Enhancing the Case Handling Paradigm
to Support Object-aware Processes

Carolina Ming Chiao, Vera Kiinzle, and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{carolina.chiao,vera.kuenzle,manfred.reichert}@uni-ulm.de

Abstract. Despite the widespread adoption of process management sys-
tems (PrMS) by industry, there exist numerous processes that cannot
be adequately supported by PrMS so far. A common characteristic of
these processes, which is usually neglected by traditional activity-centric
PrMS, is the role of data as driver for process modeling and enact-
ment. To overcome the limitations caused by missing integration of data
and process, several data-centric process management approaches have
emerged. A popular one is the Case Handling (CH) paradigm. However,
previous case studies pointed out that, although it targets some of the
limitations from activity-centric PrMS, the integration of processes and
data supported by CH is still unsatisfactory. In this paper, we present
the lessons learned from previous case studies and discuss the limitations
of CH. We then present the PHILharmonicFlows framework, which en-
hances the power of data-centric approaches such as CH by enforcing
a well-defined modeling methodology governing the object-centric spec-
ification and execution of processes and based on a formal operational
semantics.

Key words: Case Handling, Data-centric Processes, Object-aware Pro-
cess Management

1 Introduction

Business process management provides generic methods, tools and techniques for
designing, configuring, enacting, and monitoring business processes [1]. Existing
process management systems (PrMS) are usually activity-centric; i.e., processes
are defined as a set of “black-box” activities and control flow elements, express-
ing the order and constraints for executing these activities. However, in these
PrMS, business data is typically treated as second-class citizen [2, 3]. Most PrMS
only cover atomic data elements, which are needed for control flow routing and
as input parameters of process activities. In turn, business objects are usually
stored in external databases; i.e., they are outside the control of the activity-
centric PrMS. Traditional activity-centric PrMS have been primarily designed for
highly structured, repetitive processes. By contrast, knowledge-intensive processes
are often unstructured or semi-structured [4]; i.e., these processes are driven by
user decisions and cannot be straight-jacketed into activities [2]. Moreover, such

2 Carolina Ming Chiao, Vera Kiinzle, Manfred Reichert

processes require integrated access to data; i.e., users shall be able to immedi-
ately access important information at arbitrary points in time during process
execution. Additionally, the execution of knowledge-intensive processes depends
on the availability of certain information, but not on the completion of a certain
activity (as in activity-centric PrMS). Consequently, they are data-driven; i.e.,
instead of depending on activity completion, the progress of process execution
depends on changes of correspondent business objects. Besides, these processes
normally depend on data from other process instances from the same or dif-
ferent type. Therefore, a PrMS must provide a mechanism for coordinating the
interactions between such interdependent processes.

In several case studies in different domains [5, 6, 7, 8, 9], we learned that the
described limitations can be traced back to the missing integration of business
data and processes. To overcome at least some of the more severe limitations,
there exist several approaches that support a tight integration of process and
data [2, 3, 7, 10, 11, 12, 13]. One prominent data-centric approach is provided
by the Case Handling paradigm (CH) [2, 14, 15]. In CH, the central concept is
the case (e.g., an insurance claim or a job offer), which comprises tasks (i.e., ac-
tivities), data elements, and relations between the tasks making up the process.
Although CH overcomes some of the limitations known from activity-centric
PrMS, the paradigm is still not broadly used in practice. To better understand
the reasons for this, in several case studies [5, 6, 8] we applied the CH paradigm
to existing processes. Thereby, we have observed that CH is limited in respect
to object-awareness. Although CH permits to associate different types of data
elements to a case, which may be considered in tight accordance with an object,
it neither provides explicit support for complex objects nor the relations between
them. More precisely, CH supports object behavior; i.e., it allows specifying in
which order and by whom the data elements (i.e., object attributes) shall be writ-
ten at runtime. However, CH does not properly take into account the interaction
among different cases or different instances of the same case type. In this pa-
per, we present the lessons learned in these case studies and discuss some of the
fundamental limitations of CH. We further discuss the challenges to be tackled
to improve the paradigm in order to provide adequate support for object-aware
processes. We then give insights into the PHILharmonicFlows framework, which
enhance the CH paradigm by giving adequate support to object-aware processes.

