

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

Dealing with Variability in
Process-Aware Information Systems:

Language Requirements, Features, and Existing Proposals

Clara Ayora, Victoria Torres, Barbara Weber,
Manfred Reichert, Vicente Pelechano

Ulmer Informatik-Berichte
Nr. 2012-07

Dezember 2012

Dealing with Variability in Process-aware Information

Systems: Language Requirements, Features, and

Existing Proposals

Clara Ayoraa, Victoria Torresa, Barbara Weberb, Manfred Reichertc,
Vicente Pelechanoa

aCentro de Investigación en Métodos de Producción de Software, Universitat
Politècnica de València, Spain

bDepartment of Computer Science, University of Innsbruck, Austria
cInstitute of Databases and Information Systems, University of Ulm, Germany

Abstract

The increasing adoption of Process-aware Information Systems (PAISs), to-
gether with the variability of Business Processes (BPs) across different ap-
plication contexts, has resulted in large process model repositories with col-
lections of related process model variants. To reduce both costs and occur-
rence of errors, the explicit management of variability throughout the BP
lifecycle becomes crucial. In literature, several proposals dealing with BP
variability have been proposed. However, the lack of a method for their
systematic comparison makes it difficult to select the most appropriate one
meeting current needs best. To close this gap, this work presents an evalua-
tion framework that allows analyzing and comparing the variability support
provided by existing proposals developed in the context of BP variability.
The framework encompasses a set of language requirements as well as a set
of variability support features. While language requirements allow assess-
ing the expressiveness required to explicitly represent variability of different
process perspectives, variability support features reflect the tool support re-
quired to properly cover such expressiveness. Our evaluation framework has

Email addresses: cayora@pros.upv.es (Clara Ayora), vtorres@pros.upv.es
(Victoria Torres), barbara.weber@uibk.ac.at (Barbara Weber),
manfred.reichert@uni-ulm.de (Manfred Reichert), pele@pros.upv.es (Vicente
Pelechano)

been derived based on an in-depth analysis of several large real-world process
scenarios, an extensive literature review, and an analysis of existing PAISs.
In this vein, the framework helps to understand BP variability along the BP
lifecycle. In addition, it supports PAISs engineers in deciding, which of the
existing BP variability proposals meets best their needs.

Key words: Process Model Configuration, Business Process Variability,
(Configurable) Process-Aware Information Systems, Process Model Families

1. Introduction

Each product an enterprise develops or produces and each service it pro-
vides results from the performance of a set of activities. Business Processes
(BPs) are the drivers coordinating these activities [74]. In enterprise comput-
ing, Process-aware Information Systems (PAISs) provide a guiding frame-
work to understand and deliberate on BPs [72]. A PAIS is defined as an
information system that manages and executes operational processes based
on BP models involving resources, applications, and data [18].

The increasing adoption of PAISs during recent years has resulted in large
process model repositories with numerous collections of BP models [62, 17].
Since these models frequently vary depending on the application context
[24, 59], the existing repositories often comprise large collections of related
process model variants (process variants for short). These process variants
pursue the same or similar business objective (e.g., the treatment of a patient
or maintenance of vehicles in a garage), but at the same time differ in their
application context, e.g., regulations found in different countries and regions,
type of product or service being delivered, customer categories, or seasonal
changes [58, 17, 70].

A collection of process variants sharing a number of commonalities (e.g.,
activities found in all process variants), but also showing differences due to
their application context is denoted as a process family. In large companies
such process families comprise dozens or hundreds of process variants [53].
For instance, in the context of the automotive domain, [27] reported on a
process family for vehicle repair and maintenance comprising more than 900
variants with country-, garage-, and vehicle-specific differences. In addition,
related to the healthcare domain, [45] reported on more than 90 process
variants for handling medical examinations. Moreover, also the check-in
procedures at airports are characterized by a high level of variability. In the

2

following example, we describe this process—including the different sources
for variability—and use it as running example throughout the paper.

Example 1 (Check-in process). This example presents the process
every passenger has to go through when checking-in at an airport. Even
though this process is similar irrespective of the airport the passenger departs
from and the airline she is flying with, many variations are possible depending
on different factors. For instance, variability appears due to the type of check-
in (e.g., online, at the counter, or at the self-servicing machine) which also
determines the type of boarding card (e.g., electronic versus paper-based).
Other sources of variability are the flight destination (e.g., extra information
is required when traveling to the US) and the ticket class (e.g., economy or
business class). These determine both the check-in priority and the option to
change seat assignments. Moreover, depending on the type of luggage (e.g.,
bulk or overweight luggage) the process slightly differs. Temporal variations
regarding the availability of the check-in are typical as well (e.g., possibility
to check-in several days before departure versus a few hours). In addition,
variations are introduced due to different ways to operationalize an activity
(e.g., the implementation of activity Print boarding card in self-servicing
machines is different from the one used by the web system). As a result of
all these variations, hundreds of variants can be identified. Figures 1 and 2
show five simplified process variants considering selected variations. Common
activities to all variants are colored in grey.

Consider the three process variants from Figure 1. Variant 1 assumes that
the check-in is done online and directly by the passenger who is identified
by her passport number. Check-in is available 23 hours before departure.
Since the passenger holds a business class ticket, the airline offers her the
possibility to change the assigned seat. Moreover, the passenger is flying from
an European country to the United States requiring additional information
about accommodation. Finally, an electronic boarding card is printed and
the passenger drops her luggage at the business class counter. Regarding
Variant 2, in turn, since the flight destination is within Europe, information
regarding accommodation is not required. Variant 3 is similar to Variant 2,
but additionally requires the payment of an extra fee at the excess baggage

3

Identify
passenger

Assign seat
automatically

Provide
information about

accomodation

Print
boarding

card

Change
seat

assignment

Electronic
Boarding

Card

Variant 1: Online check-in of a passenger with a business class ticket from EU to USA

Variant 2: Online check-in of a passenger with a business class ticket from EU to EU

Variant 3: Online check-in of a passenger with a business class ticket from EU to EU with overweight

Drop off
regular
luggage

W
eb

sy
st

em
B

us
in

es
s

C
la

ss
C

ou
nt

er
W

eb
sy

st
em

B
us

in
es

s
C

la
ss

C
ou

nt
er

E
xc

es
s

B
ag

ga
ge

C
ou

nt
er Pay Extra

Fee

23 hrs
before

departure

Identify
passenger

Assign seat
automatically

Print
boarding

card

Change
seat

assignment

Electronic
Boarding

Card

Drop off
regular
luggage

W
eb

sy
st

em
B

us
in

es
s

C
la

ss
C

ou
nt

er

23 hrs
before

departure

Identify
passenger

Assign seat
automatically

Print
boarding

card

Change
seat

assignment

Electronic
Boarding

Card

23 hrs
before

departure

Drop off
regular
luggage

Figure 1: Example of Process Variants Belonging to the Same Process Family

counter due to luggage overweight.
Unlike Variants 1-3, Variants 4-5 (see Figure 2) consider passengers hold-

ing an economy class ticket, which means that passengers are not eligible
for priority check-in and have to drop-off the luggage at the economy class
counter. Moreover, the check-in is not done online, but directly at the econ-
omy class counter (Variant 4), or at the self-servicing machine (Variant 5).
In addition, the resulting boarding card is in paper format. Moreover, for
Variant 4 check-in can only be done 3 hours before departure, once the
economy class counter has opened.

4

E
co

no
m

y
cl

as
s

co
un

te
r

Variant 5: Check-in at the self-servicing machine for an economy class ticket from EU to EU

Variant 4: Check-in for a passenger with a economy class ticket from EU to EU

E
co

no
m

y
cl

as
s

co
un

te
r

3 hours
before

departure

S
el

f-
se

rv
ic

in
g

m
ac

hi
ne

Identify
passenger

Assign seat
manually

Print
boarding

card

Drop off
regular
luggage

Paper
Boarding

Card

23 hrs
before

departure

Identify
passenger

Assign seat
automatically

Print
boarding

card

Paper
Boarding

Card

Drop off
regular
luggage

Figure 2: Example of Process Variants Belonging to the Same Process Family

1.1. Problem Statement

Properly dealing with process families (i.e., large process model repos-
itories comprising a large number of related process variants) constitutes
a fundamental challenge to reduce process modeling and maintenance ef-
forts in the context of PAISs. Trying to design, implement, and maintain
each process variant of a process family from scratch would be too ineffi-
cient and costly for enterprises. Thus, there is a great interest in capturing
common process knowledge only once and re-using it in terms of reference
process models (reference process for short). Following this trend, a variety
of reference processes has been suggested in recent years. Examples include
ITIL for IT service management [30], SAP reference models representing BPs
as supported in SAP’s enterprise resource planning system [52], or medical
guidelines for patient treatment [43]. Typically, these reference processes
are described in text using a narrative form or by a conventional process
modeling language. Even though these examples foster the reuse of common
process knowledge, they typically lack comprehensive support for explicitly
describing the variations contained in a reference process [60]. In addition, as
stated in [27], the lack of variability support in current commercial process
modeling tools requires the manual derivation of process variants, which is a
cumbersome and error-prone task. Frequently, these individual process vari-
ants are specified and maintained either separately in different models (i.e.,
structural approach) or together in the same process model using conditional

5

branches (i.e., behavioral approach) [28]. Both approaches, however, result
in complicated and redundant models which are difficult to comprehend,
manage, and maintain [58].

It is well known in Software Product Lines [32], or software aging [54],
that software degenerate over time when code is cloned and modified or
added by different developers and that large software product families have
to continuously be maintained. Similar challenges exist in the context of
process families with a large numbers of process variants.

In recent years, several proposals have faced this situation and proposed
to deal with BP variability throughout the BP lifecycle [56, 63, 27, 8]. They
deal with the modeling, execution, and monitoring of process families and
variants. However, there is a lack of profound methods for systematically
comparing the different proposals, which makes it difficult for PAISs engi-
neers to select the proposal which best suits to their needs.

To make PAISs better comparable and to facilitate the selection of ap-
propriate PAIS-enabling technologies, process patterns have been introduced
[3, 64, 65, 71, 11]. Respective patterns provide means for analyzing the ex-
pressiveness of process modeling tools and languages in respect to different
process perspectives. In particular, proposed patterns cover activities [68],
control flow [3], data flow [64], resources [65], time [41, 42], exceptions [66],
and process changes [71]. However, a framework for evaluating a PAIS re-
garding its ability to deal with BP variability is still missing and will be
picked up by this work.

