliance-awareness are a major issue. Even though an automated approach to com-
pliance checking and enforcement has been advocated in recent literature as a means to tame
the high costs for compliance-awareness, the potential of automated mechanisms for supporting
business process compliance is not yet depleted. Business process compliance deals with the
question whether processes are designed and executed in harmony with imposed regulations. In
this thesis, we proposed a compliance checking framework for automating business process com-
pliance verification within PrMSs. Such process-aware information systems constitute an ideal
environment for the systematic integration of automated business process compliance checking
since they bring together different perspectives on a business process and provide access to
process data.

In Chapter 2, we described requirements on a compliance checking framework. Specifically, it
has to support the modeling of compliance requirements in a manner suitable for automated
checks and has to accommodate mechanisms to verify compliance at both process design and
process runtime. Key to the practical application of a compliance checking framework will fur-
ther be its ability to provide meaningful and intelligible reports based on which concrete process
adaptations or other measures for resolving noncompliance can be derived. As discussed in the
state-of-the-art discussion in Chapter 3, existing compliance checking approaches predominantly
focus on specific scenarios rather than on the integrated support of process design and process
runtime. The requirement for intelligible compliance reports explaining the root-cause of compli-
ance violations and detected compliance states is still not yet addressed in an adequate manner
or necessitates supporting mechanisms. Existing compliance frameworks that employ a holistic
view on business process compliance issues, in contrast, focus on compliance management in
the large rather than on the actual compliance checks. While these frameworks are valuable
for establishing an overall approach to compliance management in general, they particularly
rely on existing techniques, such as model checking, for conducting compliance checks. These
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techniques, again, are applicable only to specific scenarios (e.g., process design time) and suffer
from known limitations as discussed in Chapter 3. Thus, there is still need for a compliance
checking framework that supports both process design and process runtime and is capable of
providing insights into detected compliance states. The SeaFlows compliance checking frame-
work proposed in this thesis can become part of an overall integrated compliance management
framework. In Section 12.1, we first summarize the contributions of this work with respect to
the research objectives. Section 12.2 then provides an outlook on future research challenges that
we identified in the course of our research.

12.1. Contributions

Our compliance checking framework resulted from two major working packages addressed in this
work. One working package deals with the question how to model compliance rules in an ade-
quate manner. The other working package addresses the question how to check compliance rules
at process design and process runtime such that detailed compliance reports can be provided.

Compliance rule specification In this work, we proposed the compliance rule graph (CRG)
language, an approach for modeling compliance rules based on a graph notation. The rationale
behind this is to hide the complexity of a formal language from the modeler, an objective that is
motivated by our experience with LTL. Our major goal was to provide a simple yet powerful and
extensible compliance rule language. Thus, we adopt the assumption underlying graph-based
process description languages that a graph notation is suitable to represent constraints on the
occurrence and ordering of activities. In contrast to many related approaches in literature, the
CRG language is not a collection of patterns but a truly compositional language that consists
of modeling primitives such as nodes and edges expressing the occurrence, absence, or ordering
of activity executions. A complex compliance rule is composed by assembling these primitives.
Instead of employing a navigational mental model when modeling rules as with LTL, we aimed
at a more straight-forward pattern specification model. This specifically enables to easily refer to
specific past or future events. Thus, an existing CRG can be refined by inserting further modeling
primitives without having to restructure the complete rule structure. The proposed language
can be parsed in order to generate natural language descriptions. Due to its extensibility, further
features can be integrated easily.

Following the requirement for formalization (cf. Section 2.1.1.2), the language is further asso-
ciated with defined formal semantics, which enables the unambiguous interpretation of CRGs.
In particular, each compliance rule modeled using the CRG language can be mapped to a rule
formula specified in first-order predicate logic. Thus, existing algorithms can be applied for
their analysis. Rule formulas, in turn, can be formally interpreted over execution traces. Being
footed on an event-based execution trace model as described in Chapter 5, the formal semantics
of CRGs is not restricted to a specific process description language. In fact, execution traces
serve as language-independent representation of process executions in our framework. Hence,
CRGs can be utilized to constrain business processes specified using a multitude of description
languages.
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Compliance checking at process design and process runtime Clearly, the ability to verify
process models and process instances against imposed compliance rules is key to any compliance
checking framework. Our objective was to enable checking process models and process instances
against imposed CRGs using the same mechanisms. This way, compliance rules do not have
to be translated into other representations for conducting design or runtime checks. In order
to achieve that, we equipped CRGs with operational semantics that can be applied to conduct
compliance checks as described in Chapter 7.

The basic idea is to exploit the graph structure of CRGs for compliance checking. In order to
encode compliance states such that they can be interpreted for generating compliance reports,
we introduce state markings for CRG nodes. This way, each compliance state with respect to a
CRG that a process execution may yield can be represented using the very CRG and suitable
state markings (so-called MarkStructures). In contrast to states of automatons generated from
temporal logic formulas as used for explicit model checking, the reachable compliance states
can be interpreted easily as they refer directly to the CRG structure. The transitions between
compliance states are defined by execution and marking rules that alter markings in an adequate
manner.

