
Object-aware Process Support in Healthcare Information Systems: Requirements,
Conceptual Framework and Examples

Carolina Ming Chiao, Vera Künzle, and Manfred Reichert
Institute of Databases and Information Systems

Ulm University, Germany
Email: {carolina.chiao, vera.kuenzle, manfred.reichert}@uni-ulm.de

Abstract—The business processes to be supported by health-
care information systems are highly complex, producing and
consuming a large amount of data. Besides, the execution of
these processes requires a high degree of flexibility. Despite
their widespread adoption in industry, however, traditional
process management systems (PrMS) have not been broadly
used in healthcare environments so far. One major reason for
this drawback is the missing integration of business processes
and business data in existing PrMS; i.e., business objects
(e.g., medical orders, medical reports) are usually maintained
in specific application systems, and are hence outside the
control of the PrMS. As a consequence, most existing PrMS
are unable to provide integrated access to business processes
and business objects in case of unexpected events, which
is crucial in the healthcare domain. In this context, the
PHILharmonicFlows framework offers an innovative object-
aware process management approach, which tightly integrates
business objects, functions, and processes. In this paper, we
apply this framework to model and control the processes in the
context of a breast cancer diagnosis scenario. First, we present
the modeling components of PHILharmonicFlows framework
applied to this scenario. Second, we give insights into the
operational semantics that governs the process execution in
PHILharmonicFlows. Third, we discuss the lessons learned in
this case study as well as requirements from the healthcare
domain that can be effectively handled when using an object-
aware process management system like PHILharmonicFlows.
Overall, object-aware process support will allow for a new
generation of healthcare information systems treating both data
and processes as first class citizens.

Keywords-Process Management, Object-aware Process Man-
agement, Data-driven Process Execution.

I. INTRODUCTION

Healthcare processes are characterized by their high com-
plexity and the large amount of data they have to man-
age [22], [33], [20]. The latter is usually represented in
terms of business objects like, for example, medical orders,
medical reports, laboratory reports, and discharge letters.
Since healthcare processes require the cooperation among
different organizational units and medical disciplines [19],
cross-departmental process support becomes crucial.

A. Problem Statement

In this context, process management systems (PrMS) are
typically the first choice for implementing and maintaining
process-aware information systems. However, despite their

widespread adoption in industry, existing PrMS have not
been broadly used in healthcare environments so far [8]. One
major reason for this deficiency is the fact that contemporary
PrMS are activity-driven; i.e., the processes are modeled in
terms of “black-box” activities and their control-flow defines
the order and constraints for executing these activities.
However, activity-centric process modeling approaches like
BPMN [29] or BPEL [18] present numerous limitations [14]:
business data is typically treated as second-class citizen [4],
[7]. Moreover, most PrMS only cover atomic data elements,
which are needed for control flow routing and for supplying
the input parameters of activities with respective values
[31]. In turn, business objects are usually maintained and
stored in external databases and are outside the control
of the PrMS. Hence, integrated access to processes and
data, which is crucial for any healthcare process support,
is missing. Particularly, contemporary PrMS are unable to
provide immediate access to important process and business
information in case of unexpected events [11].

Regarding the execution of activity-driven PrMS, a pro-
cess requires a number of activities to be processed in a
certain order and be completed to terminate successfully.
In turn, healthcare processes and their steps depend on the
availability of certain information [19]. For example, if the
temperature of a patient is above 38oC, the doctor may have
to prescribe a medicine to contain the fever. Consequently,
the activation of an activity does not directly depend on
the completion of other activities, but rather on changes of
business object attributes.

Typically, it is also not possible to squeeze healthcare pro-
cesses into one monolithic process model [22]. In healthcare
environments, there exists numerous processes depending on
each other. For example, the distribution of a medicine in
the hospital pharmacy may depend on the patient’s treatment
process which, in turn, may depend on his diagnosis pro-
cess. The latter comprises diagnostic procedures like blood
tests and image examinations (or imaging encounters). To
be applicable in a healthcare context, therefore, a PrMS
must provide mechanisms for coordinating the interactions
between interdependent processes. Thereby, respective coor-
dination mechanisms must take the role of business objects
into account.



Another challenge arises from the fact that activities are
not only executed in the context of single process instances.
Instead, they may be invoked at different levels of granularity
comprising several process instances (of the same and of
different type). A medical doctor, for instance, may examine
one patient at a time, while a nurse prepares medications
for several patients in one go, that means, different kinds of
working styles need to be supported.

Finally, healthcare processes highly depend on medical
knowledge as well as on case-specific decisions [19], [9].
Thus, the type and order of invoked activities may vary from
process instance to process instance. In particular, healthcare
processes cannot be “straight-jacketed” into a set of pre-
defined activities [4], [38].

B. Contribution

Generally, the described limitations of existing PrMS
can be traced back to the missing integration of processes
and data [13], [14]. To overcome these limitations, several
approaches have pioneered certain concepts for enabling
data-driven process execution [4], [26], [10], [23], [24],
[39], data-driven exception handling and process adaptation
[24], [35], process coordination [2], [23], integrated access
to data [4], and process definition based on data behavior
[5], [39]. However, none of these approaches considers
all identified limitations in a comprehensive and integrated
way. Furthermore, many existing approaches solely focus on
process modeling or do not make a difference between the
modeling and execution of a process; i.e., they provide rich
capabilities for process modeling, but do not explicitly take
runtime issues into account.