1.2. Contribution

The major contribution of this paper are threefold:

1. It presents results from an analysis of a set of real-world process families
that stem from different domains (e.g., automotive industry, healthcare,
airport procedures) featuring BP variability.

2. Based on this empirical evidence as well as on a detailed literature re-
view, an evaluation framework for proposals enabling BP variability is
developed. This framework comprises a set of language requirements
needed to accommodate the identified variability needs. In addition,
it contains a set of variability support features. While the language re-
quirements allow assessing the expressiveness of existing BP variability
proposals, variability support features ensure that process families can

6

be effectively modeled, verified, validated, configured, analyzed, refac-
tored, and evolved. Moreover, they ensure that process variants can be
effectively executed, monitored, and dynamically re-configured.

3. Taking this evaluation framework, an in-depth review of existing pro-
posals from academia dealing with BP variability is conducted. This
review provides an objective overview of the BP variability support
provided by existing proposals as well as the open issues not covered
by them yet.

This work can be considered as a reference for implementing PAISs being
able to effectively support BP variability along the entire BP lifecycle. In
addition, in analogy to the process patterns initiative (see above), we expect
the evaluation framework to be applied to different BP variability proposals
as well as related tools to evaluate their suitability for BP variability man-
agement. In this vein, the framework is expected to support enterprises in
deciding which proposal suits their needs best.

The remainder of the paper is organized as follows: Section 2 summarizes
background information to contextualize the evaluation framework. Section
3 presents the research methodology applied for developing the evaluation
framework. Section 4 introduces the evaluation framework, while Section 5
presents a selection of proposals dealing with BP variability and applies the
developed evaluation framework to asses their ability to support BP variabil-
ity. Finally, Section 6 concludes the paper with a summary and outlook.

2. Background information

This section provides some basics related to BPs, putting the emphasis on
the variability issues that arise when dealing with process families throughout
the BP lifecycle. By means of the different BP perspectives, Section 2.1 first
introduces the concepts and terms that are used to represent BP models.
Afterwards, Section 2.2 extends these concepts by variability-specific issues
and a revised definition of the BP lifecycle is provided.

2.1. Business Process Perspectives

According to [74], a BP is defined as “a set of activities performed in
coordination in an organizational and technical environment”. Analyzing this
definition, a BP defines what (activities) should be done, how (coordination),
and by whom (organizational and technical environment). In this context,

7

business process models (i.e., process schema) arise as the main artifacts for
representing BPs. BP models are built by instantiating a BP meta-model as
the one shown in Figure 3. Depending on the object we focus on, in this meta-
model, we can differentiate several BP perspectives [15, 51, 33, 58, 31]. These
refer to the functional, behavioral, organizational, informational, temporal,
and operational perspectives:

Process
Model

NodeControl
Edge

Event Activity
Control

Connector

Complex
Activity

Atomic
Activity

contains contains

is a is ais a

is a is a

Operation

contains

Resource executes

Data
Object

output

input

connect described

Figure 3: Business Process Meta-model

• Functional perspective: specifies the decomposition of BPs, i.e., it rep-
resents the activities to be performed [15]. While an atomic activity
is associated with a single action, a complex activity refers to a sub-
process or, more precisely, a sub-process model. This perspective is
represented by concepts activity, atomic activity, and complex activity
from Figure 3.

• Behavioral perspective: captures the dynamic behavior of a BP model
and corresponds to the control flow between the activities. A control
flow schema includes information about the order of the activities or
the constraints for their execution. This perspective is represented by
concepts control connector and control edge from Figure 3.

8

Example 2 (Variability of the behavioral perspective). For ex-
ample, after executing activity Assign seat automatically, two alterna-
tive options exist, i.e., performing activity Change seat assignment or
skipping this activity. These alternatives relate to business class pas-
sengers (Variants 1-3) and economy class passengers (Variants 4-5),
respectively.

• Organizational perspective: deals with the assignment of resources to
the activities of a BP model, i.e., it represents the actors, roles (i.e.,
humans or systems), within an organization being in charge of execut-
ing certain BP activities. This perspective is represented by concept
resource from Figure 3.

Example 3 (Variability of the organizational perspective).
While online check-in is performed by the passenger using a web sys-
tem (Variants 1-3), check-in at the counter and at the self-servicing
machine is performed by airline personnel (Variant 4) and the machine
(Variant 5), respectively.

• Informational perspective: concerns data and data flow, i.e., it rep-
resents the informational entities (e.g., data, artifacts, products, and
objects) consumed or produced during the execution of BP activities.
It is represented by concept data object from Figure 3.

Example 4 (Variability of the informational perspective). De-
pending on the type of check-in, the resulting boarding card is a digital
or a paper-based document.

• Temporal perspective: deals with time issues and temporal constraints,
i.e., it represents the occurrence of events during the course of a process,
which affects the scheduling of activities from this process (e.g., an
activity started or ended, a message arrived, a time expired, or an
error occurred). This perspective is represented by concept event from
Figure 3.

9

Example 5 (Variability of the temporal perspective). The avail-
ability of the check-in service is delimited from 23 to 2 hours before
departure, depending on the airline and destination.

• Operational perspective: refers to the implementation of process activi-
ties, i.e., the application services to be executed when an atomic activity
is performed. It is represented by concept operation from Figure 3.

Example 6 (Variability of the operational perspective). The
implementation of the Print boarding card activity differs depending
on the type of check-in selected; i.e., online, at counter, or using the
self-servicing machine.

2.2. Business Process Lifecycle

BPs do not only serve for documentation purposes, but are embedded
in a lifecycle composed of different phases that are organized in a cyclical
structure (see Figure 4) showing their logical dependencies [74, 13, 9]. These
phases include Analysis & Design, Configuration, Enactment, Diagnosis, and
Evolution.

Figure 4: Business Process Lifecycle

10

Analysis & Design phase. During this phase, and based on domain re-
quirements, relevant BPs are identified, captured in terms of BP models,
and subsequently validated and verified. In the context of BP variability, it
is important to define (1) what parts of the BP model may vary according
to a specific context, (2) what alternatives fit in each of those parts, and (3)
which conditions make these alternatives being selected. The first issue refers
to the precise identification of the parts being subject to variation, which are
commonly known as variation points. The second issue refers to the different
alternatives that exist for all those variation points which are called process
fragment substitutions. In addition, to ensure semantically correct combina-
tions, relationships (such as inclusion or exclusion) between these substitu-
tions are important. The third issue refers to the context of these variations,
which is usually represented by a set of variables gathered in a context model
(i.e., application environment) in which the BP model is used. After con-
sidering all these variability aspects, we obtain a configurable process model,
which is capable of representing the complete process family. Depending on
the approach (i.e., behavioral or structural) followed to build a configurable
process model, the latter can either consist of one or several artifacts. While
a behavioral approach usually results in a unique artifact integrating the
behavior of all family members, a structural approach results into a set of
artifacts, which separately represent different aspects of the process family
(e.g., process family variations and commonalities, and process variant con-
text). Despite these differences, configurable process models—irrespective
of the approach used—allow eliminating redundancies by representing vari-
ant commonalities only once. Further, they allow fostering model reuse, i.e.,
variant particularities can be shared among multiple variants. After having
created the configurable process model, it must be verified, i.e., it must be
ensured that all derivable variants are syntactically correct. Additionally,
the configurable process model must be validated, i.e., it must be ensured
that the BPs are properly reflected by the model.

Configuration phase. First, based on the current context conditions, an
individualization process is performed to derive a particular process variant
model from the configurable process model [38]. Second, according to the
chosen enactment system, the derived process variant model is transformed
such that it can be deployed on this system [20].

Enactment phase. This phase encompasses the actual enactment time of
process variant instances. This implies guaranteeing that process variants
are executed according to the specification of the configured process vari-

11

ant model. Moreover, this phase may comprise configuration decisions that
can only be made during enactment time. In this phase, monitoring tech-
niques are indispensable to provide accurate information about the current
context. In addition, in response to context changes during the execution
of process variant instances [67], their dynamic re-configuration may become
necessary to allow switching from one variant to another [2]. Unlike ad-
hoc changes (i.e., unplanned changes), re-configuration options are already
known and specified in the configurable process model during the Analysis
& Design phase. However, like build-time configuration, syntactical as well
as semantic correctness of process variants must be ensured after dynamic
re-configuration [7, 26].

Diagnosis phase. In this phase, information gathered during the Config-
uration and Enactment phases (e.g., configuration settings made at config-
uration time and enactment time respectively) is analyzed to improve the
process family and its implementation.

Evolution phase. Finally, during this phase new requirements as well as
identified improvement opportunities lead to the evolution of the process
family (e.g., by adding new family members). In this case, the configurable
process model as well as the associated context model are evolved.

Along the description of these lifecycle phases, we have already presented
some important concepts specific to BP variability. These concepts include
configurable process model, variation point, context, process family, process
variant, and process variant instance. Figure 5 depicts how these concepts
relate to each other as well as the procedures that allow moving from the
definition of a process family to an executable process variant instance.

3. Research method

The goal of this paper is to provide a framework for assessing the ability
of a PAIS to effectively deal with BP variability. The framework shall not
only allow PAISs engineers to assess the expressiveness of different variability
proposals, by means of a set of language requirements, but also ensure that
large process families can be appropriately modeled, verified, validated, con-
figured, analyzed, refactored, and evolved through a set of variabiltiy support
features. Moreover, the framework must ensure that process variants can be
effectively executed, monitored, and dynamically re-configured if required.

12

Process Family

Behavioral approach

Process Variant

P
ro

ce
ss

 F
am

il
y

D
ef

in
it

io
n

Option 1 Option 2 Option 3

Structural approach

Completed
Activated
Skyped

In
d

iv
id

u
al

iz
at

io
n

S
e

le
c

ti
o

n

Variation
point

Current
Context

Process Variant InstanceE
x

e
c

u
ti

o
n Deployment

Configurable Process Model

All
Contexts

Figure 5: From Process Family Definition to Process Variant Enactment

This section presents the research method we employed for developing the
BP variability framework.

3.1. Identification of Language Requirements

We first describe the selection criteria for our language requirements, the
procedure we apply for their identification, and the data sources they are
based on.

Selection Criteria. To ensure that the language requirements are not spe-
cific to a particular domain, case studies from different domains with varying
level of complexity were selected. Requirements elicitation was not based on
case studies solely, but complemented by a thorough literature review con-
sidering both existing research on software product lines and variability in
the context of BPs [14].