A major objective of our work is to enable meaningful compliance reports as this requirement
still constitutes a major limitation of most related approaches in literature. One benefit of the
approach proposed in this thesis is specifically that explanations for compliance violations can
be derived from the compliance states encoded using CRGs and state markings. Even if no
compliance violation has occurred (yet), the meaningful compliance states can provide valuable
insights into the compliance situation. In particular, it is easily possible to derive measures to
avert potential violations from the information encoded in a reached compliance state. This can
be seized for providing support to comply at runtime.

The operationalization of CRGs is inspired by pattern matching mechanisms and is conducted
by applying rules that alter compliance states according to observed events in a process to be
verified. Thus, the operational semantics can be applied to both design and runtime compliance
checks as it supports incremental application (as required for runtime compliance monitoring).
It further enables to “instantiate” a CRG for each new activation of the compliance rule observed
in the process execution. Thus, the framework is able to provide compliance reports not only
on the general enforcement of the CRG but also on the particular rule activations in a process
and their individual compliance (cf. Section 2.1.2).

Similar to the formal semantics of CRGs, the operational semantics is defined over event-based
execution traces. Thus, the proposed compliance checking framework can be applied to business
processes specified using a multitude of description languages. This will leverage the practical
application of the framework.

The CRG operational semantics described in Chapter 7 together with the CRG language de-
scribed in Chapter 6 provide the fundament for a compliance checking framework. The applica-
tion of the proposed concepts to realize compliance checks at process design and process runtime
is described in Chapter 8. At process design time, a process model is verified against an imposed
CRG by applying the operational semantics to explore the process model and to detect whether
the model enables executions bearing compliance violations. We described different strategies
for doing this, which can be applied depending on the desired level of granularity. Specifically,
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the compliance verification detects compliance states reflecting the behavior with respect to the
imposed CRG enabled by the process model. These compliance states not only reveal compli-
ance violations but also enable the derivation of meaningful compliance diagnoses. For example,
it can be detected in which traces a violation occurs and whether a CRG becomes activated
or is violated in all or only some specific executions of the process. This information and the
MarkStructures bearing compliance violations can be utilized for explaining and visualizing
detected noncompliance within the process model to be checked. At process runtime, events
observed during process execution can be processed in order to provide detailed feedback on the
effective compliance state of a running process instance. Moreover, the possible future behavior
of a process instance predefined in the underlying process model can be exploited for updating
compliance predictions. Together with monitoring the effective compliance state of a process
instance, this can help to identify potential compliance threats in a timely manner. Altogether,
the proposed compliance checking framework can be considered a model checking approach that
aims at comprehensive diagnoses and is tailored towards the CRG language.

Pre- and postprocessing activities in the compliance checking process Beyond the mech-
anisms for modeling compliance requirements in a checkable manner and for conducting the
actual compliance checks, further aspects are vital for a comprehensive compliance checking
framework. Specifically, questions on necessary activities before and after conducting the ac-
tual compliance checks arise. In Chapter 9, we outlined how processes can be transformed into
state space representations for compliance checking for the example of the process description
language ADEPT [Rei00] (i.e., WSM nets). We further addressed the state explosion problem
that may arise for complex processes to be verified (cf. Section 2.1.2.1) by pointing out a variety
of abstraction strategies collected from literature and developed in the SeaFlows project. After
conducting the actual compliance checks, detected compliance violations need to be conveyed
to users in an intelligible manner. Considerations on how to accomplish this are also described
in Chapter 9.

Implementation and practical application The technical feasibility of the proposed com-
pliance checking framework is demonstrated by means of a proof-of-concept implementation
described in Chapter 10. Due to the iterative research procedure employed in our work (cf.
Section 2.2.3), our prototype implementation, the SeaFlows Toolset, comprises different tools.
Specifically, SeaFlows Toolset comprises tools for modeling compliance rules using the CRG
language and for conducting compliance checks using the operational semantics of CRGs. More-
over, SeaFlows Toolset also features prototype implementations that showcase the application of
abstraction strategies for taming the state explosion problem. Furthermore, a prototype demon-
strating ideas on the presentation of compliance violations within process models is included in
the toolset.

In meta-analyses, we often encountered certain property specification patterns initially col-
lected by Dwyer et al. [DAC99] and applied by a plethora of compliance checking approaches
(e.g., [ASW09, YMHJ06, MMWA11]). Clearly, these patterns have to be supported. As shown
in Chapter 11, the CRG language enables the specification of these patterns in a straight-forward
manner. We further showed that the patterns can be interpreted in different ways and that the
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CRG language enables to be precise about the intended interpretation. We specifically con-
sider the possibility of easily extending and refining such patterns by adding or removing CRG
modeling primitives, for example, to add a further absence constraint within the context of an
existing rule pattern, a major asset of the CRG language.