Opposed to these approaches, PHILharmonicFlows targets
at a comprehensive framework addressing all described lim-
itations (and many others) [13], [17]. In addition, PHILhar-
monicFlows enforces a well defined modeling methodology
governing the object-centric specification of processes based
on a precise and formal operational semantics [15], [17].
In this paper, we evaluate the applicability of PHILharmon-
icFlows framework to healthcare processes. For this purpose,
we present a breast cancer diagnosis procedure as performed
at a Women’s hospital. This paper significantly extends the
work we presented in [1]. In particular, besides the modeling
issues of the framework, we present the operational seman-
tics governing process execution during runtime as well as
some screenshots of our prototype, built as proof-of-concept.

Section II describes the medical scenario we consider
and elaborate the fundamental requirements that any PrMS
supporting corresponding healthcare processes must meet.
In Section III, we model this scenario using the components
provided by the PHILharmonicFlows framework. The oper-
ational semantics for executing processes in PHILharmon-
icFlows is presented in Section IV. Following this, Section
V discusses how the identified requirements are met by the

framework. Related work is discussed in Section VI. Finally,
Section VII concludes with a summary and an outlook.

II. HEALTHCARE SCENARIO

The healthcare scenario we consider is a breast cancer
diagnosis process we obtained from a process handbook of
a Women’s hospital [36], [37]. As illustrated in Figure 1,
this process comprises an anamnesis, a physical examination
(including the collection and confirmation of symptoms),
a set of medical examinations (e.g., MRI, mammography,
and blood analysis), and a tumor biopsy. Some of these
procedures are illustrated in Figure 2. We describe the
different procedures using state charts, which are considered
as an intuitive modeling paradigm providing a natural view
for end users [21].
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Figure 1. Objects involved in the breast cancer diagnosis process

During anamnesis (see Figure 2b) the doctor asks the
patient specific questions (e.g., about her history of diseases,
family diseases, or current medication). In the meanwhile,
the doctor examines the patient and interviews her about
the presence of any symptom (see Figure 2d). The doctor
also asks the patient about breast nodules and he performs
a physical examination in order to confirm or exclude the
symptoms (see Figure 2c). If the symptoms brought up by
the patient are not confirmed during the physical examina-
tion, the presence of the tumor will be denied (see Figure
2a). In this case, the diagnosis process is finished. Otherwise,
the doctor decides about a battery of examinations based on
the symptoms confirmed.

One of the examinations, required to detect the presence
of a breast tumor or to exclude it, is mammography (see
Figure 2e). To perform this examination, the secretary of
the radiology department must schedule it. At the day of the
appointment, the procedure is performed and the resulting
images are stored in a database (see Figure 2f). The MRI
examination requires a similar process as shown in Figure
2g. The images from both examinations are then analyzed
by a specialized doctor of the radiology department and are
added to the respective medical reports. As opposed to the
mammography examination, for which the equipment does
not cause claustrophobia, during the MRI examination (see
Figure 2h) the patient may have a case of elevated anxiety
due to the enclosure of the MRI equipment. In such cases,



Figure 2. State diagrams for diagnosis, anamnesis, patient examination, symptom, mammography, and breast MRI examinations

the radiology specialist responsible for the examination must
decide whether or not the patient shall be sedated before
continuing with the procedure.

In the meanwhile, the doctor may request further ex-
aminations like, for example, another MRI examination or
additional blood tests. Otherwise, if the existence of a tumor
is confirmed, the doctor may want to biopsy this mass in
order to confirm the malignancy of the tumor (see Figure
2a). In this case, however, the consent of the patient is
required. The biopsy report is returned to the doctor who will
then inform the patient about the malignancy status of the
tumor. Finally, the diagnosis process is finished as positive,
confirming the presence of a breast tumor.

Although this diagnosis scenario seems to be rather sim-
ple, it already indicates a number of requirements to be
supported by the PrMS in order to be applicable to this
healthcare environment:
Requirement R1 (Data and process integration): Our
scenario is composed of many procedures, including an
anamnesis, search for symptoms, mammography, and MRI.
The product of each of these procedures is data related to the
patient’s diagnosis; e.g., the data obtained when interviewing
the patient during the anamnesis. Respective data is not only

important for keeping the patient’s history updated or for
registering all events for the purpose of auditing, they are
also vital in respect to process execution. In particular, the
milestones reached during process execution do less depend
on the execution of specific activities, but more on the
availability of certain data. For example, a mammography
medical report may only be written after having captured
and stored the respective images. In addition, user decisions,
which are typically based on available data, are fundamental
for process execution. For example, a radiology specialist
may decide whether or not to sedate a patient during an
MRI examination.
Requirement R2 (Intense use of forms): Like for other
healthcare scenarios, the sketched procedure comprises a
large number of medical forms to be filled by authorized
medical staff (e.g., doctors, nurses, laboratory staff) with any
information being relevant for patient treatment. For exam-
ple, consider the information obtained when interviewing the
patient during the anamnesis.
Requirement R3 (Interacting processes): The breast can-
cer diagnosis process needs to interact with other processes
(e.g., MRI); i.e., there are points in the diagnosis process at
which data from the MRI process is required. In particular,