Section 2 provides more details on object-aware processes and their charac-
teristics. In Section 3, we present a job application process as example. Along
with this example, we present a set of requirements to be met by a PrMS in
order to provide an adequate support. In Section 4, CH is introduced followed
by a discussion of how CH meets the requirements. Finally, we sketch how to
enhance the CH paradigm (and other data-centric approaches as well) by intro-
ducing the PHILharmonicFlows framework in Section 5. Section 6 closes with a
summary and an outlook.

Enhancing the Case Handling Paradigm 3

2 Object-aware Processes

This section describes the fundamental characteristics of object-aware processes.
Several require a full integration of process and data. As we learned in case
studies in a variety of domains [5, 6, 7, 8, 9], object-aware processes present the
following major characteristics:

Object behavior. This characteristic deals with the processing of individual
object instances. More precisely, for each object type a separate process defini-
tion must be provided. At runtime, the latter is then used for coordinating the
processing of individual object instances among different users. In addition, it
must be specified in which order and by whom the attributes of a particular
object instance shall be (mandatorily) written, and what valid attribute settings
(i.e., attribute values) are. Furthermore, when executing activities, the involved
object instances need to be in certain states. Consequently, for each object type,
its behavior should be definable in terms of states and transitions. At runtime,
the creation of an object instance shall be directly coupled with the creation of
its corresponding process instance. In this context, it is important to ensure that
mandatory data is provided during process execution; i.e., during the processing
of object instances. For this reason, object behavior should be defined in terms
of data conditions rather than based on black-box activities.

Object interactions. The behavior of a particular object must be coordi-
nated with the one of other related objects. The related object instances may be
created or deleted at arbitrary point in time, resulting in a complex data struc-
ture. The latter dynamically evolves during runtime, depending on the types and
numbers of created object instances. Further, individual object instances of the
same type may be in different processing states at a certain point in time. More
precisely, it must be possible to execute individual process instances (of which
each corresponds to the processing of a particular object instance) in a loosely
coupled manner; i.e., concurrently to each other and synchronizing their execu-
tion where needed by taking semantic object relations and cardinality constraints
into account.

Data-driven execution. To proceed with the processing of a particular ob-
ject instance, in a given state, certain attribute values are mandatorily required.
Hence, object attribute values reflect the progress of the corresponding process
instance. More precisely, the setting of certain object attribute values is enforced
in order to progress with the process through the use of mandatory activities.
However, if required data is already available (e.g., it may be optionally provided
by authorized users before the respective mandatory activity becomes enabled),
these activities will be automatically skipped when being activated. Furthermore,
users shall be able to re-execute a particular activity, even if all mandatory ob-
ject attributes have been already set. For this purpose, data-driven execution
must be combined with explicit user commitments. Finally, the execution of a
mandatory activity may depend on attribute values of related object instances.
Thus, the coordination of multiple process instances should be supported in a
data-driven way as well.

4 Carolina Ming Chiao, Vera Kiinzle, Manfred Reichert

Flexible activity execution. For creating object instances and changing
object attribute values, form-based activities can be used. Respective user forms
should comprise input fields (e.g., text fields or check-boxes) for writing selected
attributes and data fields for reading attributes of object instances. However,
different users might prefer different work practices. Activities should therefore
be executable at different levels of granularity; e.g., it should be possible that
an activity may relate to one or multiple object process instances.

Integrated access. Authorized users should be able to access and manage
process-related data objects at any point of time. More precisely, permissions for
creating and deleting object instances, as well as for reading and writing their
attributes need to be defined. Attribute changes contradicting specified object
behavior must be prevented. Which attributes may be written or read by a par-
ticular (form-based) activity not only depends on the user invoking this activity,
but also on the progress of the corresponding process instance. While certain
users must execute an activity mandatorily in the context of a particular object
instance, others might be authorized to optionally execute this activity; i.e., a
distinction is made between mandatory and optional permissions. Furthermore,
for object-aware processes, the selection of actors usually not only depends on
the activity to be performed, but also on the object instances processed by this
activity. In this context, the relationships between users and object instances
must be taken into account.

