Process Change Patterns:
Recent Research, Use Cases, Research Directions

Manfred Reichert! and Barbara Weber?

!University of Ulm, Germany, manfred.reichert@uni-ulm.de
2University of Innsbruck, Austria, barbara.weber@uibk.ac.at

Abstract. In previous work, we introduced change patterns to foster
a systematic comparison of process-aware information systems with re-
spect to change support. This paper revisits change patterns and shows
how our research activities have evolved. Further, it presents character-
istic use cases and gives insights into current research directions.

1 Introduction

Information systems (IS) are increasingly aligned in a process-oriented way. This
emerging generation of IS is referred to as process-aware information systems
(PAIS) [1]. A PAIS should support real-world processes properly, i.e., there
should be no mismatch between the processes implemented by it and those ex-
isting in reality. Hence, advanced support is needed for customizing a PAIS to its
application environment as well as for quickly adapting implemented processes
to changing needs. The increasing demand for process change support poses new
challenges for IS engineers and requires the use of change enabling technologies.
Accordingly, a method is required that allows PAIS engineers to systemati-
cally assess the change capabilities of available technologies. In [2], we introduced
change patterns as well as change support features to enable such a systematic
assessment of PAIS with respect to process change support. In particular, change
patterns allow for high-level process adaptations. In turn, change support fea-
tures summarize fundamental features to be provided by a PAIS in order to
change and evolve implemented processes in a correct, robust and secure way.
This paper discusses how our research on change patterns has evolved, how
they have been used in theory and practice, and what research directions are.

2 Background: Process Change Patterns

Originally, in [2] we introduced 17 patterns for realizing control flow changes.
These patterns reduce the complexity of process changes and raise the level for
expressing changes by providing abstractions above the level of primitive change
operations. To structure the change patterns, we divided them into adaptation
patterns and change patterns for predefined changes (cf. Fig. 2 in [2]). While the
former enable structural changes of a process schema, the latter allow process



participants to add information regarding unspecified parts of a process schema
during run-time.

An adaptation pattern (AP) enables structural changes of process schemes.
AP1 (AP2) allows inserting (deleting) a process fragment. Moving and replac-
ing fragments is supported by AP3 (Move Process Fragment), AP4 (Replace
Process Fragment), AP5 (Swap Process Fragment), and AP14 (Copy Process
Fragment). AP6 and AP7 allow adding or removing levels of hierarchy: the ex-
traction of a sub-process from a process schema is supported by AP6, whereas the
inclusion of a sub-process into a process schema is supported by AP7. Patterns
AP8-AP12 support adaptations of control dependencies: embedding a process
fragment in a loop (APS), parallelizing a process fragment (AP9), embedding
a process fragment in a conditional branch (AP10), and adding / removing
control dependencies (AP11, AP12). Finally, AP13 allows changing transition
conditions. Generally, the region to which an adaptation pattern is applied may
be chosen dynamically. Hence, adaptation patterns are well suited for realizing
ad-hoc changes and coping with the evolving nature of business processes [1]. For
each adaptation pattern, we have provided a name, a description, an illustrating
example, a description of the problem it addresses, a couple of design choices,
remarks regarding its implementation, and references to related patterns. In this
context, design choices allow parameterizing change patterns keeping the number
of distinct patterns manageable.

Patterns for changes in pre-defined regions allow for better dealing with
uncertainty by deferring decisions regarding the exact control-flow to the run-
time. Instead of requiring a process model to be fully specified prior to execution,
parts of the model may remain unspecified. As opposed to adaptation patterns,
whose application is not restricted a priori to a particular process part, the
parts of a process schema that may be changed or expanded are constrained.
In this category, we identified 4 patterns: Late Selection (PP1), Late Modeling
(PP2) and Late Composition of Process Fragments (PP3), and Multi-Instance
Activity (PP4). These four patterns differ regarding the parts that may remain
unspecified resulting in a different degree of freedom during run-time.

3 Recent Research on Process Change Patterns

In recent work we have detailed the change patterns and provided empirical
evidence for them. Further, we have formalized and implemented them. In detail:
Detailing change patterns and empirical evidence. We extended our orig-
inal work in [3], which provides an in-depth description of all change patterns;
it describes the pattern selection criteria, the data sources used, and the pro-
cedure applied for pattern identification. Further, it discusses how the patterns
were identified based on the analysis of large process model collections from the
healthcare and automotive domains. Finally, [3] introduces additional patterns
and provides an extended pattern-based evaluation of selected approaches from
industry as well as academia.