these processes have synchronization points, at which the
further execution of a particular process instance depends
on the data produced during the execution of one or several
related process instances. Such synchronization points do not
only correspond to one-to-one relationships. Additionally,
the execution of a particular process instance may depend on
the execution of multiple instances of another process type as
well. Regarding our example, the execution of the diagnosis
process depends on the results of various examinations.
Requirement R4 (Flexibility regarding process instan-
tiation): Figure 1 indicates different cardinalities for the
various procedures of the diagnosis process. These cardinal-
ities indicate whether or not the execution of the respective
procedures is mandatory and whether they may be executed
more than once. Mandatory procedures (e.g., Anamnesis,
Patient Examination) have cardinality 1, while optional ones
(e.g., MRI, Mammography, Blood Analysis, Tumor Biopsy)
have cardinality 0...*. The latter indicates that there are
no restrictions regarding the number of the instances of
respective optional procedures. Depending on the concrete
case of a patient, doctors may decide which of these optional
procedures shall be ordered and which not. Finally, note that
it is possible to order them more than once.
Requirement R5 (Authorized user access): To meet secu-
rity constraints and ensure privacy, only authorized users are
allowed to access patient data. In our scenario, for example,
the secretary of the radiology department must not access
information about the patient obtained during the anamnesis
and she must not register symptoms of the patient. However,
she may access the data related to the medical order or
the scheduling of a mammography or an MRI examination.
Besides, the permission to access data may depend on the
progress of the process, which means that certain data shall
be only accessible at certain points during process execution.
For example, the medical report of a mammography may
be accessible for the doctor who placed the order solely
when the procedure has been completed and the report been
approved by the radiologist.
Requirement R6 (Flexible data access): Any healthcare
information system must provide the flexibility to its users
to access and modify business data at arbitrary points during
process execution. Amongst others, this is extremely impor-
tant in order to be able to properly react to unexpected events
[34]. For example, in case of an emergency, the system
must allow the doctor to access examination data before the
medical report becomes available.

III. CASE STUDY: MODELING HEALTHCARE PROCESSES
WITH PHILHARMONICFLOWS

In the previous section, we introduced fundamental re-
quirements for adequately supporting healthcare processes.
In particular, the requirements imposed by healthcare pro-
cesses can be easily linked to the major characteristics of
object-aware processes [16], [34]:

1) Object behavior: This first characteristic covers the
processing of individual object instances. More pre-
cisely, for each object type a separate process definition
must be provided. At runtime, the latter is then used
for coordinating the processing of individual object
instances among different users. In addition, it must be
specified in which order and by whom the attributes of a
particular object instance shall be (mandatorily) written,
and what valid attribute settings (i.e., attribute values)
are. At runtime, the creation of an object instance is
directly coupled with the creation of its corresponding
process instance. In this context, it is important to
ensure that mandatory data is provided during process
execution; i.e., during the processing of the object
instances. For this reason, object behavior should be
defined in terms of data conditions rather than based
on black-box activities.

2) Object interactions: The behavior of a particular object
must be coordinated with the one of other related
objects. The related object instances may be created or
deleted at arbitrary point in time, emerging a complex
data structure. The latter dynamically evolves during
runtime, depending on the types and numbers of cre-
ated object instances. Furthermore, individual object
instances of the same type may be in different process-
ing states at a certain point in time. More precisely, it
must be possible to execute individual process instances
(of which each corresponds to the processing of a
particular object instance) in a loosely coupled man-
ner; i.e., concurrently to each other and synchronizing
their execution where needed, taking semantic object
relations and cardinality constraints into account.

3) Data-driven execution: To proceed with the processing
of a particular object instance, in a given state, certain
attribute values are mandatorily required. Hence, object
attribute values reflect the progress of the corresponding
process instance. More precisely, the setting of certain
object attribute values is enforced in order to progress
with the process through the use of mandatory ac-
tivities. However, if required data is already available
(e.g., it may be optionally provided by authorized
users before the respective mandatory activity becomes
enabled), these activities will be automatically skipped
when becoming activated. Furthermore, users shall be
able to re-execute a particular activity, even if all
mandatory object attributes have been already set. For
this purpose, data-driven execution must be combined
with explicit user commitments. Finally, the execution
of a mandatory activity may depend on attribute values
of related object instances. Thus, the coordination of
multiple process instances should be supported in a
data-driven way as well.

4) Flexible activity execution: For creating object in-
stances and changing object attribute values, form-



based activities can be used. Respective user forms
comprise input fields (e.g., text fields or check-boxes)
for writing selected attributes and data fields for reading
attributes of object instances. In this context, however,
different users may prefer different work practices.
Therefore, activities should be executable at different
levels of granularity; e.g., it should be possible that an
activity may relate to one or to multiple object process
instances.

5) Integrated access: Authorized users should be able to
access and manage process-related data objects at any
point of time. More precisely, permissions for creating
and deleting object instances, as well as for reading and
writing their attributes need to be defined. However, at-
tribute changes contradicting specified object behavior
must be prevented. Which attributes may be written or
read by a particular (form-based) activity not only de-
pends on the user invoking this activity, but also on the
progress of the corresponding process instance. While
certain users must execute an activity mandatorily in
the context of a particular object instance, others might
be authorized to optionally execute this activity; i.e.,
a distinction is made between mandatory and optional
permissions. Furthermore, for object-aware processes,
the selection of actors usually not only depends on
the activity to be performed, but also on the object
instances processed by this activity. In this context, the
relationships between users and object instances must
be taken into account.

PHILharmonicFlows has recognized the need to offer flex-
ible support for this kind of processes [13]. More precisely,
it provides a comprehensive and well-grounded framework
with components for modeling, executing, and monitoring
object-aware processes (see Figure 3). To be able to define
these processes in tight integration with data, PHILharmon-
icFlows enforces a well-defined modeling methodology that
governs the definition of processes at different levels of
granularity. In this context, PHILharmonicFlows differenti-
ates between micro processes and macro processes capturing
either the behavior of single objects or the interactions
among multiple objects.

First of all, the behavior of a single object may be
expressed in terms of a number of possible states. Fur-
thermore, whether or not a particular state will be reached
at certain time depends on the values of object attributes.
The interactions among objects, in turn, are enabled when
involved objects reach certain states. Hence, object states
serve as interface between micro and macro processes as
well.