3 IMlustrating Example and Requirements

This section presents an example of an object-aware process showing the char-
acteristics sketched in Section 2. Following this, we discuss some of the require-
ments to be met by a PrMS in order to give adequate support to this process.

3.1 Illustrating Scenario: Recruitment Process

As example we consider a (simplified) scenario for recruiting people as known
from human resource management (cf. Fig. 1).

Example 1 (Recruitment Process). In the context of recruitment,
applicants may apply for job vacancies via an Internet online form. Before
an applicant may send her application to the respective company, specific in-
formation (e.g., name, e-mail address, birthday, residence) must be provided.
Once the application has been submitted, the responsible personnel officer in
the human resource department is notified. The overall process goal is to decide
which applicant shall be invited for the interview.

When the personnel officer receives a job application, he may request in-
ternal reviews for each applicant. The concrete number of reviews may differ
from application to application. Corresponding review forms have to be filled
by employees from functional divisions. Employees make a proposal on how to

Enhancing the Case Handling Paradigm 5

human resource department

engineer announce
077072010 job

software

Ulm fill
job
K

Q lexternal
Tnit 1 decide
applicant application Hans Manz application
Max Sun hm@web.de
Init 12[12]1970 decide
application Uim application
pplicant
de Moo v
TSN
functional devision NN
il AN
roview v S0
N
_employee filin NON
fALLL ORs review i ANEAN
Q review / [interview [initiate
review interview initiate
employee Wiaria Sun L]
e Hars benz
Q = invite | initiate
il many skills]! reviews
i i
employee review |
|Lola Fee) \
o2 =) J C L J
—y J
sers

activities data structure activities users

Fig. 1. Example of a recruitment process from the human resource domain

proceed; i.e., they indicate whether the applicant shall be invited for an inter-
view or be rejected. In the former case an additional appraisal is needed. After
the employee has filled the review form, she submits it to the personnel officer.
Based on the incoming reviews, he makes his decision on the application;
i.e., if there are reviews indicating the applicant’s interview, the personnel
officer shall invite the applicant for an interview. Otherwise, the application
is rejected.

3.2 Scenario Requirements

To adequately support such a scenario, any PrMS must meet a set of require-
ments, which we describe in the following. This will later be followed by a dis-
cussion, where we point out which of these requirements are met by CH and
which are not.

R1 (Data integration): According to our scenario, the data should be
managed in terms of object types comprising object attributes and relations to
other object types.

Example R1 (Data integration): For each job, a set of applications may
be created. In turn, for each application, several reviews may exist. Thereby,
a review comprises attributes like application, employee, remark, proposal and
appraisal.

R2 (Flexible access to data): Authorized data access should be enabled
at any point in time during process execution; i.e., not only during the execution
of a particular activity.

Example R2 (Flexible access to data): The personnel officer should
be allowed to access an application even if no activity is currently contained

6 Carolina Ming Chiao, Vera Kiinzle, Manfred Reichert

e Instance-specific Activity o Context-sensitive Activity ° Batch Activity

job
— =
application application

r r I = [I =
review u interview u review interview u review

Fig. 2. Types of form-based activities

1

r
interview

in his worklist. Furthermore, he should be allowed to update selected attributes
from an application whenever needed.

R3 (Support of form-based activities and control flow within user
forms): A form-based activity comprises a set of atomic actions. Each of them
corresponds to either an input field for writing or a data field for reading the value
of an object attribute. Which attributes may be written or read in a particular
form-based activity may depend on the user invoking this activity and the state
of the object instance. In addition, since the writing of particular attributes are
mandatory, these forms must signalize which are the corresponding mandatory
input fields. However, whether a certain object attribute is mandatory in an
activity might depend on the value of other related attributes; i.e., when filling
a form, certain attributes might become mandatory on the fly.

Example R3a (Form-based activities): An employee requires a form-
based activity to write a review for an application. To complete this activity,
she must assign values to attributes remark, proposal, and appraisal. In addition,
she might access the attributes values of the corresponding application.