In an effort to evaluate the practical feasibility of our compliance checking framework, we applied
it to realistic compliance rules and processes from two different domains. In particular, we
utilized the SeaFlows compliance checking framework to analyze higher education processes in a
project called HEP together with colleagues from University of Vienna. Moreover, we analyzed
a process describing the processing of projects in an IT company spanning all activities from
a project request to its completion. The case studies confirmed that the proposed compliance
checking framework is suitable for analyzing business process compliance. We are positive that
intelligible and meaningful compliance reports can be derived based on the compliance state
information that our framework is able to provide. As summarized in Chapter 11, we further
observed that the translation of informal compliance requirements to checkable compliance rules
over the process implementation constitutes a major challenge. In the case of the project process,
in particular, we followed the procedure of first modeling compliance requirements using CRGs
but without paying attention to the process implementation and then mapping the associated
events to process implementation artifacts. These two case studies were specifically rewarding as
they provided insights into the overall process of deriving compliance controls from compliance
requirements described in Section 1.1.

12.2. Outlook

In each chapter introducing the concepts of the SeaFlows compliance checking framework, we
elaborated on possible extensions of the proposed approach in the discussion part. The ideas on
future extensions and research are in three respects:

• Language-wise: Extensions of the CRG language and its operationalization,

• Method-wise: Extensions with respect to methodic support for compliance checking,

• Application-wise: Further applications for the CRG approach

Extensions of the CRG language and operationalization As pointed out in Chapter 6, the
CRG language can be extended in different respects in order to accommodate more sophisti-
cated compliance requirements. In the case studies described in Chapter 11, we observed that
quantitative time constraints constitute a desirable extension of the CRG language. For that
extensions at the notation and at the formal level become necessary. In this context, the inte-
gration of concepts for time-aware process-aware information systems developed in the ATAPIS
project [Lan08, LWR10] will be particularly interesting. As described in Section 6.4.2, data
relations constitute a further desirable extension of the CRG language. Notation-wise, data
relations may be represented through designated nodes and edges. As CRGs are formalized
as rule formulas in first-order predicate logic, data relations can be integrated easily. At the
operational level, this requires extending the operational semantics taking into account the eval-
uation of data relations. So far, SeaFlows Toolset already supports data relations that enable to
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associate different events with the same object. This, in turn, can be utilized to define artifact-
oriented compliance rules as illustrated in [LRMKD11]. More advanced support is left to future
research.

Extensions with respect to methodic support For ease of use, the introduction of a higher
semantic layer for compliance rule modeling based on the CRG modeling primitives should be
considered. For example, one can think of composite constructs for expressing relations that
can be defined using a combination of modeling primitives such as the next occurrence of B after
A. The provision of such higher level modeling constructs in a CRG modeling tool can further
facilitate CRG modeling in practice.

As observed in the case studies described in Chapter 11, methodic support for the process of
deriving checkable compliance rules from informal compliance requirements is desirable. In our
case study analyzing the project process of an IT company (cf. Section 11.3), we first modeled
compliance rules using the CRG language based on an assumed event model directly derived
from the informal requirements. Then, the artifacts referred to in the CRGs were translated to
corresponding artifacts in the implemented process. In this context, tool support for the system-
atic derivation of checkable rules from informal requirements suggests itself. Existing approaches
for mapping between business and implementation level process models such as [BBR11] can be
adopted for this purpose.

Application-related issues As pointed out earlier, the proposed compliance checking frame-
work can be integrated into an overall compliance management framework as, for example, de-
vised in the COMPAS project [The11]. On the one hand, the compliance management framework
would benefit from a compliance checking approach tackling both process design and process
runtime. On the other hand, functionalities of utmost importance to an integrated approach to
compliance management, such as managing relevant passages of compliance requirements, will
be provided by the compliance management framework.

As described in Section 8.5.2, declarative process models can be defined using CRGs and enacted
using the CRG operational semantics. This could be an interesting application of the CRG
approach as the easy derivation of measures to comply with an imposed rule can be of particular
advantage in this context.
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Appendix

A.1. Criteria for preventing structural redundancy

Definition A.1 (Structural redundancy)
Let R = (A,C) be a syntactically correct CRG. Let A+ be A without AnteAbs nodes and
associated edges with OrderEA+ being the set of order edges of A+ and let C+ be C without
ConsAbs nodes and associated edges with OrderEC+ being the set of order edges of C+. Let
further R+ be R after removal of AnteAbs and ConsAbs nodes and associated edges. Then, R
is considered free of structural redundancy iff the following conditions hold:

i) ∀s∀t ∈ NR with

– (s, t) ∈ OrderER or

– ∃n1, . . . ,∃nk ∈ NR such that
∃e1, . . . ,∃ek+1 ∈ OrderER with e1 = (s, n1), . . . , ek+1 = (nk, t)

holds:

– ¬(∃e′ ∈ DiffER with e′ = (s, t) ∨ e′ = (t, s)).