Language Requirements Identification Procedure. Our goal was to iden-
tify a set of language requirements for effectively modeling large process

13

families by explicitly capturing variability in a configurable process model.
Since variability is not restricted to one perspective (e.g., behavioral), these
requirements should be general enough to cover variability in any perspec-
tive [40]. Moreover, they should be independent of any specific proposal or
language for modeling BP variability as well as constitute an extension of
existing BP modeling languages (e.g., BPMN [12], EPC [1], or YAWL [4]).
The derivation of language requirements was then performed as an iterative
search process according to the information systems research framework by
Hevner et al. [29]. Language requirements were iteratively refined after eval-
uating them based on case studies others than the ones used for gathering the
initial requirements. This process finally led to the language requirements
presented in Section 4.1.

Sources of Data and Data Collection. As source of the language require-
ments, we consider several case studies we performed in the context of various
research projects. One of our data sources includes the airport check-in pro-
cess (see Section 1). This process comprises hundreds of variants and shows
variability in respect to all process perspectives (see Section 2.1). As another
major data source, we use the process family for handling medical examina-
tions described in [45], which encompasses 90 process variants. In addition,
we consider the process for vehicle repair and maintenance with around 900
variants exist [27]. Additional case studies include processes related to goods
and service provisioning in a public administration in Spain with 8 process
variants [10]. As well as case studies described in literature (e.g., music and
sound editing process [35]).

3.2. Identification of Variability Support Features

We now describe the selection criteria for variability support features, the
procedure used for identifying them, and the data sources they are based on.
While the language requirements cover the expressive power needed to explic-
itly represent BP variability, variability support features constitute typical
functionalities offered by PAIS-enabling technologies to handle variability
effectively throughout the entire BP lifecycle.

Selection Criteria. In our framework we only consider those features
specific to the handling of process variants. As such, they are complementary
to features commonly provided by existing BP repositories (e.g., similarity
search [16, 50], model merging [39, 19], or reference architecture [75]) and
process change frameworks (e.g., support for ad-hoc changes, support for
process schema evolution, and process instance migration) [71].

14

Feature Identification Procedure. To identify fundamental variability sup-
port features we have analyzed proposals in respect to their functionality
supporting BP variability. As a consequence, the proposed variability sup-
port features are of descriptive, rather than prescriptive nature and present
an overview of the functionality provided by existing technologies.

Sources of Data and Data Collection. Existing proposals (e.g., [56, 63, 27,
8]), which have been specifically designed to support the management of BP
variants, serve as data sources for identifying the variability support features.
For describing respective PAISs, we conducted a thorough literature study.

4. Evaluation Framework

This section presents our evaluation framework for BP variability. On
the one hand, it provides a set of language requirements needed to explicitly
represent variability in a BP model and to assess the expressiveness of dif-
ferent proposals dealing with BP variability. On the other hand, it provides
a set of variability support features required to enable variability along the
entire BP lifecycle.

4.1. Language Requirements

As described in Section 2.2, a process family may be represented follow-
ing either a behavioral or a structural approach. Based on the variability
requirements identified in our case studies, in addition to the standard con-
structs, a process modeling language should provide the following language
constructs to explicitly represent variability and to allow for the construction
of configurable process models:

• Language Requirement LR1 (Variation Point). A variation point
is defined as a precise position within a configurable process model that
enables different choices depending on the current context or situation.

Example 7 (Variation point). Regarding the check-in process, de-
pending on the type of ticket (e.g., economy or business class), the
airline offers the possibility of changing the seat assignments.

15

• Language Requirement LR2 (Alternative Process Element;
APE). An APE is defined as a particular option that may be instanti-
ated at a specific variation point and may refer to any modeling element
such as activities and their control flow, resources, data, events, or op-
erations.

Example 8 (Alternative process elements). Several alternatives
exist for the check-in process. For example, related to the behavioral
perspective, business class passengers may alternatively accept the au-
tomatic seat assignment or change it at their convenience, i.e., Change
seat assignment is an optional activity. Related to the resource perspec-
tive, there are different roles that may perform the Print boarding card
activity: the passenger herself via the web system, the self-servicing
machines, or the airline personnel at the economy or business class
counters. Alternatives regarding the data perspective are related to
different types of boarding cards (e.g., electronic versus paper-based).
Alternatives regarding the time perspective can be found in the con-
text of the start event of the check-in process, since the availability of
the check-in process may vary from several days to a few hours before
departure. Finally, alternatives regarding the operational perspective
exist, since there are different implementations of the Assign seat activ-
ity (depending on whether the activity is performed at the self-servicing
machine, online, or at the counter).

• Language Requirement LR3 (Alternative process element con-
text). An alternative process element context is defined by a subset
of process variables whose values make a particular APE to become
instantiated for a variation point.

Example 9 (Alternative process element context). The Pay ex-
cess fee activity is only executed if the passenger carries an overweight
luggage. If so, the overweight variable constitutes this context. Sim-
ilarly, the Assign seat activity can only be performed if the customer
holds a business class ticket.

16

• Language Requirement LR4 (Alternative process element re-
lationships). An alternative process element relationship is defined
as a constraint of use between two or more APEs. These constraints
are defined based on semantic relationships to ensure the proper use of
the involved APEs within a specific context.

Example 10 (Alternative process element relationship). An
electronic boarding card can only be obtained when using the web sys-
tem. This implies the definition of an inclusion relationship between
the web system role and the electronic boarding card object as well as
an exclusion relationships between the self-servicing machine, the econ-
omy/business class counters, and the electronic boarding card object.

• Language Requirement LR5 (Variation point resolution time).
This requirement should allow modelers to distinguish between varia-
tion points whose resolution depends on the initial context (configura-
tion time) or on the current context of a process instance (enactment
time).

Example 11 (Variation point resolution time). The online check-
in may be configured at configuration time by selecting the variants
referring to the web system role. Nevertheless, other activities related
to the luggage (i.e., Pay excess fee) will be only known when the pas-
senger places the luggage at the desk scales. In this case, decisions
regarding the APE to select are postponed until enactment time.

4.2. Variability Support Features

So far, we have introduced a set of fundamental language requirements
for coping with BP variability needs. However, assessing expressiveness is
not sufficient when comparing different proposals regarding their ability to
deal with BP variability. In addition, variability support features need to
be taken into account to evaluate the practical applicability of a particular
proposal. This section introduces respective variability support features and
discusses them along the BP lifecycle (see Section 2).

17

4.2.1. Phase I: Analysis & Design

In the Analysis & Design phase an entire process family is designed,
validated and verified in terms of a particular approach (i.e., behavioral or
structural); this process family should be described considering the previously
presented language requirements such that variants can be clearly identified
within the configurable process model.

• Feature F1.1 (Creating a configurable process model). Sophis-
ticated tool support is needed for creating a configurable process model.
It requires considering all language requirements introduced in Section
4.1 and providing appropriate tool support for them. Since process
models are better understood when presented graphically, in addition
components like graphical editors, navigation facilities, or visualization
features are needed to facilitate the creation of such models.

• Feature F1.2 (Verifying a configurable process model and its
related process family). Efficient techniques to ensure that a con-
figurable process model is correct should be provided, i.e., it must be
guaranteed that only syntactically correct and sound (e.g., absence of
deadlocks) process variants may be configured out of the configurable
process model.

• Feature F1.3 (Validating a configurable process model). Tech-
niques are needed to validate the semantic correctness of a configurable
process model, i.e., avoiding incorrect domain representations of the
process variants.

4.2.2. Phase II. Configuration

The goal of the Configuration phase is to derive an executable process
model (i.e., a particular member of the process family) from the configurable
process model through individualization and to deploy it on the enactment
system. In this phase, domain experts should be supported in specifying the
concrete application context and in deriving process variant fitting to the
given context. Finally, configuration settings should be logged to allow for
later mining.

• Feature F2.1 (Configuring a process variant out of a config-
urable process model). Tools should provide sophisticated user in-
terfaces and techniques to select the current application context and to

18

derive one correct and valid process variant for it. On the one hand,
automated support for checking the correctness and compliance of the
configured process variant with the (alternative) process element rela-
tionships is required [6]. For example, Requires/Excludes constraints
may enforce/exclude process fragments at a specific variation point.
Users should be prevented (e.g., by informing or forbidding) from de-
riving invalid configuration settings. On the other hand, techniques
enabling a high level of abstraction (e.g., form-based or context-driven
configuration) should be provided for setting the current application
context and hence for configuring a particular process variant. The
resulted process variant should be graphically displayed to users.

• Feature F2.2 (Logging configuration settings). Configuration
decisions should be logged to enable traceability and learning.

• Feature F2.3 (Deploying a process variant). Tool support is
needed for transforming the obtained process variant into an executable
model ready to be deployed. This support is dependent on the de-
ployment technology and may involve, for instance, implementing the
services that operationalize a process activity.

4.2.3. Phase III. Enactment

The Enactment phase requires support for run-time configuration, mon-
itoring, and dynamic re-configuration of process variants. Based on the
process variants deployed on the enactment system, new process instances
can be configured, executed, and monitored. Furthermore, dynamic re-
configurations (i.e., switching from one process variant to another) should
be supported in a controlled and robust manner, e.g., enabling automatic
reconfigurations when contextual changes occur. Note that this differs from
ad-hoc changes known from adaptive PAISs [58], which constitute unplanned
changes, instead of pre-specified ones.

• Feature F3.1 (Configuring a process variant at enactment time).
Since certain configuration decisions can only be made during enact-
ment time, tool support for configuring process variants at enactment
time is needed.

19

Example 12 (Configuring a process variants at enactment
time). Whether a passenger carries overweight luggage only becomes
known once she arrives at the counter. Hence, the selection of the Pay
extra fee activity can only be performed while enacting an instance of
the process variant.

• Feature F3.2 (Monitoring the execution of the instances of a
process variant). Tool support is needed for monitoring the context
related to the execution of a collection of instances of a process variant
(e.g., to discover contextual changes).

• Feature F3.3 (Re-configuring an instance of a process vari-
ant during enactment time). For a particular instance, it should
be possible to dynamically switch its execution from the current pro-
cess variant model to another one at enactment time. Respective re-
configurations may become necessary when contextual changes occur
during enactment time.

Example 13 (Re-configuring an instance of a process variant
during enactment time). Regarding the check-in process, changes
of the passenger status might require variant switches. Consider, for
example, a passenger not having entered her frequent flying number
when buying the ticket and therefore being initially treated as a regular
customer. When providing the frequent flying number a switch to the
appropriate process variant should be performed.