Data Model (Figure 3a): As prerequisite for providing
integrated access to data and processes, a data model must be
provided. The latter must comprise object types (including
object attributes) and object type relationships (including
cardinalities) [15]. For example, data model depicted in

Figure 1 gives an overview of the object types relevant
in the context of our diagnosis process; i.e., there is one
object type for each of the phases of the diagnosis process.
Furthermore, Figure 6 illustrates the attributes of object type
Mammography.

Micro Process (Figure 3b): In PHILharmonicFlows, for
each object type of the data model, a particular micro process
type must be defined. At runtime, object instances of the
same and of different object types can be created at different
points in time. In this context, the creation of a new object
instance is directly coupled with the one of a corresponding
micro process instance. In general, a micro process type
expresses the behavior of the respective object type (e.g.,
Mammography); i.e., it coordinates the processing of an
object among different user roles (e.g., nurse or doctor)
and specifies what valid attribute settings are. Additionally,
the cardinality of an object type in relation to other object
types defines restrictions regarding the instantiation of micro
process types and object types respectively. For example,
in our case the cardinality of object type Anamnesis in
relation to object type Diagnosis is 1; i.e., for each Diagnosis
instance, there must be exactly one instance of object type
Anamnesis. By contrast, it is not mandatory that there exists
an instance of object type Mammography for each Diagnosis
instance. However, it is up to the respective doctor to create
several instances of this examination as long as cardinality
constraints are met. To meet requirement R4 (see Section
II), PHILharmonicFlows provides the flexibility to handle
a varying number of instances of interrelated examinations.
More precisely, it is up to the doctor to decide when and
which examinations are required. We will show later, that
so-called macro processes enable a coordinated execution of
dependent micro process instances.

Each micro process type comprises a number of micro
step types, which describe elementary actions for reading
and writing object attribute values. More precisely, each
micro step type is associated with one particular attribute
of the respective object type. In turn, micro step types
may be connected with each other using micro transition
types. To coordinate the processing of individual object
instances among different users, several micro step types can
be grouped into state types. The latter are then associated
with one or more user roles responsible for assigning values
to the required attributes. At runtime, a micro step can be
reached if for the corresponding attribute a value is set. In
turn, a state may only be left if, for all attributes associated
with its micro steps of this state, respective values are set.
Whether or not the subsequent state of the micro process is
then immediately activated may depend on user decisions.
In this context, micro transition types, which connect micro
step types belonging to different state types, are either
categorized as implicit or explicit. Regarding implicit micro
transitions, the target state will be automatically activated
as soon as all attribute values required by the previous state
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Figure 3. Overview of the PHILharmonicFlows Framework

are available. In turn, explicit micro transitions additionally
require a user commitment; i.e., users may decide when the
subsequent state shall be activated. This way, users still may
change attributes even if all attribute values required to leave
the state have been already set.

An example of a micro process type is depicted in Figure
5. Object type Mammography and its respective micro
process type are instantiated when the doctor requests a new
mammography examination. For requesting a mammogra-
phy, the (authorized) user must set the request date; i.e.,
to complete micro step request date a value needs to be
assigned to the corresponding attribute. In our example, the
micro transition type between state types requesting and
scheduling is explicit (dotted line). This ensures that the doc-
tor may still review the examination request before sending it
to the secretary of the radiology department. In turn, in state
scheduling, the Secretary must fill attributes scheduled date,
scheduled doctor, and scheduled room. She further must
decide when to notify the patient about the scheduled
appointment; i.e., the subsequent state notifying patient will
not be activated before explicitly confirmed by the Secretary.

In turn, a user decision is required if a micro step type
has more than one outgoing micro transition types. For this
purpose, each micro step type may comprise a set of corre-
sponding value step types. Each value step type represents
a particular constraint to the micro step type; i.e., specific
value constraints to the attribute associated to the micro
step type. In our scenario, the responsible user must decide
which of the subsequent states shall be activated. Figure 4
shows a fragment of the MRI micro process type; here, the
radiology specialist must decide in case of a patient’s anxiety
scenario (state type treating anxious patient) whether or not

to sedate the patient (attribute sedation). If the doctor decides
not to sedate the patient (value step type no), at runtime
the next activated micro step will be reason no sedation;
i.e., the doctor must provide a reason for his decision. If he
decides that sedation is required (value step type yes), micro
step types sedative and sedation time will be activated at
runtime.

User authorization (Figure 3c): To coordinate the pro-
cessing of an object, user roles have to be assigned to the
different states of its micro process type. Based on these
role assignments, a corresponding authorization table is
automatically generated for each object type. More precisely,
PHILharmonicFlows grants different permissions for reading
and writing attribute values as well as for creating and
deleting object instances to different user roles. In this
context, the different states are considered as well; i.e., users
may have different permissions in different states allowing
for a fine-grained access control policy. The right to write
an attribute may either be mandatory or optional. When
initially generating the authorization table, the user role
associated to a state type automatically receives mandatory
write authorization for all attributes related to any micro step
type of the respective state type. Optional data access may
be additionally granted to user roles not associated with the
state type. This way, users currently not involved in process
execution may access process relevant data if required.

Based on the authorization table of a micro process type,
PHILharmonicFlows automatically generates user forms.
Which input fields are displayed to the respective user
depends on the permissions he has in the currently activated
state. If he only has the permission to read a particular
attribute in a certain state, the respective form field will
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Figure 4. Partial view of the MRI micro process type

not be editable and marked as read-only. A mandatory or
optional attribute, in turn, is associated with an editable
field. In particular, mandatory fields are highlighted in the
respective user form.