ii) ∀s∀t ∈ NA+ with

– ∃n1, . . . ,∃nk ∈ NA+ such that
∃e1, . . . ,∃ek+1 ∈ OrderEA+ with e1 = (s, n1), . . . , ek+1 = (nk, t)

holds:

– (s, t) /∈ OrderER.
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iii) ∀s∀t ∈ NC+ with

– ∃n1, . . . ,∃nk ∈ NC+ such that
∃e1, . . . ,∃ek+1 ∈ OrderEC+ with e1 = (s, n1), . . . , ek+1 = (nk, t)

holds:

– (s, t) /∈ OrderER.

iv) ∀s∀t ∈ NR+ with

– (ntR(s) = AnteOcc ∧ ntR(t) = ConsOcc) ∨ (ntR(s) = ConsOcc ∧ ntR(t) = AnteOcc)
and

– ∃n1, . . . ,∃nk ∈ NR+ such that
∃e1, . . . ,∃ek+1 ∈ OrderER+ with e1 = (s, n1), . . . , ek+1 = (nk, t)

holds:

– (s, t) /∈ OrderER.

vi) ∀s∀t ∈ NR with

– ntR(s) ∈ {AnteAbs, ConsAbs} ∨ ntR(t) ∈ {AnteAbs, ConsAbs} and

– ∃n1, . . . ,∃nk ∈ NR such that
∃e1, . . . ,∃ek+1 ∈ OrderER with e1 = (s, n1), . . . , ek+1 = (nk, t)

holds:

– (s, t) /∈ OrderER.
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A.2. Execution and marking rules for ex events

A.2.1. Necessary conditions

The necessary execution conditions for ex events largely resemble those for start events. Similar
to the necessary execution conditions for start events, absence nodes also become executable
over a matching ex event even if they are already Started. This enables dealing with execution
traces containing both ex event as well as start and end events.

Definition A.2 (Necessary conditions for executing CRG nodes over ex events)
Let R = (A,C) be a CRG and e ∈ EEx be an ex event. Let further matchR : NR × EEx → B
be a function returning true if the given ex event satisfies the all conditions associated with
the given node and false otherwise.

Then,

• executableAnteAER : NS∗A × NA × EEx → B is a function determining whether an an-
tecedent node n is executable under an AnteStateMark nsA over e with:

∀n ∈ NA with ntR(n) = AnteOcc:

executableAnteAER(nsA, n, e) :=



true, if
(i) nsA(n) = Null ∧
(ii) matchR(n, e) = true ∧
(iii) ∀l ∈ predAnteOcc(n) : nsA(l) = Completed
false, otherwise.

∀n ∈ NA with ntR(n) = AnteAbs:

executableAnteAER(nsA, n, e) :=



true, if
(i) nsA(n) ∈ {Null, Started} ∧
(ii) matchR(n, e) = true ∧
(iii) ∀l ∈ predAnteOcc(n) : nsA(l) = Completed
false, otherwise.

• executableConsAER : NS∗R ×NC × EEx → B is a function determining whether a conse-
quence node n is executable under a StateMark (nsA, nsC) over e with:

∀n ∈ NC with ntR(n) = ConsOcc:

executableConsAER((nsA, nsC), n, e) :=



true, if
(i) nsC(n) = Null ∧
(ii) matchR(n, e) = true ∧
(iii) ∀l ∈ predAnteOcc(n) :
nsA(l) = Completed

(iv) ∀l ∈ predConsOcc(n) :
nsC(l) = Completed

false, otherwise.
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∀n ∈ NC with ntR(n) = ConsAbs:

executableConsAER((nsA, nsC), n, e) :=



true, if
(i) nsC(n) ∈ {Null, Started} ∧
(ii) matchR(n, e) = true ∧
(iii) ∀l ∈ predAnteOcc(n) :
nsA(l) = Completed

(iv) ∀l ∈ predConsOcc(n) :
nsC(l) = Completed

false, otherwise.

• exAnteNodesAER : NS∗A × EEx × {AnteOcc, AnteAbs} → P(NR)
is a function determining the set of antecedent nodes of node type t that are executable
under the given AnteStateMark nsA over e with:

exAnteNodesAER(nsA, e, t) :=
{n ∈ NR | ntR(n) = t ∧ executableAnteAER(nsA, n, e) = true}.

• exConsNodesAER : NS∗R × EEx × {ConsOcc, ConsAbs} → P(NR)

is a function determining the set of consequence nodes of node type t that are executable
under the given StateMark (nsA, nsC) over e with:

exConsNodesAER((nsA, nsC), e, t) :=
{n ∈ NR | ntR(n) = t ∧ executableConsAER((nsA, nsC), n, e) = true}.
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A.2.2. Execution and marking rules for atomic execution events

In the style of Algorithm 2 for processing start events, Algorithm 5 executes a MarkStructure
over an ex event. The functions executeAnteOccAE, executeAnteAbsAE, executeConsOccAE,
and executeConsAbsAE are defined below.