Change pattern formalization. To obtain unambiguous pattern descriptions
and ground pattern implementation as well as pattern-based analyses on a sound
basis, we provided a formal semantics for change patterns in [4]. For each change
pattern, its formal semantics is specified by comparing the execution traces pro-
ducible on a process schema before and after applying the pattern to it. The
formalization is independent from any process meta model and thus allows im-
plementing the patterns in a variety of process support tools.
Pattern implementation. The change patterns were implemented in an adap-
tive PAIS — the AristaFlow BPM Suite [5]. The adaptation patterns are realized
in terms of high-level change operations, which can be used for creating and
changing process schemes. Hence, flexible exception handling and controlled pro-
cess evolution become possible. Further, adaptation patterns are associated with
pre-/post-conditions to ensure structural and behavioral soundness of a process
schema after pattern application; i.e., correctness by construction is ensured.
Recently, we complemented the existing workflow patterns by a set of time
patterns to make PAIS comparable with respect to their ability to deal with
temporal constraints [6].

4 Characteristic Use Cases for Change Patterns

On one hand, change patterns provide the basis for realizing changes in different
stages of the process life cycle [7]. On the other, they serve as benchmark for
evaluating change support in existing languages and tools.

4.1 Supporting Process Changes Along the Process Life Cycle

We first discuss fundamental use cases for realizing changes in different stages
of the process life cycle:

Process schema creation. Change patterns have been used for intelligent
process schema creation [8]. For example, AristaFlow allows modeling a sound
process schema based on an extensible set of adaptation patterns [5]. Only those
patterns may be applied in a given context, which do not violate the soundness
of the process schema. In turn, [9] describes a set of pattern compounds, simi-
lar to the adaptation patterns, allowing for the context-sensitive selection and
composition of workflow patterns during process modeling. Finally, adaptation
patterns have been used for the model-based integration of services into business
applications at later stages during the process life cycle [10].

Process schema configuration. The configuration of a reference process schema
constitutes another use case for adaptation patterns. Provop, for example, allows
creating a process variant by applying a sequence of adaptation patterns (e.g.,
AP1, AP2 or AP3) to the given reference schema [11]. By utilizing the semantics
of the adaptation patterns applied in a given configuration setting, it is further
ensured that the resulting process variant schema is sound [12].

Process instance change. An important use case is to enable actors to deviate
from a pre-specified process schema at run-time, e.g., to cope with exceptions.



For this purpose, AristaFlow supports instance-specific changes based on the
same adaptation patterns as used for process modeling [5]. Further, it utilizes the
semantics of the applied adaptation patterns to ensure correctness of the result-
ing process instance schema. Recently, approaches aiming at automated instance
changes have emerged. Usually, they only consider a subset of the adaptation
patterns. For example, Q-Advice uses AP1 and its variants to automatically
inject quality measure activities into the workflows of software engineers at run-
time. The activities to be added are determined situationally using contextual
knowledge and quality goal tracking [13]. A more generic approach to automate
instance adaptations, which is based on declarative processes and planning, is
described in [14]. Regarding ad-hoc changes, [15] additionally ensures compliance
of process instance adaptations with defined semantic constraints. For this, inte-
ger programming formulation is used to validate the applied adaptation patterns
against the given set of semantic constraints (AP1-AP5 are considered). An ap-
proach for the flexible support of product development processes is presented in
[16]; the sub-processes of such a process, which refine analysis, synthesis, and
verification activities, may be dynamically selected to allow for a flexible pro-
cess execution without need for structural adaptations. Thereby, a subset of the
patterns for changes in pre-defined regions is considered (i.e., PP1-PP3).

Process schema evolution. Adaptive PAIS allow for schema evolution consid-
ering version management and the migration of already running process instances
to the new schema version. [17] presents techniques for detecting and resolving
conflicting change operations, which rely on selected adaptation patterns and
their semantics. In turn, [18] shows how to compute a sequence of adaptation
patterns required to transform a given schema version into another one. Both
scenarios consider AP1, AP2, and AP3. Particularly, adaptation patterns play a
crucial role for ensuring the correctness of schema changes and instance migra-
tions. In AristaFlow, schema evolution is based on the same adaptation patterns
as used for process modeling and ad-hoc changes [5]. Thereby, pattern seman-
tics is utilized to cope with conflicting changes at the type and instance level,
to increase the number of migratable process instances, and to efficiently repre-
sent applied changes [19-21]. Note that similar concepts exist for evolving ser-
vice compositions [22]. Furthermore, continuous process improvement, relying on
case-based reasoning and adaptation patterns, is considered in [23]. Finally, [24]
introduces patterns for co-evolving processes and software architectures. These
patterns are based on selected adaptation patterns and allow describing the im-
pact a business process change has on corresponding software architectures.