The concepts provided by PHILharmonicFlows to enable
proper authorization for micro process execution are ex-
emplified in Figure 6. It illustrates the authorization table
of micro process type Mammography. In this example,
state type requesting has only one mandatory attribute
request date (marked as MW in the authorization table).
This attribute must be set by the doctor requesting the
examination. In addition, attributes request desired date and
request observations are optional (marked as OW); i.e.,
they may be written by the doctor in the respective state.
However, this state may be also left as soon as mandatory
attribute request date is written. In state scheduling, the
same doctor may change the values of the aforementioned
optional attributes as opposed to the secretary of the ra-
diology department. The latter may only read the values
of these attributes (marked as R). However, she is allowed
to write attributes scheduled date, scheduled doctor, and
scheduled room, which, in turn, may only be read by the
doctor.

Macro Process (Figure 3d): Whether or not subsequent
object states can be reached may not only depend on object
attributes, but also on the states of other micro process
instances. At runtime, for each object instance, a corre-
sponding micro process instance exists. As a consequence, a
healthcare scenario may comprise dozens or hundreds of mi-
cro process instances. Taking their various interdependencies
into account, we obtain a complex, dynamically evolving
process structure. In order to enable a proper interaction be-
tween these micro process instances, a coordination mecha-
nism is required to realize the interaction points of the micro
processes involved. For this purpose, PHILharmonicFlows
automatically derives a state-based (i.e., abstracted) view for
each micro process type. This view is then used for modeling
macro process types.

A macro process type refers to parts of the data structure
(i.e., to particular object types) and consists of both macro
step types and macro transitions types connecting the former.
As opposed to traditional process modeling approaches,
which define process steps in terms of black-box activities,
a macro step type always refers to an object type with a
corresponding state type. The macro process type depicted in
Figure 8 illustrates this. The process begins with the instan-
tiation of object type Diagnosis, which triggers the creation
of a corresponding micro process instance. Then, object
type Anamnesis is instantiated (i.e., the responsible doctor
receives a corresponding item in his worklist) and its micro
process instance is created. During Patient Examination, the
symptoms may be collected, which are confirmed after the
physical examination has taken place. If the symptoms are
not confirmed, the diagnosis will be finished as negative,
indicating that no tumor was found. Otherwise, the diagnosis
process continues with requesting imaging encounters. It is
noteworthy that for one primary examination, more than one
symptom may be collected.
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Since the activation of a particular state may depend
on instances of different micro process types, macro input
types are assigned to macro step types. Such input types
can then be associated with several macro transitions. At
runtime, a macro step is enabled if at least one of its
macro inputs becomes activated. In turn, a macro input is
enabled if all incoming macro transitions are triggered. In
PHILharmonicFlows, it is possible to differentiate between
AND and OR semantics. For representing the semantics of
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an AND-join in the macro process, several incoming macro
transitions target a single macro input type (see Figure 7a).
For representing the OR-join semantics, a macro step type
must have more than one macro input type associated (see
Figure 7b). In this case, to enable the targeting macro step
at least one of its macro inputs must be activated.

Coordination (Figure 3e): To take the dynamically
evolving number of object instances as well as the asyn-
chronous execution of corresponding micro process in-
stances into account, for each macro transition a correspond-
ing coordination component needs to be defined. For this
purpose, PHILharmonicFlows takes the relationship between
the object type of the source macro step type and the one of
the target macro step type into account, making our approach
fundamentally different compared to conventional PrMS.

To enable this, the framework automatically structures
the data model into different data levels. All object types
not referring to any other object type are placed on the top
level (Level #1). Generally, any other object type is always
assigned to a lower data level as the object types it refer-
ences. As illustrated in Figure 9, in our case study, object
type Diagnosis is at the top level, while all examinations
are placed at a lower level. For example, images refer to
respective examinations (i.e., imaging encounters). Hence,
they are placed at Level #3. In this paper, we do not discuss
self-references and cyclic relations, but they are considered
by PHILharmonicFlows framework [17].

By organizing the object types of the data model into dif-
ferent levels, PHILharmonicFlows automatically categorizes
macro transitions either as top-down or as bottom-up (see



Figure 8. A macro process type coordinating the interactions among the different micro process types
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Figure 9. Different kinds of relationships between object types

Figure 9). Furthermore, if the object types of the source
and sink macro state refer to a common higher-level object
type, the macro transition is categorized as transverse. For
macro transitions types connecting macro step types, which
refer to the same object type, no coordination component is
needed. These transitions are denoted as self-transitions. For
all other ones, the required coordination component depends
on the type of the respective macro transition. A top-down
transition characterizes the interaction from an upper-level
object type to a lower-level one. Here, the execution of a
varying number of micro process instances depends on one
higher-level micro process instance. In this context, a so-
called process context type must be assigned to the respective
macro transition type. Due to lack of space, we omit further
details. We do also not discuss transverse macro transition
types. In turn, a bottom-up transition characterizes an inter-
action from a lower-level object type to an upper-level one.
In this case, the execution of a higher-level micro process
instance depends on the one of several lower-level micro
process instances of same type. For this reason, each bottom-
up transition requires an aggregation component for co-
ordination. For this purpose, PHILharmonicFlows provides
counters managing the total number of lower-level micro

process instances and the number of micro process instances
for which the state corresponding to the source macro step
type is currently activated. To enable asynchronous micro
process execution, additional counters for reflecting the num-
ber of micro process instances currently being before or after
the respective state or being skipped are provided. These
counters can be used for defining aggregation conditions,
which establish constraints regarding the lower-level micro
process instances in order to activate a particular state of a
higher-level micro process instance. As illustrated in Figure
10, the Diagnosis process activates state tumor not found
if all the micro process instances related to instances of
object type Symptom reach state symptom not confirmed. The
aggregation condition for this case (#IN=#ALL) indicates this
constraint. This example illustrates how such counters work.
As illustrated in Figure 10, there are three micro process
instances of Symptom related to one micro process instance
of Diagnosis. In this example, the counter indicates that two
of the running instances of symptom have already reached
state symptom not confirmed (#IN=2), while one instance
has not yet reached this state (#BEFORE=1). When all three
instances reach this state (i.e., the condition defined in the
aggregation is met), state tumor not found is activated for
the respective Diagnosis instance.