Example R3b (Control flow within user forms): If an employee chooses
to reject a job application, she must provide a reason for this; i.e., attribute
rejection reason becomes mandatory and a value must be set for it.

R4 (Support of variable activity granularity): Due to the tight inte-
gration with data, the behavior of the form-based activities might be related
to more than one object instance; i.e., some activities might read/write data in
more than one object instance. Accordingly, they may be classified as instance-
specific, context-specific, and batch activities. Instance-specific activities corre-
spond to exactly one object instance (cf. Fig. 2a). When executing it, attributes
of that object instance may be read, written or updated using a form. In turn,
a context-sensitive activity additionally includes form fields corresponding to
higher- or lower-level object instances (cf. Fig. 2b). Finally, batch activities al-
low users to change a collection of object instances in one go; i.e., attribute values
are assigned to all selected object instances using one single form (cf. Fig. 2¢).

Enhancing the Case Handling Paradigm 7

Example R4 (Support of variable activity granularity): An employee
may choose a context-sensitive activity to edit a review; i.e., to write at-
tributes proposal and appraisal and to read attributes referring to the respective
application. In turn, personnel officer may choose a batch activity to mark all
the other applications as “rejected” when an applicant is hired for the job.

R5 (Support of mandatory as well as optional activities): In order
to reach process objectives, certain activities must be mandatorily executed for
progressing with the control-flow. At the same time, users should be allowed to
optionally execute additional activities; e.g., to write certain attributes even if
they are not required at the moment.

Example R5a (Mandatory activity): When performing a review of a
job application, the employee must provide a recommendation on whether to
invite the job applicant for an interview or reject the job application;i.e., a
form-based activity needs to be mandatorily executed.

Example R5b (Optional activity): After a review has been requested
and performed by an employee, the personnel officer might want to update the
review request; e.g., attribute remark may be optionally updated even if it has
been already set.

R6 (Alignment of process execution with object behavior): It should
be possible to determine in which order and by whom object attributes must be
(mandatorily) written and what valid attribute value settings are. Consequently,
for each object type, its behavior should be definable in terms of states and
transitions. In particular, it should be possible to drive process execution based
on data and to dynamically react on attribute value changes. Hence, it is crucial
to map states to attribute values.

Example R6 (Object behavior): The object review can be defined by
different states: initiated (when the personnel officer is setting which job
application is going to be reviewed and which employee shall perform the
review), under review (when the employee decides whether reject or invite the
job applicant), rejected (if the job application is rejected), and invited (if
the employee decides to invite the job applicant for an interview). An employee
may only provide a review for a particular job application if the process is cur-
rently at state under review. The latter is automatically activated as soon as
values for attributes employee and application have been assigned. If he rejects
the job application (i.e., attribute proposal is set as rejected), then the at-
tribute remark shall instantly become mandatory.

R7 (Support of flexible process execution): The value setting of cer-
tain object attributes are mandatory for process execution; i.e., the mandatory
activities enforce the value setting of these object attributes as required for pro-
gressing with the process. In principle, respective attributes might be written

8 Carolina Ming Chiao, Vera Kiinzle, Manfred Reichert

by executing optional activities as well. If an optional activity is executed be-
fore activating a mandatory activity, the latter may be automatically skipped
(if other attribute mandatorily set by it have been written before as well).

Example R7 (Flexible process execution): An employee might reject
a job application, through an optional activity, while the personnel officer
is still setting values for other attributes regarding the review; i.e., the review
activity is skipped and will not be shown in the employee’s worklist.

R8 (Support of activity re-execution): Users should be allowed to re-
execute a particular activity (i.e., to update the referring attributes), even if all
mandatory attributes have been already set. To reflect this behavior, users must
explicitly commit the completion of the respective activity.

Example R8 (Activity re-execution): An employee may change his
proposal (i.e., invite or reject the job applicant) in the context of a review
arbitrarily often, as long as he has not explicitly confirmed his decision.

R9 (Enable proper data authorization): To enable access to data at any
point in time, permissions for creating and deleting object instances as well as
for reading/writing their attributes must be defined. However, attribute changes
contradicting to object behavior must be prevented. To achieve this, the progress
of the process must be taken into account when granting permissions to change
object attributes.