4.2.4. Phase IV. Diagnosis

In the Diagnosis phase, support for the mining of configured process
variants is required to learn from the configuration settings chosen at both
design and enactment time.

• Feature F4 (Optimizing process variant models). Support for
optimizing process variant models is needed [69]. This includes support
for identifying process variants that were never configured or deployed

20

[46]. In turn, this might trigger the evolution of the configurable process
model, but also allow discovering frequently applied configuration steps
that might be lifted to the configurable process model to reduce future
configuration effort [45].

4.2.5. Phase V. Evolution

The Evolution phase is concerned with the evolution of a configurable
process model to address changing requirements (e.g., need for the adoption
of new variants different from the initial ones), increase its quality (e.g., im-
proving model comprehensibility), or optimize its use (i.e., decreasing future
configuration efforts).

• Feature F5.1 (Evolving the schema of a configurable process
model). Configurable process models may have to be evolved to meet
emerging needs and contextual changes. Among others, support is
required for:

– correctly evolving the schema of a configurable process model, e.g.,
by adding/removing variants,

– maintaining the different schema versions of a configurable process
model and to cope with their co-existences, and

– propagating changes of the configurable process model to all con-
figured process variants and—if desired—to running instances of
the process variants as well.

Example 14 (Evolving the schema of a configurable process
model). Regarding the check-in process, some airlines may want to
provide new support for mobile phone boarding cards, which will re-
quire the addition of new variants.

• Feature F5.2 (Refactoring a configurable process model). Refac-
toring support is needed for improving the quality of a configurable
process model by altering its schema, but without changing its be-
havior; i.e., the same process family can be produced on both the old
configuration model and the refactored one [73].

21

5. Applying the Evaluation Framework in Practice: Existing Busi-
ness Process Variability Proposals

In this section, we evaluate selected proposals regarding their support for
BP variability. Section 5.1 describes our evaluation methodology. Evaluation
results for language requirements are described in Section 5.2, while the eval-
uation of variability support features is discussed in Section 5.3. A summary
of these results is provided in Section 5.4.

5.1. Evaluation Procedure

Definition of Evaluation Goal. The goal of our evaluation is to mea-
sure how well current proposals cope with BP variability regarding all BP
perspectives and all phases of the BP lifecycle.

Selection of Evaluation Objects. As evaluation objects we choose PAIS-
enabling technologies which have been developed with the aim to explicitly
support BP variability. Based on a thorough literature review a list of candi-
date evaluation objects has been created. To be included in our evaluation we
require the existence of a proof-of-concept implementation. As a result, we
have included the following five proposals: PESOA [56], C-EPC [63], Provop
[27], Rule representation and processing [34], and Worklets [8].

Definition of Evaluation Criteria and Metrics. As evaluation criteria
we consider the five language requirements (see Section 4.1) and the twelve
variability support features (see Section 4.2) defined by our evaluation frame-
work. We measure the ability of the selected PAISs to deal with variability
as the level of support for the described evaluation criteria. For each evalu-
ation criterion we differentiate between no support [-], partial support [+/-],
and full support [+]. However, for Language Requirement 2 (i.e., alternative
process elements), we use letters to indicate whether the proposal supports
the behavioral (B), functional (F), organizational (O), temporal (T), and
operational (Op) perspective (e.g., [F, B]).

Analyzing the Evaluation Objects along the Evaluation Criteria. Our eval-
uation is based on a comprehensive literature study. Moreover, the check-in
example is modeled for every proposal.

5.2. Evaluation Results for Language Requirements

For each of the five proposals, we provide evaluation results for the lan-
guage requirements defined in Section 4.1.

22

5.2.1. PESOA

PESOA [56] provides a proposal for the development and customization
of families of process-oriented software. According to PESOA, a configurable
process model is represented by one artifact, which contains variation points
(LR1 [+]). They are described by attaching annotations to the activities for
which variability may occur. For this, strategies like encapsulation, inheri-
tance, design patterns, and extension points are used. These strategies only
refer to the behavioral and functional perspectives (LR2 [F, B]). The con-
text of the control flow alternatives is partially defined since it is specified in
terms of features attached to the activities instead of process variables (LR3
[+/-]). Relationships between the alternatives of different variation points
are not considered (LR4 [-]) and it is not possible to distinguish whether a
variation point is resolved at design time or at enactment time (LR5 [-]).

Example 15 (Check-in process modeled in PESOA). Figure 6 de-
picts a configurable process model dealing with the check-in process devel-
oped with PESOA. It includes the related feature model, which contains
the features associated to the alternatives. Commonalities are highlighted
in grey, while variation points are shown in white. For example, Figure 6
comprises three optional activities (e.g., Change seat assignment, Provide
information about accommodation, and Pay extra fee), which are modeled
as extension points. Moreover, an inheritance strategy is defined to repre-
sent the alternatives for activity Assign seat. Attached to the definition of
each alternative, context conditions (i.e., features) can be found that make
the alternative be selected. For example, activity Change seat assignment is
only available for business class passengers. Since variability regarding orga-
nizational (i.e., resources) and informational (i.e., data flow) perspectives is
not supported, their variations are not shown in Figure 6. Process variants
can be derived by selecting features in the associated features model. For
example, through the colored features, Variant 1 from Figure 1 is obtained
(see the bottom of Figure 6).

5.2.2. Configurable Event-driven Process Chain (C-EPC)

Configurable EPC [63, 21] is an extension of EPC (Event-driven Pro-
cess Chain) to model variability in reference process models. A configurable
process model is represented by a single model gathering the whole process

23

{check-in_type=ONLINE}
{check-in_type=SELF-SERVICING}

<<Variant>>
Assign seat automatically

{check-in_type=COUNTER}
<<Variant>>

Assign seat manually

{ticket_class=BUSINESS}
<<Optional>>

Change seat assignment

Boarding
Card

<<Abstract>>
Assign seat

Identify passenger
{flight_destination=USA}

<<Optional>>
Provide information about accomodation

Print boarding card Drop off regular luggage
{luggage_overweight=TRUE}

<<Optional>>
Pay excess fee

Check-in Features

check-in_type flight_destination luggage_overweight

ONLINE

COUNTER

SELF-SERVICING

USA EU

TRUE FALSE

Process model

Associated Feature Model

ticket_class

BUSINESS ECONOMY

Change seat
assignment

Identify passenger

Provide information about
accomodation

Print boarding card Drop off regular luggage

Assign seat
automatically

Variant
Configuration

Start event

End
event

Activity with no
variations

Flow
relation

Realization relation <<Abstract>>
...

<<Variant>>
...

<<Optional>>
...Data Object

Variation Point

Variants

Boarding
Card

Mandatory
Single choice

Feature
Selected feature

Variant 1 (check-in_type=”ONLINE”, ticket_class=”BUSINESS”, flight_destination=”USA”)

Figure 6: Configurable Process Model for the Check-in Process developed with PESOA

family. The configurable functions (i.e., activities) and connectors allow iden-
tifying the variation points in the model (LR1 [+]). The support originally
provided to the functional and behavioral perspectives was extended by [35]
to the organizational and informational ones (LR2 [F, B, O, I]). The con-
ditions that instantiate an alternative process element are included in the
configuration requirements and guidelines constructs (LR3 [+]). These con-
ditions are defined as context variables that determine whether or not the
requirement shall be applied. Using C-EPCs, it is not possible to explic-
itly define relationships between alternative process elements. Instead, con-
figuration requirements define relationships between functions and connec-
tors along the entire model. The fact that these requirements are scattered

24

throughout the model hinders comprehensibility for modelers (LR4 [+/-]).
The C-EPC proposal has been designed to support configuration prior to
model deployment, but it does not consider dynamic run-time configuration.
It is hence not possible to express when variation points are resolved (LR5
[-]).

Example 16 (Check-in process modeled with C-EPC). The left
side of Figure 7 illustrates a configurable process model in C-EPC notation.
This figure shows several configurable functions (e.g., Change seat assign-
ment, Provide information about accommodation, and Pay extra fee), which
all constitute optional activities (variability regarding the functional per-
spective). Moreover, the model comprises one configurable XOR connector,
which relates to the behavioral perspective and whose configuration involves
selecting just one of the alternative branches. As illustrated in Figure 7,
configuration requirements are annotated to configurable nodes, defining the
context conditions. For example, Requirement 1 states that, when the check-
in type is online or at the self-service machine, activity Assign seat is selected
automatically; otherwise the activity is perform manually (see Requirement
2). Similarly, context conditions for the configurable nodes are defined (see
Requirements 3 to 5). The model also comprises alternatives regarding the
organizational and informational perspective. These alternatives are defined
by configurable OR connectors associated to the roles and objects. For exam-
ple, the Identify passenger activity can be performed by the web system, the
airline personnel, or the self-servicing machine. In the same line, the board-
ing card can either be electronic or paper-based. In turn, the right part of
the figure shows Variant 1 from Figure 1 after its configuration. This con-
figuration is performed selecting the correct alternative for each configurable
node.

Aligned with C-EPC, other configuring proposals such as C-YAWL (based
on hiding and blocking) [5] and Feature-EPC (based on feature models) are
worth mentioning [70].