As a proof-of-concept, we developed a prototype that
implements the concepts of the PHILharmonicFlows frame-
work, enabling the modeling and enactment of object-aware
processes. Figure 11 shows a screenshot of the data model
from our healthcare scenario being modeled in the tool.
Figure 12 shows the micro process type regarding object
type Mammography. In this screenshot, the upper part of
the screen presents the object types with their relations and
lets the user select for which object type he wants to model
the micro process type. The lower part of the screen lets the
user model the corresponding micro process type.
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IV. RUNTIME ENVIRONMENT OF
PHILHARMONICFLOWS

The runtime environment of PHILharmonicFlows pro-
vides data- as well as process-oriented views to end-users.
In particular, authorized users may invoke activities for
accessing data at any point in time as well as activities
needed in order to proceed with the execution of micro
process instances. In this context, the operational semantics
defined by PHILharmonicFlows enables sound process exe-
cution. Additionally, it provides the basis for automatically
generating end-user components of the runtime environment
(e.g., tables giving an aggregated overview of all processed
object instances, user worklists, and form-based activities).

At runtime, the execution of individual micro process
instances is based on well-defined markings [15]. More pre-
cisely, these markings indicate which components of a micro
process instance are activated at a certain point of time; i.e.,
the processing state of a micro process instance is defined
by the current marking of its states, micro steps, and micro
transitions. Based on these markings (see Figure 13), it
becomes possible to not only specify which components are
activated at a certain point in time, but also the components
that may be activated later on and the ones that cannot be
activated anymore (since they belong to a skipped execution
path).

Figure 13. Operational semantics for states, micro steps, and micro
transitions

To illustrate how a micro process instance is created,
executed, and terminated, we refer to our example. In
particular, to illustrate how the operational semantics of
PHILharmonicFlows looks like, we refer to the micro pro-
cess type related to object type MRI (see Figure 4).

Creation of a Micro Process Instance: When creating an
instance of object type MRI, a corresponding micro process
instance is automatically generated and initialized as well.
According to Figure 14, the start micro step is then marked
as CONFIRMED and the state to which it belongs (i.e., state



requesting) is marked as ACTIVATED. In turn, all other
states are initially set to WAITING. Further, the outgoing
micro transition of the start step is marked as READY, while
all other micro transitions are initially marked as WAITING.
In our example, this micro transition corresponds to the
incoming micro transition of micro step request date, which
is marked as ENABLED. All other micro steps not belonging
to the state requesting are marked as WAITING.

requesting
request_date

scheduling

scheduled_
date

scheduled_
room

scheduled_
doctor

ACTIVATED
WAITING

WAITING
READY
ENABLED

CONFIRMED
State markings: Micro Step and Micro Transition markings:

Figure 14. Initiating an instance of a micro process

Execution of a Micro Process Instance: Consider Figure
15a. When state treating anxious patient is reached, it is
marked as ACTIVATED. The first micro step (i.e., sedation)
is then marked as ENABLED. This means that a value must
be provided for the corresponding attribute. In particular,
this micro step refers to a decision to be made by the
medical doctor on whether or not sedate the patient. Note
that the execution path of the micro process depends on this
decision; i.e., if the doctor chooses to sedate the patient, he
must fill the values on the form about the sedative used
and the sedation time chosen. In the micro process, this
decision point is represented as a value-specific micro step.
Thereby, not only the micro step, but its value steps yes
and no are marked as ENABLED. If the user sets a value
corresponding to one of these value steps (see Figure 15b),
the selected value step is set to ACTIVATED as well as the
corresponding micro step. However, if the user sets a value
that does not correspond to any value step type (see Figure
15c), the micro step is marked as BLOCKED. In turn, this
blocks the execution of the micro process instance as whole.
The latter is indicated to the user by highlighting the input
field in the form with an exclamation point. To unblock a
blocked micro process execution, the user must set a valid
value for the attribute referred by the BLOCKED micro step.

When a valid value is set for the attribute referred by
micro step sedation (i.e., this micro step is marked as
ACTIVATED), the incoming micro transition of this micro
step changes its marking to ACTIVATED. In turn, this
enables micro step sedation to change its marking from
ACTIVATED to UNCONFIRMED. However, the corre-
sponding value steps of this micro step must be handled
as well. In our example (see Figure 16), the value step
marked as ACTIVATED (i.e., yes) changes its marking to
UNCONFIRMED, while the one still marked as ENABLED
is now marked as BYPASSED.

After setting a value for the attribute corresponding to
micro step sedation, micro steps sedative and sedation time

become marked as ENABLED (see Figure16a). In the user
form, this is visualized by highlighting both input fields,
which means that the user must provide a value for at least
one of the two attributes; i.e., if for one of these attributes
(e.g., sedation time) a value is set, the corresponding micro
step will be marked as ACTIVATED (see Figure 16b).
Additionally, the incoming micro transition is marked as
ENABLED. Since no value for attribute sedative is provided,
the priorities of the micro transitions (i.e., signalized on the
respective micro transitions outgoing from micro step seda-
tion) are not relevant for this case. Thereby, the incoming
micro transition may be marked as ACTIVATED as well (see
Figure 16c). In order to omit the alternative execution path,
in this case an internal dead path elimination is performed
(see Figure 16d). Based on it, all micro transitions and
steps belonging to the non-selected path are marked as
BYPASSED; i.e., a micro step is marked as BYPASSED if
all incoming micro transitions are marked as BYPASSED.