Example R9 (Proper data authorization): An employee must not see
the review proposal of other employees. At the same time, she must not update
her own proposal after submitting it to the personnel officer.

4 The Case Handling Paradigm

Case Handling (CH) [2, 14, 15] is a paradigm for supporting flexible and
knowledge-intensive processes by strongly integrating them with data. This sec-
tion first summarizes basic CH concepts. This is followed by a discussion on
whether or not CH meets the requirements introduced in Section 3.2.

4.1 Basic Case Handling Concepts

The core concept of the CH approach is the case type. The latter comprises tasks
(i.e., activities), atomic data elements, and a set of precedence relations between
the tasks making up a process. Opposed to traditional activity-centric PrMS,
the primary driver for progressing with a case (i.e., a process instance) is not
the event related to task completion, but the availability of values for the data
elements of the case. While an activity-centric process model clearly separates
the process from its associated data, CH integrates both in a tighter manner,

Enhancing the Case Handling Paradigm 9

Fillin Job
-»| Application
Form

e Cases related to o Interaction among
illustrating | case instances
R Job Offer
Job Offer H /\
Job Application H Job ... Job
H 1 Application 2
Review H '
[e] i L T ——
—— Interaction possible
o Example of Job Application case type
o { Execute role: JobApplicant
Redo role: nobody e ro
Form Job Skip role: nobody ST
Al P
PR taskform binding
binding

E-Mail Address
Skills

Remarks

@rthda@ E-Mai (Skills) Gemar@
e ddres: - N

data
input field element

Fig. 3. CH paradigm applied to our example

using produced data not only for routing decisions, but also for determining
which parts of the process have already been accomplished. With CH, each
task may be associated with three sets of data elements, each serving a distinct
purpose: the first association is between a task and all data elements that must
be accessible while performing this task. Further, all data elements mandatory
for a task must be set (i.e., bound to a value) before the task itself is considered
to be completed by the CH system. Finally, a data object may have a random
number of tasks to which it is restricted, meaning that it can only be updated
while performing one of these tasks. Interactive tasks are connected to forms,
each providing access to a selection of data objects. Note that a particular form
may be associated with multiple tasks. Finally, it is possible to associate a form
to the case itself; i.e., the case and its data elements may be accessed at any
point in time using this form.

If a user closes a form after filling out only parts of the mandatory data
fields of a task, despite the task not considered as finished, data already entered
will still be available to the person who continues working on that task. Such a
closely intertwined relation between data and process, however, abandons their
often unnatural separation as pursued in traditional PrMS. With the status of
data elements being the primary determinant of the case status, this concept
overcomes some of the limitations of traditional PrMS:

— Work can now be organized by those performing it with a far higher degree
of freedom. Activities may either be performed only partially, without losing
intermediary results, or multiple related activities may be handled in one go,
surpassing the weakened border between tasks.

— Routing is no longer solely determined by the pre-specified process model.
Case types may be designed in such a manner that multiple activities are
enabled concurrently, providing different ways of achieving the same goal.

10 Carolina Ming Chiao, Vera Kiinzle, Manfred Reichert

In addition to the execute role, specifying the subset of resources allowed
to handle a specific task, CH introduces two other roles being crucial for any
operational support: the skip and redo roles. The skip role allows users to bypass
a selected task. To skip a task, however, all preceding tasks, which have not
been completed yet must be skipped (or completed) beforehand. This becomes
necessary to ensure an unambiguous state of the process. In turn, the redo role
enables the user to deliberately roll back the state’s case by undoing tasks. In the
latter context, the values provided for data objects during the execution of tasks,
which are now undone, are not discarded, but merely marked as unconfirmed.
Hence, they may serve as a default value when re-executing the respective tasks
later on. Before a task may be redone, all subsequent tasks that have already
been completed must be rolled back as well.