5.2.3. Provop

Provop [27] is a structural proposal for managing large collections of pro-
cess variants during the BP lifecycle which includes design and enactment

25

Identify
passenger

Print
boarding

card

Assign seat
automatically

Assign seat
manually

X

X

SEQ1a SEQ1b
1

2

Change
seat

assignment

Provide
information

about
accomodation

Drop off
regular
luggage

Pay excess
fee

˅
Web system

Self-servicing machine
C1

˅
C5

˅
C2

˅
C3

˅
C4

˅
C7

Electronic boarding card

Paper boarding card

˅
C6

Configurable process model

Identify
passenger

Print
boarding

card

Change
seat

assignment

Provide
information

about
accomodation

Drop off
regular
luggage

Assign seat
automatically

Economy class counter

Requirement 2:
(check-in_type =
COUNTER)
XOR1 = SEQ1b

Requirement 1:
(check-in_type = ONLINE) ˅

(check-in_type = SELF-
SERVICING) XOR1 = SEQ1a

Web system

Self-servicing machine

Requirement 3:
ticket_class =

BUSINESS Change
seat assignment = ‘ON’

Web system

Self-servicing machine

Economy class counter

Web system

Self-servicing machine

Economy class counter

Requirement 4:
flight_destination = USA
Provide information about

accomodation =’ON’

Variant
Configuration

Web system

Self-servicing machine

Economy class counter

Economy class counter

Business class counter

Requirement 5:
luggage_overweight = TRUE

Pay extra fee =’ON’

Web system

Web system

Web system

Web system

Web system Electronic boarding card

Business class counter

Configured Variant 1 (check-in_type=”ONLINE”,
ticket_class=”BUSINESS”, flight_destination=”USA”)

Configurable
optionality for role

Configurable optionality
for Data Object

Function with
no variations

Configurable
function

Configurable
XOR connector

X

Start event

End event

˅
Configurable
OR connector

Requirement -
Configuration
requirement

Figure 7: Configurable Process Model for the Check-in Process developed with C-EPC

time activities. A configurable process model consists of several artifacts like a
base process and a set of variant-specific adjustments, which can be expressed
based on well-defined, high-level change operations (INSERT, DELETE, and
MOVE process fragments and MODIFY process attributes [61]). Further-
more, multiple change operations may be grouped into so-called change op-
tions to allow for more complex adjustments. Thus, a specific process variant
is determined by applying one or more of these change options to the base
process. As opposed to C-EPCs, this means that the base process does not
need to capture all possible behavior. This is only one alternative for de-
signing this configurable base process. Others are to capture only common
behavior or most frequent behavior in the base process, while expressing
variability-specific adjustments with change options.

Variation points are represented by means of adjustment points (LR1 [+]).
Alternative process elements can only be defined when talking about control
flow options (i.e., behavioral and functional perspective) (LR2 [F, B]). The

26

context conditions that make an alternative process element be instantiated
are defined in terms of the context variables comprising a name, description,
value range, and mode (static or dynamic depending on whether their value
may change during enactment time or not) (LR3 [+]). It is possible to
define relationships such as implication, mutual exclusion, application order,
hierarchy, and at-most-n-out-of-m-options between the alternative process
elements (LR4 [+]) [23]. Since dynamic enactment time configuration is not
supported and therefore all configurations are done at design time, it is not
possible to explicitly represent the variation point resolution time (LR5 [-]).

Example 17 (Check-in process modeled with Provop). Figure 8
illustrates the Provop proposal for dealing with the check-in process. At the
top part of the figure, the base process model from which the process vari-
ants can be derived is depicted. Note that this base process model contains
several adjustment points (delimited by black diamonds) to which change
options and their change operations may refer. The change options applica-
ble to this base process model are shown at the bottom of the figure. For
example, Option 1 specifies that, if the check-in is done at the counter, ac-
tivity Assign seat is automatically replaced (by performing delete and insert
change operations) by a manual seat assignment. Variant 1 of Figure 1 is
obtained after applying Option 4.

5.2.4. Rule Representation and Processing

Rule representation and processing [34] is based on the idea of configuring
variants through a set of business rules. These rules are applied to a generic
template, which constitutes a default configuration that is modified accord-
ing to context changes. However, variation points cannot be identified in the
template since they are not marked in a specific manner to distinguish the
exact places being subject to variations (LR1 [-]). Alternatives are described
through a set of business rules, whose application leads to the execution of a
set of change operations (e.g., insert or delete activity). These change oper-
ations, when applied to the basic process template, lead to a specific process
variant. In addition to control flow, alternatives may also refer to the or-
ganizational and informational perspectives (LR2 [F, B, O, I]). Using this
proposal, it is easily possible to identify the context related to an alternative
process variant (LR3 [+]); the context is represented by context variables.

27

Identify
passenger

Assign seat
automatically

Print
boarding

pass

Base model

A B

Change
seat

assignment

C D

Provide
information about

accomodation

E F

Drop off
regular
luggage

Pay excess
fee

G H

Boarding
Card

Change options

CTXT RULE 1 (static):
IF check-in_type = “COUNTER”

O
pt

io
n

1

INSERT Start End

Assign
seat

manually

Start

End

Start
Assignment

Assignment
finished

Start-Adjustment Point
DELETE

End-Adjustment Point

A B

O
pt

io
n

2

DELETE

C D

CTXT RULE (dynamic):
IF ticket_class = “ECONOMY”

Start-Adjustment Point End-Adjustment Point

O
pt

io
n

3

DELETE

E F

CTXT RULE (dynamic):
IF flight_destination “USA”

Start-Adjustment Point End-Adjustment Point

O
pt

io
n

4

DELETE

G H

CTXT RULE (dynamic):
IF luggage_overweight = “FALSE”

Start-Adjustment Point End-Adjustment Point

Variant 1 (check-in_type=”ONLINE”, ticket_class=”BUSINESS”, flight_destination=”USA”) obtained after applying Option 4

Identify
passenger

Assign seat
automatically

Print
boarding

pass

Change
seat

assignment

Provide
information about

accomodation

Drop off
regular
luggage

Boarding
Card

Activity with no
variations

Activity with
variations

Adjustment point

Start event

End event

Figure 8: Configurable Process Model for the Check-in Process developed with Provop

It is not possible to define relationships between the alternative process ele-
ments (LR4 [-]). Moreover, it is not possible to distinguish whether variation
points are resolved or alternatives are selected at design time or at enactment
time (LR5 [-]).

Example 18 (Check-in process modeled with Rule representa-
tion and processing). Figure 9 shows a configurable process model dealing
with the check-in process modeled using the rules representation and process-
ing proposal. The figure illustrates the most common activities (i.e., basic
template), the roles (in brackets) that perform them, the control flow re-
lationships, and the data objects for the check-in process. The figure also
shows an example rule set that may be applied to the template. For example,
Rule R1 specifies that for economy class passengers, activity Change seat as-
signment is deleted. In turn, Rule 4 specifies that if the check-in is done at
the counter, Assign seat automatically is replaced by Assign seat manually.

28

Identify
passenger

(Web system)

Assign seat
automatically
(Web system)

Print boarding
pass

(Web system)

Basic template

Change seat
assignment

(Web system)

Drop off regular luggage
(Business class counter)

Pay excess fee
(Excess baggage

counter)

Electronic
Boarding

Card

Control flow related
R1: ticket.class= “ECONOMY”, delete(T3)
R2: flight_destination = USA”, insert(“Provide information about accomodation”, Safter, T3)
R3: lugagge.overweight = “FALSE”, delete(T6)

Resource related
R5: check-in.type = “COUNTER”, role(T1, economy class counter)
R6: check-in.type = “COUNTER”, role(T2, economy class counter)
R7: check-in.type = “COUNTER”, role(T4, economy class counter)
R8: check-in.type = “COUNTER”, role(T5, economy class counter)

Data related
R9: check-in.type = “COUNTER”, data-out(T4, “Paper boarding card”)
R10: check-in.type = “SELF-SERVICING MACHINE”, data-out(T4, “Paper boarding card”)

Complex Rules
R4: check-in.type = “COUNTER”, delete(T2) AND insert(“Assign seat manually”, Safter, T1)
R11: check-in.type = “SELF-SERVICING MACHINE”, role(T1, “Self-servicing machine”) AND role(T2, ”Self-servicing
machine”) AND role(T4, “Self-servicing machine”) AND role(T5, “Self-economy class counter”)

Rules
Start
event

End
event

Activity Data
Object

W
eb

sy
st

em
B

us
in

es
s

C
la

ss
C

ou
nt

er

T1:
Identify

passenger

T2: Assign
seat

automatically

T4: Print
boarding

pass

T3: Change
seat

assignment

T5: Drop off
regular luggage

Electronic
Boarding

Card

Variant 1 (check-in_type=”ONLINE”, ticket_class=”BUSINESS”, flight_destination=”USA”) obtained after applying R3

Figure 9: Configurable Process Model for the Check-in Process developed with the Rule
Representation Proposal

5.2.5. Worklets

Worklets [8] is a proposal for handling exceptions at enactment time
through dynamic reconfiguration. A worklet is defined as “a small, com-
plete and re-usable workflow specification which handles one specific task in
a composite parent process when an exception in it occurs”. Even though
this proposal was not conceived to provide BP variability support as such,
its re-configuration support justifies its inclusion in our evaluation.

Variation points are not explicitly marked when using the Worklets pro-
posal. However, every activity from the base process model (i.e., default
process variant model) that is associated with a repertoire of worklets can

29

be considered as a variation point (LR1 [+/-]). These repertoires comprise
the worklets for the associated variation point. Alternative process elements
can be single activities, but also entire sub-processes. Therefore, variability
therefore relates to both the functional and behavioral perspective (LR2 [F,
B]). The conditions that determine the selection of a particular alternative
during enactment time are represented by means of Ripple Down Rule (RDR)
trees that are associated to activities from the base model. The evaluation
of these conditions will determine the selection of the appropriate alternative
based on the current context (LR3 [+]). Nevertheless, it is not possible to
define relationships between alternative process elements (LR4 [-]). Since the
Worklets proposal focuses on handling exceptions at enactment time through
dynamic re-configuration, all configuration decisions are made during enact-
ment time. Nevertheless, the model does not contain any particular mark to
make this situation explicit (LR5 [-]).

Example 19 (Check-in process modeled with Worklets). Figure
10 illustrates the Worklets proposal when dealing with the check-in process.
It depicts the default check-in process (defined in YAWL) as well as the
repertoire of alternatives for the activities (i.e., Assign seat, Provide addi-
tional information, Change seat assignment, and Pay extra fee). In addition,
the RDR trees are depicted to determine the context for selecting the ap-
propriate alternative. For this, the RDR tree is evaluated starting with the
root node, which always evaluates to true. As the next step, context condi-
tion chek-in type=COUNTER, for instance, is evaluated. If this condition is
satisfied, the true branch is taken and the worklet Assign seat automatically
is selected. Otherwise, Assign seat manually worklet is executed.

5.3. Evaluation Results for Variability Support Features

In the following, for each selected variability proposal, we provide evalu-
ation results for the variability support features defined in Section 4.2.