As long as the change of state treating anxious patient
has not been confirmed (i.e., the transition to the next state
is not confirmed by the user), the doctor still may set a
value for attribute sedation. To accomplish this, an internal
reset of the currently activated state is performed (see Figure
16e). Normally, the micro steps and transitions will be reset
if an attribute value corresponding to a micro step marked
as UNCONFIRMED or BYPASSED is changed. However,
if values for both attributes sedation and sedation time are
assigned (see Figure 16f), more than one micro transition
becomes ENABLED. Since only one micro step (and one
micro state) can be reached, it must be ensured that only
one of the execution paths is in fact executed (i.e., only
one of the micro transitions is fired). For this purpose, only
the micro transition with the highest priority is marked as
ACTIVATED (see Figure 16g); i.e., only the one that reaches
micro step sedation is ACTIVATED. The other micro tran-
sition is marked as BYPASSED using an internal dead path
elimination. If a state is marked as CONFIRMED after-
wards, micro steps and transitions marked as BYPASSED
are finally marked as SKIPPED.

When marking a micro step as UNCONFIRMED, outgo-
ing micro transitions are either marked as READY or CON-
FIRMABLE. More precisely, external micro transitions, for
which an explicit user commitment is required, are marked
as CONFIRMABLE. Consequently, a mandatory activity
enabling this commitment is automatically assigned to the
worklist of the responsible user. Regarding our example,
after deciding to sedate the patient and filling out in the
form which sedative was given to the patient, the outgoing
explicit micro transition is marked as CONFIRMABLE. In
turn, this requires for the assigned user (e.g., radiologist)
to confirm the values of the corresponding attributes. In
this case, the explicit micro transition then changes its
marking to READY. Opposed to this, implicit micro tran-
sitions are immediately marked as READY. If an external



Figure 15. Execution markings for value-specific micro step

micro transition is marked as READY, the currently acti-
vated state will be marked as CONFIRMED. Additionally,
all corresponding micro steps as well as internal micro
transitions (currently marked as UNCONFIRMED) are re-
marked as CONFIRMED. Following this, the subsequent
state (i.e., state performing MRI in our example) is marked
as ACTIVATED and its micro steps as READY. The target
micro step of the external transition (i.e., in our example
performed date) is marked as ENABLED. For this micro
step, a value must be set for the corresponding attribute.
Moreover, PHILharmonicFlows performs an external dead-
path elimination in order to mark micro steps, micro tran-
sitions, and states, which can no longer be activated, as
SKIPPED.

Despite any predefined sequence of micro steps, users
may freely choose their preferred execution order; i.e., the
order in which attribute values are set within a processed
form does not have to coincide to the one of the corre-
sponding micro steps. Particularly, at runtime a micro step
may be completed as soon as a value is assigned to the
corresponding object attribute.

Termination of a Micro Process Instance: The ex-
ecution of a micro process instance terminates when a
state containing an end micro step becomes marked as
SELECTED. Using the introduced internal and external
dead-path elimination, all other states, micro steps and
micro transitions are then either marked as CONFIRMED
or SKIPPED.

V. DISCUSSION

In Section II, we have introduced a realistic healthcare
scenario, which we modeled in Section III using the PHIL-
harmonicFlows framework. In Section IV, we presented
the operational semantics of the execution environment of
PHILharmonicFlows framework to indicate how data-driven
process execution works in PHILharmonicFlows. In this
section, we discuss how the requirements posed by the
healthcare scenario are met.
Requirement R1 (Data and process integration): The
well-defined modeling methodology provided by PHILhar-
monicFlows ensures that each procedure (e.g., anamnesis,
physical examination, or mammography) is modeled from
a data-oriented perspective (i.e., by using object types) as
well as from a process-oriented one (i.e., by using micro
process types). Hence, all the data produced by respective
procedures is stored and managed without need to access
external databases during the execution of activities. In
particular, this enables users to access and manage process-
related data (i.e., object instances) at any point in time
(assuming proper authorization) and not only when working
on assigned mandatory activities.
Requirement R2 (Intense use of forms): Based on autho-
rization tables, PHILharmonicFlows automatically generates
user forms during runtime. For this purpose, it takes the
currently activated state of a micro process instance as well
as the user and his data access permissions into account.
Each user form comprises fields corresponding to read and
write permissions for respective object attributes. Moreover,
in PHILharmonicFlows, object instances and activities are



Figure 16. Execution of state treating anxious patient

not strictly linked with each other. For example, it is
also possible to execute a particular form in relation to
a collection of object instances of the same object type.
In this scenario, entered attribute values are assigned to
all selected object instances in one go. In addition, a user
may invoke additional object instances of different (related)
types. When generating corresponding forms, the currently
activated states of these instances as well as the permissions
assigned to the respective user in these states are taken into
account as well.