Fig. 3a illustrates an example of how cases and sub-cases can be related. In
this example, the case of type job offer is related to a varying number of sub-
cases of type job application. In turn, this sub-case may be related to different
reviews. Details of a case type are shown in Fig. 3c. Thereby, data elements
are associated with forms representing corresponding input fields. In turn, forms
are associated with tasks. In our example, the depicted form is associated to
both tasks of the case. More precisely, data elements name, birthdate and e-mail
address are mandatory for completing task Fill in job application form, while
data element skills is mandatory for task Inform skills. In particular, data
element name may be only filled in the context of task Fill in job application
form. Data element remarks, in turn, is a so-called free data element; i.e., it may
be accessed at any point in time during case executiong by any involved user
role.

4.2 How Does Case Handling Meet the Requirements of
Object-aware Processes

We now analyze and discuss whether CH meets the requirements of object-aware
processes presented in Section 3.2. This analysis is based on previous case studies
[5, 6, 8] as well as on hands-on experience with the CH tool BPMone!. The latter
is a commercial tool that implements the concepts of the CH paradigm.

R1 (Data integration): In CH, a case may be considered in tight accor-
dance with an object; i.e., the data elements related to a case may logically be
considered as data attributes of an object. Further, a case may be hierarchically
related with sub-cases, representing object relationships. However, only direct
relations (i.e., case and correspondent sub-cases) are supported. Neither interac-
tions between two instances of the same case nor access to a case’s data elements
by a corresponding sub-case are allowed (cf. Fig. 3b).

R2 (Flexible access to data): One of the main characteristics of the CH
paradigm is its focus on the entire case; i.e., all users get full reading access
to the whole case when they are executing any activity. In particular, context

! http:/ /www.perceptivesoftware.com/products/perceptive-process/business-
process-management

Enhancing the Case Handling Paradigm 11

tunneling (i.e., limitation of the user’s view to single work items) is avoided,
which increases process flexibility. The users involved in one case instance may
read all related data elements of the case at any point in time. Additionally,
values of free data elements may be edited by all users at any point in time
during case execution.

R3 (Support of form-based activities and control flow within user
forms): Like activity-based modeling approaches, in CH, process steps corre-
spond to activities. Such activities can be implemented in terms of forms. Each
form is linked with a collection of atomic data elements, which are either manda-
tory or restricted. An activity will be considered as completed if all mandatory
data elements have an assigned value. However, CH does not allow a field (and
the corresponding data element) to become mandatory dynamically; i.e., there
are no mechanisms that allow defining the internal flow logic within a form.
Hence, this requirement is not completely met.

R4 (Support of variable activity granularity): Similar to activity-
centric approaches, in the CH paradigm, each task instance is related to exactly
one process instance (i.e., instance-specific activities). However, using sub-cases
as workaround, context-sensitive activities are partially; i.e., if a case has sub-
cases, its tasks may access data elements from its sub-cases. Since CH does
not support interactions among different instances of the same case type, batch
activities are not directly supported.

R5 (Support of mandatory as well as optional activities): In CH,
a task may have associated data elements that must be set before completing
the case. Setting these mandatory data elements is considered as a mandatory
activity. In turn, the definition of optional activities in CH is enabled by the use
of free data elements. Since the latter are not relevant for process control, they
may be set at any point in time during case execution by any user involved in
the case.

R6 (Alignment of process execution with object behavior): In par-
ticular, the data elements of a case may be associated with tasks (i.e., activities)
and be declared as mandatory or restricted. Free data elements, in turn, may be
changed at any point in time by any user involved in the case. Thereby, CH al-
lows capturing of the object behavior. In other words, by associating mandatory
data elements with tasks from a case, it becomes possible to specify in which
order and by whom these data elements (or object attributes) shall be written.
Additionally, input fields and transitions may be associated with constraints on
attribute values. Finally, it is possible to initialize and terminate a case instance
at any point in time.

R7 (Support of flexible process execution): Enabling of a task is driven
by data; i.e., tasks are enabled when data becomes available. When all mandatory
data elements, related to a particular activity, are set, the subsequent activity
becomes enabled. Additionally, tasks may be automatically skipped at runtime
if their mandatory data elements have been provided by other tasks before.