Process schema refactoring. A specific kind of schema evolution is provided
by process schema refactorings; i.e., syntactical transformations of a process
schema not changing its behavior. Examples of such refactorings and their rela-
tion to adaptation patterns (e.g., AP6 and AP7) are discussed in [25].

Process change reuse. When handling exceptions, it might be useful to reuse
changes applied in similar problem contexts earlier [26]. For example, ProCycle
fosters change reuse based on case-based reasoning and semantic change anno-



tations [7]. Further, it supports AP1-AP5 and utilizes their specific semantics
to adjust parameter settings of recorded changes when reusing them.

Process schema comparison. Comparing two process schemes is crucial to
decide how similar the schemes are or how to derive the one from the other. In
this context, adaptation patterns can be used to describe the structural difference
(i.e., edit distance) between schemes in terms of high-level changes. Based on
specific variants of patterns AP1-AP3, [27] presents a technique that allows
determining this difference. A similar approach is presented in [28].

Process change analysis. Adaptive PAIS capture process changes in change
logs, which record applied adaptation patterns and their parameter settings. For
change analysis, different techniques exist. Based on AP1-AP3, [29] applies pro-
cess mining to change logs to discover change processes providing an aggregated
visualization of all changes. In turn, MinAdept does not presume the existence
of a change log, but allows analyzing a collection of process variants derived from
the same schema [30]; algorithms are provided discovering a reference process
schema whose average edit distance to the process variants is minimal.

In summary, process change patterns are relevant for a variety of use cases in
the process life cycle. As shown, the patterns have served as basis for the design
and implementation of techniques supporting these use cases. While tools like
AristaFlow enable a broad support of most use cases and adaptation patterns,
other proposals only consider a specific use case and a subset of the adaptation
patterns.

4.2 Assessing and Designing Process Change Frameworks

Change patterns have been used for realizing pattern catalogs for specific mod-
eling languages, assessing existing PAIS, and enabling user-friendly changes. Ex-
amples of corresponding approaches are presented in the following.

Realizing a pattern catalog for a specific modeling language. [31] com-
bines change, exception and time patterns into a BPMN pattern catalog. Change
patterns are referred to as generic patterns, which are tailored and extended to
be applicable to BPMN. In turn, [32] uses the adaptation patterns for designing
a pattern catalog for BPEL schema changes.

Assessing existing approaches. A measure for a pattern-based assessment
of service orchestration languages is defined in [33]. In particular, the designed
pattern catalog includes the patterns for changes in predefined regions (i.e.,
PP1-PP4) and discusses how they are supported in existing BPEL dialects.
Enabling user-friendly changes. [34] presents an approach enabling end users
to change large process schemes based on personalized process views; AP1, AP2,
and AP8-AP10 may be applied to a process view, followed by the propagation
of the defined changes to the underlying process schema. In turn, [35] introduces
a user-centric approach for creating, changing and visualizing process schemes
based on the Concurrent Task Tree (CTT) — a task modeling language known
from end-user programming. Thereby, the described adaptation patterns are
mapped to CTT change operations. Finally, [36] presents a controlled experiment
that investigates the way users create and change process schemes on multi-touch



devices. Based on this, a gesture set for realizing adaptation patterns AP1, AP2,
AP6, AP7, AP8, AP10, and AP11 on multi-touch devices is designed.

5 Research Directions

When using change patterns for modeling, the quality of process schemes might
increase. Particularly appealing in this context is the mentioned correctness by
construction. However, the use of change patterns implies a different way of
creating process schemes compared to the use of change primitives. First of
all, the correctness-by-construction principle imposes a rather structured way of
modeling and hence constraints on change pattern combinations. In addition, the
exact set of change patterns (e.g., presence vs. non-presence of the move pattern)
might determine how patterns have to be combined to create a process fragment.
While the creation of process schemes based on change primitives has caused
attention in recent years [37], only little is known about the process of process
modeling when utilizing change patterns. To obtain an in-depth understanding
of it, we are currently working on empirical studies on the use of change patterns.