Requirement R3 (Interacting processes): As discussed in
Section III, this requirement is met by PHILharmonicFlows
by the support of macro processes that coordinate the exe-
cution of related micro process instances. Using macro step
types it becomes possible to define the required synchroniza-
tion points. At runtime, it is possible to execute the individual
micro process instances asynchronously to each other as well
as asynchronously to the instances of other micro processes.
In addition, it is possible to instantiate them at different
points in time. Consequently, the resulting process structure



comprises a varying number of interrelated micro process
instances being in different execution states. For this purpose,
each macro transition type can be specialized using different
coordination components. The choice of the latter depends
on the relation existing between the corresponding object
types within the overall data structure. This way, not only the
asynchronous execution, but also the different cardinalities
between different sets of dependent micro process instances
are considered.
Requirement R4 (Flexibility regarding process instanti-
ation): Using PHILharmonicFlows it becomes possible to
consider a dynamically evolving number of inter-related
micro process instances. Taking the defined cardinality con-
straints into account, users may autonomously decide which
and how many micro process instances shall be created. If
the minimum cardinality is not met, PHILharmonicFlows
automatically assigns a corresponding mandatory activity to
the worklists of responsible users asking for the creation of
new instances of the respective micro process type. Opposed
to this, if the maximum cardinality is reached, PHILharmon-
icFlows prohibits the creation of additional micro process
instances. By specifying the cardinality of each object type,
it is possible to define which of them must be instantiated
(cardinality 1) and which ones are optional (cardinality 0...).
This enables qualified staff members to request examinations
at arbitrary points during the diagnosis process and to react
on unexpected events (e.g., drug prescription in case of
intense fever).
Requirement R5 (Authorized user access): The autho-
rization table enables the level of data privacy required
by healthcare processes. For each micro process type, it is
possible to define which attributes may be written or read by
a particular user role in the currently activated micro process
state. PHILharmonicFlows ensures that no data is written or
read by unauthorized users. Since each state type has an
associated user role, the authorization table automatically
ensures that this role owns the required data permissions;
i.e., the role has mandatory write permission regarding the
attributes associated with the micro step types in the state
type.
Requirement R6 (Flexible data access): As opposed to
traditional PrMS, PHILharmonicFlows presents two different
views to the end-users: a process-oriented view (i.e., work-
lists) and a data-oriented one (i.e., overview tables listing
selected object instances together with their attribute values).
The latter enables the access to data at any point in time
by authorized users. Thus, data access does not depend on
the activation of an upcoming activity; i.e., the data can
be accessed beyond the context of a particular mandatory
activity.

VI. RELATED WORK

Healthcare is a challenging domain for process support,
since it comprises structured and unstructured processes.

The enactment of such processes requires a high degree of
flexibility [19], [20], [34]. In particular, due to their tighter
integration of data and processes, data-centric approaches
support process flexibility.

One prominent approach is the Case Handling paradigm
[4]. It aims at data and process integration by managing
the data inside the “case” scope. It also enables form-
based activities. If further targets at increasing the degree
of flexibility by providing access to information outside
the scope of an activity. However, data is provided in
terms of atomic elements and may be completely read by
any user involved in the case; i.e., no fine-grained access
control can be realized. Furthermore, there is no full support
regarding interactions among different cases. In [4], the
authors mention case studies realized in the healthcare
area. However, they focus on administrative processes (e.g.,
patient registration and administrative processing).

In COREPRO [23], [24], the process structures are gen-
erated accordingly to the data structure and the interaction
among different process instances is enabled. However, it
does not offer the same execution flexibility as PHILhar-
monicFlows and Case Handling, since the process execution
is not directly coupled with the activity of data. The Product-
driven Workflow Design approach [39] targets at the precise
derivation of a process execution sequence according to the
product structure following three design criteria (quality,
costs, and time). However, it does not aim at flexible
execution of processes driven by data. The Proclets approach
[2], [22] enables interactions among process fragments.
However, data is managed outside the scope of the process
management system and can only be accessed when an
activity is being executed.

The document-based workflow approach α-flow [27],
[28] incorporates workflow semantics into the documents
involved. Such documents are edited and viewed taking the
separation of responsibilities and inter-institutional collabo-
ration into account.

For more details about existing data-aware process man-
agement approaches, we refer interested readers to [16].

VII. SUMMARY & OUTLOOK

We analyzed a breast cancer diagnosis scenario. By mod-
eling it with PHILharmonicFlows we studied how effectively
this framework covers the semantics of healthcare processes.
First, we elicited a list of requirements not adequately met
by traditional process management systems in this context.
Following this, we modeled the considered scenario by using
components of the PHILharmonicFlows framework and we
explained how the runtime environment of PHILharmon-
icFlows works. Finally, we discussed the effectiveness of
this approach and showed how it covers the requirements of
healthcare processes.

Healthcare processes are knowledge-intensive and need
a high level of flexibility in order to allow qualified staff



members to flexibly react to unexpected events. Com-
pared to other data-oriented approaches, in a very effective
way, PHILharmonicFlows covers the requirements posed
by healthcare processes. By tightly integrating data and
processes, our approach enables an environment in which
data drives process execution and coordination. In turn, this
allows for a higher degree of flexibility enabling data access
outside the context of black-box activities.

Like in activity-centered approaches [32], [34], schema
evolution is a complex and error-prone task to be accom-
plished for object-aware processes as well. Therefore, we
are working on an extension of the framework to enable
controlled schema evolution; i.e., a mechanism to manage
and apply changes to object-aware process models as well
as their running instances. Since all components of the
framework are tightly integrated, the mechanism must take
into account that each change (e.g., deleting an object
attribute) might affect other components (e.g., a micro step
type in a micro process type that must be deleted when
the corresponding object attribute is deleted). Thus, the
mechanism must be able to detect such interdependencies
between components and to assist the user to apply the
changes in the process without affecting process correctness.
A preliminary work defining the challenges existing in this
context is presented in [6].

Concerning healthcare processes, another potential fu-
ture work is the integration of the PHILharmonicFlows
framework with medical information systems. One particular
challenge is dealing with complex attribute types (e.g., image
data) and making the processes compliant with the DICOM
[40] standard.
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