R8 (Support of activity re-execution): For each task in CH, separate
roles can be defined. More precisely, it is possible to define who shall work on

12 Carolina Ming Chiao, Vera Kiinzle, Manfred Reichert

an activity and who may redo or skip it. The redo role allows actors to execute
activities several times. However, the user may re-execute the task only until
the completion of the respective case. If the execution of the case is completed,
the user must not re-execute the task anymore. Hence, user commitments are
not considered; i.e., the user cannot indicate to the system that he agrees with
the values, set for the data elements, so that the task is then finished in a user-
controlled way.

R9 (Enable proper data authorization): In CH, data elements are as-
sociated with the tasks in order to define the order in which they shall be set.
The user role assigned as execute role to a particular activity is the one al-
lowed to write the related data elements. However, the direct association of roles
with tasks does not allow declaring such tasks as optional for other user roles.
Moreover, to avoid contexrt-tunneling, any user involved in the case may read
information of the entire case at any point in time; i.e., data privacy becomes a
severe issue.

5 Enhancing the Case Handling Paradigm

The CH paradigm overcomes many of the limitations caused by the missing
integration of data and processes. However, as discussed, there still exist re-
quirements not fully met by CH; e.g., concerning flexible activity granularity
and data privacy issues. Although CH focus on data as driver for process execu-
tion, it does not take object states and transitions between them into account;
i.e., CH does not enable mappings between attribute values and objects states
and therefore is unable to ensure compliance between them. To deal with these
drawbacks of the CH paradigm and other existing data-centric approaches, we
have developed the PHILharmonicFlows framework. Fig. 4 summarizes its main
components. Basically, PHILharmonicFlows comprises both modeling and run-
time environment enabling full lifecycle support for object-aware processes. As a
fundamental prerequisite, a data model describing the respective domain needs
to be defined; i.e., object type and relations are defined (cf. Fig. 5a).

The modeling environment of PHILharmonicFlows enforces a well-defined
modeling methodology governing the definition of processes at two different levels
of granularity: micro and macro processes. A micro process captures the behavior
of an object (cf. Fig. 6), while the macro process realizes the objects interactions.
In particular, PHILharmonicFlows supports the interaction and coordination
of object instances asynchronously as long this does not violate any semantic
dependencies to be considered.

Process and data authorization is based on user roles. Data may be accessed
optionally and at any point in time. In turn, process execution is based on
permissions for creating and deleting object instances as well as for reading or
writing their attributes. Furthermore, to enable access at the object attribute
level, PHILharmonicFlows maintains a comprehensive authorization table. Fi-
nally, based on these authorization settings, PHILharmonicFlows automatically
generates user forms. Besides the form-based activities, the framework support

Enhancing the Case Handling Paradigm 13
RUN-TIME
BUILD-TIME
Data-oriented Data Macro Process Process-oriented
View P ™ View
| OBJECT INTERACTIONS |)
Tables .
e 3 %
: "
- o ot "CEE?S.---' kS "9}3
INTEGR "~ . \ ____.--"' N
~~..'§€€::ng b 50 o
------- 7 User Integration
Micro
Process Leos,
e
Fig. 4. PHILharmonicFlows
o Data structure o Process structure

object
instances

relations

object
behavior

Fig. 5. Data structure and corresponding process structure

rejected
remark is not null
invited

submitted=true

personnel officer

e Object Type ° States e Object Behavior
; [~
Review initiated @
application is not o g
) employee
= null and employee $!
employee Cal is not null > -
employee rejected
proposal Y under review
- 1 (proposal=reject’
= s N
remark W proposal="invite’)
and appraisal s not
submitted ol

employee

Fig. 6. Object behavior defined based on states and transitions by PHILharmonicFlows

black-box activities as well (i.e., activities that invoke external applications or
functions that implement more complex computations).

The runtime environment provides data- and process-oriented views to end-
users; i.e., authorized users may invoke activities for accessing data at any point
in time as well as activities needed to proceed with the flow of the processes.
Moreover, PHILharmonicFlows is based on a well-defined formal semantics,
which allows for the automatic generation of end-user components corresponding
to the runtime environment (e.g., user worklists and form-based activities).

14 Carolina Ming Chiao, Vera Kiinzle, Manfred Reichert

Due to the lack of space, we do not describe the components of the framework.
A more detailed description of the framework as well as its components can be
found in [7, 16].