Algorithm 5 Executing a MarkStructure over an ex event (executeAER(ms, e))
1: R = (A,C) is a CRG;
2: e ∈ EEx is an ex event;
3: ms = ((nsA, nlA), {(ns1

C , nl
1
C), . . . , (nskC , nlkC)}) ∈MS∗R is a MarkStructure of R;

4: Mms = {m1 = ((nsA, nlA), (ns1
C , nl

1
C)), . . . ,mk = ((nsA, nlA), (nskC , nlkC))} is the set of

ExMarks of ms;

{INITIALIZATION}
5: MAnteOcc,MConsOcc,MRes = ∅; MSRes = ∅ {Set global variables QAO,QAA,QCO, and
QCA representing the sets of executable nodes in this iteration}

6: QAO := exAnteNodesAER(nsA, e, AnteOcc);
7: QAA := exAnteNodesAER(nsA, e, AnteAbs);
8: QCOmi := exConsNodesAER((nsA, nsiC), e, ConsOcc), i = 1, . . . , k;
9: QCAmi := exConsNodesAER((nsA, nsiC), e, ConsAbs), i = 1, . . . , k;

{ITERATION}
10: for all m ∈Mms do
11: MAnteOcc = executeAnteOccAER(m, e);
12: for all m ∈MAnteOcc do
13: mAnteAbs = executeAnteAbsAER(m, e);
14: MConsOcc = executeConsOccAER(mAnteAbs, e);
15: for all m ∈MConsOcc do
16: mConsAbs = executeConsAbsAER(m, e);
17: MRes = MRes ∪ {mConsAbs};
18: end for
19: end for
20: end for

{Aggregation of obtained ExMarks to MarkStructures }
21: MSres = aggregateR(MRes);

{The resulting set of MarkStructures is returned}
22: return MSres;

A.2.2.1. Execution of AnteOcc nodes

AnteOcc nodes are executed over ex event in a similar manner as they are executed over start
events. To correctly implement the semantics of diff edges, it has to be ensured that the
executed AnteOcc nodes are not connected to each other through any diff edges.
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Execution Rule ER9 (Execution of AnteOcc nodes over ex events):
Let R = (A,C) be a CRG. Let further
Q∗ := {Q ⊆ QAO | ∀n1∀n2 ∈ Q : (n1, n2) /∈ DiffER ∧ (n2, n1) /∈ DiffER}.
It is ensured that each Q ∈ Q∗ is free of nodes that are directly connected through a diff edge.
Then,

• executeAnteOccAER : M∗R × EEx → 2M∗R
is a function assigning child ExMarks to an ExMark m of R and an ex event e with:

executeAnteOccAER(m, e) :=
⋃
Q∈Q∗markAnteOccAER(m,Q, e).

Marking Rule MR11 (Marking of AnteOcc nodes over ex events):
Let R = (A,C) be a CRG and m = ((nsA, nlA), (nsC , nlC)) ∈ M∗R be an ExMark of R. Let
further Q ⊆ NR be a set of AnteOcc nodes in R. Then,

markAnteOccAER : M∗R × P(NR) × EEx → M∗R is a function assigning an ExMark m′ of R to
an original ExMark m of R and a set of AnteOcc nodes Q to be executed, with

markAnteOccAER(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) = AnteOcc:

(ns′A(n), nl′A(n)) :=
{

(Completed, ∅) if n ∈ Q
(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NR with ntR(n) = AnteAbs:

(ns′A(n), nl′A(n)) :=
{

(NotExecuted, ∅) if n ∈ deadAnteAbsR(nsA, Q)
(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NR with ntR(n) = ConsOcc:

(ns′C(n), nl′C(n)) :=
{

(NotExecuted, ∅) if n ∈ deadConsOccR(nsC , Q)
(nsC(n), nlC(n)), otherwise.

• ∀n ∈ NR with ntR(n) = ConsAbs:

(ns′C(n), nl′C(n)) :=
{

(NotExecuted, ∅) if n ∈ deadConsAbsR(nsC , Q)
(nsC(n), nlC(n)), otherwise.

• For m′ we define attributes as follows:

– ExAnteOccm′ := Q,
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– QCOm′ := QCOm,

– QCAm′ := QCAm.

A.2.2.2. Execution of AnteAbs nodes

AnteAbs nodes that become executable in an iteration (and that are not yet discarded and
not in a firing conflict with AnteOcc nodes executed in the very iteration) are marked as
Completed. As a result, the complete ExMark and, thus, the corresponding MarkStructure
becomes deactivated and can be discarded from further execution (cf. Section 7.5.1).

Execution Rule ER10 (Execution of AnteAbs nodes over ex events):
Let R = (A,C) be a CRG and m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R. Further,

• D := {n ∈ QAAm | ∃l ∈ ExAnteOccm : (n, l) ∈ DiffER ∨ (l, n) ∈ DiffER} denotes
the subset of QAAm containing those nodes that are connected through a diff edge to
AnteOcc nodes executed in this iteration.