References

1. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

2. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: Proc. CAiSE’07. (2007) 574-588

3. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features -enhancing flexibility in process-aware information systems. Data and
Knoweldge Engineering 66 (2008) 438-466

4. Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change
patterns in process-aware information systems. In: Proc. ER’08. (2008) 279293

5. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and develop-
ment for robust and flexible process support. Comp Scie - R&D 23 (2009) 81-97

6. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information
systems. Requirements Engineering (2013)

7. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life
cycle support in process-aware information systems. Int’l Journal of Cooperative
Information Systems 18 (2009) 115-165

8. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action pat-
terns in process model repositories. In: Proc. BPM’10 Workshops. (2010) 251-263

9. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process
modeling. In: Proc BPM’08. (2008) 4-19

10. Heller, M., Allgaier, M.: Model-based service integration for extensible enterprise
systems with adaptation patterns. In: ICE-B. (2010) 163-168

11. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: The Provop approach. Journal of Software Maintenance and Evolution:
Research and Practice 22 (2010) 519-546

12. Hallerbach, A., Bauer, T., Reichert, M.: Guaranteeing soundness of configurable
process variants in Provop. In: Proc. CEC’09. (2009) 98-105



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality mea-
sures into software engineering processes. Int’l J Adv in Software 4 (2011) 76-99
Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through
workflow enactment and planning. In: Proc CollaborateCom’11. (2011) 372-381
Kumar, A., Yao, W., Chu, C.H., Li, Z.: Ensuring compliance with semantic
constraints in process adaptation with rule-based event processing. In: Proc
RuleML’10. (2010) 50-65

Reichel, T., Riinger, G., Steger, D.: Flexible workflows for an energy-oriented
product development process. In: Proc ISSS/BPSC’10. (2010) 243-254

Gerth, C., Kster, J., Luckey, M., Engels, G.: Detection and resolution of conflicting
change operations in version management of process models. SOSYM (2011) 1-19
Kiister, J., Gerth, C., Engels, G.: Dynamic computation of change operations in
version management of business process models. In: ECMFA’10. (2010) 201-216
Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In: Proc. BPM’04, Potsdam (2004) 274-289
Rinderle-Ma, S., Reichert, M., Weber, B.: Relaxed compliance notions in adaptive
process management systems. In: Proc. ER’08. (2008) 232-247

Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On representing, purging, and
utilizing change logs in process management systems. In: BPM’06. (2006) 241-256
Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of
service specifications. In: Proc. CAiSE’08. (2008) 359-374

Kim, D., Lee, N., Kang, S.H.: An approach to continuous process improvement
based on case-based reasoning and process change patterns. IJICIC 8 (2011)
Jamshidi, P., Pahl, C.: Business process and software architecture model co-
evolution patterns. In: Proc. MISE’12. (2012) 91-97

Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process
model repositories. Computers in Industry 62 (2011) 467-486

Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns: Opportuni-
ties for extension and reuse. In: Proc. SERA’09. (2009) 265-275

Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based
on high-level change operations. In: Proc. ER’08. (2008) 248-264

Kiister, J.M., Gerth, C., Forster, A., Engels, G.: Detecting and resolving process
model differences in the absence of a change log. In: BPM’08. (2008) 244-260
Giinther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining
in adaptive process management systems. In: Proc. CooplS’06. (2006) 309-326
Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges,
scenarios, algorithms. Data & Knowledge Engineering 70 (2011) 409-434
Dohring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime
using bpmn2 adaptation patterns. In: Proc. BIS. (2011) 25-36

Tragatschnig, S., Zdun, U.: Runtime process adaptation for bpel process execution
engines. In: EDOCW, IEEE Computer Society (2011) 155-163

Lenhard, J., Schonberger, A., Wirtz, G.: Edit distance-based pattern support
assessment of orchestration languages. In: OTM Conferences (1). (2011) 137-154
Kolb, J., Kammerer, K., Reichert, M.: Updatable process views for user-centered
adaption of large process models. In: Proc. ICSOC’12. (2012) 484-498

Kolb, J., Reichert, M., Weber, B.: Using concurrent task trees for stakeholder-
centered modeling and visualization of business processes. In: S-BPM ONE. (2012)
Kolb, J., Rudner, B., Reichert, M.: Towards gesture-based process modeling on
multi-touch devices. In: Proc. CAiSE Workshops. (2012) 280-293

Pinggera, J., et al: Modeling styles in business process modeling. In: BM-
MDS/EMMSAD. (2012) 151-166