5.3.1. PESOA

PESOA has been realized as Eclipse plug-in that supports the creation
of a configurable process model (F1.1 [+]). Concretely, the graphical edi-
tor provides support for representing variation points including alternative
process elements, but also support for describing the context model. This

30

YAWL process

RDR trees

Identify
passenger

Change
seat

assignment

Assign seat
automatically

+

Assign seat
manually

Worklet 1 Worklet 2

Provide information
about

accomodation

Worklet 3

Print
boarding

card

Drop off
regular
luggage

Pay excess
fee

Worklet 4

true
default

true
check-in_type=COUNTER

suspend workitem
select Worklet 1
resume workitem

Ripple Down Rules

Condition

Conclusion

true
default

suspend workitem
select Worklet 2
resume workitem

true
default

suspend workitem
select Worklet 3
resume workitem

true
default

suspend workitem
select Worklet 4
resume workitem

Suspend
workitem

Stop
workitem

Resume
workitem

ticket_class=ECONOMY flight_destination=EU luggage_overweight=FALSE

Figure 10: Configurable Process Model for the Check-in Process developed with Worklets

is accomplished by means of feature diagrams, i.e., each process variant is
tagged with features, determining the conditions under which this variant is
valid. However, neither verification nor validation support is provided (F1.2
[-], F1.3 [-]). The configuration of process models is supported by feature
diagrams, i.e., for each disabled feature, corresponding variable parts are re-
moved from the process variant model. The usage of feature diagrams allows
for configuring process variants at a high level of abstraction. In addition,
resulting process variants can be displayed to users. However, semantic and
contextual constraints between variable parts are not considered in the con-
figuration phase. As a consequence, no support is available to inform users
about constraint violations (F2.1 [-]). PESOA focuses on the modeling as
well as configuration of BP variants. Therefore, features related to the de-
ployment, execution, mining, and evolution of process variants are not taken
into account (F2.2 - F5.2 [-]).

5.3.2. Configurable Event-driven Process Chain (C-EPC)

The C-EPC proposal has been implemented as a toolset named Synergia
[47]. It supports the creation of a configurable process model using a graph-
ical editor. Moreover, it allows defining the context of a configurable process
model using configuration requirements and guidelines (F1.1 [+]). Moreover,
the Synergia toolset implements a mapper tool that can be used to verify the
construction of the configurable process model [36] (F1.2 [+]). In addition,

31

it is possible to validate configured process models using C-EPC Validator
[48] (F1.3 [+]).

The configuration of process variants through domain experts is sup-
ported using a questionnaire-based approach, implemented by the Quaestio
tool [36]. By answering a set of questions, domain experts are assisted and
guided when configuring the configurable process model [37]. Questions are
asked in such a way that semantic and contextual constraints are always
respected and no inconsistent choices can be made. After completing the
configuration, Synergia allows visualizing the process variant model obtained
(F2.1 [+]). Nevertheless, Synergia does not consider configuration logs (F2.2
[-]). In combination with YAWL and its configurable extension (C-YAWL),
it is possible to transform a configured C-EPC model into a deployable rep-
resentation, which can then be executed by a YAWL engine (F2.3 [+]).

Run-time configuration, monitoring, and dynamic re-configuration of a
process variant are not supported; once the configuration of an C-EPC model
is completed, the deployed process is fixed and cannot be changed anymore
(F3.1 [-], F3.2 [-], and F3.3 [-]). In addition, support for optimizing process
variant models is not provided (F4 [-]).

Evolution of configurable process models is partially supported (F5.1 [+/-
]). While configurable process models can be evolved by adding/removing
configurable elements, changing the context, or revising the configuration
guidelines, no support is provided for handling different versions or propagat-
ing model changes to process variants. Refactoring support is not considered
by Synergia (F5.2 [-]).

5.3.3. Provop

The Provop proposal has been implemented as a proof-of-concept pro-
totype based on the ARIS Business Architect tool [57]. The creation of a
configurable process model is supported by a graphical editor, which allows
creating a base model and specifying the options that will configure it, except
for distinguishing when a variation point is solved (i.e., design or enactment
time). The prototype also supports the definition of a context model through
a set of context variables, which represent one specific dimension of the pro-
cess context. Moreover, relationships between variants can be defined (F1.1
[+]). The created process models can be verified to ensure their correctness
(F1.2 [+]), but no validation support is provided (F1.3 [-]).

The configuration of process variants is also supported by the prototype
(F2.1 [+]) [57]. For this, depending on the actual context, respective change

32

options are applied to the base process model. The proof-of-concept proto-
type checks whether the defined options violate any constraint defined on
the total set of change options available. If it detects such constraint viola-
tion, it notifies the process engineer accordingly. After selecting the change
options, they are applied to the configurable process model and the result is
shown. The proof-of-concept prototype does not maintain configuration logs
(F2.2 [-]). Nevertheless, it provides techniques to transform the obtained
configuration into an executable model (F2.3 [+]).

Dynamic enactment time configuration is not supported by Provop (F3.1
[-]). On the contrary, dynamic re-configuration of a process variant model
based on context changes is supported by including variant branchings in the
process model and encapsulating the adjustments of single change options
within these variant branches (F3.2 [+] and F3.3 [+]). The split condition at
the variant branching corresponds to the context rule of the change option.
Whenever process execution reaches a variant branch, the current context
is evaluated: if the split condition evaluates to true the variant branch will
be executed, which means that the change options will be applied. Other-
wise, the variant branch will be skipped and therefore all adjustments of the
change options will be ignored. In case, constraints between different options
exist (i.e., two options being mutually exclusive), Provop ensures that these
constraints are enforced when dynamically re-configuring processes during
enactment time [27].

No support for optimizing process variant models is provided in the proof-
of-concept prototype (F4 [-]). Evolution of configurable process models, in
turn, is partially supported (F5.1 [+/-]). While configurable process models
can be evolved, no support is provided for the handling of different versions
or the propagation of model changes to process variants. Finally, refactoring
support is provided (F5.2 [+]) [25].

5.3.4. Rule Representation and Processing

The Rules representation and processing proposal has been partially im-
plemented as a proof-of-concept prototype. It is based on Java and uses the
Drools Rule Language (DRL) to represent the rules. The open source rule
engine Drools-expert [49] is used to process rules and resolve conflicts.

It is possible to create a configurable process model using the proof-of-
concept prototype (F1.1 [+]). It allows defining a new template as well as the
rules that configure the template. The created process models can be verified
to ensure their correctness (F1.2 [+]). In particular, the validity checking

33

component ensures that the resulting change operations can be applied to
the process template, while ensuring syntactical correctness. No validation
support is provided (F1.3 [-]).

Configuration of process variants is done by applying the rules specified
in the configurable process model (F2.1 [+]). When the proof-of-concept
prototype detects that a constraint has been violated, it notifies the process
engineer about the violation. After configuration, the resulting variant is
shown to the modeler. The proof-of-concept prototype provides techniques
to support the logging of configuration settings (F2.2 [+]). In addition,
the prototype allows transforming the configured model obtained into an
executable representation (i.e., BPEL), which then can be deployed to the
enactment time system (F2.3 [+]).

Neither run-time configuration (F3.1 [-]) nor re-configuration of a process
variant is supported (F3.2 [-] and 3.3 [-]). In the same line, optimization of
process variant model is not supported (F4 [-]). Evolution of configurable pro-
cess models is partially supported (F5.1 [+/-]). While configurable process
models can be evolved by adding new rules and changes can be automatically
propagated to running process instances, no support for handling different
versions is provided. Regarding change propagation, running instances may
have to be restarted, continued without change, or migrated to new variants.
Finally, no refactoring support is provided (F5.2 [-]).

5.3.5. Worklets

The Worklet proposal has been implemented as a YAWL Custom Ser-
vice. The creation of configurable process models is possible (F1.1 [+]). The
context for selecting a specific alternative can be described by means of the
RDR tree (see Section 5.2). Neither verification nor validation support is
provided (F1.2 [-] and F1.3 [-]).

Since the Worklets proposal has been developed for enabling run-time
flexibility, no support regarding the configuration phase is provided (i.e., all
configuration decisions are dynamically made during enactment time) (F2.1
[-] and F2.2 [-]). Process models comprising Worklets (e.g., models specified
in terms of YAWL) are executable and can be deployed to a process engine
for execution (F2.3 [+]).

Dynamic run-time configuration is not supported by Worklets (F3.1 [-
]). On the contrary, using the Worklets proposal, context changes may be
considered and process variants be dynamically re-configured (F3.2 [+] and
F3.3 [+]). Support for optimizing process variant models is, in turn, not

34

provided (Feature F4 [-]). Whereas evolution of configurable process models
is partially supported (F5.1 [+/-]). While configurable process models can
be evolved by adding/removing worklets or by adapting the RDR tree, no
support is provided for handling different versions or the propagating config-
urable model changes to process variants. Finally, refactoring support is not
provided (F5.2 [-]).

5.4. Summary of Results

Table 1 summarizes the evaluation regarding the language requirements
and their support by each of the proposals. As shown, none of the evalu-
ated proposals accomplishes the whole set of requirements. Most of them
allow explicitly defining variation points (LR1) as well as the alternatives
that may be instantiated at these points (LR2). Nevertheless, these alterna-
tives mainly refer to some perspectives such as the behavioral or functional
perspectives, while neglecting other perspectives. For example, none of the
proposals supports the definition of alternatives regarding the temporal per-
spective (i.e., process events). Every proposal supports the definition of the
context conditions for which the alternatives shall be used (LR3). Neverthe-
less, the definition of relationships between alternatives is mostly neglected
(LR4). In addition, none of the proposals provides mechanisms to differen-
tiate the variation point resolution time (LR5) that defines the decisions to
be taken before model deployment.

Table 2 summarizes the evaluation regarding variability support features.
While the modeling of configurable process models (Phase I) and the configu-
ration of process variants (Phase II) are supported by most of the proposals
(F1.1 - F2.3), comprehensive lifecycle support for BP variability has been
missing so far. An area not well covered so far is the support of Phase III
(Enactment) (F3.1 - F3.3), both in terms of enactment time configuration,
and dynamic re-configuration of process variants. In addition, our analysis
shows that features related to Phase IV (Diagnosis) are not well supported
by any of the evaluated proposals (F4). However, there exist techniques (e.g.,
[44]), such as the one presented by Günther et al. [22], which can be applied
together with the evaluated proposals. Nevertheless, since this combination
was not conceived originally by the tools, they have not been included for
this evaluation. Finally, regarding the evolution of configurable process mod-
els, existing proposals provide basic support, but lack advanced techniques
for the controlled change propagation in the configurable process model to

35

PESOA C-EPC Provop Rule Worklets

LR1: Variation
Point

+ + + - +/-

LR2: Alternative
process elements

F, B F, B, O, I F, B F, B, O, I F, B

LR3: Alternative
process element
context

+/- + + + +

LR4: Alternative
process relation-
ships

- +/- + - -

LR5: Variation
point resolution
time

- - - - -

Table 1: Evaluation of the tools regarding their support for language requirements

existing process variants (F5.1). In addition, refactoring support is mostly
missing (F5.2).