• NotExAnteAbsm := {n ∈ QAAm | nsA(n) = NotExecuted} denotes the subset of QAA
containing nodes already marked as NotExecuted.

• Q := QAAm\(NotExAnteAbsm∪D) then denotes the set of AnteAbs nodes satisfying the
necessary execution conditions without nodes that have already been discarded and nodes
connected to AnteOcc nodes in ExAnteOccm.

Then,

• executeAnteAbsAER : M∗R × EEx →M∗R
is a function assigning a child ExMark m′ to a given ExMark m and an ex event e with:

executeAnteAbsAER(m, e) := markAnteAbsAE(m,Q, e).

Marking Rule MR12 (Marking of AnteAbs nodes over ex events):
Let R = (A,C) be a CRG and m = ((nsA, nlA), (nsC , nlC)) ∈ M∗R be an ExMark of CRG R.
Then,

markAnteAbsAER : M∗R × P(NR)× EEx →M∗R

is a function assigning an ExMark m′ of R to an original ExMark m of R and a set of AnteAbs
nodes to be executed Q, with

markAnteAbsAER(m,Q, e) := m′ = ((ns′A, nl′A), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) = AnteAbs:
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(ns′A(n), nl′A(n)) :=
{

(Completed, ∅) if n ∈ Q
(nsA(n), nlA(n)), otherwise.

• ∀n ∈ NR with ntR(n) = AnteOcc:

(ns′A(n), nl′A(n)) := (nsA(n), nlA(n)).

• ∀n ∈ NR with ntR(n) ∈ {ConsOcc, ConsAbs}:

(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).

• For m′ we define attributes as follows:

– ExAnteOccm′ := ExAnteOccm,

– QCOm′ := QCOm,

– QCAm′ := QCAm.

A.2.2.3. Execution of ConsOcc nodes

Generally, ConsOcc nodes can be executed over ex events in the same manner as over start
events. Nondeterministic execution of ConsOcc nodes by default, however, can cause unnecessary
exploration of the search space. This is avoidable when applying a more greedy approach. The
latter is based on the consideration that only ConsOcc nodes having direct ConsAbs successors
are critical since we do not know whether an activity execution matching one of these ConsAbs
successors will be executed in a future execution iteration. Thus, it is “safe” to deterministically
execute ConsOcc nodes without direct ConsAbs successors. This avoids creating ExMarks that
can be discarded anyway based on the considerations on domination among ConsExMarks as
introduced in Section 7.5.1.2. Based on this consideration, execution rule ER11 deterministically
executes ConsOcc nodes without direct ConsAbs successors (i.e., must fire if executable). Note
that if a CRG does not contain any ConsAbs nodes and all its ConsOcc nodes are not connected
through diff edges, all ConsOcc nodes will be executed deterministically avoiding unnecessary
exploration of the search space.

Execution Rule ER11 (Execution of ConsOcc nodes over ex events):
Let R = (A,C) be a CRG, m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R, and e ∈ EEx
be an ex event. Further,

• D := {n ∈ QCOm | ∃l ∈ ExAnteOccm : (n, l) ∈ DiffER ∨ (l, n) ∈ DiffER} denotes the
subset of QCOm containing nodes that are directly connected to AnteOcc nodes executed
in this iteration through a diff edge.

• NotExConsOccm := {n ∈ QCOm | nsC(n) = NotExecuted} denotes the subset of QCOm
containing those nodes already marked as NotExecuted.
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• N ex
m := QCOm\(NotExConsOccm ∪ D). Then, N ex

m is partitioned into three disjunct
subsets: N ex

m = Ndet
m ∪Nndet

m ∪Ndiff
m with

– Ndet
m := {n ∈ N ex

m | succConsAbsR(n) = ∅ ∧ (@l ∈ N ex
m : (n, l) ∈ DiffER ∨

(l, n) ∈ DiffER)} being the subset of N ex
m containing only ConsOcc nodes that do

not have direct ConsAbs successors and are not directly connected to other nodes in
N ex
m through a diff edge.

– Nndet
m := {n ∈ N ex

m | succConsAbsR(n) 6= ∅} being the subset of N ex
m containing

ConsOcc nodes that have direct ConsAbs successors.

– Ndiff
m := N ex

m \(Ndet
m ∪ Nndet

m ) being the subset of N ex
m containing ConsOcc nodes

without direct ConsAbs successors but that are directly connected to other nodes in
Ndiff
m ∪Nndet

m through a diff edge.

Then, for ExMark m, the set of sets of ConsOcc nodes executable in an iteration is defined as
follows:

• Q∗ := {Q := (Ndet
m ∪ Qndet ∪ Qdiff ) | Qndet ⊆ Nndet

m , Qdiff ⊆ Ndiff
m and conditions (i) -

(ii) are satisfied} where (i) - (ii) are defined as follows:

(i) ∀n1∀n2 ∈ Qdiff ∪Qndet : (n1, n2), (n2, n1) /∈ DiffER,

(ii) ∀n1 ∈ Ndiff
m : (n1 ∈ Qdiff ) ∨ (∃n2 ∈ Qdiff ∪ Qndet : (n1, n2) ∈ DiffER ∨ (n2, n1) ∈

DiffER).