6 Summary & Outlook

In this paper, we discussed the limitations of the CH paradigm regarding the sup-
port of object-aware processes. We based this discussion on several case studies,
including hands-on experience we gathered when working with the CH system
BPMone.

+ supported
0 partially supported
- not supported

R1 (Data integration) [o] +

Case Handling PHILharmonicFlows
Paradigm Framework

R2 (Flexible access to data) + o5

R3 (Support of form-based activities and

control flow within user forms) © s
R4 (Support of variable activity
N o +
granularity)
R5 (Support of mandatory as well as
K e + =
optional activities)
R6 (Alignment of process execution with
P o p &
object behavior)
R7 (Support of flexible process p e

execution)

R8 (Support of activity re-execution) [o] +

R9 (Enable proper data authorization) - +

Fig. 7. Comparing the CH paradigm and PHILharmonicFlows

In particular, CH does not enable mappings between attribute values and ob-
jects states and therefore is unable to ensure compliance between them. Hence,
problems like the limited interaction among case instances and lack of data pri-
vacy make the CH paradigm unsuitable for object-aware processes. We further
presented the PHILharmonicFlows framework. Its objective is to enhance the
power of CH paradigm and other data-centric approaches to enable proper sup-
port of such processes. This approach has been applied in several case studies
comprising different domains (e.g., human resources management, healthcare,
and automotive industry). As proof-of-concept, a prototype has been developed,
enabling the modeling and enactment of object-aware processes. Finally, Fig. 7
shows a compilation of the requirements of object-aware processes and how well
both approaches (i.e., CH and PHILharmonicFlows) meet them.

Acknowledgements

The authors would like to acknowledge the financial support provided by the
Ernst Wilken Foundation.

Enhancing the Case Handling Paradigm 15

References

1]
2]

Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information
Systems: Challenges, Methods, Technologies. Springer (2012)

van der Aalst, W.M.P., Weske, M., Griinbauer, D.: Case handling: A new
paradigm for business process support. Data & Knowledge Engineering
53(2) (2005) 129-162

Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling
business operation and processes. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 32(3) (2009) 3-9

Silver, B.: Case management: Addressing unique bpm requirements. Tech-
nical report, BPMS Watch (2009)

Kiinzle, V., Reichert, M.: Towards object-aware process management sys-
tems: Issues, challenges, benefits. In: Proc. BPMDS’09. (2009) 197-210
Kiinzle, V., Reichert, M.: Integrating users in object-aware process manage-
ment systems: Issues and challenges. In: Proc. BPM’09 Workshops. (2009)
29-41

Kiinzle, V., Reichert, M.: Philharmonicflows: Towards a framework for
object-aware process management. Journal of Software Mainteinance and
Evolution: Research and Practice 23(4) (2011) 205-244

Kiinzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fun-
damental requirements and their support in existing approaches. Int’l Jour-
nal of Information System Modeling and Design 2(2) (2011) 19-46

Chiao, C.M., Kiinzle, V., Reichert, M.: Towards object-aware process sup-
port in healthcare information systems. In: Proc. eTELEMED 2012. (2012)
227-236

Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for
business processes. In: Handbook of Research on Business Process Manage-
ment. (2009) 503-531

Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and
behavior using business artifacts. In: Proc. CAISE’07. (2007) 324-339
Miiller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination
of large process structure. In: Proc. CoopIS’07. (2007) 131-149
Vanderfeesten, 1., Reijers, H.A., van der Aalst, W.M.P.: Product-based
workflow support: Dynamic workflow execution. In: Proc. CAiSE’08. (2008)
571-574

Guenther, C., Reichert, M., van der Aalst, W.M.P.: Supporting flexible
processes with adaptive workflow and case handling. In: Proc. ProGility’08.
(2008) 229-234

Mutschler, B., Weber, B., Reichert, M.: Workflow management versus case
handling: results from a controlled software experiment. In: Proc. SAC’08.
(2008) 82-89

Kiinzle, V.: Object-aware Process Management. PhD thesis, Ulm Univer-
sity, Germany (2013)