6. Summary and outlook

This paper has presented a framework for evaluating BP variability sup-
port as it can be found in existing proposals. Based on an in-depth analysis
of several large process model repositories from various domains, the frame-
work defines both a set of language requirements and variability support
features needed for properly dealing with BP variability. While language
requirements allow assessing the expressiveness of a BP modeling languages
in terms of variability support, variability support features are needed to
ensure the practical applicability of these language features and to support
the management of variability throughout the entire BP lifecycle.

The paper has applied the proposed framework to several proposals de-
veloped in the BPM field, which aim at explicitly supporting BP variabil-
ity. Our evaluation shows that currently none of these proposals provides
a holistic approach for supporting BP variability. In particular, support for
handling perspectives other than control flow is currently limited. Another
aspect, which has obtained little attention so far, is the support for dynamic
configuration and automatic re-configuration of process variants.

36

PESOA C-EPC Provop Rule Worklets

F1.1 Creating a configurable
process model

+ + + + +

F1.2 Verifying a configurable
process model

- + + + -

F1.3 Validating a config-
urable process model

- + - - -

F2.1 Configuring a process
variant

- + + + -

F2.2 Logging configuration
settings

- - - + -

F2.3 Deploying a process
variant

- + + + +

F3.1 Configuring a process
variant at enactment time

- - - - -

F3.2 Monitoring the execu-
tion of the instances of a pro-
cess variants

- - + - +

F3.3 Re-configuring an in-
stance of a process variant
during enactment time

- - + - +

F4 Optimizing process vari-
ant models

- - - - -

F5.1 Evolving a configurable
process model

- +/- +/- +/- +/-

F5.2 Refactoring a config-
urable process model

- - + - -

Table 2: Evaluation of the tools regarding variability support features

This paper has provided an overview of the existing support regarding BP
variability as well as existing research gaps. It further has provided means
to systematically compare different proposals for BP variability. In this vein,
the framework not only helps to understand BP variability along the BP
lifecycle, but also supports PAISs engineers in deciding, based on the type
of variability required, which proposal fits best their needs.

Similar to process patterns [3] or change patterns [71], the proposed

37

framework provides a qualitative perspective on different variability propos-
als. Our future work will complement this qualitative perspective with a
series of empirical evaluations regarding non-functional requirements such as
understandability, maintainability, correctness, traceability, and scalability.
By considering these advanced of requirements, we can additionally assess
the quality of the process family provided by the existing proposals from a
quantitative perspective. For conducting the experiments, we plan to use
the Cheetah Experimental Platform [55] which not only allows testing the
outcome of process modeling (i.e., the created process models), but also the
process of process modeling itself.

Acknowledgements
This work has been developed with the support of MICINN under the project
EVERYWARE TIN2010-18011.

References

[1] van der Aalst, W.M.P.: “Formalization and verification of event-driven
process chains”. Information and Software Technology Journal 41(10),
pp. 639–650 (1999).

[2] van der Aalst, W.M.P., Basten, T.: “Inheritance of workflows: An ap-
proach to tackling problems related to change”. Theoretical Computer
Science 270(1-2), pp. 125–203 (2002).

[3] van der Aalst, W.M.P., ter Hofstede, A., Barros, B.: “Workflow Pat-
terns”. Distributed and Parallel Databases 14(1), pp. 5–51 (2003).

[4] van der Aalst, W.M.P., Hofstede, A.H.M.: “YAWL: Yet Another Work-
flow Language”. Information Systems 30(4), pp. 245–275 (2005).

[5] van der Aalst, W.M.P., Dreiling, A., Gottschalk, F., Rosemann, M.,
Jansen-Vullers, M.H.: “Configurable process models as a basis for ref-
erence modeling”. In: Business Process Management Workshops, vol.
3812, pp. 512–518 (2005).

[6] van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M.,
La Rosa, M., Mendling, J.: “Preserving correctness during business pro-
cess model configuration”. Formal Aspects of Computing 22(3–4), pp.
459–482 (2010).

38

[7] van der Aalst, W.M.P., Lohmann, N., La Rosa, M., Xu, J.: “Correctness
ensuring process configuration: An approach based on partner synthesis”.
8th International Conference on Business Process Management, LNCS
vol. 6336, pp. 95–111. Springer, (2010).

[8] Adams, M.J.: “Facilitating dynamic flexibility and exception handling for
workflows” PhD thesis, Faculty of Information Technology. Queensland
University of Technology, (2007).

[9] Aguilar-Savén, S.: “Business process modelling: review and framework”.
International Journal Production Economics 90(2), pp. 129–149 (2004).

[10] Ayora, C., Torres, V., Pelechano, V.: “Minor contract process for re-
gional public administration: a business process variability example”.
Technical report. ProS-TR-2012-01, PROS-UPV (2012).

[11] Becker, J., Delfmann, P., Knackstedt, R.: “Adaptive reference modeling.
Integrating configurative and generic adaptation techniques for informa-
tion models”. Reference Modeling. Efficient Information System Design
through Reuse of Information Models, Berlin. Physica-Verlag HD Pub-
lisher, pp. 23–49 (2007).

[12] Business Process Model and Notation, version 2.0 . Object Man-
agement Group (OMG). http://www.org./spec/BPMN/2.0/ Accessed:
April 2012.

[13] Bridgeland, M., Zahavi, R.: “Business modeling: a practical guide
to realizing business value”. ISBN: 978-0123741516. Morgan Kauf-
mann/Elsevier Publishers, (2008).

[14] Clemens, P., Northrop, L.: “Software product lines: practices and pat-
terns”. SEI Series in Software Engineering, ISBN:0-201-70332-7. Addison-
Wesley Publisher, (2001).

[15] Curtis, B., Kellner, M., Over, J.: “Process modeling”. Communication
of the ACM 35(9), pp. 75–90 (1992).

[16] Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.:
“Similarity of business process models: metrics and evaluation”. Infor-
mation Systems 36(2), pp. 498–516 (2011).

39

[17] Dijkman, R., La Rosa, M. and Reijers H.A., “Managing large collec-
tions of business process models - Current techniques and challenges”, In
Computers in Industry 63(2), pp. 91–97 (2012).

[18] Dumas, M., van der Aalst, W.M.P. and Hofstede, A.H.M. ter Eds.:
“Process-aware information systems: bridging people and software
through process technology”. ISBN: 978-0471663065. Hoboken, New Jer-
sey: John Wiley & Sons Publishers, (2005).

[19] Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H.: “Merging
event-driven process chains”. OTM Conferences, LNCS vol. 5331(1), pp.
418–426 (2008).

[20] Gottschalk, F., van der Aalst,W.M.P., Jansen-Vullers, M.H., La Rosa,
M.: “Configurable workflow models”. International Journal Cooperative
Information System 17(2), pp. 177–221 (2008).

[21] Gottschalk, F.: “Configurable process models”. Ph.D. thesis, Eindhoven
University of Technology, The Netherlands (2009).

[22] Günther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M.P.,
Recker, J.: “Using process mining to learn form process changes in evolu-
tionary systems”. International Journal of Business Process Integration
and Management, Special Issue on Business Process Flexibility 3(1), pp.
61–78 (2008).

[23] Hallerbach, A., Bauer, T., Reichert, M.: “Managing process variants in
the process lifecycle”. 10th International Conference on Enterprise Infor-
mation Systems 3(2), pp. 154–161 (2008).

[24] Hallerbach, A., Bauer, T., Reichert, M.: “Context-based configuration
of process variants”. Technologies for Context-Aware Business Process
Management, pp. 31–40 (2008).

[25] Hallerbach, A.: “Management von Prozessvarianten”. PhD Thesis. Uni-
versity of Ulm, Germany (2009).

[26] Hallerbach, A., Bauer, T., Reichert, M.: “Guaranteeing soundness of
configurable process variants in Provop”. 11th IEEE Conference on Com-
merce and Enterprise Computing , pp. 98–105. IEEE Computer Society
Press (2009).

40

[27] Hallerbach, A., Bauer, T., Reichert, M.: “Capturing variability in busi-
ness process models: the Provop approach”. Journal of Software Mainte-
nance 22(6–7), pp. 519–546 (2010).

[28] Hallerbach, A., Bauer, T., Reichert, M.: “Configuration and manage-
ment of process variants”. International Handbook on Business Process
Management, Springer Publisher, pp. 237–255 (2010).

[29] Hevner, A.R., March, S.T., Park, J., Ram, S.: “Design science in in-
formation systems research”. MIS Quartely Journal 28(1), pp. 75–105
(2004).

[30] Hochstein, A., Zarnekow, R., Brenner, W.: “ITIL as common practice
reference model for IT service management: Formal assessment and im-
plications for practice”. IEEE International Conference on e-Technology,
e-Commerce, and e-Services, pp. 704–710 (2005).

[31] Jablonski, S., Bussler, C.: “Workflow management: concepts, archi-
tecture and implementation”. International Thomson Computer Press
Publisher. ISBN 978-3-540-88581-8 (1996).

[32] Jian, M., Zhang, J., Zhao, H., Zhou, Y.: “Enhancing software product
line maintenance with source code mining”. Wireless Algorithm, Systems,
and Applications, LNCS vol. 5258, pp. 538–547 (2008).

[33] Korherr, B.: “Business process modelling - languages, goals and vari-
abilities”. PhD Thesis. Vienna University of Technology, (2008).

[34] Kumar, A., Wen, Y.: “Design and management of flexible process vari-
ants using templates and rules”. International Journal Computers in In-
dustry 63(2), pp. 112–130 (2012).

[35] La Rosa, M., Dumas, M., Hofstede, A., Mendling, J., Gottschalk, F.:
“Beyond control flow: extending business process configuration to roles
and objects”. International Conference on Conceptual Modeling, LNCS
vol. 5231, pp. 199–215 (2008).

[36] La Rosa, M.: “Managing variability in process-aware information sys-
tems”. PhD thesis, Faculty of Science and Technology Queensland Uni-
versity of Technology. Brisbane, Australia, (2009).

41

[37] La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede,
A.H.M.: “Questionnaire-based variability modeling for system configu-
ration”. Software and System Modeling 8(2), pp. 251–274 (2009).

[38] La Rosa, M., Dumas, M., ter Hofstede, A.H.M.: “Modelling Business
Process Variability for Design-Time Configuration”. Handbook of Re-
search on Business Process Modeling, ISBN: 978-1605662886. Informa-
tion Science Reference - Imprint of: IGI Publisher (2009).