Then,

• executeConsOccAER : M∗R × EEx → 2M∗R
is a function assigning a child ExMark m′ to an ExMark m and ex event e with:

executeConsOccAER(m, e) :=
⋃
Q∈Q∗markConsOccAER(m,Q, e).

Marking Rule MR13 (Marking of ConsOcc nodes over ex events):
Let R = (A,C) be a CRG. Then,

markConsOccAER : M∗R × P(NR)× EEx →M∗R

is a function assigning an ExMark m′ of R to an original ExMark m = ((nsA, nlA), (nsC , nlC)) of
R and a set of ConsOcc nodes Q to be executed, with

markConsOccAER(m,Q, e) := m′ = ((nsA, nlA), (ns′C , nl′C)) with:

• ∀n ∈ NR with ntR(n) = ConsOcc:

(ns′C(n), nl′C(n)) :=
{

(Completed, ∅) if n ∈ Q
(nsC(n), nlC(n)), otherwise.
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• ∀n ∈ NR with ntR(n) = ConsAbs:

(ns′C(n), nl′C(n)) :=
{

(NotExecuted, ∅) if n ∈ deadConsAbsR(nsC , Q)
(nsC(n), nlC(n)), otherwise.

• For m′ we define attributes as follows:

– ExAnteOccm′ := ExAnteOccm,

– ExConsOccm′ := Q,

– QCAm′ := QCAm.

A.2.2.4. Execution of ConsAbs nodes

All ConsAbs nodes that are executable in an iteration (and that are not yet discarded and not
connected to AnteOcc or ConsOcc nodes executed in the very execution iteration) will become
Completed. Containing a ConsAbs node marked as Completed, the corresponding ConsExMark
becomes violated and, thus, can be discarded based on the considerations introduced in Sec-
tion 7.5.1.

Execution Rule ER12 (Execution of ConsAbs nodes over ex events):
Let R = (A,C) be a CRG and m = ((nsA, nlA), (nsC , nlC)) ∈M∗R be an ExMark of R. Further,

• D := {n ∈ QCAm | ∃l ∈ (ExAnteOccm∪ExConsOccm : (n, l) ∈ DiffR ∨ (l, n) ∈ DiffR}
denotes the set of ConsAbs nodes in QCAm that are directly connected through a diff
edge to AnteOcc and ConsOcc nodes that have been executed in this iteration.

• NotExConsAbsm := {n ∈ QCAm | nsC(n) = NotExecuted} denotes the subset QCAm
containing those nodes already marked as NotExecuted.

• Q := QCAm\(NotExConsAbsm ∪D) denotes the set of executable ConsAbs nodes of m.
It is ensured that Q is free of nodes that are directly connected through a diff edge to
AnteOcc nodes or ConsOcc nodes executed in same iteration.

Then,

• executeConsAbsAER : M∗R × EEx →M∗R
is a function assigning a child ExMark m′ to a given ExMark m and an ex event e with:

executeConsAbsAER(m, e) := markConsAbsAE(m,Q, e).

Marking Rule MR14 (Marking of ConsAbs nodes over ex events):
Let R = (A,C) be a CRG. Then,
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markConsAbsAER : M∗R × P(NR) × EEx → M∗R is a function assigning an ExMark m′ of R
to an original ExMark m = ((nsA, nlA), (nsC , nlC)) of R and a set Q of ConsAbs nodes to be
executed, with

markConsAbsAER(m,Q, e) := m′ = ((nsA, nlA), (ns′C , nl′C)) ∈M∗R with:

• ∀n ∈ NR with ntR(n) = ConsAbs:

(ns′C(n), nl′C(n)) :=
{

(Completed, ∅) if n ∈ Q
(nsC(n), nlC(n)), otherwise.

• ∀n ∈ NR with ntR(n) = ConsOcc:

(ns′C(n), nl′C(n)) := (nsC(n), nlC(n)).
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A.3. Propagation of compliance states

Algorithm 6 Marking an acyclic process event graph: propagate(sstart,MSsstart)
1: X = (S, s0, SE , T, el) is a PEG
2: R is a CRG

{INITIALIZATION}
3: ∀s ∈ S : pr(s) = ∅;
4: ∀e ∈ T : pr(e) = ∅;
5: pr(s0) = {{init(R)}};
6: Q = {s0};

{ITERATION}
7: while Q 6= ∅ do
8: s = Q[1]; {Process and remove the head element of Q}
9: Q = Q\Q[1];

{Propagate MarkStructures of node s to all its outgoing edges}
10: for all e = (s, s′) ∈ T do
11: pr(e) = pr(s);
12: end for

{For each direct successor of s whose incoming edges have all been signaled, compute the
reachable compliance states and add the node to Q}