[39] La Rosa, M., Dumas, M., Uba, R. Dijkman, R.: “Merging business
process models”. In Proceedings of the 18th International Conference on
Cooperative Information Systems, LNCS vol. 6426, pp. 96–113, Springer
(2010).

[40] La Rosa, M., Dumas, M. Hofstede, H.M., Mendling, J.: “Configurable
multi-perspective business process models”. Business Process Manage-
ment Journal 12(2), pp. 1–23 (2011).

[41] Lanz, A., Weber, B. Reichert, M.: “Workflow time patterns for process-
aware information systems”. Proceedings Enterprise, Business-Process,
and Information Systems Modelling, 11th International Workshop BP-
MDS and 15th International Conference EMMSAD, LNCS pp. 94–107
(2010).

[42] Lanz, A., Weber, B., Reichert, M.: “Time patterns for process-aware in-
formation systems”. Requirements Engineering Journal (2012) (accepted
for publication).

[43] Lenz, R., Reichert, M.: “IT Support for healthcare processes - premises,
challenges, perspectives”. Data and Knowledge Engineering 61(1), pp.
39–58 (2007).

[44] Li, C., Reichert, M. and Wombacher, A.: “Mining process variants:
goals and issues”. In IEEE International Conference on Service Comput-
ing 2(1), pp. 573–576 (2008).

[45] Li, C.: “Mining process variants: challenges, techniques, examples”.
PhD Thesis. University of Twente. Netherlands (2010).

42

[46] Li, C, Reichert, M., Wombacher, A.: “Mining business process variants:
challenges, scenarios, algorithms”. Data & Knowledge Engineering 70 (5),
pp. 409–434 (2011).

[47] http://www.processconfiguration.com/download.html Accessed:
April 2012.

[48] http://www.mendling.com/EPML/C-EPC-Validator.xsl Accessed:
April 2012.

[49] JBoss Community, Drools Expert, 2011. http://www.jboss.org/

drools/drools-expert Accessed: April 2012.

[50] Lu, R., Sadiq, S.W., Governatori, G.: “On managing business processes
variants”. Data Knowledge Engineering 68(7), pp. 642–664 (2009).

[51] Melao, N., Pidd, M.: “A conceptual framework for understanding
business processes and business process modeling”. Information Systems
Jounal 10(2), pp. 105–129 (2000).

[52] Mendling, J., Verbeek, H., van Dongen, B., van der Aalst, W., Neumann,
G.: “Detection and prediction of errors in EPCs of the SAP reference
model”. Data & Knowledge Engineering 64(1), pp. 312–329 (2008).

[53] Müller, D., Herbst, J., Hammori, M., Reichert, M.: “IT support for
release management processes in the automotive industry”. 4th Interna-
tional Conference on Business Process Management, LNCS vol. 4102, pp.
368–377 (2006).

[54] Parnas, D.L. “Software aging”. 16th International Conference on Soft-
ware Engineering, ICSE ’94, pp. 279–287 (1994).

[55] Pinggera, J., Zugal, S., Weber, B.: “Investigating the process of process
modeling with Cheetah Experimental Platform”. Empirical Research in
Process-Oriented Information Systems 30(2), pp. 13–18 (2012).

[56] Puhlmann, F., Schnieders, A., Weiland, J., Weske, M.: “Variability
mechanisms for process models”. Technical report, BMBF-Project (2006).

[57] Reichert, M., Rechtenbach, S., Hallerbach, A., Bauer, T.: “Extending a
business process modeling tool with process configuration facilities: The

43

Provop demonstrator”. BPM Demos, CEUR Workshop Proceedings, vol.
489. CEUR-WS.org (2009).

[58] Reichert. M, Weber, B.: “Enabling flexibility in process-aware infor-
mation systems: challenges, methods, technologies”. Springer (2012) (to
appear).

[59] Reinhartz-Berger, I., Soffer, P., Sturm, A.: “Organisational reference
models: supporting an adequate design of local business processes”. In-
ternational Journal Business Process Integration and Management 4(2),
pp. 134–149 (2009).

[60] Reinhartz-Berger, I., Soffer, P., Sturm, A.: “Extending the adaptability
of reference models”. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A 40(5), pp. 1045–1056 (2010).

[61] Rinderle-Ma, S., Reichert, M., Weber, B.: “On the formal semantics
of change patterns in process-aware information systems”. 27th Interna-
tional Conference on Conceptual Modeling, LNCS vol. 5231, pp. 279–293
(2008).

[62] Rosemann, M. “Potential pitfalls of process modeling: Part A”. Business
Process Management Journal 12(2), pp. 249–254 (2006).

[63] Rosemann, M., van der Aalst, W.M.P.: “A configurable reference mod-
eling language”. Information Systems 32(1), pp. 1–23 (2007).

[64] Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.M.P:
“Workow data patterns”. Technical Report FIT-TR-2004-01, Queensland
University of Technology (2004).

[65] Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.M.P.:
“Workow resource patterns”. Technical Report WP 127, Eindhoven Univ.
of Technology (2004).

[66] Russell, N., van der Aalst, W.M.P., ter Hofstede, A.: “Exception han-
dling patterns in process-aware information systems”. 18th International
Conference on Advanced Information Systems Engineering, pp. 288–302
(2006).

44

[67] Soffer, P.: “Scope analysis: identifying the impact of changes in business
process models.” Software Process: Improvement and Practice 10(4), pp.
393–402 (2005).

[68] Thom, L., Reichert, M., Iochpe, C.: “Activity patterns in process-aware
information systems: basic concepts and empirical evidence”. Interna-
tional Journal of Business Process Integration and Management 4(2), pp.
93–110 (2009).

[69] Vergidis, K., Tiwari, A., Majeed, B.: “Business process analysis and op-
timization: beyond reengineering”. IEEE Transactions on Systems, Man,
and cybernetics, 38(1), pp. 69–82 (2008).

[70] Vervuurt, M.: “Modeling business process variability: a search for in-
novative solutions to business process variability modeling problems”.
Student Theses of University of Twente. October 2007.

[71] Weber, B., Reichert, M., Rinderle-Ma, S.: “Change patterns and change
support features - Enhancing flexibility in process-aware information sys-
tems”. Data and Knoweldge Engineering 66(3), pp.438–466 (2008).

[72] Weber, B. Sadiq, S. Reichert, M. “Beyond rigidity - dynamic process
lifecycle support”. Computer Science 23, pp. 47–65 (2009).

[73] Weber, B., Reichert, M., Reijers, H.A., Mendling, J.: “Refactoring large
process model repositories”. Computers in Industry 62(5), pp. 467–486
(2011).

[74] Weske, M.: “Business process management: concepts, languages, archi-
tectures”. Springer-Verlag Berlin Heidelberg Publisher. ISBN: 978-3-540-
73521-2 (2007).

[75] Yan, Z, Dijkman, R.M., Grefen, P.W.P.J.: “Business process model
repositories - Framework and survey”. Information and Software Tech-
nology 54(4), pp. 380–395 (2012).

45

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-11 Thomas Beuter, Peter Dadam:
Prinzipien der Replikationskontrolle in verteilten Systemen

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPT

flex
 - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn
Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch,l Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07 H.A. Kestler, B. Lausen, H. Binder H.-P. Klenk. F. Leisch, M. Schmid

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl,
Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11 J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recordering for Highly Complex Scenes

2009-12 Stephan Buchwald, Thomas Bauer, Manfred Reichert
 Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines

Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01 Hariolf Betz, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

2010-02 Ulrich Kreher, Manfred Reichert

Speichereffiziente Repräsentation instanzspezifischer
Änderungen in Prozess-Management-Systemen

2010-03 Patrick Frey

Case Study: Engine Control Application

2010-04 Matthias Lohrmann und Manfred Reichert

Basic Considerations on Business Process Quality

2010-05 HA Kestler, H Binder, B Lausen, H-P Klenk, M Schmid, F Leisch (eds):

Statistical Computing 2010 - Abstracts der 42. Arbeitstagung

2010-06 Vera Künzle, Barbara Weber, Manfred Reichert

Object-aware Business Processes: Properties, Requirements, Existing Approaches

2011-01 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Flexibilisierung Service-orientierter Architekturen

2011-02 Johannes Hanika, Holger Dammertz, Hendrik Lensch
Edge-Optimized À-Trous Wavelets for Local Contrast Enhancement with Robust
Denoising

2011-03 Stefanie Kaiser, Manfred Reichert

Datenflussvarianten in Prozessmodellen: Szenarien, Herausforderungen, Ansätze

2011-04 Hans A. Kestler, Harald Binder, Matthias Schmid, Friedrich Leisch, Johann M. Kraus

(eds):
Statistical Computing 2011 - Abstracts der 43. Arbeitstagung

2011-05 Vera Künzle, Manfred Reichert

PHILharmonicFlows: Research and Design Methodology

2011-06 David Knuplesch, Manfred Reichert

Ensuring Business Process Compliance Along the Process Life Cycle

2011-07 Marcel Dausend

Towards a UML Profile on Formal Semantics for Modeling Multimodal Interactive
Systems

2011-08 Dominik Gessenharter

Model-Driven Software Development with ACTIVECHARTS - A Case Study

2012-01 Andreas Steigmiller, Thorsten Liebig, Birte Glimm

Extended Caching, Backjumping and Merging for Expressive Description Logics

2012-02 Hans A. Kestler, Harald Binder, Matthias Schmid, Johann M. Kraus (eds):

Statistical Computing 2012 - Abstracts der 44. Arbeitstagung

2012-03 Felix Schüssel, Frank Honold, Michael Weber

Influencing Factors on Multimodal Interaction at Selection Tasks

2012-04 Jens Kolb, Paul Hübner, Manfred Reichert

Model-Driven User Interface Generation and Adaption in Process-Aware Information
Systems

2012-05 Matthias Lohrmann, Manfred Reichert

Formalizing Concepts for Efficacy-aware Business Process Modeling

2012-06 David Knuplesch, Rüdiger Pryss, Manfred Reichert

A Formal Framework for Data-Aware Process Interaction Models

2012-07 Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reichert, Vicente Pelechano

Dealing with Variability in Process-Aware Information Systems: Language
Requirements, Features, and Existing Proposals

Ulmer Informatik-Berichte

ISSN 0939-5091

Herausgeber:

Universität Ulm

Fakultät für Ingenieurwissenschaften und Informatik

89069 Ulm