13: for all s′ ∈ S with (s, s′) ∈ T do
14: if ∀e = (t, s′) ∈ T : pr(e) 6= ∅ then
15: In =

⋃
e=(t,s′)∈T pr(e);

16: NewCSs = ∅;
17: for all CS ∈ In do
18: CS′ =

⋃
ms∈CS executeR(ms, el(s′));

19: NewCSs = NewCSs ∪ {CS′};
20: end for
21: pr(s′) = NewCSs;
22: Q = Q ∪ {s′};
23: end if
24: end for
25: end while
26: return pr;
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Algorithm 7 Marking a (cyclic) process event graph: propagate
1: G = (S, s0, sE , T, el) is a PEG
2: R is a CRG

{INITIALIZATION}
3: ∀s ∈ S : pr(s) = ∅;
4: ∀e ∈ T : pr(e) = ∅;
5: ∀s ∈ S : Ins = ∅;
6: ∀e ∈ T : sig(e) = ∅;

{MARKING OF PROPAGATION START NODE AND ITS OUTGOING EDGES}
7: pr(s0) = {{init(R)}};
8: Q = {(s, s′) ∈ T | s = s0};
9: ∀e ∈ Q : sig(e) = pr(s0);

10: ∀e ∈ Q : pr(e) = pr(s0);

{ITERATION}
11: while Q 6= ∅ do
12: e = (s, s′) = Q[1]; {Process and remove the head element of Q}
13: Q = Q\Q[1];

{Identify MarkStructures associated with e that have not yet been signaled to s′ by its
other incoming edges}

14: newIn = sig(e)\Ins′ ;
{If e is associated with new MarkStructures ...}

15: if newIn 6= ∅ then
16: Ins′ = Ins′ ∪ newIn;
17: ResCSs = ∅;
18: for all CS ∈ newIn do
19: CS′ =

⋃
ms∈CS executeR(ms, el(s′)); {Apply operational semantics for new incoming

compliance states}
20: ResCSs = ResCSs ∪ {CS′};
21: end for
22: newCS = ResCSs\pr(s′); {... and identify new compliance states}

{If new compliance states result from the application of CRG operational semantics ...}

23: if newCS 6= ∅ then
24: pr(s′) = pr(s′) ∪ newCS; {... enrich annotation of s′ with these}
25: for all e′ = (s′, s′′) ∈ T do
26: sig(e′) = sig(e′) ∪ newCS;
27: pr(e′) = pr(e′) ∪ newCS;
28: Q = Q ∪ e′; {... and propagate new compliance states to all outgoing edges of s′}
29: end for
30: end if
31: end if{Reset sig after processing a PEG edge}
32: sig(e) = ∅;
33: end while
34: return pr;
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A.4. Rule enforcement levels

Table A.1 lists the levels of enforcement of business rules proposed by the OMG in the speci-
fication of semantics for business vocabularies and rules (SBVR) [OMG08]. As the compliance
rules addressed in this thesis belong to the class of behavioral rules of SBVR, the adoption of
these enforcement levels for compliance rules suggests itself.
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Level of enforce-
ment

Description Implication for designing procedures

strictly enforced If an actor violates the behav-
ioral rule, the actor cannot es-
cape sanction(s).

When a violation is detected, the event pro-
ducing the violation is automatically pre-
vented, if possible, and a designated violation
response, if any, is invoked automatically.

deferred
enforcement The behavioral rule is strictly

enforced, but such enforcement
may be delayed – e.g., until an-
other actor with required skills
and proper authorization can be-
come involved.

When a violation is detected, the event pro-
ducing the violation is allowed, and the rel-
evant work is handed off to another worker
(possibly by insertion into a work queue). Ad-
ditional business rules giving timing criteria
may be desirable to ensure that action is taken
within an appropriate time frame.

override by
pre-authorized
actor The behavioral rule is enforced,

but an actor with proper before-
the-fact authorization may over-
ride it.

When a violation is detected, if the actor in-
volved is pre-authorized, that actor is given an
opportunity to override the rule. Overrides by
actor and business rule should be tracked for
subsequent review.

post-justified
override The behavioral rule may be over-

ridden by an actor who is not
explicitly authorized; however,
if the override is subsequently
deemed inappropriate, the actor
may be subject to sanction(s).

When an override of a violation occurs, a re-
view item (with all relevant details) should be
inserted into the work queue of an appropriate
actor for review and possible action.

override with
explanation The behavioral rule may be over-

ridden simply by providing an
explanation.

When a violation is detected, the actor in-
volved is given an opportunity to override the
business rule by providing a mandatory expla-
nation. Overrides should be tracked by actor
and business rule for subsequent review.

guideline Suggested, but not enforced. When a violation is detected, the actor in-
volved (if authorized) is simply informed/re-
minded of the behavioral rule.

Table A.1.: Levels of enforcement for business rules and their implication for designing proce-
dures taken from [Ros11]
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